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CHAPTER I 

INTRODUCTION 

A valuation is a generalization of the absolute value function of 

the real numbers. This notion was probably first sparked by Kurt 

Hensel in 1908 in his book Theorie der Algebraischen Zahlen, Hensel 

introduced a new number field called the field of p-adic numbers. His 

treatment was somewhat ;informal and intuitive (cf. MacDuffee [12 ], 

p. 501). Later in 1913, J, Kurschak was interested in the formulation 

of an absolute value type function on an arbitrary field. He wanted 

the function to have the same basic properties as the absolute value 

functions on the real and complex numbers, The problem was solved by 

merely postulating such a function. That is, if given a field F then 

let I l:F~R be a real valued function such that lxl~O, lx!=O if, and 

only if x=O, lxyl=lxl IYI and lx+yl~lxl+IYI· It is now popular to treat 

Hensel's p-adic numbers as the completion of the rational numbers with 

respect to a special kind of absolute value (valuation) of the ration-

als. This completion process is similar to the development of real 

numbers by Cauchy sequences (cf. MacDuffee [12], p. 501). 

However, many of Kurschak's conservative contemporaries were 

disgusted with his newly concocted absolute value or valuation. They 

considered it as a disreputable trick because he postulated what he 

wanted to get. It almost seemed that Kurschak with a divine wave of 
;.~· 

the hand had said, "Let there be absolute values," and there were 
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absoiute values (cf. Bell [4], p. 160). But, it can be shown that 

every field has at least one valuation, and also the idea~ of Hensel 

and Kursohak have generated a rich theory Qf valuations. Valuations 

have played an important role in the development of algebraiq number 

theory and algebraic geometry (cf. Bachman [2], p. v). Some of the 

mathematicians that have since contributed to the development of valua­

tion theory include Chevalley, Krull, Ostrowski, Cohen, and Zariski 

(cf. Schilling [16], p. iv). 

In Chapter II of this paper many of the basic ideas concerning 

valuations of rank n are introduced, Ordered groups of rank n, places, 

valuation rings, and non-archimedian valuations are some of the topics 

included. Many exampleq of these structures and mappings are given. 

It is shown that there is a one-to-one correspondence between places 

and non-archimedian valuations up to an isomorphism. The framework for 

the study of valuations is constructed in this chapter. 

Much work has been done on the subject of rank one valuations, and 

in particular on rank one non-archimedian valuations. In fact many 

writers require a valuation to be a rank one non-archimedian valuation 

or at least require it to be rank one (cf. McCarthy [14], Borevich and 

Shafarevich [5] and Cassels and Frohlich [7]). Chapter III is concerned 

with rank one valuations. In this chapter it is shown that a rank one 

ordered group is iso~orphic to a subgroup of the multiplicative group 

of positive real numbers, and from this it is shown how a definition of 

a rank one valuation such as Kurschak's is a specialization of the 

definition of a rank n valuation. Also, a rank one valuation is char­

acterized when the non-archimedian property is assumed, and a non­

archimedian valuation is charaqterized when rank one is assumed. The 



notions of convergence of sequences and completeness of a field with 

respect to a rank one valuation are p~esented. Final\y the chapter 

concludes with a discussion of equivalent valuations. 

Chapter IV deals with some of the standard extension problems 

concerning mappings that resemble valuations, places and valuations. 

The chapter ends with a uniqueness theorem concerning the extension of 

a rank one non-archimedian valuation. 

3 

The main sources of information that are used in the paper are the 

works by Artin [1], Bachman [2], and Schilling [16]. 



CHAPTER II 

VALUATIONS or GENERAL RANK 

Ordered Groups 

Before formulating a general definition of a valuation, the 

concept of an ordered group will be considered. 

Definition 2.1. Let G be a multiplicative group. G is an ordered 

group if, and only if there exists a normal subsemigroup S of G such 

that G = sur1}us-
1 

where s- 1 = fa- 1 E G j a Es} ands, P} and s- 1 

are mutually di~joint. 

An example of an ordered group is the group G of all positive real 

numbers under the operation of multiplication. This can.be shown by 

letting S = [a E GI a< l}. 
-1 

Then it follows thc;tt G =- SUfl}US where 

S, [l} and S-l are mutually d~sjoint. 

An order relation} can be defined on an ordered group G. Let 

a, b E G. 
-1 

Define a~ b if, and only if c1- b ES, where a 1: b means 

a 1'. b or a = b • 

Theorem 2.2. Let G be an o~dered group. Then 

(<1-) a, b E G imply a~ b or a~ b orb} a 

(b) a, b, E G, a~ band b} c imply a~ c 

-1 -1 
(c) a, b E G and a} b imply b ~ a 

(d) a, b, c, d E G, a~ band c 1 dimply ac ~ bd and qa ~ db. 
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Proof: 

(a) a, b E G implies ab-l E G = SLJCl}LJS-l since G is a group. There-

(b) 

(c) 

(d) 

fore, ab-l is in Sor is equal to 1 or is in s- 1 . If ab -1 . . is in 

S then a~ b. If ab-l = 1 then a= b. If ab-l is in S-l then 

(ab-l)-l = ba-l is in S which implies b ~ a. 

-1 -1 -1 
a~ band b ~ c imply ab ES and be ES which imply ac = 

(ab- 1)(bc- 1
) ES since Sis a semigroup, This implies a~ c. 

~1 -1 -1 -1 
a~ b implies ab ES which implies b a= b (ab )b since Sis 

-1 -1 
normal; hence b ~ a . 

-1 -1 -1 a~ band c =dimply ab ·ES which implies c(ab )c ES sin~e 

S is normal. 
-1 

Therefore, (ca)(cb) ES, and so ca~ ~b which 

imp lies ca ~ db . -1 -1 -1 Also, a(cc )b = (ac)(bc) ES; thus ac ~ be 

and ac ~ bd. If c -~ d then ac ~ be and be~ bd, Then ac ~ bd by 

part (b). Similarly it can be shown that ca~ db. 

In the ordered group G of all positive real numbers the order 

relationship~ is the same as the nat~ral ordering<. This is true 

because a < b if, and only i:I: ab -l E S if, and only if ab -l < 1 if, 

and only if a< b. 

Theorem 2.3 .. Every non-trivial ordered group is infinite. 

Proof: Let G be a non-trivial ordered group. Let a E G .. Suppose 

1. ~ a. 
n 

It can be shown by induction that 1 ~ a for any positive 

integer n. The statement is certainly true for n = 1. Assume true 

f 1 Th . · 1· 1 ~ n h f 1 ~a~ an+l by or some n ~ • 1s imp ies ~a. T ere ore, ~ ~ 

Theorem 2.1 (d) and (b). In a similar way it can be shown that 

an~ 1 for any negative integer n. Now, suppose a~ 1. Again by 

induction it follows that an~ 1 for any positive integer n, and 
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n n 1 ~ a. for any negative integer n. Therefore, if a I- 1 then a -/: 1 for 

any. non~zero integer n. 

Consider the sequence ta.n} where a E G and a f 1. Suppose there 

n m exists two positive integers n a.nd m such that n f m but a = a . Then 

n~ n a = 1. This contradicts the above result that a. f 1 for any non-

zero integer n. l'his implies that G contains a sequence of dis t.inct 

terms and is therefore infinite. 

The following corollary is a result of the proof of this theorem. 

Corollary 2~. The only element of an ordered group that has fi.ni te 

order is the group identity. 

Valua.tions 

Now a general definition of a valuation can be constructed. The 

notion of an ordered grou,p is important in the discussion bec,;1use a 

valuation is a mapping from a.n arbitrary field onto an ordered group 

and an additional element. The definition is stated formally as 

follows: 

Defi.nit_ion 2..5. Let K be a field and G an ordered group with an 

additional operation defined on it which is denoted by+. Let z be an 

additional element for G such that for all a E G, z ~ a, az = za = z 

and a + z = z + a = a. A valuation is a mapping v:K ..... GLJ[z} such that 

v(K) = GIJ[z} and 

(a) v(a) = z if, and only if a O 

(b) v(ab) = v(a)v(b) 

(c)v(a+b) i v(a) + v(b). 

The group G :i,s sometimes called the value group of v. 
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It should be pointed out that an extra operation can always be 

introduced on an ordered group, for let a+ b = max (a,b). This is 

well defined because exactly one of the following wtll be true: a~ b, 

a= b, orb~ a. Also, c max (a,b) = max (ca, cb) and max (a,b)c = 

max (ac,bc). This implies c(a+b) =ca+ cb and (a+b)c = ac + be. If 

this max operation is used then (c) in Definition 2.5 becomes 

v(a+b) _! max (v(a), v(b)). This property is given a special name. 

Definition 2.6. If a valuation v has the property v(a+b) _! 

max (v(a), v(b)) then vis said to be a non-archimedian valuation. 

Consider the absolute value function 11 :R - GLJfO} where R is the 

field of real numbers and G is the ordered multiplicative group of 

positive real numbers. It is easily verified that j I is a valuation. 

Also, the f~nction t:K ~ tl} Utz} where K is a field and tis defined 

as t(a) = 1 if a f O and t(O) = z is a valuation known as the trivial 

valuation, The valuation tis also non-archimedian, Let a, b ER. 

If a# 0 orb# 0 then t(a) = 1 or t(b) = 1. This implies t(a+b) ~ 1 = 

max ( t(a), t(b)). If a = b O then t(a+b) = t(o) = z = 

max (t(a)., t(b)). The next three theorems are modifications of some 

theorems and problems in Baclunan [2]. 

Theorem 2.7. Let v:K ~ GLJfz} be a valuation. Then 

(a) v(l) = v(-1) = 1 and v(pa) = v(a) 

(b) v(a/b) = v(a)/v(b) if bf o. 

Proof: 

(a) First of all, v(l) = v(l·l) = v(l)v(l) which implies v(l) = 1. 

Secondly, 1 = v (c-1/) = v
2 

( ~ 1) which implies v (-.1) = 1 by 



(b) 

Corollary 2.4. Also, v(-a) = v(-l·a) = v(-l)v(a) = v(a). 

-1 
Let b EK such that b ~ 0. Then v(b b) = v(l) = 1. !his implies 

v(b~ 1)v(b) = 1 which implies v(b-l) = 1/v(b). Therefore, v(a/b) = 

v(ab -l) = v(a) ·v(b -l) = v(a) ( 1/v(b)) = v(a)/v(b). 

Theorem 2.8. The only valuation of a finite field is the trivial 

valuation. 

Proof: Let v:K ... GLJ(z} be a valuation defined on a finite field 

K = Cal' ••• , ap, an+l}. Let a E K such that a ~ O. Then an = 1 which 

implies that vn(a) F v(an) = v(l) = 1 by Theorem 2.7. 1'his implies 

v(a) = 1 by Corollary 2.4. Therefore, vis the trivial valuation. 

Theorem 2.9. If v:K ... GLJrz} is a non-archimedian valuation the~ 

v(a1 + ••• +an)! max (v(a1), .~., v(ari)). If v(aj) 1 v(a1) for 

j = 2, •.• , n then v(a1 + •.. +an)= v(a1). 

Proof: Let Cai} be a sequence of el~ments of K. Then v(a1 + ..• + an) 

l max (v(a1), •• L, v(an)) for n = 2 since vis non-archimedian. Assume 

true for some n :2: 2. Now, v(a1 + ... + an + an+l) .! 

max (v(a1 + ••• +an)• v(an+-1)) _! max (max(v(a1), ••• ,v(an)), v(an+ 1))= 

max (v(a1), ... , v(an), v(an+l)). Therefore, it has been shown by 

induction that the first part of the theorem is true. 

Now, let a 1, ... , c1-n E K such that v(a.j) ~ v(a1) for j = 2, •..• n. 

Then v(a1) = v((a1 + ... +an) - (a2 + .•. + a
0
)) £ 

max (v(a1 + ... + an), v(a2 + ... + an)). If v(a1 + ... + an) ~ 

then v(a1) £ v(a2 + •.. +an),! 

v(an)). This contradicts the fact that v(aj) ~ v(a1) 



max (v(a1), v(a2), ... , v(an)) = v(a1). Hence, v(a1) = 

v(a1 +, .• +an). 

Valuation Rings and Places 

Valuation rings and places play an important role in the develop-

ment of the theory of valuations. It will be shown that there is more 

9 

or less a one-to-one correspondence between valuation ri~gs and places, 

and later if: will be shown that there is a similar relationship between 

valuation rings and non-archimedian valuations. Most of the theorems 

in this section can be found in Artin [1] and Bachman [2]. 

Definition 2.10. A subring V of a field K is called a valuation ring 

-1 I -1 if, and only if a EK - V implies a EV. Let P = (a EV a l V} 

and let U = V - P. Pis called the set of non-units of V, and U is 

called the set of units of V. 

A trivial example of a valuation ring of a field K would be the 

ring V = K. The following example which can be found in Artin [1] is 

much more interesting. 

Example 2.11. Let Q be the field of ratiqnal numbers. Let p be a 

fixed prime integer. Assume that ever:y element of a/b of Q is in 

reduced form. Let V = (a/b E Q Ip f b}. If a/b, c/d EV then pf bd 

since pf band pf d;· hence a/b - c/d = (ad - bc)/bd EV and 

(a/b)(c/d) = (ac)/(bd) EV. Therefore, Vis a subring of Q. 

Now, suppose a/b E Q - V. This implies that p I b, and sop fa 

since (a,b) = 1. Thu~, (a/b)-l = b/a EV which makes Va valuation 

ring. Also, P = [a/b EV I b/a l V} = [a/b EV Ip I a}, and 

U = V - P = [a/b EV Ip fa}. 
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Theorem 2.12, Let V be a valuation ring in a field K. Then 

(a) 

(b) 

(c) 

The set of non-units P of Vis a unique maximal ideal of V. 

The set of units U of Vis a multiplicative group. 

-1 -1 
The field K is equal to PLJUU (P-{0}) and P,U and (P - {O}) are 

mutually disjoint. 

Proo:f: 

(a) The ring V contains the field unity element, otherwise 1 EK - V 

which implies 1 = (1)-l EV, a c;ontradiction. Let a,b E P. This 

-1 -1 
implies a ,b f V and a-b EV. Suppose a/b EV. Then a/b-1 EV. 

. -1 1 1 Now, (a-b) f V, otherwise b- = (a-b)- (a/b-1) EV, which is a 

,it '·t.ontrad'!t,\tioa. Therefore, a-b E P; Suppose a/bf V. Then 

b/a EV, and by a similar argument it can again be shown that 

a-b E P. 

. L~t a E V and b E P. 
-1 This means that ab E V, but b f V . 

Therefore, ab E P, and Pis ari ideal of V. 

-1 
a(ab) E V. 

The ideal Pis not equal to V since 1 e P. Let I be an ideal 

o:E V such that Pc: I. Let a EI - P. Then a-l EV and a- 1a EI 

since I is an ideal. Therefore, 1 EI and I= V. Thus Pis a 

maximal ideal of V. 

Let I be another maximal ideal of V. Suppose the~e exists 

a EI - P. 
-1 -1 Then a EV, and 1 = a a EI. Therefore, I = V 

which contradicts the fact that I is a maximal ideal of V. Hence, 

I - P = (p or I \:.'. P. But, this implies I = P since P :/:. V and. I is 

maximal. Thus, Pis a unique maximal ideal of V. 

(b) Let a,b EU. Then a; b, a- 1, b-l EV. Therefore, ab- 1, a-lb EV. 

Thus, ab-l, (ab-l)-l EV which implies that ab-l EU. Hence U is 



a multiplicative subgroup of the field K. 

(c) By Definition 2.10, V =PU U with P and U disjoint. Therefore, 

to prove (c) it only remains to show that K - V = (P - (0})- 1 , 

-1 definition of 
-1 -1 

Let x EK - V. Then x EV by v. But, (x ) = 

11 

x f. -1 Thus, -1 V c: (P - {0})-1. V, so x · E P. x E (P - ro}) and K -

.If x E (P - roJ)"'l then x -1 E P which implies -1 E V, but x = x 

(x-l)-l f. V. Therefore, x EK - V and (P - CO})-l £:;K - V. 

-1 
Hence, K - V = (P - CO}) • 

This theorem implies that Pis a prime ideal in V because a 

maximal ideal of a commutative ring with unity is also a prime ideal 

(cf. Barnes [3], p, 125). 

Definition 2.13. Let Kand F be fields. A map cp:K ..... FU (oo} ;is 

called a place if, and only if 

-1 
(a) cp (F) =Vis a ring 

(b) cp Iv is a non-trivial homomorphism 

(c) If cp (a) = oo then cp (a -l) = O. 

Let p be prime in Z, the ring of integers. It is known that Z is 

a principal ideal domain (cf. Barnes [3], p. 112). Therefore, (p), the 

ideal generated by p, is a maximal ideal in Z. This implies Z/(p) is a 

field (cf. Barnes [3], p. 126). Let V be the ring defined in Example 

2 .11. Define a mapping cp:Q ... Z/ (p)LJ[oo } in the following way, Let a 

denote the coset which contai,ni;:; a. Let~ (a/b) = ;/b if a/b EV. If 

a/bl V then let cp(a/b) oo. Now, certainly q,-l (z/ (p)) is a ring, 

namely V, Let a/b, c/d EV. Then tp(a/b + c/d) = (ad+ be) I (bd) = 

ad I bd + be / bci = cp(a/b) + cp (c/d). Also, cp (a/b·c/d) = ac I bd = 

(;/b)(;/d) = cp (a/b) cp (c/d). Therefore, cp IV is a homomorphism. 
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It is non-trivial since cp(l) = 1 ~ 0. If cp(a/b) = co then a/bf V. 

This implies p I b, b/a = (a/b)-l EV and cp(b/a) = b/a = o. Thus, cp h 

an example of a place. 

Theorem 2.14. For every place there exists an associated valuation 

ring, and for every valuation ring there is an associated place. 

.Proof: Let cp:K .... FU(oo} be a place. 
-1 

Let V = cp (F). Vis a subring 

of F by definition. If a E K, but a f V then cp(a) = oo • Hence, 

cp(a- 1) = 0 E F. Therefore, a-l E co-l(F) = V, and Vis a valuation 

ring. 

Let V be a valuation ring in a field K. Let P be the unique 

maximal ideal of V. Let the field VIP be denoted by F. Define a 

mapping cp:K .... FLJf oo} in the following way. Let cp (a)= a, the coset 

which contains a, if a E V, and cp(a) = co if a f V. It can ;eadil,.,;b~ 

verified that cp is a place, for cp- 1(F) = V, a ring, cp(a+b) = ;+:i; = 

a+ b = cp(a) + cp(b) if a,b E V, cp(ab) = ab :: ab= cp(a)co(b) if a,b E V, 

and if cp(a) = co then a EK - V which implies a-l E P; thus cp (a-l) = 

a- 1 = 0. 

Theorem 2.15. Let V be a valuation ring in the fields K1 and K2 . Let 

-1 cp1 :K1 .... F1U(oo} and cp2 :K2 .... F2u(oo} be two places such that cp1 (;F'1) = 

-1 co2 (F2) = V. Then there exists an isomorphism i, between co1 (V) and 

co2 (V) such that i (co1 (a)) = cp2(a). 

Proof: Let a E P, the unique maximal ideal of V. -1 
Thus, a E K1 - V 

-1 and cp1 (a ) = oo • Therefore, cp1 (a) = 0 since cp1 is a place. This 

means that cp1 (P) = O. 

cp1 (a) = 0. Now, if a 

Similarly, cp2 (P) = 0. Now, let a EV such that 

-1 -1 
f P then a EV and cp1 (1) = cp(a a ) = 
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-1 I cp(a)cp(a ) = O. This means that cp1 Vis a trivial homomorphism, a 

contradiction since cp1 is a place, Thus, a E P, and the kernal of 

q,1 Iv is P. Likewise it can be shown that the kernal of q,2 IV is P, 

Define i:q,1 (V) - $ 2(V) as i(cp1(a)) = cp2(a) for all cp1(a) E cp1(V). 

Let cp1(a),cp1(b) E cp1(v). Then i(cp1(a) + cp1 (b)) = i(q,1(a+b)) = 

cpi<a+b) = cp2(a) + cp2(b) = i(cp1 (a))+ i ( $ 1 (b)). Also, 

i(cp1(a)q'i(b))= i( cp1(ab)) = cp2(ab) = cp2(a)cp2 (b) = i(cp1(a))6- cp2(b)). 

If cp1(a) = cp1 (b) then cp1(a-b) = 0 which implies a-b E P; hence 

cp2 (a-b) = 0 which implies i(cp1 (a)) = cp2(a) = cp2(b) = i(q\ (b)). Thus, 

i is well defined. If ~
1

(a) = 0 then a E P which implies cp2(a) = 0, 

The function i is clearly onto; hence i is an isomorphism. 

Theorem 2,16. For every non-archimedian valuation there exists an 

associated valuation ring, and for every valuation ring there exists 

an associated non-archimedian valuation. 

Proof: Let v:K - GLJ(z} be a non-archimedian valuation. Let V = 

[a EK ! v(a) 1 l}. Let a,b EV. Then v(a-b) 1 max (v(a),v(b)) l 1, 

and v(ab) = v(a)v(b) l l·l = 1. Therefore, a-b, ab EV, and Vis a 

subring of K. Now, let a EK - V. This implies 1 l v(a), Hence, 

-1 -1 Theorems 2.7 and 2.2 imply v(a ) = 1/v(a) ,:: 1. Therefore, a EV, 

and Vis a valuation ring. Also, it should be pointed out that P = 

(a EV I v(a),:: l} is the set of non-units of V, This is true because 

if a E P then 1,:: v(a- 1) which implies a-l i V and because if a EV and 

a-l i V then 1,:: v(a- 1) which implies v(a) ~ 1. It follows that the. 

~roup of non-units is U = v - P = ra EV v(a) = l}. 

Now, let V be a valuation ring in a field K. Let P and Ube the 

non-units and units of V respectively .. It will now be established that 
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the multiplicative quotient group G = (K - (O})/U is an ordered group. 

Let S = {; E G I a E (P - [ 0})} . l f a, b E S then a, b E (P .. f O}) ; 

whence v(a), v(b) ~ 1. This implies v(ab) = v(a)v(b) ~ 1. Therefore, 

-ab ES, and Sis a subsemigroup of G. Sis normal since G is abelian. 

It is clear that SLJ(l}US-l S G. Theorem 2.12 implies K - (O} = 

(P - (O}LJUU(P - (0})-
1

• Therefore, if a E G then a EK - (O} which 

implies a E (P - (O}) or a EU or a E (P - f0})- 1. l'hus a ES or 

a= l or a-l E (P - fO}). If a-l E (P - (O}) then 1/a =;=-IE S, and 

so a E s- 1. Hence, a E SU(l}LJS-l and G = SLJ(l}US-l. Also, S,. (1} and 

-1 
S are mutually disjoint since (K - fO}) is the union of (P - fO}, U 

and (P - (O})-l which are mutually disjoint. Therefore, G is an 

ordered group. 

Let z be an additional element such that z ~ a and az = za = z for 

all a E G. Let v:K - GLJ(z} be a mapping defined as follows: v(a) = a 

if a IO, and v(O) = z. Now, it will be shown that vis a non-

archimedian valuation. It is clear that v(a) = z if, and only if 

a= O. Also, v(ab) = ;i;- =ab= v(a)v(b). It now remains to show 

that v(a+b) 1 max (v(a), v(b)). Let a,b E (K - (O}) and s~ppo~e 

v(a) ~ v(b). This implies;~ b, and so ab-l ES by definition of~. 

-1 -1 -1 Thus, ab E (P - £0} s; V, and 1 + ab EV. Hence, 1 + ab = 0 or 

1 + ab-l E (P - fO} or 1 + ab-l EU. -1 Therefore, v(l+ab ) = z or 

-1 -1 - -1 v(l+ab ) E S or v(l+ab ) = 1 .. Hence, v(l+ab ) 1 1. Then 

-1 ) v(b)v(l+ab ) ~ v(b) which implies v(a+b) ~ v(b) = max (v(a),v(b) • 

If v(b) ~ v(a) then the argument is similar. If v(a) = v(b) then 

a= b, and ab-1 = 1. -1 Therefore, ab EU s; V, and again the argument 

is similar. If a= 0 then v(a+.b) = v(b) = max (z,v(b)) = 

max (v(a),v(b)). If b = 0 the argument is similar. Therefore, Vis 



a non-archimedian valuation. 

archimedian valuations such that v 1 and v2 have the same associated 

valuation ring V. Then there exists an isomorphism i:v1(K1 - [O})~ 

v2<K2 - [O}) such that i(vl (a)) = Vz(a) . 

. Proof: Let V = [a E K1 I v1(a) ~ 1} = [a E K2 v2(a) .~ 1} be the 

common valuation ring of v 1 and v2 . .Let P and u be the non-units and 

units of V. The set u is the kernal of v 1 and v2. That is, u = 

fa E K1 I ~l(a) = l} = [a E K2 I v2(a) = 1}. Also, Vl (Kl - (O}) and 
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v2 (K2 - [O}) are multiplicative subgroups of G1 and G2 since v
1 

and v2 

are group homomorphisms on the multiplicative groups (K1 - [O}) and 

(K2 - [O}) • 

. Now, define a mapping i :v1 (K1 - [ O}) ~ v 2 (K2 - [ O}) :as follows: 

i(v1 (a)) = v2(a). If v 1 (a) = v 1 (b) then v1 (a/b) = v1 (a)/v2(b) = 1. 

This implies a/b E U which implies v2(a)/v2(b) = v2(a/b) = 1. There­

fore, v 2 (a) = v2(b) which implies that i is well defined. Clearly i is 

onto, and i ( v 1 (a)v1 (b)) = i(v1 (ab)) = v2(ab) = v2(a)v2(b) = 

i(v1(a))i(v1(b)) •. If i(v1(a)) = 1 then v2(a) = 1, and so a EU. 

Therefore, v1(a) = 1; hence i is an isomorphism. 

The last four theorems which can be found in Artin [1] and 

Bachman [2] state that each valuation ring determines a place (non-

archimedLan valuation), unique up to an isomorphism, and each place 

(non-archimedian valuation) determines a valuation ring. This implies 

that there is a type of one-to-one correspondence between valuation 

rings and non-archimedian valuations. It follows that each place 

determines a non-archimedian valuation, and vice versa. The pl~ces and 



valuations are paired by finding their common valuation ring. This 

discussion motivates the following definition. 

Definition 2.18. Two places (or non-archimedian valuations) are said 

to be equivalent if, and only if they determine the same valuation 

rings. 

Clearly equivalence of places (or non-archimedian valuations) is 

an equivalence relation. 

Rank 

In this section the/potion of rank will be introduced. The rank 

of an ordered group will be defined which will be related to the 

definition of the rank of a valuation. In order to establish these 

definitions, isolated subgroups will be considered. 

Definition 2.19. A subgroup Hof an ordered group G is called an 

-1 
isolated subgroup if, and only if a E G, b E H and b . l ,a 1 b imply 

a EH. 

In every ordered group G the subgroups G and [i} are isolated. 

Definition 2.20. Let G be an ordered group. The number of isolated 

subgroups of G ~ifferent from G is called the rank of G. 

Let G be the multiplicative group of positive reals. Let~=< 

be the natural ordering on G .. Suppose His a non-trivial isolated 
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subgroup of G. , Let b E G such that 1 < b. Let x E (H - [1}) •. If 

-1 
x > 1 then x < 1. Therefore, there exists an element a --E H such that 

a < 1. 
-1 

Thus, a< band 1 < a • The Archimedian Principle implies 
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-n 
that there exists an integer n such that b < a 

n 
However, a <a< 1 

which implies an< b < a-n, and sob EH. If b > 1 it can again be 

shown that b EH by similar reasoning. If b = 1 then b EH since His 

a subgroup. Therefore, G = H, and G is an example of a rank one 

ordered group. 

Theorem 2.21 •. Let G be an ordered group. Let H1 and H2 be isolated 

Proof: Suppos~ H
1 

is not a subset of H2• Then there exists 

EH H h . ' 1' h -l E E' h 1 ~ 1 ~ -l x 1 - 2 . Tis imp ies tat x H1 - H2 .. it er ~ x or ~ x 

by Theorem 2.2. Let y E H2 such that 1); y. If 1 ix then y ix, 

otherwise x ); y which implies y-l 1 1 _! x ,1; y, and so x E H
2 

since H
2 

is isolated, which is a contradiction. Therefore, x-l i 1 J; y ix 

which implies y E H1 since H1 is isolated. Let y E H2 such that y i 1. 

-1 -1 
Then 1 i y , and y E H1 by the above argument. It now follows that 

y E H1 since H1 is a group. Thus, it has been shown that H2 c H
1 

if, 

1 ix. Similarly it can be shown that H
2 

C H
1 

if 1 i x- 1 • Therefore, 

The above theorem was taken from Artin [1]. The next example was 

motivated by an example in Schilling [16], p. 7.· 

Example 2.22 .. Let Z be the integers. Let G3 = [(a,b~c) I a,b,c E Z}. 

G
3 

is a group under the additive operation defined as (a,b,c) + (d,e,f) 

= (a+d, b+e, c+f). The group G
3 

can be ordered by the so called 

lexicographic ordering in the following way. Let s
3 

= 

[(a,b,c) E G I a< O} U C(O,b,c) E G I b < O} U [(O,O,c) I c < O}. It 

is clear that s3 is a normal subsemigroup of G
3

• Let 
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(-S
3

) = [s E G3} I - s E s3J. If (a,b,c) E G and (a,b,c) l 

s
3 

U [(0,0,0)} then a> 0 or a= 0 and~'.> 0 or i = h.=-0 and c > O. 

If ,a.:> 0 .then:-a <.0 which impHes:.-{a, h~ c) = (~; -b, -c) E ·s
3
.' IL 

a = 0 an.d b > 0 then -b < 0 and -(a,b,c) = (0,-b,-c) E s3 • If 

a = b = O and c > 0 then -c < 0 and -(a,b,c) = (0,0,-c) E s3 . There-

fore, G3 = S3 U [ (0,0,0)} U (-S) 
3 

which implies G
3 

is ordered. As 

usual the ordering is defined as (a,b,c) i (d,e,f) if, and only if 

(a,b 1 c) - (d,e,f) = (a-d, b-e, c-f) E s3• Hence, (a,b,c) i (d,e,f) if, 

and only if a< d orb< e when a= d or c < f when a= d and b = e. 

Next it will be shown that the subgroups H1 = [(o,b,c) I b,c E Z}, 

H2 = f(O,O,c) c E Z} and H
3 

= f(O,O,O)} are isolated subgroups of G3 • 

Let (x,y,z) E G such that there exists (O,b,c) E H1 where -(0,b,c) ~ 

(x,y,z) ~ (O,b,c). This implies that O ~ x ~ 0, and so x = 0 which 

implies (x,y,z) E H1• If there exists (0,0,c) E H2 where -(0,0,c) ~ 

(x,y,z) ~ (0,0,c) then O ~ x ~ 0, and so x = 0 which implies O .~ y ~ 0. 

Therefore, x = y = 0 and (x,y,z) E H2• If -(0,0,0) ~ (x,y,z) ~ (0,0,0) 

then (x,y,z) = (O,O,O) by Theorem 2.2. Hence, Hl' H2 and H3 are 

isolated. 

Now it will be established that Hl' H2 and H3 are the only iso­

lated subgroups of G
3 

different from G
3 

itself. Assume there exists an 

isolated subgroup K of G3 such that K 1 H1, H2, H3• If Kc H2 then 

there exists (O,O,c) E H2 - K. Also, -(0,0,c) = (0,0,-c) E H2 - K. 

Either c > 0 or -c > 0. Let (0,0,z) EK such that z > O. If c > 0 

then there exists n E Z such that nz > c. It now follows that 

-(0,0,nz) ~ (O,O,c)} (O,O,nz). Thus, (O,O,c) EK since K is isolated, 

but this is a contradiction. By an analogous argument a contradiction 

would be reached if -c > 0. Therefore, K is not a subset pf H2. 
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Using this fact and the same type of reasoning it can be shown that K 

is not a subset of H1 . Hence, Theorem 2.21 implies H
3 

c H2 c H1 c K . 

. Let (x,y,z) E G
3

. If x = 0 then (x,y,z) E H1 c:: K. If x > 0 then let 

(a,b,c) EK such that a> O. Then there exists n E Z such that na > x. 

This implies that -(na,nb,nc) ~ (x,y,z) 1 (na,nb,nc), and so 

(x,y,z) EK. If x < 0 then a similar argument would again show that 

(x,y,z) EK. Therefore, G
3 

= K. 

It has been shown that G
3 

is an ordered group with exactly three 

isolated subgroups distinct fro~ G
3

, that is, G
3 

has rank three. This 

notion can be generalized, and a group of rank n, where n is a positive 

integer can be exhibited. Le t G = (( a 1, • . . , a ) I a . E Z } • 
n n i 

Let S = 
n 

[(a1, •.• ,an) E Gn I a 1 < O} U ((O,a 2, •.. ,an) E Gn I a 2 < O} U ... U 

[(o,o, ... ,a., ... ,a) E G a.< o} u ... u ((o,o, •.• ,o,a) E G I 
i n n i n n 

a < O} •. It can be shown that G = S U [(0,0, •.. ,0)} LJ (-S) where n . n n n 

the union is disjoint. Thus, G is ordered lexicographically. Like­
n 

wise it can be shown that G has exactly the following isolated 
n 

subgroups. They are H
1 

= [ (O,a2, o •• ,an) I ai E z}, H2 = 

[(o,o,a3,···,an) I ai E Z}, •.. , Hn-1 = [(o,o, ••. ,o,an) I an E z}, 

H = ((0,0, •.. ,0)} and G itself. Therefore, G is an ordered group n n n 

of rank n. 

It has been shown that an ordered group of rank n exists where n 

is an arbitrary positive integer. The next example illustrates an 

ordered group of infinite rank. 

Example 2.23. Let Gm be the set of all sequences of real numbers. 

Define addition in Gm in the following way. Let (a 1 + [b 1 = n· · n· 

ta + b }. It can readily be shown that Gm is an additive group. n n 
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(a} E G such. that ran} f. s u fe} where e is the sequence with each 
n 

term equal to zero. If a. is the first non-zero term o;E (a } than 
J n 

a. > o. This implies -a < 0, and -[a}= r-a} Es. Hence, 
J j n n 

disjoint union of S, [e} and (-S). Therefore, Goo is an ordered group 

a. < b. where i is the first integer such that a. 'f b .• 
J. J. i J. 

Let :i, be a positive integer. Define H. 
J. 

= {ran} E G I al= a2 = 

= a. = 0 }· ,Clearly H. is a subgroup of Goo. Let [ai) E H. and 
J. J. J. 

-0 implies O = -a2 ~ b2 ~ a2 = 0 implies •.• implies O = -ai ~bi~ ai = 

0. This implies [b} EH., and so H. is isolated. Also, if j is a 
n i i 

positive integer such that i I j then it can be shown that Hi 'f Ej. 

Suppose i < j. Then the sequence [a } , where a = 0 for all n 'f j and 
n n 

aj = 1, is an element of Hi, but [an} f: Hj, Therefore, Gos has 

infinitely many isolated subgroups, Hence, Goo has infinite rank. 

Definition 2.24 .. Let v:F - G LJ [z} be a valuation on the field F. 

Let n be a positive integer. Then vis said to have rank n if, and 

only if the ordered group G has rank n. 

Example 2.25 •. Let G3 be the ordered group of three-tuples of integers 

discussed in Example 2.22. Let F = R(x,y,z). That is, Fis the field 



of rational .functions in the three variables x, y and z. Let f E F. 

Then f can be written as f = xo:. yS zY a (x,y,z) l b (x,y,z) where 

a(x,y,z) and b(x,y,z) are polynomials, but x,y,z f- a(x,y,z) and 

x, y, z + b (x, y, z), and o::, S, and y are integers either positive, 
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negative or zero. Define v:F ~ c3 U fz} as follows: v(f) = (~, S, y) 

if f 'f O and v(O) = z. It will now be shown that vis a valuation. 

Let g = xa yb zc p (x,y,z) l q (x,y,z) where p and q are polynomials, 

but x,y,z + p and x,y,z t q. Then v(fg) = v(xoq.. a yS+b zy+c ap / bq) = 

(o:..+a, S+b, ytc) = v(f) + v(g). This satisfies condition (b) of 

Definition 2.5 since G is an additive group. Also, v(f+g) = 

V ( [xo:.y13 zY aq+ xa yb zc bp] l bq'L= (min(o:.,a), min(S,b), min(y,c~. 

Now suppose (0:.,13,y) ~ (a,b,c). Then o:. < a or cc= \a and 13 < b or o:. = a, 

13 = b and y < c. If o:. < a then v(f+g) = f, min(l3,b), min(y,c)) ~ 

(a,b,c). If o:. = a and 13 < b then v(f+g) = (a,13, min(y,c)) ~ (a,b,c). 

If o:. = a, 13 = b and y < c then v(f+g) = (a',b,y) ~ (a,b,c). Therefore, 

v(f+g) 1 max (v(f), v(g)). The argument is similar if (a,b,c) ~ 

(0:.,13,y). The function vis onto since v(xo:. yS zY) = (0:.,13,y) for. all 

(0:.,13,y) E c3 . Hence, vis a non-archimedian rank three valuation. 

In a similar manner a non-archimedian rank n valuation could be 

constructed on F = R(x1, x
2

, ... , xn), the field of rational functions 

inn variables, onto Gn = ((ap ... , an) I ai E;ZJ. 

It seems, however', that the most inter es ting valuations are of 

rank one and are non-archimedian. The trivial valuation is non-

archimedian. The absolute value function on the reals is of rank one, 

but it is archimedian, These and other rank one valuations will be 

discussed in the next chapter. 



,CHAPTER III 

RANK ONE VALUATIONS 

Rank One Ordered Groups 

In the last chapter the concept of an ordered group of general 

rank was introduced. The aim of this section is to consider some of 

the properties of rank one ordered groups, and in particular to show 

that every rank one ordered group is isomorphic to a subgroup of the 

additive real numbers. First, an archimedian ordered group will be 

defined. 

Definition 3.1. Let G be an ordered group. If for every a,b E G with 

1} a there exists an integer n such that b ~ an then G is said to be 

archimedian. 

Theorem 3.2. If G is an archimedian ordered group then for any a,b E G 

n 
with 1} a thereexi,sts an integer n > 1 such that b ~a. 

Proof: 
2 2 

If b ~ 1 then b ~ a since 1 ~a~ a. In this case let n = 2. 

k If 1 ~ b then there exists k such that b ~ a since G is archimedian. 

The integer k is greater than zero, otherwise k s: 0 which implies 

k k 
a 11 ~ b. However, this contradicts the fact that b ~a. Therefore, 

k + 1 > 1, so let n·= k + 1. 

The proof of the next theorem is a modification of one found in 

Schilling [ 16 J. 

22 
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Theorem 3.3 .. Let G be an ordered group. G is archimedian if, and only 

if G is of rank one. 

Proof: Suppose G is archimedian. Let H be an isolated subgroup of G 

such that H # {1}. Let a E G. Let b EH such that 1 ~ b. If 1 ~ a 

n then there exists an n such that a~ b since G is archimedian. Thus, 

b-n ~a~ bn. Therefore, a EH since His isolated. If a~ 1 then 

1 ~ -l d h · k h ha b-k ~ a-l ~ bk. ~ a , an t ere exists sue t t ~ ~ H a -l E H ence, 

which implies a EH. If a= 1 then a EH since His a group. It now 

follows that G c:: Hor that G = H. Therefore, G is of rank one. 

Now suppose G is of rank one, but not archimedian. Then there 

n exists a, b E G such that 1 .~ a ~ b but a _! b for every integer n. 

Let S = [x E GI 1 ~ x and x ~ an for some integer n}. If x,y ES then 

n m 
there exist integers n and m such that 1 ~ x ~ a and 1 ~ y ~a. This 

implies that 1 ~ xy ~ an+m, and so xy ES. Therefore, Sis a semigroup. 

Let H be the subgroup generated by S. Then His the set of all 

finite products of powers of elements in s (i.e. x E H if, and only if 

iTx. 
Pi 

:){,: = where x. E s for all i E I, pi is an integer for all i E 
iEI 1 1 

and I is a finite index set). It follows that for any x EH, x can 

also be represented as a finite product, iT 
iEI 

pi 
x. , where p. = + 1 and 

1 1 

x. ES for all i EI, since Sis a semigroup. 
1 

It will now be shown that His a proper isolated subgroup of G. 

This will contradict the statement that. G is of rank one and will 

complete the proof of the theorem. The subgroup H# P} since 
p· 

'IT b. 1 where I is 
iEI 

1 
a ES c: H. Now assume b E H. This implies b = 

I 
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finite, b. ES and p. = + 1. If p. = -1 then b.Pi} 1. If p. = 1 then i i - i i i 

Thus, b } 1T ani where J = [iEI I pi = 1}. Hence, b ): an where 
iEJ 

n = I ni, a contradiction. Therefore, His a proper subgroup of G. 
iEJ 

-1 Let x E Gandy EH such that y l xl y. Thus, there exists a 

positive integer n, elements y. ES for i = 1, 2, 
i 

P . = + 1 for i = 1, 2, •.. , n such that y -pn 
i - n 

... ' n and integers 

Y Ply P2 yPn 
1 2 "· n However, it can be shown, by using an argument 

similar to the one ~hove, that there exists an integer k such that 

x -~ ak. If 1 -~ x then x ES c: H. If x} 1 then 1 ~ x-l .i; 

y
1
Pl y

2
P2 ••• y~n, and so again there exists an integer k such that 

k -1 x ~a. This implies that x ES c: Hand x EH. If x = 1 then x EH 

since His a group. Hence, His isolated, and the theorem is proved. 

Theorem 3.4. Let G be an ordered group. Let a E G such that 1 ~ a 

then 

(a) 
n m a.} a if,. and only if n < m. 

(b) If G is archimedian and b E G then there exists a smallest integer 

m m-1 m m such that b ~ a and a lb~ a. 

Proof: 

(a) 
2 If 1 ~ a and k is an integer such that k > 0 then 1): a} a } ..• 

} ak by Theorem 2.2. Suppose m ~ n; thus O :c;; n:-- m·. , rbi.s•imllies 

1 . \.- . a· n -m h · h · 1 · m \.- n Th f · f n \.- · m h ~ w ic imp ies a -~a. ere ore, i a ~ a ten n < m. 

If n < m then O < m-n which implies 1} am-n. n m Thus, a } a. 



(b) There exists an integeri such that b-l ~ a1 . Hence, a-i,~ b. 

Let n be an integer such that b ~ an. Then -1, < n, otherwise 

n ~ -1, and an l; a-l by (a). However, an~ b, a contradiction. 

Therefore, -J, is a lower bound of the set S = (n j n is an 

integer and b ~ an} • Hence,. S has a greatest lower bound m. 

m Therefore, mis the smallest integer such that b ~ a • Also, 

am~l l; b by definition of greatest lower bound. 

The next two theorems are taken from a single theorem in 

Bachman [ 2 J. 
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Theorem 3.5 .. Let G be an ordered group of rank one. If there exists a 

smallest element c E G such that 1 ~ c then G is the infinite cyclic 

group generated by c. 

Proof: Let a E G. If 1 ~ a then c 1 a. Also, there exists an integer 

n n+l 
n such that c l; a~ c by Theorems 3.3 and 3.4. This implies 

-n -n 
1 1 a,c ~ c which means a c = 1 by definition of c. Therefore, 

n 
a = c • 

Now, if a~ 1 then 1} a- 1
, and so there exists an integer n such 

-1 n -n 
that a = c by the above argument. Thus, a= c If a= 1 then 

0 a= c . Therefore, G is cyclic and is generated by c. 

Theorem 3.6. If G is an ordered group of rank one than G is abelian. 

Proof:. If G has a smallest element c such that 1 ~ c then G is cyclic 

by Theorem 3.5. Thus, G is abelian. 

Suppose G has no smallest element c such that 1 ·~ c. Let x E G 

such that 1 ~ x. It will now be shown that there exists an element 

2 
y E G such that 1 ~ y ~ x and y l; x. There exists a q such that 
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1 J: q ~ x since G has no smallest element c such that 1 ~ c. 
2 

If q l; x 

then the assertipn.is proved. If x ~ q2 then it can be shown that xq-l 

h h d . d . Th" . b \.- 2 · 1 · as t e esire properties .. is is true ecause x ~ q imp ies 

. - l \,. h. h - l q- l \,. 1 h. h . . 1 · - l - l xq ~ q w ic means q x ~ w ic in turn imp ies xq xq 

( -1)2 \,. \,. 2 h" l -2 \,. xq. ~ x and since x ~ q tis imp ies xq ~ x. Therefore, the 

desired element y is either q or xq 
-1 

Now, let a,b E G such that 1 .~ a,b. It will be demonstrated that 

ab= baby assuming the contrary and finding a contradiction. Thus, 

suppose ab# ba. This implies (ab)(ba)-l # 1. -1 
Let x = (ab)(ba) , and 

assume 1 ~ x. By the preceding paragraph there exists an element y E G 

such that 1 ~ y ~~in(a,b,x) and y2 l,;min(a,b,x). Therefore, 
', ~ 

2 . 
1 ·~ y ~ x, y i x, y ~ b. Theorem 3. 3 implies G is archimedian, and 

this fact together with Theorem 3.4 imply that there exist integers m 

m rntl n n+l 
and n such that y 1 a~ y and y l; b ~ y • This implies that 

yn+m l; ab ~ yrntn+2 and yrntn .i; ba ~ yrntn+2• Therefore, yrntn l; ab ~ 

Yrntn+2 and y-m-n-2 \.- (ba.)-1 \.- ·y-m-n. h ld ~ 2:: T·ese two statements yie 

y- 2 
1'.'. (ab)(ba)-l ~ y2• It now follows that x.~ y2 1: x. This is a 

-1 
contradiction •. It was assumed that 1 ~ x, but if x ~ 1 then 1 ~ x = 

(ba) (ab) -l, and a similar argument will likewise produce a contradiction. 

-1 
If 1 ~ a and b. ~ 1 then 1 .~ a and 1 ~ b . Thus) the fact that 

-1 -1 -1 was proved above implies ab . = b a. Therefore, a= b ab which 

implies ba = ab. If a~ 1 and 1 ~ b then by a similar method it can be 

shown that ab= ba. If either a orb are equal to 1 then ab= a= ba 

or ab= b = ba .. Hence, G is abelian. 

Example 3. 7. An example of an ordered group. that is not abelian is the 

group G of all ordered pairs of real numbers with the group operation 
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group postulates will be verified •. Let (x1, x2), (y
1

, y2), (z 1, z2) 

E G. Then 

(a) (Cxl,x2) + (Y1,Yz)) + (zl,z2) = (xl + Y1, x2 eYl + Yz) + (zl,z2) = 

((xl + x2) + zl, (xz eYl + Yz) /1 '.: zz) = 01 + (yl + zl), 

-x 
(O,O),(-x

1
, -x

2 
e 1) + (x

1
, x

2
) 

(O,O). 

-x 
x e 1) = 

2 

-x x 
= (-x1 + x

1
, - x

2 
e 1 e 1 + x

2
) = 

Therefore, G is a group. Now it will be shown that G is an ordered 

group. Let S = [(x,y) x < 0} U [(O;y) · j y < O}. It is easy to see 

that Sis closed under addition and is therefore a subsemigroup of G. 

Let (xiy) ES and (a,b) E G. 
-a 

Then (a,b) + (x,y) + (-a, -be ) = 

x -a ( ( a+x, b e + y) + ( - a, - b e ) = x, 

is an element of S if x < 0 .. If x = 0 then y < 0 and 

( x, (b ex + y) -a 
e Thus, Sis a normal 

subsemigroup. Let (a,b) E G such that (a,b) # O. If a< 0 or a= 0 

and b < 0 then (a,b) ES. If a= 0 and b > 0 then (a,b) E (-S) since 

(a,b) (O,b) = (-0, b e
0

) = -(0,-b) and since -p < O. If a> 0 then 

( ) ( ) ( ) -a ea) -a) · a,b E -S since a,b = (a, be = -(-a, -be and since 

-a < O. Therefore,, G = (-S) LJ (O,O) U S. The element (O,O) f. S since 



(x,y) ES implies x < 0 or y < 0. Also, (0,0) l (-S) •. Otherwise 

-(0,0) = (O,O) ES, a contradiction. If (a,b) E (-S) n (S) then 

(a,b) ES and -(a,b) ES which implies (0,0) = (a,b) - (a,b) E S. 

But, again, this is a contradiction. Thus, G = (-S) U (O,O) LJ Sand 

the union is disjoint, and so G is an ordered group. 

It can readily be shown that G is not abelian by the following 

computations. 

(0, 1) ( 1, 0) (0 + 1, 
1 

O) ( 1, e) + = l·e + = 

(1, 0) + (0, 1) (1 + 0, 0 1) (1, 1) = O·e + = 

This example can be found in Schilling [16], p. 7. 

It is now advantageous to define a Dedekind out. The following 

definition is very closely related to the one devised by Burrill [6]. 

In the definition Q will denote the rationals and R the reals. 

Definition 3.8. Let d = (L, U) be an ordered pair of two disjoint 

subsets of Q such that 

(a) L f Q, U f' 

(b) Q = L U U 

(d) U does not contain a smallest element. 

Then dis called a Dedekind cut in R, and Land U are called the lower 

and upper classes of d, respectively. 
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Theorem 3.9. If d = (L, U) is a Dedekind cut in R then there exists a 

number d ER such that U = f x E Q \ d < x} and L = Q - U = 

[x E Q Ix~ d}. 

Proof: Let a EL. The set U is bounded below by a, otherwise there 

exists b EU such that b < a. However, this implies a EU which is 
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impossible sinceL n U = i:p. Therefore, Uhas a greatest lower bound d, 

Let x E Q such that x > d. It follows that there exists y EU such 

that d < y < x which implies x E U by (c) in Definition 3.8. Thi.s 

together with (d) in the definition and the fact dis the greatest 

lower bound of U imply U = (x E Q Id< x}. Therefore, L.= Q - U = 

[x E Q Ix~ d} since Q is the disjoint union of Land U. 

Definition 3 .10. Let d = (L, U) be a Dede.kind cut in R. Let d E R 

-·· 
such that J:u = (x E Q I d < x}. If d E Q then d is called a rational 

cut •.. 

The next theorem shows that a particular ordered pair of subsets 

of Q derived in a certain manner from an element of a rank one ordered 

group is a Dedekind cut. It is adapted from a theorem in Bachman [2]. 

Theorem 3.11. Let G be a rank one ordered group. Let a,b E G such 

that 1 i a. Let L(b) = (m/n E Q In> O, am l bn} and U(b) = 

(m/n E Q In> O, bn i am}. Then d(b) = (L(b), U(b)) is a Dedekind cut 

in R. 

Proof: Let m/n E L(b) n U(b). This implies that am~ bn i am which is 

impossible. Hence, L(b) n U{b) = i:p. 

-1 
(a) If b= 1 then a ~ 1 =band b = 1 ~ a which implies -1 E L(b) 

and 1 E U(b). 
n 

If 1 ~ b then there exists n > 0 such that a i b 

since G is archimedian and by Theorem 3.2. Also, there exists an 

m such that bn ~ am. Thus, 1/n E L(b) and m/n E U(b) .. If b ~ 1 

then b ~ a which implies 1 E U(b). 
-1 

Also, 1 .~ b which implies 

-n 
that there exists an n.> 0 such that a~ b • However, there 

exists an m such that b-n i am, This implies a-m ~ bn, and so 
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-m/n E L(b). Hence,. L(b) #, and U(b) # ,. 

(b) Let r E Q. Then there exists integers m and n such that n > 0 and 

I B h · h 1 · d d m ~ bn r = m n. y t e tric otomy aw in an or ere group a ~ or 

bn 1:'. am. Hence, r E L(b) U U(b) which implies Q ~ L(b) U U(b). 

Therefore, Q = L(b) U U(b) since L(b) U U(b) k Q. 

(c) Let r
1 

= m
1
/n

1 
E U(b) and r

2 
= m

2
/n

2 
E Q such that r 1 ~ r

2 
and 

n m 
n

1
, n

2 
> 0. It follows that m

1
n

2 
~ m

2
n

1 
and b 1 1'. a 1, and so 

n n m n m n 
b 121'. a 121a21 by (b) of Theorem 2.2 and (a) of Theorem 3.4 . 

m n . 4l n m 
Therefore, b 2 ~ a 2. Otherwise a 2 1 b 2 which implies 

m n n n 
a 2 1 1; b 1 2 by Theorem 2.2; hence r

2 
= m/n2 EU(b). 

(d) Let m/n E U(b). This implies n > 0 and bn 1'. am. Thus, 1 1'. 

am b-n, and so there exists integers p
1

, p
2

, p
3 

> 1 such that 

mp
1 

-np -1 mp 2 -np 
It follows that b ~ a b 

1
, b 1'. a b 

2 
and a 1'. 

mp
2 

-np 
a b 

3 
since G is abelian by Theorem 3.6. Hence, 

np -1 
b 2 

mp 2 np3 mp 2-l 
} a and b 1:'. a which implies mp

1
/(np

1 
+ 1), 

m = 0 then (mp
2
-l)/np

3 
= -l/np

3 
< 0 = m/n. Therefore, U(b) has no 

smallest element. 

Now, as promised, the isomorphism theorem concerning rank one 

ordered groups will be proved. This is a classical theorem and can be 
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found in Artin [1] and Bachman [2]. 

Theorem 3.12. Let G be an ordered group of rank one. Then there 

exists an order preserving isomorphism between G and an additive ccuh-

group of the real numbers. 

Proof: Let f:G .... R be a mapping defined in the following manner. Let 

a be a fixed element of G such that 1 ~a,. Now, if b E G then there 

exists a Dedekind cut d(b) = (L(b), U(b)) in R where L(b) = 

(m/n E Q .J n > O, am 1 bn} and U(b) = [min E Q In> O, bn ~ am}. This 
., 

-.-·-
was shown. in Theorem 3.11. Now, let f(b) = d(b) where d(b) is the real 

number such that U(b) = rx EQ I d(b) < x} and L(b) = fx E Q Ix~ 

d(b)}. Theorem 3.9 states that such a number exists. 

Let b,c E G such that c ~ b, 
-1 

This implies that 1 ~ be which in 

-1 n n 
turn implies there exists an n > 0 such that a·~ (be . ) ; hence ac ~ 

bn since G is abelian. By (b) of Theorem 3.4 there exists a smallest 

integer m such that en 1'.'. am. If bn 1'.'. am then acn ~ am which implies 

n m-1 
c .} a . But this is impossible since mis the smallest such integer. 

Thus, c ~ am 1 bn which implies m/n E U(c) n L(b). This implies that 
n 

d(c) < m/n ~ d(b) because of Theorem 3.9. Therefore, f(c) < f(b) which 

implies f is an order preserving map. Suppose b,c E G such that f(b) = 

f(c). Then b = c, otherwise b ~ c which implies f(b) < f(c) or c < b 

which implies f(c) < f(b), a contradiction in either case. Therefore, 

f is one-to-one. 
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Let b,c E G, and let the set [r1 + r 2 I r 1 E U(b), r 2 E U(c)} be 

denoted by U(b) + U(c). Let x E U(b) + U(c). This implies x = 

p1. = m1n2 and p2 = m2n1 . Then m1/n1 = p1/q and m2/n2 = p2/q; hence 

q P1 q Pz q p +p2 
b ~ a and c ~ a which imply (be) ~ a 1 • Thus, x = m1/n1 + 

U(bc). In a similar manner it can be shown that L(b) + L(c) c L(bc). 

Let r 1 E U(b) and r 2 E U(c). Then r 1 + r 2 E U(bc) which implies 

d(bc) < r 1 + r 2 by Theorem 3.9, Therefore, d(bc) is a lower bound for 

U(b) + U(c), Also, Theorem 3.9 implies that d(b) = inf U(b) and 

d(c) = inf U(c). Let E > 0. Then there exists x E U(b) and y E U(c) 

such that d(b) ~ x < d(b) + E/2 and d(c) ~ y < d(c) + E/2, and so 

--d(b) + d(c) ~ x + y < d(b) + d(c) + E. Also, if r 1 E U(b) and 

r 2 E U(c) then d(b) < r 1 and d(c) < r 2 which implies d(b) + d(c) < 

r 1 + r 2 . Therefore, d(b) + d(c) = inf (u(b) + U(c~. This together 

with the fact that d(bc) is a lower bound of U(b) + U(c) imply 

d(bc) ~ d(b) + d(c). Since L(b) + L(c) ~ L(bc), it can be shown by an 

analogous argument that d(b) + d(c) ~ d(bc). Therefore, f(b) + f(c) = 

d(b) + d(c) = d(bc) = f(bc). Hence, f is an isomorphism, and the 

theorem is proved. 

Corollary 3.13. Let G be a rank one ordered group. Then G is order 

isomorphic to a subgroup of the multiplicative group of all positive 
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real numbers . 

. Proof: The ordered group G is isomorphic to a subgroup H of the 

additive group of all real numbers by Theorem 3.12. Let f:H .... R be 

defined as f(x) = 2x. The following statements show that f is an order 

preserving isomorphism. 

f(x) = f(y) implies 2x = zY implies x·= y 

x < y implies 2x < zY implies f(x) < f(y) 

Therefore, G is an order isomorphic to f(H). 

Non-Archimedian Valuations 

The last corollary shows that the value group of a rank one 

. ·' 

valuation is always isomorphic to a subgroup of the multiplicative 

group of real numbers. Three of the main purposes of this section are 

to characterize a rank one valuation when the non-archimedian property 

is assumed to show how one of the standard definitions of a rank one 

valuation is motivated and to characterize a non-archimedian valuation 

when rank one is assumed. 

Definition 3.14. Let H be a subset of an ordered group G, The set 

[a EH I a} l} will be denoted by H-. H will be called a lower class 

in G if a E G~ b EH and a 1 b imply a EH. 

Theorem 3.15. Let G be a non-trivial ordered group. Let H be an 

isolated subgroup of G. Let W.= B - H. Then Wis a lower class 

of G. 



Proof: Let a E G and b E W such that al; b. Then a~ 1 since b 1'. l; 

hence a E G-. Suppose a EH-. This implies that a, a-l EH. Also, 
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a ,t; b ~ 1 ~a-~. Thus, b E H since H is isolated. However, this is 

impossible since b E W = G- - H . Therefore, a l:. H- which implies that 

a E W, and so Wis a lower class of G. 

Lemrna.3.16. Let v:F ..... G LJ [z} be a non-archimedian valuation of rank 

greater than one. Let P = [a E F v(a) ~ 1}. Let H be an isolated 

subgroup of G sue h,. that H '# [1} and H 'f G. Let W = G - H and P 1 = 

{a E F I v(a) E WU [z}}· Then P' is a prime ideal of the valuation 

ring 0 = [a E F I v(a) l; l} and P' is a proper subset of P. 

Proof: Let a,b E P '. Then v(a), v(b) E W LJ [z} which implies v(a), 

v(b) ·~ 1. If v(a) = z or v(b) = z then v(ab) = v(a)v(b) = 

z E WU [z} which implies ab E P'. If v(a) =f. z and v(b) =f. z, then 

v(ab) = v(a)v(b) ~ v(a)·l = v(a); hence v(ab) E W since v(a) E Wand 

""-· Wis a lower class. Thus, ab E P'. 

By the non-archimedian property v(a-b) l max (v(a), v(b)) = 

max (v(aLv(b~ E WU [z}. If v(a-b) I- z then v(a) 1- z or v(b) =f. z; 

hence v(a-b) E W since Wis a 'l.ower class, and so a-b E P'. If 

v(a-b) = z then v(a-b) E WU [z} which implies a-b E P'. Therefore, 

P' is a ring. 

-If a E P' then v(a) = z or v(a) E G. In either case, v(a) ~ 1 

which implies that a E P. Thus, P' s;P e:::O. Let a E F such that 

v(a) EH-. This implies v(a) l Wand v(a) ~ 1. Therefore, a E P - P' 

which implies that P' is a proper subset of P. 

Let a E P' and b E 0. If a= 0 orb= 0 than ab OEP'. If 

a =f. 0 and b =f. 0 then v(ab) = v(a)v(b) 1 v(a)·l = v(a) E W. Therefore, 



35 

v(ab) E W, and so ab E P'. This proves that P' is an ideal of O. 

Let a,b E O such that ab E P '. This implies v(ab). = z or 

v(ab) E W •. If v(ab) = z then ab= 0 which implies a= 0 orb= 0 which 

implies v(a) = z or v(b) = z. 

G - H then v(a)v(b) E G-. 

Thus , . a E P ' or b E P ' . . If v (ab) E W = 

It follows that v(a) E G- and v(b) E G-

otherwise v(a) = z or v(b) = z which implies that v(ab) = v(a)v(b) = 

z i W. Suppose v(a), v(b) EH. Then v(a), v(b) EH and v(a), v(b) ~ 

l; hence v(ab) = v(a)v(b) ~ 1 and v(ab) EH which implies that 

v(ab) EH-, a contradiction. Therefore, v(a) i H or v(b) i H- which 

implies v(a) E W or v(b) E W, Thus a E P' orb E P'. This proves that 

P' is a prime ideal of 0. 

Lemma 3.17. Let O be a subring of a field F, Let P' be a prime ideal 

of O such that O ::f:. P 1 • Let T = [a/b E F I a E O, b E O - P '}. Then T 

is a subring of F. 

Proof: Let x,y ET, 

that x =a/bandy 

If 1 E O then o.c T ~ F. 

Then there exist a,c ET and b,d E O - P' such 

c/d. Thus, x-y = (ad bc)/bd. The element 

bd rl_ P ', otherwise b E P' or d E P' since P' is prime; hence bd E o ... p '. 

Also, ad - be E O since a,b,c,d E 0. Therefore,. x-y E O. In a similar 

manner it can be shown that xy ET. This shows that Tis a subring of 

F. 

The unity element 1 is not in P', otherwise P' = 0. If 1 E O then 

1 E O - P' which implies that for all x E 0,. x = x/1 ET, and so O £'. T. 

Let a E P I and b E O - P' such that a # 0. Then b/a l T, otherwise 

there exist c E O and d E O - P' such that b/a = c/d, and so bd = 

ac E P' which implies that b E P' or d E P' since P' is prime in O. 

However, this contradicts the choice of band d. Therefore, Tc F. 
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The next theorem is one of the characterizations mentioned 

earlier. It is taken from Schilling [16]. 

Theorem 3.18 •. Let v:F-+ GU [z} be a non-archimedian non-trivia.: 

valuation. Then vis of rank one if, and only if its valuation ring O 

is a maximal subring of F, that is,Oc:O' s;.F for a ring O' implies 

0' = F. 

Proof: Suppose v has rank one. Let O' be a ring such that 

O C: 0' ::: F .. Let O [x] be the ring of all polynomials with coefficients 

in 0. Let a E O' - O. Let O[a] = (p(a) I p(x) E O[x]}. If p(a) E O[a] 

n 
then p(a)=··a-0+a1a+,., ••. +ana where ai E O. Thus, p(a) E O', and so 

O[a] SO'. Let b E F - O. Then there exists an integer n > 0 such 

n 
that v(b) ~ v (a) since 1 ~ v(a) and G is archimedian. Therefore, 

v(J:rfan) = v(b)/vn(a) ~ 1 which implies that b/an = c E O; hence h = 

This implies b E O[a]. Thus, F::: O[a] since O ~ O[a] and F = 

(F - 0) U O. Therefore, F SO' which implies F = O'. 

n ca. 

Now, suppose O is a maximal subring of F. Also, assume v is not 

of rank one. Then there exists an isolated subgroup Hof G such that 

H :/: [1} and H 'f G. Lemma 3.16 implies that P' = {a E FI v(a) E WU 

[z}} where W = G- - H- is a prime ideal of O and is properly contained 

in the ideal P = [a E F I v(a) ~ 1}. Let T = [a/b E F a E o, 

b E O - P '} • Then Lemma 3. 17 implies O C T C: F. Thus O T since O 

is maximal. Now, let a E P - P'. This implies that 1/a ET= 0. Then 

1 = (a)(l/a) E P since Pis an ideal of 0. Thus, v(l) ~ 1, a contra-

diction. Therefore, vis of rank one. 
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Ths following discussion will perhaps point out why many writers 

prefer one of the classical definitions of a rank one valuation. 

Let v:F .... GU·fz} be a non-archimedian rank one valuation. The 

ordered group G is order isomorphic to a subgroup of the multiplicative 

group of positive reals by Corollary. 3.13. Let lf be such a subgroup, 

and let i:G .... H be the ··isomorphism. Let i:G U [z} ... H LJ (o} be a 

mapping defined as i(x) = i(x) for any. x E G~ but i(z) = 0 where O is 

the real number zero. Let t:F .... HU fO} be the composition of the two 

functions v and i. That is, t(x) = i (v(x)). 

Suppose t(F - [O}) = fl}. This implies i(v(F - [O})) = i(G) = {1L 

. and so G = (1} since i is an isomorphism. However, this is a contra-

diction because G is of rank one. Therefore, t(F - [O}) 1' [1}. 

Now, t(O) = i(v(O)) = i(z) = 0, and if t(a) = 0 then i(v(a)) = 0 

which implies v(a) = z which implies a= 0. Hence, t(a) = 0 if, and 

only if a= O. 

Let a, b E F. Then t(ab) = T(v(ab)) = i (v(a)v(b)) = 

i(v(a)) I(v(b~ = t(a) t(b). 

Let x,y E GU (z} such that x 1 y. Let< be the usual "less than" 

order relation in the reals. If x 1 z and y 1' z then i(x) = i(x) ~ 

i(y) = i(y) since i is an order preserving isomorphism. If x = z then 

i(x) = 0 ~ i(y) since O ~ a for all a EH U [o}. If y = z then x = z 

by definition of z as found in Definition 2.5. Then i(x) = 0 = i(y). 

Therefore, x 1 y implies i(x) ~ i(y). 

Let x,y E GU fz}. If x 1 y then y = max (x~y) and i(x) ~ i(y); 

hence i (max(x,y)) = i(y) = max(i(x), i(y~. If y} x then a similar 

argument would again show that i( max(x, y)) = max(i (x), i(y)) . 
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Let a,b E F. Then v(a+b) 1 max(v(a), v(b)). This implies 

i(v(a+b)) 1 i ((max v(a), v(b))) = max(i(v(a)), T(v(b))); hence 

t(a+b) ~ max (t(a), t(b)). 

Thus, it has been shown that v induces a mapping t:F ..... R such that 

t(F - (O}) # (1} with the following four properties 

(a) t(a) ~ 0 for any a E F 

(b) t(a) = 0 if, and only if a= 0 

(c) t(ab) = t(a) t(b) 

(d) t(a+b) ~ max(t(a), t(b)) 

Now, suppose t:F ..... Risa mapping with the above properties such 

that t(F - (O}) # fl}. It will be shown that tis a non-archimedian 

rank one valuation. 

First of all, R= t(F - (OJ) is a non-trivial multiplicative sub-

group of the positive real numbers since tis a non-trivial homomor-

phism from (F - (O}) into the positive reals. Let S = ra E H I a < 1}. 

-1 
Therefore, if a, b E H then a < b if, and only if ab E S. Also,. S is 

a normal subsemigroup since His abelian and since O <a< 1, 0 < b < 1 

imply o < ab < 1. Let. S - l = [ a E H I a - l E S} . Then S - l 

(a E H I 1 < a}. Hence, H = ·S U p} LJ (S- 1) where S, P} and S-l are 

mutually disjoint. Thus, His an ordered group. Let a,b EH such that 

1 < a. 
n 

This implies that there exists an integer n such that b < a 

' since R has the archimedian property. Thus, His archimedian, and so H 

is of rank one by Theorem 3.3. Therefore, tis a non-archimedian rank 

one valuation. 

In the above remarks it has been shown that any non-archimedian 

rank one valuation induces a mapping t with properties (a), (b), (c) 

and (d), and conversely if a mapping has these properties then it is a 
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non-archimedian rank one valuation. It should be pointed out that 

property (d) implies t(a+b) ~ t(a) + t(b) since max(t(a), t(b)) = t(a) 

or t(b) and t(a), t(b) ~ t(a) + t(b). These facts could be the motiva-

tion for the following popular definition. 

Definition 3.19. Let F be a field and t:F .... R be a mapping such that 

t (F - f O}) f,.' fl} and satisfies the following conditions: 

(a) t(a) ~ 0 for all a E F 

(b) t(a) = 0 if, and only if a= 0 

(c) t(ab) = t(a) t(b) 

(d) t(a+b) :.,; max(t(a), t(b)) 

Then tis called a non-archimedian rank one valuation. If condition (d) 

~s relaxed and replaced by 

(d)' t(a+b) ~ t(a) + t(b) 

then tis simply called a rank one valuation. 

Henceforth, in this paper a rank one valuation or a non-

archimedian rank one valuation will always be defined as a mapping 

with the properties as described iri Definition 3.19. 

An example of a rank one valuation will now be considered. Let 

a E R such that O < a ~ 1. Let Q be the rationals and I I: Q .... R be the 

usual absolute value function. It can be shown that j la is a rank one 

valuation. First of all it is clear that (a), (b) and (c) of 

Definition 3.19 are satisfied. Next, suppose that x,y E Q such that 

lxl .~ !YI and YI 0. Then 

I x+y I a ~ ( Ix I + I y I ) a 

= !Yla <lxl!IYI + l)a 

~ IYla (lxla/lyja + 1) (since jxj/jyl ~ 1, a:.,; 1) 

= lxt + IYt 



If y = 0 then x = 0 and lx+yla = 0 = lxla + !Yla· If !YI< !xi the 

argument would be similar. Therefore, (d)' of Definition 3.19 is 

sat~sfied and I la is a rank one valuation. 

Another valuation on Q which is important and interesting is the 

p-adic valuation. It is described in the following example. 

Example 3.20. Let p be a fixed prime integer, and let c be a real 

number such that O < c < 1. Let I· I :Q .... R be a mapping such that p 

101. = p 
O and Ix!·· p 

for x 'f O and x = pn(a/b) where p f ab. 
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Now, it will be shown that v.is a non-archimedian rank one valua-

tion. Parts (a) and (b) of Definition 3.19 are clearly satisfied. 

Now, if x = pn(a/b) E Q and y,= pm(c/d) E Q such that pf ab, pf cd 

and x,y,f O then !~Yip= !Pn+m(ac/(bd)) Ip and pf(ac)(bd); hence 

lxyl = cn+m = cncm = Ix! IYI • If x = 0 or y ·= 0 then lxyl = IOI = p p p p p 

O.= !xi !YI •. Thus, (c) of Definition 3.19 is verified. Suppose, 
·P p 

x E Q such that x 'f O and lxlp ~ 1. This implies that x = pn(a/b), 

+ ab and :.:: o. Therefore, n i,s an integer and 1 + p n p a x = 

(b + pna)/b. Now, if (b + pna) /b is written as pm(c/d) where p + (cd) 

then m:.:: o, otherwise p I b which is impossible. Therefore, li+x! = 

cm~ 1. If lx!p ~ 1 and x = 0 then !1+x!p = !lip= 1. Thus, it has 

been shown that lxlp·~ 1 implies li+xlp ~ 1 which implies lx+ylp ~­

max(!xl , !YI ) by Theorem 3.23. Therefore, I I is a non-archimedian p p p 

rank one valuation. 

It should be mentioned that the valuation ring of I Ip' V = 

(x E QI lxlp ~ 1} = (a/bE QI p .+ b},.is the ring of Example 2.11. 

Definition 3.21. -Let F be a field, nan arbitrary positive integer and 

1 the unity element of F. The symbol n will also denote 
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n · l = 1 + 1 + .•• + 1 (n addends), Then n is called a natural number 

of F if, and only if n E F. 

The next theorem is taken from a problem in Borevich and 

Shafarevich [5 J. 

Theorem 3.22. Let t:F ~ R be a rank one valuation where Fis a field 

of characteristic p # 0. Then tis non-archimedian. 

Proof: Let M be the set of all natural numbers of the field F. This 

implies M = {O, 1,. 2, ... , p-1} since F has characteristic p # O. Let 

d = max (t(O), t(l), , .. , t(p-1)). Let f, m and n be positive integers 

such that n = .l + m. Suppose a, b. E F and t(a) s; t(b). Then, 

/'(a)tm(b) ~ tn(b) = (max(t(a), t(b))}:n •. ·If t(b) < t(a) then again it 

could be shown that tl(a)tm(b) :s: (max(t(a), t(b)))n. 

Now, let a,b E F, and let n be a positive integer, Then, 

tn(a+b) = t((a+b)n) = t(an + (~) an-lb + ... + (n~l) a bn-l + bn~ s; 

( 
n n-1 n-1 n ) d t (a) + t (a) t (b) + ... + t (a) t (b) + t (b) :s: 

d([max{t(a), t(b))t + [max(t(a), t(b)J}n + ... + [max(t(a), t(b))t = 

d(n+l) {max(t(a), t(b))t. 

Therefore, t(a+b) s; (d(n+l))l/n max(t(a), t(b)). This implies 

n~°"' 
t(a+b) = lim t(a+b) :s: lim(d(n+l))l/n max(t(a), t(b))= max(t(a), t(b)) 

n~°"' 

since lim (d(n+l~/n = elim ln!d(n+l)) = e 0 = 1. Thus, t is 

n~°"' 

non-archimedian. 
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The next theorem is a statement of two characterizations of a 

non-archimedian valuation provided the valuation is rank one. 

Theorem 3.23. Let t:F ..... R be a rank one valuation. The followi·'.,g 

three statements are logically equivalent. 

(a) tis non-archimedian . 

. (b) t(n) ~ 1 for all natural numbers of F. 

(c) t(a) ~ 1 implies t(l+a) $. 1. 

Proof: 

(a) implies (b) 

Let n be a natural number of F. Then t(n) = t (1 + 1 + ... + 1) ~ 

max ( t ( 1) , t ( 1) , ... , t ( 1)) = max ~ 1, . 1, •.. , l) = 1 

.{b) implies (c) 

Let m be a positive integer. Then tm(l+a) = t~l+a)m) = 

(i m m 2 t~ + ( 1)a + ( 2)a + •.. m) m · m 2 + a ~ t(l) + t(
1

) t(a) + t(
2

) t(a) + 

t(am) ~ 1 + t(a) + t
2

(a) m 
+ .•• + t (a). Now, if t(a) ~ 1 then 

... + 

k m 
t (a) ~ 1 where k is a positive integer, Therefore, t (l+a) ~ m + 1 

1/m which implies t(l +a)~ (rn + 1) , and so t(l +a)= lim t(l +a)~ 

lim (m + l)l/m 1 
n .... oo 

(c) implies (a) 

Let a,b E F such that a,b # 0. Suppose t(a) ~ t(b). Then 

t.(a/b) s t(a)/t(b) ~ 1. This implies that t(L + a/b) ~ l; hence 

t(b) t(l + a/b) ~ t(b) which implies t(a + .b) = t(b(l + a/b)) ~ 

rnax(t(a), t(b)) • If t(b) < t(a) then the argument would be similar. 



If a = 0 then t(a + b) = t(b) = max (t(a), t(b)) • If b = 0 then 

t(a + b) = t(a) = max(t(a), t(b)) . 

Thus, the proof of this theorem which is stated as a problem in 

Borevich and Shafarevich [5] is complete. 

Convergence and Completeness 

In this section the notion of convergence of sequences, null 

sequences, Cauchy sequences and completeness will be defined. An 

interesting theorem concerning convergence of series will be proved, 

and the concept of p-adic numbers will be mentioned. 

Definition 3.24. Let F be a field with a rank one valuation t. Let 

(a} be a sequence of elements of F. 
n 

The sequence (a.} is said to 
n 
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converge with respect tot to the element a E F if, and only if for any 

E > 0 there exists an integer N such that t(a - a)< E for all n > N. 
n 

In this case a is said to be the limit of £a} and this is denoted by 
n 

lim a = a. 
t n 

Definition 3.25. Let F be a field with a rank one valuation t. Let 

(an} be a sequence of elements of F. 

(a) [an} is said to be a null sequence with respect tot if lim a = 0. 
t n 

(b) [an} is said to be a Cauchy sequence with respect tot if for 

every E > 0 there exists an integer N such that t(a - a)< E for n m 

(c) 

all n, m > N. 

The infinite series 2 a. is sa:i.<L, l;J:>. converge with respect to ,t:if 
n=l n 

the sequence [Sn}' where Sn = a 1 + a 2 + ... + an, converges with 



respect tot to an element of F. 

Definition 3.26. Let F be a field with a rank one valuation t. The 

field Fis complete with respect tot if every Cauchy sequence wich 

respect tot in F converges with respect tot to an element of F. 

Thenext theorem states a necessary and sufficient condition for 

the convergence of a series in a field which is complete with respect 

"" 

to a non-ar~hime~ian valuation t. If the series l 
n=l 

a converges then 
n 
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it would be expected that lim a = 0. However, the interesting part of 
t n 

this theorem is that the converse is true. The second part of the 

proof can be found in Bachman [2]. 

Theorem 3.27. Let F be a field which is complete with respect to a 

non-archimedian rank one valuation t. Let [a} be a sequence of 
n 

elements in F. Then l a converges with respect tot if, and only 
n=l n 

if lim a = 0. 
t n 

\ 
Proof: Suppose L an converges. This implies that there exists s E F 

n=l 

such that lim S 
t n 

s where Sn = a 1 + . . . + an. Let E > 0 • Then there 

exists an integer N such that t(S - s) < E/2 for n > N. Let n > N + 1. 
n 

Then t(a) = t(S 
n n 

t(s - s
0

_ 1) < E/2 + E/2 = E. Thus, lim a = O. 
t n 



Now, assume lim a = O. Then there exists an N such that 
t n 

t(an) < E if n > N •. Let n,> m > N, Sn = a 1 + ... + an and Sm = 

al + ... + a • 
m 

This implies that t(S 
n 

s ) 
m 

~ max(t(am+ 1), •.. , t(an)) < E; hence (Sn} is a Cauchy sequence with 

respect tot. Therefore, (Sn} converges to an element in F since F 

is complete with respect tot. Thus I 
n=l 

converges with respect tot. 
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The usual limit theorems still hold. For example, if F is a field 

with a valuation t and (a} is a sequence in F that converges with 
n 

respect to t then the limit is unique. Also, statements such as 

lim (a . + b ) = lim a + lim b n - n n n 
t t t 

lim a b = lim a lim b 
t n n t n t n 

lim(a /b ) = lim a I lim b (if lim b :! O) 
t n n t n t n t n 

are true provided lim a 
t n 

and lim b 
t n 

exist. These theorems can be 

proved by using the same techniques that are used in the proofs of the 

corresponding theorems in real analysis. 

An interesting structure can be developed by completing the 

rational field with respect to the p-adic valuation of Example 3.20. 

The rationals can be completed with respect to the absolute value 

function by constructing the real numbers as a set of equivalence 

classes of Cauchy sequences (cf. Cohen and Ehrlich [9]) •. In a similar 

manner the rationals can be completed with respect to I I . This new p 

structure is called the field of p-adic numbers. It has some 
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interesting properties, but this paper will not probe into the rich 

theory of p-adic numbers. 

Equivalent Valuations 

In Chapter II~ the concept of "equivalence" of non-archimedian 

valuations was defined (cf. Definition 2.18). Two non-archimedian 

valuations were said to be equivalent if they had the same associated 

valuation rings. However, a general rank one valuation may not 

determine a valuation ring in the usual manner. For example let 
I 

I l:Q .... R be the absolute value function. The set V = (x E Q llxl ~ 1} 

is not even a ring much less a valuation ring. The pitfall is the 

fact that I I does not have the non-archimedian property. Therefore, a 

more general definition of equivalence must be devised if all rank one 

valuations are to be included. 

Definition 3.28. Let t
1 

and t
2 

be rank one valuations of the field F. 

Then t
1 

and t 2 are called equivalent if, and only if t
1

(a) < 1 implies 

t 2(a.)- < 1, .: X:~~- i~;~-d~\loted by t 1 - t 2 . 

Theorem 3. 29. . If t
1 

,..., t
2 

and t
1 

(a) = 1 then t 2 (a). = 1. 

Proof: Let F be the field over which t
1 

and t 2 are defined. Let b E F 

such that b # 0 and t 1 (b) -:/: 1. Suppose t 1(b) < 1. Let n be a posi-

tive integer. n Then t 1 (a b) Therefore, 

n. ( )1/n t 2 (a b) < 1 since t 1 - t 2 • This implies that t 2 (a) < 1/t2(b) • 

Therefore, t 2 (a) = lim t 2 (a) ~ lim(1./t2 (b)) 1/n = 1. In a similar 
n-,oo n-,oo 

manner it can be shown that t 2 (1/a) ~ 1; hence 1/t2(a) ~ 1 or 1 ~ t 2(a). 



Thus, t 2 (a) = 1. If t 1 (b) > 1 then t
1

(1/b) < 1 and the same type of 

argument would again prove t 2 (a) = 1. 

Theorem 3.30. ,"'-' is an equivalence relation. 

Proof: 

(a) Reflexive: If t 1 (a) < 1 then t 1 (a) < 1. Therefore, t
1

,..., t 2 . 

(b) Symmetric: Suppose t 1 ,..., t 2 • Let a E F such that t 2 (a) < 1. If 

(c) 

t 1 (a) > 1 then t 1 (1/a) = 1/t(a1) < 1; hence t 2(1/a) < 1 which 

implies 1/t
2
(a) < 1 or t

2
(a) > 1, a contradiction. If t

1
(a) = 1 

then t 2 (a) = 1 by Theorem 3.29, This is also impossible. 

Therefore, t 1 (a) < 1 which implies t 2 ,..., t
1

, 

Transitive: Suppose t
1

,..., t
2 

and 

t 1 (a) < 1. Then t 2 (a) < 1 since 

t
3

(a) < 1 since t 
2 

,..., t 
3 

. Thus, 

t2 - t3. 

tl - t2. 

tl - t3. 

Let a E F such that 

This implies 

The last two theorems were adapted from the book by Bachman [2]. 
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The next theorem shows the new definition of equivalence is a generali­

zation of the old one. 

Theorem 3.31. Let tl' t 2 :F ..... R be non-archimedian rank one valuations. 

Then t 1 - t 2 if~ and only if t 1 and t 2 have the same associated valua­

tion rings. 

(x E F t 2 (x) ~ 1} be the valuation rings of t 1 and t 2 respectively. 

If x E v
1 

then t 1 (x) ~ 1 which implies tz<x) ~ 1 since t 1 ,..., t 2 and by 

Theorem 3.29; hence a E v2 which implies v1 :::= v2 • By using the fact 
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that t
2

,.., t
1 

and Theorem 3.29 it can also be shown that v2 5 v
1

• 

Therefore, v1 = v2• 

Assume v1 = v2• Let a EK such that t 1 (a) < 1. This implies 

a E v1 which implies a E v2 . Thus, t 2 (a) < 1 and t 1 ,.., t 2 . 

The next two theorems are adapted from a theorem and a problem in 

Baclunan [2]. The first theorem shows that if two valuations are 

equivalent then one can be written as a power of the other. The second 

theorem is another characterization of equivalence. 

Theorem 3.32. Let t
1

, t
2

:F __, R be two rank one valuations such that 

Then there exists a real number c such c > 0 and t
2 

Proof: Let b be a fixed element of F such that t
1 

(b) > 1. Let a E F 

such that a f 0 •. Let d = in t 1 (a)/ln t 1 (b). Then din t 1 (b) = 

ln t 1 (a) which implies in t~ (b) = in t 1 (a); hence t 1 (a) = 

Now, suppose n and mare integers such that n/m > d. 

d 
tl(b). 

Then 

t
1

(a) <(t
1

(b))n/m which implies tt(a) < t
1
n(b) and t

1
(am/bn) < 1. 

Therefore, t
2

(am/bn) < 1 since t
1

,,.., t
2

; hence t
2

(a) < (t
2

(b))n/m. 

Suppose n/m < d. Then in a similar manner it can be shown that 

d 
These two facts imply t 2(a) = tzCb) for suppose 

e there exists a real number e < d such that t 2 (a) = t
2

(b) because the 

ez;wner,it;i.al function y = t;(b) is increasing and its range contains 

every positive real number, and in particular· its range contains the 



positive number t 2(a). 

Now, there exists a rational number n/m such that e < n/m < d 

since the rationals are dense in the reals. This implies t 2 (a) = 

t;(b) < ( t 2 (b))n/m since y = t;(b) is increasing. 

contradiction since t 2(a) > (t2 (b))n/m if n/m < d. 

However, this is a 

then in a similar fashion another contradiction will be obtained. 

Thus; t 2 (a) = t~(b). 

Now, in t 2 (a) = d ln t 2 (b) which imp:J.ies that d = in t 2 (a)/ 

f.n t 2 (b); hence 

ln t 2 (a)/fn t 2 (b) = f n t 1 (a)/fn t 1 (b). 

This implies that 

ln t 2(a) = (fn t 1 (a)/fn t 1 (b)) in t 2(b) 

= (ln t 2(b)/ln t 1 (b)) in t 1 (a) 

Now,. let c = fn t 2(b)//.n t 1 (b). Then, fn t 2(a) c fn t 1 (a) which 

implies in t2(a) = f.n t~(a), so tz(a) = t~(a). 

If a = 0 then t
2

(a) = 0 = Oc = (t
1 

(a))c. 

Definition 3.33 .. Let t:F .... R be a rank one valuation. Let fan} be a 

sequence of elements of F. Then fan} is called a null sequence with 

respect tot if lim a = O. 
t n 

Theorem 3.34. Let t 1, t 2 :F .... R be rank one valuations, Then t 1 - t 2 

if, and only if every null sequence with respect to t 1 is a null 

sequence with res~ect to t 2 . 
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Proof: Suppose t 1 ,.., t 2 • Then there exists a positive real number c 

c such that t 2 = t
1 

by Theorem 3.32. Let [a} be null with respect to 
n 

t 1 . Then for any E > 0 there exists an M such that t 1 (an) < El/c if 

n > M. 

null with respect tot. 
n 

Therefore, (a} is n 

Suppose every null sequence with respect to t 1 is null with 
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respect to t 2 . Let a E F such that t 1 (a) < 1. Let E > 0. Then there 

exists an M such that t 1 (an) = t~(a) < E if n > M; thus [an} is a null 

sequence with respect to t 1 . Therefore, (an} is null with respect to 

M t 2, so there exists an M such that t 2(a) This implies 



CHAPTER IV 

EXTENSIONS 

In this chapter the problem of extending a mapping, a place and a 

valuation will be considered. First of all, it will be shown that a 

function which is defined on an integral domain and which has proper­

ties like a valuation can be extended to a valuation on the quotient 

field of the integral domain. Next, a classical theorem concerning the 

extension of a place will be proved. Also, it will be shown that a 

non-archimedian valuation can be extended over an arbitrary extension 

field. Finally, it will be demonstrated that a particular type rank 

one extension is unique. Some of the concepts of normed linear spaces 

are used in this uniqueness theorem . 

. Mappings and Places 

'I'h,eorem 4 .1. Let I be an integral domain of a field F. Let K = 

fa/b I a,b EI, b # O}. Then K is a field such that I c K. 

.,;_·· 

Proof: Let x,y EK. This implies that there exist a, b, c, d EI such 

that b # 0, d ~ O, x =a/bandy= c/d. Now, x - y = (ad - bd)/bd and 

bd # 0 since I has no divisors of zero. Thus, x - y E K which implies 

K is an additive subgroup of F. 

If x,y E (K - [O}) then x - a/bandy= c/d where a, b, c, d ~ O. 

Hence, x/y = ad/be and be ~ 0. Therefore, (K - [OJ) is a multiplicative 

subgroup of (F - [O}). Then K is a subfield of F. 

51 
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The domain I is contained in K since 1 EI and I= fa/1 I a EI}. 

Definition 4,2. If I is an integral domain of a field F then the field 

K = [a/b a,b EI, b j O} is called the quotient field of I. 

The next theorem is adapted from a similar one in Bachman [2]. 

Theorem 4.3. Let I be an integral domain of a field F. Let v be a 

mapping from I into the reals R such that 

(a) v(a) ::c: 0 

(b) v(a) = 0 if, and only if a= 0 

(c) v(ab) = v(a) v(b) 

(d) v(a+b) ~ v(a) + v(b) 

Then v can be extended uniquely to a rank one valuation on the quotient 

field K of I. 

Proof: Let t;K - R be defined as t(x) = v(a)/v(b) for any x = a/b EK 

where a.,b EI and bf- 0. Suppose there exist a, b, c, d EI such that 

b, d # 0 and a/b = c/d. This implies ad= be, and v(ad).= v(bc) which 

implies v(a) v(d) = v(b) v(c). Thus v(a)/v(b). = v(c)/v(d); hence 

t(a/b) = t(c/d) and tis well defined. 

Now, it will be shown that tis a valuation on K .. Let x = a/b EK. 

Then t(x) v(a)/v(b) :?!: 0 since v(a), v(b) :?!: O. If t(x) = v(a)/v(b) = 

O then v(a) = 0 which implies x = a/b = O. If y = c/d E K then t(xy) = 

t(ac/bd) = v(ac)/v(bd) = v(a)v(c)/v(b)v(d) = [v(a)/v(b)J [v(c)/v(d)J = 

t(x)t(y). Thus, conditions (a), (b) and (c) are satisfied. Also, 

x + y = a/b + c/d =(ad+ bc)/bd, and so t(x + y) = v(ad + bc)/v(bd) ~ 

[v(ad) + v(bc) J/v(bd) = v(ad)/v(bd) + v(bc)/v(bd)= v(a)/v(b) + v(c)/v(d) 

= t(x) + t(y) .. Hence, tis a valuation on K. 
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Next, it can be shown that tis an extension of v. Let a EI. 

Then a= ab/b where b EI, but b / 0. This implies that t(a) = 

v(ab)/v(b) = v(a)v(b)/v(b) = v(a). 

Suppose there exists a valuation s.:K _, R such that s agrees with 

v on!. If x = a/b EK then s(x) = s(a/b) = s(a)/s(b) = v(a)/v(b) = 

t(x). Therefore, tis unique, and the theorem is proved. 

Before stating and proving the so called Fundamental Theorem of 

Places, some definitions and lemmas will be considered. First of all, 

if A is a subring of a field K then A[x] will denote the ring of all 

polynomials with coefficients in A. Also, if ex: E K then A[o::J is the 

set fP(o::) I P(x) E A[x]}. It can be shown that A[o::J is a subring of K, 

and P
1

(o::)P
2

(o::) = (P
1 

P
2

)(o::) E A[o::J. An important fact that will be 

used in the proof of one of the lemmas is that if Fis a field then 

F[x] is a principal ideal domain (cf. Moore [15], p. 164). 

Definition 4.4. Let F be a field. Then Fis said to be algebraically 

closed or algebraically complete if, and only if every non~constant 

polynomial with coefficients in F splits in F (i.e. if P(x) E F[x] and. 

P(x) is not constant then there exists k1, k2, ..• , kn E F such that 

P(x) = a (x - k )(x 
n 1 

coefficient of P(x~ • 

Lemma 4.5. Let A be a subring of a field K. Let F be a field, and let 

f:A _, F be a non-trivial homomorphism. Let S = £a EA f(a) IO}. 

Then 
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(a) A'= fa/b I a EA, b ES} is a subring of K such that 1 EA' and 

AC A' 

(b) there exists a homomorphism f 1 :A 1 
..... F such that f I IA = f. 

Proof: 

(a) Let x,y EA'. Then there exists a,c EA and b,d ES such that 

x =a/bandy= c/d, Therefore x - y. = (ad - bc)/(bd), Now, 

f(bd) = f(b) f(d) 1 0 since f(b), f(d) 1 0 and Fis a field. 

Thus, bd ES which implies x - y EA'. Also, xy = (ac)/(bd) EA'. 

Hence, A' is a subring of K. 

Let b ES CA. Then, 1 = b/b EA'. Also, if a EA and b ES 

then a = ab/b E A' which implies A 5 A'. 

(b). Define f':A' ~Fas f'(a/b) = f(a)/f(b) for all a/b EA'. Suppose 

a/b = c/d, Then ad= be, and so f(ad) = f(bc) which implies 

f(a) f(d) = f(b) f(c); hence f(a)/f(b) = f(c)/f(d). Therefore, 

f'(a/b) = f'(c/d) and£' is well defined. 

Now, f'(a/b + c/d) = f'([ad + bc]/bd) = f(ad + bc)/f(bd) = 

[f(a) f(d) + f(b) f(c)J/[f(b) f(d)J ~ f(a)/f(b) + f(c)/f(d) = 

f'(a/d) + f'(c/d). Also, f'(a/b • c/d) = £ 1 (ac}bd) = 

f(ac) /f (bd) = [f(a)/f(b)J[f(c)/f(d)J = f'(a/b) f'(c/d). Hence, 

f' is a ring homomorphism. 

Let a EA and b ES. Then f'(a) = f'(ab/b) f(ab)/f(b) = 

f(a) f(b)/f(b) = f(a). Therefore, f 'I = f A • 

Of course, it is possible that the quotient ring A' is the same as 

A. Then f' is really not an extension. However, the next lemma shows 

that f can still be extended even though A = A', provided F is 

algebraically closed. 
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Lemma 4,6 .. Let A be a subring of a field K. Let F be an algebraically 

closed field, Let f:A - F be a non-trivial homomorphism. Let S = 

fa EA I f(a) I OJ and A'= [a/b I a EA, b Es}. If A= A' then f can 

-1 be extended to A[o::J or to A[o:: J where o:: is an arbitrary element of K. 

Let F = f(A). Then F is a subring of F since f is a homomorphism 
0 0 

and A is a ring. Also, 1 E F since 1 EA'= A and f(l) = 1. 
0 

Let 

c E F such that c IO. Then there exists a EA such that c = f(a) ~ 
0 

O; hence a ES, 
-1 

This implies that a = 1/a EA'= A. Therefore, 

1 = f(l) = f(a·a- 1) = f(a) f(a- 1) = c f(a- 1). Thus c has an inverse in 

F, and this implies that F is a field. 
0 0 

Now, define h:A[x] - F
0

[x] as follows: if P(x) = a
0 

+ a 1x + ... + 

assume that there exists P(x) E A[x] such that P(a:) = 0 but P (S) IO 

for all SE F where P(x) = h(P(x)). Let I= [P(x) E A[x] I P(o::) = O}. 

The set I is an ideal in A[x] since P 1 (x), P 2 (x) E I imply P 1 (a:) 

Also, h(I) is an ideal of F [x] since his a homomorphism 
0 

and I is an ideal of FJx]. Thus, h(I) is a principal ideal since 

F. [x] is a principal ideal domain. Therefore, there exists a polynomi'al 
0 

Q(x) E F [x] such that h(I) = Q(x) F [x] = [Q(x) R(x) I R(x) E F [x]}. 
0 0 0 

However, Q(x) must be a non-zero c,onstant, otherwise there exists S E F 

such that Q(~) = 0 since F is al,gebraically closed. This would imply 

that for every P(x) E A[x] such that P(a:) = 0 then P(~) = 0 where 

P(x) = h(P(x)), a contradiction of the assumption. Therefore, 



h(I) = c F [x] = F [x] which implies 1 E h(I); hence there exists 
0 0 

f(a) = O •. Let a = b 
n o o 

1. 

1 - 1 = 0 and o = Ql ( o:) = 1 + a + 
0 

-1 Also, assume that there exists P(x) E A[x] such that P(cx: ) = 0 

but P(~) =!- 0 for all ~ E F. Then, by a similar argument it can be 
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shown that there exists elements c, c
1

, •.. , c EA such that f(c) = 
o m o 

that n and mare the smallest integers such that 

1 + + + +. a cx:n = 0 ao alcx: ••• n ' 

EA and f(a) = 
0 

..• = f(a) = f(c) = ... = 
n o 

f(c) = O. Also, suppose m ~ n. If n = 0 then 1 + a = 0.which 
m o 

implies O = f(O) = f(l+a ) = f(l) + f(a ) = f(l). But, this is impos-
e o 

sible since f is non-trivial. Therefore n ~ 1. Also, it can be shown 

that m ~ 1. 

m Now, ex: 
m-1 

= [-c
1
/(l+c )Jex: + ... + [-c /(l+c )]. 

o m o 
Let d 

0 
= 

-c /(l+c ), 
m o II. II" d 

1
. = -c

1
/ (l+c ) . 

m- o 
The element 1 + c ES since 

0 

f(l + c
0

) = f(l) + f(c,) = f(1) = 1 'f 0. Thus, d
0

, ••• , dm-l EA'= A. 

Also, f(d ) = ••• 
0 

m 0, and ex: 
m-1 ex: 
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Next, 
n ccm(ccn-m) and m ~ O; hence 0 = 1 + + a

1
cc + + cc = n - a ... 

0 

m n-m n-m 
(d

0 
+ d

1
cc + d 

m-1 
a cc (cc ) = 1 + a + a

1
cc + ... + a cc ... + cc ) • 

n 0 n m-1 

But, the highest power of cc is n-1 which contradicts the fact that n 

is minimal. 

-1 
Therefore, the two assumptions about cc and cc cannot hold simul-

taneously. Now, suppose there exists SE F such that for all 

P(x) E A[x] where P(cc) = 0 then P(S) = 0 where P(x) = h(P(x)). Then 

define g:A[cc] ..... Fas g(P(o:)) = P(S). Let P(cc), Q(cc) E A[cc]. This 

implies g(P(cc) Q(cc)). = g PQ(cc) = PQ(S). But, PQ(x) = h(PQ(x)) = 

h(P(x) Q(x)) = h(P(x))b(Q(x)) = P(x)' Q(x); hence PQ(S) = P(S) Q(S), and 

so g(P(cc) Q(cc)) = g(P(cc)) g(Q(cc)). In a similar manner it can be shown 

,, 
that g(P(cc) + Q(cc)) = g(P(a::~+ g(Q(cc)). Therefore, if g is well 

defined then g is a homomorphism. Let P(cc), Q(cc) E A[cc] such that 

P(cc) = Q(cc). This implies (P-Q)(cc) = P(cc) - Q(cc) = O; thus (P-Q) (S), = 

0. Therefore, g ((P-Q) (cc)) = 0 which implies g(P(cc) - Q(cc)) O, and so 

g(P(cc)) = g(Q(cci) • Therefore, g is well defined and is a homomorphism. 

Now, let a= P(cc) EA c:: A[cc]. Then g(a) = P(S) where P(x) = h(P(x)) = 

h(a) = f(a). Thus f has been extended to A[cc]. 

If there exists P(x) E A[x] such that P(cc) = 0 but P(S) # 0 for 

all SE F then it has been shown that there exists SE F such that for 

all P(x), E A[x] where P(cc-\ = 0 then P(S) = 0. In this case it can 

be shown by a similar argument that f can be extended to A[cc-
1
]. 



58 

The last two lemmas and the next theorem have been adapted from a 

theorem in Bachman [2]. Before proving the next theorem some concepts 

concerning Zorn's Lemma must be introduced. After this the lemma 

itself will be stated without proof. 

Definition 4.7. A set A is said to be partially ordered if there is a 

relation~ defined on A such that 

(a) a ~ b, b. ~ c imply a ~ c 

(b) a~ a for all a EA 

(c) a~ b, b ~ a imply a= b, 

If A is partially ordered and a :5: b or b ~ a for all a, b E A then 

A is said to be totally ordered. 

Definition 4.8. Let A be a partially ordered set. Let B 6 A and a EA. 

The element a is called an upper bound of B if b :5: a for all b E B. If 

c = a for all c EA such that a.~ c then a is said to be a maximal 

element of A. 

Lemma. 4.9 (Zorn's Lemma). Let A be a partially ordered set such that 

every totally ordered subset of A has an upper bound in A. Then A has 

a maximal element. 

Theorem 4.10 (Fundamental Theorem of Places). Let A be a subring of a 

field K. Let F be an algebraically closed field. Let f:A ... F be a 

non-trivial homomorphism. Then there exists a place H:K ... FU fee} such 

that H IA = f. 

Proof: Let E = fg:R ... F I g is a homomorphism, Risa subring of 

K,A ~ R and g(a) = f(a) for all a E A}. In other words E is the set 

of all extensions off to a larger subring of K. Define a relation~ 
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on E as follows: g1 ~ g
2 

if, and only if g2 is an extension of g1 • It 

is clear that~ satisfies (a), (b) and (c) of Definition 4.7. Thus, E 

is a partially ordered set. 

Let [g} be a totally ordered subset of E. Let (A} be the set of o::· 0:: 

rings over which the elements of [g} are defined. Then (A} is 
0:: 0:: 

totally ordered by the relations; (i.e. [A} is partially ordered by C 
0:: 

and if A, AQ E fA} then A C AQ or A EA). Let R = II Ao::. 
0:: f.J ·o:: o::- f.J ~- 0:: i':t: 

If 

a,b ER then there exists o::, ~ such that a E Ao:: and b EA~. Also, 

Ao::£ A~ or A~ f; Ao::. Without loss of generality suppose Ao::f;; A~. Then 

a,b EA~, and a-b, ab EA~~ R. Therefore, Risa subring of K. Now, 

define g: R _,Fin the following way. If a ER then a EA for some o::, 
0:: 

Let g(a) = g (a). If a E A where o:: 1- Q then g (a) = g (a) since f g } 
0:: ~ f.J . 0:: ~ 0:: 

is totally ordered (i.e. since g is an extension of g or vice versa). 
0:: ~ 

Thus, g is well defined. Let a,b ER. This implies that there exists 

an o:: such that a,b E Ao::; hence a+b, ab E Ao:: since Ao: is a ring. Thus, 

g(a+b) = g (a+b) = g (a)+ g (b) 
0:: 0:: 0:: 

g(a) + g(b), and g(ab) = g (ab) 
0:: 

g (a) g (b) = g(a) g(b). Therefore, g is a homomorphism. Now, let 
0:: 0:: 

go:: be an element of { g). Then Ao:: S= R and go::(a) = g(a) for any a E Ao::; 

thus g ~ g. Therefore, g is an upper bound of {g }. 
0:: O::· 

Now, it has been shown that every totally ordered subset of E has 

an upper bound. Therefore, by Zorn's Lemma E has a maximal element. 

Let h:V _, F' be a maximal element of E. This implies that if h.~ k then 

h = k. Therefore, h has no extension distinct from itself. 
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. Lemma 4.5(b) and the above remark imply that V = V' where V' = 

[a/b I a EV, b E SJ and S = [a EV I h(a) 1 OJ. Also, if~ EK - V 

then v[~J 1 V; hence h cannot be extended to v[~J. Therefore, h can be 

-1 -1 
extended to v[~ ] by Lemma 4.6; hence V = V[~ ] since his a maximal 

element of E. 
-1 This implies~ EV. Thus, by Definition 2.10, Vis a 

valuation ring. 

Now, define H:K ~FU [~J as H(a) = h(a) if a EV, and H(a) = oo if 

a l:. V. Hence, 

H-l(F) = V, a ring, 

and Riv' a non-trivial homomorphism. 

Therefore, by Definition 2.13, H will be a place if H(a) =~implies 

-1 
H(a ) = · O •. Let a E K such that H(a) = °"· This implies a f:. V which 

-1 -1 
implies a EV since Vis a valuation ring. Now, if h(a ) 1 0 then 

a-l ES which implies a= 1/a-l EV' since 1 is always an element of 

a valuation ring such as V. Thus, a EV since V= V', a contradiction. 

-1 -1 Therefore~ h(a ) = 0 which implies H(a ) = O; hence H is a place. 

Valuations 

Definition 4.11. Let k be a subfield of a field K. Then K is called 

an extension field of k. 

Theorem 4.12. Let v:k - GU [z1 be a non-archimedian valuation. Let K 

be an extension of k. Then there exists a non-archimedian valuation 

t:K ~ G1 U [z} where G is a subgroup of G1 and tlk = v. 
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Proof: Let v1, u
1

, P
1 

be the valuation ring, units and non-units 

associat~d with v. Let ~:k...., (V
1

/P
1) U f~} be the place associated 

with v (cf. Theorem 2.14), Now, u1 = fa Ek I v(a) = 1} is the kernal 

of the homomorphism v: (k - [OJ) ..... G. Thus, there exists an isomorphism 

i: G ..... (k - [ O}) /u1 such that i (v(a)) = a u1 by the Fundamental Theorem 

of Homomorphisms (cf. Barnes [3], p. 47). ,'ln the proof of Theorem 2,16 

it was shown that (k - {O}/ u1 is an ordered group with normal subserni-

group sl = {a ul E (k - [O})/ ul I a E pl - ro}}where sl determines the 

ordering of (k - [O})/ u
1 

(i.e. a u1 ~ b u1 if, and only if 

-1 -
(a u1)(b u1) E s1). Let v(a), v(b) E G such that v(a) ~ v(b), Then 

v(a/b) = v(a)/v(b) ~ 1 which implies a/b E P1 - [O} since P1 = 

[a E k v(a) ~ 1} and a/b E k - [O}, Thus, (a/b) u1 E s1 which 

-1 -1 -
implies (a u1) (b u1) = (a/b) u

1 
= (a/b) u1·1 E s1 ; hence 

(a u1) (b u1)-l }: 1 which implies a u1 ~ b Ul' and so i (v(a)) ~ i(v(b)) . 

Therefore, G is order isomorphic to (k - [O})/ u1 . 

The function© I V :V1 -, (V/P1) is a non-trivial homomorphism by 
1 

Definition 2.13. Let F be an extension of (V1/P 1) such that Fis an 

algebraically closed field (such an extension always exists cf. Barnes 

[3], p. 197), Therefore, there exists a place ~;K ..... FU[~} such that 

~ j Vl = co j Vl by Theorem 4, 10. Hence, there is an associated valua­

tion ring v2 = ~-l(F) with units u2 and non-units P2, and there is an 

associated non-archimedian valuation t:K ..... [(K - f0})/U 2] U fz} where 
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t(a) = a u2 if a:/: 0 and t(O) = z (cf. Theorems 2al4 and 2.16). 

Now, it will be shown that v1 =kn v2, P1 =kn P2 and u1 = 

kn u2• Let x E v1 . This implies that w(a) E F which implies ,Jr (a) E 

-1 
F since ~(a)= *(a); hence a E * (F) = v2• Therefore, v1 ::: v2 which 

... . -1 
Suppose ,ir(x) = 0 and ,ir(x ) # ~. Then 

-1 -1 -1 -1 x, x E ,Jr (F) "' v2 ; hence ,Jr(l) "' ,ir(x x ) = ,ir(x) ,ir(x ) = 0 which 

implies ,Jr I V
2 

is trivial, a contradiction. 
-1 Therefore, if ,jr(x ) :/: ~ 

then ,jr(x) :/: O. Now, let a Ek n v2• 
-1 

Then a E v2 = 1!r (F) which 
.,.-

-1 implies ,ir(a) :/:~,and ,Jr(a ) :/: O. -1 Also, co(a ) :/: 0 otherwise a-l E 

-1 -1 co (F) = v1, and ,Jr(a ) = 0 since co I Vl = ,Jr I v/ thus co(a) :/: ~ by 

Definition 2.13. -1 Then a E v1 "' ~ (F) which implies kn v2 ::; v1, and 

·""" 
Therefore, k - Vl =(kn K) - v1 =(kn K) n v1 =kn (Kn V1)"' 

kn (K - Vl) =kn [(K-k) U (K-V2)] =kn (K-V2). Now, k = 

-1 -1 -1 
P1 u u1 u (P1 - [O}) = v1 u (P 1 - [O}) and K"' P2 u u2 u (P2-£0}) 

-1 -1 = v2 u (P2 - [O}) by Theorem 2.12; hence (P 1 - {O}) = k - v1 = 

. -1 
kn (K - V2) =kn (P2 - [O}) . Let x E Pl such that x :/: O. Then 

x-l E (P
1 

- [O})-l which implies x-l Ek n (P
2 

- (0})-1; thus x E 

.. -1 -1 
If x E k n P 2 such that x :/: 0 then x € k n (P 2 - [O}) = 

....... 
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Next, it will be shown that (k - (O})Ju
1 

can be imbeded in 

(K - (O}) /U2 by an order isomorphism. Let j: (k- (O}) /U1 .... (K - £0} )Ju2 

be defined as j(a u
1

) = a u2 . To show that j is well defined, let 

-1 -1 
Then (a u1) (b u1) = l·U1 which implies (ab )U1 = 

hence j is well defined. Also~ j[(aU1) (bU1)J = j[(ab)U1] = (ab) u2 = 

(k - {O})/U
1 

such that j (aU
1

) = l·U
2

• Then au
2 

= l 0 U
2 

which implies 

a E u2. Thus, a E u
1 

since u
1 

=kn u2 and a Ek; hence au
1 

= 1.u1, 

and j is an isomorphism. Now, let au1, bU
1 

E (K - £0})/tr1 such that 

-1 
Then (ab )U

1 

the normal subsemigroup of (K - (O})/U
2

• Therefore, 
-1 

(a b )U
2 
~ 

l 0 U2 which implies au2 ~ bU2~ and j is an·order isomorphism, 

(j O 

k 

v i 
G ----->- (k - [O})Ju1 -->- (K - f0})/U2 

Now, it can be shown that t I k = 

i o v) (a) = j (1 (v(a))) = j (aU
1

) 

j O i O v. 

au = t(a). 
2 

Let a E k. Then 

Thus~ t I k = 

j o i o v which implies t I k = v up to an order isomorphism, and so 
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the proof is complete. 

Normed Linear Spaces and Uniqueness 

Definition 4.13. Let A be a set and Fa field such that 

(a) A is an additive abelian group, and 

(b) if c E F and x EA there exists a unique element ex EA called the 

product of c and x such that c(dx) = (cd)x and l·x = x for all 

c,d E F and x E A, and 

(c) if x,y EA and c,d E F then c (x+y) =ex+ cy and (c+d)x = ex+ dx. 

Then A is said to be a linear space (or vector space) over F. If B b A 

and Bis also a linear space over F with respect to the opetations that 

are inherited from A then Bis called a subspace of A. An element of 

A is called a vector. 

Theorem 4.14. Let A be a linear space over F. Let fx1, ••• , xn} be a 

subset of A and B = fc 1 x1 + ••• + en xn I ci E F}. Then Bis a 

subspace of A. 

Proof: Let x,y EB. Then x = c 1 x1 + ..• +en xn and y = d1 x1 + .•• 

EB which implies Bis an additive subgroup of A. Let c E F. Then 

ex = (c c 1)x1 + •.. + (c c
11

)xn E B. All of the other properties of a 

linear space are inherited from A. Hence, Bis a subspace of A. 

Definition 4.15. Let A be a linear space over F. Let x1, x2, .•• , xn 

EA and B = [c1 x1 + ... +en xn I ci E F}. Then Bis called the 

subspace spanned by x
1

, ... , x • 
n 
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Definition 4 .16. . Let A be a linear space over F. Let Cx1, •.• , xn} r=. 

A such that c 1 x1 + ••• + en xn = 0 implies c 1 = = c = 0 and such 
n 

that for any x EA there exist c 1, ... , c E F such that x = . n 

c
1 

x
1 

+ ••• +en xn. Then, the set rx1, ..• , xn} is said to be a basis 

for A, and A is an n-dimensional linear space (vector space). 

Theorem 4.17. Let k be a field and Kan extension field of k. Then K 

is a linear space over k. 

Proof: K is an additive abelian group since it is a field. Let 

c,d Ek and x,y EK. Then ex EK since K is closed under multiplica-

tion, c(dx) = (cd)x since multiplication in K is associative, and 

l·x = x since x E K and 1 is the unity element. Also, c(x+y) = ex+ cy 

and (c+d)x = ex+ dx since multiplication is distributive over addition 

in K. Therefore, K is a linear space over k. 

Definition 4.18. Let K be an extension field of a field k. K is 

called a finite extension of dimension n if, and only if K is an 

n-dimensional linear space over k where n is a positive integer. 

Definition 4.19. Let A be a linear space over F. Let v:F - R be a 

rank one valuation. Let N:A _, R be a function such that 

(a) N(x) ::.::. 0 for all x E A, and N(x) = 0. if, and only if x = O, and 

(b) N(cx) = v(c) N(x) for all c E F and x EA, and 

(c) N(x+y) s N(x) + N(y). 

Then N is called a norm on A and A is called a normed linear space. 

If K is an extension field of k and vis a rank one valuation on 

K then K is a normed linear space over k with norm v. Also, if A is an 
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arbitrary normed linear space over a field with norm N then Cauchy 

sequences, convergence and completeness can be defined as they were in 

Chapter III. If [an} is a sequence in A, and if for any E > 0 there 

exists an M such that N(a. - a)< E when n,m > M then fa.} is called a 
n m n 

Cauchy sequence. If there exists a vector x EA such that for any 

E > 0 there exists an M such that N(a - x) < E when n > M then fa} n n 

is said to converge to x which is denoted by lim a = x. If every 
n 

n...~ 

Cauchy sequence in A converges to a vector in A then A is complete. 

A normed linear space A forms a topological space. In particular 

it is a metric space with metric d(x,y) = N(x-y) and basic neighbor-

hoods of the form Sr (x) = [Y I N(x-y) < r} where r > O. A set B is 

open in A if, and only if for any x EB there exists a basic neighbor-

hood S (x) such that S (x) c B. A set C is closed in A if, and only if r r -

A - C is open. If D t;;;,A and p EA then pis called a limit point of D 

if, and only if there exists a sequence [a} in D such that lim a = p. 
n n 

n-,co 

It can also be shown that a set Dis closed in A if, and only if D .,. 

contains all its limit points (cf. Hall and Spencer [10], p. 63). 

Definition 4.20. Let A be a linear space over F. Let N1 and N2 be 

two norms on A. Then N
1 

is said to be equivalent to N
2 

if, and only if 

there exist a,b > 0 such that a N1 (x) ~ N2(x) ~ b N1(x) for all x EA. 

Further, "equivalence of norms" is an equivalence relation since 

N1 (x) ~ (l/a)N2(x), and if aN1(x) ~ N2(x) ~ bN1 (x) and 



a, b, c, d > O. 

Theorem 4.21. Let A be an n-dimensional linear space over F. Let 

Cx1, •.. , xn} be a basis for A. 

Let N:A .... R be defined as N(x) 

c x. Then N is a norm. 
n n 

Let v.:F .... R be a rank one valuation. 
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Proof: N is well defined since x = c 1 x1 + ••• + cri x = d1 x1 + .•• + 

+ (c - d )x = O; hence c 1 - d1 = n n n 

. . .. '. c. = d by Definition 4.16 • 
n n 

Therefore, max v(ci) = max v(d.). 
i i i 

Also, N(x) ~ 0 since v(c.) ~ 0 for any i. If N(x) = 0 then v(c.) 
i i 

= 0 for all i which implies ci = 0 for all i; thus x = c 1 x1 + ••• + 

en xn = O. If x = 0 then c 1 x1 + ••. + en x = 0 which implies c 1 = 

= c = O· hence v(c.) = 0 for all i, and N(x) = max v(ci) = o. ' n i i 

If c E F then N(cx). = max v(c c.) = max v(c) v(c.) = 
i i i i 

v(c) max v(c.) = v(c) N(x). If y =/\ xl + .•. + d x then N (x+y) = i i n n 

max v ( c . + d . ) ~ max [ v ( c . ) + v ( d . ) J = max v ( c . ) + max v ( d . ) = N ( x) + 
i i i i i i i i i i 

N(y). Thus N is a norm. 

The next theorem is adapted from a similar one in Bachman [2]. 

Theorem 4.22. Let A be an n-dimensional linear space over F with basis 

(x1, •.. ,, xn}. Let F be a complete field with respect to a rank one 

valuation,,y:F .... R. Then any two norms on A are equivalent. 
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Proof: It will be shown that every norm on A is equivalent to the norm 

+ c x. Then the theorem will 
n n 

be proved since "equivalence of norms" is an equivalence relation. 

A. 

Let N be an arbitrary norm on A, and let x = c 1 x1 + + c x E n n 

+ N(c x ) = 
n n 

Now it must be shown that there exists a> 0 such that aN (x) ~ 
0 

N(x) for all x E A. This will be shown by induction on n the dimension 

of the linear spaceo 

If n = 1 then there exists a basis [x1} with only one vector. 

Thus, x EA implies there exists a c 1 E F such that x = c 1 x1 which 

Non a 1-dimensional linear space A there exists an a> 0 such that 

aN
0

(x) ~ N(x) for all x EA. 

Assume for any norm Non an (n-1)-dimensional linear space over F 

there exists an a> 0 such that a N (x) ~ N(x)o Let A be an n­
o 

dimensional linear space over F with basis fxp •.• , xn}. Let N be a 

norm on A. Let B be the subspace spanned by {x1, ... , xn- l} (cf. 

Definition 4.15). Then [x1, , .. , xn_ 11 forms a basis for B which 

implies Bis an (n-1)-dimensional linear space. Also, N ts a norm on 

B. Therefore, N i.s equivalent to N on B by the first part of the 
0 

proof and the induction hypothesis; hence there exists a,b > 0 such 
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that a N (x) ~ N(x) ~ b N
0

(x) for all x E B. 
0 . 

Let fyi} be a Cauchy sequence in B with respect to N. There exist 

i = 1, 2, 3, ... Now, v(c ft - ck)~ max v(c.n - c.k) = N (Yd - yk) 
m m j JA'.I J o ..c, . 

1 
~ -; N ()z - yk) . Thus if E > 0 then there exists M such that 

N(~ - yk) < a E for i,k > M since [Yrt} is Cauchy; hence v(cmi. - cmk). < 

E. This implies [c .} are Cauchy in F with respect to v form= 
mi 

1, 2, •.. , n-1. Therefore, for each m there exists c E F such that 
m 

lim c . 
i-,oo mi 

= c since Fis complete with respect to v. 
m 

Let y = 

Also, N(y. - y) s: b N (y.-y) = 
i O i 

b max v (c .. -c.). If E > 0 then there exists M. such that v(c .. - c.) 
j Ji J J Ji J 

< E/b when i > M.. Let M = max M.. Then i > M implies v(c .. -c.) < 
J j J Ji i 

E/b for j = 1, 2, .•. , n-1 which implies max v(c .. -c.) < E/b. There-
j Ji J 

fore, N(y. - y) < E when i > M; hence limy.= y with respect to N. 
i . i 

i-,o:i 

Thus, Bis complete with respect to N. 

Let C = [xn + x EA Ix E B1. Let p be a limit point of C. This 

implies there exists a sequence [a.} in C such that lim a. = p. Thus, 
i i-,oo i 

for each i there exists b. EB such that a.= x + b .. Also, if E > 0 
i i n i 

there exists M such that N(a. - p) < E/2 if i > M. Therefore, 
i 

N(b. - b.) = N.(x + b. 
1. J n i 

(x + b.)' = N(a. - a.).= N(a. - p + p - a.) s: 
n J') i J i J 

N(a. - p) + N(p - a.) < E/2 + E/2 = E if i,j > M. This implies that 
i J 

fbi} is a Cauchy sequence in B with respect to N; hence there exists 



b EB such that limb.= b since Bis complete. 
i .... oa 1. 

Thus lim a. = 
i--,ro 1. 

70 

lim (x + b .) = s + b E C. This implies p = x + b since the limit is 
. n 1. n n 
1.-+lrl 

unique; thus p EC. Hence:, C contains all its limit points, and so C 

is closed. This implies A - C is open. 

Now, 0 EC, otherwise there exists x ·EB such that O = x + x. 
n 

But, there exists c 1, ... , cn-l E F such that x = c 1 x1 + ... + 

C x · thus O - c x + n-1 n-1' - 1 1 + c x + l·x. This contradicts 
n-1 n-1 n 

the fact that x
1

, 
• 0 0 ' 

x is a basis; hence OE A - C. 
n 

Let x EC • 

Then there exists r > 0 such that Sr (0) = [y j N(y-0) < r 1 c A - C 
n n n- -

since A - C is open; thus x f_ Sr (0) which implies N(x) = N(x-0) ~ r . 
n n 

+ (c 
1
/c )x .

1 
+ x E C which implies N(c

1 
x

1 
+ . ., + c x ) = n- - n n- n n n 

N(c ([c
1
/c Jx

1 
+ ... + [c 

1
/c J x 

1 
+ x. )\ = v(c ) Nf(c

1
/c )x

1 
+ \' n n n- n n-. n~ n \ 1 n 

+ (c 1/c) x 1 + x) ~ v(c) r . If c = 0 then v(c) = O, and 
n- n n- n n n n n 

N(x) ~ 0 = v(c )r ; hence N(x) ~ v(c )r for all x 
n n n n 

c x EA. In a similar manner it can be shown that for each i there 
n n 

exists ri > 0 such that N(x) = N(c 1 x 1 + ... + ci xi+ + c x ) ::;;::: 
n n 

N(x)::;;::: v(c.) min r. = v(c.)a for i 
]. i ]. ]. 

Let a= min 
i 

r ~ . 
]. 

Then 

1, 2, ... , n. Thus, N(x) ::;;::: 

max v(c.)a = a max v(c.) = aN-(x). Thus the theorem is proved. 
i l. i 1. 0 

The proof of the following uniqueness theorem was adapted from one 

in Cassels and Frohlich [7]. 
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Theorem 4.23 •. Let K be a finite extension field of dimension n of a 

subfield k •. Suppose k is complete with respect to a rank one valuation 

v. If there exists a rank one valuation t:K ~ R such that t I k = v 

then tis unique. 

Proof: Suppose w:K-, Risa rank one valuation such that w I k = v. 

Now, K is an n-dimensional linear space over k and t and ware norms on 

K. Thus, t and ware equivalent norms by Theorem 4.22. This implies 

that there exists a,b > 0 such that aw(x) ~ t(x) ~ bw(x) for all x EK. 

Let x E K such that t(x) < 1. Then lim tn(x) = 0 which implies 
n-,oo 

1 lim t(xn) = l lim tn(x) = 0. This implies 
a a 

n-,oo 

w(x) < 1; hence t and ware equivalent as valuations. Thus, there 

s 
exists a positive real numbers such that t(x) = w (x) for all x EK by 

Theorem 3.32. Let y Ek such that y # 0. Then t(y) = v(y) = w(y). 

This implies ws(y) = w(y). Therefore, s = 1, and t = w. 

Definition 4.24 •. Let A be a linear space over F. Let xp.x2, .•• , xm 

c 
m 

O then [x1 , • 0 0 3 x.} is said to be linearly independent. 
m 

If 

= 

{x1 , •.. , xm} is not linearly independent then it is linearly dependent. 

If A is an n-dirnensional linear space over F and [xp ... , xm} is 

a linearly independent subset of A then [x
1

, ... , xm} is contained in a 

basis of A (cf. Halmos [ll], p. ll). This implies m ~ n since every 

basis has exactly n vectors (cf. Halmos [ll], p. 13). 
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Theorem 4.25. Let F be a field with a valuation v:F - GU (z}. Let K 

be an extension field of F with a valuation t:K .... HU fz} such that G 

is a subgroup of Handt F = v. Then v(F - [O}) = G is a normal 

subgroup of t(K - [O}) = H. 

Proof: Let a EH and b E G. This implies there exists x EK - fO} and 

y E F - [O} such that t(x) = a and t(y) = b. 
-1 

Thus, ab a = 

t(x) t(y) t(x)-l = t(x) t(y) t(x- 1) = t(xyx~ 1) = t(yx:£ 1) = t(y) = 

b E G. Hence, G is normal in H. 

Definition ~.26 •. Let F be a field with valuation v:F - GU [z}. Let K 

be an extension field of F with a valuation t:K ~HU {z} such that G 

is a subgroup of H and t F = v. Then the number of elements e in the 

factor group t(K - [O})/t(F - (O}) = H/G is called the ramification 

index oft and v. 

Theorem 4.27. Let F be a field with valuation v:F ~GU fz}. Let K be 

a finite extension field of dimension n with non~archimedian valuation 

t:K .... G1 U [z} where G is a subgroup of G1 and t j F = v. Then the 

ramification index e oft and vis finite and e ~ n. 

Proof: Let [a1G, a2G, ... , aiG} be a finite set of distinct elements 

of G/G. Then there exists a set of distinct elements b1, •.. , bi E 

a. since 
1. 

Now, suppose c 1 b1 + ... + ci bi = 0 where cl' •.. , ci E F and 



cl' ... ' c. are not all zero. 
l. 

Suppose c 1, ... , ck(k s: i) are the 

non-zero elements of [c 1, .. , • cJ. The elements t(c 1 b 1), .. ~, 

t(ck bk) are distinct, otherwise there exists l,m such that L # m, 

t(c ) t(b ) = t(c ) a which implies v(cj) a 1 = v(c ) a , and so 
m m m m A: m m 
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(v(c )G\ (a G) = (l·G)(a G) = a G, a contradiction. This implies there m :I m m m 

k. = t(c b) by Theorem 2.9. 
m m 

This 

which implies c = 0 orb = 0, a contradiction. Therefore, if 
m m 

0 0 0 j 

[b 1, •.• , bi} is a linearly independent set in the linear space Kover 

F. Therefore, i s: n, and G/G has only a finite number of elements and 

es: n. 

The last theorem was taken from Schilling [16]. The next theorem 

may be found in Bachman [2]. 

Theorem 4.28. If v:F - Risa non-archimedian rank one valuation on F, 

and K is a finite extension field of F, then there exists a non-

archimedian rank one valuation t:K - R such that t I F = v. 

Proof: There exists a non-archimedian valuation w:K -s U [O} such 

that v(F) c Sand w I F = v by Theorem 4.12. The ramification index e 
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of w and v is finite by Theorem 4. 27. 

Let r:K ~ S LJ [OJ be a function defined as r(a) = we(a) for a# 0 

and r(O) = 0. It is clear that r(a) = 0 if, and only if a== 0, and 

r(ab) = we(ab) = (w(a) w{b)) e = we(a) w
6 (b) = r(a) r(b). Let a,b E K. 

Then w(a + b) 1 max (w(a), w(b)) which implies w\a + b) l 

(max (w(a), w(b))) e = max (we(a), we(b)); hence r (a+ b) i; 

max (r(a), r(b)), and so r is a non-archimedian valuation. 

Let a EK and G = v(F). Then w(a)G is a coset of S/G. This 

implies r(a)G = we(a)G = (w(a)G)
6 

= l·G since e is the order of the 

group S/G; hence r (a) E G s;. R. Therefore, r (K) r;; G k R, and so r is a 

non-archimedian rank one valuation by Definition 3.19. 

Now, let t:K ~ R be defined as t(a) = (r(a)) l/e. It can be shown 

that tis a non-archimedian valuation in the same way r was shown to be 

a non-archimedian valuation. Also, t is of rank one since t{K) r;; R. 

Let a E F, then t(a) = (r(a))l/e = (we(a))l/e = w(a) = v(a); thus 

t I F :::: v. 

Theorem 4.29. · Let v:F .... R be a rank one non-archimedian valuation 

where Fis complete with respect to v. Let K be a finite extension 

field of F. Then there exists a unique non-archimedian rank one 

valuation t:K __, R such that t j F = v. 

Proof: Theorem 4.28 implies the existence oft, and Theorem 4.23 

implies uniqueness. 



CHAPTER V 

SUMMARY 

In the preceding chapters, a valuation of general rank has been 

defined, and it has been shown that if vis a non-archimedia.n rank one 

valuation then vis a mapping from a field to the non-negative reals 

such that v(a) = 0 if, and only if a= O, v(ab) = v(a) v(b) and 

v(a + b) ~ max ~(a) v(b)). This depended upon the fact that a rank one 

ordered group is isomorphic to a subgroup of the. multiplicative group 

of positive reals. It was shown that a non-archimedian valuation is of 
...;:·: 

rank ornf' if, and only if the associated valuation ring is a maximal 

subring-of the domain of the valuation. The Fundamental Extension 

Theorem of Places was proven, and it was shown that a rank one non-

archimedian valuation can be extended uniquely over a finite extension 

field of its domain provided the domain is complete. 

The above facts are by no means an exhaustive list of the irnpor-

tant theorems of valuation theory. There are many other areas that can 

be studied, and the topics mentioned above can be further investigated. 

For example, there exists a formula for the unique extension of 

Theorem 4.29 (cf. McCarthy [14], p. 89). Also, if K is a finite 

extension field of degree n 

set of extensions fv} to K 
a 

over F and vis a valuation on F with a 

then le f :.,:; n where e is the ramifica-
a a a 

a 

tion index of v and v, and f is the degree of the extension field 
a a 

V /P over V/P (V and V are the valuation rings of v and v a a a a 
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respectively, and P and Pare the non-units of V and V). This a a 

theorem was published by Cohen and Zariski in 1958 as the first article 

in the first volume of the Illinois Journal of Mathematics (cf. Cohen 

and Zariski [8]). This would imply that v has only a finite number of 

extensions even though Fis not complete with respect to v. Complete-

ness was part of the hypothesis of Theorem 4.29. 

A valuation can be defined on a more general algebraic structure 

than a field, For example, Schilling [16] defines a valuation on a 

division ring. Manis [13] in a very recent publication developed a 

theory of valuations which are defined on a commutative ring with 

unity. 

This paper was not meant to be a complete treatment of valuation 

theory, but it is hoped that the reader will gain some knowledge of the 

fundamentals of this theory and will develop an interest in this 

generalization of absolute value. 



BIBLIOGRAPHY 

(1) Artin, E. Elements of Algebraic Geometry (Lecture Notes). New 
York: New York University Institute of Mathematical 
Sciences, 1955. 

(2) Bachman, G. Introduction to p-Adic Numbers and Valuation.Theory. 
New York: Academic Press, 1964. 

(3) Barnes, W, E. Introduction!£ Abstract Algebra. Boston: Heath, 
1963. 

(4) Bell, E. T. Mathematics, Queen and Servant of Science. New 
York: McGraw-Hillf 1951. 

(5) Borevich, Z. I. and I. R. Shafarevich. Number Theory, Pure and 
Applied Mathematics Monographs and Textbooks, Volume 20. 
New York: Academic Press, 1966. 

(6) Burrill, C. W. Foundations of Real Numbers. New York: McGraw­
Hill, 1967. 

(7) Cassels, J. W. S. and A. Frohlich. Algebraic Number Theory. 
Washington, D. C.: Thompson, 1967. 

(8) Cohen, I. S. and 0. Zariski. "A Fundamental Inequality in the 
Theory of Extensions of Valuations." Illinois Journal of 
Mathematics, Volume 1, 1957, 1-8. 

(9) Cohen, L. W. and G. Ehrlich. The Structure of the Real Number 
System. Princeton: D. Van Nostrand, 1963. 

(10) Hall, D. W. and G. L. Spencer. Elementary Topology. New York: 
John Wiley, 1955. 

(11) Halmos, P.R. Finite Dimensional Vector Spaces. Princeton: 
D. Van Nostrand, 1958. 

(12) MacDuffee, C. C. "The p-Adic Numbers of Hensel." American 
Mathematical Monthly, Volume 45, 1938, 500-508. 

(13) Manis, M. E. "Valuations on a Commutative Ring." Proceedings 
of _the American Mathematical Society, Volume 20, 1969, 
193-198. 

77 



(14) McCarthy, P. J. Algebraic Extensions of Fields. Waltham, 
Massachusetts: Blaisdell, 1966. 

(15) Moore, J. T. · Elements of Abstract Algebra. New York: 
MacMillian, 1967. 

(16) Schilling, O. F, G. The Theory of Valuations, Mathematical 
Surveys of the American Mathematical Society, Volume 4, 
New York, 1950. 

78 



VITA 
3 

Edward Newton Mosley 

Candidate for the Degree of 

Doctor of Education 

D,:ii.~l;'t!;ltion: . A' STUDY: OF VALUATlONS OF GENERAL RANK 

Major Field: Higher Education 

Biographical: 

Personal Data: Born in Little Rock, Arkansas, July 19, 1939, the 
son of Ellis G. and Mary N. Mosley. 

Education: Graduated from Batesville High School, Batesville, 
Arkansas, in May, 1956; received the Bachelor of Arts degree 
from Arkansas College, Batesville, Arkansas, in May, 1960, 
with a major in mathematics; received the Master of Science 
degree from the University of Arkansas, Fayetteville, 
Arkansas, in June, 1962, with a major in mathematics; 
attended Texas A. and M. University, College Station, Texas, 
in the summer of 1964 as a National Science Foundation 
Institute participant; attended the University of Arkansas in 
the summer of 1965; completed requirements for the Doctor of 
Education degree at Oklahoma State University in May, 1970. 

Professional Experience: Taught as a graduate assistant in 
mathematics at the University of Arkansas, 1960-62; taught as 
an instructor of mathematics at Memphis State University, 
1962-66; taught as a graduate assistant in mathematics at 
Oklahoma State University, 1966-70. 

Professional Organizations: Member of Mathematical Association of 
America and Pi Mu Epsilon. 


