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Articular cartilage is a connective tissue found in diarthrodial joints such as the
knee, elbow or wrist. It is composed of collagen fibers, chondrocytes, intersti-
tial fluid, and other non-collagenous proteins. During locomotion, the articular
cartilage of the knee is primarily subjected to compressive stress caused by the
upper body weight of the host. It is of great interest to investigate the mechanical
behavior of this specialized connective tissue in compression and understand its
ability to withstand high stresses without any damage. In recent years, unconfined
compression experiments and biphasic numerical models have been widely used
for this purpose.

The primary goal of this thesis was to develop an improved biphasic constitu-
tive model for the mechanical behavior of cartilage in unconfined compression. For
this purpose, the tissue was assumed to be composed of a transversely isotropic
viscoelastic solid phase and an incompressible fluid phase. Using this premise,
along with the classical biphasic material model assumptions, it was shown that
the governing equilibrium equations can be simplified to two partial differential
equations for the radial displacement of the solid phase and the pressure of the
fluid phase. These coupled differential equations were solved and a numerical so-
lution for the axial load intensity was obtained. The results of this computational
model were then used to analyze previous experimental studies on articular car-
tilage. To this end, an optimization algorithm was used to conduct a non-linear
least squares regression analysis and find the material parameters of the proposed
model. It was observed that the proposed model could successfully predict the
mechanical response of the tissue in high strain rate compression experiments with
much greater accuracy as compared to most of the currently existing models in
literature. For low strain rate compression experiments, although the model was
able to represent the stress-relaxation behavior fairly accurately, higher residuals
were obtained. This suggests that the solid phase viscoelasticity may play an
important role in the overall stress relaxation mechanism of the tissue at high
compressive strain rates. In conclusion, this research study provided a new ana-
lytic tool to investigate the mechanical stresses generated in an articular cartilage
sample during unconfined compression.
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CHAPTER 1

Introduction

1.1. Motivation

Soft tissue in the human body serves a variety of important functions according to their

structure and location. Some important examples of soft tissue are the cornea (which

is instrumental for proper vision), articular cartilage (which is fundamental for shock

absorption and friction reduction), ligaments (which usually connect bone to bone) and

tendons (which usually connect muscle to bone). Over the past few decades researchers

have investigated the structure and mechanical response of these tissue in order to

understand the underlying mechanisms of their functions. The primary purpose of their

investigations is to be able to understand how disease and injury affect the structure

and function of these tissue and to devise treatments (or to develop artificial implants)

to improve the quality of life of their hosts.

In this thesis, the primary focus is to develop a constitutive model for the uncon-

fined compression of articular cartilage. Cartilage is a flexible connective tissue present

in areas like the joints between bones, the rib cage, the ear, the nose, the bronchial

tubes and the inter-vertebral discs. They are avascular (i.e. they are devoid of blood

supply) and are generally classified into three types elastic cartilage, hyaline cartilage

and fibrocartilage, which differ in relative amounts of cartilage. Articular cartilage con-

sists of both fibrocartilage and hyaline cartilage and is present in the joints of the knee.

The mechanical properties of articular cartilage are of great importance in load bearing

joints such as the knee and the hip and have thus been studied intensely at different

scales of magnification [7, 8]. Cartilage of the knee has to deal with frictional, compres-
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sive, shear and tensile loading and is thus very important to the quality of life of the

host. However, articular cartilage is susceptible to diseases such as osteoarthritis which

is a degenerative disease caused by the loss of tissue volume and is reported to affect

upto 27 million people in the United States alone [9]. It is also somewhat unique in

that it has relatively little ability to repair itself. One of the primary reasons for the

investigation into the mechanics of articular cartilage is to devise synthetic substitutes

for replacement of impaired tissue so as to prevent pain and loss of mobility.

1.2. Experimental and Computational Investigations

Researchers endeavor to develop explanations for the reasons soft tissue behave in their

remarkable manner. Before coming up with theories to explain this behavior, it is vital

to have examined the behavior of these tissue in a laboratory setting. To that end, sci-

entists have devised experimental investigations which on implementation would allow

a standard testing environment for different laboratories to compare results. A variety

of configurations have been devised for these experiments so that different mechanical

behavior of the tissue can be examined. In this body of work, the experimental con-

figuration investigated was the unconfined compression experiment. Apart from this,

scientists have undertaken confined compression, shear, indentation and tension exper-

iments to determine the mechanical properties of the test samples.

Once a certain degree of familiarity is established about the behavior of tissue in

experimental configurations, attempts are made to devise mathematical models to try

to explain the mechanics of the samples. The modeling for these tissue has successively

grown more accurate (and more complex) with greater understanding of the underlying

phenomenon of their load bearing capacity. These theories are generated and adapted

to the experimental configurations mentioned in the previous section and are used to try

to determine the material properties of the tissue. Once formulated and validated, these

theories also serve as a tool for different laboratories to characterize the mechanical

properties for their specimen. Experimental data and theory are compared to each

other using regression analyses which can be used to determine unique parameters for
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each experiment thus allowing scientists to understand the features of this particular

specimen in comparison to others.

Another important purpose for the developed theory is its use in finite element

simulations which can be used to analyze significantly more complicated geometries

such as in actual models for the cartilage in the knee. Several theories have been

developed down the years for articular cartilage with varying levels of success. With

greater insights of the structure of articular cartilage and improving computational

speeds, greater degrees of complexity are being built into these theories.

There are several constitutive models (i.e. models which establish relationships be-

tween stress and an independent variable such as strain) in literature which have been

used to predict the mechanical response of tissue in various experimental configurations.

These models may be devised according to some underlying knowledge about the struc-

ture of the tissue or they may be purely empirical in nature. Empirical models are

those that approach a particular problem from a mathematical point of view where the

objective is to develop an expression that predicts a phenomenon rather than one that

explains it. Many constitutive models are developed under the assumption that soft

tissue can be approximated according to mixture theory (i.e. a theory which assumes

that there are different phases that combine to form the macroscopic structure of the

tissue). In addition, they also assume that the tissue has a time dependent response to

mechanical loading (otherwise known as a viscoelastic response) and these assumptions

are used to determine a material model for the behavior of the tissue in the laboratory

environment. Experimental investigations have also revealed an anisotropic behavior of

the specimen and this fact has also been taken into account in some research. A thor-

ough review of literature provided us with the opportunity to devise our own material

models using elements of the assumptions stated above in order to provide an improved

estimate of the mechanical response of articular cartilage.

1.3. Specific Aims of this thesis

The specific aims of this thesis were -
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1. Devising a constitutive model that assumes a dual phase (solid and fluid) tis-

sue specimen with time dependent transverse isotropy in its solid phase for the

unconfined compression experiment.

2. Thoroughly examining the behavior of the proposed model for the effect of its

material parameters (a parametric study).

3. Curve fitting these models to some experimental data in order to determine the

material parameters that describe a particular specimen. The curve fitting algo-

rithms to be used were selected after a convergence study.

1.4. Expected Outcomes

At the conclusion of this thesis, it is expected that a greater understanding would be

achieved of the mechanics that control the behavior of articular cartilage in the uncon-

fined compression experiment. The new constitutive model developed would be a more

accurate method to predict the stress response of specimen in unconfined compression.

This model would then be examined using a parametric study which would enable us

to understand the effect of each parameter on the hypothetical specimen. Unique ma-

terial parameters would be obtained for the experimental data generated by a sample

using optimization techniques. The performance of this newly developed model would

be compared to an existing model in literature.

4



CHAPTER 2

Background

The purpose of this chapter is to introduce the reader to the various important

phases in the work-flow and to give the reader a brief idea of the basic information

behind each phase. These ideas will then form the foundation of the new work proposed

in this thesis.

2.1. Structure & Composition of Articular Cartilage

Articular cartilage is a connective tissue commonly found in diarthroidal joints which

are the most common type of movable joints such as those present in the joints of the

knee and elbows as well as the carpals of the wrist. Its primary function is to provide a

smooth, lubricated surface for the joint and for a low friction load bearing environment.

This tissue is also characterized by being avascular (i.e. it is not supplied by blood

vessels, lymphatics or nerves) and is subjected to a harsh biochemical environment [10].

Articular cartilage is classified as a hyaline cartilage and is generally 2-4 mm thick.

Its principal constituents are water, collagen fibres and proteoglycans which combine

with small amounts of other noncollagenous proteins and glycoproteins to form the

ECM (or the extracellular matrix) with a sparse distribution of highly specialized cells

called chondrocytes. These cells play a vital role in the development, maintenance and

repair of the ECM and constitute about 2% of the volume of the articular cartilage [11].

In healthy articular cartilage, three distinct zones can be observed with each playing

an important role in the overall function of the tissue. As shown in the schematic,
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the thin superficial (or tangential) zone (STZ) protects the lower layers from shear

stresses and may comprise approximately 10-20% of the cartilage thickness. This layer

is characterized by tightly packed collagen fibers aligned parallel to the articular surface.

The middle zone (as the name suggests, situated beneath the superficial zone) accounts

for 40-60% of the total cartilage volume and is characterized by oblique collagen fibres.

This zone accounts for a part of the compressive load bearing ability of the cartilage.

The deep zone accounts for 30% of the cartilage volume approximately and accounts

for a large part of the compressive load bearing ability of the cartilage due to the

perpendicular arrangement of collagen fibres to the articular surface. This zone is also

characterized by comparatively low water content as compared to the other two zones.

There exists a calcified layer beneath the deep zone that secures the cartilage to the

bone by anchoring the collagen fibrils of the overlying deep zone to the bone beneath it.

Figure 1: A schematic of the cross section of healthy articular cartilage. A shows
chondrocyte organization & B shows Collagen Fiber Orientation (with permission from
[1])

Another method of classification of articular cartilage is according to proximity to

the resident cells of the cartilage (i.e. the chondrocytes). One of these regions is the

pericellular matrix which is a thin layer adjacent to the chondrocyte cell membrane and

it completely surrounds the chondrocyte. This region consists mainly of proteoglycans,

glycoproteins and other noncollagenous proteins. It has been hypothesized that this

region initiates signal transduction within cartilage on load bearing [12]. Immediately

surrounding the pericellular matrix is the territorial matrix which is composed of fine

collagen fibrils. This zone is credited with being a protective layer around the chon-
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drocytes preventing it from injury due to mechanical stresses and contributing to the

cartilage’s ability to withstand large loads [13, 14]. The territorial matrix is surrounded

by the inter-territorial region which is the largest of the three matrix regions. This ma-

trix is characterized by bundles of collagen fibrils oriented in accordance with the zone

they are situated it (i.e. perpendicular to the articular surface in the deep zone, oblique

in the middle zone and parallel to the articular surface in the superficial zone).

In healthy articular cartilage, water accounts for upto 80% of the wet weight of

the tissue. Around 30% of the water is contained in the intrafibrillar space within the

collagen [15, 16]. Most of the rest is contained in the pore space of the matrix and a

small amount is contained in the intracellular space. The relative water concentration is

highest in the superficial zone and it continuously reduces with depth from the articular

surface. A major importance of water in the tissue is that it helps to transport and

distribute nutrients to the chondrocytes in addition to a being a lubricating mechanism.

Much of the water in the ECM (i.e. in its pores) can be moved through it by applying

a pressure gradient across the tissue or by applying a compressive load on it. The

frictional resistance against this motion is very high leading to very low values of fluid

permeability. This low permeability combined with the pressurization of water forms

the basic mechanism by which the tissue derives its ability to withstand high loads [1].

Collagen is the most abundant macromolecule in the ECM and makes up for 60%

of the dry weight of the cartilage. A major component of these are type II collagen

which is fibrillar in nature. Other types of collagen are also found in the cartilage but

they only constitute around 5% of the total collagen in the ECM. Proteoglycans are

the second largest group of macromolecules in the ECM and account for around a tenth

of the tissue’s wet weight. They are important as they provide the cartilage with its

osmotic properties which are critical to its ability to withstand compressive loads and

are synthesized by the chondrocytes and secreted into the ECM.

Nutrition of the cartilage tissue occurs by diffusion from the synovial fluid (i.e. the

fluid in the joint around the cartilage and bone). Due to a lack of blood supply or lym-

phatics, chondrocytes depend on anaerobic metabolism (i.e. metabolism in the absence

of oxygen). Inactivity of the joint has been seen as a factor in impaired metabolism
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Figure 2: Rope like collagen fibrils and interspersed chon-
drocytes in articular cartilage (with permission from [2])

of the chondrocytes in the cartilage which causes its degradation. Therefore regular

joint movement and dynamic loading is important for the maintenance of healthy ar-

ticular cartilage. Diseases such as osteoarthritis is associated with large changes in the

metabolism of chondrocytes and thus causes an imbalance in the degradation-turnover

cycle of the ECM constituents synthesized by chondrocytes [17].

2.2. Experimentation on Articular Cartilage

As introduced in the previous chapter, scientists have devised several experimental pro-

cedures to analyze the behavior of articular cartilage under different types of mechanical

loading. These experiments are primarily aimed at capturing creep or stress relaxation

data caused by an applied load or a strain respectively. Loading done for experimenta-

tion may also be dynamic in nature which allows for recording the behavior of cartilage

to alternative cycles of tension and compression. In this work we will be focusing pri-

marily on compression testing, in particular the unconfined compression test geometry.

Some notable types of experimental tests include indentation tests [18, 19, 20, 21, 22].

These tests provide information about material properties from the indenter load and

depth of indentation measured during loading and unloading of the material. They have

been used to characterize mechanical properties by studying creep in metals [23] and
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Figure 3: Articular Cartilage location in the Human Body. As shown
here, the tissue prevents contact between the femur and the tibia which
are the largest bones in the thigh and the ankle respectively (adapted from
http://www.niams.nih.gov/)

Figure 4: Loading curves and indenter geometry for a general indentation
experiment (with permission from [3]). The figure plots loading force with
depth of penetration into material.

glassy materials and by studying the viscoelastic behavior of polymers and other soft

materials [24]. The indenter may be conical [25] (as shown in the figure 4) or circular
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[26] and plane ended (such as a cylinder) or a rigid sphere.

The shear properties of articular cartilage are characterized by torsion testing devices

which apply a deformation on the specimen as shown in the figure 5. This configuration

allows for examination of the shearing behavior of the cartilage and allows for calculation

of shear moduli [27, 28]. Alternatively, a dynamic application of shear strain may also

be utilized here [29]. The application of load may be through fixing one end of the

specimen and imparting a deformation through a torque transducer on the other end

or it may be through a biaxial torsion tester with both ends being twisted to provide a

deformation.

Figure 5: Specimen geometry for shear loading. θ is the angle of rotation
generated by the torque transducer

Unaxial tensile tests are also quite popular for studying the mechanics of various

soft tissue. They are commonly used for a variety of tissue such as cornea and ligaments

which are subjected to tensile stresses in their natural environment [30, 31, 32]. In the

uniaxial tensile test, the specimen is excised from the tissue in the form of a rectangular

piece and clamped into position by securing both ends to prevent sliding. One end is

commonly fixed and the other is used to impart a displacement or force load to the
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sample.

The mechanical properties of articular cartilage are primarily investigated through

the use of compression testing experiments such as unconfined or confined compression

experiments. The articular cartilage of the knee is generally under great compressive

loads (the upper body weight of the person) and their properties in compression are of

great importance to the medical profession. In these types of experiments a cylindrical

sample of cartilage is loaded with a compressive strain or force load in the axial direction.

In a confined compression test, the cartilage specimen is sealed on the lateral sides to

prevent any sort of radial displacement. The specimen is compressed between two plates

in which the lower one is rigid and impermeable whereas the upper one is rigid and free

draining [33, 34, 35].

Figure 6: Experimental geometry schematic for the uniaxial confined compression test
with an NaCl bathing solution(with permission from [4])

Modeling the mechanical behavior of cartilage in unconfined compression is the pri-

mary focus of our investigation in this thesis. The unconfined compression geometry

consists of two rigid impermeable plates with a lower fixed one and an upper movable

one. The load or strain displacement is applied by the movable platen. In contrast to
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the confined compression experiment, the lateral sides of the cartilage specimen are not

sealed and the specimen is free to be displaced in the radial direction. In this geometry,

the specimen is surrounded by a bathing solution such as NaCl to prevent dehydration of

tissue (the water content in the tissue causes a significant effect on the mechanical prop-

erties of the tissue). The lateral displacement of the solid also causes the development

of a fluid pressure gradient in the radial direction [36].

Figure 7: Schematic for Unconfined Compression Test (with permission from [5])
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2.3. Compression experiments and Articular Cartilage - A Review of various

theoretical formulations

As mentioned above, the compressive load bearing behavior of cartilage is of great

interest to researchers due its vital function of supporting the compressive load due to

the upper body weight in humans. Researchers have subjected articular cartilage to

both confined and unconfined compression and have then tried to develop predictive

mathematical models for the mechanical response of the cartilage specimen. One of the

landmark works on the compressive behavior of articular cartilage was by Mow et al

[35], where the articular cartilage tissue was modeled as a macroscopic structure with

two phases in confined compression. This formulation assumed that the domain of the

articular cartilage could be differentiated into a solid phase and a fluid phase. Two

versions of the formulation were developed with one being an assumption for constant

fluid permeability and the other prescribing a non-linear permeability for the specimen

under varying dilatation.

Lai et al [37] extended the biphasic model to account for a strain rate dependent

permeability. In their work, the fluid permeability was assumed to vary with strain rate

applied during the loading of the tissue. The biphasic assumption coupled with constant

fluid permeability has been a popular formulation due to its simplicity and was extended

to the unconfined compression geometry by Armstrong [36]. Holmes in 1985, performed

experiments to measure the strain rate dependent permeability and incorporated the

results into a biphasic model for uniaxial compression experiments to obtain accurate

stress and displacement fields in the cartilage specimen. Although the purely biphasic

model was a breakthrough in the modeling of cartilage, it performed poorly in case of

unconfined compression experiments. As a result of this, researchers have progressively

added more complexity in order to search for a more accurate estimation of the stresses

and displacements generated in the specimen. With more knowledge of the underlying

physiology of the cartilage, better mathematical approximations were introduced to try

and predict the mechanical behavior of specimen.

The biphasic assumption along with constant permeability was used by Mak [38] to
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Figure 8: A comparison of the isotropic and tranversely isotropic Models for infinites-
imal deformation for the uniaxial unconfined compression of articular cartilage (with
permission from [6])

model a specimen with a linearly viscoelastic solid phase thus adding another mechanism

of stress relaxation or creep to the problem. Prior to this it was assumed that the

stress relaxation and creep behavior of cartilage was predominantly due to the friction

between the fluid and solid phase caused by the extremely low permeability of the fluid

in the ECM. Mak assumed that the solid phase also contributed to the stress relaxation

behavior and formulated his problem for both the confined and unconfined compression

apparatus. To adapt these formulations to large strain experiments, finite deformation

formulations were also developed (so far most models assumed a small deformation

experiment only). Researchers used the two-phase assumption and coupled it with finite

deformation length scales to obtain continuum models which could either have strain

dependent permeability or constant permeability throughout the specimen [39]. The

assumption of solid phase viscoelasticity has also been combined with finite deformation

models [40].

Higher complexity was added to the mathematical formulations in order to obtain a

more accurate prediction of the displacement and pressure fields generated in the speci-
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men during loading. Lai developed a three phase model for the deformation of cartilage

in confined compression [41]. The assumptions behind the addition of the third phase

were based on the fact that a third ion phase would exert an physico-chemical influence

on the total stress of the mixture due to the charge-to-charge repulsive forces within the

solid matrix. Cohen [6] ignored the electrochemical nature of the cartilage mixture and

proceeded with an assumption that the solid phase of the cartilage was anisotropic in

nature. In particular, it was assumed here that the cartilage was transversely isotropic

with the plane of isotropy being in the radial direction. This modification (combined

with the usual biphasic and constant permeability assumption) led to a physiologically

accurate estimation of the stresses generated in the unconfined compression experiment

(as anisotropic responses for articular have generally been described in experimental

investigations). As we can see, additional layers of complexity have been added to the

initial assumption of a simple two-phase mixture used to model the cartilage sample.

Soltz used Curnier’s conewise linear elasticity [42] in the place of linear elasticity in a

biphasic model for the compression of cartilage [43]. This was also modified to include

linear viscoelasticity by Huang [44]. Conewise linear elasticity is characterized by dif-

ferent responses to tension and compression loading which could be a feature of the

behavior of cartilage.

However, there exists a gap in the literature here as the transversely isotropic model

for the unconfined compression experiment was not extended to account for solid phase

viscoelasticity for infinitesimal deformations. Therefore the main aim of this thesis

is to develop a formulation to account for transversely isotropic viscoelasticity in the

solid phase of a biphasic material in order to capture the stress relaxation behavior of

the articular cartilage under small compression with greater accuracy than the purely

transversely isotropic and biphasic formulation. The principles of mathematical model-

ing that are going to be used to develop a new model will be explained in greater detail

in the next chapter.

Another approach to simulating the mechanical behavior of a specimen is through the

approach of numerical computation. Although analytical solutions are always preferable

for problems (since they do not involve errors of computation such as truncation errors
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or convergence issues), it is often seen that analytical solutions are feasible only for

highly idealized geometries and conditions. In most cases, mechanical responses must

be characterized for irregular geometries (such as an actual artificial cartilage tissue

in the joint). In these scenarios, numerical approximations such as the finite element

method and the finite difference method are used instead of analytically solving partial

differential equations.

Numerical methods may also be used to validate existing analytical solutions. Re-

searchers around the world have solved various geometries (such as the compression

experiments) using the finite element and finite difference methods and compared them

to the analytical solutions developed for them [45, 46]. Many analytical solutions are

obtained by a convoluted procedure of solution (which may not exist in the time do-

main either) and need numerical routines just to obtain their closed form results. In

such cases numerical solutions can prove to be an efficient alternative. Once validated,

the researcher is free to manipulate his geometry and initial conditions without having

to analytically solve the problem again.

Some notable instances of numerical modeling of compression experiments in carti-

lage are given below. One of the earliest implementations of the finite element method

was by Spilker [47, 48] who modeled an unconfined compression experiment as well as an

indentation experiment for the linear biphasic material. The advantage of using FEM

here allowed the author to study the effect of friction between the rigid impermeable

plates and the specimen during unconfined compressive loading (something that would

be very complicated to add to the analytical formulation of the experiment). DiSilve-

stro re-validated Mak’s biphasic and linearly viscoelastic theory using a finite element

method and used it investigate various ranges of strain rates [49]. Finite elements has

also proven popular for researchers who want to capture the behavior of the articular

cartilage more accurately from a structural point of view. Several FEM investigations

have been carried out while keeping in mind the inhomogeneities in the microstructure

of cartilage (something that would be very difficult if not impossible to do analytically)

such as the collagen fibrils and their orientation [50, 51, 52, 53]. Haider [54] solved the

biphasic and linearly viscoelastic problem for a confined compression apparatus using
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the method of finite differences and confirmed the results of the analytical solution for

the same.

Figure 9: Fig. (a) A ramp strain (b) A stress relaxation curve

In the following discussion, the fundamentals of viscoelasticity are introduced. Vis-

coelasticity is defined as a phenomenon wherein a material undergoing deformation ex-

hibits both elastic and viscous characteristics. The particular behavior of viscoelasticity

we are investigating is the stress relaxation of a material on application of fixed strain.

Viscous materials are seen to behave in a hereditary manner (i.e. the current state of

stress or strain depends on the state of stress or strain at points of time in the past).

Figure 9 shows a stress profile one might expect from the ramp strain compression of a

viscoelastic material. Boltzmann (1844-1906) introduced the most general formulation

for linear viscoelasticity which stated that the elongation in a specimen at any point of

time is caused by the total history of loading upto that point in time and conversely that

the stress in a specimen at any point of time is caused by the total history of elongation

till that point of time. In a one dimensional stress relaxation case this gives us a time

dependent expression of force F as-

F (t) =

∫ t

0
E(t− τ)

du(τ)

dτ
dτ (1)

where u is the deformation in one dimension and E(t) is the relaxation modulus. This
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can be extended to three dimensions by -

σij(X, t) =

∫ t

−∞
Gijkl(X, t− τ)

∂εkl
∂τ

(X, τ)dτ (2)

where Gijkl is the fourth order relaxation tensor, εkl is the second order strain tensor

and σij is the second order stress tensor.

Linear viscoelasticity can also be experimentally characterized if the relaxation mod-

ulus curves corresponding to different step strains overlap (i.e. that the relaxation mod-

ulus for linear viscoelasticity is independent of step strain E(t) = σ(t)/ε0). For the

new biphasic, transversely isotropic and viscoelastic constitutive model that shall be

developed in the next chapter, a linearly viscoelastic formulation shall be employed.

In most examples of viscoelastic behavior, it is quite rare to get a relaxation modulus

that is independent of strain [55]. In such cases, linear viscoelastic is not applicable

anymore and one must look at other methods to determine the constitutive relationship

of the material. One such approach is Quasi-Linear Viscoelasticity (or QLV) [56]. QLV

can be characterized in a material if in a plot of log relaxation modulus versus log time,

one obtains separate curves for different step strains but each curve has a similar shape.

Mathematically, QLV can be represented as -

σij(X, t) =

∫ t

∞
Gijkl(X, t− τ)

∂σkl
∂εmn

∂εmn
∂τ

dτ (3)

where σij stands for the second order stress tensor.

Equation (3) is structurally very similar to the expression for linear viscoelasticity

and is thus an acceptable model for some non-linearly behaving viscoelastic materials.

One must note carefully the terms within the hereditary integral for both formulations.

Linear viscoelasticity depends on an infinitesimally small strain being integrated from

the past whereas QLV depends on an infinitesimally small stress term being integrated

from a point of time in the past. Another assumption in these formulations is that

there are no jumps in stress assumed for our specimen at the start of the experiment

(in that case the formulations have another term to account for the instantaneous jump

in stress). In case the curves for relaxation modulus with time do not overlap or are
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not similar to each other for different strain, a formulation for non-linear viscoelasticity

must be chosen. Fung introduced the QLV theory for approximating the stress relaxation

response of tissue such as skin, muscles, veins, tendons, ligaments etc [56].

2.4. Optimization

Once a desired constitutive model has been formulated, it must be tested against ex-

perimental data to see if it has the ability to accurately capture the behavior of the

specimen. This can be said to be the second phase of a constitutive modeling project

as it is during this phase that the model can be tested for its accuracy and efficiency.

Feedback from this stage is used to improve the model and subsequently re-evaluate it

against experimental data. In common parlance, this phase of the project is called the

“curve fitting” stage where experimental data are “curve-fit” to certain material con-

stants in the model we have developed. Curve fitting is also known as optimization which

is defined as the minimization or maximization of a particular mathematical quantity.

In our case, the quantity to be minimized is the error between the experimental data

and the model prediction.

In the following, a short review is carried out of the major developments in opti-

mization. Modern optimization and its origins can be traced back to the 16th century

with Newton’s root finding method also known as the Newton-Raphson method named

after Sir Isaac Newton and Joseph Raphson which was an iterative method for finding

successively better optimization of roots of a real-valued function [57]. In the mid 17th

century Simpson used this iterative root finding procedure for gradient based optimiza-

tion [58]. Gradient based optimization finds its logic in setting derivatives equal to zero

in order to find the maxima or minima of a function. Legendre in 1807 presented the

concept of least squares error reduction [59] although Gauss [60] claimed to have had

knowledge of the technique earlier. Least squares reduction is the foundation of valida-

tion of mathematical models with experimental data. Cauchy in 1847 [61] formulated

the sequential line search technique on a steepest descent line which involves moving

in the direction of steepest descent till a minima is reached on the line before which a
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new direction of steepest descent is found and the process is repeated. It adds a cer-

tain degree of heuristic control to the traditional Newton-Raphson method. In 1944,

Levenberg [62] combined Cauchy’s sequential line search method and Newton’s method

for root finding to obtain a robust optimization technique which utilizes the advantages

of either method (such as Newton’s method’s ability to jump rather quickly to the lo-

cal vicinity of an optima combined with the increased accuracy of Cauchy’s sequential

search in that local vicinity). This method was not prominently used until Marquardt

rediscovered and popularized it [63]. In 1959, William C. Davidon presented the first

Quasi-Newton method which was a modification of the well known Newton’s method

without the requirement to calculate Hessians for higher dimensions[64]. The Hessian

matrix is a square matrix of second-order partial derivatives with respect to the depen-

dent variables of a scalar-valued function, or scalar field. It describes the local curvature

of a function of many variables. Hooke and Jeeves [65] in 1961, published their Pattern

Search method for finding the minima of functions that may or may not be continuous

or differentiable. This method (known as a direct search method) therefore would not

need the use of gradients of the function at points and was an important advance in

minimization techniques. In 1962, Spindley, Hext and Himsworth presented the Sim-

plex search method (not to be confused with Dantzig’s simplex tableu) for optimization

wherein a simplex (a convex hull of n+1 vertices in n dimensions) is used to find the op-

tima of the function by successively reducing its size[66]. Nelder and Mead [67] modified

this method to account for change of size and shape (i.e. by controlling the angles of the

simplex). These direct search methods were characterized by optimizers behaving in a

manner such that lower values of a function were sought out at the expense of higher

values. However, this caused an attraction to local minima as against the ultimate goal

of finding the global optima.

Increased computing power in the late twentieth century led to the formulation of

evolutionary algorithms that mimic Nature’s way of finding the optimum to a particular

function. When gradient based or direct search methods are unable to find the optima

for complex functions, it is seen that these algorithms are capable of using their inbuilt

heuristics to reach the vicinity of the optima. Some notable evolutionary algorithms are
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the Particle Swarm theory [68], the Ant-Colony algorithm [69], Differential Evolution

[70], the Artifical Bee Colony algorithm [71], the Cuckoo Search algorithm [72], the

Bees algorithm [73], Leapfrogging [74], Harmony Search [75]. All of these algorithms

are heuristic based and can be modified to aid the individual with his requirements.

Curve fits to non-linear constitutive models for mechanical behavior of materials

require the use of a mechanism to minimize the difference between the experimental data

and the model predicted data for parameters (which in our case are material constants).

In optimization parlance a multidimensional non-linear optimization has to be carried

out with the material constants as decision variables and the error between experiment

and predicted values as the objective function. A convenient way to define this objective

function is to use the least squares error minimization process. In this process the square

of the difference of predicted model values and experimental data is minimized at each

value of the time variable. In other words -

O.F =
√

Σi ([Fmodel(ti)− Fexperiment(ti)]2/Fexperiment(t∞)2) (4)

One may notice in equation (4) that the squared difference of the error is normal-

ized by the equilibrium function value for the experimental data. For stress relaxation

experiments, this equilibrium value is achieved when the sample has relaxed completely.

Our optimizer will then evaluate the objective function for different decision variables

(in our case - these are material constants) and then obtain a set of these variables which

gives us the lowest value for the objective function or in other words, the lowest error.

For curve fitting constitutive models to experimental data in the field of biomechan-

ics, it is imperative that the global minima be reached at the end of the optimization

process since the outcomes of the curve fits are material constants which characterize a

particular sample being experimented. In order to ensure the global minima are reached,

evolutionary swarm algorithms are generally used nowadays to curve fit the experimen-

tal data. DiSilvestro [49] and Olberding [76] used the differential evolution algorithm

for curve fitting unconfined compression, indentation and confined compression data of

articular cartilage. Differential evolution has emerged as the optimizer of choice for most

curve fitting procedures after constitutive modeling of soft tissue in compression. Soltz
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et al [43] however, used the BFGS Quasi-Newton minimization scheme (a modern de-

scendant of Davidon’s first Quasi-Newton method) to curve fit experimental data to his

Conewise-Linear Elastic model for unconfined compression of cartilage. For the purpose

of curve fitting, some well known evolutionary algorithms were tested for computational

efficiency before Leapfrogging was finalized to curve fit our experimental data.

The studies done prior to selection of an optimizer included the test of computa-

tional efficiency in obtaining convergence. Three optimizers, differential evolution, the

modified particle swarm and leapfrogging were made to optimize an objective function

with the same randomized starting position of players and the time taken to reach

a convergence was recorded. Our hypothesis was that leapfrogging would be a more

efficient optimizer compared to differential evolution or the modified particle swarm

method. There were certain reasons behind this assumption. Firstly, particle swarm

and differential evolution require the selection of certain heuristic parameters by the

user in order to optimise performance and these require significant trial and error. The

parameters selected were on the basis of classical recommendations by the developers

of these optimization algorithms and are generally not very suitable for all problems.

This is not the case in leapfrogging where we rely on the inbuilt heuristic. Secondly, in

every iteration of either particle swarm or differential evolution, each player is mutated

and retained if it is fitter than its parent which causes a significantly higher number

of function evaluations per iteration as compared to leapfrogging where only the worst

player is targeted for mutation. This essentially implies that leapfrogging is focused on

the elimination of the worst particle in each iteration as compared to the other two op-

timizers where all the players are mutated to check for a better solution (thus requiring

more computational time). However, this higher degree of mutation in particle swarm

and differential evolution leads to a higher probability of capturing the global optima in

the same number of initializations. In Rhinehart et al [74], particle swarm was shown

to reach the global optima more than twice as many times as compared to leapfrogging

for the same number of random initializations for a particular function. However, since

we had a good idea about the location of the global optima for our problem from re-

ported values in literature, the exploration aspect of our optimization routine was not
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very important and computational benefit took precedence over ability to obtain global

optima in fewer initializations.

As shown in figure 10, Leapfrogging was able to reach convergence much more quicker

than the other two optimizers for this particular problem. The convergence criteria for

our study as well as subsequent model validation was given by -

St.Dev[Xi]

Mean[Xi]
≤ Precision (5)

where Xi are the values of material constants i. For example, if we are optimizing a

material model with 3 parameters and our optimization routine utilizes 10 players, there

are 10 particles with each having 3 material parameters and the standard deviation of the

10 values of each of the 3 material parameters divided by their mean must be less than

the threshold precision for convergence. The precision value is determined by observing

standard deviation values decrease to zero before deciding a magnitude to quit iterations.

Other convergence criteria were also explored such as standard deviation of objective

function values which was deemed unsatisfactory due to shallow optima (significant

variations in parameters with low variation in objective function values near the global

optima) and the standard deviation of all parameters being lower than a threshold which

was rejected as it would cause an inconsistency of scale as some parameters are much

larger than the others. The pseudo-code for our optimizer of choice (leapfrogging) is

given in figure 11 and its corresponding Mathematica code has been provided in the

appendix. The general process flow for an evolutionary algorithm is given in figure 12.

Another method of model validation is the procedure of bootstrapping [77]. Boot-

strapping is carried out as a post-optimization study to ensure that the model is not

sensitive to systematic deviations of experimental data. Bootstrapping uses an inter-

polation scheme where a certain amount of experimental data generated is averaged

following which a random error is added to this average ensemble. The random error

in data is calculated from residuals generated during the optimization of the generated

experimental data. This extrapolated data generated from the average ensemble and

the random error is then tested by multiple optimization runs (each with a different

random error). If output parameters remain stable (i.e. within a certain feasible range),
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Figure 10: Convergence Studies using three optimizers - Leapfrogging - Differential
Evolution - Particle Swarm

then the model is said to be insensitive to systematic errors in data.
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Figure 11: Pseudocode for Leapfrogging optimizer. The OF value is the error between
model and experimental data. A better OF implies lower error.
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Figure 12: Process flow for general evolutionary algorithm
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CHAPTER 3

Transversely Isotropic, Viscoelastic and Biphasic Model

In this chapter, a new constitutive model will be developed using some common

assumptions present in literature. Our constitutive model will be developed for the un-

confined compression experimental configuration (which has been discussed in extensive

detail in the previous chapter). The primary assumptions we will be making in the

formulation of this model is that the specimen is perfectly cylindrical, that there exists

only two phases in the domain (one solid and one fluid) and that the fluid permeability

is constant throughout the duration of the experiment. The other significant assump-

tion (and the chief new component of this work) is that the solid matrix is transversely

isotropic and linearly viscoelastic in nature with the plane of isotropy being in the radial

direction. Before the new constitutive relationship is developed, some of the concepts

behind the different relations that will be used to formulate a partial differential equation

for our problem are described.

3.1. Mathematics Prerequisites

In order to set up the partial differential equation for a material and geometry, it is nec-

essary to develop a set of governing equations. These governing equations are generated

from certain relationships related to the type of analysis we are undertaking. For exam-

ple, since our analysis is static in nature, the body is at a force equilibrium (not to be

confused with the equilibrium stress of the experiment) throughout the duration of the

experiment and throughout the volume of the specimen. A relationship can be set up to

balance the different forces (due to stress, fluid pressure etc) and this will give us one of
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our governing equations. These equations are also generally known as the equations of

motion. In static solid mechanics, the equilibrium equations are determined by taking

the divergence of the stress tensor within the body i.e. -

σij,j = 0 (6)

After setting up the equilibrium equations, it is important to set up the equations for

local conservation of mass also knows as the continuity equations. A continuity equation

describes the transport of a conserved quantity. Since mass, energy, momentum, electric

charge and other natural quantities are conserved under their respective appropriate

conditions, a variety of physical phenomena may be described using continuity equations.

In other words, they are stronger and more localized version of the laws of conservation.

Continuity equations can be expressed in integrals forms (for example in cases of flux)

and in differential forms through the use of a divergence operator (which is what this

formulation shall use). For our formulation, the continuity equation essentially provides

us the localized version of a conservation of mass. It is given by -

∂ρ

∂t
+ (ρvi),i = 0 (7)

Where ρ is the density of the material and v is the velocity vector of the material.

The above equation is simplified in our formulation to account for the assumption that

the density of our phases are uniform and continuity is maintained by relative motion

of phases against each other. This will elaborated in the next few sections.

Once the continuity and equilibrium equations are setup, our assumptions for the

constitutive relationship for the individual phases shall be substituted into them to

obtain a partial differential equation.
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3.2. The Biphasic Material Assumption

The linear biphasic theory states that the total tissue stress is a sum of the stresses in

the solid and the liquid phase [35] -

σtij = σfij + σsij (8)

where σf is the stress tensor caused due to the interstitial fluid pressure p and σs is

the stress tensor of the solid matrix.

In the biphasic assumption the stresses developed in the solid phase are given by -

σsij = −φs
φf
p I + σmatij (9)

Where σmat is the stress strain relationship for the material of the solid phase and

I is the Identity tensor. The stresses in the fluid phase are given by the uniform radial

pressure in the fluid -

σfij = −p I (10)

The fluid stress p used in the biphasic theory is related to the interstitial fluid pressure

p0 by the expression p0 = (1 + φs/φf )p [36].

Applying the conditions of equilibrium to the solid and liquid phases individually

within the domain gives us -

σsij,j −K(vsi − v
f
i ) = 0 (11a)

σfij,j +K(vsi − v
f
i ) = 0 (11b)

where K is known as the diffusive resistance coefficient related to the tissue perme-

ability k by K = φ2
f/k. The above equations reflect the assumption that the relative

motion between the phases causes a transfer of linear momentum between them to en-

sure equilibrium. On addition of the the equations we recover the equilibrium condition
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of the entire domain -

σtij,j = 0 (12)

Now that the equilibrium equations are ready, continuity conditions must be set up

for the biphasic assumption. A primary assumption made about the two phases in the

biphasic material is that both phases are intrinsically incompressible. This leads to the

understanding that the solid matrix can only move in to occupy a certain volume of the

domain if an equal an opposite amount of fluid is squeezed out of it. This phenomenon,

coupled with the fact that both phases are homogeneous (ρ is constant for both of them)

gives us -

φfv
f
i,i + φsv

s
i,i = 0 (13)

Taking the advantage of the geometry of the sample used for this experiment, the

formulation uses the cylindrical coordinates system which helps us write equation (13)

as -

φf

(
∂vfr
∂r

+
vfr
r

+
∂vfz
∂z

)
+ φs

∂

∂t

(
∂u

∂r
+
u

r
+ ε(t)

)
= 0 (14)

An important assumption made here is that due to assumption of infinitesimal de-

formation vsi,i ≈ ∂
∂t(u

s
i ). Also, u implies displacement of the solid matrix in the radial

direction and ε(t) = ∂usz/∂t. It is assumed that solid-fluid relative motion exists only

in the r − θ plane which gives us vfz = vsz = ∂usz/∂t from which we get ∂vfz /∂z = ∂ε/∂t

where ε is the axial strain ∂usz/∂z. It is noted here that there is no fluid or solid phase

motion in the θ direction.

The above equation is integrated with respect to r with the condition that vfr = 0

at r = 0 to give -

vfr = −φs
φf

∂u

∂t
− r

2

(
1 +

φs
φf

)
∂ε

∂t
(15)

Now our governing equations are all set up. We proceed to eliminate the fluid stress
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p from the equations of equilibrium (equation 11a and 11b) by using equations (9,10)

and use our continuity relation (equation 15) to obtain -

(∇.σmat)r =
1

k

(
∂u

∂t
+
r

2

∂ε

∂t

)
(16)

The left hand side of the above equation symbolizes the radial component of the

divergence of the second order solid phase stress tensor in cylindrical coordinates. It

is assumed that there is no shearing in this experimental configuration. The above

equation symbolizes the principle partial differential equation for radial displacement in

the biphasic problem.

For determining the axial force intensity in the biphasic problem, a fluid pressure

field also needs to be determined. We can obtain a partial differential equation for the

fluid pressure from putting equation (15) into (11b) and noting the relation between the

diffusive resistivity coefficient K and the fluid permeability k -

(1 +
φs
φf

)
∂p

∂r
=

1

k

(
∂u

∂t
+
r

2

∂ε

∂t

)
(17)

which simplifies to -

∂p0

∂r
=

1

k

(
∂u

∂t
+
r

2

∂ε

∂t

)
(18)

Both relations for radial displacement (equation 16) and pressure (equation 18) are

solved analytically (if possible) and used in the following relation to determine the axial

load intensity (i.e. the load per unit undeformed area)-

f(t) =

∫ r0

0
σtzz(t)2πrdr/πr

2
0 (19)

The relation shown above integrates the axial stress by summing up infinitesimally

thin radial strips from the center to the radius of the specimen to obtain the average

force on the specimen which is then divided by the area of the specimen at the start of
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the experiment. The axial stress σzz is the total stress in the specimen given by -

σtzz = −(1 +
φs
φf

)pzz + σmatzz = −(p0)zz + σmatzz (20)

The above relation can be obtained by summing up the equations (9 and 10).

In addition to the main partial differential equations, certain boundary conditions

are also assumed for the unconfined compression problem where for r = 0, in order to

account for zero radial displacement at the centre of the specimen we have -

u = 0 (21)

and for r = r0 (r0 is specimen radius) in order to account for zero traction on the lateral

surface of the specimen -

σrr = 0 (22)

For fluid pressure our boundary conditions are defined by a pressure free lateral

surface -

p(r0, t) = 0 (23)

The initial conditions (i.e. at time t = 0) for the unconfined compression experiment

are given by -

u = 0 and p = 0 (24)

3.3. Solid Phase Constitutive Relationship

In this section we shall discuss the mathematical relationship used to describe the stress

strain behavior of the solid phase of the biphasic domain. First we shall take a look at
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Figure 13: Unconfined Compression Sample Geometry

Cohen’s model which has a transversely isotropic solid phase (with no added viscoelas-

ticity). The stress strain relationships developed here will form the foundation of the

complexity we wish to introduce later.

For an elastic solid matrix with transverse isotropy we have -



σrr

σθθ

σzz

σzr


=



C11 C12 C13 0

C12 C11 C13 0

C13 C13 C33 0

0 0 0 C44





εrr

εθθ

εzz

2εzr


(25)

where (r, θ, z) are the cylindrical coordinates and the r − θ plane is the plane of

isotropy. The five independent parameters of transverse isotropy are then given in terms

of moduli and Poisson’s ratios in the plane of isotropy and in a direction perpendicular

to it.
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C11 =
E1(1− ν2

31E1/E3)

(1 + ν21)∆1
(26)

C12 =
E1(ν21 − ν2

31E1/E3)

(1 + ν21)∆1
(27)

C13 =
E1ν31

∆1
(28)

C33 = E3[1 + 2ν2
31(E1/E3)/∆1] (29)

C44 = G31 (30)

where E1, ν21 = ν12 and E3, ν31 = ν13E3/E1 are the modulus and Poisson ratio in

the transverse plane and plane perpendicular to plane of isotropy respectively. G31 is

the out of plane shear modulus and ∆1 = 1− ν21 − 2ν2
31E1/E3.

From the above relations we obtain (noting that εrr = ∂u/∂r, εθθ = u/r ) -

σrr = C11
∂u

∂r
+ C12

u

r
+ C13εzz (31)

σθθ = C12
∂u

∂r
+ C11

u

r
+ C13εzz (32)

The radial component of the divergence of the second order stress tensor describing

the solid phase constitutive relationship in polar coordinates for the unconfined com-

pression experiment is given by -

(∇.σmat)r =
∂σrr
∂r

+
1

r
(σrr − σθθ) (33)
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Which ends up giving us -

(∇.σmat)r = C11

(
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2

)
(34)

This equation may then be combined with the general biphasic partial differential

equation for the radial displacement (equation 16) to completely describe the radial

displacement of the specimen in the unconfined compression experiment as shown below

-

C11
∂2u

∂r2
+ C11

1

r

∂u

∂r
− C11

u

r2
=

1

k
{∂u
∂t

+
r

2

∂ε

∂t
} (35)

The above equation can be solved for the radial displacement of the solid phase (u)

by normalizing all our variables and moving the relation to the frequency domain. This

shall be explained in further detail during the solution of our proposed formulation in

section 3.5.

3.4. Incorporating Linear Viscoelasticity to Solid Phase

Linear viscoelasticity has been covered in detail in the chapter 2 and it is incorporated

into the stress strain relationship in the following manner. Using Voigt notation, we

have defined a time dependent stiffness parameter for our solid phase given by -

Cij(t) = Cijg(t) (36)

Where the relaxation function g(t) is defined as -

g(t) = {1 +

∫ t

0

H(τ)

τ
e−t/τdτ} (37)

and H(τ) is the relaxation spectrum of choice for this model. The most commonly
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chosen form for the relaxation spectrum has been specified by the box spectrum [78] -

H(τ) =


c τ1 ≤ τ ≤ τ2

0 τ < τ1 & τ > τ2

(38)

In the above expression, c is a dimensionless constant and τ1, τ2 are constants having

the dimensions of time and defining the period of time during which a linearly viscoelastic

relationship is in place. We introduce a convolution integral relationship between the

time dependent stiffness parameter given by -

Cijε
∗ =

∫ t

0
Cij(t− τ)

∂ε

∂τ
dτ (39)

Furthermore, we assume a time dependent constitutive relationship between the

stiffness matrix parameter and the strain. For the radial stress we have -

σrr = C11
∂u

∂r

∗
+ C12

u

r

∗
+ C13ε

∗
zz (40)

where radial, axial and circumferential strains have their usual expressions in polar

coordinates. Similarly, for the circumferential stress -

σθθ = C12
∂u

∂r

∗
+ C11

u

r

∗
+ C13ε

∗
zz (41)

where u and r are the radial displacement and distance respectively.

On using the expression for radial and circumferential stress given by equations (40)

and (41) in equations (33) and (16) we can obtain -

C11
∂2u

∂r2

∗
+ C11

1

r

∂u

∂r

∗
− C11

u

r2

∗
=

1

k
{∂u
∂t

+
r

2

∂ε

∂t
} (42)
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A Laplace transform of equation (42) gives us -

C11ḡ
∂2ū

∂r2
+ C11ḡ

1

r

∂ū

∂r
− C11ḡ

ū

r2
=

1

k
{sū+

r

2
sε̄} (43)

where ḡ = 1 + c log(1+sτ2
1+sτ1

). The above relation is then normalized by the relations

ú = u/r0 and ŕ = r/r0, to give us -

{∂
2 ¯́u

∂ ¯́r2
+

1
¯́r

∂ ¯́u

∂ ¯́r
−

¯́u
¯́r2
} − f ¯́u =

ε̄¯́r

2
f (44)

Here we have defined a term -

f =
r2

0s

C11 k ḡ
(45)

where r0 has been defined previously as the radius of the cartilage specimen and s is

the Laplace transform parameter.

Our problem has now been defined in its entirety. Our aim is to solve equation

(44) using the normalized and Laplace transformed versions of the boundary conditions

stated in equations (21 and 22).

3.5. Solution of New Partial Differential Equations

The newly formulated PDE for the radial displacement (equation 44) in our unconfined

compression experiment can be compared to the general form of the modified Bessel

Differential Equation -

r2∂
2u

∂r2
+ r

∂u

∂r
− (λ2r2 + ν2)u = 0 (46)

The solution to the modified Bessel Differential equation is given by -

u = L1I1[λr] + L2K1[λr] (47)
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Where L1 and L2 are constants and I1 and K1 are Bessel Functions of the first and

second kind with order 1 respectively. It is to be noted here that as r → 0,K1 → ∞

therefore to accommodate our solution the term L2 is to be taken as zero. Therefore

the general solution for our problem is given by -

¯́u = L1I1[λŕ] (48)

In order to complete our solution we need to determine a particular solution to our

problem. It is seen that on choosing a particular function of − ε̄ŕ
2 , equation (44) is

satisfied. This gives us a final solution form of -

¯́u = L1I1[λŕ]− ε̄ŕ

2
(49)

We can now substitute the above relation into the boundary condition for zero radial

stress on the lateral sides of the specimen to obtain a value for L1. The final solution

for ¯́u (now dimensionalized) is given by -

ū = r0
ε̄

2

(C11 + C12 − 2C13)I1[
√
fr/r0]

C11
√
fI0[
√
f ]− I1[

√
f ](C11 − C12)

− ε̄r

2
(50)

Now that we have obtained a solution for the radial displacement we can use it to

solve for the fluid pressure distribution in the radial direction. On taking a laplace

transform of equation (18) and performing some rearrangement of terms we obtain -

p̄0 = −1

k

∫ r0

r
[sū+ srε̄/2] dr (51)

Substituting equation (50) into (51) and integrating gives us the solution for the

fluid pressure distribution in the specimen -

p̄0 =
C11

2
ḡ
√
f ε̄

(C11 + C12 − 2C13){I0[
√
fr/r0]− I0[

√
f ]}

C11
√
fI0[
√
f ]− I1[

√
f ](C11 − C12)

(52)

Using equations (50) and (52) in the Laplace transformed version of equation (19)

will give us the final expression for axial load intensity. The Laplace transformed version
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of equation (19) is given by -

f̄ =
2

r2
0

∫ r0

0

[
−p̄0 + C13ḡ

(
∂ū

∂r
+
ū

r

)
+ C33ε̄ḡ

]
r dr (53)

where ḡ = 1 + c log(1+sτ2
1+sτ1

) is the Laplace transform of the relaxation function. On

substituting our equations for ū and p̄ into the above equation and integrating we obtain

-

f̄ =
C11 − C12

2

C1I0[
√
f ]− C2C0

I1(
√
f)√
f

I0
√
f − C0

I1
√
f√
f

{1 + c log(
1 + sτ2

1 + sτ1
)}ε̄ (54)

where -

C0 =
C11 − C12

C11
, C1 =

2C33 + C11 + C12 − 4C13

C11 − C12
, (55)

C2 =
C33(C11 − C12) + C11(C11 + C12 − 4C13) + 2C2

11

(C11 − C12)2

This equation can be inverted to the time domain through a numerical inversion

routine. We have used the De Hoog algorithm [79] to invert this expression from the

frequency domain as it does a fairly robust and computationally inexpensive job of the

inversion. However slight errors were noticed near the discontinuities of the inverted

function (near the peak stress). The Laplace inversion routine used to obtain the axial

force intensity has been included in the appendix.

3.6. Selective Viscoelasticity in Radial and Axial Directions

With the assumption that ν13 = 0 we have the following simplifications of the stiffness

matrix parameters-

C11 =
E1

(1 + ν21∆1)
, C12 =

E1ν21

(1 + ν21∆1)
, C13 = 0, C33 = E3 (56)
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with ∆1 = 1 − ν21. Under this condition, the only parameters contributing to

viscoelasticity in the radial and axial directions are the moduli in those directions re-

spectively. With this knowledge we can then construct simplifications of (54) for cases

in which E3 may or may not be viscoelastic. The axial force intensity reduces to -

f̄ =
2

r2
0

∫ r0

0
[−p̄+ E3ε̄ḡ] r dr (57)

in case of E3 being viscoelastic and incase only E1 is assumed to be viscoelastic we

get -

f̄ =
2

r2
0

∫ r0

0
[−p̄+ E3ε̄] r dr (58)

Note the absence of the ḡ term in the relationship above.

3.7. Investigation of Proposed Model

In order to capture the behavior of the proposed model to the influence of various param-

eters, a parametric study was employed. This study was carried out by varying various

parameters within acceptable ranges of deviation. The elastic and biphasic parameters

were obtained from Cohen et al [6] (E1 = 4.55 MPa, E3 = 0.47 MPa, k = 5x10-15

m4/N.s, ν21 = 0.3, ν31 = 0) and the viscoelastic parameters were obtained from Setton

et al [80] (c = 0.16, τ1 = 0.06s, τ2 = 201s ). These parameters were varied and their

effects were recorded on the axial load intensity with time. Inferences were then drawn

about the effect of each parameter on a simulated unconfined compression experiment.

The parametric studies were carried out for both versions of our proposed formulation

with viscoelasticity in all directions and in only direction as discussed in the previous

section. After these parametric studies were concluded, optimization algorithms were

used to curve fit experimental data to our proposed formulation.

As shown in figure 14 and 15 the increased duration of ramp led to a lower peak

stress reached but had virtually no effect on the equilibrium stress in the specimen.
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Figure 14: Effect of Ramptime - Viscoelasticity in all directions. Model Parameters :
E1 = 4.55 MPa, E3 = 0.47 MPa, ν21 = 0.3, ν31 = 0, k = 5x10-15, c = 0.16, τ1 = 0.06s,
τ2 = 201s, radius = 6.35mm, 10% strain

Figure 15: Effect of Ramptime - Viscoelasticity in E1 direction. Model Parameters : E1

= 4.55 MPa, E3 = 0.47 MPa, ν21 = 0.3, ν31 = 0, k = 5x10-15, c = 0.16, τ1 = 0.06s, τ2

= 201s, radius = 6.35mm, 10% strain

It was inferred that a slower ramp caused a large amount of relaxation during the

strain ramping itself which prevents a high peak stress being reached. Higher strain

rates would thus cause higher stresses. However equilibrium stress would naturally stay

constant since viscoelasticity had no effect to play on its magnitude.

The viscoelastic parameter c was responsible for controlling the peak of the axial force

intensity and also played a part in the curvature of the subsequent relaxation as shown
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in Figure 16. Equilibrium stresses were not affected by this parameter as expected. For

the second version of the formulation with only E1 viscoelastic, a lower effect on the

peak stress was seen although a significant effect on the ramp and relaxation curvature

remained as shown in figure 17. This observation followed the general observations of

the scientific community about the behavior of c [38].

Figure 16: Effect of c - Viscoelasticity in all directions. Model Parameters : E1 = 4.55
MPa, E3 = 0.47 MPa, ν21 = 0.3, ν31 = 0, k = 5x10-15, ramp time = 131s, τ1 = 0.06s,
τ2 = 201s, radius = 6.35mm, 10% strain

Figure 17: Effect of c - Viscoelasticity in E1 direction. Model Parameters : E1 = 4.55
MPa, E3 = 0.47 MPa, ν21 = 0.3, ν31 = 0, k = 5x10-15, ramp time = 131s, τ1 = 0.06s,
τ2 = 201s, radius = 6.35mm, 10% strain

At ranges of c lower than one, the effect of τ1 was seen to be negligible as seen in
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the figure 18. This was also the case for the second version of the formulation. The

ranges for τ1 were chosen in accordance with literature where it is seen that their values

are very rarely above 1s. In addition, the effect of τ1 at different ranges of the other

parameters were also examined.

Figure 18: Effect of τ1 - Viscoelasticity in all directions. Model Parameters : E1 = 4.55
MPa, E3 = 0.47 MPa, ν21 = 0.3, ν31 = 0, k = 5x10-15, ramp time = 131s, c = 0.16, τ2

= 201s, radius = 6.35mm, 10% strain

Figure 19: Effect of τ1 - Viscoelasticity in E1 direction. Model Parameters : E1 = 4.55
MPa, E3 = 0.47 MPa, ν21 = 0.3, ν31 = 0, k = 5x10-15, ramp time = 131s, c = 0.16, τ2

= 201s, radius = 6.35mm, 10% strain

Increasing τ2 showed an increased peak stress developed within the range of simu-

lation. An interesting feature of τ2 was the lack of effect on equilibrium stress. Infact
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Figure 20: Effect of τ2 - Viscoelasticity in all directions. Model Parameters : E1 = 4.55
MPa, E3 = 0.47 MPa, ν21 = 0.3, ν31 = 0, k = 5x10-15, ramp time = 131s, c = 0.16, τ1

= 0.06s, radius = 6.35mm, 10% strain

Figure 21: Effect of τ2 - Viscoelasticity in E1 direction. Model Parameters : E1 = 4.55
MPa, E3 = 0.47 MPa, ν21 = 0.3, ν31 = 0, k = 5x10-15, ramp time = 131s, c = 0.16, τ1

= 0.06s, radius = 6.35mm, 10% strain

the non-effect of viscoelastic parameters on the equilibrium stress backs up the general

observation of equilibrium stress being dependent on E3 only. It could be definitively

concluded that the peak stress, ramp and relaxation curvature were affected the most

by τ2 & c amongst the viscoelastic parameters.

For a transversely isotropic material such as the one we have assumed for our for-

mulation, there are two Poisson’s ratios. The in-plane Poisson’s ratio is ν21 and for
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several purposes is fixed at 0.49 [5] (for example during optimization). The out of plane

Poisson’s ratio is ν31 and is generally fixed at zero in order to ensure that equilibrium

conditions for stress in the unconfined and confined compression experiments (which are

observed to be similar in the experimental setup) are seen to match from a theoretical

point of view [6]. Varying the in plane Poisson’s ratio caused an increased peak stress

and a variation of the ramp curvature. The relaxation curvature and the equilibrium

stress were not affected as shown in figures 22 & 23.

Figure 22: Effect of ν21 - Viscoelasticity in all directions. Model Parameters : E1 = 4.55
MPa, E3 = 0.47 MPa, ν31 = 0, k = 5x10-15, ramp time = 131s, c = 0.16, τ1 = 0.06s,τ2

= 201s, radius = 6.35mm, 10% strain

In order to analyze the effect of ν31 it was necessary to explore ranges for this

parameter that did not violate any physical properties of the model. For example the

set of parameters chosen for the simulation could not lead to any term in the formulation

being zero or negative. For this reason the range of ν31 was limited from 0.0 to 0.14. In

case of the E1 viscoelastic version of the formulation, it is a necessary condition to keep

ν31 fixed at zero. For the version with viscoelasticity present in all directions, increased

ν31 was seen to decrease the peak stress without causing any effect on the equilibrium

stress.

The fluid permeability parameter k controls the fluid dependent stress relaxation of

the formulation. Increasing the parameter was seen to have a reduction in the peak

stress as shown in figures 25 and 26. A similar behavior was observed for the second
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Figure 23: Effect of ν21 - Viscoelasticity in E1 direction. Model Parameters : E1 = 4.55
MPa, E3 = 0.47 MPa, ν31 = 0, k = 5x10-15, ramp time = 131s, c = 0.16, τ1 = 0.06s,τ2

= 201s, radius = 6.35mm, 10% strain

Figure 24: Effect of ν31 - Viscoelasticity in all directions. Model Parameters : E1 =
4.55 MPa, E3 = 0.47 MPa, ν21 = 0.49, k = 5x10-15, ramp time = 131s, c = 0.16, τ1 =
0.06s, τ2 = 201s, radius = 6.35mm, 10% strain

version of the formulation. The similarity of response in both the versions indicates that

the fluid permeability affects the behavior of the formulation independent of solid phase

viscoelasticity.

Increasing the ratio of E1/E3 caused an increase in the peak stress of the simulated

specimen. Equilibrium was not affected by the ratio. The same behavior was observed

for both versions of the new formulation. This was in accordance with the general under-
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Figure 25: Effect of κ - Viscoelasticity in all directions. Model Parameters : E1 = 4.55
MPa, E3 = 0.47 MPa, ν21 = 0.49, ν31 = 0.0, ramp time = 131s, c = 0.16, τ1 = 0.06s,
τ2 = 201s, radius = 6.35mm, 10% strain

Figure 26: Effect of κ - Viscoelasticity in E1 direction. Model Parameters : E1 = 4.55
MPa, E3 = 0.47 MPa, ν21 = 0.49, ν31 = 0.0, ramp time = 131s, c = 0.16, τ1 = 0.06s,
τ2 = 201s, radius = 6.35mm, 10% strain

standing of the biphasic formulation in unconfined compression where a higher moduli

of the material in the radial direction would cause a more significant force gradient with

time during the ramp.

Reducing the radius caused a reduction in the peak stress developed. Equilibrium

stresses were not affected. In the purpose of our investigations we also found that the

radius affected the parameter kappa significantly during the curve fitting procedure. It
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Figure 27: Effect of E1/E3 - Viscoelasticity in all directions. Model Parameters : E3 =
1 MPa, ν21 = 0.49, ν31 = 0.0, k = 5x10-15, ramp time = 131s, c = 0.16, τ1 = 0.06s, τ2

= 201s, radius = 6.35mm, 10% strain

Figure 28: Effect of E1/E3 - Viscoelasticity in E1 direction. Model Parameters : E3 =
1 MPa, ν21 = 0.49, ν31 = 0.0, k = 5x10-15, ramp time = 131s, c = 0.16, τ1 = 0.06s, τ2

= 201s, radius = 6.35mm, 10% strain

was thought that a reduced radius would cause a higher fluid pressure in the axial and

radial directions (the same pressure gradient exists in both directions) which would lead

to a lower axial stress developed.

The next step in the analysis of this formulation was to curve fit it to some experi-

mental data obtained in literature.
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Figure 29: Effect of radius - Viscoelasticity in all directions. Model Parameters : E1 =
4.55 MPa, E3 = 0.47 MPa, ν21 = 0.49, ν31 = 0.0, k = 5x10-15, ramp time = 131s, c =
0.16, τ1 = 0.06s, τ2 = 201s, 10% strain

Figure 30: Effect of radius - Viscoelasticity in E1 direction. Model Parameters : E1 =
4.55 MPa, E3 = 0.47 MPa, ν21 = 0.49, ν31 = 0.0, k = 5x10-15, ramp time = 131s, c =
0.16, τ1 = 0.06s, τ2 = 201s, 10% strain

3.8. Curve Fitting

Experimental data for the slow strain rate (10-4 s-1) unconfined compression of bovine

articular cartilage from literature [81] was extracted using an image processing routine

and was used to curve fit the biphasic, transversely isotropic and viscoelastic model.

The diameter of the excised specimen were 4.78 mm and the max strain at the end of
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ramping was 5 %. In their work, Huang et al [44] had devised a biphasic model with

a conewise linear viscoelastic solid phase which could curve fit the experimental data

accurately. Their curve fitting procedure [81], however, required the use of slow and

fast confined, unconfined and dynamic compression experiments (to fix parameters or

determine their ranges) in a multi-step and multi-objective optimization routine.

Figure 31 shows the curve fit and the parameters obtained under the assumption

that viscoelasticity was present in both directions. An R2 value of 0.991 was obtained

for this fit. The slow compression data was also curve fit with the modified version of

the aforementioned constitutive model such that only E1 was viscoelastic. An R2 value

of 0.992 was obtained for this fit. Figure 32 shows the result of this curve fit.

It is evident in figures 31 and 32 that the proposed constitutive model captures the

tail of the stress relaxation experiment in a much more accurate manner as compared

to the transversely isotropic and biphasic model of Cohen [6].

Figure 31: Curve fit for slow compression (Cartilage) under the assumption that vis-
coelasticity exists in all directions. Fit parameters: E1 = 0.64 MPa, E3 = 0.408 MPa,
k = 3.6x10-15 c = 6.16, τ1 = 141.9, τ2 = 337.27, 5% strain, R2 = 0.991

It has been widely noted that the stress response at varying strain rates are governed

by different mechanisms, therefore articular cartilage unconfined compression experi-

mental data with fast ramp times were also used to curve fit the proposed constitutive

models. The two versions of our proposed formulation were used to curve fit the fast

data extracted from Huang et al [81] . The fast strain experimental data had specimen
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Figure 32: Curve fit for slow compression (Cartilage) under the assumption that vis-
coelasticity exists in E1 Direction. Fit parameters: E1 = 4.19 MPa, E3 = 0.408 MPa,
k = 1.1x10-15 c = 0.69, τ1 = 52.62, τ2 = 112.204, 5% strain, R2 = 0.992

being compressed at much higher strain rates (1 s-1). The cartilage specimen however

had the same diameter. Plotting the curve fits in the normal time were inconclusive

about the performance of the proposed model near the peak due to the fast ramp times

as can be seen in figures 33 and 34 although the tail was captured much more accurately.

Figure 33: Curve fit for fast compression (in normal time) under the assumption that
viscoelasticity exists in all directions - Inconclusive near peak. Fit parameters: E1 =
7.9 MPa, E3 = 1.34 MPa, k = 0.78x10-15 c = 0.13, τ1 = 0.054, τ2 = 329.28, 5% strain,
R2 = 0.991

However, plotting the fits in logarithmic time as shown in figure 35 (in which vis-

coelasticity in all directions is assumed) showed a great improvement in the region of
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Figure 34: Curve fit for fast compression (in normal time) under the assumption that
viscoelasticity exists in E1 direction - Inconclusive near peak. Fit parameters: E1 = 8.7
MPa, E3 = 1.34 MPa, k = 0.74x10-15 c = 0.14, τ1 = 0.052, τ2 = 236.03, 5% strain, R2

= 0.991

the peak. R2 values of 0.991 were obtained for these fits. A great improvement over the

transversely isotropic biphasic model of Cohen is also noticed as the peak stress and tail

of the relaxation are both captured quite accurately.

Figure 35: Curve fit for fast compression (Cartilage) under the assumption that vis-
coelasticity exists in all directions. Fit parameters: E1 = 7.9 MPa, E3 = 1.34 MPa, k
= 0.78x10-15 c = 0.13, τ1 = 0.054, τ2 = 329.28, 5% strain, R2 = 0.991

The fast ramp data for unconfined compression was also used to curve fit the modi-

fied version of the TIVE constitutive model where viscoelasticity was assumed to exist

only in the E1 direction. A fit of similar quality was obtained to the one which had
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viscoelasticity in all directions as shown in figure 36. R2 values of 0.991 were obtained

for this optimization.

Figure 36: Curve fit for fast compression (Cartilage) under the assumption that vis-
coelasticity exists in E1 direction. Fit parameters: E1 = 8.7 MPa, E3 = 1.34 MPa, k =
0.74x10-15 c = 0.14, τ1 = 0.052, τ2 = 236.03, 5% strain, R2 = 0.991
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CHAPTER 4

Conclusions and Future Work

4.1. Conclusions

A new constitutive model was developed for the mechanical behavior of articular car-

tilage in unconfined compression. This new model assumed a biphasic domain with a

transversely isotropic and viscoelastic solid phase and an incompressible fluid phase.

The formulation had a flexibility to account for viscoelasticity in either both radial and

axial directions or radial direction alone under the assumption of a zero out-of-plane

Poisson’s ratio. A parametric study was carried out to observe the effect of the mate-

rial parameters on the stress relaxation behavior of a hypothetical specimen. The base

parameters of this study were chosen according to reported values in literature. When

used in a preliminary curve fitting study, the model showed a marked improvement in

predicting the stresses in the cartilage specimen compared to the biphasic, elastic and

transversely isotropic model for the unconfined compression of cartilage particularly for

high strain rates. For slow strain rates the tail of the relaxation curve was captured

quite accurately although slightly higher residuals were obtained. This suggested an

important role for solid phase viscoelasticity in the high strain rate experiments. On

the other hand, it may be inferred that the fluid dependent viscoelasticity (caused by

the biphasic mechanism) plays a more important role in the slow strain rate compression

experiment.

The parametric study revealed that a higher strain rate caused a higher peak stress

for both versions of the proposed formulation and that the increasing viscoelastic pa-
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rameter c also caused an increase in the peak stress developed. The parameter τ1 was

seen to have a negligible effect on the stress relaxation behavior predicted by the model

for ranges generally accepted in literature. τ2 however, showed a significant effect on

the peak stresses developed with increasing values causing a higher peak stress. The

Poisson’s ratio ν21 caused an increased peak stress as its value was increased from 0 to

0.49 whereas ν31 would cause a decrease in peak stress when increased by a physically

feasible amount. If ν31 was increased to a limit where it would cause ∆1 to be negative,

our model would become physically invalid. Fluid permeability k had an inversely pro-

portional effect on the peak stress developed by the model whereas the E1/E3 ratio had

a directly proportional effect on the peak stress reached. All in all, it was seen that the

ratio of the moduli, the ramp duration, fluid permeability and viscoelastic parameter c

played the most important role in defining the peak stress. The parameter τ2 was more

influential on the curvature of the stress relaxation profile. Under the assumption that

the out of plane Poisson’s ratio ν31 was zero, the only parameter to effect the equilib-

rium stress was E3 and the maximum strain reached. This behavior is concurrent with

experimental observations.

As compared to the Huang model [44] for the unconfined compression behavior of

articular cartilage, the proposed model may considered to be computationally inexpen-

sive due to the lower number of parameters involved in optimization (just five for our

model once Poisson’s ratio and E3 are fixed).

4.2. Future Work

4.2.1 Extension of Assumptions for Higher Complexity

The transversely isotropic, viscoelastic and biphasic model was modeled according to

the assumptions of small deformation in unconfined compression. A next step would be

to adapt the model to a confined compression experimental setup in which the bound-

ary conditions for the model would change considerably (there would be no radial dis-
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placement). The partial differential equation set up would depend on the independent

variables z and t and the compressive movable head would be porous and free draining

instead of rigid and impermeable. Similarly, the partial differential equations can also

be set up for the shear and indentation experiment as well.

Experiments which may be carried out for large values of strain would not be suitable

for prediction using this model due to the assumption of infinitesimal deformation.

In that case, a finite deformation version of the model would be more appropriate.

This continuum formulation would require the definition a strain energy function and

subsequent tensor calculus to develop the transversely isotropic viscoelastic constitutive

equation for the solid phase followed by integrating it with a fluid phase. Ning et al [82]

have developed a transversely isotropic viscoelastic constitutive equation for brain-stem

undergoing finite deformation in shear. Their relaxation mechanism is defined by a

Prony series formulation. This may be the constitutive model for the solid phase which

needs to be combined with the biphasic principle for an overall constitutive relationship

for the unconfined compression experiment.

This model also assumes that the fluid pressure at any point in the specimen is

purely a function of radial position and time. One could add a degree of complexity

to this assumption by having different pressure fields in different directions since the

fluid permeability in tissue may or may not be isotropic [83]. However, this would likely

require the setup of partial differential equations depending on axial compression (i.e.

in the z direction) as well which would lead to more than two coupled partial differential

equations.

The transversely isotropic, viscoelastic and biphasic model can be modified to ac-

count for anisotropy in order to capture the mechanical behavior of certain types of soft

tissue. Most tissue have been reported to have some degree of anisotropy under certain

experimental conditions [84, 85, 86]. However, this case would also need the develop-

ment of a newer type of geometry for the experiment which would necessitate a newer

partial differential equation. Anisotropic materials also have more material constants

so the model would be far more complex than it is now. There is also a chance that

parameters may be excessively correlated needing sensitivity analyses and parameter
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constraining from an optimization point of view.

4.2.2 Preliminary studies on Finite Difference Modeling

The proposed transversely isotropic, viscoelastic and biphasic model for cartilage may

be validated using a finite difference method. To that end a preliminary study has

been carried out to predict the stress response of the transversely isotropic and biphasic

constitutive model. This study utilized a forward time marching scheme which plotted

solutions for radial displacement and fluid pressure at discrete points through a two-

dimensional grid (i.e. a grid in radius and time). These discrete solutions could then be

used to determine the stress response of the simulated specimen.

For the purpose of validation, our preliminary solution for the finite difference ap-

proximation were compared to the analytical solution given in Cohen et al [6] where for

the ramp we have -

f(t) = E3ε̇0t+ E1
ε̇0r

2
0

C11k
∆3

(
1

8
−
∞∑
n=1

exp(−α2
nC11kt/r

2
0)

α2
n[∆2

2α
2
n −∆1/(1 + ν21)]

)
(59)

and for the relaxation -

f(t) = E3ε̇0t0 − E1
ε̇0r

2
0

C11k
∆3

( ∞∑
n=1

exp(−α2
nC11kt/r

2
0)− exp[−α2

nC11k(t− t0)/r2
0]

α2
n[∆2

2α
2
n −∆1/(1 + ν21)]

)
(60)

As shown in figure 37, a good result was obtained for the finite difference approx-

imation to the transversely isotropic and biphasic model. The challenge now lies in

introducing viscoelasticity to the solid phase which would require the use of additional

numerical integration through time (increasing computational cost significantly). For

this purpose, the hereditary integral in time associated with linear viscoelasticity must

be truncated after a sufficient distance is travelled into the past. The truncation should

be devised in such a way that the accuracy of the approximation is not compromised.
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Figure 37: A Comparison of FDM and Analytical Solutions

4.2.3 Preliminary Studies on Quasilinear Viscoelastic Modeling for Unconfined Com-

pression

According to general expression for QLV the stress relaxation behavior of soft-tissue can

be given by -

σ(t) = G(t)σ(ε)inst +

∫ t

0
G(t− τ)

∂σe(ε)

∂ε

∂ε

∂τ
∂τ (61)

The above expression of QLV has σ(ε)inst as the instantaneous stress response and

σe(ε) is the elastic stress-strain relationship for the material. For experimental data, no

sudden jump is observed during the initial phase of the ramp and therefore the first term

of the above expression can be dropped to give us the standard constitutive relationship

for QLV used to characterize the mechanical behavior of various tissue for finite strain

ramping -

σ(t) =

∫ t

0
G(t− τ)

∂σe(ε)

∂ε

∂ε

∂τ
∂τ (62)
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For the reduced relaxation function, Fung has proposed -

G(t) =
1 + c[E1(t/τ2)− E1(t/τ1)]

1 + c log(τ2/τ1)
(63)

where E1(x) =
∫∞
x e−z/zdz is the exponential integral of order 1, while c, τ1 and τ2

are material constants. For the instantaneous elastic response we propose to use -

σe(ε) = A(ε/ε0)1/2n (64)

Where, ε0 is the strain at the end of finite ramping time, A and n are material

parameters. It was decided to use the above expression because it would impart the

desired degree of freedom to the mathematical formulation for capturing various stress

response data. On substitution of equation (64) and (63) into (62) using the finite ramp

approach [77] we can obtain -

σ(t) =
A

2ε0n(1 + c log[τ2/τ1])

∫ t

0
{1 + c(E1[(t− τ)/τ2]

− E1[(t− τ)/τ1])}(τ/t0)1/2n−1∂τ (65)

to estimate the stress response in the finite ramp duration. Similarly, the stress relax-

ation following the ramp can be predicted by -

σ(t : t ≥ t0) =
A

2ε0n(1 + c log[τ2/τ1])

∫ t0

0
{1 + c(E1[(t− τ)/τ2]

− E1[(t− τ)/τ1])}(τ/t0)1/2n−1∂τ (66)

where t0 is the duration of ramp. The strain history approach splits up the constitutive

model into a piecewise function with two ranges in the dependent variable (time). The

ranges are separated into the ramp and relaxation durations and it is assumed that the

stress history beyond t0 does not have a considerable effect on the mechanical response

of the specimen. Equations (65) and (66) are curve fit simultaneously to experimental

data to obtain the constants A, n, c, τ1 and τ2. A has the dimensions of stress, τ1 and

τ2 are having the dimensions of time, n and c are dimensionless constants.
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The equations (66) and (65) were used to curve fit the slow strain rate [6] and high

strain rate compression data [81] from cartilage with improved performance as shown

in figures (38) and (39).

Figure 38: Curve fit for slow compression (Cartilage) using the new QLV model. Fit
parameters: A = 1602.28 Pa, n = 0.402, c = 2.83, τ2 = 152.18s, τ1 = 1X10-3, 10%
strain, R2 = 0.994

Figure 39: Curve fit for fast compression (Cartilage) using the new QLV model. Fit
parameters: A = 0.24MPa, n = 0.455, c = 1.97, τ2 = 820.89s, τ1 = 0.19, 5% strain, R2

= 0.990

The good performance of this model in both slow and fast compression experiments

suggests a computationally efficient method to characterize the behavior of specimen for

experimental purposes.
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[40] José Jaime Garćıa and Daniel Humberto Cortés. A nonlinear biphasic viscohyper-

elastic model for articular cartilage. Journal of biomechanics, 39(16):2991–2998,

2006.

[41] WM Lai, JS Hou, and VC Mow. A triphasic theory for the swelling and deformation

behaviors of articular cartilage. Journal of biomechanical engineering, 113(3):245–

258, 1991.

[42] Alain Curnier, Qi-Chang He, and Philippe Zysset. Conewise linear elastic materials.

Journal of Elasticity, 37(1):1–38, 1994.

[43] Michael A Soltz and Gerard A Ateshian. A conewise linear elasticity mix-

ture model for the analysis of tension-compression nonlinearity in articular car-

tilage. TRANSACTIONS-AMERICAN SOCIETY OF MECHANICAL ENGI-

NEERS JOURNAL OF BIOMECHANICAL ENGINEERING, 122(6):576–586,

2000.

[44] Chun-Yuh Huang, Van C Mow, and Gerard A Ateshian. The role of flow-

independent viscoelasticity in the biphasic tensile and compressive responses of

articular cartilage. Journal of biomechanical engineering, 123(5):410–417, 2001.

[45] Mark R DiSilvestro, Qiliang Zhu, and Jun-Kyo Francis Suh. Biphasic poroviscoelas-

tic simulation of the unconfined compression of articular cartilage: II — effect of

variable strain rates. Journal of biomechanical engineering, 123(2):198–200, 2001.

[46] Mark R DiSilvestro, Qiliang Zhu, Marcy Wong, Jukka S Jurvelin, and Jun-

Kyo Francis Suh. Biphasic poroviscoelastic simulation of the unconfined compres-

sion of articular cartilage: I—simultaneous prediction of reaction force and lateral

displacement. Journal of biomechanical engineering, 123(2):191–197, 2001.

65



[47] Robert L Spilker, Jun-Kyo Suh, and Van C Mow. Effects of friction on the uncon-

fined compressive response of articular cartilage: a finite element analysis. Journal

of biomechanical engineering, 112(2):138–146, 1990.

[48] Robert L Spilker, Jun-Kyo Suh, and Van C Mow. A finite element analysis of the

indentation stress-relaxation response of linear biphasic articular cartilage. Journal

of biomechanical engineering, 114(2):191–201, 1992.

[49] Mark R DiSilvestro and Jun-Kyo Francis Suh. A cross-validation of the biphasic

poroviscoelastic model of articular cartilage in unconfined compression, indentation,

and confined compression. Journal of biomechanics, 34(4):519–525, 2001.

[50] J Soulhat, MD Buschmann, and A Shirazi-Adl. A fibril-network-reinforced biphasic

model of cartilage in unconfined compression. Journal of biomechanical engineering,

121(3):340–347, 1999.

[51] LP Li, J Soulhat, MD Buschmann, and A Shirazi-Adl. Nonlinear analysis of car-

tilage in unconfined ramp compression using a fibril reinforced poroelastic model.

Clinical Biomechanics, 14(9):673–682, 1999.

[52] W Wilson, CC Van Donkelaar, B Van Rietbergen, K Ito, and R Huiskes. Stresses in

the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced

finite element study. Journal of biomechanics, 37(3):357–366, 2004.

[53] LP Li, MD Buschmann, and A Shirazi-Adl. A fibril reinforced nonhomogeneous

poroelastic model for articular cartilage: inhomogeneous response in unconfined

compression. Journal of biomechanics, 33(12):1533–1541, 2000.

[54] Mansoor A Haider and Richard C Schugart. A numerical method for the contin-

uous spectrum biphasic poroviscoelastic model of articular cartilage. Journal of

biomechanics, 39(1):177–183, 2006.

[55] Paolo Provenzano, Roderic Lakes, Thomas Keenan, and Ray Vanderby Jr. Non-

linear ligament viscoelasticity. Annals of biomedical engineering, 29(10):908–914,

2001.

66



[56] Yuan-cheng Fung, Nicholas Perrone, and Max Anliker. Biomechanics, its founda-

tions and objectives. 1972.

[57] John Wallis. A treatise of algebra, both historical and practical. London, 1685.

[58] Thomas Simpson. Essays on Several Curious and Useful Subjects, in Speculative

and Mix’d Mathematicks. H. Woodfall, 1740.
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Appendix A

De Hoog [79] Laplace Inversion Code - Wolfram Mathematica 10.1 [87]

Figure 40: Laplace Inversion Code for the TI BPVE Model
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Leapfrogging Optimizer - Wolfram Mathematica 10.1 [87]

Figure 41: Leapfrogging Optimizer Part 1
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Figure 42: Leapfrogging Optimizer Part 2
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