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Abstract: The problem of synthesizing online optimal flight controllers in the presence of multiple ob-
jectives is considered. A hybrid adaptive-optimal control architecture is presented, which is suitable for
implementation on systems with fast, nonlinear and uncertain dynamics subject to constraints. The problem
is cast as an adaptive Multi-Objective Optimization (MO-Op) flight control problem wherein control policy
is sought that attempts to optimize over multiple, sometimes conflicting objectives. A solution strategy uti-
lizing Gaussian Process (GP)-based adaptive-optimal control is presented, in which the system uncertainties
are learned with an online updated budgeted GP. The mean of the GP is used to feedback-linearize the sys-
tem and reference model shaping Model Predictive Control (MPC) is utilized for optimization. To make the
MO-Op problem online realizable, a relaxation strategy that poses some objectives as adaptively updated soft
constraints is proposed. The strategy is validated on a nonlinear roll dynamics model with simulated state-
dependent flexible-rigid mode interaction. In order to demonstrate low probability of failure in the presence
of stochastic uncertainty and state constraints, we can take advantage of chance-constrained programming in
Model Predictive Control. The results for the single objective case of chance-constrained MPC is also shown
to reflect the low probability of constraint violation in safety critical systems such as aircrafts. Optimizing the
system over multiple objectives is only one application of the adapive-optimal controller. Another application
we considered using the adaptive-optimal controller setup is to design an architecture capable of adapting to
the dynamics of different aerospace platforms. This architecture brings together three key elements, MPC-
based reference command shaping, Gaussian Process (GP)-based Bayesian nonparametric Model Reference
Adaptive Control (MRAC) which both were used in the previous application as well, and online GP cluster-
ing over nonstationary (time-varying) GPs. The key salient feature of our architecture is that not only can
it detect changes, but it uses online GP clustering to enable the controller to utilize past learning of similar
models to significantly reduce learning transients. Stability of the architecture is argued theoretically and
performance is validated empirically. 331 words
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CHAPTER 1

Problem Statement

1.1 Introduction

Fuel efficiency and environmental compatibility can both be significantly improved by utilizing lightweight

and high aspect ratio wing design [1]. However, using lightweight or high aspect ratio constructions leads

to structures with flexible modes, which can lead to increased component wear or decreased ride comfort.

Hence, the main challenge in order to leverage lightweight or high aspect ratio construction, is in designing

aircraft control systems that optimize control input over multiple, sometimes conflicting objectives, such as

maintaining a wing profile that minimizes drag and alleviating gust loading (which can be contradictory since

gust load factors increase with increasing airspeed and a higher airspeed will result in higher drag), dampening

out flexible modes to improve ride comfort, and ensuring that the aircraft has good handling qualities when

tracking pilot commands. Also, gusts can cause ride discomfort showing the objectives inconsistency.

Decision-making problems that optimize over multiple objectives simultaneously are generally known as

Multi-Objective Optimization (MO-Op) problems; The literature is reviewed briefly in Related Work section

and more in detail in section 2.1. A characteristic of these types of problems is that there does not always exist

a unique solution, rather a number of mathematically equally good solutions called Pareto optimal solutions

[2, 3]. The set of feasible solutions is not explicitly known in advance for these problems, but it can be

contained by constraint functions. There are two key challenges in developing Multi-Objective Optimization

(MO-Op) flight control. Firstly, the dynamic model of the aircraft may not always be known in advance,

especially in presence of intricate coupling between flexible and rigid body modes. Furthermore, even if such

a model is known or can be learned using online data, a feasible optimal solution might be difficult to find

online in the presence of onboard computational limitations.

The main goal for this problem is to describe a framework that can be utilized for adaptive MO-Op

flight control by integrating learning-focused Model Reference Adaptive Control (MRAC) with constrained
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reference command shaping Model Predictive Control (MPC) introduced in [4, 5]. This integration allows

us to optimize multiple objectives for flight control with relatively less computational effort by solving the

optimal control problem over only the adaptive controller’s reference model; while the adaptive part of the

architecture learns the dynamics of the system that are unknown a-priori. The assumption is, that if the

adaptive controller is able to make the plant behave like the reference model, and if the reference model

is tracked exponentially, then the plant recovers the properties of the reference model. In particular, we

show that when optimizing to achieve good command tracking while minimizing oscillations due to flexible

modes, the MO-Op problem can be relaxed by posing the latter MO-Op objective as adaptively updated soft

state constraint. This makes the problem practically realizable online. The critical elements of the presented

architecture are a learning engine (Gaussian Process-based regression is used here), an online realizable MO-

Op strategy, and a feedback structure that ensures the system states are stable during adaptation.

A secondary goal for this problem is to briefly introduce terminology and tools from the MO-Op literature

to the aerospace community so that the advantages of our selected optimization method in our simulation will

be contrasted and justified. Our hope is that a concise review will inspire other lines of inquiry in MO-Op

flight control design. Section 3.1.1 is dedicated towards this objective.

The problem of controlling dynamical systems in the presence of constraints has received much attention.

The extensive literature on Model Predictive Control (MPC; see e.g. [6, 7, 8]) has focused on model-based

techniques for optimal control of constrained systems. For linear deterministic, and even for a large class of

nonlinear deterministic systems, several MPC approaches exist, and have even been implemented on high-

bandwidth platforms, such as quadrotors [9]. However, in the presence of stochastic modeling or actuation

uncertainty, it is difficult to guarantee the abidance of state constraints with (linear) deterministic MPC ap-

proaches [10]. The typical approach of introducing a slack variable in these schemes cannot account for the

state constraint violation. While the general problem of strict abidance of state constraints in the presence

of stochastic uncertainty is hard, it is also true that most safety critical systems are often associated with an

acceptable failure probability. For example, for certification of flight control systems, the Federal Aviation

Administration currently requires that the probability of all catastrophic failures be limited to a small number

(typically 10−9). Chance-Constrained Model Predictive Control (CCMPC; see e.g. [10, 11]) is one approach

for relaxing stochastic state-constrained MPC problems by allowing the constraints to be met with some level

of probability. However, most current work in CCMPC assumes precise knowledge about the underlying

model and is therefore not suited for uncertain systems with significant modeling uncertainty. That is why it

should be incorporated with the learning-focused MRAC as part of the reference model shaping MPC.

Model Reference Adaptive Control (MRAC; see e.g. [12, 13, 14]) is one control methodology that tries to
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make an uncertain system behave like a-priori chosen reference dynamics. MRAC methods attempt to cancel

the underlying nonlinear system uncertainties in order to ensure robust tracking of the designer-chosen refer-

ence model. To capture desirable robustness metrics, such as phase and gain margin, and transient response

often a linear reference model is sought. This results in the reference trajectories being overly conservative,

as they are not optimized to exploit the complete capabilities of the system. Shaping the reference command

in order to account for input and state constraints has become known as the reference governor [15, 16, 17].

However, these methods often assume the plant to be linear, deterministic or require the existence of a sta-

bilizing controller a-priori. Controlled physical systems are non-deterministic; in the presence of stochastic

uncertainty, state constraints are frequently violated, thus rendering the MPC approach unreliable. So, the

MPC part of our framework can be extended to CCMPC to accommodate stochastic uncertainties.

Control of aerospace vehicles that are subject to dynamic change is a challenging problem which moti-

vates us to take on another extension of the adaptive-optimal control setup to address this issue. Such change

could happen due to faults, reconfiguration of the vehicle, or due to different operating environments. A

widely-employed method in aerospace controls is to first formulate a first-principles-based model of the sys-

tem, identify its parameters through system identification, and then optimize the control design utilizing these

models. However, in presence of nonstationarity induced due to dynamic change, a single-parameterized

model may not be sufficient to describe the dynamics of the system. In fact, when the change is unexpected

or sudden, such as due to a fault, a-priori models may not be applicable at all. Furthermore, the rapid growth

in the number of existing and planned Unmanned Aerial System (UAS) platforms, many with highly mod-

ular payload capacity, is creating new control challenges. Consider for example the challenge scenario of

designing an autopilot system that works in a plug-and-play manner – without requiring excessive tuning

or system identification – across several Unmanned Aerial Vehicles (Figure 1.1) which has some parts in

common with our challenge in this work. Ideally, such a system would be able to adapt to the dynamics of

different aerospace platforms utilizing online-obtained data and generate optimal control policies over state

and input constraints for these systems. However, it would also be desirable for the system to utilize past

experience over similar platforms to quickly recognize similarities and use that knowledge to minimize the

time spent in learning.

One way to deal with change is to estimate the parameters of a model online, and then utilize online

optimization techniques, such as MPC to learn new control policies. The attractiveness of utilizing online

MPC is in MPC’s ability to optimize over state and input constraints. These methods, often referred to as in-

direct adaptive control mostly assume that the online-generated estimates are equal to the real parameters (an

assumption known as certainty equivalence [18]). Several authors have studied adaptive-MPC architectures
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Figure 1.1: The challenge scenario of designing a plug-and-play autopilot.

that rely on variants of the certainty equivalence principle [9, 19, 20]. However, it is difficult to guarantee

stability of such methods, especially during parameter estimation transients [21].

On the other hand, direct adaptive controllers such as MRAC can guarantee stability, even during harsh

transients. These techniques have been successfully employed for flight vehicle control [22]. However,

MRAC methods do not typically provide stability under state constraints. Adaptive control literature also

consists of hybrid direct-indirect control architectures [23, 24, 25]. These methods seek to employ learning

in a direct adaptive control framework. For example, in Chowdhary et al.’s concurrent learning method,

instantaneous data is used concurrently with specifically online-recorded data to speed up the learning of

unknown system parameters [26]. The learning capability of concurrent learning has been utilized with MPC

architectures to yield adaptive-optimal controllers [4, 27]. However, the main limitation of the concurrent

learning approach, and in fact many other adaptive control and online system identification approaches, is

that they utilize an a-priori fixed structure for modeling the unknown system dynamics, the parameters of

which are learned online. On the other hand, the Gaussian Process MRAC (GP-MRAC) approach does not

need to assume an a-priori model structure, rather, it utilizes online data to simultaneously infer both the

structure and the parameters of the unknown system dynamics [28, 29].

The main challenge here is of adaptive control in presence of unforeseen changes in the system dynam-

ics. Our architecture is inspired by Muhlegg et al.’s concurrent learning adaptive-optimal control architecture
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[4] since it also relies on optimizing the reference model commands. This work extends MPC-based ref-

erence command shaping technique [4] to the Bayesian Nonparametric (BNP) adaptive control of Gaussian

Processes [30]. Another contribution is in showing that by optimizing the reference model commands using

MPC, the system performance can be optimized without losing the desirable stability guarantees of GP-

MRAC. An online clustering method is utilized to identify and leverage similarities between online-learned

GP models of the unknown dynamics. Therefore, the key salient feature of our architecture is that not only

can it detect changes, but it also uses online GP clustering [31] to enable the controller to utilize past learning

of similar models to significantly reduce learning transients.

1.1.1 Related Work

Model Predictive Control (MPC), also referred to as Receding Horizon Control and Moving Horizon Opti-

mal Control, has been widely adopted in industry as an effective means to deal with multivariable constrained

control problems [32, 33]. With advent in compact computing resources, authors have recently proposed and

employed MPC architectures for real-time control of aerospace vehicles [34]. However, the performance of

MPC can depend on how accurate the employed predictive model of the system dynamics is. Several au-

thors have proposed learning-based MPC algorithms [9, 19, 20], however the presence of learning transients

typically prevents a non-conservative solution to be formed. The Concurrent Learning Model Predictive

Control (CL-MPC) architecture addressed this issue by bringing together learning-based MRAC and MPC

and utilizes an online threshold test to switch between the two [27, 35]. However, CL-MPC is developed in

the deterministic setting and it requires online optimization of the feedback-linearized system model. The

latter represents one of the main challenges in implementing MPC-based architectures: guaranteeing com-

putational feasibility of obtaining an optimal solution online. Muhlegg et al. in [4] tackled this problem by

solving offline the optimal control problem for a linear reference model that the adaptive controller is guar-

anteed to track. Inspired by [4], our main contributions include the use of Bayesian Non-Parametric (BNP)

Gaussian Process models of the uncertainty that require very few assumptions about the unknown system

dynamics a-priori.

Multi-Objective Optimization has been studied for several decades based on the theoretical background

established in 1890’s [36]. In a restricted sense, the Linear Quadratic Regulator (LQR), in which the control

objective is to both reduce the tracking error and minimize required control, can be considered as a MO-Op

problem posed by linearly combining multiple control objectives. More general formulations and solution

approaches to MO-Op have been founded on the theory of mathematical programming which are explained

in section 2.1 with their advantages and disadvantages for flight control problems. The key challenge with
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MO-Op is that there may exist multiple mathematically equally good solutions, known as Pareto optimal

solutions. Many MO-Op methods rely on the human in the loop to discriminate between these solutions [3].

There are some works done with the Multi-Objective Optimization method in a control setting which are

fairly different with what we seek here. Nguyen developed a multi-objective optimal control modification for

adaptive control of systems with both input and unmatched uncertainty [37]. The work done by Joos in [38]

is multi-objective assessment in flight control law design. Nguyen et al. introduced a multi-objective linear

quadratic optimal control approach that includes objective functions for drag and aeroelastic states in the

cost function to design drag-cognizant flight control for flexible aircraft [1, 39]. Sadid et al. [40] used Multi-

Objective Optimization for control of discrete-event systems to have a trade-off between cost and accuracy. In

[41], Gambier designed his controller gains with Multi-Objective Optimization to avoid the control sensitivity

to parameter changes of the plant. Somewhat similar to this idea, Fravolini et al. [42] computed their control

strategy parameters with Multi-Objective Optimization while expressing the design requirements in terms of

matrix inequalities. Using matrix inequalities, Swei et al. [43] designed their flexible aircraft controller with

Multi-Objective Optimization. In general, there has been very little work in utilizing MO-Op strategies in an

online setting, and we are not aware of dedicated work on online optimization-based MO-Op in flight control

settings. Our main contribution in this area is to show that a class of MO-Op flight control problems can be

relaxed by posing some of the control objectives as online updated soft constraints.

For the second extension of the framework, most existing GP inference algorithms assume that the under-

lying generative model is stationary. Grande et al.’s Gaussian Process Non-Bayesian Clustering (GP-NBC)

algorithm [31, 44] decouples the problem of change-point detection, regression and model reuse, resulting in

efficient online learning in the presence of change-points. GP-NBC is highly computationally efficient and

orders of magnitude faster than other GP clustering methods, such as Dirichlet Process-based GP clustering

[45]. We utilized GP-NBC in the above-mentioned adaptive-optimal control framework. We show that the

resulting control architecture is guaranteed to be stable, and the likelihood of wrong clustering as well as the

worst case tracking error due to misclassification are bounded.

1.2 Problem Formulation

We begin by describing the class of switching nonlinear dynamical systems our approach is applicable to.

Let x = [x1 x2]
T ∈ Dx ⊂ Rl be defined as the state vector of the nonlinear system where Dx is a subset of Rl .

Let u(t) ∈ Rm be an admissible control input to the system, then the class of dynamical systems considered
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herein has the form:

ẋ(t) = Ax(t)+Bu(t)+B∆i(x(t)). (1.1)

where the state and input matrices A∈Rl×l and B∈Rl×m are the linear known components, and ∆i(x(t))∈Rm

is the unknown and switching component in the system with the switching index i. The solution to (1.1)

induces a nonstationary continuous-time Markovian process. The process is nonstationary, i.e. it does not

have a time-invariant generating distribution, because the unknown component ∆i switches. We assume that

the system (A,B) is fully controllable and the control input u(t) ∈ Rm is constrained due to limited control

energy available to the system. It is further assumed that ∆i is a stochastic process, and in particular a Gaussian

Process (GP). Here we leverage the idea of modeling stochastic uncertainties ∆i(x) in MRAC using Gaussian

Processes [46]. That is,

∆i(x)∼ GP(mi(x),Ki(x,x′)). (1.2)

where m(·) is the mean function of the GP and K(·, ·) is a real-valued covariance function. This model of the

uncertainty has the advantage of being able to generate the appropriate model from data without assuming

any prior knowledge over the domain [46]. In this treatment, the uncertainty is estimated as a sampled draw

from a GP trained on a set of observed measurements. Note that we assume the mean function of a GP is

Lipschitz continuous and the draw from a GP is a continuous function. Hence a unique solution to (1.1),

x, exists for each switching index i. Furthermore, the nonlinear uncertainty ∆(x) is assumed to be a fixed

unknown component in this work. The readers are referred to [5] for extensions to the class of switching

dynamical systems .

The problem we are interested in solving is tracking the states of a reference model, xrm, in presence of

the nonlinear uncertainty, ∆(x), which forms the main objective and it is possible to have other objectives

here as well that form a Multi-Objective Optimization problem. The MO-Op problem is of the form

min f (x) = [ f1(x), f2(x), ..., fk(x)]T .

subject to x ∈ S
(1.3)

where we have k ≥ 2 potentially conflicting objective functions fi : Rn→ R that we wish to minimize simul-

taneously. The decision vector x = (x1,x2, ...,xn)
T belongs to the non-empty feasible region S ⊂ Rn. The

vector function f : Rn → Rk is composed by k scalar objective functions. In MO-Op, the sets Rn and Rk

are respectively known as decision variable space and objective space; they can also be defined as subsets of

Rn and Rk. The decision vector is regarded as optimal in MO-Op if they satisfy (1.3). Having the general

form of MO-Op problem shown above, the tracking acts as only one of the objectives, fi, if there are multiple

objectives to optimize. The details about a MO-Op problem are discussed in section 2.1.
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Continuing with the reference model, let xrm(t) ∈ Dx ⊂ Rl be the state of the reference model which

characterizes the desired response of the system. The dynamics of the reference model are assumed to take

on the form:

ẋrm(t) = Armxrm(t)+Brmurm(x(t),r(t)). (1.4)

where r is the reference command, Arm ∈ Rl×l and Brm ∈ Rl×m and the reference model input urm ∈ Rm.

Synthesis of urm in case of shaping the reference command in an optimal sense is known as the reference

governor problem [47]; Otherwise, urm can be the reference command itself. The objective is to design a

controller which can achieve a closed-loop performance such that the plant model defined by (1.1) tracks the

reference model given by (1.4). Therefore, a control law is proposed as (1.5) with a feedback term defined as

u f b = KT
mx; Km ∈ Rl×m, a linear feedforward term, u f f = KT

b urm; Kb ∈ Rm×m, and an adaptive element, uad ,

for the plant to have the desired behavior. This is expressed as:

u(t) = u f f (t)+u f b(t)−uad(t). (1.5)

The gain matrices Km and Kb are chosen such that Arm = A+BK>m and Brm = BKb [See (3.19)]. Define the

tracking error as e(t) = x(t)− xrm(t). Then by using (1.1) and (1.4) and then substituting (1.5) into (1.1), we

can obtain the tracking error dynamics as:

ė(t) = Arme(t)+B(∆(x(t))−uad(t)). (1.6)

Having the tracking error dynamics as the differential equation in (1.6) provides us with an exponential

decaying behavior of error if the second term on the right goes to zero. The details about this are explained

in section 4.1.

Figure 1.2: The proposed solution architecture for adaptive Multi-Objective Optimization.

We are now in a position to present an overview of the presented architecture shown in Figure 1.2. The ar-

chitecture consists of two key elements, a reference command shaping MO-Op MPC and GP-MRAC-based
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adaptive control. The synthesis of uad is accomplished using the GP-MRAC method [30]. However, GP-

MRAC is a tracking architecture that tracks a given reference command, it does not guarantee the optimality

of the reference command, especially in presence of state and input constraints. An optimal reference com-

mand is a dynamically changing reference while applying some constraints. To accommodate this, we utilize

the MPC-based reference command shaping technique proposed by Muhlegg et al. [4] and modify it such

that we could incorporate multiple objectives therein. Hence, in our architecture, the reference command is

shaped using MO-Op MPC on the reference model (1.4) in presence of state and input constraints optimiz-

ing over two objectives i.e. tracking error and oscillation. The optimized reference command is tracked by

the GP-MRAC which simultaneously tracks the reference commands and learns a model of the underlying

uncertainty ∆(x).

Now, we can present an overview of the second extension of the adaptive-optimal framework, shown in

Figure 1.3, which is the solution to the problem of classifying different models.

Figure 1.3: The proposed solution architecture for adaptive-optimal clustering.

The architecture consists of three key elements, a reference command shaping MPC, GP-MRAC-based

adaptive control, and GP-NBC-based clustering. The synthesis of uad is accomplished using the GP-MRAC

method again. The reference command is shaped using MPC on the linear reference model (1.4) in presence

of state and input constraints. The optimized reference command is tracked by the GP-MRAC which simul-
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taneously tracks the reference commands and learns a model of the underlying uncertainty ∆i. The GP-NBC

clustering algorithm utilizes online data to learn an estimate of a set of functions that contains the different

means mi and the associated hyperparameters of the kernels ki by learning new GPs and clustering together

those GPs from which samples have been previously seen. The stability of the entire architecture is argued in

Section 4.1 and results are presented in Section 5.2.
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CHAPTER 2

Multi-Objective Optimization

2.1 Multi-Objective Optimization (MO-Op)

As the general form of Multi-Objective Optimization problem is mentioned in the previous section, further

mathematical details and a survey of solution methods in literature are provided here.

Pareto Optimality

In single-objective optimization, the relation “less than or equal (≤)” is used to compare the values of the

scalar objective functions. In contrast, in multi-objective problems, the objective function lies in Rk . Since

there is no canonical order on Rk, other definitions of order are needed to compare vectors in Rk.

In MO-Op, the Pareto dominance relation is usually adopted, originally proposed by Edgeworth in [48]

but generalized by French-Italian economist, Vilfredo Pareto in [49].

Pareto Dominance Relation: We say that a vector z1 Pareto dominates vector z2, denoted by z1 ≺ z2

(without loss of generality, only for the minimization case), if and only if:

∀i ∈ {1, ...,k} : z1
i ≤ z2

i

and

∃i ∈ {1, ...,k} : z1
i < z2

i

(2.1)

Pareto Optimality: In MO-Op, a decision vector x∗ ∈ S⊂ Rn is called Pareto Optimal if there does not

exist another x ∈ S such that f (x)≺ f (x∗).

Weak Pareto Optimality: A solution x∗ ∈ S, is weakly Pareto optimal if there does not exist another

solution x ∈ S such that f (x)< f (x∗) for all i = 1, ...,k..
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Figure 2.1: The Pareto optimal set and its image, Pareto front.

Pareto Optimal Set: The Pareto optimal set, P∗ is defined as:

P∗ = {x ∈ S | @y ∈ S : f (y)� f (x)}. (2.2)

Pareto Front: For a Pareto optimal set, P∗, the Pareto front, PF∗, is defined as:

PF∗ = { f (x) = [ f1(x), f2(x), ..., fk(x)]> | x ∈ P∗}. (2.3)

Figure 2.1 below illustrates the concept of Pareto optimal set and its image in the objective space, the

Pareto front. Darker points denote Pareto optimal vectors. In variable space, these vectors are referred to as

Pareto optimal decision vectors, while in objective space, they are called Pareto optimal objective vectors. As

it is shown in Figure 2.1, the Pareto front is only composed by non-dominated vectors.

Mathematical Programming Techniques

The mathematical programming techniques are classified regarding how and when to incorporate preferences

from the decision maker into the research process. Since mathematically the Pareto optimal decisions are

equivalent, a decision maker is required to provide ordering. The decision maker is the person who shows

his/her preferences among the objective and defines a tradeoff to be applied. A very important issue is the

moment at which the decision maker is required to provide preference information. There are three ways of

doing this [50]:

1) Prior to the search (a priori approaches)

2) During the search (interactive approaches)
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3) After the search (a posteriori approaches).

Before we start with any of the categories, we introduce the global criterion method which is classified

in some references as no-preference methods. This is suitable for situations when the decision maker does

not have any special expectations of the solution and any optimal solution would be useful.

Global Criterion: This method is sometimes called compromise programming. In this method, the

distance between some reference point and the feasible objective region is minimized. The reference point

and a metric for distance measurement are chosen by user and there is no preference between objectives [51].

As an example, the ideal objective vector can be selected as the reference point and Lp-metrics are used as

the distance metrics. So, the problem will take the form:

min
( k

∑
i=1
| fi(x)− z∗i |

p
)1/p

.

subject to x ∈ S
(2.4)

which z∗i is the reference point. We know for the ideal objective vector that fi(x) ≥ z∗i for all i = 1, ...,k and

all x ∈ S.

If ideal objective vector is replaced by any other vector, it must not be pessimistic. Since this method

cannot find solutions better than the reference point.

For 1 < p < ∞, the exponent can be dropped, since Lp-metric is an increasing function. If p = ∞, the

metric is called Tchebycheff metric which is to be discussed later.

Instead of the terms | fi(x)− z∗i |, denominators may be added to normalize the components since it may

be useful to have the relative distances in calculations to reflect the location of ideal objective vector better.

For example, using the components of z∗ can shape the contour of the metric used.

It is obvious that this method is not useful for the MO-Op flight control problem because we do have prefer-

ences between our objectives and finding a proper reference point would also be an issue. With this method

if we do not normalize the objective functions, an objective function whose ideal value is located nearer the

feasible region would receive more importance.

Now, we discuss some of the well-known methods in the three categories mentioned before.

2.1. A Priori Methods

Value Function: In this method, the decision maker must be able to provide the explicit formulation of

value function U : Rk→ R that reflects the global preferences by giving a complete ordering in the objective

space [51]. Then, the optimization problem

max U( f (x)).

subject to x ∈ S
(2.5)
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can be solved by any single objective optimization method. Although, this seems like a simple method,

the difficulty lies in the design of the mathematical expression of that value function that captures all the

preferences of the decision maker exactly.

Goal Programming: Charnes and Cooper [52] are credited with the development of the goal program-

ming method for a linear model, and played a key role in applying it to industrial problems. In this method,

the decision maker has to assign targets or goals that they wish to achieve for each objective. These values

are incorporated into the problem as additional constraints. The objective function then tries to minimize the

absolute deviations from the targets to the objectives. The simplest form of this method may be formulated

as follows:

min
k
∑

i=1
| fi(x)−Ti| .

subject to x ∈ S
(2.6)

where Ti denotes the target or goal set by the decision maker for the ith objective function. A more general

formulation of the goal programming objective function is a weighted sum of the pth power of the deviation

| fi(x)−Ti|. Such a formulation has been called generalized goal programming.

In the previous equation, the objective function is nonlinear and the simplex method can be applied only after

transforming this equation into a linear form, thus reducing goal programming to a special type of linear

programming. In this transformation, new variables δ
+
i and δ

−
i are defined such that:

δ
+
i = 1

2{| fi(x)−Ti|+ | fi(x−Ti)|}.

δ
−
i = 1

2{| fi(x)−Ti|− | fi(x−Ti)|}.
(2.7)

which are underachievement and overachievement variables. So, the resulting equivalent linear formulation

is:

min
k
∑

i=1
(δ+

i +δ
−
i ).

subject to f (x)−δ
+
i +δ

−
i = Ti, i = 1, ...,k.

δ
+
i ,δ−i ≥ 0, i = 1, ...,k.

x ∈ S

(2.8)

Since it is not possible to have both under and overachievements of the goal simultaneously, we have:

δ
+
i ·δ

−
i = 0.

Although this is a very widely used solution method, the problem with this method is that in flight control

problems, except for the tracking objective, we may not always know or wish to specify the target values for

other objectives, rather it would be preferable to only minimize or maximize those objectives. Also, the

underachievement and overachievement computation makes the problem computationally intensive, making
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Figure 2.2: Geometrical representation of goal attainment method for two objectives [54].

it difficult to implement online. The approach also requires significant decision maker involvement in the

establishment of the targets and there is an underlying assumption of a piecewise linear value function.

Goal Attainment: In this method which is similar to goal programming, the decision maker must choose

a goal vector, zre f and a vector of weights, W = [w1,w2, ...,wk] to relate the under- and over-attainment of the

desired goals [53]. To find the best-compromise solution, x∗, the problem is formulated as below:

minα.

subject to zre f
i +α ·wi ≥ fi(x); i = 1, ...,k.

x ∈ S

(2.9)

where α is a scalar variable and the weights are normalized such that

k

∑
i=1
|wi|= 1.

The term α ·wi introduces an element of slackness into the problem, as opposed to imposing the goals rigidly.

Hard constraints can be incorporated into the design by setting any of the weights to zero.

As shown in Figure 2.2, given zre f and W , the direction for zre f +α ·W vector is determined and the

optimization problem stated in (2.9) finds the point on this vector in the feasible region which is closest to

the origin. If this vector intersects the feasible region, it would clearly be a Pareto optimal solution. This

optimum value of α reflects whether the goals are attainable or not. A negative value of α implies that the

decision maker’s goal is attainable. Otherwise, with α > 0, it is not possible for the goal to be attained.

The same as goal programming method, the limiting factor here is choosing the proper zre f and W .

However, the built-in constraint relief is a useful feature of this approach.

Lexicographic Method: In this method, the objectives are arranged in order of importance by the

decision maker (from most to least). The optimal value f ∗i (i = 1, ...,k) is then obtained by minimizing the
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objective functions sequentially, starting with the most important one and proceeding according to the order

of importance of the objectives. Additionally, the optimal value found for each objective, f ∗i (x) is added as

a constraint for subsequent optimizations. This way, the optimal value of the most important objectives is

preserved.

min fi(x)

subject to f j(x)≤ f ∗j (x); j = 1,2, ..., i−1,

i = 1,2, ...,k.

x ∈ S

(2.10)

Only in the case of several optimal solutions in the single optimization of the current objective, the rest of the

objectives will be considered. Since, only one of these solutions is Pareto optimal. Therefore, in the worst

case, we have to carry out k single objective optimizations.

The disadvantages of this method might seem more evident. Firstly, this is a priority-driven method and

the priority is rigid. So, if an objective cannot be optimized, the others will not be considered irrespectively,

disregarding the possibility that they might be satisfied without any bad influence on the others. Additionally,

if there are some objectives with equal priority or the number of priorities is less than the number of objectives

[55], this method is ignorant of that fact and disregards all the other objectives with equal priority while

optimizing the current one.

2.2. Interactive Methods

Geoffrion-Dyer-Feinberg (GDF): Geoffrion et al. [56] developed this method which is based on maxi-

mizing a utility function using a gradient-based method. This utility function is assumed to be differentiable

and concave and it is implicitly known. There are some gradient-based methods to solve this problem such

as Frank-Wolfe method [57]. Frank-Wolfe method assumes the feasible set S to be compact and convex. So,

the direction-finding problem will be of the form

max ∇xU( f (xh)) · y.

subject to y ∈ S
(2.11)

where U : Rk → R is the utility function, xh is the current point and y is the new variable of the problem.

Using the chain rule for the gradient term and dividing it by ∂U
∂ f1

, the following formulation of Frank-Wolfe

problem is obtained

max
( k

∑
i=1
−mh

i ∇x fi(xh) · y
)
.

subject to y ∈ S
(2.12)

where mh
i =

∂U
∂ fi

/ ∂U
∂ fl

for all i = 1, ...,k are the marginal rates of indifference tradeoff at xh between objectives

fl and fi for i 6= l. Marginal rate of indifference tradeoff is the amount of loss on objective fi that the decision
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maker is willing to tolerate in order to get a unit of gain in objective f1, while there is no change in other

objectives. Any of the other objectives can be the reference objective instead of f1.

The GDF method procedure is as follows:

I. Provide an initial point xh.

II. Provide marginal rates of indifference tradeoff between f1 (the reference objective) and the other ones

at current point xh.

III. Find the optimal solution yh to the problem (2.12). Set the new search direction as dh = yh− xh. If

dh = 0, xh is the final solution.

IV. Determine the best step size, th to compute the new solution, xh. Set xh+1 = xh + thdh.

V. If xh+1 = xh, xh is the final solution, otherwise, set h = h+1 and go back to the first step.

To know the details of how step 2 and 4 are done, see [56].

As it is outlined in the description above, this method requires too much computation such as determining

the k− 1 marginal rates of substitution at each iteration apart from the utility function design with several

mentioned assumptions and the difficult questions needed to be answered by the decision maker each time a

new search direction is presented. These make it obsolete for the online control application. Also, there is no

guarantee that the final solution is Pareto optimal.

Reference Point: This method is proposed by Wierzbicki [58] and its basic idea is as follows: First,

the decision maker chooses a reference point. The aspiration levels for each objective is represented by

this reference point. Then, the solutions that satisfy the aspiration levels the best are to be computed us-

ing an achievement scalarizing function. An achievement scalarizing function is a type of utility function,

szre f : Rk → R where zre f ∈ Rk is the reference point showing the aspiration levels chosen by the decision

maker. If the decision maker is satisfied with the current solution, the interactive optimization process will

end. Otherwise, another reference point should be selected by the decision maker. Thus, the multi-objective

problem follows as a scalar problem:

minszre f (z).

subject to z ∈ S
(2.13)

The achievement scalarizing functions are mostly based on Tchebycheff metric (L∞). One of the proper

achievement scalarizing functions would be the augmented Tchebycheff scalarizing function which is defined

below:

s∞(z,zre f ) = max
i=1,...,k

{ωi(zi− zre f
i )}+ρ

k

∑
i=1

ωi(zi− zre f
i ). (2.14)
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where ρ > 0 is an augmentation coefficient sufficiently small and W = [ω1, ...,ωk] is a vector of weights such

that ∀i ωi ≥ 0 and ∃i ωi > 0.

Moving the reference point in each iteration makes the reference point methods explore the objective

space. However, during the interactive process the weights do not change, since they do not define pref-

erences. The weights main usage is to normalize each objective function. It is important to mention that

the decision maker can choose both feasible or infeasible reference points. If the chosen reference point is

feasible, the solution improves the aspiration levels. Otherwise, the solution will be the closest feasible point

to the aspiration levels.

Choosing reference point as mentioned previously is one limitation for this method. As explained, this

method does not help the decision maker find improved solutions while requiring him/her to answer difficult

questions about current solution each time. In this approach only a finite subset of efficient alternatives can

be considered and the final solution optimality cannot be checked. If the decision maker is not purposeful

enough, the convergence is not necessarily fast.

Light Beam Search: The Light Beam Search (LBS) method proposed by Jaszkiewicz and Slowinski

[59], is an iterative method which combines the tools of Multi-Attribute Decision Analysis (MADA) with

reference point idea. The achievement function for minimization is the same as (2.14) where the weighting

coefficients are only used in the ‘max’ part. Here, the reference point is assumed to be an infeasible objec-

tive and none of the objectives is more important than all the others together. Reference points make the

decision maker able to guide the search process for solution. This process can be improved by providing the

decision maker additional information about the Pareto optimal set at each iteration. So, a finite sample of

nondominated solutions (a solution is nondominated if none of the objective functions can be improved at

the cost of degrading some of the other objectives) is generated. This sample consists of the other solutions

in the neighborhood of the current solution (based on the reference point method) which is called the middle

point. To avoid the decision maker’s frustration, concepts from multi-attribute decision analysis come into

play. The idea is to establish outranking relations, S, between alternatives to define the neighborhood around

the middle point. It is said that a outranks b(aSb), if a is at least as good as b. Thus, several thresholds are

required from the decision maker to define these outranking relations. The decision maker is asked to provide

indifference thresholds for each objective function which are the intervals that indifference prevails. In order

for the gap between indifference and preference not to be sharp, preference thresholds are expressed to show

the hesitation interval. Another threshold called veto threshold is introduced to prevent a good performance

in some objectives from compensating for poor values in others. Now it is possible for the decision maker to

scan the neighborhood along the objective function trajectories between any two characteristic neighbors or
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between a characteristic neighbor and the middle point.

Main weakness of this method is its high computational demand to find the exact characteristic neighbors.

Specifying different thresholds by the decision maker is a further demand too, although it is a progress not to

assume them global.

The next three methods (in addition to lexicographic method) relax the problem in different ways so that

it can be posed as a single objective optimization problem.

Tchebycheff Method: Tchebycheff method proposed in [60], is an iterative method that requires user

inputs. This method minimizes a function value while assuming that the global ideal objective vector (Utopian

vector, the vector that optimizes all the objective function which often does not exist) is known. Weighted

Tchebycheff metric is the measurement metric used for distances to a utopian objective vector. Thus, the

multi-objective optimization problem is formed as a single objective optimization problem:

minmax[ωi( fi(x)− z∗i )], i = 1, ...,k.

subject to x ∈ S
(2.15)

where W = {ω ∈ Rk | 0 < ωi < 1,
k
∑

i=1
ωi = 1} and z∗ is the Utopian objective vector.

All the Pareto optimal solutions of the multi-objective optimization problem can be found by solving

(2.15), however, some of the solutions to (2.15) might be weakly Pareto optimal ones. To avoid this disad-

vantage, we can formulate the problem as a lexicographic weighted Tchebycheff approach, as below:

min max
i=1,...,k

[ωi( fi(x)− z∗i )],
k
∑

i=1
( fi(x)− z∗i ).

subject to x ∈ S
(2.16)

Tchebycheff method generates a subset of nondominated solutions at each iteration. Among these solutions,

there are the solutions generated by lexicographic weighted Tchebycheff method which are selected by the

decision maker preference.

Flexibility of the method reduces by the fact that the discarded parts of the weighting vector space cannot

be restored if the decision maker changes his/her mind. A great deal of calculation needed at each iteration of

this method makes it an impractical choice. Also a lot of the results for the evaluation of objective functions

is discarded at each step which might be laborious for complex problems.

2.3. A Posteriori Methods

Weighting Method: In this method, as presented in [61], the general idea is to assign each objective

function a weighing coefficient and minimize the weighted sum of the objectives. In this way, the multi-

19



objective problem is modified into the following single objective problem.

min
k
∑

i=1
ωi fi(x).

subject to x ∈ S
(2.17)

where ωi ≥ 0 for all i = 1, ...,k and is strictly positive for at least one objective, such that
k
∑

i=1
ωi = 1. Lin-

ear Quadratic Regulators (LQR) utilize this technique for optimizing over both the control input and the

regulation error.

Though this method is a simple way of finding the optimal solutions if the weighting coefficients are

positive, all the Pareto optimal points cannot be found if the problem is non-convex. There might exist

multiple minimum solutions for a specific weight vector which represent different solutions in the Pareto

optimal front and this wastes the search effort. Also, two different set of weights do not necessarily lead

to two different Pareto optimal solutions and an even distribution of weights among the objectives does not

always result in an even distribution of solutions on the Pareto front. So, either too much simplicity or

complication is not desired for the practical problems.

ε-constraint Method: In this approach, introduced in [62], one of the objective functions is selected

based on a priority to be optimized and the other objectives are set as the constraints to the single objective

optimization problem. The problem is of the form

min fl(x).

subject to f j(x)≤ ε j for all j = 1, ...,k, j 6= l, x ∈ S
(2.18)

where ε j are upper bounds for the objectives. The idea is to relax the MO-Op problem by posing it as a

constrained optimization problem.

Figure 2.3 shows the application of the ε-constraint method in the bicriterion problem. As shown below,

there are three different upper bound values for objective function f1 while we try to find the optimum value

for f2. Thus, depending on the upper bound selected, the respective optimum value can be different in each

case.

The solution to ε-constraint problem (2.18) is weakly Pareto optimal in its general form. However, a

decision vector x∗ ∈ S is Pareto optimal if and only if it is a solution of ε-constraint problem (2.18) where

ε j = f j(x∗) for all j = 1, ...,k, j 6= l.

Method of Weighted Metrics: Also called compromise programming [63], this method is the global

criterion method with weighted metrics to produce different Pareto optimal solutions. So, by adding the
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Figure 2.3: Illustration of the ε-constraint method [54].

weighting coefficients ωi in the Lp-metric, we obtain the weighted Lp-problems:

min
( k

∑
i=1

ωi | fi(x)− z∗i |
p
)1/p

.

subject to x ∈ S
(2.19)

for 1≤ p < ∞, where ωi ≥ 0 for all i = 1, ...,k and ∑
k
i=1 ωi = 1.

The weighted Tchebycheff problem is then of the form:

min max
i=1,...,k

(
ωi | fi(x)− z∗i |

)
.

subject to x ∈ S
(2.20)

If the ideal objective vector is known globally, the absolute value signs can be dropped.

If p = 1, this method minimizes the sum of weighted deviations and it is equivalent to the weighting method

except for the constant, z∗ if it is known globally. For p = 2, this is the method of least squares. As p

increases, the larger the weighted deviation becomes the more important its minimization is. Finally when p

approaches to infinity, only the largest weighted deviation matters.

As mentioned in global criterion method, the requirement of the ideal solution, z∗, would be an issue.

So, we need to optimize each objective function first to find these values. Another weakness is since different

objectives may take on values of different orders of magnitude, it is advisable to normalize the objective

functions but this requires the knowledge of minimum and maximum objective function values.

Normal Boundary Intersection: To distribute Pareto optimal solutions evenly, Das and Dennis in [64]

suggested this method. Before describing the idea in this method, we define the pay-off matrix. Let x∗i be

the global minimizer of the respective objective function, fi(x), i = 1, ...,k in the feasible region, S and we

assume F(x∗i ) = F∗i , i = 1, ...,k, then the k×k matrix, Φ whose ith column is F∗i −F∗ is known as the pay-off

matrix, where F∗ is the utopian point defined by F∗ = { f ∗1 , ..., f ∗k }. Also, the set of points in Rk which are
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Figure 2.4: CHIM for a two-objective problem [54].

convex combination of these columns, i.e. {Φβ : β ∈ Rk,∑k
i=1 βi = 1,βi ≥ 0}, is named as Convex Hull of

Individual Minima (CHIM). Now, the main idea in this method is to intersect a normal to CHIM with the

feasible objective region, {F(x) : x ∈ S}.

Figure 2.4 shows the CHIM for a two-objective problem.

As it is shown in Figure 2.4, this approach finds a portion of the boundary of the feasible objective region

which contains the Pareto optimal points by intersecting a normal pointing towards the origin from any point

in the CHIM with this boundary. Thus, the original multi-objective optimization problem is transformed to

the following:

Choose a weighting β as mentioned earlier in the definition of CHIM. Then, Φβ represents a point in the

CHIM. If the unit normal to CHIM pointing towards the origin is defined by n̂, then Φβ +tn̂ represents the set

of points on the normal. So, the closest intersection of this normal and the boundary of the feasible objective

region to the origin is generated by the global solution of the problem follows:

maxx,t t.

subject to Φβ + tn̂ = F(x)−F∗

x ∈ S

(2.21)

Another way is to select a quasi-normal direction such that it forms an equally weighted linear combina-

tion of the columns of Φ.

n̂ =−Φv.

where v is a fixed vector with all the components positive and the minus sign is to ensure that it is pointing

towards the origin.

This method is computationally costly and it involves many optimization subproblems. For further details
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regarding its limitations, see [65]. The computational cost is the main limiting factor preventing this method

to be used for online control.

The different methods discussed above, each has their own benefits and disadvantages which are ex-

plained above briefly. Typically, the weighting method [61], and the ε-constraint [62] are more suitable

for online autonomous decision-making. However, it is not always possible to find a linear combination of

weights for obtaining non-conservative MO-Op solutions. Here we use the ε-constraint method since the con-

strained optimization problem is better suited for online flight control problems. This is because online flight

control problems are often designed to accommodate other constraints most of the time, such as maximum

allowable inputs or state constraints. Hence available constrained optimization routines such as quadratic

optimization can be utilized. According to [66], this method is always able to identify the best compromise

solutions belonging to the Pareto front independently of its shape and since the objective function bounds are

known it can be used conveniently. Also, with this method we avoid finding the corner solutions (extreme

solutions) to the problem and this makes the algorithm computationally efficient. In ε-constraint method,

there is no need to scale the objectives to obtain the final solution and finally our MPC structure is simpler to

implement and consistent with this solution method.
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CHAPTER 3

Methods

3.1 Control Architecture

3.1.1 MO-Op Model Predictive Control (MPC)

The main idea in our architecture is to pose the MO-Op flight control problem as a single-objective con-

strained optimization problem (utilizing the ε-constraint method discussed in Section 2.1) which can then be

solved online using well-studied techniques such as MPC. In this section a brief overview of MPC for con-

strained discrete-time systems is presented. The optimal reference command shaper is based on an explicitely

generated offline solution to the MPC problem. The discretized version of the reference model dynamics is

formulated as:

xrm(k+1) = Armxrm(k)+Brmurm(k),

y(k) =Crmxrm(k).
(3.1)

by taking a difference operation on both sides we have:

∆xrm(k+1) = Arm∆xrm(k)+Brm∆urm(k),

∆y(k) =Crm∆xrm(k).
(3.2)

Defining x(k) = [∆xrm(k)T y(k)]T results in the following state-space model:

x(k+1) = Ax(k)+B∆urm(k),

y(k) =Cx(k).
(3.3)

where the triplet (A,B,C) which is called the augmented model, is as follows:

A =

 Arm oT
rm

CrmArm 1

B =

 Brm

CrmBrm

C =

[
orm 1

]

where orm is a row vector of zeros with the same dimension as the state variable vector xrm.

24



Upon formulation of the mathematical model, the next step in design of a predictive controller is to

calculate the predicted plant output with the future control signal as the adjustable variables [67]. Assuming

that at the sampling instant ki > 0, the future control trajectory is denoted by:

∆urm(ki),∆urm(ki +1), . . . ,∆urm(ki +Nc−1).

The future state variables are,

x(ki +1 | ki),x(ki +2 | ki), . . . ,x(ki +Np | ki).

where Np and Nc are prediction and control horizon, respectively. Based on the state-space model (3.3), the

future state and output variables are calculated sequentially using the set of future control parameters [67]

and form the compact matrix equation (3.4) by defining:

Y =



y(ki +1 | ki)

y(ki +2 | ki)

...

y(ki +Np | ki)


∆U =



∆urm((ki)

∆urm((ki +1)
...

∆urm((ki +Nc−1)



Y = Fx(ki)+φ∆U. (3.4)

where,

F =



CA

CA2

...

CANp


φ =



CB 0 0 . . . 0

CAB CB 0 . . . 0

CA2B CAB CB . . . 0
...

...
...

...
...

CANp−1B CANp−2B CANp−3B . . . CANp−NcB


For a given set-point signal r(ki) at sample time ki, the optimization objective is to find the best control

parameter vector ∆U such that an error function between the set-point and the predicted output is minimized.

Assuming that the data vector which contains the set-point information is RT
s =

[
1 1 . . . 1

]
r(ki)

with the dimension of Np, the cost function J that reflects the control objective is defined as,

J = (Rs−Y )T Q(Rs−Y )+∆UT R̄∆U. (3.5)

Here, Q denotes a positive-definite diagonal matrix and R̄= rwINc (rw≥ 0) where rw is a tuning parameter

for desired closed-loop performance. The larger rw is, the more important the size of ∆U will be. Conversely,
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the larger rw becomes, the less important it becomes to make the error (Rs−Y )T (Rs−Y ) small [67]. If we

insert equation (3.4) into (3.5), we could form the MPC problem as minimizing the cost function,

J = (Rs−Fx(ki))
T Q(Rs−Fx(ki))

−2∆UT
φ

T Q(Rs−Fx(ki))

+∆UT (φ T Qφ + R̄)∆U.

(3.6)

which is subject to constraints on the control input and the output, that are collected together in equation (3.7)

as a matrix compact form [67].



−C2

C2

−φ

φ


∆U ≤



−Umin +C1urm(ki−1)

Umax−C1urm(ki−1)

−Ymin +Fx(ki)

Ymax−Fx(ki)


. (3.7)

where,

C1 =


I
...

I

 C2 =



I 0 . . . . . . 0

I I 0 . . . 0
...

I . . . I


In this work, as mentioned in the beginning of this section, the MO-Op flight control problem is to be

cast as a single-objective constrained optimization problem (utilizing ε-constraint method) minimizing the

cost function (3.5) to optimize the first objective, tracking error, while having constraints on the control input

and the output as shown in (3.7). Our MO-Op MPC problem also optimizes the second objective, oscillation

(energy in the system), by posing constraints on the system state. Note that the designer-chosen reference

model is a second-order system in this work which the discrete-time state-space model is:

xrm1(k+1) = xrm2(k),

xrm2(k+1) = ω2
n
(
urm(k)− xrm1(k)

)
−2ζ ωnxrm2(k).

(3.8)

To minimize the oscillation in a second-order system, it is possible to minimize the root mean square of the

velocity xrm2(k) at all time steps which results in bounding the velocity. Thus, a bound for the absolute value

of velocity is assumed to derive the state constraints for optimizing the second objective. The velocity is

calculated using the state-space model (3.8) as below:

xrm2(k) =
−xrm2(k+1)+ω2

n
(
urm(k)− xrm1(k)

)
2ζ ωn

.
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Assume |xrm2(k)|< ε . Now solving for urm(k) we have,

−2ζ ωnε + xrm2(k+1)
ω2

n
+ xrm1(k)< urm(k)<

2ζ ωnε + xrm2(k+1)
ω2

n
+ xrm1(k).

Using the above inequality and the first two inequalities in equation (3.7), the state constraints are derived

and depicted in the last two inequalities of equation (3.9). All the constraints included in Multi-Objective

Optimization problem are collected together in equation (3.9) as a matrix compact form.



−C2

C2

−φ

φ

−C2

C2


∆U ≤



−Umin +C1urm(ki−1)

Umax−C1urm(ki−1)

−Ymin +Fx(ki)

Ymax−Fx(ki)

−1
ω2

n

(
xrm2(ki)+ω2

n xrm1(ki−1)−∆lb

)
+C1urm(ki−1)

1
ω2

n

(
xrm2(ki)+ω2

n xrm1(ki−1)+∆ub

)
−C1urm(ki−1)


. (3.9)

and ∆lb = ∆ub, where ∆ub is an upper bound representing all the constants of the derivation bundled together.

In the presented MPC architecture, constraints cannot be placed on the un-measured state. However, this is

typically not an issue, since these constraints can be transformed into constraints on the control input. For

example, the upper limit on the oscillation in the system results in an upper bound for the system states.

Hence, using the state equations, a bound on the control inputs can be defined as shown above.

3.1.2 Chance-Constrained Model Predictive Control as a Reference Shaper

This section briefly introduces Chance-Constrained Model Predictive Control as a means to shape the refer-

ence command. The priority of both the control architectures shown in Figure 1.2 and 1.3, is to cancel the

uncertainty and track the linear reference model dynamics of (1.4). The remaining control authority, which

can be used by the CCMPC, can be used to shape the reference command urm. It is obtained by solving (1.5)

subject to u ∈ Du.

The discretized version of the reference model dynamics of (1.4) subject to a stochastic uncertainty is

used as a model for the CCMPC:

xrm(k+1) = Armxrm(k)+Brmurm(k)+Brmw(k). (3.10)

Here, (Arm,Brm) denote the discretized version of the original matrices, xrm(k) denotes the discrete-time state

at the time instant k and w(k)∈Rm represents an integrated Wiener process. Let ∆urm(k) = urm(k)−urm(k−1)

be a future control input, let Nc > 0 and Np ≥ Nc denote the control and prediction horizon, as mentioned
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earlier. Let ∆U = [∆urm(k) · · ·∆urm(k+Nc−1)]T with ∆U ∈ RNc·m be the incremental control sequence that

captures the optimal trajectory and let W = [w(k) · · ·w(k+Np− 1)]T with W ∈ RNp·l . Denote X ∈ RNp·l to

be the vector of predicted states, then

X = Gxxx0 +Gxu∆U +GxwW, (3.11)

where the matrices Gxx,Gxu,Gxw are generated by repetitive application of (3.10) which Gxx and Gxu corre-

sponds to F and φ in (3.4), respectively. Considering the reference model dynamics in (1.4), the available

control authority at the time instant k is then obtained by solving (1.5) for urm(k) with u ∈ Du.

Let FX denote a convex polytope of state constraints. Consider a cost function F (X̄ ,∆U), which is

convex in (X̄ ,∆U). The CCMPC problem then is

min
∆U

F (X̄ ,∆U)

u ∈ Du

P(X /∈ FX )≤ δ

X = Gxxx0 +Gxu∆U +GxwW.

(3.12)

Despite the linear dynamics in (3.10), the CCMPC problem is non-convex. In principle, the CCMPC problem

can be solved with nonlinear solvers, although it needs to be relaxed to a convex approximation of the prob-

lem for practical implementation so that the nonlinear programming methods will be able to find the global

optimum (see [68]). In order to relax the optimal control problem and obtain a solution, either nonlinear

solvers or approximating methods can be employed (see e.g. [11, 69]). In any case, the first component of

∆U is applied to the reference model in (1.4). Note, that the noise vector w(k) from (3.10) is only used for

the CCMPC model and not implemented in the reference model dynamics of (1.4).

To solve the CCMPC problem here, we modify the output constraints by placing a normal distribution,

f (z | µ,σ), on each one. The mean of the distribution, µ , is the previous limit for each constraint (Xmin,Xmax)

and the standard deviation is an arbitrary small value, σ � 1. By using the inverse cdf (or quantile function)

of δ in (3.12), the value by which the constraints are tightened, is found:

c = F−1(δ | µ,σ). (3.13)

Now, based on (3.13) and (3.7), the general MPC problem is solved with the updated constraints as below:

−C2

C2

−Gxu

Gxu


∆U ≤



−Umin +C1urm(k−1)

Umax−C1urm(k−1)

−Xmin +(c−Xmin)+Gxxx(k)

Xmax− (c−Xmax)−Gxxx(k)


. (3.14)
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3.1.3 Model Reference Adaptive Control (MRAC)

In this section, we briefly review MRAC [27, 70, 71]. We begin first by describing model reference control

architecture for systems without any uncertainty. Let x(t) ∈ Rl be the state vector, let u(t) ∈ Rm denote the

control input and consider the following linear system without uncertainty.

ẋ(t) = Ax(t)+Bu(t). (3.15)

where A ∈ Rl×l ,B ∈ Rl×m. We assume that the pair (A,B) is controllable and that B has full column rank. We

assume u(t) is restricted to the class of admissible control inputs consisting of measurable functions and x(t)

is available for full-state feedback.

A designer-chosen linear reference model is used to characterize the desired closed-loop response of the

system,

ẋrm(t) = Armxrm(t)+Brmr(t). (3.16)

The reference command r ∈ Rm is assumed to be bounded and piecewise continuous, the matrix Arm ∈ Rl×l

is chosen to be Hurwitz and Brm ∈ Rl×m is such that steady state accuracy is ensured. A nominal control

law including a linear feedback part u f b(t) = KT
mx(t) with Km ∈ Rl×m and a linear feedforward part u f f (t) =

KT
b r(t) with Kb ∈ R1×m is proposed to have the following form:

u(t) = u f f (t)+u f b(t). (3.17)

Substituting (3.17) into (3.15) we have:

ẋ(t) = (A+BKT
m)x(t)+BKT

b r(t). (3.18)

The design objective is to have (3.18) behave as the reference model in (3.16). To that effect, we introduce

the following model matching conditions,

A+BKT
m = Arm,

BKT
b = Brm.

(3.19)

assuming the model matching conditions exist. Defining the tracking error to be e(t) = x(t)− xrm(t) yields,

ė(t) = Arme(t). (3.20)

which shows that the tracking error converges to zero exponentially fast since Arm is Hurwitz. It follows

from Lyapunov theory that there exists a unique positive-definite matrix P ∈ Rl×l satisfying the Lyapunov

equation,

AT
rmP+PArm +Q = 0. (3.21)

for any positive-definite matrix Q ∈ Rl×l .
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MRAC with Uncertain Nonlinearity

Here we discuss how the effect of an additive matched uncertainty can be negated using MRAC. Suppose

that we have an uncertain nonlinear model with a matched modeling uncertainty, ∆. Then equation (3.15)

becomes,

ẋ(t) = Ax(t)+B(u+∆)(t). (3.22)

Consider an adaptive term uad which needs to be designed to cancel out ∆(x). So, we modify our control law

in equation (3.17), as

u(t) = u f f (t)+u f b(t)−uad(t). (3.23)

With (3.23), (3.22) and (3.16), the tracking error dynamics would be:

ė = Arme+B(∆−uad). (3.24)

Consider the well-known MRAC weight update law Ẇ (t) = −Γwβ (x)eT (t)PB that guarantees the tracking

error and adaptive parameters are uniformly ultimately bounded, however, the parameters (W ) stay bounded

within a neighborhood of the ideal parameters (W ∗) only if β (x) is persistently excited [72]. Here, Γw denotes

a positive-definite learning rate matrix, β is the known basis function for uncertainty parametrization, and P

is the positive-definite matrix satisfying the Lyapunov equation. Chowdhary et al. in [35] used concurrent

learning to overcome this problem. Furthermore, in [30] it was shown that when Gaussian Processes are used

as adaptive elements, the architecture becomes capable of adapting to a wide class of uncertainties without

having to pre-specify the structure of the adaptive elements. Here, we take advantage of GPs to learn the

uncertainty in the model by modeling the adaptive element as the mean of an online-learned GP.

3.1.4 Gaussian Process MRAC

In the presented architecture, the stochastic uncertainties, ∆i, in (1.1) are modeled each as a Gaussian Process

(GP) [see (1.2)]. A GP is a distribution over functions and a sample drawn from a GP will be a function

completely characterized by the mean and variance of the GP [28]. In GPs, the function is modeled as a

linear combination of covariance kernel functions [28]. A common choice for defining the covariance, K, is

the squared exponential function:

k(x,y) = exp(−‖ x− y ‖2

2σ2 ). (3.25)

although the presented method can accommodate other kernels. The kernel function generates a mapping,

ψ , to an infinite dimensional Reproducing Kernel Hilbert Space (RKHS), H, such that k is an inner product

defined by k(x,y) = 〈ψ(x),ψ(y)〉H . In this RKHS, the mean, m, of the data generating stochastic process, ∆,
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is a linear combination of nonlinear bases:

m(x) =
∞

∑
j=1

α jk(x,x j). (3.26)

where αi ∈ H is a countably infinite dimensional vector, k ∈ H are the kernel functions evaluated over

data points, x j, vectors in the dual space. This rather general model can be learned directly from data, let

D = {(X1,y1)(X2,y2), . . . ,(Xn,yn)} be a set of state measurements sampled from an environment. Then

assuming normal distribution as the prior on the data, the GP posterior mean and variance of the GP given

the measurements are estimated as: yt

yt+1

∼N(0,

K(D,D)+ω2I k(D,x)

k(D,x)> k(x,x)

), (3.27)

The posterior distribution is computed by conditioning the joint distribution over the new measurement, yt+1,

to obtain,

p(yt+1 | yt ,xt ,D)∼N (m̂(xt+1), Σ̂(xt+1)), (3.28)

where,

m̂(xt+1) = α>k(xt+1,D),

Σ̂(xt+1) = k(xt+1,xt+1)− k(D,xt+1)
>[K(D,D)+ω2I]−1k(D,xt+1).

(3.29)

are the predictive mean and covariance, respectively and α =K(D,D)+ω2I]−1ȳ. Hence, the mean is directly

estimated from the set of available data. In essence, at any given point in time, an instantiation of the GP can

be thought of as a Gaussian Radial Bases Function Network (RBFN). However, the main strength of the GP

is that it does need to assume an a-priori allocation of RBF centers.

However, the main disadvantage of using the traditional GP regression techniques is that the covariance

matrix increases in size as the size ofD increases. In online applications, this can quickly become intractable

as computing the inverse in (3.29) can become computationally intractable. It was shown in [30] that this

problem can be alleviated using online sparsification techniques, and in particular Csato and Opper’s budgeted

online Sparse Gaussian Process regression technique [29] which only includes valuable data points in an

active Basis Vector set (BV). When new data is observed, the sparsification algorithm computes how well the

new data point can be approximated by the existing basis vectors using a comparative test called the kernel

linear independence test which ∀ψ ∈ BV is defined as:

γt+1 =‖
t

∑
i=1

αiψ(xi)−ψ(xt+1) ‖H . (3.30)

The γt+1 gives the residual distance between ψ(xi) and the GP generated by elements in BV . An existing

element, ψm, in the basis vector set which minimizes D(GP ‖ BV)−D(GP ‖ BV\{ψm}) is removed and
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the new sample is added to the set. Given the basis vector set, the approximate mean and variance can be

written from (3.29) as:

m̂(xt+1) = α>k(xt+1,BV),

Σ̂(xt+1) = k(xt+1,xt+1)− k(BV ,xt+1)
>[K(BV ,BV)+ω2I]−1k(BV ,xt+1).

(3.31)

The reader is referred to [30] and [29] for details of the algorithmic implementation.

To achieve the tracking objective, the adaptive element is set to the online-learned mean of the stochas-

tic process, ∆i: uad(x) = m̂i(x) at any state x(t) from (1.6) to ensure that the tracking error goes to zero

asymptotically.

u(t) = u f f (t)+u f b(t)−uad(t),

uad = m̂(x).
(3.32)

Algorithm 1 shows the steps necessary to be implemented for the presented MO-Op architecture.

Algorithm 1 GP-MRAC MO-Op MPC
Input: Initial states, reference command, Np and Nc

Initialize GP model from system states.

while reference command signal is available do

Compute control objective function, J, by (3.5) and constraint matrices by (3.9).

Optimize the objective function J with (3.9) as constraint. Add multiple objectives as additional con-

straints.

Set uad = m̂(x).

Calculate u f b = K>m x and u f f = K>b urm. urm is the optimization output.

Calculate control input using (1.5).

Propagate system and reference model dynamics.

Compute the nonlinear term of system dynamics.

Update x̄rm using (3.3).

end while

3.2 Adaptive Control under Switching Models

In this section we provide a method for modeling the nonlinear uncertainty, ∆(x), which is assumed to be a

smooth deterministic function in the Hilbert space,H. We look at a particular class of nonstationary switching

functions ∆̄ = {∆1,∆2, . . . ,} ∈H that can be acted upon the system defined by (1.1). Our algorithm uses an

adaptive control architecture which can learn the various models of uncertainties and detect change-points in

32



the underlying model to actively cancel them out. GP-MRAC is already described in Section 3.1.4 and its

online implementation is presented in [30].

3.2.1 Change-Point Detection with Gaussian Process Non-Bayesian Clustering

In most existing GP inference techniques, including the ones discussed in 3.1.4, the data is assumed to be

generated from a single GP. However, this technique is not applicable to cases when the underlying data

generating distribution could be switching in time. In particular, an algorithm that can determine the current

generative distribution does not model well the data being observed is required when ∆i is switching. In

[31, 44], the GP-NBC method is proposed for identifying separable GP models from sequentially observable

outputs, under mild assumptions [31], on the class of functions, F , in which the various models exist. We

present a brief overview of GP-NBC.

For a GP, the log-likelihood of a subset of points, y, can be evaluated as:

logP(y | x,M) =−1
2
(y−µ(x))>Σxx(y−µ(x))

− log |Σxx|1/2 +C. (3.33)

where µ(x) = K(X ,x)>(K(X ,X)+ω2
n I)−1Y is the mean prediction of the model, M, and Σxx = K(x,x)+

ω2
n I−K(X ,x)>(K(X ,X)+ω2

n I)−1K(X ,x) is the conditional variance plus the measurement noise. The log-

likelihood contains two terms which account for the deviation of points from the mean, 1
2 (y−µ(x))>Σxx(y−

µ(x)), as well as the relative certainty in the prediction of the mean at those points, log |Σxx|1/2. GP-NBC

algorithm, at all times, maintains a set of points, S, which are considered unlikely to have arisen from the

current GP model, Mc. The set S is used to create a new GP, MS, which is tested against the existing models,

Mi, using a non-Bayesian hypothesis test to determine whether the new model, MS, merits instantiation as a

new model, or should be clustered with an existing one. This test is defined as:

P(y |Mi)

P(y |M j)

M̂i

R

M̂ j

η . (3.34)

where η = (1− p)/p, and p = P(M1). If the quantity on the left-hand side is greater than η , then the

hypothesis Mi (i.e. that the data y is better represented by Mi) is chosen, and vice versa.

The GP-NBC algorithm is reproduced in Algorithm 2 (see [31, 44] for more details).
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Algorithm 2 GP Clustering [31]
Input: Initial data (X ,Y ), lps size l, model deviation η

Initialize GP Model 1 from (X ,Y ).

Initialize set of least probable points S = /0.

while new data is available do

Denote the current model by Mc.

If data is unlikely with respect to Mc, include it in S.

if |S|== l then

for each model Mi do

Calculate log-likelihood of data points S using having been generated from current model Mi (3.33)

log(S|Mi), and find highest likelihood model Mh, making Mh current model.

Create new GP MS from S.

if 1
l (log(S|MS)− log(S|Mc))> η then

Add MS as a new model.

end if

end for

end if

end while
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CHAPTER 4

Stability

4.1 Stability Analysis

This section discusses the stability of the presented adaptive-optimal control architecture. From the tracking

error dynamics in (1.6), it follows that since Arm is Hurwitz, if ‖∆−uad‖ is bounded, the tracking error stays

bounded. The main advantage of the reference command shaping architecture utilized here is that optimizing

the output of the reference model using MPC will not change the tracking error dynamics in (1.6) [4].

Before considering the adaptive part of the control architecture, we first analyze the optimal part as well

to check the stability. Since the chosen reference model is linear time-invariant and Arm is a Hurwitz matrix

the reference model is BIBO stable. The input which is the reference command, r, is bounded by design,

hence the output of the optimal controller is also bounded and stable. Having multiple constraints does not

make the system unstable as long as they are feasible. Nonetheless, the constraints tighten the bounds of the

output. Thus, the output of the optimal part of the architecture enters the adaptive part bounded and stable.

Now, we investigate the error dynamics to show the stability of the entire architecture.

Remark 1 The tracking error dynamics can be derived as follows:

ė = ẋ− ẋrm = Ax+B(u+∆)−Armxrm−Brmurm

= Ax+B(Kmx+Kburm−uad +∆)−Armxrm−Brmurm

= (A+BKm)x−Armxrm +BKburm−Brmurm−Buad +B∆

= Arme+B(∆−uad).

Note that due to the matching conditions in (3.19), the reference signal is canceled out, hence, the stability

of the architecture is not affected directly by the MPC-based reference command optimization. Furthermore,

unlike previous learning-based MPC architectures [9, 27], it is not required to explicitly account for the effect

of including MPC in the closed-loop in the stability analysis.
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Let ξ (t) ∈ Rn2 be a Wiener process, σ(t) ∈ N denote a switching index that increments every time the

set BV is modified, and Gσ be a linear operator associated to the covariance kernel k(z,z′) [28]. Following

the analysis in [30] the uncertainty can be presented as,

∆(z) = m(z(t))+Gσ (t,z(t))dξ (t). (4.1)

Hence, the tracking error dynamics (1.6) can be written as,

ė = Arme+Bε
σ
m +BGσ dξ . (4.2)

where εσ
m (z) = m(z)− m̂σ (z) and uad(z) = m̂σ (z) is the estimation of the mean function m(z). Time and

state dependency of Gσ (t,z(t)) is dropped for the sake of brevity. Now to prove stability, we need to bound

‖∆(z)−uad(z)‖. It is shown in [30] that there exists the following bound on εσ
m (z):

‖εσ
m (z)‖ ≤

2κ2Mσ
√

kmax

ω4 +
κkmaxMσ

ω2 . (4.3)

where kmax is the greatest kernel approximation error, κ is the maximum value the kernel can take (1 for

Gaussian kernel), ω is the process noise, and Mσ is the largest value of an outlying measurement [30].

Using the above bound, the following theorem guarantees the stability of the presented architecture by

proving the boundedness of tracking error:

Theorem 1 Assume the system in (1.1), the control law in (1.5), and the uncertainty ∆(z) which is repre-

sentable by a Gaussian Process (1.2). Then, the outlined adaptive-optimal control Algorithm 1 and uad(z) =

m̂σ (z(t)) guarantee that the system is mean square uniformly ultimately bounded a.s.

Proof. The proof follows directly from [30]. The Itô differential generator L for a smooth function is defined

in [30]. Let V (e(t)) = 1
2 eT (t)Pe(t) be the Lyapunov candidate, where P is the positive definite solution to the

Lyapunov equation (3.21). The Lyapunov candidate is bounded below and above by 1
2 λmin(P)‖e‖2 ≤V (e)≤

1
2 λmax(P)‖e‖2. The Itô differential of the Lyapunov candidate considering the solution of (4.2) for the σ th

system is:

LV (e) = ∑i
∂V (e)

∂ei
Aei +

1
2 ∑i, j[BGσ (BGσ )

T ]i j
∂ 2V (e)
∂ei∂e j

=− 1
2 eT Qe+ eT PB[εσ

m (z)+Gσ dξ (t)]+ 1
2 tr(BGσ (BGσ )

T P).

(4.4)

Let c1 =
1
2‖P‖‖BGσ‖2 and c2 = ‖PB‖, then,

LV (e)≤− 1
2 λmin(Q)‖e‖2 + c2‖e‖‖εσ

m (z)+Gσ dξ (t)‖+ c1

≤− 1
2 λmin(Q)‖e‖2 + c2‖e‖(‖εσ

m (z)‖+ c′)+ c1.

(4.5)
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From the mentioned bound in (4.3) and c3 =
2κ2

ω4 , c4 =
κ

ω2 , we have ‖εσ
m (z)‖ ≤ c3Mσ

√
kmax +c4Mσ kmax. So,

LV (e)≤−1
2

λmin(Q)‖e‖2 + c2‖e‖
(
c3Mσ

√
kmax + c4Mσ kmax + c′

)
+ c1. (4.6)

It is also shown in [30] that ‖Gσ dξ‖ ≤ c′.

Define c5 = c3
√

kmax + c4kmax. Therefore, outside of the set,

Θ
σ
γ =

{
‖e‖ ≥ c5Mσ +

√
(c5Mσ )2 +2λmin(Q)c1

λmin(Q)

}
. (4.7)

LV (e)≤ 0 a.s.

Now it is required to prove the existence of Mσ . To this effect it is sufficient if we show the set Θσ
γ

is bounded. As it is mentioned earlier, the reference model is BIBO stable. Therefore, the only way for

Θσ
γ to go unbounded is if the bound in (4.3) does not exist which implies that m̂σ (z) cannot estimate the

mean function m(z). Based on the GP-MRAC algorithm outlined, it is guaranteed that the ideal weights for

RBFN representation of m(z) can be computed. Thus, if ‖εσ
m (z)‖ is unbounded, it results in violating the

universal approximation theorem for RBFs which holds for RBFNs with Gaussian kernels [73]. This leads to

contradiction, showing ‖εσ
m (z)‖ and Θσ

γ are bounded and hence Mσ exists.

Remark 2 The bound in (4.7) gets tighter as the kernel density increases. The ability to handle higher

kernel density directly depends on the available on-board processing power and memory, hence, increasing

processing power and memory can help reduce the error bound. The bound in (4.7) gets looser with large

outliers Mσ , but can be balanced with larger regularizing parameter ω . Finally, note that unlike RBFN-

based proofs [74], operation over a compact domain where kernels have been a-priori allocated need not be

assumed, the domain can grow with data, but the kernel budget restricts attainable accuracy.

Remark 3 The above theorem guarantees that the system states will be driven inside a positively invariant

set exponentially fast. Therefore if the switching interval between any two consecutive model (∆i) switches is

sufficiently large, the stability of the switching nonlinear dynamical system in (1.1) can be guaranteed. Note

that the required time interval between any two switches will always be finite, because of the exponential

convergence guarantees.

We now analyze the effect on the stability due to potential miss-classification by GP-NBC of the under-

lying model. Note first that GP-NBC is guaranteed to correctly classify the underlying model within a finite

number of samples [31]. This property allows us to prove the following corollary:
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Corollary 1 Consider a system and the tracking error dynamics as described by (1.1) and (1.6). If the worst

case εm is defined as εw =| m− m̂worst | where m̂worst = supi∈ϒ(m̂true− m̂i) and the probability of making an

incorrect prediction and detecting a switch point are defined as δL and δD, respectively, then, the growth in

the tracking error due to a potential miss-classification by GP-NBC is bounded with probability 1−δL−δD.

Proof. The presented proof is based on the worst case εw which is calculated using the largest difference of

ε and follows the analysis used in [31] to obtain an upper bound on the growth of the tracking error. By

applying the triangle inequality to the solution of the tracking error dynamics (1.6), we obtain the bounds on

e(t) as,

‖ e(t) ‖≤‖ exp(A(t− t0))e(t0) ‖+ ‖
t∫

τ

exp(A(t− τ))B(τ)(∆−uad)dτ ‖ (4.8)

From [31] there exists an upper bound on the total number of time steps GP-NBC can make an incorrect

prediction when the model has switched. This guarantees that the integral defined in the transient response is

finite. Since ∆−uad is upper bounded by εw the above equation reduces to

‖ e(t) ‖≤‖ exp(A(t− t0))e(t0) ‖+ ‖ A−1[exp(A(t))− I]B(t)εw ‖ (4.9)

Since the total number of time steps GP-NBC makes an incorrect prediction is n+(m− 1)Nc(UE ,dx)

with probability 1− δL− δD [31], the integral in the transient response is finite with the same probability.

Here n is the worst case bound on the number of samples such that GP makes an incorrect prediction, m is

the window size to sufficiently distinguish any two models and Nc(UE ,dx) is the covering number [31].

Remark 4 Corollary 1 guarantees that the error during the transition between models will remain bounded

in probability.
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CHAPTER 5

Results

5.1 MO-Op MPC Results

In this section we evaluate the presented architecture (Figure 1.2) through simulation on a representative

flight control problem. We consider the wing-rock dynamics problem [75]. However, we add to the problem

an additive emulated rigid-flexible mode oscillatory term: p2sin(p). This term oscillates like the solution to

Van der Pol equation with resonance terms, which is an oscillator with nonlinear damping. The frequency of

oscillation is modeled to increase with the roll rate p, while the amplitude is modeled to scale with the square

of the roll rate. Consider the uncertain nonlinear dynamical model of wing-rock dynamics with the additive

term (1.1): φ̇

ṗ

=

0 1

0 0


φ

p

+
0

1

δa +∆+ p2 sin(p). (5.1)

where δa = u in (5.1) is the aileron deflection, φ is the roll angle, and p is the roll rate. The generic nonlinear

and time-varying uncertainty, ∆, takes on the following form for wing-rock dynamics: ∆ = W0 +W1φ +

W2 p+W3|φ |p+W4|p|p+W5φ 3. It is assumed that the oscillatory term has frequencies that are beyond the

bandwidth of the actuator system. Therefore, it cannot directly be canceled using constrained control input.

Therefore, finding a control input that minimizes the oscillation in the system forms the objective in our

MO-Op problem alongside the tracking performance, which is our first objective.

The natural frequency and the damping ratio of the chosen reference model (second-order system) are

ωrm = 2 and ζrm = 0.5, so that: ẋrm1

ẋrm2

=

 0 1

−4 −2


xrm1

xrm2

+
0

4

urm. (5.2)

The feedback and feedforward gains are Km = [−4 − 2], Kb = 4, respectively. The simulation runs for 50

seconds with a time step of 0.01 second.
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First, we present the results for the GP-MRAC-MPC without the oscillation term. The only objective

function here is the tracking error. The results are shown in Figure 5.1. It can be seen that the GP-MRAC-

MPC architecture can achieve good tracking performance.
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Figure 5.1: Position and velocity response for GP-MRAC-MPC architecture without the oscillation term.

Now we present results with the oscillatory term added. The oscillation term cannot be directly canceled

by GP-MRAC, since the dynamics tend to get increasingly aggressive as p increases and the control input

given by the actuators is practically limited. Even in simulation, GP is not able to overcome the complexity

of this oscillation term as shown in Figure 5.2.
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Figure 5.2: Position and velocity response by GP-MRAC learning of the oscillation term.

The left plot in Figure 5.3 shows the performance of the baseline GP-MRAC-MPC controller without
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MO-Op. The results show that the oscillatory term results in sub-optimal performance. To handle this issue

in the MO-Op framework, the second objective is posed as a constraint in our MPC problem, utilizing the

ε-constraint MO-Op method. Since the energy in the system is a measure of oscillation, for minimizing the

oscillation, the root mean square of the roll rate, Prms, can be computed and a control strategy can be sought

that restricts the oscillation below a user-specified upper bound. The bound on Prms results in an upper bound

for roll rate itself. The exact value of this bound was found by plotting the maximum Prms versus upper

bound. The plot for the entire set of simulations that is run for different upper bounds, has two local minima

while one of them has the better tracking performance. The smaller upper bound does not result in the best

tracking performance, since it causes the system to discard some frequencies that are needed. Utilizing that

fact about the better the tracking performance is, the more desired the result is, an upper bound on the roll rate

can be found. After evaluating that upper bound, the MO-Op MPC problem can be formed in ε-constraint

manner by utilizing that upper bound as a constraint on p as explained in section 3.1.3.1.1. As discussed in

section 2.1, ε-constraint method is selected as the best choice for online flight control problem since it is more

amenable to online computation. The specific disadvantages of other methods were discussed in Section 2.1.

The results for the solution to the MO-Op MPC problem, compared to the baseline with tracking error as the

only objective, are shown in Figure 5.3. The constraints on the system output shown in this figure are not real

physical constraints but we further decreased them to be shown in the plot and also to reflect the controller

ability to deal with tight constraints.
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(a) Performance without MO-Op
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(b) Performance with MO-Op

Figure 5.3: Comparison in performance without and with optimizing over the oscillation.

It can be seen that the MO-Op technique outperforms the baseline since the MO-Op method takes into
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account the potential for exciting the oscillatory mode. MO-Op formulation of the problem considers this

potential by constraining the control input to a region where the oscillations are expected to be below the

user-defined threshold. To show the whole range of velocity we are forced to have a wide range for its axis.

Thus, the difference in velocity plots are not emphasized but it is evident that the roll rate becomes more

compact due to the second objective bound.

By changing ∆ub and storing Prms, we investigated whether the performance of the controller, with respect

to the second objective, is as expected. As shown in Table 5.1, minimum of the maximum allowed Prms occurs

at ∆ub = 203 while the plot in Figure 5.3(b), sets ∆ub = 179. This is as expected, since tracking is our first

priority objective and the tracking performance related to ∆ub = 179 is the most desired one amongst the

others [see Figure 5.6 and 5.7]. Therefore, although it did not acquire the least possible Prms, which means

the least oscillatory behavior, it obtains the best tracking performance with a slightly higher Prms. That is

what we anticipate from a MO-Op formulation.

Table 5.1: Maximum allowed Prms vs. ∆ub

Prms 1.4623 1.4348 1.4278 1.4222 1.4221 1.4224 1.4232 1.4259 1.4480

∆ub 160 170 179 200 203 204 210 220 250

There are some parameters involved in the simulation, which are chosen by the designer. These param-

eters include ∆ub, control and prediction horizon, and GP tuning parameters. The values of these parameters

for the previous plots are shown in Table 5.2. In order to find the ones influencing the results, we report some

comparisons by changing one parameter at a time in the following plots.

Table 5.2: Designer-involved parameters in the simulation

Np Nc ∆ub σ noise n tol

18 10 179 1.5 0.001 150 10−4

The first set of results specifies changing the control horizon while the other parameters are selected as

in Table 5.2.

Smaller control horizon will make a future control trajectory with less number of parameters, which

makes the MPC controller less flexible as shown in Figure 5.4(a). On the other hand, making it equal to the

prediction horizon, causes the controller to create control input more than its optimization window permits.

Therefore, having a control horizon equal to prediction horizon usually results in not having the best perfor-

mance as shown in Figure 5.4(b). If we choose Np = Nc = 20, the difference will be more evident but here

we refused to change more than a parameter at a time to emphasize each parameter’s influence on the final

42



0 5 10 15 20 25 30 35 40 45 50
−1.5

−1

−0.5

0

0.5

1

1.5

Time(sec)

P
os

iti
on

 

 
Actual
Reference
Commanded

0 5 10 15 20 25 30 35 40 45 50
−15

−10

−5

0

5

10

15

time (seconds)

V
el

oc
ity

Angular Rate

(a) Performance with Nc = 2
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(b) Performance with Nc = 18

Figure 5.4: Comparison in performance while changing the control horizon.

result.

The second set of results shows the change in performance while we were changing the prediction hori-

zon.
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(a) Performance with Np = 10
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(b) Performance with Np = 20

Figure 5.5: Comparison in performance while changing the prediction horizon.

As explained above, making Np and Nc equally deteriorates MPC controller performance. In addition to

that, reducing the optimization window size decreases the controller ability to predict the future as shown in

Figure 5.5(a). Increasing the difference between control and prediction horizon too much will also result in a
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(a) Performance with ∆ub = 140
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(b) Performance with ∆ub = 179

Figure 5.6: Comparison in performance while changing the upper bound.

less optimal behavior, demonstrated in Figure 5.5(b).

Figure 5.6 and 5.7 show the performance of the system based on the different upper bounds that the user

chooses for the second objective.
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(a) Performance with ∆ub = 200
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(b) Performance with ∆ub = 179

Figure 5.7: Comparison in performance while changing the upper bound.

Figure 5.8, 5.9, 5.10 and 5.11 demonstrate the result of the change in GP hyperparameters, σ , noise,

number of centers, and tolerance, respectively. In all the upcoming figures, the right plots are for the values

used by GP in MO-Op simulation shown in Figure 5.3(b).

44



0 5 10 15 20 25 30 35 40 45 50
−1.5

−1

−0.5

0

0.5

1

1.5

Time(sec)

P
os

iti
on

 

 
Actual
Reference
Commanded

0 5 10 15 20 25 30 35 40 45 50
−15

−10

−5

0

5

10

15

time (seconds)

V
el

oc
ity

Angular Rate

(a) Performance with σ = 5.5

0 5 10 15 20 25 30 35 40 45 50
−1.5

−1

−0.5

0

0.5

1

1.5

Time(sec)

P
os

iti
on

 

 
Actual
Reference
Commanded

0 5 10 15 20 25 30 35 40 45 50
−15

−10

−5

0

5

10

15

time (seconds)

V
el

oc
ity

Angular Rate

(b) Performance with σ = 1.5

Figure 5.8: Comparison in performance while changing GP hyperparameter, σ .

All the results for changing the GP hyperparameters suggest that the best regression performance by GP

occurs at a proper adjustment for each parameter. While it is possible to have a satisfactory performance

in the system for some changes in the parameters, the most optimal one occurs at a precise choice of these

hyperparameters.
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(a) Performance with noise = 0.000001
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(b) Performance with noise = 0.001

Figure 5.9: Comparison in performance while changing GP hyperparameter, noise.

As it was also expected, the results are mostly influenced by σ and the number of centers, which play an

important role in the way regression is done by GP.
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(a) Performance with n = 10
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(b) Performance with n = 150

Figure 5.10: Comparison in performance while changing GP hyperparameter, number of centers.
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(a) Performance with tol = 1
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(b) Performance with tol = 10−4

Figure 5.11: Comparison in performance while changing GP hyperparameter, tolerance.
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The plots shown for simulation parameters comparison are sensitivity plots for the control architecture

at hand. Except ∆ub that is exclusive to this especial formulation of MO-Op problem, the others are general-

izable to any other problem using similar parameters. GP hyperparameters sensitivity analyses are actually

transferable to any regression problem. Thus, all these plots are validation of the simulation parameters’

impact on this control architecture.

5.2 Adaptive-Optimal Clustering Results

Now we evaluate the adaptive-optimal clustering extension of the architecture through simulation on a repre-

sentative flight control problem. Consider the uncertain nonlinear dynamical system in the form (1.1):ẋ1

ẋ2

=

0 1

0 0


x1

x2

+
0

1

(u+∆) (5.3)

This class of models is applicable to the class of wing-rock dynamics:φ̇

ṗ

=

0 1

0 0


φ

p

+
0

1

(δa +∆) (5.4)

where δa = u in (5.1) is the aileron deflection, φ is the roll angle, and p is the roll rate. The generic nonlinear

and time-varying uncertainty ∆ takes on the following form for wing-rock dynamics ∆ =W0 +W1φ +W2 p+

W3|φ |p+W4|p|p+W5φ 3. Here we assume that the weights W are randomly switching between the three

different sets of weights given below:

W0

W1

W2

W3

W4

W5


=



2

0.2314

0.1918

−0.6245

0.0095

0.0214


,



−3

−0.01859

0.01516

−0.06245

0.0095

0.0214


,



0

0.324

−0.01516

−0.06245

0.0095

0.0214


The reference model is the same as (5.2). The feedback and feedforward gains are Km = [−4 − 2],

Kb = 4, respectively. The simulation runs for 250 seconds with a time step of 0.01 seconds.

The weights are assumed to switch in a manner unknown to the controller, however, we assume that there

is a finite time interval between any two switches. In order to test the performance of our method, we compare

the presented GP-MRAC-NBC algorithm with a GP-MRAC architecture which learns the uncertainty model
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without clustering. We show comparisons between the positions and velocities between both the methods

along with the error performances.
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(a) Baseline Performance
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(b) Performance with Clustering

Figure 5.12: Comparison in performance without and with clustering the uncertainty models.
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Figure 5.12 presents the tracking performance. The baseline GP-MRAC has suboptimal transient perfor-

mance, since it can be seen that once the modeling error is switched to the second set of weights, the positions

are not optimally tracked. However, in steady state, when GP-MRAC does learn the new model, GP-MRAC’s

performance is similar to GP-MRAC-NBC.
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(a) Baseline Error
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(b) Error with Clustering

Figure 5.13: Comparison in error performance without and with clustering the uncertainty models.
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Figure 5.14: Model estimation performance of the Clustering Algorithm

Figure 5.13 compares the error performance of the baseline with the GP-MRAC-NBC. A degradation is

noticed in the error performance when no clustering is performed. Also, it can be noticed that the performance

of the clustering algorithm improves over time as the algorithm sees more and more data from a particular

model. For example, the error of the system with the first set of weights has improved in performance when

the first model is encountered the second time. The same is true for the second and third sets of weights.

This indicates long-term learning and reuse of previous experience. Sharp peaks in the error plot indicate the

points where the clustering algorithm is using the data to identify the right model and, hence, there is a small

degradation in the performance; however, once identification is done, the tracking error significantly reduces.

Figure 5.14 shows that the GP-NBC algorithm is able to correctly detect changes in the model and cluster

together data from the same underlying GP.
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CHAPTER 6

Conclusion

6.1 Conclusion

We presented a control architecture for Multiple-Objective Optimization (MO-Op) flight control. We demon-

strated that the MO-Op flight control problem can be cast as a constrained learning-based adaptive Model

Predictive Control (MPC) problem. The learning is performed using Gaussian Process adaptive elements,

while the optimization is made online-realizable by relaxing some of the objectives posing them as state

constraints. The architecture was validated on a nonlinear roll dynamics system with wing-rock effects and

emulated state-dependent rigid-flexible mode interaction. The first objective was to minimize the tracking

error, and the second one was to minimize the oscillation in the system in order to improve ride comfort.

The stability of key elements of the presented adaptive-optimal architecture is discussed. We expect that the

online feasibility and stability guarantees of the presented architecture will make it applicable to many other

Multi-Objective Optimization flight control problems.

We also presented a GP-based adaptive-optimal control architecture for adaptive control of aerospace

systems with dynamically changing stochastic modeling uncertainty. The key salient feature of our architec-

ture is that not only can it detect changes, but it uses online GP clustering to enable the controller to utilize

past learning of similar models to significantly reduce learning transients. The stability of the architecture

was argued theoretically, and empirical results showed that it can be used in online settings. Results indicate

the possibility of designing flight control and decision-making systems that can adapt to unforeseen situa-

tions; Moreover, it is able to leverage past experience to minimize sub-optimal performance by reducing the

time spent in learning.
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APPENDIX A

Acronyms

Acronym Expanded Version
GP Gaussian Process
BNP Bayesian Non-Parametric
MRAC Model Reference Adaptive Control
MPC Model Predictive Control
NBC Non-Bayesian Clustering
RBF Radial Basis Function
RKHS Reproducing Kernel Hilbert Spaces
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