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Abstract:

The need to design systems under uncertainty arises frequently in applications such as
telecommunication network configuration, airline hub-and-spoke/inter-hub network
design, power grid design, transportation system design, call center staffing, and
distribution center design. Such problems are very challenging because: (1) design
problems with sophisticated configuration requirements for medium to large scale
systems often yield large-sized linear/nonlinear mathematical models with both con-
tinuous and discrete decision variables, and (2) in most cases input parameters such
as demand arrival rates are subject to uncertainty, whereas engineers have to make
a design decision “today,” before the outcomes of the uncertain parameters can be
observed. The purpose of this study was to develop proactive modeling methodolo-
gies and effective solution techniques for such system design problems. Particular
emphasis was placed on a network design problem with connectivity and diameter
requirements under probabilistic edge failures and a service system capacity planning
problem under uncertain demand rates.
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CHAPTER 1

INTRODUCTION

The need to design systems under uncertainty arises frequently in applications such

as telecommunication network configuration, airline hub-and-spoke/inter-hub net-

work design, power grid design, transportation system design, call center staffing,

and distribution center design. System design under uncertainty, therefore, consti-

tutes a significant and challenging research area of operations research and manage-

ment science. On the one hand, certain system design problems with sophisticated

configuration requirements for medium to large scale systems often yield large-sized

linear/nonlinear mathematical models with both continuous and discrete decision

variables. The resulting formulations are thus very challenging to solve and require

advanced optimization techniques. On the other hand, in most cases if not all, input

parameters such as demand arrival rates are subject to uncertainty. Yet, in those

cases, system engineers have to make a design decision “today,” before the outcomes

of the uncertain parameters can be observed. Illustrative examples of system design

under uncertainty of this kind are introduced next.

Consider a battlefield wireless communication network design problem. It is indis-

putable that ensuring effective communication is vital for the command and control of

ground forces in any battlefield. Strategic level communication is often achieved via

certain established wireless communication networks. The topological features of the

underlying wireless networks that enable reliable and fast information exchange in-

clude: 1) redundant disjoint data delivery channels, and 2) fewer intermediary nodes

and links. Ensuring a certain level of communication reliability by maintaining re-
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dundant communication channels is extremely important due to changeable mission

contexts and targeted attacks during which network infrastructure might easily mal-

function or fail. Some examples of the wireless network infrastructure are radios,

gateways, line-of-sight and beyond-line-of-sight communication links (Kerivin and

Mahjoub, 2005). Although factors such as battlefield terrain and weather could also

affect communication reliability at the operational level, the design of the underlying

telecommunication network topology is critical in the sense that it can limit or enable

efficient and reliable communication at the strategic level. In addition, the feature

of fewer intermediary nodes and links is especially significant for wireless networks

where a short communication distance is desirable to limit possible signal loss between

transmitters. Now in this scenario, a design decision has to be made simultaneously

satisfying certain reliability and efficiency requirements, often also under a given bud-

get constraint. Due to the adversarial nature of the environments, parameters such

as the survival of a gateway are uncertain until a mission ends and personnel are

available to check the equipment statuses. Therefore an appropriate design decision

has to be made before uncertainty reveals itself.

Another example of system design under uncertainty is the capacity planning

problem of a facility where customers/transactions arrive to be served. Each ser-

vice encounter may require the service provider to perform one or more tasks using

one or more resources. After the entire service encounter is completed, the cus-

tomer/transaction leaves the facility. This situation is very common in many service

industries such as a distribution center or warehouse, a customer service center (ei-

ther walk-in or call-in), a repair shop, and a healthcare provider. In planning to

establish or renovate such a facility, one needs to decide the service capacity, which

requires a one-time fixed investment and preparation time. This capacity decision

often has to be made according to the future needs which are often not known in the

design phase. Examples include the number of checkout lanes in a retail store, the
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number of service bays in an automobile repair facility, number of beds in a hospital

emergency room, and number of workstations in a customer service center. Due to

uncertainty, the capacity decision often has to be obtained by solving a stochastic

or robust optimization model to balance the risks of poor system performance and

the total system configuration cost over a finite horizon, taking into consideration

the fixed but possibly multiple-time real-estate or equipment costs starting from the

beginning of the horizon. Other issues may also complicate this problem in a service

system where customers are present for co-production, a key one being the appear-

ance of a sparse business volume impacting future demand negatively. An example of

this is education (e.g., a class) where a student has to be present (could be remotely)

and has to work, together with the teacher, in order to learn. Because of this charac-

teristic, the customer will see the facility and possibly other customers, in which case

the appearance of a few customers present may make a negative impression on the

customer, undermining customer retention. As a result, at some low demand point,

the system may go into a negative feedback loop and the demand may die off because

of this effect. In this situation, unlike the third-party logistics provider case, having

extra capacity at the beginning may not be all good, even if capacity is affordable.

1.1 Modeling Under Uncertainty

Approaches tackling system design under uncertainty can be broadly classified into

two categories: reactive approaches and proactive approaches. In the reactive ap-

proach, an uncertain parameter is usually substituted by its mean or mode. One

then proceeds with solving the deterministic design optimization problem, followed

by a sensitivity analysis to see how the solution will be impacted by different real-

izations of the uncertain parameter. If the solution turns out to be rather insensitive

to changes to the uncertain parameter, then it would be an adequate solution. If

the solution is indeed sensitive to the uncertain parameter, one has to be careful in
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choosing the final solution. For example, if two solutions result in similar total costs,

how sensitive the solution is to the uncertain parameter can be used as a tie breaker.

In practice, one is usually faced with a tradeoff between the total costs and the sen-

sitivity of them to the uncertain parameter; this is often resolved by an intuitive and

subjective decision, likely based on risk guidelines or preferences of the user.

Although replacing an uncertain parameter with its mean or mode is simple and

easy, such an approach is rooted in the assumptions that: 1) the mean or mode is very

likely to be observed as an outcome, and 2) the variability in the realized outcomes is

not significant. In cases where these two assumptions are violated, the approach is no

longer satisfactory. Follow-up sensitivity analysis in the reactive approach may help

in some cases where the assumptions are violated, but not when the outcomes of the

uncertain parameter can only be observed after the design decision has been made

and executed. After all, with the design decision having been executed, the decision

maker may only have few opportunities to change the response or performance of the

designed system.

Proactive approaches generally employ optimization models using risk measures

to handle uncertainty. The concept of risk measures is more prevalent in financial

risk management. Yet, it can also be used to capture similar ideas in engineering

settings to handle uncertainty. A risk measure is basically a function that maps

the uncertain parameters modeled as random variables defined on an appropriate

probability space onto a scalar which quantifies the magnitude of risk. Examples of

risk measures are mean, mean-variance, failure probability, value-at-risk, conditional-

value-at-risk, and worst case (Rockafellar and Uryasev, 2013). Different risk measures

have different statistical and computational features. The choice of a risk measure

generally depends on one’s risk preference (i.e., risk-seeking, risk-neutral, or risk-

averse) and problem-specific characteristics such as whether the impact of the worst

case outcome is overwhelming and whether the impact of design requirement violation

4



is quantifiable.

While we are broadly interested in system design under uncertainty using proac-

tive approaches, this dissertation focuses on two specific problems: the network design

problem with connectivity (“reliability”) and diameter (“efficiency”) requirements un-

der probabilistic edge failures, and service system capacity planning problem under

uncertain demand rate. We focus on single-stage decision models in this research,

which are appropriate given the nature of our decisions (i.e., strategic, rather than

tactical or operational).

1.2 Network Design Under Topological Uncertainty

Here we seek a network design satisfying given connectivity and diameter requirements

under probabilistic edge failures indirectly by using the notion of k-core. Given a

positive integer k, a k-core is a graph in which each vertex has at least k neighbors.

The concept of k-core was introduced in social network analysis to identify denser

regions of a social network (Seidman, 1983). They have since been employed to

retrieve useful information from complex networks. For instance, in bioinformatics,

the k-core structures have been employed to investigate protein interaction networks

(Altaf-Ul-Amine et al., 2003; Wuchty and Almaas, 2005) to predict protein functions

and to identify inherent layered structures.

On the other hand, the potential applications of k-cores in the domain of net-

work design have been overlooked by researchers. In this dissertation, we exploit the

graph-theoretic properties of k-cores to introduce a new approach to hop-constrained

survivable network design via spanning k-cores that preserves connectivity and diam-

eter under limited edge failures. In particular, high connectivity and low diameter are

desirable features for wireless communication networks and airline networks. Con-

sider airline networks as an example. When an airport cannot function normally

due to severe weather, it is extremely important that an airline carrier can provide
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alternative connecting flights with a limited number of stops to maintain a high cus-

tomer satisfaction rate and thus market share. Therefore, our k-core approach can be

applied in such domains where network elements are prone to failure due to various

reasons like severe weather and targeted attack.

Wuellner et al. (2010) conducted an insightful analysis on the structures of the

seven largest airline passenger carriers (namely, Southwest, American Airlines, Delta,

United Airlines, Northwest, US Airways, and Continental). The authors collected

public data from the US Department of Transportation and Bureau of Transporta-

tion Statistics and investigated the resilience of resulting networks after random or

targeted vertex (airport) and/or edge (flight) deletion. They discovered that South-

west airlines network, a high minimum degree structure, was extremely resilient to

both targeted removal of airports and random deletion of flights. Compared to oth-

ers, it incurred minimum travel cost increase when airports/flights were deleted in the

experiments conducted. The authors further conclude that although hub-and-spoke

structure is more popular than point-to-point structure (or similar degree-regular

structures such as k-core for large k values) in airline industry due to its economical

advantages, the latter is a better option in applications where the requirement of

resilience is emphasized.

1.3 Service System Capacity Planning Under Demand Uncertainty

Often, we seek a capacity decision which balances the cost invested in provisioning the

system capacity against the benefit of satisfying the system performance requirements

specified in service level agreement with clients. Such a decision is made based on

information on parameters such as transaction arrival rate, service level required by

the client, and fixed and variable cost rates. In most cases, some input parameters

such as customer/transaction arrival rate are uncertain at design time and values

used are estimates subject to errors, making it challenging for engineers to make a
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capacity decision.

In the domain of business service outsourcing, inadequate service capacity often

incurs an immediate and direct financial consequence to the service provider. For

instance, consider a third-party logistics provider who provides a warehousing and

customer order fulfillment service to their clients. Throughout this dissertation, we

use the term “client” to represent a business that contracts the service provider and

the term “customer” to denote the individual consumers or orders arriving at the

service facility contracted by the client. Suppose the client requires an incoming

customer order for its goods to be shipped within 24 hours of order receipt on the

average. At the end of each accounting cycle, the logistics provider has to report

statistics on the customer order handling times for all orders received that cycle. In

the case that order handling requirement is violated, the service provider may have to

pay a financial penalty to its client. Other similar situations include customer service

centers which can be walk-in facilities, or more commonly nowadays, call centers. In

these applications, a common system performance measure is how long an incoming

customer has to wait before being served by an agent. Typically, key performance

measures of an operation and their target values are specified in the service level

agreement (SLA) of an outsourcing relationship.

To be more specific, for an outcome of the uncertain parameter and a capacity

decision, one can define a corresponding penalty value depending on the extent of

violation of given requirements in the SLA. After all, ensuring performance require-

ments being satisfied in all possible outcomes is economically prohibitive and even

physically impractical in many cases. By defining penalties, one can discourage the

violation of system performance requirements by quantitatively limiting the value of

a risk measure defined over the penalties across different outcomes. Different ap-

proaches to define and evaluate penalty functions have been discussed by Kosinski

et al. (2008).
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1.4 Organization

The remainder of this dissertation is structured as follows. Chapter 2 presents an

extensive background for our work including an introduction to graph notations and

definitions, the resilient network design problem, graph-theoretic properties of k-cores,

the deterministic minimum spanning k-core problem, and different risk measures em-

ployed in engineering decision making along with their characteristics. In Chapter 3,

we present a literature review of the generic network design problem, the survivable

network design problem, the hop-constrained survivable network design problem, and

available models for the service system design problem. Chapter 4 states the research

objectives addressed in this dissertation.

Chapter 5 centers on obtaining network designs satisfying given connectivity and

diameter requirements via k-cores under a conditional value-at-risk (CVaR) con-

straint. We specifically introduce two CVaR-constrained optimization models to

obtain risk-averse solutions for the minimum spanning k-core problem under proba-

bilistic edge failures. We present polyhedral reformulations of the convex piecewise

linear loss functions used in these models that enable Benders-like decomposition ap-

proaches. A decomposition and branch-and-cut approach is then developed to solve

the scenario-based approximation of the CVaR-constrained minimum spanning k-core

problem for the aforementioned loss functions. The computational performance of the

algorithm is studied in detail.

Chapter 6 focuses on a chance-constrained version of the spanning k-core problem

under probabilistic edge failures. We first establish the intractability of this prob-

lem by proving that it is NP-hard. Subsequently, we conduct a polyhedral study

investigating facet-inducing inequalities and then develop a strengthened formula-

tion. The effectiveness of the strengthened formulation is demonstrated through a

computational study.

In Chapter 7, we first present mathematical models for the capacity planning of
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single- and two-stage service systems that can be represented by queueing models

when there is uncertainty in a key parameter such as the external arrival or demand

rate. Analytical solutions are derived for single-stage systems modeled by the stan-

dard M/M/1 queue under the assumption that arrival rate is varied uniformly over a

specified range. For two-stage service systems that pose bigger modeling and compu-

tational challenges, we provide scenario-based numerical methods (i.e., search-based

and mathematical reformulation) to solve the capacity planning problem of a tandem

configuration with two stages and a single external arrival process. The dissertation

is concluded in Chapter 8 with a discussion of the results and future directions for

research.

Some materials in Chapter 3 have appeared in (Ma et al., 2014) and most materials

in Chapter 5 have been accepted for publication at the time of this writing (Ma et al.,

2015). Materials in Chapter 6 have been submitted for journal publication at the

same time. All the figures in this dissertation were generated using PowerPoint R©,

Matlab R©, and Mathematica R©.
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CHAPTER 2

BACKGROUND

We first present a brief introduction to the relevant graph theory terminology in this

chapter. Next, we review the concepts of the generic network design problem, the

survivable network design problem, and the resilient network design problem. We

illustrate the differences and highlight the relevance of the resilient network design

problem. Also discussed are the theoretical properties of k-cores in terms of connec-

tivity and diameter, and the formulation and tractability of the minimum spanning

k-core problem in the deterministic setting. Finally, different risk measures that are

commonly employed in operations research applications are explained.

2.1 Notations and Definitions

This subsection presents a concise introduction to most of the terminology used later

in this document. Most of the terms used in this document are consistent with those

described in well-known graph theory books (see Diestel, 1997; West, 2001), and are

thus easy to understand. The few that may be better understood within the proper

context will be introduced later.

Let G = (V,E) denote a simple undirected graph with V being the vertex set and

E being the set of edges. We say graph G is complete if it contains all possible edges.

We denote the subgraph induced by S ⊆ V as G[S] and G[S] = (S,E ∩ (S × S)). In

other words, graph G[S] consists of vertex set S and all edges in E whose endpoints

are both in S. A vertex set S ⊆ V is a clique if G[S] is complete.

If (v, v̂) ∈ E, we say that edge (v, v̂) is incident at vertex v (and at v̂). Let γ(v)
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represent the cut of vertex v, the set of edges incident at v. The cardinality of set

γ(v), denoted by d(v), is called the degree of vertex v in G. The minimum degree of

a vertex in G is denoted by δ(G); δ(G) = min{|γ(v)| : v ∈ V }. A graph is k-regular

if |γ(v)| = k for all v ∈ V . The density of graph G, denoted by ρ(G) is the ratio of

|E| to the number of all possible edges (i.e. |V |(|V |−1)
2

).

The diameter of graph G, denoted as diam(G), is defined as the maximum over

shortest path lengths between every pair of vertices in G. Note that the length of a

path is defined as the number of edges on this path. By κ(G) we denote the vertex

connectivity of graph G which is defined as the minimum number of vertices whose

deletion results in a disconnected or single-vertex graph. A graph is k-connected if

deleting any k vertices in V does not result in a disconnected or single-vertex graph.

Similarly, the edge connectivity denoted by λ(G) is defined as the minimum number

of edges whose removal disconnects the graph. A graph is k-edge-connected if the

resulting graph stays connected after removing any k edges in E. It is worth noting

that removing a vertex implies removing this vertex together with all its incident

edges, while removing an edge refers to removing only this edge. In particular, for

any non-trivial graph G, we have (Whitney, 1932):

κ(G) ≤ λ(G) ≤ δ(G).

Therefore, a high vertex connectivity implies a high edge connectivity which in turn

implies a large minimum degree, but not vice versa.

Definition 1 A graph G is a k-core if the degree of every vertex in G is at least k.

The k-core concept was introduced in social network analysis by Seidman (1983)

to identify regions of the social network containing cohesive subgroups. Graphical

instances of a clique and a 2-core with 5 vertices are presented in Figure 1.
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Figure 1: Examples of a clique (left) and a 2-core (right) as the minimum vertex

degree is 2.

2.2 The Resilient Network Design Problem

The general network design problem (also termed as the network synthesis problem)

can be stated as follows: Given a vertex set V and a set of candidate edges E that can

be created, each at a nonnegative cost, the objective is to find an optimal set of edges

E∗ ⊆ E such that a given set of design requirements are satisfied by G∗ = (V,E∗).

Take the telecommunication network design problem as an example, the vertex set

could represent switching centers; the set of edges may represent data transmission

channels with different costs due to different transmission distances or geographical

terrains; the requirements could be the maximum number of hops between any two

switching centers or the minimum level of quality of transmission. In this context, the

objective is to design a telecommunication network in the most cost efficient manner

such that, for instance, it takes at most three hops to send a message packet from

one switching center to another.

Given a network design solution, its reliability is crucial because the failure of a

vertex (e.g. switching center) or an edge (e.g. a cable segment) may have a signifi-

cant impact. This fact further motivates the study of the survivable network design

problem. A survivable network design is essentially a network design with connectiv-

ity requirements so that there are redundant vertex-disjoint or edge-disjoint paths to
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guarantee reliable information/resources interchange under vertex/edge failures.

We formally define the survivable network design problem as follows. Given an

undirected graph G = (V,E), a cost vector c ∈ R|E|
+ on the edges, and a symmetric

|V | × |V | matrix R = [rij ]. Each entry rij in R represents the minimum number of

vertex-disjoint or edge-disjoint paths between vertices i and j. We are seeking a design

solution G∗ = (V,E∗) where E∗ ⊆ E such that total cost of edges in E∗ is a minimum

and there exist rij vertex-/edge- disjoint paths between every i, j ∈ V . Note that if rij

is the minimum number of vertex-disjoint paths between vertex i and vertex j, we are

seeking a design with vertex connectivity κ(G∗) ≥ min{rij | ∀i, j ∈ V and i 6= j}; if rij

represents the minimum number of edge-disjoint paths between vertex i and vertex j,

we are accordingly seeking a design with edge connectivity λ(G∗) ≥ min{rij | ∀i, j ∈

V and i 6= j}. Since κ(G) ≤ λ(G), imposing a vertex connectivity requirement yields

a more robust design than imposing a edge connectivity requirement at the same level.

Depending on the application, the value of rij can vary. For example, local telephone

networks (Cardwell et al., 1989; Mahjoub, 1994; Grötschel et al., 1992), use a low

connectivity requirement (i.e. rij ∈ {0, 1, 2}). In other cases a high connectivity

requirement may be imposed (Grötschel et al., 1995), for instance, in a battlefield

wireless communication network.

A resilient network design problem seeks a minimum cost design satisfying given

connectivity requirements (like in survivable network design), and in addition, diame-

ter requirements (different from survivable network design). In other words, a resilient

design guarantees not only redundant vertex-disjoint/edge-disjoint paths (survivabil-

ity) but also short distances. The latter requirement is important in applications like

wireless communication networks and airline networks. While real costs present in,

for example, traditional transportation networks or water distribution networks can

be incorporated into cost vector c, the number of hops in a communication network

or the number of legs in an airline network cannot be captured by c. Therefore, in

13



Figure 2: A 3-connected diameter-2 survivable design that does not preserve diameter-

2 upon single vertex deletion.

addition to cost minimization and connectivity requirements, extra requirements on

diameter are needed, which leads to the resilient network design problem. The dif-

ference between a survivable design and a resilient design is illustrated in Figure 2,

which shows a 3-connected diameter-2 survivable design where between every pair of

vertices there are three internally vertex disjoint paths. Consequently, upon single

vertex deletion, at least two internally vertex disjoint paths exist between every pair

of vertices. However, if the central vertex is deleted, the diameter increases to 4.

Hence, the survivable design in Figure 2 is not a resilient design.

It is worth noting that other terminologies have been used in the literature to de-

scribe the network design problem with both connectivity and diameter constraints,

such as hop-constrained survivable network design problem (Botton et al., 2013; Mahjoub

et al., 2013) and strongly attack-tolerant network design problem (Veremyev and Bo-

ginski, 2012; Pastukhov et al., 2014). Throughout this dissertation, we use the term

“resilient network design problem” because: (1) it suggests that more is expected

from the design, beyond “survivability”; (2) it differentiates from models where the

hop-constraints are required to hold only for specified pairs of nodes, not every pair

of nodes.
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2.3 Graph-Theoretic Properties of k-Cores

This section focuses on graph-theoretic properties of k-core in detail. A key point

outlined in this section is that a k-core, if the k value is appropriately chosen, yields a

resilient network which satisfies given connectivity and diameter requirements upon

limited vertex/edge failures. The relationship between connectivity and diameters of

k-cores when the k value varies has been studied by researchers. Next, we present

theoretical results found in the literature establishing bounds on connectivity and

diameter of k-cores.

Proposition 1 (Seidman (1983)) Let G be a k-core on n vertices.

1. If n ≤ 2k − r + 2 and k ≥ r, then κ(G) ≥ r.

2. If k > n−2
2

then diam(G) ≤ 2.

Proposition 2 (Seidman (1983)) Let G be a k-core on n vertices with κ(G) = r

with 1 ≤ r ≤ k < n, and k ≤ n−2
2

then,

diam(G) ≤ 3(n− 2k − 2)

β
+ τ + 3,

where β = max{k + 1, 3r} and

τ =





0, if n− 2k − 2 (mod β) < r

1, if r ≤ n− 2k − 2 (mod β) < 2r

2, if 2r ≤ n− 2k − 2 (mod β).

Proposition 3 (Pattillo et al. (2013)) Let G be a connected k-core on n vertices,

then

diam(G) ≤ max
τ̄∈{0,1,2}

{⌈
n

k + 1

⌉
, 3

(⌊
n− τ̄

k + 1

⌋
− 1

)
+ τ̄

}
.

This bound is sharp if κ(G) = 1.
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These results can guide the choice of parameter k in order to design k-cores with

known bounds on diameter and connectivity. Suppose we design a 10-vertex graph to

be a 5-core, Proposition 1 guarantees that it will be 2-connected and have diameter

at most 2. Alternately, if we ensure that the designed graph is connected, and control

the minimum degree requirement k, Propositions 2 and 3 provide bounds on the

resulting diameter. For example, if we design a k-core G with n = 10, k = 2 and

κ(G) = r = 1, Proposition 2 implies that diam(G) ≤ 8, whereas Proposition 3 offers

a tighter upper bound of 7. However, for the same values of n and k, if design G

has κ(G) = r = 2, Proposition 2 implies that diam(G) ≤ 5, while the bound from

Proposition 3 is unchanged. Given our focus on 2-hop resilient designs, the following

corollary of Proposition 1 that we can derive is particularly useful.

Corollary 1 For r ≥ 2 and k = ⌈n+r−2
2
⌉, if G = (V,E) is a k-core on n vertices

then, diam(G) ≤ 2 and κ(G) ≥ r. Furthermore, for any v ∈ V ,

1. G− v is a (k − 1)-core;

2. κ(G− v) ≥ r − 1;

3. diam(G− v) ≤ 2.

By Corollary 1, if G is designed to be a k-core with k = ⌈n+r−2
2
⌉, the graph

obtained by deleting any vertex from G is (r − 1)-connected, and has diameter at

most 2. In particular, when r = 2 and k = ⌈n
2
⌉, G is a 2-connected, diameter-2,

k-core which upon single vertex (or edge) deletion still has diameter at most two.

Viewed for instance from an airline hub-network perspective, nearly half the hub

airports have direct flights from every other hub, while the rest are reachable with

one stop at another hub. More importantly, this continues to be the case if one of the

hubs has been disabled with no flights in or out. Naturally, such questions are of a

strategic nature compared to the more complicated tactical and operational problems.
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However, the strategy employed in the topological design of such networks (airlines

and others) critically affects the flexibility required to cope with the dynamic and

uncertain operational needs.

Throughout this dissertation, we place considerable attention on k-core design that

is at least 2-connected and diameter-2; in other words we let r = 2 and accordingly

k = ⌈n
2
⌉ in most cases when it comes to numerical study or graphical illustration. The

rationale is in applications like telecommunication systems, a low connectivity (i.e. 2-

connected such that the system survives upon single switch center failures) is generally

sufficient and often yields the best tradeoff between capital investment and system

reliability (Cardwell et al., 1989). On the other hand, diameter-2 networks are also

employed in applications like wireless communication where 2-hop communication

helps limit possible information loss.

2.4 Deterministic Minimum Spanning k-Core Problem

Consider a graph G = (V,E), not necessarily complete, where E represents the set

of edges that can be created. Further suppose the cost ce of creating an edge e ∈ E

and an appropriately chosen positive integer k are available. Consider the following

optimization problem:

(MSkCP) min
x∈{0,1}|E|

{∑

e∈E

cexe |
∑

e∈γ(v)

xe ≥ k, ∀v ∈ V
}
. (2.1)

A feasible solution to this formulation is an incidence vector of a subset of edges J ,

such that the graph (V, J) is a spanning subgraph of G with minimum degree at least

k, i.e., (V, J) is a spanning k-core of G. Hence, (2.1) is a formulation of the minimum

spanning k-core problem (MSkCP), which is to identify an E∗ ⊆ E that yields a

spanning k-core of G such that the total cost of the edges in E∗ is a minimum. The

MSkCP can be solved efficiently using a polynomially bounded transformation to a

generalized graph matching problem (Balasundaram, 2007).
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Figure 3: Both graphs are 2-connected and preserve the diameter-2 requirement under

single vertex deletion. The design on the left is a 4-core while the design on the right

is not.

The MSkCP uses a sufficient condition on the minimum degree to design a network

that satisfies the second and third properties identified in Corollary 1. However, the

minimum degree requirement is not necessary to achieve those results. It is possible to

design a 2-connected network that preserves the diameter-2 requirement upon vertex

deletion that is not a ⌈n
2
⌉-core. In Figure 3, the graph on the left is an 8-vertex

4-core that is 2-connected and has diameter-2 upon deleting any vertex as implied

by Corollary 1. The graph on the right also satisfies those properties but it is not a

4-core. Note that this design is essentially a reinforced hub-and-spoke design and it is

also provably the sparsest (in number of edges) such design (Veremyev and Boginski,

2012). It should be noted that the r-robust k-club network design problem studied

by Pastukhov et al. (2014), and by Veremyev and Boginski (2012) directly controls

diameter and connectivity requirements and can recognize such designs. However,

the deterministic version of this problem is NP-hard, and presently there appears to

be no work studying this general model in a stochastic setting.

The spanning k-core approach used in this dissertation employs a sufficient (but

not necessary) condition on the minimum degree to design 2-hop resilient networks,

and consequently overlooks designs such as the reinforced hub-and-spoke in Figure 3.
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This is a drawback inherent to our approach as it typically produces denser and nearly

degree regular network designs and is not suitable for applications where a (reinforced)

hub-and-spoke design is desirable. However, it is better suited for 2-hop resilient inter-

hub network design problems, since hub nodes are typically much smaller in number

compared to the nodes in the overall network, and denser inter-connections between

hubs are generally more desirable. In the remainder of this dissertation, we focus on

MSkCP under uncertainty modeled as independent probabilistic edge failures.

2.5 Uncertainty Modeling and Risk Measures

In a generic design optimization problem, it is often the case that input parameters

are uncertain. For example, in the resilient network design problem, the edge cost

vector c may not be exactly known and only an estimation can be made which is

subject to error, or even the vertices or edges may be subject to failures. Similarly in

the service system design, usually customer/transaction arrival rate is uncertain. It

usually takes significant monitoring/forecasting effort to get an adequate estimation

of the uncertain input parameters.

A typical reactive approach to handle the uncertainty issue is to use the expected

values or modes of the uncertain parameters to come up with a cost effective design

and then conduct sensitivity analysis (Saltelli et al., 2000) or input parameter toler-

ance analysis (Leung et al., 2013; Barton et al., 2014). Based on the results of the

analysis, some steps may be taken to rectify or enhance the design. However, this re-

active approach may not be effective if the response steps are considerably expensive

or, even worse, unavailable. In strategic design problems such as those we consider,

for example, the capacity planning problem of a service system where a manager

needs to make a one-time decision on what equipment to purchase and install, to

re-order a new equipment may be cost-prohibitive even if that is suggested by the

results of the sensitivity analysis.
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Depending on how uncertainty is modeled, a design optimization problem could

be approached using robust optimization models (Bertsimas et al., 2011) or stochastic

optimization models (Shapiro et al., 2009), invariably using certain risk measures. A

discussion of the impact of uncertainty in decision making and a discussion of different

models can be found in (Sen and Higle, 1999).

In this dissertation, we focus on the case where one has to make a decision “today”

based on the uncertain input parameters modeled as random variables. The random

variables will only be realized “in the future” after the decision has been implemented,

and it may only be revealed partially. So we focus on proactive approaches for the

so-called “single-stage” decision models which do not explicitly model response or

recourse actions.

Next, we present a brief introduction to the most commonly used risk measures

of interest to us in the literature. Note that recent advances in risk modeling in

optimization are reviewed in (Krokhmal et al., 2011; Rockafellar and Uryasev, 2013).

Let (Ω,F) be a measurable space equipped with probability measure P and X =

(Ω,F ,P) be a space of all F -measurable functions X : Ω 7→ R. The function X is

called a random variable. Generally speaking, a risk measure is a functional R that

“assigns” a number R(X) to the random variable X ; i.e., it is a mapping R : X 7→ R

(Rockafellar and Royset, 2015). To avoid ambiguity, we assume in our context a

smaller R(·) value is better; in other words, R(X) is preferable to R(X̂) if R(X) <

R(X̂) for any X, X̂ ∈ X . The commonly used risk measures are as follows.

Mean. The basic risk measure of expectation,

R(X) := E[X ],

is widely used. It is generally classified as risk-neutral, as it is not sensitive to the

existence of “heavy tail”. There are many stochastic optimization models based on

minimization or bounding of mean in the literature (see Birge and Louveaux, 1997).
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Mean-variance. The mean-variance risk measure, also termed as safety margin

(Rockafellar and Royset, 2015), can be expressed as:

R(X) := E[X ] + aSD[X ],

where a is a positive scalar and SD[X ] represents the standard deviation of X . Al-

though this risk measure has incorporated variability, it is possible that the large

variability on the high end (e.g., large penalty/risk values) remain undetected be-

cause of the compensation from the small variability on the low end (e.g., small

penalty/risk values). Optimization models using mean-variance risk can be found,

for example, in (Ahmed, 2006).

Worst case. Defined as,

R(X) := sup{X},

the worst case measure is generally overly conservative. By considering the worst case,

the condition that any realization of X is acceptable is imposed. Related studies can

be found, for example, in (Mulvey et al., 1995).

Failure probability. Let an event where X realizes as a non-positive number be

viewed as a loss or failure. The failure probability is:

R(X) := P(X ≤ 0).

This choice is often used in chance-constrained/probabilistic models (see Prékopa,

2003).

Value-at-risk. The risk measure α-value-at-risk (α-VaR) of X is the α-quantile

of X (see Pflug, 2000; Krokhmal et al., 2005) defined as:

R(X) := qα(X) = inf{ℓ | Ψ(ℓ) ≥ α}

where Ψ(ℓ) = P(X ≤ ℓ) is the cumulative distribution function of random variable X

and α ∈ (0, 1). Further observe that α-VaR is related to failure probability as a risk
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measure in the sense that,

qα(X) ≤ 0 ⇔ P(X ≤ 0) ≥ α. (2.2)

Therefore, α-VaR and failure probability have similar statistical features and compu-

tational complexity (Ahmed and Shapiro, 2008). Although α-VaR has been widely

used in the field of financial risk management, it is not without issues: 1) By defini-

tion, it does not take into account the realizations beyond the α-quantile point; 2)

α-VaR is difficult to deal with inside an optimization model due to nonconvexity; 3)

α-VaR is often discontinuous with respect to the parameter α. The last issue also

indicates that a small perturbation of α may result in a big jump in the α-VaR value.

Conditional-value-at-risk. The risk measure α-conditional-value-at-risk (α-

CVaR), which is also known as “superquantile” (Rockafellar and Royset, 2015) and

“average value-at-risk” (Chun et al., 2012) is defined as the mean of the (1− α)-tail

distribution of Ψ(·), equivalently given by the minimization formula (Rockafellar and

Uryasev, 2000):

R(X) := min
ζ
{ζ +

1

1− α
E[(X − ζ)+]},

where (·)+ = max{0, ·}.

The choice of risk measures is generally guided by the risk preference of the end-

user and by specific problem characteristics (Bertsimas and Sim, 2004). This is of

course in addition to computational characteristics of the chosen modeling approach.

However, rigorous standards defining a good and useful risk measure are the properties

of coherency and regularity. The concept of coherency was first proposed by Artzner

et al. (1999). A risk measure R is coherent if the following axioms (1)-(4) are satisfied.

• (Axiom 1) Monotonicity: If X, X̂ ∈ X and X ≥ X̂ with probability 1, then

R(X) ≥ R(X̂).

• (Axiom 2) Subadditivity: R(X + X̂) ≤ R(X) +R(X̂) for all X, X̂ ∈ X .
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• (Axiom 3) Positive homogeneity: R(tX) = tR(X) for all X ∈ X and t ∈ R+.

• (Axiom 4) Translation invariance: R(t + X) = t +R(X) for all X ∈ X and

t ∈ R.

Among the six aforementioned risk measures, mean, worst-case, and α-CVaR are

coherent. Mean-variance is not monotonic, α-VaR is not subadditive, and failure

probability is not positively homogenous.

The concept of regularity of risk measures is relatively new (Rockafellar and Urya-

sev, 2013). A risk measure is regular if the following axioms (5)-(8) are satisfied.

• (Axiom 5) Convexity: R(tX + (1 − t)X̂) ≤ tR(X) + (1 − t)R(X̂) for all

X, X̂ ∈ X and t ∈ [0, 1].

• (Axiom 6) Closedness: {X | R(X) ≤ t} is a closed set for any constant t.

• (Axiom 7) Averseness: R(X) > E(X) for nonconstant X .

• (Axiom 8) Constant equivalence: R(X) = t for constant random variable

X ≡ t

We note that worst-case, α-CVaR, and mean-variance are regular risk measures. α-

VaR and failure probability are irregular risk measures because the convexity axiom

fails. Mean risk measure is not regular due to the averseness requirement. As observed

by Rockafellar and Royset (2015), the coherency axioms and regularity axioms overlap

while coherency emphasizes convexity and regularity emphasizes averseness.

In this dissertation, our choices of risk measure are: (1) α-CVaR, which is both

coherent and regular (see Chapter 5); (2) failure probability, which is neither coher-

ent nor regular (see Chapter 6); and (3) mean, which is risk neutral (see Chapter 7).

The reasons for our choices of risk measures are discussed in the corresponding chap-

ters respectively. Note that we call a stochastic model a CVaR-constrained/chance-
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constrained optimization model if α-CVaR/failure probability is incorporated in the

constraints.
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CHAPTER 3

LITERATURE REVIEW

This chapter presents a literature review of the generic network design problem, the

survivable network design problem, and different optimization models for the service

system design problem under uncertainty.

3.1 Generic Network Design

Network design problem is an important topic in combinatorial optimization and op-

erations research due to its numerous applications in telecommunication networks

(Monma and Shallcross, 1989; Cardwell et al., 1989; O’Kelly and Miller, 1994), trans-

portation networks (Magnanti and Wong, 1984; Bell and Iida, 1997; Luathep et al.,

2011), and water/electricity networks (Jeźowski, 2010; Hrasnica et al., 2005; Binato

et al., 2001). Despite the diversity of practical models that have been developed to

cope with domain specific problems, the underlying mathematical models fall un-

der three categories (Minoux, 1989): models using minimum cost multi-commodity

flows, models using tree-like networks, and models using non-simultaneous single-

commodity or multi-commodity flows. An early review of solution methods for dif-

ferent network design models is provided in (Minoux, 1989). A more recent review

is available in (Yang and Bell, 1998). Due to the abundant applications of network

design problem, the more recent reviews of models and algorithms for network design

problem are often restricted to one particular domain, such as water network design

(Jeźowski, 2010) and freight transportation network design (Wieberneit, 2008).
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3.2 Survivable Network Design

A survivable network design problem is essentially a network design problem with con-

nectivity requirements so that there exist redundant vertex-disjoint or edge-disjoint

paths between every distinct pair of nodes to guarantee reliable information/resources

interchange upon network vertex or edge failures. Survivable network design prob-

lem captures many celebrated combinatorial optimization problems as special cases,

such as the minimum spanning tree problem (Goemans, 2006), the minimum Steiner

tree problem (Goemans and Bertsimas, 1993), the minimum Steiner forest problem

(Agrawal et al., 1995), the minimum cost k-vertex connected spanning subgraph prob-

lem (Monma and Shallcross, 1989), and the minimum cost λ-edge connected spanning

subgraph problem (Mahjoub, 1994).

It is not surprising that many survivable network design problems are NP-hard.

Consider, for example, the survivable network design problem which seeks a two-edge

connected spanning subgraph and all edges carry the same cost. This problem is NP-

hard as it generalizes the Hamiltonian cycle problem which is NP-hard. Due to this

fact, numerous studies have been conducted to develop approximation algorithms and

heuristics for survivable network design problems during the past two decades. Note

that an approximation algorithm is one that can find a solution whose value is within

specified factor of the true optimum in polynomial time (Vazirani, 2001). Specifically

for a minimization problem, an algorithm is called a ρ-approximation algorithm, ρ > 0,

if the algorithm produces for any input a solution that is at most ρ*true optimum.

In particular, ρ is called approximation ratio or approximation factor.

A notable success in terms of approximation algorithms development is presented

in (Jain, 2001) where a 2-approximation algorithm was proposed for the survivable

network design problem with edge connectivity requirements. Meanwhile, the prob-

lem with vertex connectivity requirements was proven to be more difficult to approx-

imate by Kortsarz et al. (2004). In (Lau et al., 2009), approximation algorithms for
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the survivable network design problem with edge connectivity and degree require-

ments are developed. This specific type of survivable network design problem seeks

a minimum cost subgraph satisfying edge connectivity lower bounds and degree up-

per bounds which generalizes the minimum bounded degree spanning tree problem

(Goemans, 2006).

There are relatively fewer studies conducted to develop heuristics for the surviv-

able network design problem. The very first heuristic was presented in (Steiglitz

et al., 1969) where the authors first produce an initial feasible solution via a random-

ized greedy algorithm and next improve the initial solution through a local search

approach. A few other heuristic methods can be found in (Ko and Monma, 1989)

and (Clarke and Anandalingam, 1995).

A comprehensive review of the literature prior to 1999 on the survivable network

design problem can be found in (Soni et al., 1999). A more recent review centering on

polyhedral approaches to survivable network design problem is presented by Kerivin

and Mahjoub (2005). Other research attempts on case-specific variations of the basic

survivable network design formulations can be found in (Magnanti and Raghavan,

2005; Tomaszewski et al., 2010; Song and Luedtke, 2013).

3.3 Service System Design Optimization Models 1

In the business situation where a service provider performs an operation on incoming

transactions from a client, the critical problem for the service provider is to balance

the cost invested in provisioning the system capacity against the benefit of satisfying

the system performance requirements specified in service level agreements (SLA) with

clients. It is often the case that the service request rate from the client is uncertain

1Parts of this section are reprinted with permission from “Service system design under uncer-

tainty” by J. Ma, Y. T. Leung, and M. Kamath, 2014. IIE Annual Conference Proceedings, pp.

3564-3573, Copyright [2014] by IIE.

27



at design time. This is similar to the resilient network design problem as both involve

strategic decision made well in advance of system operations. In this section, we

survey various modeling approaches available in the literature of service system design

and related areas.

Mean Outcome Models. A natural way to address parameter uncertainty is to

analyze the mean outcome across all possible realizations of the uncertain parameter.

This is possible if we can estimate the probability distribution of the uncertain pa-

rameter, possibly using historical data or a surrogate (e.g., demand data for a service

similar to a newly offered service). At the very least, the plausible range of the un-

certain parameter can be guessed reasonably accurately and a uniform distribution

can be assumed over that range. A uniform distribution implies that we have no

information on the parameter besides its range, so that any value in the range may

be realized. Given the distribution of the uncertain parameter, one can calculate

the mean of the objective function, which may be the total cost of operation and

can then find an optimal design. Similarly, the operational performance or quality

constraints are also expressed in terms of mean quantities. With a given arrival rate,

Mandelbaum and Zeltyn (2009) discuss some of these different types of constraints

in the context of call centers. An example of mean-outcome models with parameter

uncertainty is discussed in (Bassamboo et al., 2010).

Chance-constrained Models. Chance-constrained models arise from various

applications in the field of reliability and risk management. A tutorial is provided by

Ahmed and Shapiro (2008). In a service system design setting, a chance constraint re-

quires that the system performance requirement specified in a service level agreement

is satisfied with a client specified probability. Intuitively, 100% SLA satisfaction un-

der any realization of the underlying random factors is physically impractical and/or

economically prohibitive in most cases. As a compromise, imposing a chance con-

straint on the design becomes an appealing alternative, especially when the impact of
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SLA violation is difficult to quantify and thus an explicit penalty/risk/loss function

is not readily available, making other approaches like mean outcome, mean-variance,

value-at-risk, and conditional-value-at-risk less attractive.

A few researchers have utilized a chance-constrained approach in their problems

where the objective is to manage risk in service systems such as call centers and med-

ical service systems. Gans and Zhou (2003) consider a queueing system in telephone

call centers where there is a “H-type job” with service level constraints of the forms

E[delay] ≤ “user-specified threshold” and P{delay ≤ “user-specified threshold”} ≥

“user-specified probability level”, and a “L-type job” without a service level con-

straint. In this scenario, they want to find the optimal routing policy such that the

rate at which L-type jobs are processed is maximized. The second form of service

level constraint is exactly a chance constraint.

Gurvich et al. (2010) study the call center staffing problem with an uncertain

demand rate, multiple customer classes and agent types under a chance constraint

imposed on the abandonment rate. Beraldi et al. (2004) study the problem of de-

signing emergency medical services under uncertain service requests at the demand

points. They model the service facility location and vehicle routing problem as a

joint chance-constrained formulation. Since they have a discrete sample space, the

problem is converted to a large-scale integer programming problem which is solved

using a commercial optimizer. Additionally, Liu et al. (2001) develop a model for

maximizing profits in general e-commerce companies where revenue is generated by

satisfying quality requirements of service and a penalty is incurred otherwise. In their

case, the SLA specifies that the probability of response time for a customer request

being less than or equal to a threshold must be at least (1− α).

Robust Optimization Models. One can formulate a general service system

design problem under uncertainty following the robust optimization (RO) framework

(Ben-Tal et al., 2009). The RO approach models uncertainty using uncertainty sets as
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opposed to random variables and employs a min-max objective. Soteriou and Chase

(2000) utilize the RO approach to improve service quality by linking operational vari-

ables to service quality metrics. They develop a linear service quality optimization

program where the coefficients (weights) relating the operational variables to the ser-

vice quality metrics are uncertain. The model yields optimal guidelines in allocation

of operational resources, which is validated by an application to a large healthcare

facility. Other examples are contained in (Liang et al., 2009; Marques et al., 2012).

Mean-variance Models. Mean-variance models are similar to mean outcome

models, except that the objective and/or the constraints include both the first and

second moments of the random variables. For example, the objective may be the mean

total cost plus a scalar times the standard deviation of the total cost, representing a

utility function of the service provider. Including a variance term ensures, to some

degree, that the cost of any one realization of the uncertain parameter is not likely

to be very unusual. This is often critical as poor performance for one client may

have a significant negative effect on a service provider’s reputation. In some cases

constraining the variance of the response time is equivalent to specifying a certain

percentage of clients should have a certain maximum waiting time. Choi et al. (2008)

and Choi and Chow (2008) use mean-variance analysis for a supply chain consisting

of a manufacturer and a retailer. We note that mean-variance models originated in

and are widely used in financial portfolio management (Markowitz, 1989).

Minimax Regret Models. Models aimed at minimizing the maximum regret

(or simply minimax regret) have been employed in the facility location literature for

decision making under uncertainty (Snyder, 2006), where the high level, aggregate

customer demand is known fairly accurately but the day-to-day demand by location is

uncertain. Regret is defined as “the sense of loss felt by a decision maker upon learning

that an alternative action could have been preferable to the one actually selected

(Mausser and Laguna, 1998).” One can measure regret as some kind of distance from
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optimality once uncertainty reveals itself. Although the minimax regret criterion is

appealing to decision makers when the regret associated with each potential course

of action is measurable, the regret-based mathematical formulations tend to be more

challenging computationally than regular stochastic problems. To the best of our

knowledge, application of minimax regret principles in service system design problems

has been sparse if any. In other areas such as energy management, Dong et al. (2011)

study a pertinent problem of power management systems planning under uncertainty

and show that results from regret models are of great help in balancing the minimized

economic loss and system failure risk.

Value-at-risk and Conditional-value-at-risk Models. Both value-at-risk

and conditional-value-at-risk are gaining popularity as competitive risk measures

against mean and combinations of mean and variance, especially in the fields of fi-

nance and portfolio optimization. Despite the popularity of VaR and CVaR in finance,

very little research work has been done in applying VaR or CVaR in managing risks

in service systems.

We note that some preliminary work has been done by Sodhi (2005) who studies

the problem of managing demand risk in tactical supply chain planning for a global

consumer electronics company. The company has been utilizing a deterministic re-

plenishment and planning process in spite of considerable uncertainty in demand. To

solve the problem, the author develops two models utilizing value-at-risk, employ-

ing concepts such as “demand-at-risk” (DaR) on the demand side and “inventory at

risk” (IaR) on the supply side. Similarly, they utilize conditional value at risk and

introduce cDaR and cIaR. The author concludes that the risk measures can guide

the company in reallocating capacity amongst different products and thus are useful

in managing demand and inventory risks. Another pertinent paper by Hassan et al.

(2005) studies the topic of designing for flexibility in engineering systems via a case

study of a satellite fleet design. Their purpose is to identify a satellite’s optimal design
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via value-at-risk under random demand for satellite services such that profitability is

maximized.

Among the aforementioned models, mean-variance models, minimax regret mod-

els, and value-at-risk/conditional-value-at-risk models are modeling approaches that

have been employed in areas such as facility location and portfolio management but

not yet in service system design domain. Each model employs a different risk measure

relevant to the problem, reflecting different risk preferences on the part of the decision

maker and the nature of the design problem.
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CHAPTER 4

STATEMENT OF RESEARCH

The overall research goals in this dissertation are threefold.

1. We develop useful stochastic models for design optimization problems under un-

certainty. The design optimization problems of our interest are specifically the

network design problem with connectivity and diameter requirements, and ser-

vice system design problem under uncertain demand rate. We employ conditional-

value-at-risk, failure probability, and mean, as risk measures in our stochastic

optimization formulations.

2. For the network design problem, we develop complexity results, theoretical as-

sertions, and solution techniques in order to tackle the developed stochastic

models for moderate- to large-scale instances.

3. For the service system design problem, we develop optimization models to aid

a service provider’s decision on system capacity. Both single-stage and multi-

stage systems are considered in order to develop practical guidelines.

Specifically, we work towards the following objectives in order to fulfil the overall

goals in this dissertation.

• Objective 1. Developing stochastic models to obtain risk-averse solutions for

the resilient 2-hop network design problem under uncertainty via the notion of

k-core.

– Task 1-1. Developing polyhedral reformulation for the CVaR-constrained

minimum spanning k-core problem under piecewise-linear loss functions.
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Polyhedral reformulation for CVaR-constrained models with linear loss

function have been studied in the literature but other loss functions have

not been considered yet.

– Task 1-2. Developing empirical bounds on the sample size needed in order

to attain a reasonable sample-based approximation of CVaR.

– Task 1-3. Designing decomposition algorithms for CVaR constrained pro-

grams with integral decision variables and compare against the existing

algorithms.

• Objective 2. Developing chance-constrained models for the resilient 2-hop

network design problem under uncertainty via the notion of k-core.

– Task 2-1. Establishing the intractability of the chance-constrained mini-

mum spanning k-core problem.

– Task 2-2. Conducting polyhedral study on the chance-constrained mini-

mum spanning k-core problem including identifying facet-inducing inequal-

ities to strengthen the formulation to facilitate quicker solution times for

moderate-sized instances.

– Task 2-3. Empirically assessing the impact of strengthened formulation

via computational studies.

• Objective 3. Developing stochastic models and solution techniques for capac-

ity planning of service systems under uncertain demand rates utilizing mean as

risk measure.

– Task 3-1. Developing a stochastic model to decide the optimal capacity of

a single-stage system represented by an M/M/1 queue where transaction

arrival rate is uncertain and the mean of loss due to violation of a given
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performance requirement specified in service level agreement needs to be

acceptable.

– Task 3-2. Developing analytical solutions to the stochastic model in Task

3-1 under the assumption that arrival rates vary uniformly over a specified

range.

– Task 3-3. Extending the work in Task 3-1 to a two-stage tandem line

configuration where different servers may have different service rates.

– Task 3-4. Developing numerical methods including scenario-based search-

ing and scenario-based reformulation to solve the stochastic models formu-

lated in Task 3-3.
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CHAPTER 5

CVaR-CONSTRAINED SPANNING k-CORE PROBLEM 1

In this chapter, we study a CVaR-constrained optimization model that captures viola-

tion in the minimum degree requirement under independent probabilistic edge failures

as a random loss function and limits the CVaR of this loss function. As we discuss

next, this approach allows us to quantify the amount of violation in the degree con-

straints due to uncertainty, and limit this amount in a user-specified fraction of the

worst-case scenarios. Consequently, this approach helps drive risk-averse decisions,

which is suitable for this strategic topology design problem.

5.1 Model Formulation

Consider a random graph G̃ = (V, Ẽ), where Ẽ denotes the random subset of edges

and each edge exists with probability pe. We associate with this random graph a

(deterministic) support graph G = (V,E) where e ∈ E ⇐⇒ pe > 0. Then,

the sample space Ω = {G1, . . . , GN} is a collection of spanning subgraphs of G.

If each edge exists independently of the others, then N = 2|E|. We denote the

probability measure by P : 2Ω −→ [0, 1]. The vector of indicator random variables

ξξξ : Ω −→ {0, 1}|E| denotes the existence of edges with P{ξξξe = 1} = pe. For each

s = 1, . . . , N , we refer to Gs ∈ Ω, or equivalently, the realization of ξξξ denoted by ξs as

1Parts of this chapter are reprinted with permission from “The minimum spanning k-core problem

with bounded CVaR under probabilistic edge failures” by J. Ma, F. M. Pajouh, B. Balasundaram,

and V. Boginski. INFORMS Journal on Computing. Forthcoming. Copyright (2015), the Insti-

tute for Operations Research and the Management Sciences, 5521 Research Park Drive, Suite 200,

Catonsville, Maryland 21228 USA.
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scenario s and denote the probability of realization of scenario s by πs = P{ξξξ = ξs}.

In this setting, the degree of vertex v ∈ V in any design specified by the binary

vector x ∈ {0, 1}|E| is a random variable given by,

d(v) =
∑

e∈γ(v)

xeξξξe.

Recall that γ(v) denotes the set of edges that are incident at v in support graph G.

An edge contributes to the degree of its incident vertex only when it is included in

the solution (xe = 1) and it survives the random failure process (realization of ξξξe is

1). Since we require our design to have minimum degree k, vertices with degree less

than k given a design x and scenario Gi, are in violation of the k-core requirement.

The degree deficiency quantified as [k − d(v)]+ = max{k − d(v), 0}, is a measure of

loss due to uncertainty at vertex v, leading to the following two loss functions:

L1(x,ξξξ) =
∑

v∈V

[k −
∑

e∈γ(v)

xeξξξe]
+ (5.1)

L2(x,ξξξ) = max
v∈V

[k −
∑

e∈γ(v)

xeξξξe]
+ (5.2)

Both loss functions quantify the violation of the minimum degree requirement due

to edge failures; L1 measures the cumulative degree deficiency and L2 measures the

maximum degree deficiency. Both loss functions are piecewise linear and convex over

x ∈ R|E| for every given scenario ξs.

Suppose L(x,ξξξ) denotes one of the aforementioned loss functions. For a given

α ∈ (0, 1), let VaRα[L(x,ξξξ)] denote the α-quantile of L(x,ξξξ), and CVaRα[L(x,ξξξ)]

denote the α-conditional-value-at-risk of the loss functions. The CVaR-constrained

MSkCP can be stated as,

(CVaR-MSkCP) min
x∈P

{∑

e∈E

cexe | CVaRα[L(x,ξξξ)] ≤ C
}
, (5.3)

where P =
{
x ∈ {0, 1}|E| | ∑

e∈γ(v)

xe ≥ k, v ∈ V
}

and C is a user specified bound.
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The goal of the above model is to identify a spanning k-core of minimum cost

among all spanning k-cores of the support graph, such that the downside loss quan-

tified by CVaR of the loss distribution for this solution is bounded. Note that we

make a modeling choice to only consider x that correspond to spanning k-cores in the

support graph, i.e., x ∈ P. By doing so, we only discard solutions that are “infeasi-

ble” (not spanning k-cores) with probability one. This restriction could be removed

and x could be any binary vector. However, from a modeling standpoint, we feel

our approach makes it easier to explain to an end-user what the solutions will sat-

isfy from a structural/graph-theoretic perspective. This choice also becomes crucial

when tuning the bound C through empirical studies, to avoid choosing unreasonably

loose bounds. Furthermore, the relaxation used in the decomposition approach we

describe in Section 5.5 will be tighter in the presence of the support graph constraints,

especially in the initial iterations.

CVaR is a coherent measure of downside risk (Artzner et al., 1999) that is more

conservative than VaR (Rockafellar and Uryasev, 2002). As a result, for larger α

values we restrict ourselves to risk-averse solutions to the problem. We may also

employ this framework with low values of α, which will tend to drive less risk-averse

or more risk-neutral decisions. Hence, we can vary the parameter α to continuously

adjust our risk preference.

Bounding CVaR in an optimization model can be equivalently achieved (Rock-

afellar and Uryasev, 2002; Krokhmal et al., 2002) by bounding the function,

Fα(x, ζ) = ζ +
1

1− α
E[(L(x,ξξξ)− ζ)+] = ζ +

1

1− α

N∑

s=1

πs[L(x, ξs)− ζ ]+ (5.4)

where E[.] is the expectation operator and ζ ∈ R. As a function of ζ ∈ R, Fα(x, ζ)

is convex, and moreover if L(x, ξs) is convex with respect to x, then Fα(x, ζ) is

jointly convex in (x, ζ) ∈ R|E| × R (Rockafellar and Uryasev, 2002). Since the loss

functions defined in (5.1) and (5.2) are convex and piecewise linear for x ∈ R|E|, the

aforementioned equivalence allows us to reformulate the optimization problem (5.3)
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without the explicit knowledge of the loss distribution Φx(t) = P{L(x,ξξξ) ≤ t} for

every x ∈ P, or a closed-form expression for CVaR as a function of x. We refer

to the following as the Rockafellar and Uryasev reformulation (RUR) of the CVaR-

constrained MSkCP.

(RUR-MSkCP) min
x∈P,ζ∈R

{∑

e∈E

cexe | Fα(x, ζ) ≤ C
}

(5.5)

An obvious challenge working with RUR is the number of scenarios in Ω, since

N = 2|E|. One approach here is to approximate Ω through uniform random sampling

to produce a set of equally likely samples S, in which case one can substitute Fα(x, ζ)

with its scenario-based approximation:

F̃α(x, ζ) = ζ +
1

(1− α)|S|
∑

s∈S

[L(x, ξs)− ζ ]+. (5.6)

The CVaR-constrained MSkCP based on uniform random samples S is as follows.

(RUR-MSkCP-S) min
x∈P,ζ∈R

{∑

e∈E

cexe | F̃α(x, ζ) ≤ C
}
. (5.7)

RUR-MSkCP-S can now be reformulated into a large-scale mixed integer linear pro-

gram (MILP) once the term [L(x, ξs)− ζ ]+ and the loss function L(x, ξs) have been

linearized using auxiliary variables. If S is small enough this MILP could be solved

directly using a general-purpose solver. Pertinently, the quality of the approximation

F̃α(x, ζ) based on S would benefit from using a larger sample size. In this article, we

adopt the scenario-based approach with uniform random sampling in our computa-

tional studies, but we utilize an alternate reformulation that is more amenable to the

use of decomposition techniques.

5.2 Remarks on Sample Sizes

In this section, we show that for L1 and L2, Fα(x, ζ) is empirically well approximated

by F̃α(x, ζ) with a sample S sized polynomially in input graph size.
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Given an x ∈ P defined in Equation (5.3), ζ ∈ R and a loss function L(x,ξξξ) with

finite mean and variance, define the following.

ηηη = [L(x,ξξξ)− ζ ]+

ηs = [L(x, ξs)− ζ ]+, ∀s ∈ S

It follows immediately that Fα(x, ζ) = ζ+ 1
(1−α)

E[ηηη] and F̄α(x, ζ) = ζ+ 1
|S|(1−α)

∑
s∈S η

s.

Note that by definition, E[ηηη] is finite for a given point (x, ζ) because L(x,ξξξ) is bounded

by nk under the loss function L1 and by k under the loss function L2. We can view

the samples ηs, ∀s ∈ S as a sequence of random variables, each having the same dis-

tribution as ηηη. Therefore, for any feasible point (x, ζ), we have E[ηs] = E[ηηη]. More

importantly,

E[F̄α(x, ζ)] = Fα(x, ζ).

That is, F̄α(x, ζ) is an unbiased estimator of Fα(x, ζ). In addition, by applying Strong

Law of Large Numbers (SLLN), F̄α(x, ζ) converges with probability one to Fα(x, ζ)

as |S| → ∞. Thus, we say that F̄α(x, ζ) is a consistent estimator of Fα(x, ζ). This

consistency provides a certain assurance that as the sample size grows to infinity, the

estimation error approaches zero in the limit. While this is important conceptually,

insights on the magnitude of estimation error for a given finitely sized sample set S

are desirable.

By the Central Limit Theorem (CLT), we have

{F̄α(x, ζ)− Fα(x, ζ)} d→ N(0,
σ2(ηηη)

N(1 − α)2
).

In other words, for large enough |S|, F̄α(x, ζ) approximately follows a normal distri-

bution with mean Fα(x, ζ) and variance σ2(ηηη)
N(1−α)2

. In this case, the 100(1− θ) percent

interval for Fα(x, ζ) is

[F̄α(x, ζ)− zθ/2σ(ηηη)√
|S|(1− α)

, F̄α(x, ζ) +
zθ/2σ(ηηη)√
|S|(1− α)

]
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where zθ/2 = Φ−1(1 − θ/2) and Φ−1(·) is the inverse of the cdf for the standard

normal distribution. The estimation error, denoted by ǫ, (i.e. ǫ =
zθ/2σ(ηηη)√
|S|(1−α)

) is of

order O(|S|−1/2). The constant here is proportional to the standard deviation σ(ηηη),

for which an estimate will be derived later.

Consider the case where the values for the maximum estimation error ǫ and con-

fidence level (1− θ) are given, to decide the required number of samples, we have

|S| ∼=
z2θ/2σ

2(ηηη)

ǫ2(1− α)2
.

Specifically for the required sample sizes in regard to loss functions L1 and L2, we

note the following. For any fixed ǫ > 0 and θ ∈ (0, 1), P{|F̄ − Fα(x, ζ)| ≤ ǫ} ≥ 1− θ,

1. if |S| is O(n2k2) for the cumulative degree deficiency loss function L1 in Equa-

tion (5.1), and

2. if |S| is O(k2) for the maximum degree deficiency loss function L2 in Equa-

tion (5.2).

To obtain these estimates for |S| under each loss function, we observe that σ2[ηηη] is

O(n2k2) when L ≡ L1 and it is O(k2) when L ≡ L2. Note that L(x,ξξξ) has a finite

support {0, 1, ..., m̄} where m̄ = nk if L ≡ L1 and m̄ = k if L ≡ L2. Therefore,

σ2(ηηη) = σ2([L(x,ξξξ)− ζ ]+) ≤ σ2[L(x,ξξξ)− ζ ] = σ2[L(x,ξξξ)] ≤ E[(L(x,ξξξ))2]

=
m̄∑

i=0

P{L(x,ξξξ) = i}i2 ≤ m̄2.

The asymptotic estimates of the required sample size may be loose estimates for

practical use, but they give insights on the complexity of approximating the true

Fα(x, ζ) value. For a particular CVaR-constrained MSkC-S instance, it is advisable

to conduct experiments in order to find out the appropriate sample size for a given

precision and confidence level.
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5.3 Reformulations of the CVaR Constraint Under Linear Losses

Following the pioneering work of Rockafellar and Uryasev (2000, 2002), several no-

table developments on computational aspects of bounding or minimizing CVaR have

appeared in recent literature (Krokhmal et al., 2002; Künzi-Bay and Mayer, 2006;

Wang, 2007; Fábián, 2008; Wang and Ahmed, 2008; Hong and Liu, 2009; Huang

et al., 2010; Huang and Subramanian, 2012). In particular, Künzi-Bay and Mayer

(2006) study CVaR minimization with linear loss functions in financial applications.

They reformulate the CVaR minimization problem as a two-stage stochastic program-

ming problem with recourse (Birge and Louveaux, 1997) and specialize the L-shaped

method (Van Slyke and Wets, 1969) for their particular structure. A central result in

their study is a polyhedral reformulation of the CVaR constraint under a linear loss

function through exponentially many constraints. This result (stated in Theorem 1),

as well as the algorithm “CVaRMin” developed by Künzi-Bay and Mayer (2006) are

closely related to the work of Haneveld and van der Vlerk (2006) on “integrated

chance-constrained optimization” that limits the expected constraint violation under

uncertainty either individually or jointly.

Theorem 1 (Künzi-Bay and Mayer (2006)) Define Q and Q′ as follows.

Q :=
{

(x, ζ) | ζ +
1

(1− α)|S|
∑

s∈S

[L(x, ξs)− ζ ]+ ≤ C
}

Q′ :=
⋂

A⊆S

{
(x, ζ) | ζ +

1

(1− α)|S|
∑

s∈A

[L(x, ξs)− ζ ] ≤ C
}

with the sum defined as zero for A = ∅ in Q′. Then, Q = Q′.

Note the absence of [· · · ]+ in Q′. The proof of Theorem 1 (Künzi-Bay and Mayer,

2006) implies that the result holds true for any loss function although it was intro-

duced in the context of linear loss functions. In particular, the set Q′ is a polyhedron

when the loss function is linear and S is finite. We refer to the following as the
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Künzi-Bay and Mayer reformulation (KBMR) of the CVaR-constrained MSkCP-S.

(KBMR-MSkCP-S) min
x∈P, ζ∈R

{∑

e∈E

cexe | x ∈ Q′
}

(5.8)

By Theorem 1, the constraint F̃α(x, ζ) ≤ C in (5.7) can be replaced with ex-

ponentially many constraints as in (5.8). Although KBMR has O(2|S|) constraints

compared to O(|S|) constraints that would result from linearizing RUR, the KBMR

reformulation facilitates the adoption of a row-generation framework (Benders, 1962)

as outlined next.

For simplicity, consider the problem in (5.9), and let us assume that the loss

function L(x, ξs) is linear in x and the set P ′ is a nonempty polytope in order to

explain the approach presented in (Künzi-Bay and Mayer, 2006).

(KBMR-R) min
x∈P ′, ζ∈R

{
cTx | ζ +

1

(1− α)|S|
∑

s∈Ai

[L(x, ξs)− ζ ] ≤ C, ∀i = 1, . . . , t
}

(5.9)

The KBMR relaxation (5.9) only considers a subset (possibly empty) of the KBMR

constraints. Suppose we solve KBMR-R and it is infeasible; then KBMR is infeasible

and we terminate. Otherwise, let the optimal solution found be (x∗, ζ∗). Construct

At+1 = {s ∈ S | L(x∗, ξs) − ζ∗ > 0}. If the KBMR constraint for At+1 is satisfied,

then no violated constraint exists; (x∗, ζ∗) is optimal to KBMR. Otherwise, add the

violated constraint corresponding to At+1 to KBMR-R and repeat until an optimum

is found or KBMR-R becomes infeasible.

The aforementioned sequential cutting plane method (SCPM) was suggested by

Künzi-Bay and Mayer (2006) for CVaR minimization and they also noted that their

approach extends to CVaR-constrained optimization in a straightforward manner;

see also (Fábián, 2008; Subramanian and Huang, 2009). This SCPM is correct and

finitely convergent, since S is finite and no subset of S will be repeated.

We argue that the favorable computational performance of the SCPM witnessed

in empirical studies (Künzi-Bay and Mayer, 2006; Fábián, 2008; Subramanian and
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Huang, 2009) is due at least in part to the following characteristics:

1. The set At+1 corresponds to the most violated KBMR constraint (if one exists).

2. The x variables were continuous and the loss function was linear.

The second characteristic is crucial since KBMR-R solved in each major iteration

was a large-scale linear program in (Künzi-Bay and Mayer, 2006). If x is binary,

SCPM requires solving an MILP in each major iteration, which can be challenging.

Furthermore, if L(x, ξs) was piecewise linear and convex, as is the case with our loss

functions (5.1) and (5.2), then SCPM would be adding a piecewise linear cut in each

major iteration. Hence, we would require additional linearizing variables to handle the

piecewise linear loss function in order to solve KBMR-R using an MILP solver. The

upshot of this discussion is that while the SCP developed by Künzi-Bay and Mayer

(2006) was effective for the problem they considered, direct application/extension

of their ideas has clear drawbacks in our setting where x is binary and L(x, ξs) is

piecewise linear and convex.

In the next section, we present our reformulation ideas that can be viewed as a

nested reformulation in the same vein as KBMR that allows us to handle the piece-

wise linear loss functions more effectively, rather than use auxiliary linearizing vari-

ables. In Section 5.5, we develop decomposition branch-and-cut algorithms based on

this reformulation, which preserves the desirable features of the approach developed

by Künzi-Bay and Mayer (2006), but is better suited to handle the binary variables.

5.4 Reformulations of the CVaR Constraint Under Piecewise Linear

Losses

In this section, we develop polyhedral reformulations of the CVaR constraint under

both cumulative and maximum degree deficiency loss functions. Note that our results

in this section and the decomposition algorithm discussed in Section 5.5 will continue
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to apply for the more general and exact formulation (5.6) in which the approximation

F̃α(x, ζ) in (5.7) is replaced by the exact function Fα(x, ζ). We discuss our results in

this form as it is more relevant in practice given that the actual number of scenarios

is exponentially large.

In order to develop an effective approach to solve the CVaR-constrained MSkCP-

S, we propose two key computational ideas. First, we extend the polyhedral re-

formulation ideas of Künzi-Bay and Mayer (2006) to our convex piecewise linear loss

functions. Specifically, we introduce an equivalent reformulation for our loss functions

(5.1) and (5.2) that uses linear constraints (but more than 2|S| are used). This refor-

mulation also allows us to find the most violated cutting plane by considering every

sample in S, similar to the original ideas of Künzi-Bay and Mayer (2006). The binary

restriction on x discourages the use of a sequential cutting plane method in favor of

a branch-and-cut (BC) algorithm. In Section 5.5, we integrate the reformulation and

decomposition ideas into the BC algorithm, leading to an integer programming-based

approach for the CVaR-constrained MSkCP-S, similar to those developed recently

for chance-constrained optimization (Luedtke et al., 2010; Shen et al., 2010).

Theorem 2 Let L1(x,ξξξ) =
∑
v∈V

[k − ∑
e∈γ(v)

xeξξξe]
+ denote the cumulative degree de-

ficiency loss function. Define Q1 and T1 as the points (x, ζ) satisfying the CVaR

constraint with loss L1 and the KBMR reformulation of the CVaR constraint, respec-

tively.

Q1 :=
{

(x, ζ) | ζ +
1

(1− α)|S|
∑

s∈S

[L1(x, ξs)− ζ ]+ ≤ C
}

T1 :=
⋂

A⊆S

{
(x, ζ) | ζ +

1

(1− α)|S|
∑

s∈A

[L1(x, ξs)− ζ ] ≤ C
}

Define R1 as the set of points (x, ζ) satisfying the following constraints, for each

A = {s1, . . . , sp} ⊆ S, and for each p-tuple (V1, . . . , Vp) such that Vi ⊆ V, ∀i =
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1, . . . , p:

ζ +
1

(1− α)|S|

p∑

i=1

[{∑

v∈Vi

(k −
∑

e∈γ(v)

xeξ
si
e )
}
− ζ
]
≤ C (5.10)

The sums are defined as zero for A = ∅ (p = 0) or Vi = ∅, i = 1, . . . , p. Then,

Q1 = T1 = R1.

Proof of Theorem 2. The claim Q1 = T1 follows from Theorem 1. By definition, the

set T1 is described by the following constraints, for each A = {s1, . . . , sp} ⊆ S,

ζ +
1

(1− α)|S|

p∑

i=1

[{∑

v∈V

(k −
∑

e∈γ(v)

xeξ
si
e )+

}
− ζ
]
≤ C.

On the other hand, for arbitrary real numbers a1, a2, . . . , a|V |, the equation

∑

i∈V

a+i = max
V̂⊆V

∑

i∈V̂

ai (5.11)

holds with the maximum achieved at V̂ = {i | ai > 0} and the sum defined as zero

when V̂ = ∅. Hence,

∑

v∈V

(k −
∑

e∈γ(v)

xeξ
si
e )+ = max

V̂⊆V

∑

v∈V̂

(k −
∑

e∈γ(v)

xeξ
si
e ).

Therefore, T1 is equivalently described by the following constraints for each A =

{s1, . . . , sp} ⊆ S,

ζ +
1

(1− α)|S|

p∑

i=1

[{
max
V̂⊆V

∑

v∈V̂

(k −
∑

e∈γ(v)

xeξ
si
e )
}
− ζ
]
≤ C.

This description of T1 is then equivalent to the description of R1 using inequali-

ties (5.10). Hence, Q1 = T1 = R1.

Theorem 3 Let L2(x,ξξξ) = max
v∈V

[k − ∑
e∈γ(v)

xeξξξe]
+ denote the maximum degree de-

ficiency loss function. Define Q2 and T2 as the points (x, ζ) satisfying the CVaR

constraint with loss L2 and the KBMR reformulation of the CVaR constraint, respec-
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tively.

Q2 :=
{

(x, ζ) | ζ +
1

(1− α)|S|
∑

s∈S

[L2(x, ξs)− ζ ]+ ≤ C
}

T2 :=
⋂

A⊆S

{
(x, ζ) | ζ +

1

(1− α)|S|
∑

s∈A

[L2(x, ξs)− ζ ] ≤ C
}

As before, the sum is defined as zero when A = ∅. Define R2 as the set of points (x, ζ)

satisfying the following constraints for each A = {s1, . . . , sp} ⊆ S, for each p-tuple

(v1, . . . , vp) such that vi ∈ V, ∀i = 1, . . . , p, and for each B ⊆ A:

ζ +
1

(1− α)|S|
[{∑

si∈B

(k −
∑

e∈γ(vi)

xeξ
si
e )
}
− pζ

]
≤ C (5.12)

The sum is defined as zero when B = ∅. Then, Q2 = T2 = R2.

Proof of Theorem 3. As before, the claim Q2 = T2 follows from Theorem 1. By

definition, T2 is described by the following constraints for each A = {s1, . . . , sp} ⊆ S,

ζ +
1

(1− α)|S|

p∑

i=1

[{
max
vi∈V

(k −
∑

e∈γ(vi)

xeξ
si
e )+

}
− ζ
]
≤ C

which is equivalent to the following inequality.

ζ +
1

(1− α)|S|
[{ p∑

i=1

(
max
vi∈V

(k −
∑

e∈γ(vi)

xeξ
si
e )
)+}− pζ

]
≤ C

Using the identity (5.11) again, we see that T2 can be equivalently described by

ζ +
1

(1− α)|S|
[{

max
B⊆A

∑

si∈B

max
vi∈V

(k −
∑

e∈γ(vi)

xeξ
si
e )
}
− pζ

]
≤ C

for each A = {s1, . . . , sp} ⊆ S. It now follows that the description of T2 is equivalent

to that of R2 using inequalities (5.12). Hence, Q2 = T2 = R2.

Note that in Theorems 2 and 3, the sets R1 and R2 are polyhedral. Furthermore,

no additional variables are used in the description.

47



5.5 Decomposition and Branch-and-Cut with CVaR Constraints

In this section, we present a decomposition and branch-and-cut (DBC) algorithm to

solve the CVaR-constrained MSkCP-S with the cumulative degree-deficiency loss

function reformulated as in Theorem 2. The approach naturally extends to the

maximum degree-deficiency loss function. In the DBC algorithm, we denote by

MRP(D,N0,N1) the master linear programming relaxation (5.13) that is solved at

every node of the DBC tree to obtain lower bounds. Here, D is the set of globally

valid type (5.10) constraints that have been generated when the DBC node associated

with MRP(D,N0,N1) is processed. The sets N0 and N1 denote the variables that

have been fixed at 0 and 1, respectively, as a result of variable dichotomy branching

on the binary variables x at the DBC node being processed.

MRP(D,N0,N1) : min
∑

e∈E

cexe (5.13a)

subject to
∑

e∈γ(v)

xe ≥ k, ∀v ∈ V (5.13b)

(x, ζ) satisfies the constraints in D (5.13c)

xe = 0, ∀e ∈ N0 (5.13d)

xe = 1, ∀e ∈ N1 (5.13e)

0 ≤ xe ≤ 1, ∀e ∈ E \ (N0 ∪ N1) (5.13f)

Given a point (x∗, ζ∗) ∈ [0, 1]|E|×R that satisfies inequality (5.13b), we can find the

most violated inequality (5.10), or conclude that none exists by solving the following

separation problem.

lhs(x∗, ζ∗) = max
{
ζ∗ +

1

(1− α)|S|

p∑

i=1

[{∑

v∈Vi

(k −
∑

e∈γ(v)

x∗
eξ

si
e )
}
− ζ∗

]}
, (5.14)

where the maximum is over eachA = {s1, . . . , sp} ⊆ S, and for each p-tuple (V1, . . . , Vp)

such that Vi ⊆ V, ∀i = 1, . . . , p. An optimal solution to (5.14), A∗, (V ∗
1 , . . . , V

∗
p ),

can be constructed as follows. Let A∗ = {s ∈ S | L1(x∗, ξs) − ζ∗ > 0}. If
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A∗ = ∅, then lhs(x∗, ζ∗) = ζ∗. Furthermore, if ζ∗ > C, the cutting plane detected

is ζ ≤ C. Suppose A∗ 6= ∅, and assume A∗ = {s1, . . . , sp}. For each si ∈ A∗, define

V ∗
i = {v ∈ V | k − ∑

e∈γ(v)

x∗
eξ

si
e > 0}. If lhs(x∗, ζ∗) > C, then the most violated in-

equality of type (5.10) is associated with A∗, (V ∗
1 , . . . , V

∗
p ), which can then be added

to D to cut-off (x∗, ζ∗).

The DBC algorithm is presented in Algorithm 1 and the separation procedure is

described in Algorithm 2. We utilize a warm-up procedure (Algorithm 3) to initialize

the set D of globally valid inequalities. This procedure (step 2 in Algorithm 1)

is optional and one can start with D = ∅. Pertinently in step 18, the separation

procedure is not invoked when the optimal solution x∗ at any node of the DBC tree is

fractional; it is only invoked when x∗ is integral to check its feasibility for the original

problem. Alternately, the separation procedure could also be invoked in step 18.

There is naturally a trade-off between finding cuts before branching begins versus

during the branching process. Adding a large number of cuts during the warm-up

procedure leads to a large problem being solved at each DBC node, but it also has the

potential to produce tighter bounds early and thereby reduce the size of the search

tree. We will explore this trade-off in our numerical experiments presented next.

5.6 Computational Experience

The objectives of this computational study are twofold. First, we assess the perfor-

mance enhancements attributable to the reformulation ideas introduced in Section 5.4

and the DBC algorithmic framework discussed in Section 5.5. Second, we assess the

trade-off between adding more cuts of type (5.10) at the root node, potentially re-

sulting in a smaller tree that solves a larger system at each node, versus a potentially

larger tree with a smaller system being solved at each node of the search tree if the cuts

are only generated during the branching process. To this end, we test two versions

of the DBC Algorithm 1 with warm-up (denoted by DBC-WU) and without warm-
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Algorithm 1 Decomposition and Branch-and-Cut

Require: G = (V,E), ce∀e ∈ E,S, k, C, α

1: D ← ∅, ACTIV E ← ∅, ub← +∞

2: Warm-Up(D) ⊲ optional

3: ACTIV E ← {MRP0(D, ∅, ∅)}

4: while ACTIV E 6= ∅ do

5: Select and delete MRPℓ from ACTIV E

6: repeat

7: Solve MRPℓ(D,N ℓ
0 ,N ℓ

1 )

8: if MRPℓ(D,N ℓ
0 ,N ℓ

1 ) is infeasible then

9: CUTFOUND ← false, lbℓ ← +∞

10: else

11: (x∗, ζ∗) be the optimal solution to MRPℓ(D,N ℓ
0 ,N ℓ

1 ) found and lbℓ the

optimal cost

12: if x∗ ∈ {0, 1}|E| and lbℓ < ub then

13: CUTFOUND ← SepCuts(x∗, ζ∗,D)

14: if CUTFOUND = false then

15: ub← lb, incumbent ← x∗ ⊲ incumbent update

16: end if

17: else

18: CUTFOUND ← false ⊲ optional: CUTFOUND ←

SepCuts(x∗, ζ∗,D)

19: end if

20: end if

21: until CUTFOUND = false or lbℓ ≥ ub
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22: if lbℓ < ub then

23: Branch on some x∗
e ∈ (0, 1)

24: Generate and add child nodes with appropriate node-ID to ACTIV E

25: end if

26: end while

Algorithm 2 SepCuts(x∗, ζ∗,D)

1: FLAG← false

2: i← 1

3: for each s ∈ S do

4: if L1(x∗, ξs)− ζ∗ > 0 then

5: si ← s, A∗ ← A∗ ∪ {si}, i← i + 1

6: end if

7: end for

8: for each si ∈ A∗ do

9: V ∗
i = {v ∈ V | k − ∑

e∈γ(v)

x∗
eξ

s
e > 0}

10: end for

11: if lhs(x∗, ζ∗) > C then ⊲ defined in (5.14)

12: Add inequality of type (5.10) associated with A∗, (V ∗
1 , . . . , V

∗
|A∗|) to D

13: FLAG← true

14: end if

15: return FLAG
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Algorithm 3 Warm-Up(D)
1: repeat

2: FLAG← false

3: Solve MRP(D, ∅, ∅)

4: if MRP(D, ∅, ∅) is optimal then

5: FLAG← SepCuts(x∗, ζ∗,D)

6: end if

7: until FLAG = false

up (denoted by DBC-NoWU), alongside the following approaches from literature for

single-stage CVaR constrained problems. For the purposes of this computational

study we limit our attention to just the cumulative degree deficiency loss function

(5.1).

1. The first approach is to solve RUR-MSkCP-S (5.7) directly as a large-scale

MILP after linearizing the piecewise linear terms. This serves as a baseline to

assess the impact of both reformulation and DBC on overall performance.

2. The second approach is to use the SCPM discussed in Section 5.3. In our

case, we repeatedly solve (5.9) with only a subset of the reformulation con-

straints (5.10) in each iteration. Hence, an MILP is solved in each iteration,

and if a violated constraint from (5.10) is detected, it is added and the pro-

cess is repeated. This lends the SCPM the benefits of the reformulation ideas

developed by us for the piecewise linear loss function (5.1). Comparing the

two versions of DBC Algorithm 1 this SCPM helps assess the impact of using a

branch-and-cut framework, as opposed to a sequential approach, as they both

employ the same reformulation.

It should be noted that if the SCPM terminates by reaching the user-specified time

limit, then we do not have a feasible solution to the CVaR-constrained MSkCP-
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S. By contrast, DBC-NoWU and DBC-WU could return a feasible solution even

if the procedure is terminated by reaching the time limit as long as at least one

incumbent update occurred prior to termination. This is naturally an important

practical consideration while using either approach. It is also preferable to place

a time limit on the warm-up procedure called in DBC-W to directly control the

maximum amount of time it can take.

5.6.1 Test Instances and Settings

We conduct computational experiments on instances with a complete support graph

with |V | = 10, 50, 100. According to Corollary 1, we study the case where r = 2 and

k = ⌈n
2
⌉ to obtain 2-hop resilient designs. In each instance, edge failure probabilities

are chosen randomly and uniformly from the interval [0.00, 0.25]. We chose a uniform

distribution so that the edge probabilities in any given instance possess high variance

for the given range, which from our past experience results in a reasonably difficult

test-bed of instances. The range itself is chosen to ensure that all edges are more

likely to exist so that the test instances are meaningful. Similarly, the edge costs are

chosen from the interval [1, n
2

2
]. Note that the range of edge costs increases as the

support graph size grows. This is again done to ensure high variance among edge

costs as instances of different sizes are considered.

We set α = 0.9 in all our numerical studies. Note that if the bound C in the

CVaR constraint is too small then the problem becomes infeasible. By contrast, the

constraint is redundant if it is too large and the optimal solution would be the same

as that of the corresponding deterministic MSkCP. We can however, choose C on the

basis of the loss function being used, especially since it has a finite support for each

x. For example, all realizations of the cumulative degree deficiency loss function (5.1)

are contained in the interval [0, kn]. Based on our preliminary experiments we found

smaller values of C to result in more challenging instances. In our experiments, C is
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chosen to be approximately 10%-20% of the maximum loss.

We randomly generate equally likely samples according to the edge failure prob-

abilities for each instance. The number of scenarios varied in our experiments from

|S| = 500 to 10,000. For a given number of vertices and number of scenarios, we

generate and test 30 replications (or 30 different sets of scenarios). We also impose

a 1-hour time limit for each replication, for each instance. We report statistics based

on the replications that solved to optimality under the time limit; 20 replications,

typically more, are solved to optimality in our experiments.

The entire 1-hour time limit is available to the branch-and-cut in DBC-NoWU.

However, in DBC-WU up to 90% of the total wall-clock computing time is allocated

to initializing D. This ensures a clear contrast between DBC-NoWU and DBC-WU

algorithms. Note that if the warm-up procedure takes less time than maximum

allotted, the remaining time under the 1-hour time limit is available to the branch-

and-cut.

All algorithms are implemented in C++. All experiments are conducted on a 64-

bit Linux system with eight Intel Xeon E5620 2.40GHz processors and 96GB RAM.

Gurobir Optimizer v5.0.1 is used as the MILP solver. All implementations inherited

the default settings for branching, node selection, general purpose cutting planes, pre-

processing and heuristics. The Gurobir parameter GRB IntParam Threads, number

of threads used by the parallel MILP solver, is set to its default value 0, which means

the thread count is equal to the number of logical cores in the machine, which is eight

in our case.

Cut addition in the SCPM is implemented using addConstr to avoid the extra

effort of rebuilding the MILP model in each iteration. The separation procedure in

DBC-NoWU and DBC-WU algorithms is implemented using the Gurobir Callback

feature with “lazy constraints”. The valid inequalities of type (5.10) generated in the

warm-up phase are added directly to the model using addConstr while those generated
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while branching are added to the “lazy constraint pool” of the MILP solver which

are included in the node relaxation only when they are violated.

5.6.2 Numerical Results

Table 1 presents the results of the deterministic MSkCP solved directly by Gurobir

MILP solver under default settings. All instances are solved to optimality within 0.05

seconds. Table 1 reports |V |, |E|, k, total cost of all edges given by
∑
e∈E

ce, the optimal

cost, and number of edges in the optimal solution found E∗.

Table 1: Results from solving the deterministic MSkCP on our test-bed.

|V | |E| k Total cost Optimal cost |E∗|

10 45 5 1226 431 25

50 1225 25 753228 206620 625

100 4950 50 12560300 3273150 2500

The wall-clock running time statistics over all replications that solved to optimal-

ity under the time limit on 10- and 50-vertex test instances are reported in Tables 2

and 3. The first observation is that the approach directly solving RUR-MSkCP-S

is competitive only for the smallest values of |V | and |S| we tested. In general, it

is consistently outperformed by the other three approaches that employ our refor-

mulation and decomposition ideas from Section 5.4 in some form, highlighting the

computational benefits of our approach.

On our test instances, with the exception of one set of parameter values (|V | =

50, |S| = 10000), DBC-WU is consistently the fastest based on the average running

times. It is also significantly faster than the next fastest algorithm taking into account

the difference in average running times and the range of running time measurements

(Max-Min) observed for each algorithm, and for each setting of |V |, |S|. In that
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exceptional case, DBC-WU is the second fastest, behind by about 15 seconds on

average. But even so, DBC-WU results in a much narrower range of running times.

Table 2: Running time (secs) results on 10-vertex instances with k = 5, α = 0.9, and

C = 10. Statistics are over 30 replications.

Number of samples

Algorithm Measure 500 1000 2500 5000 7500 10000

Min 1.23 4.28 15.84 50.00 88.22 179.37

RUR-MSkCP-S Max 3.10 11.21 47.93 169.14 423.33 662.58

Avg 2.15 7.29 29.27 91.86 209.70 347.52

Min 0.22 1.09 3.28 5.36 8.52 10.44

SCPM Max 64.95 35.06 83.61 31.18 34.93 39.53

Avg 7.74 10.02 13.89 10.82 16.76 18.39

Min 0.38 1.55 4.35 9.06 11.98 13.43

DBC-NoWU Max 4.78 8.45 14.28 27.41 46.50 51.34

Avg 2.11 3.66 8.91 15.80 25.25 29.07

Min 0.25 0.77 2.19 4.63 7.20 9.95

DBC-WU Max 2.01 2.37 6.28 8.17 14.33 17.99

Avg 0.80 1.36 3.38 6.01 9.95 12.68

Tables 4 and 5 present a comparison of DBC-NoWU and DBC-WU on 10- and

50-vertex graphs focusing on average tree size across 30 replications and the average

of total number of calls to the separation procedure across 30 replications. For the

DBC-WU approach, the number of separation calls includes those made in the warm-

up phase. DBC-WU typically results in a much smaller tree and more interestingly,

fewer total separation calls compared to DBC-NoWU, reinforcing the merits of the

warm-up procedure.
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Table 3: Running time (secs) results on 50-vertex instances with k = 25, α = 0.9,

and C = 180. Statistics over 30 replications are reported unless indicated otherwise.

Number of samples

Algorithm Measure 500 1000 2500 5000 7500 10000

Min 19.54 48.17 142.19 287.06a 1004.49b 1632.97c

RUR- Max 203.78 423.01 1349.63 1781.79a 3491.30b 3417.73c

MSkCP-S Avg 49.34 108.75 441.63 1135.10a 2615.27b 2347.14c

Min 3.94 6.86 18.14 34.57 63.96 86.78

SCPM Max 443.46 612.37 1183.87 370.24 547.56 324.86

Avg 53.41 75.35 174.88 95.99 170.30 171.58

Min 3.17 18.41 22.81 45.35 78.54 129.10

DBC-NoWU Max 94.63 322.76 689.63 314.37 747.96 605.00

Avg 24.39 65.38 159.70 139.58 273.87 298.74

Min 5.09 8.45 21.55 46.14 81.98 101.99

DBC-WU Max 38.03 63.01 250.34 168.84 282.14 339.17

Avg 12.19 22.24 70.59 90.73 149.40 186.59

a Statistics reported over 29 replications that solved to optimality within the time limit;

1 replication terminated with a feasible solution. b Statistics reported over 26 replications

that solved to optimality within the time limit; 4 replications terminated with a feasible

solution. c Statistics reported over 5 replications that solved to optimality within the time

limit; 9 replications terminated with a feasible solution; remaining 16 replications failed at

the root node.

Clearly, our experiments focused more on scaling with respect to |S| rather than

|V | as the inter-hub network design problem is typically for the design of medium-scale

networks. However, it is also interesting to note the behavior of different algorithms
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Table 4: Tree size and number of cuts on 10-vertex instances with k = 5, α = 0.9,

and C = 10.

DBC-WU DBC-NoWU

# of scenarios
# of BC

nodes

# of Sep-

Cut calls

# of BC

nodes

# of Sep-

Cut calls

500 1196 122 5454 389

1000 1449 142 5912 418

2500 1675 177 6233 490

5000 1122 173 6011 460

7500 1346 197 6250 502

10000 1312 190 6039 435

as |S| increases. Despite the fact that the 30 replications are uniformly random sets of

samples, a wide range of running times is observed even when |S| = 10000. However,

the range narrows as |S| increases in all algorithms. Pertinently, the range of running

time measurements (Max-Min) is significantly smaller for DBC-WU compared to all

the other algorithms in general. As expected, we observe in Table 6 that the optimal

objective values fall in a much tighter interval as the number of scenarios increases.

Our experiments demonstrate that in general, DBC-WU is faster and more consis-

tent compared to the other approaches for solving the CVaR-constrained MSkCP-S.

The dominance is more pronounced when we consider 100-vertex instances that are

relatively more challenging. Table 7 presents summary results for each |S|; we report

the number of replications out of 30 that are solved to optimality within the time

limit, the number for which only a feasible solution is found, and the rest where the

algorithm failed to return a feasible solution. DBC-WU solved the most number of
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Table 5: Tree size and number of cuts on 50-vertex instances with k = 25, α = 0.9,

and C = 180.

DBC-WU DBC-NoWU

# of scenarios
# of BC

nodes

# of Sep-

Cut calls

# of BC

nodes

# of Sep-

Cut calls

500 3712 116 13376 235

1000 3761 118 17751 353

2500 4013 169 19557 381

5000 1724 110 13619 162

7500 1509 123 14513 219

10000 958 116 11602 177

Table 6: Optimal costs of 10-, 50-vertex instances (range and standard deviation over

30 replications reported).

Number of samples

|V | Measure 500 1000 2500 5000 7500 10000

Min 479 489 498 496 501 501

10 Max 508 511 508 508 505 505

Std. Dev. 6.91 4.34 1.74 2.12 0.63 0.52

Min 206718 206981 207101 207119 207153 207175

50 Max 207752 207616 207506 207434 207375 207352

Std. Dev. 238.45 177.34 108.92 74.45 48.60 42.70
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replications to optimality by a large margin, and it is able to find a feasible solution in

all other cases. By contrast, directly solving the RUR-MSkCP-S fails to find an opti-

mal solution, often stuck at the root node, especially when the scenario size becomes

large. Note that the SCPM fails to guarantee feasibility whenever it terminates reach-

ing the time limit, which is frequently observed. The performance of DBC-NoWU

is also inferior to DBC-WU as shown in Table 7, although it does terminate finding

a feasible solution in all replications for each value of |S|, and optimal solutions in

some replications when |S| is small.

Table 7: Results on a 100-vertex graph with k = 50, α = 0.9, and C = 650.

Number of samples

Algorithm Termination count 500 1000 2500 5000 7500 10000

# optimal 25 23 14 6 0 0

RUR-MSkCP-S # feasible 5 7 16 21 24 0

# failed 0 0 0 3 6 30

SCPM # optimal 2 4 14 4 6 1

# failed 28 26 16 26 24 29

DBC-NoWU # optimal 6 5 0 0 0 0

# feasible 24 25 30 30 30 30

DBC-WU # optimal 21 26 27 22 19 21

# feasible 9 4 3 8 11 9

On the trade-off between cut addition at the root versus elsewhere in the search

tree, our experiments with this test-bed seem to overwhelmingly favor adding the

KBMR-type cuts we have introduced, generated by the separation Algorithm 2, at

the root-node before branching begins. However, we suspect that this behavior may

not be observed if we solved an NP-hard combinatorial optimization problem, such
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as the maximum clique problem or the traveling salesman problem under a similar

CVaR-constrained framework. Hence, it would be interesting to empirically compare

the behavior of say, the shortest path problem and the maximum clique problem, in

a similar CVaR-constrained framework to see whether emphasizing cut generation at

the root node is more favorable in the former compared to the latter.
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CHAPTER 6

CHANCE-CONSTRAINED SPANNING k-CORE PROBLEM

A variety of modeling frameworks may be used to formulate the minimum span-

ning k-core problem under uncertainty with respect to edge failures. With uncer-

tainty characterized by probabilistic edge failures, the chance-constrained optimiza-

tion framework is another appropriate choice of risk measure. We view this work

as complementary to the CVaR-constrained model as discussed in Chapter 5. We

formally introduce the optimization problem of interest next.

6.1 Problem Formulation

Similar to Chapter 5, we consider a random graph G̃ = (V, Ẽ) in which the edges

are subject to independent, probabilistic failures. The indicator random variable

ξξξe denotes the existence of an edge. In this setting, we use G = (V,E) to denote

the support graph of G̃ where e ∈ E ⇐⇒ P(ξξξe = 1) > 0. Accordingly, the

degree of vertex v ∈ V in any design specified by the binary vector x ∈ {0, 1}|E|

is a random variable given by,
∑

e∈γ(v)

xeξξξe, where γ(v) = {(u, v) | (u, v) ∈ E}. The

chance-constrained minimum spanning k-core problem (CCkCP) can be formulated

as follows for a user-specified parameter ǫ ∈ [0, 1].

min
x∈{0,1}|E|

{ ∑

e∈E

cexe | P
( ∧

v∈V

( ∑

e∈γ(v)

xeξξξe ≥ k
))
≥ 1− ǫ

}
(6.1)

The random vector ξξξ has a finite discrete support {0, 1}|E| which is exponentially

large under independent edge failures. Hence, we may approximate the problem

by generating a set of samples/scenarios denoted by S = {ξ1, ξ2, . . . , ξN}. Recall

62



from Chapter 5 that we denote the graph associated with each scenario ξs ∈ S by

Gs = (V,Es) where Es = {e ∈ E | ξse = 1}. The CCkCP can now be rewritten as

follows:

min
x∈{0,1}|E|,I⊆S

{ ∑

e∈E

cexe |
∑

e∈γ(v)

xeξ
s
e ≥ k, ∀v ∈ V, ξs ∈ I;

∑

ξs∈I

P(ξξξ = ξs) ≥ 1− ǫ
}
. (6.2)

Suppose S∅ = {ξs ∈ S | δ(Gs) < k} and S∅ is nonempty. In other words, ξs ∈ S∅
if and only if Gs = (V,Es) does not contain a spanning k-core. If

∑
ξs∈S∅

P(ξξξ = ξs) > ǫ,

then problem (6.2) is infeasible. If
∑

ξs∈S∅

P(ξξξ = ξs) ≤ ǫ, the scenarios in S∅ can

simply be eliminated from consideration without affecting the feasible solutions to

problem (6.2). Therefore, we make the following simplifying assumption about the

sample set for the remainder of this chapter.

Assumption 1 For any ξs ∈ S, we assume that the associated graph Gs = (V,Es)

is a k-core.

Now consider Sǫ = {s | P(ξξξ = ξs) > ǫ}. For every scenario ξs ∈ Sǫ, inequalities

∑
e∈γ(v)

xeξ
s
e ≥ k, ∀v ∈ V have to hold valid at any feasible solution x to problem (6.2),

otherwise the chance constraint will be violated. Based on this observation, the

CCkCP can be rewritten as:

min
∑

e∈E

cexe (6.3a)

s.t.
∑

e∈γ(v)

xeξ
s
e ≥ k, ∀v ∈ V, ξs ∈ I ⊆ S \ Sǫ (6.3b)

∑

ξs∈I

P(ξξξ = ξs) ≥ 1− ǫ−
∑

ξs∈Sǫ

P(ξξξ = ξs) (6.3c)

x ∈ P (6.3d)

where P =
{
x ∈ {0, 1}|E| | ∑

e∈γ(v)

xeξ
s
e ≥ k, ∀v ∈ V, ξs ∈ Sǫ

}
, which is of the same

form as (6.2). The upshot of this observation is that in the integer programming

reformulation of problem (6.2), binary variables corresponding to scenarios in Sǫ can

be fixed to 1 to simplify the integer program. So we make the next assumption to
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focus on the case where such implicit equations (variables fixed to one) are eliminated

from consideration, simplifying the polyhedral analysis that follows.

Assumption 2 We assume P(ξξξ = ξs) ≤ ǫ for every ξs ∈ S and that N ≥ 2.

Note that the application of our theoretical assertions and solution techniques in

the remainder of this chapter does not suffer if either Assumption 1 or Assumption

2 is violated, because a scan of S can identify Sǫ and S∅ by checking P(ξξξ = ξs) and

δ(Gs) respectively.

Also note that parameter k ∈ {0, 1, . . . , n − 1} where n = |V |. When k = 0, it

is obvious that x = (0, ..., 0) is an optimal solution and the problem becomes trivial.

When k = |V |−1, the solution x = (1, ..., 1) is optimal if the sum of probability of the

scenarios in which Gs is complete exceeds 1− ǫ. Otherwise, the problem is infeasible.

6.2 Computational Complexity

We next establish the intractability of the CCkCP. Let q = ⌈N(1− ǫ)⌉. The decision

version of the CCkCP is as follows:

(D-CCkCP) Given a support graph G = (V,E), edge cost vector c ∈ R|E|, a set

of scenarios S = {ξ1, ξ2, . . . , ξN}, fixed nonnegative integers k < |V | − 1, q ≤ N , and

B, is there a binary vector x and a subset I ⊆ S with |I| ≥ q such that x is a k-core

in Gs for every ξs ∈ I and
∑
e∈E

cexe ≤ B?

We show that D-CCkCP is NP-complete by reduction from the NP-complete prob-

lem DPCLP in (Luedtke et al., 2010), which is a linear program with joint chance

constraints where only the right-hand side is random with a finite support. The

decision version of the DPCLP problem is as follows:

(DPCLP) Given binary integers ηsℓ , s ∈ S ′ = {1, 2, . . . , N}, ℓ = 1, 2, . . . ,M , and

integers K ≤ N and J , is there an L ⊆ S ′ such that |L| ≥ K and
M∑
ℓ=1

max
s∈L
{ηsℓ} ≤ J?
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Theorem 4 D-CCkCP is NP-Complete, even in the special case in which P(ξξξ =

ξs) = 1
N
, ∀s ∈ S.

Proof of Theorem 4. Consider an instance of the DPCLP problem, we show how

to construct an instance of D-CCkCP, < G, c,S, k, q, B > in polynomial time such

that the answer to D-CCkCP is “yes” ⇐⇒ the answer to DPCLP is “yes”. Let

k = M , B = J , and q = K. Create node sets V i = {vi1, vi2, . . . , viM}, i = 1, 2, 3, 4 and

V =
4⋃

i=1

V i. Note that |V | = 4M . Create edge set E = E1 ∪ E2 ∪ E3 where,

1. E1 =
4⋃

i=1

M−1⋃
a=1

M⋃
b=a+1

{(via, vib)} ∪
M⋃
a=1

{(v3a, v4a)},

2. E2 =
M⋃
a=1

{(v1a, v2a)}, and

3. E3 =
M⋃
a=1

{(v1a, v4a), (v2a, v
3
a)}.

Thus |E| = 2M(M + 1). Note that in G = (V,E), d(v) = k + 1, ∀v ∈ V . Figure 4

illustrates a constructed graph G = (V,E) for M = 3. Let ce = 1 if e = (v1a, v
4
a), a =

1, . . . ,M and ce = 0 otherwise. We construct the sample set S as follows. Suppose

edges in E2 are subject to failures and edge sets E1 and E3 are deterministic. Let

uM
i , in this proof and beyond, denote a unit vector of dimension M with component

i being one and 111M =
M∑
i=1

uM
i . Subsequently, let ξs = 111M − ηs where ξs, ηs ∈ {0, 1}M ,

be the incidence vector of edges in E2 under scenario s. That is, for i = 1, . . . ,M ,

if ξsi = 1, then edge (v1i , v
2
i ) is present in scenario s; if ξsi = 0, edge (v1i , v

2
i ) fails in

scenario s. Therefore, the scenario graphs associated with sample set S for D-CCkCP

consists of Gs = (V,E1 ∪E3 ∪Es
2) and |S| = N . This completes the reduction. Note

that instance < G, c,S, k, q, B > can be constructed in polynomial time.

We now show that if the answer to a DPCLP instance < ηsℓ , K, J > is “yes”, then

the answer to < G, c,S, k, q, B > is “yes” as well. Suppose ∃L ⊂ S ′ such that |L| ≥ K

and
M∑
ℓ=1

max
s∈L
{ηsℓ} ≤ J . We let I = {ξs ∈ S | s ∈ L}. Obviously, |I| = |L| ≥ K = q.
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Figure 4: Illustration of D-CCkCP instance G when M = 3.

Next, we assign the values of decision vector x and show that x is a k-core in Gs for

every ξs ∈ I and
∑
e∈E

cexe =
M∑
a=1

x(v1a,v
4
a) ≤ B = J.

1. Set xe = 1, ∀e ∈ E1, which ensures that d(v) ≥ k, for all v ∈ V 3, V 4.

2. If max
s∈L
{ηsi } = 0 where i = 1, . . . ,M , let x(v1i ,v

2
i )

= 1 and x(v1i ,v
4
i )

= x(v2i ,v
3
i )

= 0.

Here max
s∈L
{ηsi } = 0 ⇒ max

ξs∈I
{1 − ξsi } = 0 ⇒ min

ξs∈I
{ξsi } = 1. Namely, the edge

(v1i , v
2
i ) is present in all ξs ∈ I. Therefore, the assignment of x(v1i ,v

2
i )

= 1 and

x(v1i ,v
4
i )

= x(v2i ,v
3
i )

= 0 ensures that the degree of nodes v1i and v2i is exactly k in

this case. Besides, the amount of contribution to the total cost is zero.

3. If max
s∈L
{ηsi } = 1 where i = 1, . . . ,M , let x(v1i ,v

2
i )

= 0 and x(v1i ,v
4
i )

= x(v2i ,v
3
i )

= 1.

In this case, max
s∈L
{ηsi } = 1 ⇒ max

ξs∈I
{1 − ξsi } = 1 ⇒ min

ξs∈I
{ξsi } = 0. That is, edge

(v1i , v
2
i ) fails in some scenario ξs ∈ I. The assignment here ensures that for any

ξs ∈ I, the possible degree loss of nodes v1i and v2i due to the failure of (v1i , v
2
i )
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is avoided by setting x(v1i ,v
2
i )

= 0 and x(v1i ,v
4
i )

= x(v2i ,v
3
i )

= 1. Again the degree of

nodes v1i and v2i is exactly k.

The above assignment guarantees that x is a k-core in Gs for every ξs ∈ I.

Furthermore,
∑
e∈E

cexe =
∑
e∈E1

cexe +
∑

e∈E2∪E3

cexe = 0 +
M∑
ℓ=1

max
s∈L
{ηsℓ} ≤ J = B. Hence,

the answer to D-CCkCP is “yes”.

Next we establish that if the answer to < G, c,S, k, q, B > is “yes”, then ∃L ⊆ S ′

such that |L| ≥ K and
M∑
ℓ=1

max
s∈L
{ηsℓ} ≤ J . Suppose ∃I ⊆ S with |I| ≥ q such that x is a

k-core in Gs for every ξs ∈ I and
M∑
i=1

x(v1i ,v
4
i )
≤ B = J . Let L ⊆ S ′ be the set of indices

corresponding to I ⊆ S, i.e., L = {s ∈ S ′ | ξs ∈ I}. Obviously, |L| = |I| ≥ q = K.

Since x is a k-core in Gs for every ξs ∈ I, for i = 1, ...,M :

1. If min
ξs∈I
{ξsi } = 0, in order that the degree of nodes v1i and v2i is at least k for

ξs ∈ I where edge (v1i , v
2
i ) fails, it must hold that x(v1i ,v

4
i )

= x(v2i ,v
3
i )

= 1. Thus,

max
s∈L
{ηsi } = max

ξs∈I
{1− ξsi } = 1.

2. If minξs∈I{ξsi } = 1, then max
s∈L
{ηsi } = 0.

Therefore,
M∑
ℓ=1

max
s∈L
{ηsℓ} ≤

M∑
i=1

x(v1i ,v
4
i )

=
∑
e∈E

cexe ≤ B = J . The answer to DPCLP is

“yes” as well.

6.3 Deterministic Minimum Spanning k-Core Polytope

To the best of our knowledge, there are no prior studies in the published literature

exploring the MSkCP polyhedron directly. This is expected as the problem was

introduced only recently (Balasundaram, 2007; Ma and Balasundaram, 2013) and

most of the MSkCP polyhedral study results introduced later can be “translated”

from the polyhedral results for the generalized b-matching problem. However, the

translated results are not so intuitive to understand and it often requires one to be

familiar with many terms specifically created in the context of the matching problem
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(such as near-perfect-match, hypo-matchable, odd polygon, etc). Therefore, we next

present a basic observation regarding the full-dimensionality of the k-core polytope

that provides a useful intuition for our results concerning the chance-constrained

version.

Given a MSkCP defined on graph G(V,E), suppose P denotes the set of all feasible

solutions:

P :=
{
x ∈ {0, 1}|E| |

∑

e∈γ(v)

xe ≥ k, v ∈ V
}
.

Proposition 4 The convex hull conv(P) is full-dimensional if and only if δ(G) ≥

k + 1.

Proof of Proposition 4. (Sufficiency) Suppose δ(G) ≥ k + 1, it is obvious that the

point x = 111m and points 111m − um
e for all e ∈ E form m + 1 feasible and affinely

independent points in conv(P). Accordingly conv(P) is full-dimensional.

(Necessity) Now suppose δ(G) = k with |γ(v̂)| = k, then the inequality xe ≤

1, ∀e ∈ γ(v̂) must hold as equalities for any point in conv(P). The dimension of

conv(P) is accordingly at most m−k, not full-dimensional. It is straightforward that

if δ(G) < k then the MSkCP is infeasible, and P = ∅.

The sufficient and necessary condition for conv(P) to be full dimensional is anal-

ogous to the condition that vector b has only positive components for the general

maximum weighted b-matching polytope to be full-dimensional.
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6.4 Chance-Constrained Spanning k-Core Polytope

A deterministic equivalent reformulation DEF of (6.2) by introducing a logical variable

zs for each ξs ∈ S is as follows.

(DEF) min
∑

e∈E

cexe (6.4a)

s.t.
∑

s|ξs∈S

zsP(ξξξ = ξs) ≥ 1− ǫ (6.4b)

∑

e∈γ(v)

xeξ
s
e ≥ zsk, ∀v ∈ V, ξs ∈ S (6.4c)

x ∈ {0, 1}m, z ∈ {0, 1}N (6.4d)

We next study the feasible solutions of formulation (6.4), the corresponding con-

vex hull, and the corresponding linear relaxation denoted by F , conv(F ), and FLP ,

respectively. Then, F ⊆ conv(F ) ⊆ FLP where

F = {(x, z) ∈ {0, 1}m × {0, 1}N | (x, z) satisfies constraints (6.4b) and (6.4c)},

FLP = {(x, z) ∈ [0, 1]m × [0, 1]N | (x, z) satisfies constraints (6.4b) and (6.4c)}.

By Assumption 1, F 6= ∅ because the point (x, z) = (111m,111N) ∈ F . Additionally based

on Assumption 2, points (111m,111N − uN
s ) for all s such that ξs ∈ S are also feasible

to formulation (6.4). Hence, there are at least N + 1 affinely independent points in

conv(F ).

To establish the dimension of polytope conv(F ), we first introduce some additional

notations. For each e ∈ E, we let De be the set of edge incidence samples in S where in

the associated graph Gs, the absence of merely edge e will result in k-core “deficiency”;

namely, De = {ξs ∈ S | δ(Gs − e) = k − 1}. Also let ED = {e ∈ E | P(De) ≤ ǫ}.

Proposition 5 The dimension of conv(F ) is N + |ED|.

Proof of Proposition 5. Suppose E \ ED 6= ∅ and ED 6= ∅. For any e ∈ E \ ED,

by definition P(De) > ǫ. Recall that De is the set of scenarios which are k-core
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structure deficient if xe = 0. Hence, to satisfy the probability constraint (6.4b), the

value of xe in any feasible solution must be 1. So for ∀(x, z) ∈ conv(F ), xe ≤ 1

holds at equality for any e ∈ E \ED. Therefore, the dimension of conv(F ) is at most

m+N−|E\ED| = N+|ED|. On the other hand, we can find that for any e ∈ ED, the

point (x, z) = (111m − um
e ,

∑
s|ξs∈S\De

uN
s ) ∈ F . Also recall that points (x, z) = (111m,111N )

and (x, z) = (111m,111N − uN
s ) for every s such thatξs ∈ S are also feasible points in

F . Thus, we have obtained |ED| + 1 + N affinely independent points in F . So the

dimension of conv(F ) is at least N + |ED|. To conclude, the dimension is exactly

N + |ED|.

Now we consider the case where E = ED. Then, it follows that points (x, z) =

(111m−um
e ,

∑
s|ξs∈S\De

uN
s ) ∈ F, for all e ∈ E and are affinely independent points. Together

with points (x, z) = (111m,111N) and (x, z) = (111m,111N − uN
s ), ∀s such that ξs ∈ S, we

have m + N + 1 such points. Therefore the dimension of conv(F ) is N + |ED|.

For the case where ED = ∅, x = 111m for any (x, z) ∈ F . Hence, by Assumption 2,

(x, z) = (111m,111N) and (x, z) = (111m,111N − uN
s ), ∀s such that ξs ∈ S are N + 1 affinely

independent points in F . It follows that the dimension of conv(F ) is N + |ED|.

Proposition 5 implies that convex hull conv(F ) is full-dimensional if and only if

for any e ∈ E, P(De) ≤ ǫ, i.e., ED = E. Let Sk+1 = {ξs ∈ S | δ(Gs) ≥ k + 1}. A

useful corollary we can derive from Proposition 5 is the following.

Corollary 2 If P(Sk+1) ≥ 1− ǫ, conv(F ) is full-dimensional.

Proof of Corollary 2. Given P(Sk+1) ≥ 1−ǫ, it immediately follows that for all e ∈ E,

P(De) ≤ ǫ because we have δ(Gs − e) ≥ k for every s that satisfies δ(Gs) ≥ k + 1.

Therefore, ED = E and conv(F ) is full-dimensional.

Compared with the sufficient and necessary condition ED = E for conv(F ) to

be full-dimensional, the sufficient condition in Corollary 2 is more straightforward
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because one just needs to check the minimum vertex degree associated with each

sample followed by verifying whether cumulative probability is greater than 1 − ǫ.

Additionally, let Fs = {x ∈ {0, 1}m | ∑
e∈γ(v)

xeξ
s
e ≥ k, ∀v ∈ V }. That is, Fs denotes

the set of feasible solutions to the deterministic minimum spanning k-core problem

associated with scenario s. It is worth noting that conv(Fs) is full-dimensional as well

for any s such that δ(Gs) ≥ k + 1. Therefore, we have the following.

Corollary 3 If
∑
ξs∈S

P(ξs | conv(Fs) is full-dimensional) ≥ 1 − ǫ, conv(F ) is full-

dimensional.

Proof of Corollary 3. Corollary 3 follows from Proposition 5 and Corollary 2.

Needless to say, if conv(Fs) is full-dimensional for every ξs ∈ S, conv(F ) is full-

dimensional. The condition in Corollary 2 or Corollary 3 is not necessary, which is

illustrated by the counter-example shown in Figure 5. Suppose ǫ = 0.5 and k = 1.

In the example, the cumulative probability of s satisfying δ(Gs) ≥ k + 1 = 2 is 0.25

which is less than 1 − ǫ = 0.5, violating the sufficient condition stated in Corollary

2 and Corollary 3. But the corresponding CCkCP polytope is still full-dimensional

because (x, z)T = (1 1 1, 1 1 1 1), (1 1 1, 0 1 1 1), (1 1 1, 1 0 1 1), (1 1 1, 1 1 0 1),

(1 1 1, 1 1 1 0), (0 1 1, 1 0 1 0), (1 0 1, 1 1 0 0), and (1 1 0, 1 0 0 1) are 1+N+m affinely

independent points in F . Note that for e = 1, 2, 3, P(S \ De) = 0.5 ≤ 1 − ǫ = 0.5,

meaning the sufficient and necessary condition ED = E is satisfied.

In the remainder of this section, we investigate facet-inducing conditions for vari-

able bounds of x and z, for the probability constraint, and for the degree constraints.

Note that Propositions 6-11 are valid even if conv(F ) is not full-dimensional.

6.4.1 Facets From Variables Bounds

Proposition 6 Given an edge e ∈ E, the inequality xe ≥ 0 induces a facet of conv(F )

if and only if
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Figure 5: A CCkCP instance with n = 3, m = 3, N = 4, k = 1, and P(ξξξ = ξs) = 0.25,

which corresponds to a full-dimensional conv(F ) even though the sufficient condition

of Corollary 2 is violated.

(i) De = ∅;

(ii) P(De,a) ≤ ǫ , ∀a ∈ ED \ {e} where De,a = {ξs ∈ S | δ(Gs − e− a) < k}.

Proof of Proposition 6. Let F ′ = {(x, z) ∈ conv(F ) | xe = 0}. We first prove

the necessity of conditions (i) and (ii). Suppose condition (i) is violated; namely

De 6= ∅. Then for any (x, z) ∈ F ′, zs = 0 for any s ∈ De. Therefore, dim(F ′) ≤

|ED|+N−1−|De| < |ED|+N−1, indicating that F ′ is not a facet of conv(F ). Now

suppose condition (ii) is violated. That is, ∃a ∈ ED \ {e} such that P(De,a) > ǫ. In

this case, for any (x, z) ∈ F ′, xa = 1. Therefore, F ′ is not a facet of conv(F ) because

its dimension is strictly less than |ED|+ N − 1.

Now we show that the two conditions are sufficient. By Assumption 1, the feasible

point (x, z) = (111m,111N) satisfies xe ≥ 0 with strict inequality. Hence, xe ≥ 0 is not

an implicit equation. Suppose De = ∅, it follows from Assumption 2 that (x, z) =

(111m − um
e ,111

N) and (x, z) = (111m − um
e ,111

N − uN
ℓ ), for any ℓ ∈ S are feasible points

in conv(F ) that satisfies xe ≥ 0 at equality. Note that De = ∅ immediately implies

that e ∈ ED. Additionally, suppose P(De,a) ≤ ǫ , ∀a ∈ ED \ {e}, then the point

(x, z) = (111m − um
e − um

a ,
∑

ℓ∈S\De,a

uN
ℓ ) is feasible where xe ≥ 0 holds at equality. Thus,

we have obtained 1 +N + |ED| − 1 = N + |ED| feasible points satisfying xe ≥ 0 with

equality and it is easy to verify that these points are affinely independent.
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Proposition 7 Given an edge e ∈ E, the inequality xe ≤ 1 induces a facet of conv(F )

if and only if P(De) ≤ ǫ.

Proof of Proposition 7. (Sufficiency) Given P(De) ≤ ǫ, inequality xe ≤ 1 is valid for

conv(F ) and holds with equality at feasible points (111m− um
a ,

∑
s|ξs∈S\Da

uN
s ), ∀a ∈ ED \

{e}, (111m,111N), (111m,111N−uN
s ), ∀s such that ξs ∈ S, which consist of (|ED|−1)+1+N =

|ED|+N affinely independent points. Also, the feasible point (111m− um
e ,

∑
s|ξs∈S\De

uN
s )

satisfies xe < 1, indicating that xe ≤ 1 is not an implicit equation. Therefore, xe ≤ 1

defines a facet of conv(F ) and the condition is sufficient.

(Necessity) Suppose P(De) > ǫ, then xe ≤ 1 must hold as equality for any (x, z) ∈

conv(F ). Further, F ′ = {(x, z) ∈ conv(F ) | xe = 1} = conv(F ), i.e., F ′ is not a

proper face of conv(F ). Hence, xe ≤ 1 is not facet-defining.

Proposition 8 The inequality zs ≥ 0 induces a facet of conv(F ) if and only if

(i) for any ℓ ∈ S \ {s}, P(ξξξ = ξs) + P(ξξξ = ξℓ) ≤ ǫ;

(ii) for any e ∈ ED, either s ∈ De, or s 6∈ De but P(S \ De)− P(ξξξ = ξs) ≥ 1− ǫ.

Proof of Proposition 8. Let F ′ = {(x, z) ∈ conv(F ) | zs = 0}. We first show the

necessity of both conditions. Suppose condition (i) is violated, meaning ∃ℓ ∈ S \ {s}

such that P(ξξξ = ξs) + P(ξξξ = ξℓ) > ǫ. It follows that for any (x, z) ∈ F ′, the

equation zℓ = 1 holds valid. Hence, the dimension of F ′ is at most |ED| + N − 2.

Now suppose condition (ii) is violated. That is, ∃e ∈ ED such that s 6∈ De and

P(S \ De) − P(ξξξ = ξs) < 1 − ǫ. Then for this edge e, any point (x, z) ∈ F ′ satisfies

xe = 1, which implies that the dimension of F ′ is at most |ED|+ N − 2.

To show sufficiency, we first observe that feasible point (111m,111N ) satisfies inequality

zs ≥ 0 with strictly inequality, which is therefore not an implicit equation. We next

construct |ED|+ N affinely independent points in F ′ under the two conditions. Due

to condition (i), points (111m,111N−uN
s ) and (111m,111N−uN

s −uN
ℓ ), ∀ℓ ∈ S\{s} are feasible
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points at which zs = 0 holds. Additionally, (111m − um
e ,

∑
ℓ∈S\De

uN
ℓ ) belongs to F ′ for

e ∈ ED such that s ∈ De, and (111m−um
e ,

∑
ℓ∈S\De

uN
ℓ −uN

s ) belongs to F ′ for e ∈ ED such

that s 6∈ De and P(S \De)−P(ξξξ = ξs) ≥ 1− ǫ. So we have 1 + (N −1) + |ED| feasible

points in F ′ and it is easy to verify that these points are affinely independent.

Proposition 9 The inequality zs ≤ 1 induces a facet of conv(F ), if and only if either

(i) δ(Gs) ≥ k + 1 or (ii) δ(Gs) = k with γ(v̂)∩ED = ∅ for every v̂ of degree k in Gs.

Proof of Proposition 9. Let F ′ = {(x, z) ∈ conv(F ) | zs = 1}. We first show that

condition (i) is sufficient. If δ(Gs) ≥ k + 1, we know that s /∈ De, for all e ∈ E. The

inequality zs ≤ 1 holds with equality at feasible points (111m,111N) and (111m,111N − uN
ℓ ),

∀ℓ ∈ S \ {s}. Additionally given ED 6= ∅ (the case where ED = ∅ is trivial), feasible

points (111m − um
e ,

∑
ℓ∈S\De

uN
ℓ ), ∀e ∈ ED satisfy zs ≤ 1 with equality. Therefore, we

have obtained 1 + (N − 1) + |ED| affinely independent points satisfying zs ≤ 1 with

equality. Also, at the feasible point (111m,111N − uN
s ), zs ≤ 1 holds as a strict inequality,

which indicates zs ≤ 1 is not an implicit equation. Therefore, the inequality zs ≤ 1

induces a facet.

Next, we show condition (ii) is sufficient. Suppose δ(Gs) = k and v̂ is a node

of degree k in the graph associated with scenario s, that is,
∑

e∈γ(v̂)

ξse = k. Given

γ(v̂) ∩ ED = ∅, the inequality xe ≤ 1 for any e ∈ γ(v̂) must hold as equality for

any (x, z) ∈ conv(F ). Therefore, points (111m,111N), (111m,111N − uN
ℓ ), ∀ℓ ∈ S \ {s}, and

(111m−um
e ,

∑
ℓ∈S\De

uN
ℓ ), ∀e ∈ ED are still 1 + (N −1) + |ED| affinely independent points

in F ′, which indicates that the dimension of F ′ is N + |ED|−1. Hence, zs ≤ 1 induces

a facet.

Now suppose δ(Gs) = k and γ(v̂) ∩ ED 6= ∅ for some v̂ that satisfies
∑

e∈γ(v̂)

ξse = k.

It follows that for any e ∈ γ(v̂), xe = 1 for all (x, z) ∈ F ′. Therefore, the dimension

of F ′ is at most |ED|+ N − 1− |γ(v̂) ∩ED| < |ED|+ N − 1, implying that F ′ is not

a facet.
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As condition (ii) in Proposition 9 is less intuitive, we illustrate this case with the

example in Figure 5. Now let us suppose ǫ = 0.25. According to Proposition 5, the

dimension of the associated CCkCP polytope is N + |ED| = 4 where |ED| = 0. Take

scenario s = 2 as an example. Obviously, δ(Gs) = 1 = k and γ(v̂) ∩ ED = ∅ where v̂

is a node of degree 1 in G2. We can observe that inequality z2 ≤ 1 is facet-defining

because (1 1 1, 1 1 1 1)T , (1 1 1, 0 1 1 1)T , (1 1 1, 1 1 0 1)T , (1 1 1, 1 1 1 0)T are 4

feasible and affinely independent points satisfying inequality z2 ≤ 1 as equality.

Consider the special case where conv(F ) is full-dimensional. A corollary we can

derive from Proposition 9 is as follows.

Corollary 4 Given that conv(F ) is full-dimensional, the inequality zs ≤ 1 induces a

facet if and only if δ(Gs) ≥ k + 1.

Proof of Corollary 4. The sufficiency follows from Proposition 9. By Proposition 5,

conv(F ) being full-dimensional implies ED = E, which further indicates γ(v̂)∩ED 6= ∅

for any v̂ with degree k in Gs. Hence, δ(Gs) ≥ k+ 1 is also a necessary condition.

6.4.2 CCkCP Probability Inequality

Proposition 10 The inequality (6.4b) induces a facet of conv(F ) in the special case

P(ξξξ = ξs) = 1
N
.

Proof of Proposition 10. In this special case, we notice that constraint (6.4b) can be

rewritten as the following.

∑

s|ξs∈S

zs ≥ q (6.5)

where q = ⌈N(1 − ǫ)⌉. By Assumption 2, 1
N
≤ ǫ ⇒ q < N . The feasible point

(x, z) = (111m,111N) satisfies (6.5) with strict inequality. Hence, inequality (6.5) is not

an implicit equation. To complete the proof, we next show that there are |ED| + N

feasible and affinely independent points at which (6.5) holds as an equation. For each
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edge e ∈ ED (the case where ED = ∅ is trivial), (x, z) = (111−um
e ,

∑
ℓ∈S\De

uN
ℓ ) is a feasible

point. Notice that |S \ De| ≥ q because ED is the set of edges satisfying P(De) ≤ ǫ

and thus |De| ≤ ⌊Nǫ⌋. Now let D̄e be an arbitrary subset of De with size q; i.e.,

D̄e ⊆ De and |D̄e| = q. Then, (x, z) = (111 − um
e ,
∑
ℓ∈D̄e

uN
ℓ ) is feasible in F and satisfies

(6.5) at equality. In this manner, we can construct |ED| such points. Now consider

the polytope F ′ = {z ∈ [0, 1]N | ∑
s|ξs∈S

zs = q}. Indeed, F ′ 6= ∅ and dim(F ′) = N − 1.

Hence, we can find N affinely independent integral points in F ′ and we label these N

points as z1, ..., zN . It is easy to verify that (x, z) = (111m, zi), i = 1, ..., N are N feasible

and affinely independent points in conv(F ). Further these N points together with

(x, z) = (111−um
e ,

∑
ℓ∈S\De

uN
ℓ ), ∀e ∈ ED yield N + |ED| feasible and affinely independent

points in conv(F ) that satisfy (6.5) as equality. Hence, (6.5) is facet-inducing in this

case.

6.4.3 CCkCP-Degree Inequalities

Suppose P(Sk+1) ≥ 1−ǫ, that is, conv(F ) is full-dimensional according to Corollary 2.

An intuitive question is, given ξs ∈ Sk+1, does the degree inequality
∑

e∈γ(v)

ξsexe ≥ zsk

induce a facet of conv(F ) for some v ∈ V ? Let us take an arbitrary node v̂ ∈ V

and first consider the simple case where
∑

e∈γ(v̂)

ξse = k + 1. In the following, we check

the number of feasible and affinely independent points at which the CCkCP-degree

inequality for scenario s, vertex v̂ holds as an equality.

Let (x, z) = (111m − um
e ,

∑
ℓ∈Sk+1

uN
ℓ ), for an e ∈ γ(v̂) with ξse = 1. For all ℓ ∈ Sk+1,

x = 111m − um
e is a k-core in Gℓ because if ξℓe = 1, the degree of v̂ in Gℓ under solution

x is equal to k and if ξℓe = 0, the degree is k + 1. Accordingly, the degree of vertex v̂

in Gs under solution x is k. Meanwhile, zs = 1 in the solution (x, z) defined above.

Therefore, (x, z) is feasible and satisfies the CCkCP-degree constraint with equality.

Note that in this way we can construct
∑

e∈γ(v̂)

ξse points.

Let (x, z) = (111−um
e −um

a ,
∑

ℓ∈Sk+1

uN
ℓ ). Here e is an edge in γ(v̂) with smallest index
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satisfying ξse = 1, and a ∈ E \ γ(v̂). That is, a is an arbitrary edge outside the cut

of vertex v̂. Similarly, for any ℓ ∈ Sk+1, x = 111m − um
e − um

a is a k-core in Gℓ because

δ(Gℓ) = k + 1. In this way we can construct m− |γ(v̂)| feasible points.

By this direct construction, we can obtain at least m − |γ(v̂)| + ∑
e∈γ(v̂)

ξse feasible

and affinely independent points at which the CCkCP-degree inequality for scenario

s, vertex v̂ holds valid as an equality.

Lifting the CCkCP-degree constraints. Due to the fact described above,

it appears that we can find some feasible points in F satisfying CCkCP-degree con-

straint at equality, but not enough of them. It suggests that the hyperplane induced by

CCkCP-degree constraint supports the convex hull conv(F ) but is not facet-inducing.

With this understanding, we believe strengthening CCkCP-degree constraints by lift-

ing will be helpful.

Given an arbitrary ŝ ∈ S, an arbitrary node v̂ ∈ V , let F 1 = F
⋂{(x, z) | zs = 1}

and F 0 = F
⋂{(x, z) | zs = 0}. Indeed,

∑
e∈γ(v̂)

ξ ŝexe ≥ k is valid for F 1 (not necessarily

facet-inducing). Recall that according to Assumption 2, P(ξξξ = ξs) ≤ ǫ and |S| > 1.

Hence F 0 6= ∅. Based on lifting theorem (Nemhauser and Wolsey, 1999), the following

is valid for F .

βzŝ +
∑

e∈γ(v̂)

ξ ŝexe ≥ k + β where β ≤ min{
∑

e∈γ(v̂)

ξ ŝexe | (x, z) ∈ F 0} − k

To get the bound for β, one needs to minimize
∑

e∈γ(v̂)

ξ ŝexe over exactly the same

CCkCP polytope except for the only difference that corresponding sample set is now

S \ ŝ instead of S, which is almost as difficult as to solve CCkCP itself. But we notice

that,

min{
∑

e∈γ(v̂)

ξ ŝexe : (x, z) ∈ F 0} ≥ max{0,
∑

e∈γ(v̂)

ξ ŝe − (|γ(v̂)| − k)}.

The above inequality holds valid due to the naive observation that the maximum

number of elements in γ(v̂) which can take zero-value is |γ(v̂)| − k. Since the set of

incident edges at node v̂ in any scenario is a subset of γ(v̂), the number of elements
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in the cut set of node v̂ in ŝ that can take zero-value is no more than |γ(v̂)| − k.

Let β = max{0, ∑
e∈γ(v̂)

ξ ŝe − (|γ(v̂)| − k)} − k, then the lifted degree constraint is:

∑

e∈γ(v̂)

ξ ŝexe ≥ k + (1− zŝ)(max{0,
∑

e∈γ(v̂)

ξ ŝe − (|γ(v̂)| − k)} − k). (6.6)

When
∑

e∈γ(v̂)

ξ ŝe ≤ (|γ(v̂)| − k), the inequality (6.6) is equivalent to CCkCP-degree

constraint. Whenever
∑

e∈γ(v̂)

ξ ŝe > (|γ(v̂)| − k), the inequality (6.6) is reduced to

∑
e∈γ(v̂)

ξ ŝexe ≥ k + (1 − zŝ)(
∑

e∈γ(v̂)

ξ ŝe − (|γ(v̂)|), which dominates the original CCkCP-

degree constraint. A special case is when
∑

e∈γ(v̂)

ξ ŝe = |γ(v̂)|, in other words no edges

in the cut set of node v̂ fail in scenario ŝ, then the coefficient of zŝ becomes zero,

and the inequality reduces to the degree inequality for deterministic spanning k-core.

Based on the lifted CCkCP-degree constraints, we obtain the following strengthened

CCkCP formulation.

(DEFS) min
∑

e∈E

cexe (6.7a)

s.t.
∑

e∈γ(v)

ξsexe ≥ k + (1− zs)(max{0,
∑

e∈γ(v)

ξse − (|γ(v)| − k)} − k),

∀v ∈ V, ξs ∈ S (6.7b)

∑

s|ξs∈S

zsP(ξξξ = ξs) ≥ 1− ǫ (6.7c)

x ∈ {0, 1}m, z ∈ {0, 1}N (6.7d)

Note that
∑

e∈γ(v̂)

ξ ŝe−(|γ(v̂)|−k) > 0 is often the case when edge failure probabilities

are low and k is not too small. Also from implementation perspective, the sign of

∑
e∈γ(v̂)

ξ ŝe − (|γ(v̂)| − k) can be decided before building MIP model, making program

(6.7) a better alternative to the original CCkCP program (6.4).

Proposition 11 Given that the support graph of G̃ = (V, Ẽ) where |V | = n > 3 is

complete and k = n− 2, the lifted degree constraint (6.6) induces a facet of conv(F )

if
∑

e∈γ(v̂)

ξ ŝe = k and
∑

e∈γ(v)

ξ ŝe > k, ∀v ∈ V and v 6= v̂.
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Proof of Proposition 11. As the support graph is complete, |γ(v̂)| = n − 1 and

|γ(v̂)|−k = 1. Hence,
∑

e∈γ(v̂)

ξ ŝe − (|γ(v̂)|−k) = k−1 > 0. The constraint (6.6) is now

∑
e∈γ(v̂)

ξ ŝexe ≥ k−(1−zŝ). The feasible point (x, z) = (111m,111N−uN
ŝ ) satisfies (6.6) under

given conditions with strict inequality, indicating that (6.6) is not an implicit equation.

We next show that there are |ED|+N feasible and affinely independent points where

constraint (6.6) holds as an equation. These points are (111m,111N ), (111m,111N − uN
ℓ ) for

every ℓ ∈ S \ {ŝ}, and (111m − um
e ,

∑
ℓ∈S\De

uN
ℓ ) for every e ∈ ED. We elaborate on the

feasibility of the last |ED| points next. If e 6∈ γ(v̂), or if e ∈ γ(v̂) and ξ ŝe = 0, ŝ 6∈ De

and zŝ = 1. Then, the left-hand side of (6.6) equals the right-hand side, which is k.

If e ∈ γ(v̂), ŝ ∈ De and zŝ = 0, the left-hand-side of (6.6) equals the right-hand-side,

which is k − 1.

6.4.4 Other Valid Inequalities

Let bsv =
∑

e∈γ(v)

ξse − k. According to Assumption 1, bsv is nonnegative integer for any

ξs ∈ S, v ∈ V . We further do the variable substitution xe = 1 − ye, ∀e ∈ E, ye ∈

{0, 1}, then it follows that

Ps := {y ∈ {0, 1}m |
∑

e∈γ(v)

(1− ye)ξ
s
e ≥ k, ∀v ∈ V }

:= {y ∈ {0, 1}m |
∑

e∈γ(v)

yeξ
s
e ≤

∑

e∈γ(v)

ξse − k, ∀v ∈ V }

:= {y ∈ {0, 1}m |
∑

e∈γ(v)

yeξ
s
e ≤ bsv, ∀v ∈ V }

Note that if bsv = 0, the corresponding degree constraint implies ξseye = 0 for all

e ∈ γ(v), thus Ps is not full-dimensional. Now let us assume Ps is full-dimensional,

i.e. bsv, ∀v ∈ V is positive. Then Ps is the general 1-capacitated b-matching feasible
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solution set whose convex hull, as shown in (Edmonds, 1965) is given by

∑

e∈γ(v)

yeξ
s
e ≤ bsv, v ∈ V (6.8a)

∑

e∈E(W )

ξseye +
∑

e∈F

ξseye ≤
1

2
(
∑

v∈W

bsv +
∑

e∈F

ξse − 1),

W ⊂ V, F ⊂ γ(W ) with
∑

v∈W

bsv +
∑

e∈F

ξse odd (6.8b)

000m ≤ y ≤ 111m (6.8c)

where E(W ) ⊆ E is defined as the set of edges with both end nodes in W and γ(W )

is the set of edges with only one end in W . The convex hull of Ps is characterized by

degree constraints (6.8a), blossom constraints (6.8b), and bounds (6.8c). Specifically

the blossom constraints grow exponentially with support graph size n, i.e., for bsv =

1, ∀v ∈ V, ξs ∈ S, the number of odd sets is O(2n−1). Pulleyblank (1973) pointed

out that the inequalities set of (6.8) is not minimal and studied the unique minimal

subset of (6.8) defining conv(Ps), given that conv(Ps) is full-dimensional.

Proposition 12 The following inequalities are valid inequalities for conv(F )

CCkCP-blossom:
∑

e∈E(W )∪F

ξsexe ≥ zs{
∑

e∈E(W )∪F

ξse −
1

2
(
∑

v∈W

bsv +
∑

e∈F

ξse − 1)},

W ⊂ V, F ⊂ γ(W ) with
∑

v∈W

bsv +
∑

e∈F

ξse odd.

Proof of Proposition 12. These inequalities are valid for conv(F ) as they are equiv-

alent to the corresponding b-matching blossom inequalities for the scenario solution.

In addition, for these inequalities to be valid, bsv, ∀v ∈ V , ξs ∈ S does not have to be

positive.

6.5 Computational Experience

The goal of our computational study in this section is to evaluate the merits of

the strengthened formulation (6.7) as opposed to the direct deterministic equivalent

reformulation (6.4).
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We conduct computational experiments on instances with |V | = 10, 30, 50, 100.

Two levels of minimum vertex degree in support graph were considered for |V | =

30, 50, and 100; namely δ(G) = 29 and 20 for |V | = 30, δ(G) = 49 and 35 for

|V | = 50, and δ(G) = 99 and 65 for |V | = 100. In other words, we consider a

complete support graph and a less dense support graph for each |V | considered.

According to Corollary 1, we study the case where r = 2 and k = ⌈n
2
⌉ to design

2-connected diameter-2 networks that preserve their diameter upon vertex deletion.

The edge failure probabilities and edge costs are set in the same manner as described

in Section 5.6.1.

We randomly generate equally likely samples according to the edge failure proba-

bilities for each instance. The number of scenarios is varied in our experiments from

|S| = 100 to 5,000. For a given number of vertices and number of scenarios, we gener-

ate and test 5 replications (or 5 different sets of scenarios). We also impose a 1-hour

time limit for each replication, for each instance. We report either average solution

time based on the replications that solved to optimality or average optimality gap

based on the replications in which a feasible solution is returned under the time limit.

All experiments are conducted on a 64-bit Linux system with eight Intel R© Xeon R©

E5620 2.40GHz processors and 96GB RAM. Gurobir Optimizer v5.5 is used as the

MILP solver. Both DEF and DEFS are implemented in C++. All implementations

inherited the default settings for branching, node selection, general purpose cutting

planes, preprocessing and heuristics. The Gurobir parameter GRB IntParam Threads,

number of threads used by the parallel MILP solver, is set to its default value 0, which

means the thread count is equal to the number of logical cores in the machine, which

is eight in our case.

Tables 8, 9, 10, and 11 present computational results comparing the average so-

lution times or optimality gaps of DEF against DEFS. Two key observations we can

make from the tables are as follows: (1) DEF performs consistently poorer than DEFS
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as the average solution time/optimality gap from the latter is much smaller. For ex-

ample, the 50-vertex graph with δ(G) = 49 as shown in Table 10, when the number

of samples is equal to 5000, the optimality gap of DEF is 80.0% while that of DEFS

is 23.3%. (2) Additionally, one can also observe that the more dense the support

graph is, the more pronounced the advantage of DEFS over DEF becomes. Take

the instance of the 30-vertex graph with 5000 scenarios in Table 9 as an example.

When ρ(G) = 1 (recall that ρ(G) denote the edge density of graph G), the average

optimality gap is reduced by 19.3% using DEFS than using DEF. On the other hand,

when ρ(G) = 0.896, the reduction is 13.9%.

Table 8: Results on a 10-vertex complete graph with k = 5, ǫ = 0.2, and time limit

= 1 hour. Average over 5 replications is reported.

DEF DEFS

|S| Time/Gap #BC Nodes Time/Gap #BC Nodes

100 556.37 sec 1059370 12.99 sec 9677

250 4.05% 1368782 184.91 sec 69116

500 7.21% 304885 878.11 sec 139760

750 8.71% 83171 2027.88a sec 179497a

1000 10.74% 43597 1.92% 112041

2500 17.47% 24000 5.69% 41345

5000 21.56% 1911 8.81% 1661

a 4 out of 5 instances were solved to optimality within 1-hour time limit and this average

solution time was calculated based on these 4 instances. The 5th instance was only solved

to feasibility with a gap of 1.69%.
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Table 9: Results on 30–vertex graphs with different edge densities ρ(G) and graph

degrees δ(G). Parameters k = 15, ǫ = 0.2, and time limit = 1 hour. Average solution

time/optimality gap over 5 replications is reported.

ρ(G) = 1, δ(G) = 29 ρ(G) = 0.896, δ(G) = 20

|S| DEF DEFS DEF DEFS

100 12.3% 5.2% 1.9% 587.67 sec

250 20.2% 9.8% 11.3% 5.9%

500 24.5% 11.7% 13.2% 7.5%

750 25.9% 12.4% 15.3% 8.0%

1000 26.5% 12.8% 15.5% 8.2%

2500 31.1% 16.8% 19.3% 11.4%

5000 40.0% 20.7% 26.5% 12.6%

Table 10: Results on 50-vertex graphs with different edge densities ρ(G) and graph

degrees δ(G). Parameters k = 25, ǫ = 0.2, and time limit = 1 hour. Average solution

time/optimality gap over 5 replications is reported.

ρ(G) = 1, δ(G) = 49 ρ(G) = 0.805, δ(G) = 35

|S| DEF DEFS DEF DEFS

100 14.0% 5.8% 12.4% 4.7%

250 23.3% 10.6% 21.2% 9.4%

500 26.1% 13.2% 23.1% 11.2%

750 29.6% 13.8% 24.5% 11.9%

1000 35.7% 14.9% 26.7% 12.5%

2500 62.0% 17.7% 50.8% 14.7%

5000 80.0% 23.3% 27.6% 20.9%
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Table 11: Results on 100-vertex graphs with different edge densities ρ(G) and graph

degrees δ(G). Parameters k = 50, ǫ = 0.2, and time limit = 1 hour. Average solution

time/optimality gap over 5 replications is reported.

ρ(G) = 1, δ(G) = 99 ρ(G) = 0.758, δ(G) = 65

|S| DEF DEFS DEF DEFS

100 35.9% 8.9% 20.5% 5.3%

250 44.2% 11.6% 27.2% 6.5%

500 55.3% 15.2% 36.4% 9.1%

750 55.9% 17.1% 40.3% 9.9%

1000 56.6% 18.3% 41.7% 11.6%

2500 - - - -

5000 - - - -

-: Failed to solve the LP relaxation within 1-hour time limit at root nodes.
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CHAPTER 7

SERVICE SYSTEM CAPACITY PLANNING UNDER DEMAND

UNCERTAINTY

Various risk measures have been developed to capture potential loss depending on

problem specific features and service provider’s risk preferences, as discussed in Sec-

tion 3.3. In this chapter, one of the most commonly used risk measures, mean out-

come, is adopted due to its ease of interpretation and popularity in applications.

Additionally, among model parameters, we assume only the demand rate is uncer-

tain throughout this chapter. We chose the commonly used system performance

measure–the average time a customer/transaction stays in the system for our study.

In Section 7.1, we present our study on the capacity planning problem of a facility

abstracted by a single-stage service system modeled by an M/M/1 queue. In Sec-

tion 7.2, we extend our study by investigating the capacity planning problem in a

two-stage service system.

7.1 Capacity Planning in a Single-Stage Service System

To begin with, a mathematical model is developed for the capacity planning problem

in a single-stage service system modeled by an M/M/1 queue. We analytically derive

optimal service rates for the model under the assumption that arrival rates vary

uniformly over a specified range. As managing information uncertainty is of significant

interest to practitioners, we next illustrate the concepts of cost of uncertainty in

arrival rate and minimum level of information quality via numerical experiments.
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7.1.1 Problem Formulation and Analytical Solutions

We assume that the overall design process is as follows: the range for an uncertain

demand rate is given, while the costs and other performance requirements are known

with certainty; the decision maker determines a service rate; the facility is then op-

erated with a realized demand rate according to an M/M/1 model; and the business

performance is finally measured for the realized model. To proceed, we first introduce

the notations used.

λλλ transaction arrival rate (modeled as a random variable)

[a, b] range over which λλλ is assumed to be uniformly dis-

tributed

µ transaction service rate (transactions per unit time)

T average time a transaction spends in the system

T̂ upper bound of T promised in SLA (unit time)

θ upper bound of server utilization, θ ∈ (0, 1)

λ̂ a realization of λλλ

c cost per unit increase in transaction service rate

Note that by assuming a uniform distribution for the transaction arrival rate over

the specified range, we are implying that we have no information besides its rage and

it is equally likely for the rate to take any value in the range.

All costs are measured in terms of accounting time unit (e.g., a month). Arrival

rate and service rate are measured in terms of operational time unit (e.g., an hour).

The design decision is service capacity µ which is the decision variable in our opti-

mization problem. Recall that in our problem setting the performance measure is

average time in system T , which is an often used performance metric in practice.

Specifically, T has to satisfy the following constraint.

T =
1

µ− λ̂
≤ T̂ (7.1)

Depending on the realizations of transaction arrival rate, λ̂, SLA may be violated
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for a chosen µ. Whenever constraint (7.1) is violated for a given combination (λ̂, µ),

we assume that a penalty is imposed on the service provider, according to his/her

agreement with the client firm. The definition of penalty functions depends on specific

business settings. For example, in the case of a high performance computing cluster,

the penalty is defined as the rate for compensating the user for failure to meet the

deadline (Chee Shin and Buyya, 2005). In e-commerce, a fixed charge could be used

as penalty whenever the response time to a customer request exceeds a prescribed

threshold (Liu et al., 2001). A brief review of typical penalty functions is presented

in (Kosinski et al., 2008).

Following one of the basic penalty types discussed in (Kosinski et al., 2008), we

define a stepwise penalty function based on the SLA requirement and the utilization

requirement. Since T is a function of the uncertain parameter λλλ and the decision

variable µ, the penalty imposed is a function of λλλ and µ as well. We denote it by

f(λλλ, µ). For a given arrival rate realization λ̂ and a given design decision µ, the

penalty function is defined as follows.

f(λ̂, µ) =





0, if SLA is satisfied and utilization is no more than θ;

H1, if SLA is violated but utilization is no more than θ;

H2, if utilization is greater than θ.

(7.2)

By the definition of penalty function in (7.2), when system performance measure

T satisfies SLA constraint (7.1), the penalty function value is zero. When T is greater

than T̂ but utilization requirement is satisfied, a penalty of amount H1 will be im-

posed on the service provider. If for some realizations of λλλ, the utilization requirement

is violated for a given design decision, a penalty of H2 will be charged. From a mod-

eling point of view, SLA requirement should be stricter than utilization requirement.

Hence, the following condition should hold through an appropriate selection of the θ

value during model development phase.
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Assumption 3 For any λ̂ ∈ [a, b], there does not exist a feasible capacity decision

such that SLA requirement is satisfied but utilization requirement is violated.

It should also be noted that H1 << H2, i.e., the penalty due to utilization require-

ment violation far exceeds that due to SLA violation. We consider the M/M/1 model

for the single-stage service system in this subsection. By Assumption 3, ∄µ ∈ R such

that 1

µ−λ̂
≤ T̂ and λ̂

µ
> θ for any λ̂ in the range of [a, b]. It further implies that

λ̂ + 1/T̂ ≥ λ̂/θ for any λ̂. Hence, θ ≥ bT̂
1+bT̂

, i.e., a minimum value should be imposed

on θ following Assumption 3. Intuitively, when such a minimum value approaches

1, i.e., the value of θ approaches 1 such that utilization requirement approximately

reduces to system stability requirement, SLA requirement is certainly stronger than

utilization requirement (system stability requirement).

Suppose the input parameters are T̂ = 0.2 and the uncertain parameter λλλ ∼

U [0, 25], where U [a, b] denotes the uniform distribution over the interval [a, b]. By

Assumption 3, θ ≥ 0.2 × 25/(1 + 0.2 × 25) = 0.83. We let θ = 0.85. For this

specific numerical example, a graphical representation of the penalty function (7.2)

is presented in Figure 6. The horizontal axis denotes realizations of the uncertain

parameter λλλ. The vertical axis denotes different decisions of system capacity. The

solid line outlines the area where utilization requirement is satisfied (above the solid

line) and the area where utilization requirement is violated (below the solid line). The

dashed line outlines the region where SLA is satisfied (above) and the region where

SLA is violated (below). The dotted line outlines the region where Assumption 3

holds valid (left) and the region where the assumption is violated (right). Values of

penalty for each region are also labeled in Figure 6.

The objective of the service system design problem is to identify the optimal

capacity µ such that the overall service cost and expected penalty is minimized.
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Figure 6: An illustration of the penalty function.

Therefore, the mathematical model can be described as follows in general.

min
µ∈R+

cµ + E[f(λλλ, µ)] (7.3)

Without loss of generality, we assume c = 1 because one can always normalize other

cost parameters (i.e., H1 and H2) based on service cost rate c. Optimal solutions

for model (7.3) for an appropriately chosen θ value are presented in the following

proposition.

Proposition 13 Given the design optimization problem modeled by formulation (7.3),

the optimal capacity is achieved at one of the following points: 0, a/θ, b/θ, a + 1/T̂ ,

and b + 1/T̂ .

Proof of Proposition 13. Since λλλ is uniformly distributed in the interval [a,b] and

E[f(λλλ, µ)] = H1P{1/(µ− λλλ) > T̂ and λλλ < θµ}+ H2P{λλλ ≥ θµ},

it follows that E[f(λλλ, µ)] can be expressed as a piecewise linear function w.r.t. µ as

in Equations (7.4) and (7.5) respectively depending on the value of θ.
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Case 1: bT̂
1+bT̂

≤ θ < min{1, bT̂
1+aT̂
}

E[f(λλλ, µ)] =






H2, 0 ≤ µ < a
θ
;

b−θµ
b−a

H2 + θµ−a
b−a

H1,
a
θ
≤ µ < a + 1

T̂
;

b−θµ
b−a

H2 + θµ−(µ−1/T̂ )
b−a

H1, a + 1
T̂
≤ µ < b

θ
;

b−(µ−1/T̂ )
b−a

H1,
b
θ
≤ µ < b + 1

T̂
;

0, b + 1
T̂
≤ µ.

(7.4)

Case 2: min{1, bT̂
1+aT̂
} ≤ θ < 1

E[f(λλλ, µ)] =





H2, 0 ≤ µ < a
θ
;

b−θµ
b−a

H2 + θµ−a
b−a

H1,
a
θ
≤ µ < b

θ
;

H1,
b
θ
≤ µ < a + 1

T̂
;

b−(µ−1/T̂ )
b−a

H1, a + 1

T̂
≤ µ < b + 1

T̂
;

0, b + 1
T̂
≤ µ.

(7.5)

Accordingly, a closed-form expression for the objective function in formulation

(7.3) can be obtained as well by adding the service cost term cµ to the above equations,

which is thus piecewise linear. Depending on the values of parameters a, b, T̂ , H1,

and H2, the optimal solution of model (7.3) will be one of the five break points: 0,

a/θ, b/θ, a + 1/T̂ , and b + 1/T̂ . This completes the proof.

According to Proposition 13, one can simply plug in the five candidates into model

(7.3) and obtain the optimal solution in a straightforward manner. It is worth noting

that when the optimum is achieved at µ = 0, the business solution is equivalent to

“do nothing”. In addition, complete look-up tables for the optimal solutions and

optimal objective values for the service system design problem formulated as (7.3)

can be analytically derived. We present the results in Table 12 and Table 13 for Case
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1 and Case 2 respectively. Furthermore, let

β = min{1, b− (b/θ − 1/T̂ )

b− a
}.

We can combine Table 12 and Table 13 and provide a consolidated Table 14 using

auxiliary parameter β, which serves as a clearly-defined quantitative guideline for

practitioners to effectively determine the optimal solutions using given parameter.

Table 12: Optimal solutions for formulation (7.3) when bT̂
1+bT̂

≤ θ < min{1, bT̂
1+aT̂
}.

Parameter conditions Optimal solution Optimal objective

H2 ≤ b−(b/θ−1/T̂ )
b−a

H1 + b/θ and

H2 ≤ b + 1/T̂

0 H2

H2 ≥ b−(b/θ−1/T̂ )
b−a

H1 + b/θ and b+

1/T̂ ≥ b−(b/θ−1/T̂ )
b−a

H1 + b/θ

b/θ b/θ + b−(b/θ−1/T̂ )
b−a

H1

H2 ≥ b+1/T̂ and b−(b/θ−1/T̂ )
b−a

H1 +

b/θ ≥ b + 1/T̂

b + 1/T̂ b + 1/T̂

Table 13: Optimal solutions for formulation (7.3) when min{1, bT̂
1+aT̂
} ≤ θ < 1.

Parameter conditions Optimal solution Optimal objective

H2 ≤ H1 + b/θ and H2 ≤ b + 1/T̂ 0 H2

H2 ≥ H1 + b/θ and b + 1/T̂ ≥ H1 + b/θ b/θ H1 + b/θ

H2 ≥ b + 1/T̂ and H1 + b/θ ≥ b + 1/T̂ b + 1/T̂ b + 1/T̂

In the next two subsections, we use the model developed and its optimal solutions

to illustrate two concepts to help manage information uncertainty when determining

the capacity of a service system. First, we use a baseline system with no uncertainty in

the input parameters, i.e., every parameter of the system is known with a single value.
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Table 14: Optimal solutions for formulation (7.3).

Parameter conditions Optimal solution Optimal objective

H2 ≤ βH1 + b/θ and H2 ≤ b + 1/T̂ 0 H2

H2 ≥ βH1 + b/θ and b + 1/T̂ ≥ βH1 + b/θ b/θ βH1 + b/θ

H2 ≥ b + 1/T̂ and βH1 + b/θ ≥ b + 1/T̂ b + 1/T̂ b + 1/T̂

We can optimize the baseline system according to a given cost objective. Similarly we

analyze the system with some uncertainty in the input parameters. The difference in

the optimal costs of the baseline and the uncertain system is the cost of uncertainty.

Uncertainty in the input parameters represents the quality of information we have

at design time. Often the quality of information can be improved, for example, by

investing in data collection efforts; the issue then is how much investment should be

made. Our analysis below provides some insights through a concept of minimum level

of information quality.

7.1.2 Cost of Uncertainty in Arrival Rate

We analyze the impact on the optimal objective function values when the range of

the arrival rate λλλ varies. First, take a numerical example where T̂ = 0.2. Suppose

the cost parameters are H1 = 7 and H2 = 150, i.e., H1 is seven times and H2 is

150 times the marginal service cost. We vary a in the range of [0, 25], b in the

range of [1, 50], imposing the condition that b ≥ a+ 1. In other words, we consider a

minimum interval length of 1 and a maximum interval length of 50. By Assumption 3,

θ ≥ bT̂
1+bT̂

, ∀b ∈ [1, 50]. Hence, θ ≥ 50T̂
1+50T̂

= 0.91. Graphs of the optimal cost versus a

and b are shown in Figure 7 for θ = 0.95 (left) and θ = 0.99 (right) respectively.

Three straightforward observations from Figure 7 are as follows: (1) For a fixed a

the optimal cost increases as the value of b increases because of higher average service
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Figure 7: A graphical presentation of optimal design costs for different ranges of

arrival rate when T̂ = 0.2, c = 1, H1 = 7, H2 = 150, and θ = 0.95 (left) or θ = 0.99

(right).
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load and a larger degree of uncertainty in the arrival rate. (2) For a fixed b, as the

value of a increases, the optimal service cost increases as well due to a higher average

service load despite a lower degree of uncertainty in the arrival rate. This shows that

uncertainty is a second order effect when compared to the first order effect of server

utilization. However, the rate of increase is much lower than that in case (1) because

of the offset from lower degree of uncertainty. (3) For the same a and b, the objective

value is larger when θ = 0.95 as opposed to θ = 0.99. In other words, the more averse

a service provider is towards high utilization rates, the more it costs to design the

system.

For a more detailed examination, the optimal objective function values of selected

cases of [a, b] when θ = 0.95 and 0.99 (a slice of the graphs in Figure 7) are shown

in Tables 15 and 16 respectively. All cases there have the same mean arrival rate

(midpoint of the range) but have different variability levels. The bottom row shows

the case of a fixed arrival rate, with zero uncertainty. The column “cost of uncertainty

in arrival rate” represents the difference in objective value of the row from the bottom

row of zero uncertainty. As can be seen, for instance, in Table 15, when the length of

the interval [a, b] decreases, the optimal solution µ∗ and the corresponding objective

function value are decreasing, though relatively slowly. When the range length drops

from 50 to 2, a decrease of 96%, the cost saving is 22.96, or 43%. The increase in cost

savings observed with decreasing uncertainty in the arrival rate is very encouraging

as higher service system capacities could involve a high capital investment, although

improving information quality could be quite challenging in practice.

7.1.3 Minimum Level of Information Quality

Continuing the above line of thought, when will the level of uncertainty in arrival

rate (as represented by the range [a, b]) be too high to handle? Conceptually, when

the level of uncertainty becomes very high, we will be better off by just paying the
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Table 15: A numerical presentation of optimal design costs for different ranges of

arrival rate when T̂ = 0.2, c = 1, H1 = 7, H2 = 150, and θ = 0.95.

a b Range length
Optimal solu-

tion (µ∗)

Optimal

objective

Cost of uncertainty

in arrival rate

0 50 50 52.63 52.96 22.96

4 46 42 48.42 48.85 18.85

8 42 34 44.21 44.78 14.78

12 38 26 40.00 40.81 10.81

16 34 18 35.79 37.04 7.04

20 30 10 31.58 33.97 3.97

24 26 2 31.00 31.00 1.00

25 25 0 30.00 30.00 0.00
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Table 16: A numerical presentation of optimal design costs for different ranges of

arrival rate when T̂ = 0.2, c = 1, H1 = 7, H2 = 150, and θ = 0.99.

a b Range length
Optimal solu-

tion (µ∗)

Optimal

objective

Cost of uncertainty

in arrival rate

0 50 50 50.51 51.13 21.13

4 46 42 46.46 47.22 17.22

8 42 34 42.42 43.37 13.37

12 38 26 38.38 39.63 9.63

16 34 18 34.34 36.15 6.15

20 30 10 30.30 33.59 3.59

24 26 2 31.00 31.00 1.00

25 25 0 30.00 30.00 0.00
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penalty of not satisfying the SLA in every time period rather than operating the

service system from a service provider’s perspective. But this is not a realistic option

as no customers will be served. Such a minimum level of information quality can be

calculated precisely from our model, an example of which is as follows.

Consider the single-stage model (7.3). It follows from Table 14 that when H2 ≤

b/θ + βH1 and H2 ≤ b + 1/T̂ where β = min{1, b−(b/θ−1/T̂ )
b−a

}, the optimal solution is

µ∗ = 0. That is, the model tells us not to operate the service system and instead

pay the penalty of not satisfying the SLA in every time period. This represents

the boundary condition of [a, b] under which the optimal decision is “do nothing”.

Strictly speaking, one should have another penalty scale H3 that accounts for the

lost opportunity of conducting business. However, when the utilization requirement

is violated, some transactions may have extremely long waiting times, so one may

argue that this is equivalent to not being in business. In any case, the concept

illustrated in this section is applicable even with an H3 penalty.

Again take the numerical example where T̂ = 0.2, H1 = 7, and H2 = 150, we plot

the region of a and b such that µ∗ = 0 when θ = 0.99 in Figure 8.

From Figure 8, for a given a, when b exceeds a certain threshold, the optimal

decision is “do nothing”. Meanwhile, for a given b, when a is smaller than a certain

value, it is optimal to do nothing. The shape of the region is complex due, in part,

to the compounding effect of utilization and uncertainty when a and/or b varies. If

the design requirements happen to fall in this region of “do nothing,” it means that

the information given is subject to high uncertainty; either we attempt to get better

information or we consider rejecting the business proposal. The boundary of this

region defines the minimum level of information quality (for the arrival rate in this

case) required for a sustainable business operation.

It is worth noting that for the same numerical example described in this subsection,

when the value θ is set to be 0.95 instead of 0.99, the set of combinations of a and b
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Figure 8: Shaded region defines a and b such that µ∗ = 0 when T̂ = 0.2, c = 1,

H1 = 7, H2 = 150, and θ = 0.99.
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such that our solution is “do nothing” (i.e., θ ≥ bT̂ /(1 + bT̂ ) and µ∗ = 0) is empty.

It indicates that when the service provider wants to impose a stricter control on the

system utilization, it becomes less likely that the business solution is “do nothing”

when all cost parameters remain the same.

Although this analysis is dependent on the structure of the penalty function

f(λλλ, µ), the concept of minimum level of information quality as defined this way

is generally applicable and will be useful regardless of the structure of the penalty

function.

7.2 Capacity Planning in a Two-Stage Service System

Multi-stage service systems that can be modeled as queuing networks, pose bigger

challenges for researchers/practitioners in determining the server capacity at each

stage. Due to their widespread applications in practice, we present our study for a

simple multi-stage system. We consider the special case of a tandem configuration

with two stages and a single external arrival process in this section.

7.2.1 Problem Formulation and Analytical Solutions

The tandem line system with two single-server nodes is depicted in Figure 9. To

Figure 9: A two-stage tandem line system.

describe the model formulation, we first introduce some additional notations. Let µ1

and µ2 denote the transaction service rate at server 1 and 2 respectively; c1 and c2

denote the cost per unit increase in service rate at server 1 and 2 respectively.
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Accordingly, the SLA requirement and penalty function are

T =
1

µ1 − λ̂
+

1

µ2 − λ̂
≤ T̂ (7.6)

and

f(λ̂, µ1, µ2) =





0, if SLA is satisfied and λ̂/µ1 ≤ θ and λ̂/µ2 ≤ θ;

H1, if SLA is violated and λ̂/µ1 ≤ θ and λ̂/µ2 ≤ θ;

H2, if λ̂/µ1 > θ and/or λ̂/µ2 > θ.

(7.7)

For this two-stage tandem line system, it follows from Assumption 3 that ∄(µ1, µ2) ∈

R2
+ such that 1/(µ1 − λ̂) + 1/(µ2 − λ̂) ≤ T̂ and λ̂/µ1 > θ and/or λ̂/µ2 > θ given any

λ̂ in the range of [a, b]. Similar to the case of single-stage system, we can derive that

the value of θ should be chosen such that θ ≥ (bT̂ )/(1 + bT̂ ). To identify the optimal

service rate such that the summation of penalty and service cost is minimized on the

average, we need to solve the following optimization model:

min
(µ1,µ2)∈R2

+

c1µ1 + c2µ2 + E[f(λλλ, µ1, µ2)]. (7.8)

Lemma 1 Given a tandem line system consisting of two single server queues with

exponential service time, an external Poisson arrival rate λ̂, and total capacity M

(M = µ1 + µ2) where M > 2λ̂, in order to minimize the average time a transaction

spends in the system, the optimal capacity allocation is µ∗
1 = µ∗

2 = M
2
.

Proof of Lemma 1. In order to satisfy stability conditions at both servers, a feasible

solution (µ1, µ2) must satisfy the conditions that µ1 > λ̂ and µ2 > λ̂. The average

time a transaction spends in the system is

T =
1

(µ1 − λ̂)
+

1

(µ2 − λ̂)
=

1

(µ1 − λ̂)
+

1

(M − µ1 − λ̂)

Take the derivative of the above function in the domain (λ̂,M−λ̂). We have T ′(µ1) <

0 when λ̂ < µ1 < M/2; T ′(µ1) = 0 when µ1 = M/2; T ′(µ1) > 0 when M/2 < µ1 <

M − λ̂. Therefore, the minimum T is achieved at µ1 = M/2 = µ2.
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An interesting question raised by Lemma 1 is whether the optimal service rate at

server 1 (µ∗
1) is equal to that at server 2 (µ∗

2) for formulation (7.8). Since arrival rate λ̂

is the same for server 1 and server 2 in a tandem line system, in the special case where

µ1 = µ2 is added as an extra constraint in formulation (7.8), the problem reduces

to the single M/M/1 capacity planning under uncertainty with SLA upper bound

modified as T̂ /2. As a result, the optimal solutions will follow look-up Table 14

presented in Section 7.1. For the general case where costs for the two servers are

balanced, we establish the following proposition.

Proposition 14 Given that c1 = c2, the optimal objective function value of formu-

lation (7.8) can be achieved at µ1 = µ2.

Proof of Proposition 14. Given a feasible solution to formulation (7.8) denoted by

(µ1, µ2). Without loss of generality, we assume µ1 > µ2 > 0. Let another feasible

solution be (µ1+µ2

2
, µ1+µ2

2
). It immediately follows that the service costs for these

two solutions are equal because c1 = c2. To compare the mean penalty, we examine

the penalty values at these two feasible solutions in the following three cases for an

arbitrary arrival realization λ̂.

Case 1 λ̂ < θµ2. We have λ̂/µ2 < θ and λ̂/µ1 < θ. It follows from Lemma 1

that T (µ1, µ2) > T (µ1+µ2

2
, µ1+µ2

2
). By definition of penalty function, f(λ̂, µ1, µ2) ≥

f(λ̂, µ1+µ2

2
, µ1+µ2

2
).

Case 2 θµ2 ≤ λ̂ < θµ1+µ2

2
. We have λ̂/µ2 ≥ θ and λ̂/(µ1+µ2

2
) < θ. At so-

lution (µ1, µ2), the penalty f(λ̂, µ1, µ2) = H2 by definition. On the other hand,

f(λ̂, µ1+µ2

2
, µ1+µ2

2
) = H1 or 0. It immediately follows that f(λ̂, µ1, µ2) > f(λ̂, µ1+µ2

2
, µ1+µ2

2
).

Case 3 λ̂ ≥ θµ1+µ2

2
. We have λ̂/µ2 > θ and λ̂/(µ1+µ2

2
) ≥ θ. It is obvious that

utilization requirement is violated at least at one of the servers for both feasible
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solutions (µ1, µ2) and (µ1+µ2

2
, µ1+µ2

2
). Therefore, the penalty value f(λ̂, µ1, µ2) =

f(λ̂, µ1+µ2

2
, µ1+µ2

2
) = H2.

Overall, the inequality f(λ̂, µ1, µ2) ≥ f(λ̂, µ1+µ2

2
, µ1+µ2

2
) holds for an arbitrary

realization λ̂. As a result, the objective function value for formulation (7.8) at solution

(µ1, µ2) is consistently greater than or equal to objective function value at solution

(µ1+µ2

2
, µ1+µ2

2
).

It is noteworthy that the optimal objective function value of formulation (7.8)

may also be achieved at other solutions where µ1 6= µ2. However, the benefit of

Proposition 14 is the following implication: In order to solve formulation (7.8) and

find an optimal solution where µ1 = µ2, one can decompose the two-stage problem

into two identical single-stage problems where input parameters all remain the same

except for T̂ , H1, and H2 which are now updated as half of their original values. Such

a decomposition approach enables a direct application of analytical solution look-up

Table 14 for the single-stage problem (7.3) to solve the two-stage problem here.

Now consider the generic imbalanced-cost case where c1 6= c2. Without loss of

generality, let c1 = c2 + c′ where c2 > 0 and c′ > 0.

Proposition 15 Given that c1 > c2, the inequality µ1 ≤ µ2 holds valid in every

optimal solution for formulation (7.8).

Proof of Proposition 15. Suppose µ1 > µ2, for a two-stage tandem line system with

two M/M/1 queues, swapping µ1 and µ2 will not change the average time a trans-

action/customer stays in the system. Therefore, the average penalty will remain un-

changed while the service cost will decrease after swap. In other words, the objective

value at solution (µ1, µ2) is greater than that at solution (µ2, µ1).
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7.2.2 Scenario-Based Grid Search

Intuitively, when the service rate increases, the penalty cost may decrease while the

service cost increases. Therefore, when c1 > c2, whether µ1 = µ2 or µ1 < µ2 is an

optimal solution depends on the trade-off between the decrease in penalty cost and

the increase in service cost. In this subsection, we conduct numerical experiments

following a scenario-based grid search approach to understand the trade-off.

Consider a numerical example where λλλ ∼ U [20, 30], H2 = 150, and T̂ = 0.24.

Accordingly, θ ≥ 0.878. Hence, suppose θ = 0.95. In the following, we adopt a

sampling based 2-dimensional grid search to solve formulation (7.8) in order to observe

the trade-off. We search in the range of [1, 100] at an increment of 0.1 for both µ1 and

µ2. We randomly generate 1,000 scenarios following a uniform distribution U [20, 30]

and assume each scenario is equally likely to realize (i.e., with probability of 0.001).

Numerical results are presented in Tables 17 and 18. From the two tables, we can see

that µ1 < µ2 is an optimal solution in the cases where the penalty decrease outweighs

the service cost increase, i.e., when penalty H1 is large (e.g., H1 = 30 in Table 17

instead of 7 in Table 18) or when service cost rate c2 is small (e.g., c2 ≤ 0.25 in

Table 18).

However, analytically deriving the optimal solutions when c1 > c2 is challenging.

This is partially because in our business problem, SLA requirement is imposed on the

overall system performance measure (i.e., T ) instead of individual server performance

measure. Hence, the decomposition idea, which has been shown to be applicable

when c1 = c2, is less applicable in general cases. Next, we present scenario-based

reformulations to solve the problem in a general setting.

7.2.3 Scenario-Based Reformulations

We start with a scenario-based reformulation for the single-stage problem formula-

tion (7.3). Given a set of samples of the arrival rate S = {λ̂1, λ̂2, . . . , λ̂N} where each
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Table 17: Numerical results for the two-stage tandem line system with λλλ ∼ U [20, 30],

θ = 0.95, T̂ = 0.24, H1 = 30, and H2 = 150.

c1 c2 Optimal solution(µ∗
1) Optimal solution(µ∗

2) Optimal objective

1 0.05 35.3 49.4 37.77

1 0.1 35.5 47.1 40.21

1 0.15 35.8 44.4 42.52

1 0.2 36 43.6 44.72

1 0.25 36.1 42.2 46.86

1 0.3 36.3 41.5 48.96

1 0.35 36.5 40.9 51.025

1 0.4 36.5 40.9 53.07

1 0.45 36.7 40.4 55.09

1 0.5 36.7 40.4 57.11

1 0.55 37.2 39.4 59.08

1 0.6 37.2 39.4 61.05

1 0.65 37.2 39.4 63.02

1 0.7 37.6 38.8 64.97

1 0.75 37.6 38.8 66.91

1 0.8 37.6 38.8 68.85

1 0.85 37.6 38.8 70.79

1 0.9 38 38.3 72.71

1 0.95 38 38.3 74.625
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Table 18: Numerical results for the two-stage tandem line system with λλλ ∼ U [20, 30],

θ = 0.95, T̂ = 0.24, H1 = 7, and H2 = 150.

c1 c2 Optimal solution(µ∗
1) Optimal solution(µ∗

2) Optimal objective

1 0.05 31.6 45.6 36.358

1 0.1 31.6 40.8 38.473

1 0.15 31.6 38.2 40.438

1 0.2 31.6 38.2 42.348

1 0.25 31.6 32.7 44.129

1 0.3 31.6 31.6 45.714

1 0.35 31.6 31.6 47.294

1 0.4 31.6 31.6 48.874

1 0.45 31.6 31.6 50.454

1 0.5 31.6 31.6 52.034

1 0.55 31.6 31.6 53.614

1 0.6 31.6 31.6 55.194

1 0.65 31.6 31.6 56.774

1 0.7 31.6 31.6 58.354

1 0.75 31.6 31.6 59.934

1 0.8 31.6 31.6 61.514

1 0.85 31.6 31.6 63.094

1 0.9 31.6 31.6 64.674

1 0.95 31.6 31.6 66.254
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sample λ̂s has a probability of occurrence of πs, formulation (7.3) can be rewritten

as,

min cµ +
∑

s∈S

πs(H1ys + H2zs) (7.9a)

s.t. 1− T̂µ + T̂ λ̂s ≤Ms(ys + zs), ∀s ∈ S (7.9b)

λ̂s − µθ ≤ M̂szs, ∀s ∈ S (7.9c)

ys, zs ∈ {0, 1}, ∀s ∈ S (7.9d)

µ ≥ 0 (7.9e)

where Ms and M̂s are sufficiently large values (“big-M”). As shown above, we intro-

duce extra binary decision variables ys and zs for each scenario s ∈ S. When zs = 1,

constraints (7.9c) and (7.9b) become redundant. When zs = 0, constraint (7.9c) im-

poses utilization requirement to be satisfied. Between ys and zs, the minimization

process always pushes zs to be zero first as H2 >> H1. When ys is further pushed to

be zero, constraint (7.9c) becomes equivalent to the SLA requirement. In this setting,

we can let Ms = 1 + T̂ λ̂s, ∀s ∈ S and M̂s = λ̂s, ∀s ∈ S for the sake of convenience. In

practice, there often is a maximum service rate a service provider can achieve due to

physical/economical limitation. Therefore, one can include an upper bound for the

decision variable µ in formulation (7.9) when necessary.

In addition to ys and zs, let us introduce two more binary decision variables ẑs

and z̄s for each s ∈ S. We can similarly present a scenario based reformulation for

the two-stage service system design model (7.8) as follows.

min c1µ1 + c2µ2 +
∑

s∈S

πs(H1ys + H2zs) (7.10a)

s.t. (µ1 − λ̂s) + (µ2 − λ̂s) + T̂ [(µ1 + µ2)λ̂s − λ̂2
s]

−T̂ µ1µ2 ≤Ms(ys + zs), ∀s ∈ S (7.10b)

λ̂s − µ1θ ≤ M̂sẑs, ∀s ∈ S (7.10c)
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λ̂s − µ2θ ≤ M̄sz̄s, ∀s ∈ S (7.10d)

zs ≥ ẑs, zs ≥ z̄s, ∀s ∈ S (7.10e)

ys, zs, ẑs, z̄s ∈ {0, 1}, ∀s ∈ S (7.10f)

µ1, µ2 ≥ 0 (7.10g)

Again parameters Ms, M̂s, M̄s are sufficiently large values. Constraints (7.10c)-

(7.10e) together imply that zs = 0 when both ẑs = 0 and z̄s = 0, while zs = 1 when

at least one of the variables ẑs and z̄s is equal to 1. In other words, penalty H2 is

avoided when the utilization requirement is satisfied at both server 1 and server 2,

while penalty H2 is incurred when the utilization requirement is violated at one or

more servers. Constraint (7.10b) implies penalty of H1 is avoided for a given solution

(µ1, µ2) and scenario s when both SLA requirement and utilization requirement are

satisfied; penalty of H1 is incurred when SLA requirement is satisfied but utilization

requirement is violated at either/both of the two servers. Like the single-stage case,

upper bounds on µ1 and µ2 can be included in the model if required by practical

considerations.

However, the formulation above has a bilinear term µ1µ2 in Constraint (7.10b).

Variables µ1 and µ2 are both continuous variables. We adopt a piecewise linear

approximation approach for functions of two variables called the triangle method (see

Vielma et al. (2010); D’Ambrosio et al. (2010)) to linearize the bilinear term µ1µ2.

The piecewise linear approximation for a one-variable nonlinear function can be

obtained by introducing an adequate number of sampling coordinates and then ap-

proximate each interval with linear functions. The triangle method for a bilinear

function is essentially an extension of the technique for the one-dimensional case to

two dimensions.

Let g(µ1, µ2) = µ1µ2. Consider p sampling coordinates µ11, . . . , µ1p on the µ1

axis and q sampling coordinates µ21, . . . , µ2q on the µ2 axis. Consider the rectangle
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corresponding to interval [µ1i, µ1,i+1] and [µ2j , µ2,j+1] where i = 1, . . . , p, j = 1, . . . , q.

We create binary decision variables hu
ij , h

ℓ
ij for the upper and lower triangle of each

rectangle and continuous decision variables βij ∈ [0, 1] for every breakpoint/vertex of

the rectangle. Then the piecewise linear approximation for g, denoted by ĝ can be

characterized by

ĝ =

p∑

i=1

q∑

j=1

βijg(µ1i, µ2j),

together with the following constraints

p∑

i=1

q∑

j=1

βij = 1

p−1∑

i=1

q−1∑

j=1

(hu
ij + hℓ

ij) = 1

βij ≤ hu
ij + hℓ

ij + hu
i−1,j−1 + hℓ

i−1,j−1 + hℓ
i−1,j + hu

i,j−1∀i = 1, . . . , p, j = 1, . . . , q

where µ1 =
p∑

i=1

q∑
j=1

βijµ1i, µ2 =
p∑

i=1

q∑
j=1

βijµ2j, and the dummy values hℓ
0,j = hu

0,j =

hℓ
i,0 = hu

i,0 = hℓ
p,j = hu

p,j = hℓ
i,q = hu

i,q = 0. The interested reader is referred to

D’Ambrosio et al. (2010) for modeling details.

Thus, we obtain the piecewise linear approximation based on the triangle method

for formulation (7.10) as follows.

min c1

p∑

i=1

q∑

j=1

βijµ1i + c2

p∑

i=1

q∑

j=1

βijµ2j +
∑

s∈S

πs(H1ys + H2zs) (7.12a)

s.t. (

p∑

i=1

q∑

j=1

βijµ1i +

p∑

i=1

q∑

j=1

βijµ2j)(1 + T̂ λ̂s)− 2λ̂s − T̂ λ̂2
s

− T̂

p∑

i=1

q∑

j=1

βijµ1iµ2j ≤Ms(ys + zs), ∀s ∈ S (7.12b)

λ̂s − θ

p∑

i=1

q∑

j=1

βijµ1i ≤ M̂sẑs, ∀s ∈ S (7.12c)

λ̂s − θ

p∑

i=1

q∑

j=1

βijµ2j ≤ M̄sz̄s, ∀s ∈ S (7.12d)

zs ≥ ẑs, zs ≥ z̄s, ∀s ∈ S (7.12e)

ys, zs, ẑs, z̄s ∈ {0, 1}, ∀s ∈ S (7.12f)
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p∑

i=1

q∑

j=1

βij = 1 (7.12g)

p−1∑

i=1

q−1∑

j=1

(hu
ij + hℓ

ij) = 1 (7.12h)

βij ≤ hu
ij + hℓ

ij + hu
i−1,j−1 + hℓ

i−1,j−1 + hℓ
i−1,j + hu

i,j−1

∀i = 1, . . . , p, j = 1, . . . , q (7.12i)

βij ∈ [0, 1], ∀i = 1, . . . , p, j = 1, . . . , q (7.12j)

hu
ij , h

ℓ
ij ∈ {0, 1}, ∀i = 1, . . . , p− 1, j = 1, . . . , q − 1 (7.12k)

7.2.4 Computational Experience for Scenario-Based Reformulations

In this subsection, we present our computational experiments for the scenario-based

reformulations. We first present the computational settings of our experiments, fol-

lowed by some numerical results from the scenario-based reformulation of the single-

stage service system design problem. Our objective is to draw insights on the solution

quality when the sample size varies by comparing our computational results with the

analytical results. Last but not the least, we present computational results from the

scenario-based reformulation of the two-stage service system design problem.

We consider solving formulation (7.9) for different ranges of arrival rate. For each

given range, we randomly generate equally likely samples of three different sizes, i.e.,

500, 1000, and 2000. For every instance (i.e., a given arrival rate range and a given

sample size), we generate and test 5 replications (or 5 different sets of sample pool).

We also impose a 1-hour time limit for each replication, for each instance. All exper-

iments are conducted on a 64-bit Linux system with eight Intel Xeon E5620 2.40GHz

processors and 96GB RAM. Gurobir Optimizer v6.0 is used as the MILP solver. All

implementations inherited the default settings for branching, node selection, general

purpose cutting planes, preprocessing and heuristics. We report statistics (average

optimal solutions and average optimal objective values) based on the replications that
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solved to optimality under the time limit.

The results for formulation (7.9) are presented in Table 19. Our observations from

the table can be summarized as follows.

1. Comparison with the analytical optimal solutions reported in the last column

(i.e., “Analytical solutions”), the scenario-based optimization model provides

optimal solution with good accuracy. For instance, for the widest range we

tested, [0, 50], the optimal objective is 52.81 when sample size is only 500 while

the analytical optimal solution is 52.96.

2. For a given instance, as sample size increases, the reported optimal objective

value approaches the analytical optimal objective value. However, the difference

is not significant with the maximum absolute difference of optimal objective

value in percentage being 0.28%.

Due to the second observation above, we choose |S| = 500 in our experiments for

the two-stage reformulation (7.10). We take the same numerical example as in Sub-

section 7.2.2 where λλλ ∼ U [20, 30], H2 = 150, T̂ = 0.24, and θ = 0.95. Similar to the

grid search approach, we consider 1000 sampling coordinates across the range of [1,

100] along µ1 and µ2 axis respectively. We found that for the same input parameters

values (H1, c1, and c2) as presented in Table 18, Gurobi optimizer invariably ran into

the problem of “out of memory.” This indicates that the scenario-based reformu-

lation approach is computationally more expensive compared to the scenario-based

grid search approach, though it may yield better solutions. Additionally, better com-

putational performance of the scenario-based approach, especially for the two-stage

problem, may be achieved by manually tuning the Gurobi R© optimizer.
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Table 19: Optimal design solutions and costs for the scenario-based single-stage ser-

vice design formulation under different number of samples and different ranges of

arrival rate when T̂ = 0.2, H1 = 7, H2 = 150, and θ = 0.95.

Number of samples

a b Range Length Measure 500 1000 2000 Analytical solutions

0 50 50 optimal rate 52.55 52.56 52.61 52.63

optimal cost 52.81 52.95 52.93 52.96

4 46 42 optimal rate 48.28 48.37 48.40 48.42

optimal cost 48.82 48.82 48.82 48.85

8 42 34 optimal rate 44.14 44.18 44.19 44.21

optimal cost 44.73 44.73 44.77 44.78

12 38 26 optimal rate 39.96 39.99 39.99 40.00

optimal cost 40.76 40.76 40.85 40.81

16 34 18 optimal rate 35.76 35.77 35.78 35.79

optimal cost 37.13 37.03 36.99 37.04

20 30 10 optimal rate 31.61 31.61 31.59∗ 31.58

optimal cost 33.92 34.07 34.00∗ 33.97

24 26 2 optimal rate 31.00 31.00 31.00 31.00

optimal cost 31.00 31.00 31.00 31.00

*: Only feasible solution is returned within time limit for each of the 5 replications of this

instance. All 5 replications of other instances reported in this table are solved to optimality

within less than 5 minutes.
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CHAPTER 8

SUMMARY AND FUTURE WORK

In this final chapter, we provide a summary of the research carried out in this disser-

tation effort, research contributions made, and some directions for future research.

8.1 Summary of Research

Throughout this dissertation, we focus on developing modeling methodologies and

solution techniques for system design problems under uncertainty. Considerable em-

phasis has been placed on developing useful stochastic models using different risk

measures and effective methods through analytical and computational study for (1)

network design problem with connectivity and diameter requirements under proba-

bilistic edge failures, and (2) capacity planning problem in a service system under

uncertain demand rate.

To begin with, we study a combinatorial optimization problem called the mini-

mum spanning k-core problem, which can be used to design networks that maintain

their (low) diameter upon deletion of a vertex or an edge. With the deterministic

version known to be polynomially solvable, we study the problem specifically under

probabilistic edge failures.

In Chapter 5, a CVaR-constrained model is formulated in the stochastic setting

using convex piecewise linear loss functions based on cumulative and maximum con-

straint violation. Polyhedral reformulations of the CVaR constraint for the afore-

mentioned loss functions are then introduced, which allows us to extend a recent

and successful decomposition approach to CVaR optimization with linear loss func-
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tions (Künzi-Bay and Mayer, 2006). Based on the reformulations, we develop a de-

composition and branch-and-cut algorithm and evaluate two versions of this approach

against two existing approaches from literature. Through numerical experiments, we

find that the decomposition and branch-and-cut approach, when emphasis is placed

on the initialization with cutting planes from the reformulation, offers significant

computational advantages compared to the other approaches.

In Chapter 6, we formulate the chance-constrained spanning k-core problem to

obtain resilient designs. We establish the intractability of the formulated problem by

showing that it is NP-hard even in the special case where each scenario is equally

likely to happen. We conduct a polyhedral study on the CCSkCP polytope and

develop a strengthened formulation via lifting. Our numerical study shows that the

strengthened formulation is computationally advantageous.

Chapter 7 presents our study on the capacity planning problem in a service sys-

tem represented by queueing models under uncertain demand rate. First, a stochastic

model is formulated for the single-stage system represented by M/M/1 to minimize

the summation of service cost and mean penalty due to violation of prescribed system

requirements. Analytical optimal solutions are derived under the assumption that de-

mand rate is uniformly distributed in a given interval. We conduct a numerical study

to illustrate the concepts of “cost of uncertainty in demand rate” and “minimum

level of information quality” which are of interest to practitioners in particular. Sub-

sequently, we investigate the capacity planning problem of a two-stage service system

modeled as a tandem line system with two single server nodes. A similar stochastic

model is formulated. While the optimal capacity can be obtained analytically under

the condition that the cost rate of the two servers are equal, to determine the optimal

capacity when this condition is violated appears to be more challenging. We develop

two scenario-based approaches, i.e., grid search and mathematical reformulation, to

solve this model.
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As summarized above, we have looked into different stochastic models and adopted

conditional-value-at-risk, chance constraint (i.e., failure probability), and mean as risk

measures in Chapters 5, 6, and 7 respectively. In the following, we first provide a

high-level summary on model selection for system design under uncertainty, followed

by a discussion about the computational characteristics of different stochastic models.

Modeling. A system design where input parameters are subject to uncertainty

can be obtained by solving various stochastic models involving different risk measures.

Some of the commonly used risk measures are mean, mean-variance, worst case, fail-

ure probability, value-at-risk and conditional-value-at-risk. Different risk measures

demonstrate different statistical features and different levels of computational chal-

lenges. The choice of a risk measure (and a corresponding stochastic model) depends

mostly on problem-specific features and users’ risk preferences. Figure 10 provides a

view of which modeling approach should be considered under different circumstances.

The reactive approach, where one replaces an uncertain parameter with a nominal

value, may be also informative and be considered as a basic step to be used alongside

any of the other proactive approaches. The different proactive approaches will yield

different solutions which may not be entirely intuitive. It is therefore of some value

to see all the different solutions, especially when the business impact of the design

problem is significant. A practitioner has to also balance the effort in building a

possibly very sophisticated model versus finding information to narrow down the

uncertainty in input parameters. Narrowing the range of the uncertain parameter,

coupled with more straightforward reactive approach may make a better strategy in

practice when computational resources and expertise are limited.

Computational Characteristics. In addition to problem-specific features and

users’ risk preferences, computational challenges should also be considered when

choosing a modeling approach. For fundamental models, e.g., M/M/1 with expected

penalty as risk measure, analytical solution could be derived under the assumption
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Figure 10: Choice of modeling approaches.
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that arrival rate is uniformly distributed in a given range. However, for more general

models, deriving analytical solutions becomes challenging, which is why our focus

was to develop computational techniques for CVaR- and chance-constrained models

in Chapters 5 and 6 respectively. Between CVaR-constrained model and chance-

constrained model, the former is relatively easier to cope with computationally either

in the continuous case with linear penalty function (Künzi-Bay and Mayer, 2006) or

the discrete case with convex piecewise linear penalty function (Ma et al., 2015) while

the latter is more challenging as showed in Chapter 6.

8.2 Research Contributions

Firstly, we investigate the minimum spanning k-core problem in a probabilistic set-

ting. We exploit the graph-theoretic properties of this model to introduce a new

approach to resilient inter-hub network design that preserves connectivity and diam-

eter under limited edge failures. We first study a conditional-value-at-risk constrained

optimization model to obtain risk-averse solutions for the minimum spanning k-core

problem under probabilistic edge failures. We investigate if a polynomial number of

scenarios are sufficient to approximate CVaR of the convex piecewise linear loss func-

tions we aim to employ in our formulation. Polyhedral reformulation of the CVaR

constraint for piecewise linear loss functions is investigated in this dissertation. A

decomposition and branch-and-cut approach is designed to solve the scenario-based

approximation of the CVaR-constrained minimum spanning k-core problem.

The second stochastic optimization problem we study is the chance-constrained

minimum spanning k-core problem. The complexity of this problem is established. In

addition, a polyhedral study is conducted, which ultimately leads to effective solution

techniques, contributing to the state-of-art of both chance-constrained programming

and resilient network design.

In the capacity planning problem of a single-stage or two-stage system, it is critical
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for a service provider to control the risk of violating system performance requirements

specified in service level agreement while minimizing the system configuration and op-

erational cost. While one can model such systems using queuing models, to determine

the optimal capacity is challenging for researchers/practitioners due to the nonlinear-

ity of system performance measures and due to the uncertainty in demand rate. Our

study in this regard enhances the literature of service system design by developing

analytical solutions and computational techniques.

8.3 Future Work

Chapter 5 serves as a first study of the CVaR-constrained minimum spanning k-

core problem focused only on using cutting planes based on the reformulation of the

CVaR constraint. It would likely be computationally beneficial, especially for large-

scale networks, if the facet-inducing inequalities of the deterministic version are also

employed in the branch-and-cut, particularly during the early stages of branching.

While the complexity of the deterministic version is settled, the complexity of the

CVaR constrained version is still open. From a modeling perspective, it would be

interesting to study the r-robust 2-club based designs (Veremyev and Boginski, 2012)

that directly capture the requirements of 2-hop resilient network design.

Following the research in Chapter 6, a significant future research direction is the

use of blossom inequalities in solving the CCkCP. Given a rational vector (x∗, z∗) ∈

[0, 1]m×{0, 1}N outside the CCkCP polytope, to identify a CCkCP-blossom inequality

that cuts off (x∗, z∗) or prove that no such inequality exists, can be converted to a

blossom inequality separation problem for general capacitated b-matching polyhedra

(Padberg and Rao, 1982; Letchford et al., 2008).

Separating a blossom inequality, as proved by Padberg and Rao (1982), is equiva-

lent to solving a minimum odd cut-set problem on a specially constructed graph, for

which they developed a polynomial algorithm based a minor modification of Gomory-
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Hu algorithm for the minimum cut-set problem. A minimum cut-set problem on a

finite undirected graph G = (V,E) is to find a partition of V into two nonempty

subsets V1 and V2 such that the weight of the induced cut is minimum. Suppose V

has been partitioned into two classes of nodes called odd and even and suppose a

node subset is labeled odd if it contains odd number of odd nodes (assuming |V | is

even), a minimum odd cut-set problem is to find a partition of V into two nonempty

odd subsets V1 and V2 such that the the weight of the induced cut is minimal.

The algorithm Padberg and Rao (1982) proposed can run in O(n2m log(n2/m))

for uncapacitated b-matching and in O(nm2 log(n2/m)) for capacitated b-matching.

Recently Letchford et al. (2008) developed a new version based again on the Gomory-

Hu algorithm, which can run in O(n2m log(n2/m)) for the capacitated case. Note that

Gomory-Hu algorithm is readily available in graph library LEMON1.

Chapter 7 on the single-stage and two-stage service system design serves as a

first step in studying the capacity planning problem in a multi-stage service sys-

tem modeled either as an m-stage tandem queueing system or a queueing network.

As scenario-based grid search and scenario-based reformulation each have their own

limitations, developing heuristic approaches to obtain near optimal solutions for the

capacity planning problem in a multi-stage system is an interesting direction for

future research. A potential solution approach along this line is to appropriately

“apportion” the overall SLA requirement to the individual stages, solve the capacity

planning problem of a single-stage system separately for each stage, and then “ag-

gregate” the solutions from different stages to construct a solution for the multistage

system. Although this solution approach may only provide approximate solutions,

our exploratory numerical experiments indicate that this approach holds promise for

yielding good practical solutions2.

1LEMON: Library for Efficient Modeling and Optimization in Networks. http://lemon.cs.elte.hu/
2Personal communication with Dr. Ying Tat Leung
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