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CHAPTER T
INTRODUCTION

A valuation is a generalization of the absolute value function of
the real numbers. This notion was probably first sparked by Kurt

Hensel in 1908 in his book Theorie der Algebraischen Zahlen. Hensel

introduced a new number field called the field of p-adic numbers. His
treatment was somewhat informal and intuitive (cf. MacDuffee [12],

p. 501). .Later in 1913, J. Kurschak was interested in the formulation
of an absolute value type function on an arbitrary field. He wanted
the function to have the same basic properties as the absolute value
functions on the real and complex numbers. The problem was solved by
merely postulating such a function. That is, if given a field F then
let ll;FaR be a real valued function such that |x|20, lx‘=0 if, and
only if x=0, ixy|=|xl‘y' and |x+ytslx[+lyl. It is now popular to treat
Hensel's p-adic numbers as the completion of the rational numbers with
respect to a special kind of absolute value (valuation) of the ration-
als. This completion process is similar to the development of real
numbers by Cauchy sequences (cf. MacDuffee [12], p. 501).

However, many of Kurschak's conservative contemporaries were
disgusted with his newly concocted absolute value or valuation. They
considered it as a disreputable trick because he postulated what he
wanted to get. It almost seemed that Kurschak with a divine wave of

the hand had said, "Let there be absolute values," and there Qere



absolute values (cf. Bell {47, p. 160). But, it can be éhown that
every field has at least one valuation, and also the ideas of Hensel
-and Kurschak have generated a rich theory of valuations. Valuations
have played ag important role in the development of algebraic number
theory and algebraic geometry (cf. Bachman [2], p. v). . Some of the
mathematicians that have sincevcontributed to the development of valua-
tion theory include Chevalley, Krull, Ostrowski, Cohen, and Zariski
(cf. Schilling [16], p. iv).

In Chapter II of this paper many of the basic ideas concerning
valuations of rank n are introduced, Ordered groups of rank n, places,
valuation rings, and non-archimedian valuations are some of the topics
included. Many examples of these structures and mappings are given.

It is shown that there is a one-to-one correspondence between places
and non-archimedian valuations up to an isomorphism. The framework for
the study of valuations is constructed in this chapter.

Much work has been done on the subject of rank one valuations, and
in particular on rank one non-archimedian vaiuations. In fact many
writers require a valuation to be a rank one non-archimedian valuation
or at least require it to be rank one (cf. McCarthy [14], Borevich and
Shafarevich [5] and Cassels and FrShlich [7]). Chapter IIT is concerned
with rank one valuations. In this chapter iL-is shown that a rank one
ordered group is isomorphic to a subgroup of the multiplicative group
of positive real numbers, and from this it is shown how a definition of
a rank one valuation such as Kurschak's is a specialization of the
definition of a rank n valuation. Also, a rank one valuation is char-
acterized when the non-archimedian property is assumed, and a non-

archimedian valuation is characterized when rank one is assumed. The



notions of convergence of sequences and coppleteness of a field with
respect to a rank one valuation are presented. Finally the chapter
concludes with a discussion of equivalent valuations.

Chapter IV deals with some of the standard extension problems
concerning mappings that resemble valuations, places and valuations.
The chapter ends with a uniqueness theorem concerning the extension of
a rank one non-archimedian valuation.

The main sources of information that are used in the paper are the

works by Artin [1], Bachman [2], and Schilling [16].



CHAPTER II
VALUATIONS OF GENERAL RANK
. Ordered Groups

Before formulating a general definition of a valuation, the

concept of an ordered group will be considered.

Definition.2.1. Let G be a multiplicative group. G is an ordered

group if, and only if there exists a normal subsemigroup § of G such

1

that G = syf1jys™ where 87 = fa™t ¢ ¢ | a €S} and s, {1} and s

are mutually disjoint.

An example of an ordered group is the group G of all positive real
numbers under the operation of multiplication. This can be shown by
letting S = {a € G ‘ a < 1}. Then it follows that G = SU{l}USSl where
S, {1} and S-,l are mutually disjoint.

An order relation ¥ can be defined on an ordered group G. Let
a, b € G, Define a xb if, and only if a b-’1 € S, where a ¥ b means

a Xxbor a=hb,

Theorem 2.2. Let G be an ordered group. Then
(a) a, b € G imply a X b or a - borbxa

(b) a, b, € G, a Xb and b ¥ ¢ imply a X ¢

(¢) a, b € Gand a ¥ b imply b“1 X a-l

(d) a, b, ¢, d € G, a ¥xb and ¢ ¥ d imply ac X bd and ca ¥ db.



Proof:
. , -1 , -1 . .
(a) a, b € G implies ab =~ € G = SyYf1}yS ~ since G is a group. There-
fore, ab™! is in S or is equal to 1 or is in S-l. 1f ab”l is in

S then a X b, Ifab ' =1 thena=b. If ab * is in 8 1 then

(ab'l)'l = ba ' is in § which implies b X a.

(b) a Xbandb ¥ c imply ab * € § and be "L € S which imply ac * =
(abﬁl)(bc_l) € S since § is a semigroup, This implies a¥ec.

(¢c) a x b implies ab;1 € S which implies b—la = b-l(ab-l)b since S is
normal; hence b-l.k a-l.

(d) a xb and ¢ = d imply ab-l € S which implies c(ab“l)c-1 EFS since
S is normal. Therefore, (ca)(cb)-l €S, and so ca ¥ ¢b which
implies ca ¥ db. Also, a(cc-l)b“l = (ac)(bc.)“l € S; thus ac X bc
and ac. X bd. If ¢ X d then ac.) bc and be ¥ bd. Then ac ¥ bd by

part (b). .Similarly it can be shown that ca ¥ db.

. In the ordered group G of all positive real numbers the order
relationship ¥ is the same as the natural ordering < .  This is true
because a < b if, and only if abl ¢ s if, and only if ab™l <1 if,

and only if a < b.
Theorem 2.3. . Every non-trivial ordered group is infinite.

Proof: Let G be a non-trivial ordered group. Let a € G. . Suppose

1 X a. It can be shown by induction that 1 X a” for any positive

integer n. The statement is certainly true for n = 1.  Assume true
L . n n+l

for some n.= 1. This implies 1 X a . Therefore, 1 X a Xx a by

Theorem 2.1 (d) and (b). In.a similar way it can be shown that

a” ¥ 1 for any negative integer n. Now, suppose a ¥ 1. Again by

induction it follows that a" ¥ 1 for any positive integer n, and



1 x a® for any negative integer n. Therefore, if a # 1 then a” # 1 for

any. non-zero integer n.
Consider the sequence {an} where a € G and a # 1. Suppose there

]

exists two positive integers n and m such that n # m but a = a". Then
n=-m . . I

a = 1., This contradicts the above result that a # 1 for any non-
zero integer n. This implies that G contains a sequence of distinct

terms and is therefore infinite.

The following corollary is a result of the proof of this theorem.

Corollary 2.4. The only element of an ordered group that has finite

order is the group identity.

Valuations

Now a general definition of a valuation can be constructed. The
notion of an ordered group is important in the discussion because a
valuation is a mapping from an arbitrary field onto an ordered group
and an additional element. The definition is stated formally as

follows:

Definition 2.5. let K be a field and G an ordered group with an
additional operation defined on it which is denoted by +. Let z be an
additional element for G such that for all a € G, z ¥ a, az = za = z
and a +z =2z + a = a. A valuation is a wmapping v:K - GU[Z} such that
v{K) = GYfz} and

(a) v(a) = z if, and only if a = 0

(b} v{ab) = v(a)v(b)

()v(ath) ¥ v(a) + v(b).

The group G is sometimes called the value group of v.



. It should be pointed out that an extra operation can always be
introduced on an ordered group, for let a + b = max (a,b). This is
well defined because exactly one of the following will be true: a X b,
a =b, or b ¥ a,  Also, ¢ max (a,b) = max (ca, cb) and max (a,b)c =
max (ac,bc)., This implies c(at+b) = ca + c¢b and (atb)ec = ac + be. If
this max operation is used then (¢) in Definition 2.5 becomes

v(atb) ¥ max (y(a), v(b)). This property is given a special name.

‘Definition 2.6. If a valuation v has the property v(atb) X

max (v(a), V(bf) then v is said to be a non-archimedian valuation.

Consider the absolute value function [|:R - GU{0} where R is the
field of real numbers and G is the ordered multiplicative group of
positive real numbers. It is easily verified that || is a valuation.
Also, the function t:K - {1} y {z]} where K is a field and t is defined
as t(a) = 1 if a # 0 and t(0) = z is a valuation known as the trivial

valuation, The valuation t is also non-archimedian., Let a, b € R.

If a# Oor b# 0 then t(a) =1 or t(b) = 1. This implies t(at+b) ¥ 1 =

max (t(a), t(bj). . If a=0b 0 then t(atb) = t(o) = z =
max (t(a), t(b)). The next three theorems are modifications of some

theorems and problems in Bachman [27.

Theorem 2.7. Let v:K = GJf{z} be a valuation. Then
(a) v{(1) = v{~1) = 1 and v(=a) = v(a)

(b) v(a/b) = v(a)/v(b) if b # 0.

Proof:
(a) First of all, v(1) = v(1l-1) = v{(1)v(l) which implies v(1) = 1.

Secondly, 1 = v .((~1)2) = vz(wl), which implies v(-1) = 1 by



Corollary 2.4. Also, v(-a) = v(-l.a) = v(-1)v(a) = v(a).
(b) Let b € K such that b # 0. Then v(b-lb) = v(l) = 1, This implies
v(b " Yv(b) = 1 which implies v(b Y) = 1/v(b). Therefore, v(a/b) =

v(ab-l) = v(a)'v(b-l).= v(a) (l/v(b)) = v(a)/v(b).

Theorem 2,8. The only valuation of a finite field is the trivial

valuation.

Proof: Let v:K .- Gz} be a valuation defined on a finite field

K = [al’ oo an, a Let a € K such that a'# 0. Then a" = 1 which

n+1}'
implies that vn(a) = v(an) = v(1) = 1 by Theorem 2.7. This implies

v(a) = 1 by Corollary 2.4. Therefore, v is the trivial valuation.

Theorem 2.9. If v:K - GUfz} is a non-archimedian valuation then
v(a; + ...+ a) ¥ max (v(al), v(aﬁ)). 1f v(aj) X v(a) for

j=2, ..., n then v(a1 + ...+ an) = v(al).

Proof:‘ Let [ai} be a sequence of elements of K. Then v(a1 + ...+ an)
X max (v(al), coey v(aTQ) for n = 2 since v is non-archimedian. Assume
true’for-some n > 2. Now, v(al N a + an+l) X
max (v(al‘+ cen an), V(an-l—l)) X max (max(v(al),.,.,v(an)), V(an-hl))=
max (v(al), cees V(@) v(aﬁ+l)). Therefore, it has been shown by
induction that the first part of the theorem is true,

Now, 1et.al, sees @) € K such that v(aj) X v(al) for 3 =2, ..., n.
Then v(al) = v((al + ...+ an) - (a2 + ...+ an)) X
max (v(al + ..+ an), v(a2 + ..+ én)). If v(al R an) X
v(a2 + ...+ an) then v(al) X v(a2_+ ee. an) X

max (v(az), ey v(an)). This contradicts the fact that v(aj) X V(al)

for j:é?gl 'Tﬁéréforé, v(él)lz_v(ai‘+ . +.én) X



max (v(al), v(az), ey v(an)) = v(al). . Hence, v(al) =

v(a1v+ cee an).
Valuation Rings and Places

Valuation rings and places play an important role in the develop-
ment of the‘theory of valuations. It will be shown that there is more
or less a one-to-one correspondence between valuation rings and places,
and later it will be shown that there is a similar relationship between
valuation rings and non-archimedian valuations. Most of the theorems

in this section can be found in Artin [1] and Bachman [2].

Defin;tion 2.10, A subring V of a field K is called a valuation ring

if, and only if a € K - V implies at-l €EV. LetP={ac€cV | a—1 ¢ v}
and let' U=V -'P., P is called the set of non-units of V, and U is

called the set of units of V.

A trivial example of a valuation ring of a field K would be the
ring V = K. . The following example which can be found in Artin [1] is

much more interesting.

Example.2.11. Let Q be the field of rational numbers. Let p be a

fixed prime integer. Assume that every element of a/b of Q is in
reduced form. Let V= {a/b € Q | p+b}. If a/b, c/d é V then p + bd
since p + b and p + d; hence a/b - ¢/d = (ad - bc)/bd € V and
(a/b)(c/d) = (ac)/(bd) € V. Therefore, V is a subring of Q.

Now, suppose a/b € Q - V. This implies that p | b, and so p } a
since (a,b) = 1. Thus, (a/b)_1 = b/a € V which makes V a valuation
ring. Also, P = fa/b ¢ V | b/a ¢ V} = fa/b €V | p | a}, and

U=V -P?={a/heV|p+al.
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Theorem 2.12, - Let V be a valuation ring in a field K. Then

(a)
(b)
(c)

The set of non-units P of V is a unique maximal ideal of V.
The set of units U of V is a multiplicative group.
The field K is equal to PYUy (P—[O})fl and P,U and (P - {0})-1 are

mutually disjoint.

.Proof:

(a)

—
.

The ring V contains the field unity element, otherwise 1 € K =V
which implies 1 = (1)-1 € V, a contradiction. Let a,b € P. This
implies a.”l,b-1 ¢ V. and a-b € V. Suppose a/b € V. Then a/b-1 € V,

Now, (a-b)"1 £V, otherwisevb-1 = (a-b)-l(a/b-l) € V, which is a

. “contrddiétion. Therefore, a-b € P: . Suppose a/b ¢ V. Then

b/a € V, and by a similar argument it can again be shown that
a-b. € P.

.Let a € Vand b.€ P. This means that ab € V, but b-l ¢ V.
Also, (ab)-1 ¢ V, otherwise b—'1 = a(a-lb-l) = a(ab)"1 € V.
Therefore,. ab € P, and P is an ideal of V.

The ideal P is not equal to V. since 1 £ P. Let I be an ideal
of V such that P = I. Let a ¢ T -P. Thena * € Vand a ’a € I
since I is an ideal. Therefore, 1 € I and I.= V. Thus P is a
maximal ideal of V.

Let I be another maximal ideal of V. . Suppose there exists
a €1 -P, Then a~l €V, and 1 = a”la € I. Therefore, I = v

which contradicts the fact that I is a maximal ideal of V. Hence,

"I -P=¢or I P, But, this implies I = P since P'# V and I is

(b)

. Let a,b € U, Then a; b, a

maximal, Thus, P is a unique maximal ideal of V.

1 1

, b-1 € V. Therefore, ab-l, a b e€v.

Thus, ab-l, (ab-‘l)"1 € V which implies that abnl,e U. Hence U is
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-a multiplicative‘subgroup of the field K.
(e) By'Definition 2,10, V=P J U with P and U disjoint. Therefore,
to prove (c) it only remains to show that K - V.= (P —‘[0})-1.
Let x € K - V. .Then x-l € V by definition of V. But, (xm]')-l =
x ¢V, so x-l € P. Thus, x € (P --{0})-1 and K - Vc (P - {0})-1.
If x € (P - {0‘})“1 then x;l € P which implies x 1 €V, but x =
(7! ¢ V. Therefore, x €K - Vand (2 - {0} P 2K - V.
Hence, K - V = (P - {0])'1.
This theorem implies that P is a prime ideal in V because a
maximal ideal of a commutative ring with unity is also a prime ideal

(cf. Barnes [3], p. 125).

Definitioh 2.13. Let K and F be fields. A map ¢:K -» F | {oo} is

called a place if, and only if
(a) ¢-1(F) = V is a ring

(b) ¢ | y is a non-trivial homomorphism

1

o then © (a”~) = 0.

(c¢) If o (a)

Let p be prime in Z, the ring of integers. It is known that Z is
a principal ideal domain (cf. Barnes [3], p. 112). Therefore, (p), the
ideal generated by p, is a maximal ideal in Z. This implies Z/(p) is a
field (cf. Barnes [3], p. 126). Let V.be the ring defined in Example
2.11. Define a mapping ©:Q — Z/(p)ufoo } in the following way.  Let a
denoté the coset which contains a. Let ¢ (a/b) = a/b if a/b € V. 1If

a/b £ V then let ®(a/b) = 0. Now, certainly @-1 (Z/(p)) is a ring,

namely V. Let a/b, c¢/d € V. Then ©(a/b + c/d) = (ad + bé) / (bd)

ad / bd + bc / bd = g(a/b) + ¢ (c/d). Also, © (a/b-c/d).= ac / bd

(E/E)(E/E) = ¢ (a/b) ¢ (c/d). Therefore, @ l y 1s a homomorphism.
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It is non-trivial since (1) = 1 # 0. 1If @(a/b) @ then a/b ¢ V.

This implies p | b, b/a = (a/b)-lve V and ¢(b/a) b/a = 0. Thus, @ is

an example of a place.

. Theorem 2.14. For every place there exists an associated valuation

ring, and for every valuation ring there is an associated place.

Proof: Let ¢:K - Ffoo} be a place. Let V ¢-1(F). V is a subring
of F by definition. If a € K, but a £ V then @(a) = oo . Hence,
@(a-l) = 0 € F. Therefore, a'l € ¢f1(F) =V, and V is a . valuation
ring.

Let V be a valuation ring in a field K., Let P be the unique
maximal ideal of V. .Let the‘field V / P be denoted by F. Define a
mapping ©:K » Fy{ oo } in the following way. Let @ (a) = ;, the coset
which confainsya, if a € V, and ¢(a) = @ if a ¢ V, . It can weadily.be
verified that ¢ is a place, for w-l(F).= V, a ring, ¢(atb) = ath =
a+b =)+ ob) if a,b € V, @(ab) = ab = a b.= w(a)b) if a,b € V,
and if @(a) = © then a € K -‘V‘which implies a-l,E P; thus o (a—l) =
al=7.

Theorem 2.15. .Let V.be a valuation ring in the fields Kl and KZ' Let

0. - . -1 =
R F,Uf oo } and 9y 1K, —F,Uf 00 } be two places such that ¢ (F) =
wz-l(Fz) = V. Then there exists an isomorphism i, between wl(V) and

mZ(V) such that i(ml(a)) = wz(a).

Proof: Let a € P, the unique mgximal ideal of V. Thus, a—1 € Kl -V

-and @l(a-1) = oo . Therefore, @l(a) = 0 since P is a place. This

means that @1(P)‘ 0. Similarly, @Z(P),= 0. Now, let a € V such that

ml(a) = Q. Now, if a € P then a-l € V and @1(1) = @(a a_l)-=
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@(a)Q(a-1)1= 0. This means that 01 I vy is a trivial homomorphism, a
contradiction since ®; is a place, Thus, a € P, and the kernal of
0 l y is P. Likewise it can be shown that the kernal of ¢, | vy is P.

Define i:gp (V) - ¢, (V) as i(wl(a)) = 9,(a) for all @;(a) € ¢ (V).
Let ¢1(a)im1(b) € Ql(V)a Then i(wl(a).+ ml(b)) ='i(@l(a+b)) =
9, (atb) = ©,(a) + g, (b) = i(®(2) + i( o (b)). Also, .
1 (o (@, (0))= 1 (0, (aD)) = g, (ab) = gy(2)p, () = 1(9 (@) [ 9, (™).
If ml(a) = ml(b).then ml(a-b) = 0 which implies a-b € P; hence
(,(a-b) = 0 which implies i(cpl(a)) = 9y(2) = ¢,(b) = 1(P (b)) Thus,
i is well defined. If ¢ (a) = O then a € P which implies @,(a) = 0,

The function i is clearly onto; hence i is an isomorphism.

Theorem 2.16. For every non-archimedian valuation there exists an

associated valuation ring, and for every valuation ring there exists

an associated non-archimedian valuation.

Proof: Let v:K - Gy{z} be a non-archimedian valuation. Let V.=
{a €K | v(a) x1}. Let a,b € V. Then v(a-b) X max (v(a),v(b)) X1,
and v(ab) = v(a)v(b) X 1-1.= 1. Therefore, a-b, ab € V, and V is a
subring of K. Now, let a € K - V., This implies 1 X v(a). Hence,
Theorems 2.7 and 2.2 imply v(a-l) = 1/v(a) x 1. Therefore,_a—1 €V,
and V is a valuation ring. Also, it should be pointed out that P =
faegvV l v(a) X 1} is the set of non-units of V. This is trué because
if a € P then 1 X v(a-l) which implies apl ¢ V and because if a € V énd
a-1 ¢V then 1 X v(a-l) which implies v(a) X 1. It follows that the.
group of non-units is U =V - P = fa € V| v(a) = 1},

- Now, let V be a valuation ring in a field K. Let P and U be the

non-units and units of V respectively. .It will now be established that
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the multiplicative quotient group G = (K - {0})/U is an ordered group.

Let § = {Z €6 |ac (- {o})} . If a,b € S then a,b € (P - {0});

whence v(a), v(b) X 1. This implies v(ab) = v(a)v(b) ¥ 1. Therefore,
ab € S, and S is a subsemigroup of G. S is normal since G is abelian.
It is clear that Su{l}US-l € G. Theorem.2.12 implies K - {0} =
(P - {O}UUU(P -v[O})-l. Therefore, if a € G thena €K .- {0} which
implies a € (P - {0}) or a € Uor a € (P - {0})-1. Thus a € S or
a=1or a-'1 € (P - {O}. 1If a-1 € (P - [0}) then 1/a = a-L e s, and
soa €S . Hence, 3¢ su{T}Us'l and G = SU{T}Us'l. Also, S, {1} and
S "~ are mutually disjoint since (K - {0}) is the union of (P - {0}, U
and (P - [0})-1 which are mutually disjoint. Therefore, G is an
ordered group.

Let z be an additional element such that z X a and az = za = z for
all a € G. Let v:K = GY{z} be a mapping defined as follows: v(a) = a
if a # 0, and v(0) = z. Now, it will be shown that v is a non-
archimedian valuation. It is clear that v(a) = z if, and only if

a = 0. Also, v(ab) = ab=ab = v(a)v(b). It now remains to show

that v(atb) X max (v(a), v(b)). Let a,b € (K - {0}) and suppose

v(a) X v(b). This implies'; X E’ and so ab™! €.S by definition of X.

Thus, ab~! € (P - {0} gV, and 1+ ab! € V. Hence, 1+ ab~!

1

.= 0 or
1+ ab-1 € (@ -{0}or 1+ ab" = € U. Therefore, v(l+ab-l) =z or
v(l+ab"l) €S or v(1+ab_1) = 1. . Hence, V(L+abf1) g'I. Then
v(b)v(L+ab-l) ¥ v(b) which implies v(at+b) ¥ v(b) = max (v(a),v(b)).

If v(b) ¥ v(a) then the argument is similar. If v(a) = v(b) then

a= E, and ab'1_= 1. . Therefore, ‘:-J.b-1 €U gV, and again the argument

0 then v(atb) = v(b) = max z,v(b)) =

is similar., If a

max (v(a),v(bﬁ). If b = 0 the argument is similar. Therefore, V is
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a .-non-archimedian valuation.

Theorem 2.17. . Let vl;Kla Giu{zl} and yzﬁKz'a GZU{ZQ} be two non-

‘archimedian valuations such that v, and vz'have the same associated

1
valuation ring V. Then there exists an isomorphism i:vl(Kl - {0})q

v,(K, - {0 such that i(vl(a)) = v,(a).

- Proof: Let V=:{a € K1 [ vl(a) X1} = [a € KZ" vz(a)_z.l} be the

1 2
units of V. The set U is the kernal of'v1 and v,- That is, U=

common valuation ring of v, and v,. Let P and U be the non-units and

{a € Kl,l Yl(a)'= 1} = {a € K2=l vz(a)‘= 1}. Also,v_v_l(K1 - {0}) and
v2(K2 - {0}) are multiplicative subgroups of G1 and G2 since v, and v,

-are group homomorphisms on the multiplicative groups (Kl - {0});and
(K2'- {oh.

- Now, define a mapping i:vl(K1 - {o}) - v2(K2,- {0}):as follows:
i(ﬁl(aj)'= vz(a). JIf vl(a) = vl(b) then Vl(a/b) = vl(a)/vz(b)n= 1.
This implies a/b € U which implies vé(a)/vz(b)a= vz(a/b) = 1.  There-
fore, vz(a)/= vz(b) which.implies that i is well defined. Clearly i is
onto, and i('vl(a)vl(b))/= i(vl(ab))-= vz(ab) = vz(a)vz(b) =
i(vl(_e_l)) i(vl,(b)) . - If. i(yl(a)) =1 tﬁen ,Vz(a)' = 1, and so a € U.

Therefore, vl(a).= 1; hence i is an. isomorphism,

The last four theorems which can be found in Artin [1] and
Bachman [2] state that each valuation ring determines a.place (non-~
archimedian valuation), unique up to an.isomorphism, and each place
(non-archimedién valuation) determines a valuation ring: This implies
that there is a.type of one-to-one correspondence between valuation
rings and non-archimedian valuations. It follows that each place

determines a non-archimedian valuation, and vice versa. . The places and
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valuations are paired by finding their common valuation ring. This

discussion motivates the following definition.

Definition 2.18. Two places (or non-archimedian valuations) are said

to be equivalent if, and only if they determine the same valuation

rings.

Clearly equivalence of places (or non-archimedian valuations) is

an equivalence relation.
Rank

-In this section the%notion of rank will be introduced. The rank
of an ordered group will be defined which will be related to the
definition of the rank of a valuation. 1In order to establish. these

definitions, isolated subgroups will be considered.

Definition 2.19, A subgroup H of an ordered group G is called an

isolated subgroup if, and only if a € G, b € H and b-;_zza X b imply

a-¢ H.
In every ordered group G the subgroups G and {l] are isolated.

Definition 2.20. Let G be an ordered group. The number of isolated

subgroups of G different from G is called the rank of G.

Let G be the multiplicative group of positive reals. Let X = <
be the natural ordering on G. . Suppoese H is a non-trivial isolated
subgroup of G. Let b.€ G such that 1 < b. Iet x € (H-{1}). 1f
x > 1 then x-l < 1. . Therefore, there exists an element a-& H such that

a. <1, Thus, a <b and 1 < ajl. The Archimedian Principle implies
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that there exists an integer n such that b <« a ", However, a" <a<xl
which implies a < b < a-n, and so b € H. . If b > 1 it can again be
-shown that b € H by similar reasoning. If b =1 then b € H since H is
a subgroup. Therefore, G'= H, and G is an example of a rank one

ordered group.

Theorem 2.21.  Let G be an ordered group. Let H1 and H2 be isolated

or H, c H..

subgroups of G. Then ng H2 2 1

Proof: -Suppose H, is not a subset of H Then there exists

1 2°
5 This implies that x-l € H1 - HZ' .Either 1 X x or 1 & xnl
by Theorem 2,2, Let y € H, such that 1 X y. If 1 x x then y ¥ x,

X € H1 --H

otherwise x ¥ y which implies y-l‘i,l Xx Xy, and so x € H2 since H,

is isolated, which is a contradiction. Therefore, x-1 Xxlxy xx

which implies y € H1 since Hl is isolated. . Let y € H, such that y ¥ 1.

Then 1 X y_l, and y_l € Hl by the above argument. It now follows that

y € H1 since H, is a group. Thus, it has been shown that H2 c H, if,

1 1

1 ¥ x. Similarly it can be shown that H2 c Hl if 1 x x-l. Therefore,

Hl c Hl.

The above theorem was taken from Artin [1]. The next example was

motivated by an example in Schilling {16], p. 7.~

Example 2.22. .Let Z be the integers. . Let G3 = {(a,b,c) l a,b,c € 2}.

3
= (atd, b+e, ctf). . The group G

G, is a group under the additive operation defined as (a,b,c) + (d,e, f)

3 can be ordered by the so called

lexicographic ordering in the following way. Let 83 =
{(a,b,c) €G | a<0}y{(0,b,c) €G| Db <0}y ({(0,0,¢) | c <0}. It

is clear that S, is a normal subsemigroup of G Let

3 3°
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(-33) = {s ¢ G3} l - s € 33}. If (a,b,c) € G and (a,b,c) ¢
S5 U {(0,0,0)} then a > 0 or a =.0 andb'> 0 or &= b =-0 and ¢ > 0.

-1f~a > 0.then -a «.0 which impliesi-{a, b, ¢) = {s&; -b, -c) G”SS.T ITf.

If

a=0 and: b > 0 then -b <« 0 and -(a,b,c) = (0,-b,-c) € §

3
b.= 0 and ¢.> 0 then ~c < 0 and -(a,b,c) = (0,0,-c) € 83. There-

a

fore, G3 = 8, U {(0,0,0)} u (-S3) which implies G, is ordered. As

3
usual the ordering is defined as (a,b,c) ¥ (d,e,f) if, and only if

(a,b,c) - (d,e,f) = (a-d, b-e, c-f) € § Hence, (a,b,c) X (d,e,f) if,

3¢
and only if a <« d or b <« e when a = d or.c < f when a = d and b = e,
Next it will be shown that the subgroups H = {(0,b,c) l b,c € Z},
H, = {(0,0,c) ‘ c € Z} and Hy = {(0,0,0)} are isolated subgroups of G3.
Let (x,y,z) € G such that there exists (0,b,c) € Hl where -(0,b,c) X
(%X,y,2) X (0,b,c). This implies that 0 < x £ 0, and so x-= 0 which
implies (x,y,2) € Hl' If there exists (0,0,c) € H2 where -(0,0,c) X

(%,¥,2) X (0,0,c) then 0 < x < 0, and so x = 0 which implies 0 <y < O.

1

Therefore, x =y = 0 and (x,y,2) € H,. If -(0,0,0) ¥ (%x,v,z) ¥ (0,0,0)

then (%,y,z) = (0,0,0) by Theorem 2.2. Hence, Hl’ H2 and H3 are

isolated.

Now it will be established that H H, and H

s Hy are the only iso-

3

different from G3 itself, Assume there exists an

such that K # Hy, Hy, H

lated subgroups of G3

isolated subgroup K of G If K « H, then

3 3° 2

there exists (0,0,¢) € H2 - K. Also, -(0,0,c) = (0,0,-c) € H2 - K.
Either ¢ > 0 or -¢ > 0. . Let (0,0,z) € K such that z.> 0. Ifc¢ >0
then there exists n.€ Z such that nz > c¢. .1t now follows that
-(0,0,nz) X (0,0,¢) ¥ (0,0,nz). Thus, (0,0,c) € K since K is isolated,

but this is a contradiction. By an analogous argument a contradiction

would be reached if -c > 0. Therefore, K is not a subset of HZ'



19

Using this fact and the same type of reasoning it can be shown that K

is not a subset of Hl' Hence, Theorem 2.21 implies H

Let. (x,y,z) € G3. If x:

3 ©H, cH K.

0 then (x,y,z) € H1 c K., I1If x> 0 then let

.(a,b,c) € K such that a > 0. Then there exists n € Z such that na > x.
This implies that -(na,nb,nc) X (X,y,z) X (na,nb,nc), and so
(%,y,z) € K. If x < O then a similar argument would again show that

(x,y,2z) € K. Therefore,‘G3'= K.

.It has been shown that G3vis an ordered group with exactly three

3 that is, Gy has rank three. This

notion can be generalized, and a group of rank n, where n is a positive

isolated subgroups distinct from G

integer can be exhibited. . Let G = {(al,...,an) l a; € z}. Let s =
,{(al,...,an) € G, | a; < 0} U {(O,az,,..,an) € Gn | a, < o}y ... U
{(0,0,...,ai,...,an) €6, | a, <0} U ... u{(0,0,...,0,a) € G |
a < Q}. ‘Itvcan.be shown that Gn = Sn v {(0,0,...,00} U (-Sn) where
" the union is disjoint. . Thus, Gn is ordered lexicographically. Like-
wise it can be shown that Gn has exactly the following isolated
subgroups. They are H1 = {(O,az,,..,an) | a, € 21, H, =
{(0,0,a5,...,2) | a; €2}, ..., B | = {(0,0,...,0,2) | a €2},
H = {(0,0,...,0)} and G itself. Therefore, G is an ordered group
of rank n.

It has been.shown that an ordered group of rank n exists where n
is an arbitrary positive integer. . The next example illustrates an

ordered group of infinite rank.

Example 2.23. Let Geo be the set of all sequences of real numbers.

- Define addition in Ge in the following way. Let {an} +~fbn}'=

[an‘+ bn}. It can readily be shown that Geo is an additive group.
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Let S = {{an} € G | a; < 0}'U {[an] € Go | a; = 0,a, < 0} U ee-

U {{an] € 6= | ap=a,=...=3a ;=0 a < 0} U ... . Let

'fan} € G such. that {an} ¢ s |y {e} where e is the sequence with each
term equal to zero. If aj is the first non-zero term of [an} than

aj‘> 0. This implies -a, < 0, and -{an} = {-an] € S. . Hence,:

3

'{an} € (-S) = {[an} €6 | - [an] € S} . It follows that Ge is the

disjoint union of S, {e} and (-S). Therefore, Ge is an ordered group
where,[an} X {bn] if, and only if {an - bn} € S if, and only if
a; <b, where i is the first integer such that a, # bi'

Let i be a positive integer. Define Hi = {[an} € G | a; = a, =

. =a, = 0}. Clearly Hi is a subgroup of Ge. Let {an} € Hi and

-a < a =

{bh} € G such that -{a } X {Pn} z.{an]. Therefore, 0 1

<b

1 1

< b -a, <b, ga, =
1 1 1

0 implies 0 = -2, g S 8y 0 implies ... implies O

0. This implies {bn} € H,, and so H, is isolated. Also, if j is a
positive integer such that i # j then it can be shown that H, # Hj'

Suppose 1 « j. Then the sequence {an}, where a = 0 for all n # j and
aj = 1, is an element of Hi,,but fan} ¢ Hj’ Therefore, Ge has

infinitely wany isolated subgroups, Hence, Ge has infinite rank.

Definition 2.24. Let v:F - G U {2} be a valuation on the field F.

Let n be a positive integer, Then v is said to have rank n if, and

only if the ordered group G has rank n,

Example 2.25. Let G, be the-ordered group of three-tuples of integers

3
discussed in Example 2.22. Let F = R(X,y,z). That is, F is the field
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of rational functions in the three variables x, y and z. . Let: f € F,
Thén f can be writtenm as f = x_ yB zY a,(x,y,é) / b (x,y,2) where
a(x,y,;) and b(x,y,z) are polynomials, but .x,y,z { a(x,y,z) and

X, Y, 2 f b(x,y,z), and o, B, and v are integers either positive,
negative or zero. . Define v:F - G3 U {z} as follows: v(f) = (e, B, v)
if £# 0 and v(0) = z. . It will now be shown that v is a valuation.

Let g = x2 yb z© P (x,¥,2) / q (x,y,2) where p and q are polynomials,
but x,v,z * p and X,y,2 + q. Then v(fg) = v(x0+ a yB+b zy+C ap. / bq) =
(=+a, B+b, tec) = v(f) + v(g). This satisfies condition (b) of
Definition 2.5 since G is an additive group. Also, v(f+g) =

vV ([x yP 2Y ag+ x® P 2© bp] / bg ): = (min(x,a), min(a,b),,min(y,c)) .

Now suppose («,B,y) X (a,b,c). Then < a or *x=a.and 8 <b or <= a,
B=Dband y<c. If <« a‘_ then v(f+g) = (x, min(B,b), min(y,c)) X
(a,b,c). ,If <= a and B <b then v(ftg) = (a,e, min(y;c)) x (a,b,c).
If «=a, g =b and vy < c then v(f+g) = td,b,y) ¥ (a,b,c). . Therefore,
v(f+g) X max (b(f), v(g)).' The argument is similar if (a,b,c) X
(m,B,y). The function v is onto since v(xoc yB zY) = («,B,Yy) for all
(m,B,y) é G3. ‘ﬁeﬁce, v is a non-archimeaian.rahk three valuation.
In a similar manner a non-archimedian rank. n. valuation could be

constructed on F = R(xl,.x oioy xn), the field of rational functions

27
in n variables, onto G_ = f(alg cousy an) | a; € z}.

. It seems, however, that the most interesting valuations are of
rank one and are non-archimedian. The trivial valuation is non-
archimedian. = The absolute value function on the reals is of rank one,
but it is archimedian. . These and other rank one valuations will be

i

discussed in the next chapter,



CHAPTER III
. RANK ONE VALUATIONS
- Rank One Ordered Groups

In the last chapter the concept of an ordered group of general
rank was introduced.  The aim of this section is to consider some of
the properties of rank one ordered groups, and in particular to show
that every rank one ordered group is isomorphic to a subgroup of the
additive real numbers. . First, an archimedian ordered group will be

-

defined.

-Definition 3.1. - Let G be an ordered group. - If for every a,b € G with
1 X a there exists an.integer n such that b ¥ a" then G is said to be

archimedian.

i

Theorem 3.2. If G is an archimedian ordered group then for any a,b € G

with 1 X a there exists an integer n.> 1 such that b X a”.

- Proof: If b X 1 then b X a2 since' 1 X a X a2. In this case let n = 2.
If 1 X b then. there exists k such that_b k ak since. G is archimedian.
The integer k is greater than zero, otherwise k st which implies
ak X 1 X b. However, this contradicts the fact that b X ak. Therefore,
k+1>1, so let nn.=k.+ 1,

The proof of the next theorem is‘a modification of one found in

Schilling [16].

22
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Theorem 3.3. = Let G be an ordered group. G is archimedian if, and only

if G is of rank one.

Proof: Suppose G is archimedian. . Let H.be an isolated subgroup of G
‘such that H# {1}. Let a € G. Letb € Hsuch that 1 ¥b. . If 1 X a
then. there exists an n such that a X b" since G is archimedian. Thus,
b ™ X a X b®. Therefore, a € H since H is isolated. . If a X 1 then
1 X a_l, andvthere exists k. such .that b-k X a-l X bk. Hence, a = € H
which implies a € H, If a =1 then a € H since H is a group. It now
follows that G € H or that G = H. Therefore, G is of rank one.

Now suppose G is of rank one, but not archimedian. Then there
exists a,b € G such that 1 X a X b but an\z b for every integer n.
Let S = {x € G [ 1 Xx and x X a" for some integer n}. If x,y € S then
there exist integers n and m such that 1 ¥ x X a" and 1 Xy x a”. This
implies that 1 X xy X an+m, aﬁd so xy € 8. Therefore, S is a semigroup.

Let H be the subgroup generated by S. Then H is the set of all

 finite products of powers of elements in S (i.e. x € H if, and only if

. Pi
Ro= 11-xi where X, €8 for all i € 1, 15 is an integer for all i € 1
i€l

and I is a finite index set). . It follows that for any x € H, x can
I . ol . L ’ pi
also be represented as a finite product, ™ X, s where p; = + 1 and
i€l
X, €S for all i € I, since S is a semigroup.
- It will now be shown that H is a proper isolated subgroup of G.
This will contradict the statement that G is of rank one and will

complete the proof of the theorem. The subgroup H # {1} since

Pi
a € S cH. Nowassume b € H. This implies b = T[ bi t where 1 1is
i€l
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finite,,bi € § and p; = + 1. If P, = -1 then.bipi x1l. If P, = 1 then

bipi,= bi’ and so there exists an integer n, such. that bipi X at,

Thus, b ¥ TT a™ where J = {ieI | p; = 1}. Hence, b X a” where
ieJ

n.= E: ni, a contradiction. Therefore, H is a proper subgroup of G.
ieJ

" Let x € G-and y € H such. that y_l X x ¥ y. Thus, there exists a
positive integer n, elements v; €8 fori=1, 2, ..., n and integers

p; = + 1fori=1, 2, ..., nsuch that_yn-pn oo yz'PZ yl-pl XX X
ylpl y2p2 . yﬁ? . However, it can be shown, by using an argument

similar to the one above, that there exists an integer k such. that

X X ak. If 1 X x thenx € ScH. If x ¥1 then 1l x x-l X

y1P1 yzp2 .o yﬁ? ,-and so again there exists an integer k such that
k . . -1
X X a .  This implies that x €S cHand x € H. If x=1 then x € H

since H is a group. Hence, H is isolated, and the theorem is proved.

Theorem 3.4. Let G be an ordered grodp. .Let a € G.such. that 1 X a
then

(a) a" X P if, and only if n <« m.

(b)  If G is archimedian and b € G then there exists a smallest integer

m such that b X a" and am"1 X b x a".

Proof:

(a) If 1l ¥ a and k is an integer such that k. > 0 then. 1l X a X az_k cen

X ak:by'Theorem 2.2. Suppose m < n; thus O < n.- #, : This*implies
1.£.an-m_which implies am.g a". Therefore, if a” x a" then n < m.

If n <m then 0 < m~n which implies 1 X a" P, Thus, ankk a".
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-L

1 X aL. Hence, a "X b.

(b) There exists an.integer,e such that b~
Let n be an integer such that b X a". Then -f < n, otherwise
n < -f and an'z,aje by (a). However, a” ¥ b, a contradiction,
Therefore, -{ is a lower bound of the set § = {n | n is an
integer and b X an] . Hence, 5 has a greatest lower bound m.
Therefore, m is the smallest integer such.that b k.am. Also,
e1m~-1 ¥ b by definition of greatest lower bound.
The next two theorems are taken from a single theorem in

Bachman [2].

Theorem 3.5. Let G be an ordered group of rank one. If there exists a
.smallest element ¢ € G such that 1 ¥ ¢ then G is the infinite cyclic

group generated by c.

-Proof: Let a € G. .If 1 X a then c X a. Also, there exists an integer

n such that c” Xax cn+1 by Theorems. 3.3 and 3.4, This implies
1x ac’™ X c which means a ¢ " = 1 by definition of c. Therefore,
n
a=c.
Now, if a ¥ 1 then 1 ¥ anl, and so there exists an integer n such

that awl = by the above argument. Thus, a = ¢™, Ifa=1 then

a=c° Therefore, G is cyclic and is generated by c.

Theorem 3.6.  If G is an ordered group of rank one than G is abelian.

Proof:: 1If G has a smallest element ¢ such that 1 ¥ c then G is cyclic
by Theorem 3.5. Thus, G-is agbelian.

Suppose G-has no smallest element c such that 1 x c; Let x € G
-such that 1 X x. It will now. be shown that there exists an element

y € G-such that 1 Xy ¥ x and'y2 X x. . There exists a q such that
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1 ¥ q X x since G has no smallest element ¢ such that 1 X c. If q2 X x
then the assertion is proved. If x ¥ q2 then it can be shown that xd-l

has the desired properties., . This is true because x ¥ q2 implies

'xq-1 ¥ q which means q_lx q_l.k 1 which in turn implies xq-1 xq"1,=

(xq_;)zik X and since X ¥ q2 this implies xq*2 X %, vTherefore, the

desired element y is either q or xq .

Now, let a,b € G such that 1 ¥ a,b. . It will be demonstrated that
ab- = ba by assuming the contrary and finding a. contradiction. Thus,
suppose ab # ba. This implies (ab)(ba.)“l # 1. let x = (ab)(ba)-l, and
assume 1 ¥ x. By the preceding paragraph‘there exists-an element y € G
such that 1 X y,kkpin(a,b,x) and y2 X min(a,b,x). Therefore,
l1Xy Xxx, y2 X x;vy X b. Theorem 3.3 implies G is archimedian, and

this fact together with Theorem 3.4 imply that there exist integers m

and n such that ym Xax ym+l and yn X b x yn+l. . This implies that

mnt+2 2

yn+m_z.ab Xy ~and ym+n X ba X ym+n+ . Therefore, ym+n X ab X

ym+n+2 and y-m-n-2 X (b;;t)m1 X y'm'n. These two statements yield

'y-2 X (ab)(ba)_l X y2. It now fellows that x ¥ y2\£ x. This is a

contradiction. . It was assumed that 1 ¥ x, but if x X 1 then 1 X x-l.=

(ba)(ab)—l, and a similar argument will likewise produce a contradiction.

" If 1 Xaand b.x 1 then 1 X a and. 1 X b_l. Thus, the fact. that
was proved above implies ab_l.= b_la. Therefore,. a = b_lab which
implies ba = ab. 1If a ¥ 1 and 1 ¥ b then by a similar method it can be

shown that ab = ba. If either a or b are equal to:1 then ab = a = ba

or ab ='b ="ba. Hence, G is abelian.

Example 3.7. An example of an ordered group that is not abelian is the

group G of all ordered pairs of real numbers with. the group operation

b

defined as (al, a2) + (bl, b2) = (al + a,, a, e + b2). First the
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group postulates will be verified. . Let (xl, xz), (yl, yz), (zl, zz)
€ G. . Then
@ (=) + GpyY) + (252) = (5 + v, %, @1+ y) + (2,2
1 21 -
?«Xl + x2) + Zy (x2 e’ + yz) e -+ ZZ) (%l-+ (y1 + zl),
z

V.+z z
1771 1 - 1 -
X, e + y, e + zé) (xl, x2) + (yl + 2 ¥y © + zz)

x5 5) + (s v) + (25 2))

0
() (x5 %)) + (0,0) = (%, + 0, %, e” +0) = (2, %) =
*1
(0 + X5 Oe -+ x2) = (0,0) + (xl, x2)
. =X1 -xl -xl
(c) (xl, x2) + (=x1, - %, e )y = (xl - Xy, X,y e - %, e )y =

LK =X X
(0,0),(-xl, -X, e l) + (Xl’ x2).= (--x1 +x, - %, e le lﬂf xz)v=

(0,0).
Therefore, G is a group. . Now it will be shown that G is an ordered
group. Let S = {(x,y) l x < 0} U {(dfy)~| y < 0}. . It is easy to see
that. S is closed under addition and is therefore a subsemigroup of G.

-a

Let (x,vy) € S and (a,b) € G. Then (a,b) + (x,y) + (-a, -b e ") =
(atx, b e+ y) + (-a, -b e-a) = (%3 (b &+ y) e? - b e—a) which

is an element of S if x « 0, . If x = 0 then y < 0 and

(x, (b ™+ V) e™® - b e‘a) = (0, vy efa) € 8. Thus, S is a normal
subsemigroup. Let (a,b) € G such: that (a,b) # 0. Ifa<0Oora=20
and b <« 0 then (a,b) € S. If a = 0 and b > 0 then (a,b) € (-8) since

(0,b) = (-0, b eO) = =(0,~b) and since -b. < 0. If a > 0 then

(a,b)
(a,b) € (=S) since (a,b) = (a, b e 2 ea) = -(-a, =b é-?)‘and since

-a < 0, ThéreforeslG‘= (-S) U (0,0) U S. The element (0,0) ¢ S since
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(x,y) € S implies x < 0 or y < 0. Also, (0,0) ¢ (-S). . Otherwise
-(0,0) = (0,0) € 8, a contradiction. If (a;b) € (-S) n (S) then
(a,b) € S and -(a,b) € S which implies (0,0) = (a,b) - (a,b) € 8.
. But, again, this is a contradiction. Thus, G = (-S) y (0,0) U S and
the union is disjoint, and so G is an ordered group.

.1t can readily be shown that G is not abelian by the following

computations.

(0 + ls.l~e1 + 0)

(1+ 0, 0-¢” + 1)

(0, 1) + (1, 0)

(1, e)

(1, 0) + (0, 1) (1,
This example can be found in Schilling [16], p. 7.
It is now advantageous to define a Dedekind out. The following

definition is very closely related to the one devised by Burrill [6].

In the definition Q will denote the rationals and R. the reals,

Definition 3.8. Let d = (L, U) be an ordered pair of two disjoint

subsets of Q such that

(a) L#Q U#9®

(b) Q=Lyv

(c) ry € U, r, € Q and r, <1, imply t, € U.

(d U does not contain a smallest element.

Then.d is called a Dedekind cut in R, and L and U are called the lower

and upper classes of d, respectively.

Theorem 3.9. 1f d. = (L, U) is a Dedekind cut in R then there exists a
number d € R such that U =-[ x €Q ‘ E < x} and L= Q - U.=

{fxeq|=xx Zj.

Proof: Let a € L.  The set U is bounded below by a, otherwise there

exists b € U such that b < a.  However, this implies a € U which is
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impossible since'L.N U. = ¢, Therefore, U has a greatest lower bound E.
Let x € Q such that x> d. . It follows that there exists y € U such
that d < v < X which implies x € U by (c¢) in Definition 3.8. This
together with (d) in the definition and the fact d is the greatest
lower bound of U imply U = {x € Q | d < x}. . Therefore, L.= Q - U =

{x €.Q | X < E} since - Q is the disjoint union of L and U,

‘Definition 3.10. Let d = (L, U) be a Dedekind cut in R. Let d € R

such.that%U ={x €Q | E_< x}. If d € Q then d is called a rational

+

cut. .

The next theorem shows that a particular ordered pair of subsets
of Q derived in a certain manner from an.element of a rank one ordered

group is a-Dedekind cut, It is adapted from a theorem. in Bachman [2].

. Theorem. 3.11l, Let G be a rank one ordered group. Let a,b.€ G such

that 1 ¥ a. Let L(b) = {m/n €Q | n> 0, a" ¥ b} and U(b) =
fm/n € Q I n.> 0, bn,k am}. . Then. d(b) = (L(b)s U(b)) is a Dedekind cut

in R.

.Proof: Let m/n € L(b) n U(b). This implies that a" P b" {'am which is

impossible. Hence, L(b) r} U(b) = .

(a) If b =1 then a” ! ¥X1l=band b =1 &va which implies -1 € L(b)
and 1 € U(b). . If 1 X b then there exists n > 0 such that a. X b
since G is archimedian- and by Theorem 3.2. Alsc, there exists an
m such that b" X a". Thus, 1/n € L(b) and m/n € U(b). - If b X1
then b. ¥ a which implies 1 € U(b). Also, 1 X b"! which implies
that. there exists an n.> 0 such that a ¥ b7, However, there

=1 .. , -m n
exists an m such that b = X am° . This implies a ¥ b, and so
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-m/n € L(b). . Hence, L(b) # ® and U(b) # ®.

(b) Let r € Q. Then there exists integers m and n such that n > 0 and
r = m/n. By the trichotomy law in an ordered group a" X b or
b” X a". Hence, r € L(b) U U(b) which implies Q € L(b) U U(b).
Therefore, Q = L(b) y U(b) since.L(b) U U(b) < Q.

/n. € Q such that. r, <r, and

1= "2
n m
and b L X a’l, and so

(¢) Letr, = ml/n1 € U(b) and r,, = m

1 2 2" 72

ny, n, > 0. It follows that min, < myny

nn m n ‘m n
b1l2yal2ya2lby (b) of Theorem 2.2 and (a) of Theorem 3.4.

R % n m m n
Therefore, b 2 ¥ a 2.  Otherwise a 2 xb 2 which implies

m,n n n
a2l Xxb 12 by Theorem 2.2; hence r, = mz/nzéU(b)°

2

(d) Let m/n € U(b). This implies n > 0 and b™ ¥ a". Thus, 1 X

a" b-n, and so there exists integers Py» Pys Py > 1 such that

-n P - -n. P2 -n. P3
b X (am b n) 1, b 1 X (am b n) and a & (am b ?) by Theorem 3.2.

mpl .‘=np1 =1 mp2 -np2
It follows that b X a b , b Xxa b and a ¥

mp, -mp , npy + 1
a b since G is abelian by Theorem 3.6. Hence, b X

mpy  mpyml - wpy PPy mpysl o
a , b X a and b X a which implies mpl/(np1 + 1),

mpz/(np2~l) and (mp2~l)/np3 € U(b). .If m > 0 then mpl/(np1 + 1) <
mpl/np1 = m/n.  If m < O then mpz/(npz-l) < mpz/np2 = m/n. If

m = 0 then (mp2~1)/np3\= —l/np3 < 0.= m/n., Therefore, U(b) has no

.smallest. element,
Now,. as promised, the isomorphism theorem concerning rank one

ordered groups will be proved. . This is a. classical theorem and can be
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found in Artin [1] and Bachman [2].

Theorem 3.12. Let G be an ordered group of rank one. Then there

exists an. order preserving isomorphism between G and an additive szuh-

group of the real numbers.

Proof: Let f:G - R be a mapping defined in the following manner. . Let
a be a fixed element of G such that 1 ¥ a. Now, if b € G then there

exists a Dedekind cut d(b) = (L(b), U(b)) in R where L(b) =

{m/n € Q‘T n > OS‘am X bp} and U(b) = {m/n € Q l n > 0, bnvk am}. This

was shown in Theorem 3.11l. Now, let f(b) = d(b) where d(B) is the real
number such that U(b) = {x €.Q l d(b) <‘k} and L(b) = {x € Q l X <
d(b)}. Theorem 3.9 states that such a number exists.

.Let b,c-€ G such that ¢ ¥ b. This implies that 1 ¥ bc-l which in

1

. . . - n
turn implies there exists an n.> 0 such that a X (bc ,)n; hence ac ¥

b" since G is abelian, By (b) of Theorem. 3.4 there exists a smallest

integer m.such that Mt X a®, If b" X a" then ac” X a" which implies

n -1 . .. R . , . .
X am . But this is impossible since m is the smallest such integer.

Thus, c, X a" X b™ which implies m/n € U(¢) n L(b). This implies that

E?Z? < m/n < E?BT because of Theorem.3.9. Therefore, £(c) < £(b) which
implies £ is an order preserving map. Suppose b,c € G such that f£(b) =
f(c). Then b = c, otherwise b ¥ ¢ which implies f£(b) < £(¢) or c < b
which implies f(c¢) < f(b), a contradiction in either case. Therefore,

. f is one-to-one.
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Let b,c € G, and let the set {rl +r r, € U(b), r, € U(c)} be

2 |

denoted by U(b) + U(c). Let x € U(b) + U(c). This implies x.=
ml/nl + mz/nzrwhere ml/n1 € U(b),,mz/n2 € U(e). Let q = n N,

. and P, = Then ml/nl = pl/q and mz/n2 = pz/q; hence

pl = m1n2 ‘mznl.

% P ’ p,+P
b4 X a 1 and 4 X a 2 which imply(bc)q xal 2, Thus, x = ml/nl +

mz/n2 = pl/q + pz/q = (P1+p2)/q € U(bc). Therefore, U(b) + U(c) €

U(bc). In a similar manner it can be shown that L(b) + L(c) < L(bc).

- Let r, € U(b) and r, € U(c). Then ry +r, € U(be) which implies

d(bé)‘< ry + r, by Theorem 3.9. Therefore, d(bc) is a lower bound for

U(b) + U(c). Also, Theorem 3.9 implies that d(b) = inf U(b) and

d(c) = inf U(c). Let € > 0. Then there exists x € U(b) and y € U(c)

such that d(b) <« x < d(b) + €/2 and d{e) < v < d{c) + €/2, and so

——a—— oo

d(b) + d(c) €« x+ y < d{b) + d(c) + €. Also, if ry € U(b) and

which implies d(b) + d(ec) <«

€ U(c) then d(b) <« r

r and d(¢) < r

2 1 2

r. +r

1 Therefoere, &(b) +vd(c) = inf (U(b) +.U(c» . - This together

¢

with the fact that d(bé) is a lower bound of U(b) + Ufc) imply

d(bc) < d(b) + d(c). Since L(b) + L(c) & L(bc), it can be shown by an

analogous argument that.d(b) +'d(c) < d(bc). Therefore, f£(b) + f(c) =

d(b) +rd(c) = d(bc) = f(bec). Hence, f is an isomorphism, and the

theorem is proved.

Corollary 3.13. Let G be a rank one ordered group. - Then G is order

isomorphic to a subgroup of the multiplicative group of all positive
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.real numbers.

- Proof: . The ordered group G is isomorphic to a. subgroup H of the
additive group of all real numbers by Theorem 3.12. Let f:H - R be
defined as f(x) = 2°. The following statements show that f is an order

preserving isomorphism.

xty

£(xt+y) = 2 = 2597 = f(x)f(y)

£(x) = £(y) implies 2 = 2¥ implies x'= y

x <y implies 2° < 2¥ implies f(x) < £(y)

Therefore, G is an order isomorphic to f£(H).
Non=Archimedian Valuations

The last corollary shows that the value group of a rank one
valuation is- always isomorphic to a.subgroup of the mulﬁiplicative
group. of real numbers. Three. of the main purposes of this section are
to characterize a rank one valuation when the non-archimedian property
is assumed to show how one of the standard definitions of a rank one
valuation is motivated and to characterize a non-archimedian valuation

when rank one is assumed.

.Definition 3.14. Let H be a subset of an ordered group G. The set

faen|ax 1} will be denoted by H . H will be called a lower class

in G if a € G, b € H and a X b imply a € H.

Theorem 3.15. -Let G be a non-trivial ordered group. Let H be an

isolated subgroup of G. Let W.=B - H . Then W is a lower class

of G.
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Proof: Let a € G and b.€ W such that a ¥ b. Then a X 1 since b. X 1;
hence a € G . = Suppose a € H . This implies that a, awl € H. Also,
axbx léfaf;. Thus, b € H since H is isolatad. However, this is
impossible since b € W = G - H. Therefore, a ¢ H which implies that

a € W, and so W.is a lower class of G.

Lemma 3.16. . let v:F - G| {z} be a non-archimedian valuatien of rank
greater than one.  let:P = {facrF | v(a) X 1}. Let H be an isolated
subgroup of G such-that H# {1} and H# G. let W=G - H and P’/ =

{a €F l v(a) € W | [z}}. Then P’ is a prime ideal of the wvaluation

ring 0 = {a € F | v(a) ¥ 1} and P’ is a proper subset of P.

Proof: Let a,b € P’/. Then v(a), v(b) € W {z} which implies v(a),
v(b) ¥ 1. 1If v(a) = z or v(b) = z then v(ab) =.v(a)v(b) =

z € W {z} which implies ab € P/, If v(a) # z and v(b) # z, thén
v(ab) = v(a)v(b) x v(a)+-1 = v(a); hence v(ab) € W since v(a) € W and
W is a lower class. \Thus, ab € P’.

By the non=-archimedian property v(a=-b) ¥ max (b(a),v(b)) =
max (V(a)sv(bi) €W U fz}. If v(a=b) # z then v{a) # z or v(b) # z;
hence v(a-b) € W since W is a lower class, and so a=-b. € P/, If
v(a-b) = z then v(a-b) € W {z} which implies a-b € P’. Therefore,
P’ is a ring.

If a € P’ then v(a) = z or v(a) € G . In either case, v(a) X 1
which implies that a € P. Thus, P/ ¢ P € 0. Llet a € F such that
v(a) € H . This implies v(a) ¢ W and v(a) ¥ 1. Therefore, a € P - P’/
which implies that P’ is a proper subset of P.

. Let a € P’ and b. € 0. If a=0o0or b =0 than ab =0 € P’. 1If

a'# 0 and b # 0 then v(ab) = v(a)v(b) x v(a)-1 = v(a) € W. Therefore,
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v(ab) € W, and so ab € P/, This proves that P’ is an ideal of 0.

.. Let a,b. € 0 such that ab. € P/, This implies v(ab). = z or
v(ab) € W. . If v(ab) = z then ab = 0 which implies-a = 0 or b.= 0 which
implies v(a) = z or v(b) = z; . Thus,.a € P/ or. b € P/, . If v(ab)ue W.=
G -H theﬁ v(a)v(b) € G . It follows that v(a) € G and v(b) € G
otherwise v(a) = z or v(b) = z which implies that v(ab) = v(a)v(b) =
z ¢ W. Suppose v(a), v(b) € H . Then v(a), v(b) € H and v(a), v(b) X
1; hence v(ab) = v(a)v(b) X 1 and v(ab) € H which implies that
v(ab) € H , a contradiction. Therefore, v(a) £ H or v(b) ¢ H which
implies v(a) € Wor v(b) € W. - Thus a € P’ or b €. P’., This proves that

P’/ is a prime ideal of 0.

-Lemma 3.17. Let 0 be a subring of a field F. Let P’ be a prime ideal
of O such that 0'# P/, Let T'= {a/b € F | a €0, b€0~-P'}. Then T

is a subring of F. If 1 € O then 0.C T € F.

Proof: let X,y € T. Then there exist a,c € T and b,d € 0 - P’ such
that x' = a/b and y = ¢/d. Thus, x-y = (ad - be)/bd.  The element
bd ¢ P/, otherwise b € P’/ or d € P/ since P’ is prime; hence bd € 0-P’.
.Also, ad. - bc € 0 since a,b,c,d € 0. Therefore, x-y € 0. In a similar
manner it can be shown that xy € T. This shows that T is a. subring of
F.

. The unity element 1 is not in.P’, otherwise P/ = 0. If 1 € O then
1 € 0 - P’ which implies that for all x € 0, x.= x/1 € T, and so 0. T.
Let a € P’ and b € 0 - P’ such that a # 0. Then b/a ¢ T, otherwise
there exist ¢ € 0-and d € 0 - P’/ such that b/a = ¢/d, and so bd =
ac € P’ which implies that b € P’/ or d € P’ since P’ is prime in. O.

However, this contradicts the choice of b and d. Therefore, T ~ F.



36

The next theorem is one of the characterizations mentioned

earlier. . It is taken from Schilling [16].

Theorem 3.18. .Let v:F - G.|J {Z} be a non-archimedian non-trivial

valuation., Then v is of rank one if, and only if its valuation ring O
is a maximal subring of F, that is, 0«0’ C F for a ring O’ implies

-0’ =F,

-Proof: " Suppose v has rank one, . Let 0’ be a ring such: that
0CO0/C F. Let 0. [x] be the ring of all polynomials with coefficients
in 0. Let a € 0/ - 0. Let'O[a] = {p(a) | p(x) € O[x]}. If p(a) € 0[a]
then p(a)=?adtgla+wy.ﬁi-%3n'Where a; € 0. Thus, p(a) € b’, and so
Ofa] € 0’. Let b.Etf'- 0. Then there exists an integer n.> 0 such
that v(b) x vn(a) since 1 X v(a) and G is archimedian. Therefore,
V(bfép) = v(b)/vn(a) ¥ 1 which implies thét b/a" = ¢ € 0; hence b = ca®.
This implies b € O[a]. Thus, F S O[a] since 0 ¢ O[a] and F =
(F - 0) U 0. Therefore, F € 0’ which implies F =-0'.

Now, suppose- 0 is a maximal subring of F. Also, assume v 1is not

of rank one. Then there exists an isolated subgroup H of G such that

H# {1} and H# G. Lemma 3.16 implies that P’ = {a_e F ] v(a) € WU
{z}} where W= G -H is a prime ideal of 0 and is properly contained
in the ideal P =:{fa € F | v(a) X 1}. Let T.= {a/b € F | a €0,

‘b € 0-P’}., Then Lemma 3.17 implies 0.€ T € F. Thus 0.= T since O
is maximal. Now, let a € P - P’, This implies that 1/a € T = 0. Then
1= (a)(l/a) € P since P is an ideal of 0. Thus, v(l) X 1, a contra-

diction. Therefore, v is of rank one.
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Ths following discussion will perhaps point out why many writers
prefer one of the classical definitions of a rank.one valuation.

" Let v:F o G |y {z} be a non-archimedian rank one valuation. The
ordered group G is order isomorphic to a subgroup of the ﬁultiplicative
group of positive reals by Corollary,3.13. Let H be such a subgroup,
and. let i:G — H be the isomorphism. - Let I:G.U {z} - H,U»fO} be a
mapping defined as E(x) = i(x) for any x € G, but ;(z) = 0 where 0.is
the real number zero. .Let t:F - H | {0} be the composition of the two
functions v and i. That is, t(x) = —{(V(X)) .

~Suppose t(F - {0}) = f1}. This implies _i<v(F - {o})) = i(e) = {1},
.and so G =:(l} since i is an isomorphism. However, this is a contra-
diction because G is of rank one. . Therefore, t(F - {0}) # {1}].

Now, t(Q) = I(V(O)) = I(z) = 0, and if t(a) = 0 then -J‘-.-(v(a)) =0
which implies v(a) = z which implies a = 0. Hence, t(a) = 0 if, and
only if a = 0. |
. Let a,b € F. .Then t(ab) = i(v(ab)) = E(v(a)v(b)) =
@) I(Ge) = t@ o).

Let x,y € G U {z} such that x Xy. Let < be the usual "less than"

order relation in the reals. . If x # z and y - # z then Z(x) = i(x) <

idy) I(y) since i is an order preserving isomorphism. . If x = z then

I(x)

0.< I(y) since ' 0 < a for all a € HU fO}. If y = z then x = z
by definition of z as found in Definition 2.5. Then I(x) = 0= I(y).

Therefore, x ¥ y implies E(x) < ;'.n(,y)°

A

Let x,y € Gy {z}. If x Xy then y = max (x,y) and T(x) I(y);
hence 1 v(max(x,y)), = ?(y) = max(?:(x), z(y)> . If y X X then a similar

argument would again show that —i(max(x,y)) = max(_f(x)g 'nf(/y)) .
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Let a,b. € F. Then v(atb) X max(v(a), v(b)). This implies
-i—(v(a+b)) X T((max v(a), V(b))) = max(?(.v(a)) s I(v(b))) , hence
.t(atb)’ < max (t(a), t(b)). '

Thus, it has been shown that v induces a mapping t:F - R such that
t(F - {0}) # {1} with the following four properties

(a) t(a) =20 for any a € F
(b) t(a) = 0 if, and only if a =0
(c) t(ab) = t(a) t(b)

" (d) t(atb) < max(P(a)9 t(b))

Now, suppose t:F - R is a mapping with the above properties such
that t(F - {o}) # {1}. It will be shown.that t is a non-archimedian
rank one valuation.

First of all, H= t(F - {0}) is a non-trivial multiplicative sub-
group of the positive real numbers since t is a non-trivial homomor-
phism from (F - {0}) into the positive reals. Let S= fa € H | a < 1}.
Therefore, if a,b € H then a <« b if; and only if ab-'1 € S. Also, S is

a normal subsemigroup since H is abelian and since 0 <a <1, 0 <«b <1

1 1

imply o. < ab « 1. Let S {a € H l a - € S}, Then S-’1 =

S U {1} u (Snl) where S, {1} and S-1 are

{a € H.I 1 < a}° . Hence, H
mutually disjoint. Thus, H is an ordered group. Let a,b € H such that
1l < a. This implies that there exists an integer n such that b <« a
since R has the archimedian propefty. Thus, H is archimedian, and so H
is of rank. one by Theorem 3.3. Therefore, t is a non-archimedian rank
one valuation.,

In the above remarks it has been shown that any non-archimedian
rank one valuation induces a mapping t with properties (a), (b), (c)

and (d), and cénversely if a mapping. has these properties then it.is a
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non-archimedian rank one valuation. It should be pointed out that
property (d) implies t(at+b) < t(a) + t(b) since max(t(a), t(b)) = t(a)
or t(b) and t(a), t(b) < t(a) + t(b). . These facts could be the motiva-

tion for the following popular definition.

‘Definition 3.19. . Let F be a field and t:F - R be a mapping such that

t(F - {0}) # {1} and satisfies the following conditions:

(a) t(a) =20 for all a € F

(b) t(a) = 0 1if, and only if a =0

(¢) t(ab) = t(a) t(b)

() t(a+b) < max(t(a), t(b))

Then. t is called a non-archimedian rank one valuation. 1If condition (d)
is relaxed and replaced by

(d)’ t(atb) < t(a) + t(b)

then t is simply called a rank one valuation.

. Henceforth, in this paper a rank one valuation or a non-
archimedian rank.one valuation will always be defined as a mapping
with the properties as described in Definition 3.19.

 An example of a rank one valuation will now be considered. Let
a € R such that 0 <« a < 1. Let Q be the rationals and 1 1:Q -+ R be the
usual absolute value function. . It can be shown that 1 1a is a rank omne

valuation. . First of all it is clear that (a), (b) and (c) of
Definition 3.19 are satisfied. Next, suppose that x,y € Q such that
»|x|_s lylland y'# 0. Then

(el + [yD*

91* dxl/ly] + »®

lyla (lxla/‘yla + 1) (since |x|/ly| <l,ac<cl

= ® =+ |y 1?

|x+y‘a

A

A
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Ify=0 then.xv=‘0rand,|x+y|a,= 0.= |x]a + }y]a. If.[yl < |x| the
. argument would be similar. = Therefore, (d)’ of Definition 3.19 is
satisfied and,[ la is a rank‘one valuation.

Another valuation on.Q which is important and interesting is the

p-adic valuation. . It is described in the following example.

Example 3.20. . Let p be a fixed prime integer, and let c be a real

number -such .that.0 < c. < 1. Let,|-]§:Q — R .be a mapping such that
lOlp = 0 and lx‘p = ¢" for x# 0 and x = pn(a/b) where p +,ab.

Now, it will be shown that v.is a . non-archimedian rank one valua-
tion.  Parts (a) and (b) of Definition 3.19 are clearly satisfied.
Now, if x'= pn(a/b) € Qand y. = pm(c/d) € Q such that p +.ab, P + cd
and x,y'# 0 then lxylpv= |anm(ac/(bd))|p and p+(ac)(bd);'hence
lxy[b = Cn+m:= e = 1x|p’y|p. . If-x:= 0 or y-=0 then lxylp = lO]p =
0.= lxlp|y|p. . Thus, (c) of Definition 3.19 is verified. Suppose,

X € Q such that x-# 0 and 1xlp < 1.  This implies that x = pn(a/b),

P + ab and n = 0. . Therefore, pna_is an integer and 1 + x =

(b + pna)/b. Now, if (b + pna)/b is written as pm(c/d) where p.+ (cd)
then m = 0, otherwise p,l b which is impossible. ﬂTherefore,_|l+xlv=
<M< 1. If lxlp < 1l and x = 0 then |l+x|p,= |l|p = 1, Thus, it has
been shown that 1x|p's 1 implies-|l+xlp < 1 which implies'1x+y|p;5”
max(]xlp, lylp) by Theorem 3.23. . Therefore, | lpvis a non-archimedian
rank one valuation.

. It should be mentioned that the valuation ring of l V=

’ lp’
fx € Q| [x|~P,s 1} = {a/b.€.Q | p } b}, :is the ring of Example 2.11.

Definition 3.21. .Let F be a field, n an arbitrary positive integer and

1 the unity element of F. . The symbol n will also denote
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n:l=1+4+ 1+ ...+ 1 (n addends).,  Then n is called a natural number
of F if, and only if n € F.
The next theorem is taken from a problem in Borevich and

Shafarevich-[5].

Theorem: 3,22, Let t:F - R be a rank one valuation where F is a field

of characteristic p.# 0. Then t is non-archimedian.

Proof: Let M be the set of all natural numbers of the field F. This
implies M = {0, 1,.2, ..., p-1} since F has characteristic p # 0. Let
" d = max (E(O), t(1), ..., t(p-l)). ,Let,e, m and n be positive integers
such that n_=,E-+ m. Suppose a,b. € F and t(a) < t(b). . Then,

L ‘m n _ ﬁn . t 4

t (a)t (b) <« t 7 (b) = max(t(a), t(b» e JIf t(d) < t(a) then again it
could be shown that ﬁa(a)tm(b) < (max (t(a);.t(b)))rh

- Now, let a,b € F, and let n be a positive integer, . Then,

n

1) an-lb

t"(atb) = t((a+b)n) = t(an + ( o (n?l) a bl b)) <

t@@™) + t({‘) e 1y " (b) + «..+ t(nljl) tea) ™Y + ) -

n

) @ 1) + o) <

t7(a). + t(?) @) ey + ...+ ot
(@) + 27N @) tm) + ok t@ e+ ) <

d ({max:(t_(a),, t(_b)) 1"+ fmax (t(a), t(b))}n + oo+ [max (E(a), e) " =
d(n+l$ tmax(t(a), £()) 1.

Therefore, t(at+b) < (d(n+.1))l/n max(}(a), t(b)). This implies

t(atb) = lim t(atb) < lim(d(n+l))1/n max (t(a), 2?;9))= max(t(a), t(b))

N—co

since lim (ﬁ(n+l) /n = ellm Inid(atl )(= e0,= 1. Thus, t is

n
N S

non-archimedian.
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The next theorem is a statement of two characterizations of a

non-archimedian valuation provided the valuation is rank one.

. Theorem 3.23. Let t:F - R be a rank one valuation. . The followiag

three statements are ldgically equivalent.
- (a) t is non-archimedian.
.(b) t(n) < 1 for all natural numbers of F.

(c) t(a) <1 implies t(lt+a) < 1.

. Proof:

(a) implies (b)

Let n be a natural number of F. Then t(n) t(1+1+ ...+1) <
max(£(1), t(1), ..., t(l)) = max (1, 1, ..., 1) =1

.gb) implies (c)

1

Let m be a positive integer. . Then tm(l+a) t;«l+a)nb.=
m m, 2 m ) m L m 2
t(L+ (Da+ Ga+ .o+ a" )< e(D) + £() @) + (R @) + ..+

1+ t(a) + tz(a) + ...+ tm(a)° .Now, if t(a) < 1 then

t
~
[Y
N’
A

t (a) < 1 where k is a positive integer. Therefore, tm(l+a) <m-+1

/m

which implies t(l + a) < (m +»l)1 , and so t(l + a) = lim t(l + a) <

N—oo

lim (m + 1)1/m,= 1

N.~e0

(c) implies (a)

Let a,b € F such that a,b-# 0. Suppose t(a) < t(b). Then
t(a/b) < t(a)/t(b) < 1. This implies that t(l + a/b) < 1; hence
t(b) t(1 + a/b) < t(b) which implies t(a +.b) = t(b(l + a/b)) <

max(t(a), t(b» . If t(b) < t(a) then the argument would be similar.



If a = 0 then t(a + b) = t(b) = max(t(a), t(b)). "1f b = 0 then
t(a + b) = t(a) = max(tk(a), £(b)) .
Thus, the proof of this theorem which is stated as a problem in

Borevich and Shafarevich [5] is complete.
. Convergence and Completeness

In this section the notion of convergence of sequences, null
sequences,. Cauchy sequences and completeness will be defined. An
interesting theorem concerning convergence of series will be proved,

and the concept of p-adic numbers will be mentioned.

Definition 3.24, . Let F be a field with a rank one valuation t. Let

[ah} be a sequence of elements of F. The sequence {an} is said to
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converge with respect. to t to the element a € F if, and only if for any

€ > 0 there exists an integer N such that t(an - a) <« € for all n > N.

In this case a is said to be the limit of {an} and this is denoted by

lim an = a,.
t

'Definition.3.25. Let F be a field with a rank one valuation t. Let

{an] be a sequence of elements of F.

(a) [an} is said to be a null sequence with respect to t if lim a
t

(b) =[an} is said to be a Cauchy sequence with respect to t if for

every € > 0 there exists an integer N such that t(an - am) < € for

all n, m > N.

-]

(¢) The infinite series Ezaﬁ is 'said to.converge with respect to-t:if

n=1

the sequence {Sn}, where Sn =a + a, I a , converges with



44

respect to t to an element of F.

-Definition 3.26. Let F be a field with a rank one valuation t. The

field F is complete with respect to t if every Cauchy sequence witch

respect to t in F converges with respect to t to an element of F.

The next theorem states a necessary and sufficient condition for

the convergence of a series in a field which is complete with respect
' ©

to a non-archimedian valuation t. If the series E: a converges then
n=1

it would be expected that lim a = 0. However, the interesting part of
t

this theorem is that the converse is true. The second part of the

proof can be found in Bachman [2].

Theorem 3.27.  Let F be a field which is complete with respect to a

non-archimedian rank one valuation t. Letv{an} be a sequence of
«©

elements in F. Then E: a converges with respect to t if, and only
n=1

if 1lim a = O.
. n

Proof: Suppose /, an converges, This implies that there exists s € F
n=1

such that 1im S = s where S =a, + ...+ a . ©Let € > 0. Then there
¢ n n 1 n

exists an integer N such that t(Sn - 8) <€/2 for n> N. Let n> N+ 1.

Then t(an) = t(Sn - Sn—l) = t(Sn - s+ s - Sn-l) < t(Sn - 8) +

t(s - Sn-l) < €/2+ €/2 = €, Thus,vlim a = 0.
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Now, assume lim a = 0.  Then there exists an N such that
.

t(a)<€ifn>0N, Letn>m>N, § . =a. + ...+ a and § =
n n 1 n m

+ a + ...+ a)

a, + ... + a . . This implies that t(Sn.- Sm) = 2 n

1 e,

< maxQ:(a o t(an)) < €; hence {Sn] is a Cauchy sequence with

m+1), ..

respect to t. . Therefore, {Sh} converges to an element in F since F
-]

is complete with respect to t. . Thus E: converges with respect to t.
‘ n=1

The usual limit. theorems still hold. For example, if F is a field
with a valuation t .and {an} is a sequence in F that converges with
respect to t then the 1limit is unique. Also, statements such as

lim (a .+ b.) = lim.a_ + lim b
n— n n

t g B t
- 1im an_bn = lim an lim bn
t t t

lim(a /b.) = lima / lim b (if 1lim b_ # 0)
. non e B ¢ D ¢ D

are true provided lim a and 1lim bn exist. These theorems can be
t t

proved by using the same techniques that are used in the proofs of the
corresponding theorems in real analysis.

An interesting structure can be developed by completing the
rational field with respect to the p-adic valuation of Example 3.20.
The rationals can be completed with respect to the absolute value
function by constructing the real numbers as a set of equivalence
classes of Cauchy sequences (cf. Cohen and Ehrlich [9]). - In a similar

manner the rationals can be completed with respect to | |p' . This new

structure is called the field of p-adic numbers. It has some



46

interesting properties, but this paper will not probe into the rich

theory of p-adic numbers.
- Equivalent Valuations

In Chapter II, the concept of '"equivalence" of non-archimedian

. valuations was defined (cf. Definition 2.18). . Two non-archimedian
valuations were said to:be equivalent if they had the same associated
valuation rings. vHowever, a general rank one valuation may not

determine a valuation ring in the usual manner. For example let

! l:quR be the absolute value function. The set V.= {x € Q ]x[.s 1}
is not even a ring much less a valuation ring. The pitfall is the
fact that-] | does not have the non-archimedian property. Therefore, a

‘more general definition of equivalence must be devised if all rank one

valuations are to be included.

Definition 3.28. Let t1 and t2 be rank one valuations of the field F.

Then £y and t, are called equivalent if, and only if tl(a)’< 1 implies

£3(a) < Lo Thig 150

deg‘loted by tl ~ t2.

Theorem 3.29. . If t. . ~a t

1 2 and t) (a). =1 then t2'(a)(= 1.

Proof: Let F be the field over which t1 and t2 are defined, Let b € F

such that b # 0. and ty (b)- # 1. Suppose tl(b) <1, Let n be a posi-.
tive integer. . Then tl(anb).= tln(a) tl(b) < 1. .Therefore,

tz(anb) < 1 since t This implies that t,(a) < (1/t2(b))l/n-

1~t2.

1/n -1

Therefore, tz(a) = lim tz(a) < 1im(i/t2(b)) . - In.a similar
N—

TN—co

manner it can be-shown that tz(l/a) < 1; hence 1/t2(a) <lorlc tz(a).
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Thus, tz(a) =1,  1If tl(b) > 1 then tl(l/b) < 1 and the same type of

argument would again prove tz(a) = 1.

Theorem 3.30. - 1s an equivalence relation.

. Proof:

(a) Reflexive: 1If tl(a).< 1 then tl(a) < 1. Therefore, t1.~ t2.

(b) - Symmetric: = Suppose t t Let a € F such that t2(a) <1l, 1If

1~ "2°
tl(a)-> 1 then tl(l/a) = 1/t(a1) < 1; hence t2(l/a) < 1 which
implies l/tz(a) <1 or t2(a) > 1, a contradiction. If tl(a) =1
then t2(a) = 1 by Theorem. 3.29, This is also impossible.

t

Therefore, tl(a) < 1 which implies ty~ ty.

1 ~t2.and t2 ~,t3. Let a € F such that

tl(a) < 1. Then tz(a) <1 since t

(c) Transitive: Suppose t

1 ~.t2. This implies

Thus, t. ~ t

t 1

t3(a) <1 since £y~

3° 3°
The last two theorems were adapted from the book by Bachman [2].
The next theorem shows the new definition of equivalence is a generali-

zation of the old one.

t,:F - R be non-archimedian rank one valuations.

Theorem 3.31. .Let t19 2

Then ¢ if, and only if t. and t, have the same associated valua-

1~ % 1 2

tion rings.

Proof: Assume ty ~ tye Let V1 ={x €F l tl(x) < 1} and V2 =

Xx € F | t,(x) < 1} be the valuation rings of t, and t, respectively.
2 1 2

. 1f x € V., then tl(x) < 1 which implies tz(x) < 1 since t, ~ t

< 1 and by

1 2

Theorem 3.29; hence a € V2 which implies Vl_Sin. By using the fact
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that t, ~ t; and Theorem 3.29 it can also be shown that V, €V

2 1 1°

Therefore, Vl.= V2.

Assume V, = V

1 9 Let a € K such. that tl(a) < 1. . This implies

a e Vl which implies a € V2. Thus, t2(a) < 1 and tlgy t2.

The next two theorems are adapted from a theorem and a problem in
Bachman [2]. The first theorem shows that if two valuations are
equivalent then one can be written as a power of the other. The second

theorem is another characterization of equivalence.

Theorem 3.32. Let tl’ t2§F'a R be two rank one valuations such that

c
tl ~,t2. Then there exists a real number ¢ such ¢-> 0 and t2 = tl.q

Proof:i Let b be a fixed element of F such that tl(b) > 1. Let a €F
such that a # 0. Let d =/{n tl(a),/[n £,(6). Then d fn t,(b) =
, , , A? d _ _.d
An tl(a) which implies £n tl(b) = /n tl(a); hence tl(a) = tl(b).
Now, suppose n and m are integers such that n/m > d. Then

' , n/m . . . m n m, n

tl(a) <:(tl(bD which implies ty (a) <« ty (b) and tl(a /b)) < 1.
n/m

o, m,n . X
Therefore, tz(a,/b ) <« 1 since tl ~t2, hence tz(a) < (tz(b)) .

Suppose n/m < d. Then in a similar manner it can be shown that

n/m

S o _d |

tz(a) > (fz(b)) . These two facts 1mply tz(a) = tZ(b) for suppose

not. Then t,(a) <« (t (b})d or t,(a) >'td(b) If t,(a) <« td(b) then
ot 2 2 2 2 T 2 2

there exists a real number e .< d such that tz(a) = t;(b) because the

exponential function y = t2(b) is increasing and its range contains

every positive real number, and in particular its range contains the
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positive number tz(a).

- Now, there exists a rational number n/m such that e < n/m < d
since the rationals are dense in the reals. This implies t2(a) =
t;(b) { (tz(b))n/m since y = tg(b)vis increasing. However, this is a

MU amo<d. 1f £, () > tg(b)

contradiction since tz(a) > (tz(b))
then in a similar fashion another contradiction will be obtained.

Thus, tz(a) = t2(b).

Now,,Zn.;z(a) =d /tn t2(b).which imﬁaies that d = Zn t2(a)/

SN
-2

.Zn tz(b); hence

La tz(a)/Zn tz(b) =,[n.tl(a)[[n tl(b).

‘This implies that

(n t,(a) = ([n tl(a)/[n tl(b)) Zn £, (b)
=(£n t,0)/dn £ ) Lo e (2)
Now, let ¢ = Zn tz(b)/Zn tl(b). Then,,ZE tz(a)'= c [% tl(a) which
implieslgn tz(a) =,[n ti(a), so tz(a) = ti(a).

_ A e c
‘1f a-= 0 then t,(a) = 0= 0° = (tl(a)) .

Definition 3.33. .Let t:F - R be a rank one valuation. Let_[an} be a

sequence of elements of F. Then {an} is called a null sequence with

respect to t if lim a_ = 0.
¢ 0 :

Theorem 3.34. Let t t.:F - R be rank one valuations. Then t, ~ t

1’ 72 1 2

4

if, and only if every null sequence with respect to t, is a null

1

sequence with respect to ty-
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Proof: Suppose tl_~,t2. Then there exists a positive real number c

such that t, = ti\by Theorem 3.32. . Let {an] be null with respect to

t,. Then for any € > 0 there exists an M such that tl(an) < El/c if

1°
. . _.c R
n > M. This implies that t2(an) = tl(aﬁ) < €.  Therefore, [an] is

null with respect to tn'

1 is null with

9 - Let a € F such that tl(a) <1, Let € > 0. Then there

Suppose every null sequence.with respect to t

.respect to t
. n n . n, .
exists an M such that tl(a ) = tl(a) < € if n> M; thus fa } is a null

, : n, . .
sequence with respect to t Therefore, {av] is null with respect to

1
, M M R .
t2, so there exists an M such that tz(a) = t2(a ) <« 1. This implies

that t2(a) < 1. Hence, t1 ~.;2.



CHAPTER. IV

. EXTENSIONS

In this chapter the problem of extending a mapping, a place and a
valuation will be considered. First of all, it will be shown that a
function which is defined on an integral domain and which has proper-
ties like a valuation can be extended to a valuation on the quotient
.field of the integral domain.  Next, a cléssical theorem concerning the
extension of a place will. be proved. Also, it will be shown that a
non-archimedian valuation can be extended over an arbitrary extension

.field. Finally, it will be demonstrated that a particular type rank
one extension is unique. Some of the concepts of normed linear spaces

LA
are used in this uniqueness theorem.

. Mappings and Places

Theorem 4.1. Let I be an integral domain of a field F. Let K =

{a/b | a,b € I, b # 0}. Then K is a field such that I =K.

Proof: let %,y € K, This implies that there exist a, b, ¢, d €. 1 such
that b # 0, d # 0, x= a/b and y = ¢/d. Now, x - y = (ad - bd)/bd and
bd # 0 since I has no divisors of zero. Thus, X - y.€ K which implies
K is an additive subgroup of F. .

If x,y € (K --{0}) then x= a/b and y = c/d where a, b, c, d # 0.
Hence, x/y = ad/bc and bc # 0. Therefore, (K - {0}) is a multiplicative

subgroup of (F - {0}). Then K is a subfield of F.

51
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The domain I is contained in K since 1 € I and I = {a/l | a € I}.

-Definition 4,2. If I is an integral domain of a field F then the field

K= fa/b | a,b € I, b # 0} is called the quotient field of I.
The next theorem is adapted from a similar one in Bachman [2].

Theorem 4.3. .Let I be an integral domain of a field F. Let v be a
mapping from I into the reals R such that

(a) v(a) =0
.(b) wv(a) = 0 if, and only if a = 0

(¢) v(ab) = v(a) v(b)

(d) v(atb) < v(a) + v(b)

Then v can be exﬁended uniquely to a rank one valuation on the quotient

field K of I.

Proof: -Let t:K — R be defined as t(x) = v(a)/v(b) for any x = a/B €K
where a,b € I and b # 0. Suppose there exist a, b, ¢, d € I such that
b, d# 0 and a/b = c/d. This implies ad = be, and v(ad) = v(bc) which
implies v{a) v(d) = v(b) v(ec). Thus v(a)/v(b) = v(c)/v(d); hence
t(a/b) = t{c/d) and t is well defined.

Now, it will be shown that t is a valuation on K.. Let x = a/b € K.
Then t(x) = v(a)/v(b) = 0 since v(a), v(b) = 0. If t(x) =v(a)/v(b) =
0 then v(a) = 0 which implies x = a/b = 0. If y = c/d € K then t(xy) =
t(ac/bd) = v(ac)/v(bd) = v(a)v(c)/v(b)v(d) = [v(a)/v(b)] [v(c)/v(d)] =
t(x)t(y). .Thus, conditions (a), (b) and (c) are satisfied. Also,
x+ y=a/b+ c/d= (ad + be)/bd, and so t(x+ y) = v(ad + bec)/v(bd) <
[v(ad) + v(be)]/v(bd) = v(ad)/v(bd) + v(bd/v(bd= v(a)/v(b) + v(c)/v(d)

= t(x) + t(y). . Hence, t is a valuation on K.
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Next, it can be shown that t is an extension of v. ©Let a € I.
Then a = ab/b where b € I, but b.# 0. This implies that t(a) =
v(ab)/v(b) = v(a)v(b)/v(b) = v(a).

Suppose there exists a valuation s:K - R such that s agrees with
vonI. Ifx=a/b¢K then s(x) = s(a/b) = s(a)/s(b) = v(a)/v(b) =
t(x). Therefore, t is unique, and the theorem is proved.

Before stating and proving the so called Fundamental Theorem of
Places, some definitions and lemmas will be considered., First of all,
if A is a subring of a field K then A[x] will denote the ring of all
polynomials with coefficients in A. Also, if o« € K then A{«] is the
set- [P(<) | P(x) € A[x]}. It can be shown that A[«] is a subring of K,
for, 1f P (), P,(2) € A[«] then P (=) = P,(=) = (P, - P,) (%) € A[=],

and Pl(a)Pz(aQ = (P1 Pz)(cé € A[«]. An important fact that will be

used in the proof of one of the lemmas is that if F is a field then

F[x] is a principal ideal domain (cf. Moore [15], p. 164).

Definition 4.4. .Let F be a field. Then F is said to be algebraically

closed or algebraically complete if, and only if every non-constant
polynomial with coefficients in F splits in F (?.e. if P(x) € F[x] and.

P(x) is not constant then there exists kl, k2’ ceey kn € F such that
P(x) = an.(x - ki)(x - kz) eee (% - kn) where a is the leading
coefficient of P(xD .

Lemma 4.5. Let A be a subring of a field K.  Let F be a field, and let

f:A - F be a non-trivial homomorphism. Let S = {a € A [ f(a) # 0}.

Then
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(a) A’ = {a/b ] a € A, b € 8} is a subring of K such that 1 € A’ and

ACA’
(b) there exists a homomorphism f£/:A’ -~ F such that £’ A s f.
Proof:

(a) Let %,y € A’. Then there exists a,c € A and b,d € S such that
x = a/b and y = c/d.  Therefore x - y = (ad - be)/(bd). Now,
f(bd) = £(b) £(d) # 0 since f£(b), £(d) # 0 and F is a field.
Thus, bd € S which implies x - y € A’. Also, xy = (ac)/(bd) € A’.
Hence, A’ is a subring of K.

Let b€ SCA. Then, 1 =b/b € A’. Also, if a € A and b € 8§

then a-= ab/b € A’/ which implies A CA’.

(b) . Define f£/:A’ - F as £/(a/b) = £(a)/£(b) for all a/b € A’. . Suppose

a/b = c/d. Then ad = be, and so f(ad)

f(bc) which implies

f(a) £(d) = £(b) f{c); hence £(a)/f(b)

f(c)/£(d). Therefore,
f’(a/b) = £’(c/d) and £’ is well defined.
Now, f£’(a/b + ¢/d). = £/([ad + bc]/bd) = f(ad + bec)/f(bd) =

[£(a) £(d) + £(b) £(c)]/[£(b) £(d)] = £(a)/£(b) + £(c)/f(d) =

£f'(ajdy + £/(c/d). Alsc, f£’/(a/b - ¢/d) £’ (ac/bd) =

£/(a/b) £'(c/d). Hence,

f(ac) /£ (bd) = [£(a)/E(b) [ £(e)/£(d) ],

f/ is a rving homomorphism,

1]
h

let 2 € A and b € S. Then £/(a) (ab/b) = £(ab)/£f(b) =

f(a) £()/f(®d) = f(a). Therefore, £’ AT £.

. 0f course, it is possible that the quotient ring A’ is the same as
A. Then f’ is really not an extension. However, the next lemma shows
that f can still be extended even though A .= A/, provided F is

algebraically closed.
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Lemma 4.6. . Let A be a subring of a field K. . Let F be an algebraically

closed field.  Let f:A - F be a non-trivial homomorphism. - Let S =

fa €A | f(a) # 0} and A’ = {a/b | a €A, beS}, IfA=A’then f can

be extended to A[«] or to A[@mlj where « is an arbitrary element of K.
Let Fo»= f(A). Then Fo is a subring of F since f is a homomorphism

and A is a ring. Also, 1 € FO since' 1 € A/ = A and £(1) = 1. . Let

c € Fo such that ¢ # 0. Then there exists a € A such that c.= f£(a) #

0; hence a € S. This implies that a'lv= 1/a € A’ = A. Therefore,

1= £(1) =-f(a»aml) = f(a) f(aul) =c f(aml)o Thus ¢ has an inverse in

Fo’ and this implies that Fo is a field.

Now, define h:A[x] - Fo[x] as follows: if P(x) a tax+ oo+

1

a_x" then h(P(x» = f{a ) + f{a)Dx+ ... + £(a )xn. Let «< € K and

n o 1 n

assume that there exists P(x) € A[x] such that P(x) = 0 but P () #0
for all g € F where P(x) = h(P(xj). Let I = {P(x) € A[x] | P() = 0}.

The set I is an ideal in A[x] since Pl(x)s Pz(x) € I imply Pl(cj -

YPQ(GG = Pl(m) Pz(@) = 0 and since”Pg(x) € Alx] implieS'Pl(«) PS(m) =

o
[av]
&
—~
!
<
il

0. Also, h{(I) is an ideal of Fo[x] since h.is a homomorphism
and I is an ideal of Fo[xja Thus, h(I) is a principal ideal since

Fé[x] is a principal ideal domain. Therefore, there exists a polynomial
Q(x) € F [x] such that h(I) = Q(x) F [x] = {Q(x) R(x) | R(x) € F_[x]}.
However, Q(x) must be a non-éero.qonstant, otherwise there exists B € F
such. that Q(B) = O since F is algebraically closed.  This would imply
that for every P(x) € A[g]'such thatvP(cﬁ = 0 then f(s) = 0 where

F(x) = h(PQxD ,.a contradiction of the assumption. Therefore,
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h(I) = ¢ Fo[x],= Fo[x] which implies 1 € h(I); hence there exists

. Ql(x) =b_ +ax+ ...+ anxnvE I such that 1.= h(Ql(x)) = f(bo) +

|
§

n - = = =
f(al)x,+ veo + f(ah)x . .Thus,ﬂf(bo) 1 and f(al) f(az) cos

f(an) =0, . Let a = bo - 1. Then Ql(x) =9 + a, + a x + ...+ ax,
f(ab) = f(bo-l) = f(bo) -f(1) =1-1=0and o= Ql(aj =14+ a +
aj=t ..t aa

Also, assume that there exists P(x) € A[x] such that P(cfl) =0
but E(s) # 0 for all @ € F. Then, by a similar argument it can be

shown that there exists elements cys © s C € A such that f(co) =

15 oo

0;1.+ cee +c ™ =0, Suppose

f(cl) = ,,, = f(cm) =0 and 1+ <, + c o

1

that n and m are the smallest integers such that

l+a +a o+ ... +a< =0,
0. 1 n
-1 “-m
l+c +coc  + .0+ c o =0,
o) 1 T

fi
]
=
—~
&
~
L]
Fh
~
[e]
~
[
]

. a eey. @ c ooy C A and f(a.
03 < ] 3 09 9 m 6 ( 0)

n

f(cm) ='0. Also, suppose m < n. Ifn= 20 then 1+ a = 0. which
implies 0 = £(0) = f(L+ao) = £(1) + f(ao) = f£(1). But, this is impos-
sible since f is non-trivial. Therefore n > 1. Also, it can be shown
that m = 1.
Now, o' = [-c,/(l+c )]a?-l + oo+ [-c. /(I+c )]. Let d =
’ 1" 7o ) m o’ <" o
—cm/(1+c,0)s cees dm~1’= ~cl/(L+co). The element 1 + c, € S since

= = .= /I =
£(1+c) = £(1) + £(c)) = £(1) = 1 # 0. Thus, d_, ..., & . € A’ = A.

m
Also, f(do) ces f(dm_l) 0, and v dO + dlm-+ ces dm_1



n -
Next, =.&?(a9 m) and n - m = 0; hence 0= 1+ aoﬁ+ a,<+ .., +

m, n-m, _ : n-m
anm (< ) =1+ a, + ala'+ A anm (do + dlx'+ e +.d < ).
But, the highest power of « is n=-1 which contradicts the fact that n

is minimal.
Therefore, the two assumptions about « and afl cannot hold simul-
taneously. - Now, suppose there exists B € F such that for all

P(x) € A[x] where P(«) = 0 then P(g) = O where P(x) = h(P(x)). Then
‘define g:Al«] - F as g(P(«)) = P(B). Let P(=), Q(x) € A[«]. This
implies g(P(<) Q(x)). = g PQ() - = PQ(B). But, PQ(x) = h(PQ(x)) =
h(B(x) Q) = h(PG)RQE)) = B(x) Qx); hence PQ(8) = P(B) Q(B), and
so g(P (=) Q) = g(P_(o;)) g(Q(=)) . 1In a similar mannmer it can be shown
that g(P(<) + Q()) = g(P(ec))+ g(Q(«)), Thérefore, if g is well
defined then g is a homomorphism. Let P(«), Q(x) € A[«x] such that
P(e) = Q(e). This implies (P-Q) (=) = P(s) - Q() = 0; thus (P-Q)(g) =
0. Therefore, g((B-Q)(=)) = 0 which implies g(P(«) - Q(=)) = 0, and so
g(®(x) = g(Q(e)) . Therefore, g is wellydefined and is a homomorphism.
Now, let a .= P(x) € A c A[«]. ‘bThen g(a) = P(B) where P(x) = h(P(x)),:
h(a) = £(a). Thus f has been extended to A[«].

1f there éxists P(x) € A[x] such that P(x) = 0 but P(g) # O for
all g € F then it has been shown that there exists § € F such that for
all P(x) € A[x] where P(< ) = O then P(8) = 0. In this case it can

be shown by a similar argument that f can be extended to A[m_lj.
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The last two lemmas and the next theorem have been adapted from a
theorem in Bachman [2]. Before proving the next theorem some concepts
concerning Zorn's Lemma must be introduced. After this the lemma

itself will be stated without proof,

.Definition 4.7. A set A is said to be partially ordered if there is a

relation < defined on A such that
(a) a<b, b<c imply a < ¢
(b) a < a for all a € A

b.

(c) a<b, b<a imply a
If A is partially ordered and a < b or b < a for .all a,b € A then

A is said to be totally ordered.

Definition 4.8. - Let A be a partially ordered set. Let B€ A and a € A.

The element a is called an upper bound of B if b.< a for all b € B. 1f
¢ = a for all ¢ € A such that a < ¢ then a is said to be a maximal

element of A.

Lemma. 4.9 (Zorn's Lemma). Let A be a partially ordered set such. that

every totally ordered subset of A has an upper bound in A. Then A has

a maximal element.

Theorem. 4.10 (Fundamental Theorem of Places). Let A be a subring of a

field K. Let F be an algebraically closed field. - Let f:A - F be a
non-trivial homomorphism. Then there exists a place H:K - F |J {e} such

that H ‘A_= £.

Proof: Let E = {g:R - F | g is a homomorphism, R is a subring of
K,A €ER and g(a) = f(a) for all a € A}. 1In other words E is the set

of all extensions of f to a larger subring of K. Define a relation <
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on E as follows: g < 8 if, and only if g is an extension of Bq- It

is clear that < satisfies (a), (b) and (¢) of Definition 4.7, Thus, E
is a partially ordered set.

Let»{gm} be a totally ordered subset of E. ,Let»iAa} be the set of
rings over which the elements of {g&} are defined. Then [Aa] is

totally ordered by the relation & (i.e. {Aa} is partially ordered by C

and if A , A E{Ao:} then AOCEA or AL EA). LetR«'-g:Aoc. 1f

B B B

a,b € R then there exists «, B such that a € A°C and b € A Also,

8"

A_cC A, or A <A . Without loss of generality suppose A _C AB. Then

B B
a,b € AB, and a-b, ab € AB c R. Therefore, R is a subring of K. Now,
define g: R » F in the following way. If a € R then a € A°C for some .

Let g(a) = gx(a). If a € A where o # B thep ga(a) = gB(a) since {ga]

B
is totally ordered (i.e. since 8. is an extension of gB or vice versa).
Thus, g is well defined. Let a,b € R. This implies that there exists
an <« such that a,b ¢ Aa; hence -at+b, ab € AOC since Aoc is a ring. Thus,
glatb) = goc(a+b) = g (a) + g_(b) = g(a) + g(b), and g(ab) = g _(ab) =

ga(a) ga(b) = g(a) g(b). Therefore, g is a homomorphism. Now, let

g, be an element of'{ga}. . Then A_CR and ga(a) = g(a) for any a € A_;

thus g < g. Therefore, g is an upper bound of {gd}e

Now, it has been shown that every totally ordered subset of E has
an upper bound. Therefore, by Zorn's Lemma E has a maximal element.,
.Let h:V - F be a maximal element of E. This implies that if h < k.then

h = k.  Therefore, h has no extension distinct from itself,
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.Lemma 4.5(b) and the above remark imply that V = V'’ where V'’ =
fa/b | a €V, b€S}and S={a €V | h(a) #0}. Also, if « €K - V

then V[«] # V; hence h cannot be extended to V[«]. Therefore, h can be
-1 ' -1, . . )
extended to V[ "] by Lemma 4.6; hence V.= V[« "] since h is a maximal

element of E. This implies a:1 € V. Thus, by Definition 2.10, V is a
valuation ring.

Now, define H:K - F () {w} as H(a) = h(a) if a € V, and H(a) = o if
a £ V. Hence,

Hﬁl(F) =V, a ring,
.and H v non-trivial homomorphism.
Therefore, by Definition 2.13, H will be a place if H(a) = = implies
H(a-l) =0, . Let a € K such that H(a) = . This implies a ¢ V which
implies a_l.E V since V. is a valuation ring. ' Now, if h(a-l) # 0 then

-1 , , , -1 b .

a € S which implies a = 1/a € V/ since 1. is always an element of
a valuation ring such as V. Thus, a € V since V.= V’/, a contradiction.

Therefore, h(aql) = 0 which implies H(aul)‘= 0; hence H is a place.

Also, H AT £ since H v = h and h A £,

Valuations

Definition 4.11. .Let k be a subfield of a field K. Then K is called

an extension field of k.

Theorem 4.12. Let v:k —~ G | {z} be a non-archimedian valuation. Let K

be an extension of k. Then there exists a non-archimedian valuation

£:K - G U {2z} where G is a subgroup of G, and ty .= V.
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Proof: Let V P, be the valuation ring, units and non-units

1> Yo By

associated with v. Let @tk - (Vl/Pl) U {=} be the place associated
with v (cf. Theorem 2.14). = Now, U1 = fack I v(a) = 1} is the kernal
of the homomorphism vi(k. - {O]) — G. Thus, there exists an isomorphism

| it - (k.- fO})/U1 such that i(v(a» = g U, by the Fundamental Theorem

1
of Homomorphisms (cf. Barnmes [3], p. 47). :In the proof of Theorem 2.16

it was shown that (k - {0}/ U1 is an ordered group with normal subsemi-

Lo

group S1 = {a U1 € (k = {0/ U1 ‘ a € Pl - {Oi}where Sl determines the

ordering of (k. - {0})/ Uy (i.e. a U, Xb U, if, and only if

1

(a Ul)(b Ul)_l € El). Let v(a), v(b) € G such that v(a) ¥ v(b). Then

v(a/b) = v(a)/v(b) X 1 which implies a/b € P, - {0} since P, =

fa €k | v(a) x 1} and a/b € k - {0}. Thus, (a/b) U; € S; which

1

implies (a Ul) (b Ul)ml = (a/b) U1 = (a/b) Ul-l- € El; hence

-1 . . . iy .
(a Ul) (b Ul) ¥ 1 which implies a Ul X b Ul’ and so 1(v(a)> X 1(v(b)) .
Therefore, G is order isomorphic to (k - {0})/ ;-

The function g v. Yy - (Vl/Pl) is a non-trivial homomorphism by
1

Definition 2.13. Let F be an extension of (Vl/Pl) such that F is an

algebraically closed field (such an extension always exists cf. Barnes

(3], p. 197). Therefore, there exists a place §:K o F |J {eo} such that

¥ ‘V1.= ©® l v . by Theorem 4.10. Hence, there is an associated valua-
L

tion ring V2 = w_l(F) with units U, and non-units P29 and there is an

2

associated non-archimedian valuation t:K - [(K ~'{0})/U2] U {z]} where
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t(a) =alU,if a # 0 and t(0) = z (cf. Theorems 2.14 and 2.16).

’Now, it will be shown that Vl.= k N V2, Pl =Lk N P2 and Ul =
k N U2. Let x € Vl' This implies that ¢(a) € F which implies § (a) €
, -1 ,
F since ¢(a) = ¢(a); hence a € ¢ (¥) = V2. Therefore, Vl.S V2 which

implies V

1 ekn V,. Suppose y(x) = 0 and ¢(x'?) # w. Then

x, x 1€ Hm ='V,; hence §(1) = §(x x 1y = px) $1) = 0 which
is trivial, a contradiction. = Therefecre, if m(x-l) # e

2
then §(x) # 0. Now, let a € k N V2. Then a € V2 = wml(F) which

implies § v
N -1, -1 -1
implies {(a) # «, and §(a *) # 0. Also, ¢(a ) # O otherwise a = €

w-l(F) = Vl’ and w(awl) = 0 since ¢ l = l V.3 thus ¢p(a) # « by
1

A

Definition 2.13. Then a.€ V1,= @-1(F) which implies kn'V2 g:Vl, and
V,=knV, Thus, K~V =K- (knV, =(K-k U(RK-Y,).
Therefore, k - V.= (kN K) =V, = («kNK) NV, =kn (K n'vl) =

kn (K- Vl) =k N [&-k) U (K-Vz)] =k N (K—VZ). - Now, k =

P, UU Uy - (0D = v U, - (0D and K=, U U, U (By-fOD

-1 . =1
VZ;U ®, - {0}) ~ by Theorem 2.12; henée ®, - {0} " =k - v,=

kn (K ='V2) = k,n-(Pz -»fO})-l° .Let x € P1 such that x# 0. Then
=1 , -1 .. . , -1 -1
x € (R - {0}) ~ which implies x =~ € k. n @, - {0}) 7; thus x €

knP,. IfxeknkP,such that x # 0 then x ' & k n (e, - {o})'l =

-1 S ,
(Pl - {0}) 7, and x € P . Therefore, P, = k.nP,. Also, U, =v, - P

=NV - (kNPY = (kNVY N GAPY = [(nV) Nkl

Tk nVZ) N sz =k .n (V2 - PZ) = kN U2.
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Next, it will be shown that (k --{O})/Ul can be imbeded in
(K --[O})/U2 by an order isomorphism. Let j:(k- {0})/Ul - (K - {0})/U2

be defined as j(a Ul) = a Uz. To show that j is well defined, let

-1

alU, =bU Then (a U;) (b U;) = = 1.U; which implies (abnl)Ul =

1 1° 1

= kN U2.

1-U; thus a p=1 €U, which implies a pL € U, since U,

- Therefore, (a bml)U2‘='l-U , and so j(a Ul) =al,=0b U2 = j(b UZ);

2 2

hence j is well defined, Also, j[(aUl) (bUl)]r= j[(ab)Ul]v= (ab) u, =
(aUZ)(bUZ) = j(aUl) j(bUl). Thus, j is a homomorphism. Let aUl €

Then alU, = 1.U, which implies

(k - {O})/U1 such that j(aUl) =1.U,. 9 9

a el Thus, a € U1 since U1 =k-N U2 and a € k; hence aUl.= l-Ul,

9e
and j is an isomorphism. Now, let aUj, bU, € (K - {O})/Ul such that

-1 | -1 = -1 _
aUluk bUl' - Then (a b ‘)Ul = (aUl)(bUl) € Sl,vhence ab €P =

3

1 # 0, Thus, (a b_l)U2 E’EZ = {?UZ | a € P, ~‘[0}} ,

k N P2 and a b“l

1

the normal subsemigroup of (K - [0})/U2, Therefore, (a bs‘)U2 X

1-U, which implies aU2 X bU29 and j is an order isomorphism,

2
k
v \L\ik
i ]
-G

—= (k.= {O}/U] —=> (K - [0D/U,

- Now, it can be shown that t ‘ K jo i 0wv, Let a € k. Then

(jo i10w)(a) = j(i(v(av) = j(aUl) aU2 = t(a). Thus, t =

k

j o i o0 v which implies t l K = voup to an order isomorphism, and so
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the proof is complete.

Normed Limear Spaces and Uniqueness

Definition 4.13. Let A be a set and F a field such that

(a) A is an additive abelian group, and
(b) if c.€ F and x € A theré exists a unique element cx € A called the

(cd)x and 1l.-x-= x for all

product of ¢ and x such that c¢(dx)

c,d € Fand x € A, and

]

(¢) 1if x,y € A and ¢c,d € F then c(xty) cx + ¢y and (ctd)x = cx + dx.
Then A is said to be a linear space (or vector space) over F. If BEA
and B is also a linear space over F with respect to the operations that

are inherited from A then B is called a subspace of A. An element of

A is called a vector.

Theorem 4.14. Let A be a linear space over F. Let {x., ..., x_ } be a

subset of A and B = {cl xl + ... + cn Xn’l ci.E F}. Then B is a

subspace of A.

Proof: Let x,y-€ B. Then x=c¢c, . %X, + ... + c_ X and y.= d, x. + ...

171 171
-+ dn X where ;s di_e F. Thus, x - y = (cl - dl)x1 + ...+ (cn -dn)xn
€ B which implies B is an additive subgroup of A. Let ¢ € F. . Then

cx = (c cl)xl + ... + (c cn)xn € B. - All of the other properties of a.

linear space are inherited from A. Hence, B is a subspace of A.

99 cees X

Definition 4.15. Let A be a linear space over F. Let X5 ¥

€ A and B = {cl X+ et e % l c; € F}. Then B is called the

subspace spanned by x

PP X .
l’« 3 n
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Definition 4.16. -Let A be a linear space over F, Let:{xl, cons Xn}f:

A such that ¢, x. + ...+ ¢_.x =0 implies ¢, = .,,.. = ¢_.= 0 and such
171 n n . 1 n

sevs © € F such that x =

that for any X € A there exist Cqs

¢, %, + ...+ c_. x . Then, the set {x., ..., x_} is said to be a basis
n n 1 n

171

for A, and A is an n-dimensional linear space (vector space).

Theorem 4.17. Let k be a field and K an extension field of k. Then K

is a linear space over k.

Proof: K is an additive abelian group since it is a field. Let

¢,d € kand x,y-€ K. Then ¢x € K since K is closed under multiplica-
tion, ¢(dx) = (cd)x since multiplication in K is associative, and

lex'= x since x € K and 1 is the unity element. Also, c(xty). = cx + cy
and (c+d)x = cx + dx since multiplication is distributive over addition

in K. Therefore, K is a linear space over k.

Definition 4.18. Let K be an extension field of a field k. K is

called a finite extension of dimension n if, and only if K is an

n-dimensional linear space over k where n is a positive integer.

Definition 4.19. .Let A be a linear space over F. .-Let v:F.--» R be a

rank one valuation. Let N:A - R be a function such that

(a) N(x) = 0 for all x € A, and N(x)- = 0 if, and only if x-= 0, and
(b) NW(cx) = v{c) N(x) for all ¢ € F and x € A, and

(c) N(xty) < N(x) + N(¥).

Then N is called a norm on A and A is called a normed linear space.

I1f K is an extension field of k and v is a rank one valuation on

K then K is ‘a normed linear space over k with norm v. .Also, if A is an
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arbitrary normed linear space over a field with norm N then Cauchy
. sequences, convergence and completeness can be defined as they were in
Chapter III. 1If [an} is a sequence in A, and if for any € > O there

exists an M such that N(an - am) < € when n,m.> M then fan} is called a
Cauchy sequence. If there exists a vector x € A such that for any
€ > 0 there exists an M such that N(an.w'x) < € when n > M then {an]

is 'said to converge to x which. is denoted by lim a = X If every
Deseo ‘

Cauchy sequence in A converges tc a vector in A then A is complete.

A normed linear space A forms a topological space. In particular
it is a metric space with metric d(x,y) = N(x-y) and basic neighbor-
hoods of the form Sr(x) = [yvllN(x-y) < r} where r > 0. A set B is
open in A if, and only if for any x € B there exists a basic neighbor-
| hood Sr(x) such that Sr(x),g:B. A set C is closed in A if, and only if
A - Cis open. If Dc A and p € A then p.is called a limit point of D

if, and only if there exists a sequence {an} in D such that lim a = p.
N-seo

it can also be shown that a set D is closed in A if, and only if D

contains all its limit points (cf. Hall and Spencer [10], p. 63).

Definition 4.20. -Let A be a linear space over F.  Let Nl and N2 be

two norms on A. Then N1 is said to be equivalent to N2 if, and only if

there exist a,b > 0 such that a,Nl(x) < Nz(x) <b Nl(x) for all x € A.

Further, "equivalence e¢f norms'" is an equivalence relation.since

Nl(x) < Nl(x) < Nl(x), if aNl(x).s Nz(x) < le(x) then (l/b)Nz(x) <

Nl(x) < (l/a)Nz(x)9 and if aNl(x) < Nz(x)‘g le(x) and
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ch(x) < N3(X)’s sz(x) then (ac)Nl(x) < N3(x) < (bd)Nl(x) where

a, b, ¢, d> 0.

Theorem 4.21. -Let A be an n-dimensional linear space over F. - Let

. {xl, oo xn} be a basis for A. Let v:F - R be a rank one valuation.

Let N:A - R be defined as N(X) = max v(ci) where x = ¢ ¥ + ... +
i .

¢ %X, Then N is a norm.,
n n

Proof: N is well defined since x=c¢, X, + ...+ c¢c x=d. . x. + ,., +
171 “n 171

cL X implies (c1 - dl)xl + ... F (cn.- dh)xn_='0; hence ¢y - d1 =

ces.=c_=-d =0, and ¢
n v

d,, +eey,. c_.=d_by Definition 4.16.
n n n

1 %1

Therefore, max v(c

= max v(d;).
. i’
i 1

i)

Also, N(x) = 0 since v(ci) > 0 for any i, If N(x) = 0 then v(ci)
=0 for all i which implies ¢, = 0 for all i; thus x = €1 xl.+ ces t+

c..x =0, Ifx=0thenc, x. + ...+ c_.x = 0 which implies ¢, =
n . n 171 n 1

cee == 0; hence V(Ci).= 0. for all i, and N(x) = max v(ci) =0,
7 .

If ¢ € F then N(cx) = max v(c ci)

max v(c) v(ci) =
i i

v(c) m?X'V(Ci) = v(c) N(x). If,y'f/dlixl + ...+ dn x then N (xty) =
m?x v(c;i + di).s m?x [v(ci) + V(di)]*= m?x V(Ci) +»m2x v(di) = N(x) +

N(y). Thus N is a norm.

The next theorem is adapted from a similar one in Bachman [2].

- Theorem 4.22. -Let A be an n-dimensional linear space over F with basis

{xl, ...,,xn}. Let F be a complete field with respect to a rank one

valuation v:F - R. Then any two norms on A are equivalent.
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Proef: It will be shown that every norm on A is equivalent to the norm

N () = max v(c,) where x = ¢, X. + ...+ ¢c_ %x_ . Then the theorem will
o) i i 171 n n

be proved since "equivalence of norms" is an equivalence relation.

Let N be an arbitrary norm on A, and let x.= ¢, X,. + ... + c, E €

171

A. Then N(x) = N(cl Xy + ... +\cn xn) < N(cl xl) + ..+ N(Cn xn) =

v(cl) N(xl) R v(cn) N(xn)vs m?X v(ci)[N(xl) ol + N(xn)] =
bNO(x) where b .= N(xl) + ...t N(xn).
Now it must be shown that there exists a > 0 such that aNO(x) <

N(x) for all x € A, This will be shown by induction on n the dimension
of the linear space.

If n = 1 then there exists a basis-{xl} with. only one vector.
Thus, x € A implies there exists a €1 €. F such that x = cy Xy which
implies N(x) = N(c1 xl) = v(cl) N(Xl) = No(x) N(xl); hence for any norm

N on a l-dimensional linear space A there exists an a > 0 such that

aNO(x) < N(x) for all x € A.

Assume for any norm N on an (n-1)-dimensional linear space over F
thare exists an a > 0 such that a»No(x) < N(x). -Let A be an n-
dimensional linear space over F‘With basis {xl, ,..g.xn}. Let N be a
norm on A, - Let B be the subspace spanned by {xl, cees Xn_l}-(cf.
Definition 4.15). Then [xl, vers X } forms a basis for B which
implies B is an (n-1)-dimensional linear space. Also, N is a norm on

B. Therefore, N is equivalent to Novon B by the first part of the

proof and the induction hypothesis; hence there exists a,b > 0 such
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that a No(x) < N(x) < b:No(x)iforjalle'é B.

Let-{yi} be a Cauchy sequence.in B with respect to N. There exist

c,.X, + ... + ¢ for

i € F such that yi 111

11 C21° n-1 n-1i%n-1

i=1, 2, 3, ... . Now, V(lev- cmk) < m?X'V(CjL - Cjk) = No(XE - yk)

<

o |

N (Xa - yk). Thus if € > 0 then there exists M such that

N(XZ - yk) < a € for‘l,k;> M since {yn} is Cauéhy; hence v(cmz - ka)’<
€. This implies [cmi] are Cauchy in F with respect to v for m =

1, 2, ..., n-1l, Therefore, for each m there exists cm_é F such that
}im i =c. since F is complete with respect to v, - Let y =

c, X. +c, X, + ... + ¢

5 %, Also, N(yi -y)<hb No (yi-y) =

n—l'xn-l'

b max v (¢..-¢.). -If € > 0 then there exists M, such that v(c,, ~ c.)
j it ) i it 7]

< €/b when i > Mj' let M = max'Mj. Then 1 > M implies v(cji-ci) <
i

€/b for j = 1, 2, ..., n-1 which implies max v(cji-cj) < €/b. There-
_ b

fore, N(yi - y) « € when i > M; hence }im vy, =V with respect to N.
ise

Thus, B is complete with respect to N.

‘Let C = {xn + x € A_‘ x € B}. Let p be a limit peint of C. This
implies there exists a sequencev[ai} in C such that }im a, = p. Thus,

i-eo

for each i there exists bi € B such that a; = x + bi' Also, if € > 0
there exists M such that N(ai - p) <« €/2 if i > M. Therefore,
ICHER IR N{x_+ b, - (x_+ bjj) =N(a; -a) =Na; -p+p-a)cs

N(ai - p) + N(p - aj) < €/2+ ¢€/2 = ¢ if i,7 > M. This implies that

{bi} is a Cauchy sequence in B with respect to N; hence there exists
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b € B such that lim bi = b since B is complete. Thus lim a, =

lim (xn + bi) =s_ + b € C., This implies p = . + b since the limit is

1l—eo

unique; thus p € C. Hence, C contains all its limit points, and so C
is closed. This implies A - C is open.

Now, O £ C, otherwise there exists x € B such that 0 = x + %,

But, there exists ¢

cees Coq € F such that x = cqy % + ... F

thus 0 = ¢, %, + ... +

¢ -1 ¥p-1} 1 ¥ + 1=xn. This contradicts

“n-1 *n-1

the fact that Xy eons X is a basis; hence'0 € A - C. Let x € C.

Then there exists r > 0 such that S, (0) = {y ivN(y=O) < rn} cA-C
a _

since A - C is open; thus x ¢ S, (0) which implies N(x) = N(x-0) = r .
n

Let x = ¢, % + ... + ch ¥ € A where c # 0.  Then (cl/cn)x;l +

.o+ (cn_l/c )x 0 %

DE + x € C which implies N(cl Xy + v.o+tc X)) =
N(én([cl/ch]xl + ...+ [Cn~l/cn] xn=l'+ an = v(cn) N(kcl/cn)xl + ...

+ <Cn=l/cn) X _1 + xn) = v(cn) ro- If e, = 0 then V(Cn) =0, and

N(x) =0 = v(cn)rn; hence N(x) = v(cn)rn for all x = cq ¥ R

Cn Xn € A, In a similar wanner it can be shown that for each 1 there

exists ¥, > 0 such that N(x) = N{(c, %, + ... +¢c, x, + ... +c x) >
i 171 i n 0

v(c.)r, for all x = ¢, %. + ...+ ¢c x €A. Let a=minr,. Then
i’ i 171 n n i

N(x) = v(ci) min r, = v(ci)a for i =1, 2, ..., n. Thus, N(x) >
i

max v(ci)a = a max v(ci) = aNd(x)° Thus the theorem is proved.
i i

The procf of the following uniqueness theorem was adapted from one

in Cassels and Frohlich [77.
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Theorem 4,23. . Let K be a finite extension field of dimension n of a

subfield k. Suppose k is complete with respect to a rank one valuation

v. .If there exists a rank one valuation t:K - R such that t ‘ K=V

then t is unique.

Proof: .Suppose w:K - R is a rank one valuation such that W'l = Ve
Now, K is an n-dimensional linear space over k and t and w are norms on
K. Thus, t and w are equivalent norms by Theorem 4.22., This implies

that there exists a,b > 0 such that aw(x) < t(x) < bw(x) for all x € K.

Let x € K such that t(x) < 1. Then lim tn(x) = 0 which implies
N0

lim wn(x) = 1lim W(xn) = l’lim t(xn).= l’lim tn(x) = 0. This implies
N T80 a N— a

w(x) < 1; hence t and w are equivalent as valuations. Thus, there
exists a positive real number s such that t(x) = ws(x) for all x € K by

Theorem 3,32. Let y € k such that y.# 0. Then t(y) = v(y) = w(y).

This implies ws(y) = w(y). Therefore, s = 1, and t = w.

Definition 4.24. Let A be a linear space over F. Let Kyg Xpy eoey X

+ ..ot c x.= 0 imply ¢, = ..., =

€ A. Ifec oo s Cm € F and cy Xl n X 1

13
¢ = 0 then [xlg ceas xm} is said to be linearly independent. If

{x1, cees xm} is not linearly independent then it is linearly dependent.

If A is an n-dimensional linear space over F and {x., ..., x } is
1 m
a linearly independent subset of A then [xl5 coos xm} is contained in a
basis of A (cf. Halmes [11], p. 11).  This implies m < n since every

basis has exactly n vectors (cf. Halmos [11], p. 13).
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Theorem 4.25. - Let F be a field with a valuation v:F - G | fz}. Let K

be an extension field of F with a valuation t:K - H U {z} such that G

is a subgroup of H and t | F= Vv Then v(F - {0}) = G is a normal

subgroup of t(K - {0}) = H.

Proof: ' Let a € Hand b € G. . This implies there exists x € K - {0} and

y € F - {0} such that t(x) = a and t(y) = b, Thus, a b a’l =

1

Bx) £(y) t® T = e ey e D) =ty = exel) = ty) =

b € G. .Hence, G is normal in H.

Definition 4,26, - Let F be a field with valuation v:F = G {J fz}. . Let K

be an extension field of F with a valuation t:K - H.|y {z} such that G

is a subgroup of H and t-| F = v, . Then the number of elements e in the
factor group t(K - [0})/t(F - {0}) = H/G is called the ramification

index of t and v.

Theorem 4.27. -Let F be a field with valuation v:F - G.U {z}. Let K be

a finite extension field of dimension n with non=-archimedian valuation

t:K - G1 U {2z} where G is a subgroup of G1 and t: F=V Then the

ramification index e of t and v is finite and e. < n.

Proof: Let {alG, a,G, ..., aiG} be a finite set of distinct elements

2

of Gl/G° Then there exists a set of distinct elements bl’ eoos bi €

K - {0} such that t(blz = 8y, t(bz) = 855 eees t(bi) = a; since
al, cess ai € G1°

Now, suppose ¢, b1 + ... + ¢, bi = 0 where Cqs wevs. Cy € F and
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c c; are not all zero. Suppose c cos Ck(k's i) are the

12 *° 2 1°

non-zero elements of {cl, ceos ci}. The elements t(cl bl), vens

t(ck bk) are distinct, otherwise there exists,lgm such that £ # m,

1 g,@,m < k. and t(c'z ‘b£) = t(cm bm); hence t(fe)a[;;. t(%) t(be) =
t(cm) t(bm).= t(cm) a which implies v(gl) %( = v(cm) a . and so

al G = (l-G)(azG) =(v(c/€)G) (7G) = (v(c/:()?)(} = (v(cm) am)G =
(v(cngca(amG) = (loG)(amG).= amG5 a contradiction. This implies there
exists m such that t(gzye) X t(cm bm) for,(= 1, 2, coey m=1, mtl, ...,

k. Thus, t(c, b, + ... + ¢, b,

1 by K k) = t(cm bm) by Theorem 2.9. This

It

implies t(cm bm) z since ¢, b, + ...+ ¢ by = 0; thus < bm =0

1

|}

which. implies c 0 or bm = 0, a contradiction. Therefore, if

1 b1 + ...t ¢y bi = 0 then €L =€y = cen=c, = 0 which implies

b «sey b,} is a linearly independent set in the linear space K over
i p

1’

F. Therefore, i < n, and GI/G has only a finite number of elements and

The last theorem was taken from Schilling [167]. The next theorem

may be found in Bachman [2].

Theorem 4.28. ' If v:F'-» R is a non-archimedian rank one valuation on F,

and K is a finite extension field of F, then there exists a non-

archimedian rank one valuation t:K - R such that t = v,

| v

Proof: There exists a non-archimedian valuation w:K - S (J [0} such

that v(F) ¢ S and w- = v by Theorem 4,12, The ramification index e

F
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of w and v is finite by Theorem 4.27.

Let r:K - S U {0} be a function defined as r{a) = we(a) for a # 0

and r(0)

0. It is clear that r(a) = 0.if, and only if a = 0, and
r(ab) = w (ab) = (w(a) w(b)) ® = w'(a) wo(b) = r(a) r(b). Let a,b € K.
Then w(a + b). X max (w(a), W(bi) which implies we(a + b) x

(max (w(a),,w(b)))e = max (we(a),vwe(b)); hence r (a + b) X

max (r(a), r(bj),.and so r. is a non-archimedian valuation.

Let a € K and G = v{F). Then w(a)G is a coset of S/G. This
implies r(a)G =‘we(a)G‘= (w(a)G)e = 1.G since & is the order of the
group S/G; hence r(a) € G ¢ R.  Therefore, ¥(K) ¢ G R, and so r is a
non-archimedian rank one valuation by Definition 3.19.

Now, let t:K = R be defined as t(a) = (r(a))l/e. It can be shown
that t is a non-archimedian valuation in the same way r was shown to be

a non-archimedian valuation. Alsc, t is of rank one since t(K) cR.

Let a € F, then t(a) = (r(a))lfe = (we(a))l/e-= w(a) = v(a); thus

Theorem 4.29. - let v:F - R be a rank cone non-archimedian valuation

where F is complete with respect to v. Let K be a finite extension
field of F. Then there exists a unique non-archimedian rank one

valuation t:K — R such that t F = v,

- Proof: Theorem 4.28 implies the existence of t, and Theorem 4.23

implies uniqueness.



CHAPTER V
. SUMMARY

In the preceding chapters, a valuation of general rank has been
defined, and it has been shown that if v is a non-archimedian rank one
valuation then v is a mapping from a field to the non-negative reals
such that v(a) = 0 if, and only if a = 0, v{ab) = v(a) v(b) and
v(a + b) < max (v(a) v(b)) . This depended upon the fact that a rank one
ordered group is isomorphic to a subgroup of the multiplicative group
of positive reals. 1t was sggwn that a non=-archimedian valuation is of -
rank onéfifg and only if the associated valuation ring is a maximal
subring-of the domain of the valuation. The Fundamental Extension
Theorem of Places was prbven9 and it was shown that a rank one non-
archimedian valuation can be extended uniquely over a finite extension
field of its dowain provided the domain is complete.

The above facts are by no means an exhaustive list of the impor-
tant theorems of valuation theory. .Thgre are many other areas that can
be studied, and the topics mentioned above can be further investigated.
For example, there exists a formula for the unique extension of
Theorem 4,29 (cf. McCarthy [14], p. 89). Also, if K is a finite
extension field of degree n over F and v is a valuation on F with a

set of extensiomns {va} te K then E:ea fa < n where e, is the ramifica-
a
tion index of v, and v, and fa is the degree of the extension field

Va/Pa over V/P (V, and V are the valuation rings of v, and v

75
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respectively, and Pa and P are the non-units of Va and V), This

theorem was published by Cohen and Zariski in 1958 as the first article

in the first volume of the Illinois Journal of Mathematics (cf. Cohen

and Zariski [87]). This would imply that v has only a finite number of
extensions even though F is not complete with respect to v. Complete-~-
ness was part of the hypothesis of Theorem 4.29.

A valuation can be defined on a more general algebraic structure
than a field. For example, Schilling [16] defines a valuation on a
division ring. Manis [13] in a very recent publication developed a
theory of valuations which are defined on a commutative ring with
unity.

This paper was not meant to be a complete treatment of valuation
-theory, but it is hoped that the reader will gain some knowledge of the
fundamentals of this theory and will develop an interest in. this

generalization of absolute value.
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