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CHAPTER 1
INTRODUCTION

Nearly all scienoés are concerned with the analysis of
measurement data. The following chapters will present a new
tool for the‘analysis of time series measurements; in par-
ticular, a new method of spectral estimation is presented.
Many spectral estimation methods already exist and, in-
creasingly, new methods continue to be developed; therefore,
it is appropriate to reflect, briefly, upon the reasons for
such continued activity in an area already so well re-
searched.

A synergism exists between advances in computer tech-
nology and advances in practical methods of time series
analysis. As more effective (and complex) methods of time
series analysis are developed, the demands for smaller,
cheapef, and faster digital circuitry (capable of imple-
menting these methods within the size/cost/power constraints
of various applications) are increased. As smaller,
cheaper, faster and more reliable digital circuitry becomes
available, more complex (and effective) methods of time
series analysis become practical. Fundamentally, however,
it is the demand for improved solutions to engineering prob-
lems that motivates the desire for more effective methods of

time series analysis.



Motivation

Most information we have about the.world around us 1is
received indirectly through time series measurements. In
the case of vision, one determines the shape (and other
oharactefistics) of an object by reception (measurement) of
light waves scattered by the object. In the case of speech,
one determines the intended message of the speaker by re-
ception (measurement) of acoustic pressure waves. Pros-
pecting, manufacturing, astronomy, medicine, and economics
are but a few of the areas that can benefit from improved
methods of time series analysis.

Spectral estimation is one of the most important areas
of time series analysis. In many cases, knowledge of the
time series spectrum is adequate to answer all important
questions regarding the system producing the time series; in
the case of a stable time-invariant linear input-output
system, knowledge of the output process spectrum (together
with the statistics of the stationary input process) will
completely characterize the systemn. |

Noise corruption is among the fundamental problems of
time series analysis. All useful analysis techniques for
measurement data are at least mildlj tolerant of noise since
there always exists a small probability of measurement
error; some techniques are specifically designed to account
for knowledge of the noise statistics in the analysis of
noise-corrupted measurement data. Regardless of the analy-

sis technique, the fundamental performance limits are always



reduced by the presence of noise.1

Consequently, it 1is
always advisable to minimize noise corruption as much as is
practical; still, practical cohstraints imposed by some
gsituations do not permit the reduction of noise corruption
to insignificant'lévels so that sophisticated analysis tech-
niques are required to achieve the best possible per-
formance.

Spectral estimatioh is of fundamental importance to the
various applications of speech analysis and practical con-
straints imposed by many of these applications do not permit
the reduction of noise corruption to insignificant levels.
Examples of such applications include low data rate
digital voice communiéations systems and speech
recognition/understanding systems among others; often the
cost and/or inconvenience of shielding from environmental
noise makes significant acoustié noise corruption inevi-
table.

Autoregressive (AR) spectral models have been suc-
cessful for various systems involving speech analysis; more-
over, numerous speech synthesis systems based upon the AR
model have become commercially available in recent years.
Because the currently available practical methods for AR

parameter estimation yield poor results in common noise

1In some specialized circumstances the performance
limits are unchanged by the presence of noise. Even when
this is the case, the complexity of the analysis methods

required to achieve these limits is usually increased by the
noise presence.



environments but are effective in sufficiently quiet en-
vironments, it is reasonable to retain the AR model for the
speech process while attempting to develop improved methods
for estimating the AR parameters.

The fundamental 1limit <o fhe performance of any esti-
mation procédure depends upon the available information. In
theory, even the most obscure (but not unrelated) additional
information may be used to improve a parameter estimate; of
course, one should rely first upon informatipn that is both
easily available and expected to provide substantial im-
provement. A

Most recent efforts to overcome the poor performance of
classical AR estimators in noise, including the present one,
have attempted to employ -information regarding the noise
statistics in addition to the noise corrupted time series
observations. This information is often provided'simply by
deploying additional sensdrs intended to measure the noisé
directly; other speech analysis systems employ prior éeg—
ments of the primary observation signal that are thought to
be free from speech activity to predict the current relevant
noise statistics.

The present work does not address the problem of ob-
taining accurate noise statistics. Assuming appropriate
noise statistics ﬁo be available, the following chapters
develop a new and improved method of estimating the AR
signal parameters from noise corrupted time series obser-

vations.



As might be expected, the method entails increased
computational cost over 1less effective techniques; it is
expected that performance requirements of speech analysis
(and other) applications - as well as cost reductions that
are continually provided by advances in computer technology-
shall, in many cases, make the advantages of this method

appear relatively inexpensive.
Overview

Chapter II provides a general discussion of the various
issues and techniques of spectral estimation; particular
attention is given to the problems of AR spectral esti-
mation. In addition, this discussion introduqes basic
formulae and provides an historical perspective for the
subsequent chapters.

Chapter III presents the theoretical foundations of the
new (weighted information) estimation‘prooedure. After some
additional motivational discussion, the method is formulated
as an approximation to an ideal (but intractable) formu-
lation and a generalization of a commonly employed (noise
filtering) estimation procedure. In addition to the general
formulation, significant contributions of +this chapter
include the analogy 1leading to Equation (%.20) and the
properties developed in the fifth section.

Chapter IV discusses a variety of computational methods
relevant to AR estimation based upon the weighted infor-

mation formulation. The author considers +the area of



computational procedures as requiring the greatest attention
for further extension and refinement of this work. Only the
formulae for vector quantization, in particular Eguations
(4.58a) and (4.81), appear ready for detailed
cost/performance analyses.

Chapter V demonstrates clearly that the weighted infor-
mation formulation 1leads +to reduced estimation error as
compared to the more common noise filtering formulation.
Examples from both simulated and reél speech are provided.
The demonstration relies upon the reédef's visual assessment
of scatter plots; thus it is somewhat qualitative. A more
quantitative assessment (e.g. a comparison of empirical
variance to theoretical performance bounds) would be inter;
esting; however, one would still have difficulty evaluating
the significance 5f a reduction in empirical variance to the
performance of a particular system. Without a full imple-
mentation one wmust rely upon experience and judgement as
well as the available experimental evidence. |

Finally, Chapter VI summarizes the results of +this
effort and provides suggestions as to how this work may be

effectively extended and refined.



CHAPTER II
GENERAL DISCUSSION

Spectral estimation is a problem of statistical infer-
ence with a long history due.to its pervasive importance in
scientific applications [1]. Modern empirical spectral
analysis began to take shape as an organized discipline with
the introduction in 1893 of the periodogram by Schuster [2].

Given N observations ({xy; n=0,1,...,N-1} of a time
series at unit time intervals the periodogram, f(e), is

defined as

£(g) = Xy(el®) Xy(e™10)/m (2.1)
where
N-1
Xy(z) = 2{: Xg 2% 5 z = el (2.2)
n=0

Still in use today, the periodogram was practically the sole
computational tool of empirical spectral analysis until Yule
introduced in 1927 his method of autoregressive (AR) spec-
tral analysis [3].

An AR(P), or Pth order autoregressive, model spectrum,

g(e), is characterized by a model gain, ¢, and a monic PTR



order polynomial, zPAP(z), and is defined by them as
g(0) = o2/|ap(el®)]2 (2.3)

The polynomial may be characterized by a variety of parame-
ter sets. One parameter set, known as predictor coef-
ficients {a,; n=1,2,...,P}, defines the polynomial according

to

P
Ap(z) = D ap 20 oag = (2.4)
n=0

In contfast to Schuster's nonparametric method of spectral
analysis, Yule's parametric method first introduces the
above mathematical model, justified by physical arguments,
and then uses the available data to estimate the model pa-
rameters. These estimates are provided by the solution to

the Yule-Walker [4] equations

P
2{: ﬁn—m[am = 62 6n 3 n=0,1,...,P (2.5)
m=0
where
N-n-1
I‘n = Z Xm Xm+n/N ; n=O’1’ooo,P (2-6)
m=0

are the biased sample autocorrelation lag estimates.



Model Selection

A variety of other parametric spectral models have been
introduced and studied during the past half century; several
of them are worth noting. The moving-average (MA) model,
like the AR model, is characterized by a polynomial but
differs in that the polynomial appears in the numerator; the
Schuster periodogram may be viewed as an MA model spec-

trum. |

Similarly, ARMA models are described by both numer-
ator and denominator polynomials; .these spectra are of
particular importance in engineering applications-sinoe they
characterize all stable linear systems with a finite dimen-
sional state vector. The Blackman-Tukey [5] model spectrum
consists of a finite sum of cosine terms; it is obtained by
Fourier [6] transformation of the product of the autocorre-
lation sequence and a finite support window. The Pisarenko
[7] model consists of a constant plus a finite number of
delta functions. Various Combinations of these models are
also occasionally employed.

Most often a new model is introduced (together with a
procedure for estimating its parameters) simply because it

seems reasonable relative to the phenomenon being studied

and due to deficiencies in the currently popular

1Facts such as these tend to blur the distinction
between parametric and nonparametric methods. Since any
estimate can be described as a wember of some parametric
family once it has been derived, the distinction may be seen
as one of spirit rather than substance.
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models.2s 7 More recently the various results of this "un-
scientific" approach have been "jusfified" theoretically;
this justification usually takes the form of a principle
that should be employed és a guide when the requirement of
consistency with the available information leaves several
alternatives. The principle is usually embodied in the form
of a functional whose extreme value is to be found while the
information 1s provided in the form of constraint equations
(or inequalities) for this variational problem.

Much of the current literature is devoted to the "prin-
ciple of maximum entropy" which was enunciated by Jaynes
(8, 9]. If the process is zero-mean stationary and Gaus-
sian% it is completely characterized by its power spectral
density function, g(e), (or "spectrum" for short) and the

process entropy is expressed in terms of it by

Q = jln g(e) de/2w ‘ (2.7)

=T

2We shall adopt this pragmatic view later when modeling
speech in an acoustically noisy environment.

5Sometimes a model 1is wused in spite of its less
reasonable form simply Dbecause +the available parameter
estimation methods yield more successful overall results.
Thus AR models are employed (instead of the Pisarenko model)
to estimate the frequencies of pure sinusoids in white noise
from short data records.

4The Gaussian assumption may be avoided in the case of
correlation constraints. Working directly with probability
densities the Gaussian form may be derived as that which
maximizes the entropy [10, p. 944]. ‘
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As demonstrated by Burg [11], if the entropy is subscquently

.
maximized subject to correlation constraints”

™
ry = jg(e) elf® 4qo/27 ; n=0,1,...,P (2.8)
-1
one may derive the AR(P) form for g(e) as given by Equation
(2.3). The AR(P) form togeﬁher with the constraint Equa-
tions (2.8) are then sufficient to yield the Yule-Walker
Equations (2.5) from whiéh the model parameters may be de-
termined. If cepstral constraints® are employed in place of
correlation constraints the spectrum maximizing Equation
(2.7) has an MA form while both correlation and cepstral
constraints lead to an ARMA model. The Pisarenko model is
"justified" by dériving it as the minimum energy solution
under correlation constraints’, excepting the energy (n = 0)
constraint [12].
Another principle discussed in the recent literature is
the "principle of minimum cross-entropy" [13]. Introduced

by Kullback (under the name "directed divergence") as an

SThe values on the left-hand side are given in terms of
the data; for example, by Equation (2.6).

6These place constraints directly on the "cepstrum" (or
log power spectrum) and are expressed by Equations (2.8) if
g(e) is replaced by its logarithm while the left-hand side
values are expressed in terms of the data.

7It may also be related to the maximum entropy'prin—
ciple by noting that +the AR(P) model approaches the

Pisarenko model as o 1s decreased to the point where the
correlation matrix becomes singular [7, p. 355].
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information measure [14], it has a number of interesting
properties neatly collected in [15]. In terms of proba-

bility densities the cross-entropy is given by

S(q,p) = fq(i) In[q(x)/p(x)] dx (2.9)

and measures the expected information for discrimination®

per observation from q(X) [14]. A symmetric version of this
measure, 5(q,p) + S(p,q), was introduced earlier by Jeffreys
[16] who emphasized the invariance of this measure with
respect +to coordinate transformations; wunlike entropy,
cross—entropy shares this important property.

As an inference procedure, minimum cross-entropy analy-
sis requires a prior estimate of the density, p(X), as well
as new information in the form of constraints and derives a
new posterior estimate of the density, q(X), by minimizing
3(q,p) subject to the constraints [17]. In the case that
the prior density is uniform the procedure is equivalent to
maximum entropy; with correlation constraints the posterior
density is found to be Gaussian AR(P) with parameters satis=-

fying the Yule-Walker Equations (2.5).

8Fu11y, 3(q,p) is said to measure the expected informa-
tion for discrimination in favor of the (correct) hypothesis
that the density is g(X) and against the (competing) hypoth-
esis that the density is p(X) per observation from q(i{.
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Parameter Estimation

The foregoing discussion leaves the impression that the
correct path to formation of a spectral estimate is clear:
simply select a guiding principle (undoubtedly related to
the notion of entropy), gather the available information,
and solve the well defined mathematical problem that re-
sults. ©Seldom is the practical situation so simple.

Typically the numerical constraints are not given con-
veniently, say, in terms of exact knoWledge of the autocor-
relation function at equally spaced lags. More often, only
a few irregularly spaced noise corrupted samples of the time
series are available; from this data the numerical con-
straints must be estimated. Even when permitted the luxury
of bountiful regularly spaced and noise-free data,numerous
difficulties remain. Assuming a maximum entropy principle,
should estimates of the autocorrelation,‘oepstral, or some
other numerical constraints be formed? How should these
estimates be formed and how many9 of them should be formed?

The Yule AR(P) estimation procedure outlined at the
beginning kof this chapter provides one solution: having
selected the model as AR and its ordef as P, form the biased

autocorrelation lag estimates, Equation (2.6), and use these

9This is the problem of order determination. Various
estimators of the order parameter, based upon notions of
information theory, have been proposed and discussed by
Akaike [18] and Parzen [19, 20] among others. Often the
order parameter is selected simply upon the basis of experi-
ence with the phenomenon under study.



14
as if they were the true values. These autocorrelation lags
then uniquely determine the AR(P) model parameters (and
vice versa) via the Yule-Walker Equations (2.5). This de-
scription is explicit but fails to provide significant in-
sight as to why it might be good. The formulation may be
derived from a variety of viewpoints, each with its own
merit and yielding greater understanding of the procedure.

Linear Prediction (LP) theory leads to one derivation
of this formulation [21]. In this derivation the AR model
is viewed as a predictor and the mddel parameters are deter-

mined to minimize the prediction error

P
e, = Xp - in = xp + E an Xn—m (2.10)
‘ m=1 '
in a mean-square sense. Depending wupon the details of

treatment of the ends of fhe data record one may derive the
Yule-Walker procedure (also known as the "autocorrelation LP
method") or a variant known as the "covariance LP method".
Both of these methods have their proponents. The Linear
Prediction theory is very similar to Yule's original consid-
erations in which the e, are viewéd as random driving dis-
turbances to the PTH order inhomogeneous difference Equation
(2.10).

Other variants of the autocorrelation LP methecd are
based upon a recursive lattice structure for the prediction
filter [22]. 1In addition to the "forward" predictor Ap(z),

these variants consider a "backward" predictor, BP(Z); both
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predictors are characterized by the set of reflection coef-

ficients {ky; n=1,2,...,P} according to

I
—

Ag(z) = Ay q(2) + &y 27 1By 1(2) ;5 Ag(z) (2.11a)

I
-—

z=1B,_1(z) + ky Ay_1(z) ; By(2)

oo]
=
I\
~
1

(2.11b)

The z-transform of +the forward prediction error process
after n filtering stages is simply A,(z) X(2z); similarly the
z-transform o¢f +the backward prediction error process is
B,(z) X(z). Mean-square criteria are applied to the forward
and backward error processes to obtain a variety of
estimators for the reflection coefficients; one of
particular importance, due to Burg [23], determines k, to
minimize the sum of +the variances of +the forward and
backward error processes after n filtering stages. For
truely ergotic processes, all these AR estimation procedures
are asymptotically equivalent +to +the autocorrelation LP
method for 1large values of N; as parameter estimation
procedures these methods are most important for problems
involving mildly nonstationary data of limited quantity.

In addition to fhese &arious "minimum mean square pre-
diction error" formulations, another important derivation of
the Yule procedure is due to Itakura and Saito [24]. As-
suming an AR(P) model for the zero-mean stationary Gaussian

process, they employ the maximum likelihood method and show
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that the solution is obtained, asymptotically for large N,

by minimizing a "spectral matching criterion"

i

I(f,8) =f{[f(.9)/g(6)] - In[f(6)/g(0)] - 1} de/2w (2.12)
B i
where f(®) is the Schuster periodogram given by Equation
(2.1).
It is readily verified, by differentiating I(f,g) with
respect to the parameters of g(6), that the minimum is ob-

tained when the correlation matching property

r ™

]f(e) eln® gg/on = fg(e) eln® gg/on (2.13)
-7 . -

is satisfied for n=0,1,...P. By recognizing the left-hand

side as the lag product autocorrelation estimates

™
ry, = [ £(0) 110 gp/2n - (2.14)
Y-
the correlation matching property leads easily to the Yule-
Walker Equations (2.5); see [25, pp. 445-6]. Recently Kay
[26] has developed another variant by similarly applying the
maximum likelihood method to zero—mean_stationary Gaussian
AR(P) processes but eliminating the large N approximation;
again this variant treats the problem of limited.data.
The functional (2.12), although it is usually attrib-
uted to Itakura and Saito in the current speech literature,

was apparently first developed by Pinsker [27]. Assuming
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only that the +two processes are gzero-mean and Gaussian,

Pinsker showed1o

Linm - 5(p,q) /8 = I(p,q)/2 (2.15)
N—oo

This theorem provides an information theoretic interpreta-
tion of the Itakura—Séito spectral matching criterion.
Moreover, from a fuhctional inference point of view, one
might derive the Yule-Walker procedure by replacing q by an
assumed AR(P) spectral model, g(6), replacing p by a rough
spectral estimate provided by f(6), and then minimizing
I(f,g).

The last derivation should be contrasted with the mini-
mum cross-—-entropy developmeht discussed earlier. In that
formulation the AR(P) form was derived from given correla-
tion constraints while this formulation derives the cor-
reiation constraints from the given AR(P) form. Both
developments employ (different) prior estimates and minimize
a measure of information divergence between the prior and
posterior estimates; however, the information divergence is
not a symmetric measure and the unkﬂown (posterior) estimate

appears as the second argument in the current formulation

1OThe notation is somewhat abused here. On the 1left
p and q represent the joint probability densities of N con-
secutive random variables; on the right p and q are power
spectral density functions.
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while it appears as the first argument in the minimum cross-
entropy development. Nonetheless, the resultant procedures
are both the same as the Yule procedure. In the next chap-

ter a variant of this last derivation will be considered.

Noise Corruption

The problem of noise corruption to the observations
pervades estimation probleﬁs. ‘Generally all useful estima-
tors are ét least mildly tolerant of noise corruption while
their performance degrades if the corruption becomes par-
ticulariy severe. The most common problem considered is
that of an additive independent noise process; this problem
is of considerable importance in practical applications.

Upon initial reflection, the problem of estimating the
parameters of both the noise and signal processes from time
series observations alone may seem impossible. Indeed, the
problem of determining the individual variances of two inde-
pendent additive zero-mean stationary white Gaussian proces-
ses 1s completely confounded regardless of the quantity of
data available. However, 1if one process is non-Gaussian,
estimates of third and higher order statistiés can be useful
in estimating these lower order statistics. Parzen discus-
ses the use of the "bispectrum" to estimate the spectrum of
a non-Gaussian process in additive independent white Gaus-
sian noise [28].

When both processes are Gaussian the problem is not

always confounded. Since the sum of +two additive
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independent ARMA processes is also an ARMA process one might
hope to find estimators for the parameters of the two addi-
tive processes when the number of parameters for the com-
bined process is not exceeded by the total number of
parameters of the two processes. For example, Pagano [29]
discusses the problem of estimating the P + 2 parameters'of
additive AR(P) and white processes by first estimating the
2P + 1 parameters of a single equivalent ARMA(P,P) process
and thén using these 2P + 1 estimates to initialize a pro-
cedure for estimating the originally sought P + 2 parame-
ters; 1t seems critical however thap the order of the AR
process does not degenerate (i.e. is actually nonzero).

This latter problem is fairly close in spirit to the
problem considered in the following chapters. There the
signal and noise processes are additive, independent, and
zero-mean Gaussian; moreover, the signal process is AR(P).
The problem may seem more complex because the noise process
need not be white; however, a considerable simplification is
achieved because the noise process spectral density (hence,
all its statistics) is assumed to be known in addition to
the time series observations. In practice the noise statis-
tics are estimates provided by other observations but the
large amount of data available for these estimates makes

them quite reliable.
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Noise Filtering

Wiener [30] considered the intimately related problem
of extrapolating a time series from noise corrupted obserf
vations. When the zero-mean signal and noise processes are
additive and independent with known power spectral density
functions (g(®) and u(e®) respectively) then the minimum
variance linear extrapolating filter is the Wiener filter

whose frequency response characteristic is

H(e) = g(e)/[g(®) + u(e)] | (2.16)

This 1is sometimes referred to as the unrealizable Wiener
filter since it 1s noncausal; the corresponding impulse
response function extends both backward and forward in time
to infinity. It is easy to show that the variance of the
extrapolation can only be reduced to zero if the support of
the signal spectrum has a null (or =zero-measure) inter-
section with the support of the noise spectrum; in this:case
the frequency response, H(0), will be unity on the'support
of g(®) and zero elsewhere. Others, most notably Kalman
[31], have since extended and refined Wiener's pioneering
work.

A common procedure for dealing with additive noise is
to first form a realizable estimate of the Wiener filter (or
some other "optimal" filter), ﬁ(e), and apply it to the
noise corrupted observations. The resulting data are then

treated as noise-free observations of the signal process and
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standard estimation procedures are employed to obtain an
estimate of the signal spectrum. When the noise spectrum,
pn(6), is known this procedure involves some mildly circular
reasoning since Equation (2.16) indicates that knowledge of
H(®) is equivalent to knowledge of g(e).11 Nonetheless, this
process has been demonstrated to be advantageous in speech
analysis and other applications; a survey of these methods
may be found in [32].

Much recent effort [33-39] has concentrated upon imple-
mentation structures and estimation procedures for ﬁ(e);
typically these procedures employ side informgtion in ad-
dition to +the noise corrupted time series observations.
Often the methods are nonlinear and time-varying with both
theoretical and heuristic foundations. Regardless of the
technique, one may always subsequently define a short-time-
invariant 1linear equivalent frequency response character-
istic in terms of the short-time input and output signal

z-transforms, X(z) and Y(z), by

f(0) = T(ei®)/x(c10) O (2a7)

MHence we would have g = pH/(1-H). The conceptual
difficulties may be circumvented by considering the overall
noise cancelling filter/spectral estimation scheme as a
single estimation procedure; especially since the procedure
usually does not employ (2.16) to form the final estimate of
the signal spectrum.
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One convenient categorization distinguishes frequency
domain methods [33-36] from time domain methods [37-39].
Among the frequency domain ‘methods, the noise cancelling
filter frequency response characteristic usually appears
explicitly; the simpler (and less heuristic) methods present

A

H(®) as a function of the short-time signal to noise spec-

tral density ratio estimate!?

SNR(e;e) = {[£(0)]% = [n(0)1%}/[n(0)1” (2.18)

Two important classes of filter response characteristics are

the subtraction class given.by13
Hy(e;e,8) = {SNR(0;e)/[1 + SuR(e;0) ]} (2.19)
and the soft suppression class given by

Ho(05,8) = {[1 + Hy(05e,1/2)]1/2} {8(0;2,8)/[1 + @(0;2,8)]}
(2.20a)

12Equation (2.18) employs the monus function, defined
by x+y = (x-y + |x-y|)/2, to insure a nonnegative result.

15Various special frequency response characteristics
are worth separate mention here. The Wiener filter [30]
frequency response is Hy(6;1,1). The power subtraction
filter and the magnitude subtraction filter [35] have fre-
quency response characteristics Hy(e;1,1/2) and ﬁ1(e;1/2,1)
regpectively. Finally, the soft suppression class due to
McAulay and Malpass [36] has the frequency response
Hyo(e31,B).
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where

o(0;2,p) = exp[-B] [,[2 \[5[1 + SNR(e;@)] | (2.20b)

and I,[-] denotes the zeroth order modified Bessel function
of the first kind. These "suppression rules" are plotted
for selected values of « and p as a function of SNR(®) in

Figure 1.

Effect on Resolution

In speech applications, vocal tract resonances are not
extremelj sharp and are moderately well separated in fre-
quency; consequently one .is generally concerned with ac-
curate estimation of the spectral shape and high resolution
estimation is not a priority.14 In other applications (such
as sonar, radar, and medicine) accurate frequency estimation
and resolution of discrete ("line") and narrowband spectra
are 1issues of fundamental Iimportance. Periodogram and
Blackman-Tukey spectral estimates have a fundamental fre-
quency resolution limit determined by the length of the
observation interval; AR estimators have become quite.popu—

lar due, in part, to their greatly improved resolving power.

14Hence, even very low resolution methods that divide

the ( 4 kHz) voice bandwidth into fewer than two dozen
"channels" can be quite effective.
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Still, the resolution (as well as other performance indi-
cators) varies among the different AR estimators and, for
each, is influenced by a variety of factors.

Noise <corruption is one of +the important factors
limiting the resolving power of AR estimators. Several
authors have considered the problem of estimating the pa-
rameters of a fixed number of sinusoids from discrete-~-time
observations corrupted by zero-mean additive white Gaussian
noise of unknown variance. For this specialized problem the
Cramér-Rao performance bounds15 may be computed [40]. As is
well known, the complicated nonlinear maximum likelihood‘
estimation procedure will achieve these bounds; Tufts and
Kumaresan [41], using AR estimation procedures, have de-
veloped computationally simpler high resolution frequency
estimators that nearly achieve these bounds while Cadzow,
et. al. [42] claim still better performance using a singular
value decomposition (SVD) approach. In many practical cir-

cumstances additional information may be available so that

1510 general, the Cramér—Rao bounds indicate the mini-

mum variance a parameter estimate can achieve [43]. An
estimate achieving the minimum variance is an "efficient"
estimate. In [40] the bounds upon an unbiased frequency

estimate are considered (they depend wupon the assumed
distribution as well as the number of data points) and are
presented as a function of the signal to noise ratio. In
L44], the efficiency loss of any method based upon the use
of correlation estimates instead of the original data is
studied.
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these bounds may be exceeded;16 for example, Quirk and
Liu [45] describe a simple filtering and decimation scheme
(which employs knowledge of the frequency bands in which the
sinusoids are located) that improVes the resolution of (any)
subsequent AR estimator. In a similar vein, adaptive pre-
filters (that employ a reference process correlated with
either the signal or noise portion of the objective process,
but not both) have been devised to "enhance" narrowband

signals in noise [46].

Quantization and Computation

While spectral estimation, per se, 1is not concerned
with the problems‘of quantization and computation, the ulti-
mate utility of an estimation procedure can depend strongly
upon these (and other) issues. If the procedure explicitly
recognizes that only one of a finite predefined set of
conclusions can be reached, the situation is sometimes dis-
tinguished by referring to the "detection" (instead of the
"estimation") problem.

In many digital speech recognition and communication
systems the goal of spectral analysis is to solve a detec-
tion problem; in addition, the system designer must solve

the problem of selecting the best finite set of models to

16More precisely, the true bounds are reduced by the
availability of additional information. Consequently new
estimators that account for this additional information can
be devised that outperform (in terms of variance) any esti-
mator that does not account for the additional information.
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employ. Until recently, these systems would find the solu-
tion to an estimation problem and then employ a (somewhat ad
hoc) quantization procedure to select a model from among the
finite set. If the number of models in the finite set was
sufficiently large, this procedure could be quite effective;
however, -one measure of goodness for the finite set of
models is often how few models are in the set.

In the past decade technological advances have permit-
ted the use of increasingly complex computational procedures
while still meeting size/cost/power constraints imposed by
the application. Consequently more sophisticated and ef-
fective (but previously unmanagable) techniques for esti-
mation/detection and quantization of spectral models have
been studied in earnest. The numerous variants of a class
of techniques generally referred to as "vector quantization"
[47-53] have recently achieved considerable success by re-
ducing the finite number of models by about 9 orders of
magnitude with only slight degradation in other measures of
system performance.

Many of these vector quantization techniques are
founded upon minimization of +the asymptotic information
divergence I(f,g). Of considerable interest in the use of
this measure 1is the triangle equality property; if g(e)
minimizes I(f,g) over the set of all stable AR(P) models and
h(0) is any other model in a (possibly finite) subset then

I(f,h) = I(f,g) + I(g,h) (2.21)



28
As a consequence of this property one may solve the detec-
tion problem, which minimizes I(f,h), by first solving the
estimation problem, which mihimizes I(f,g), and then solving

the quantization problem which minimizes I(g,h).
Remarks

The general problem of spectral estimation has been
discussed; this discussion has emphasized issues and methods
assoclated with autoregressive estimation. Autoregressive
spectral models are important in numerous practical applica-
tions; consequently they have received considerable at-
tention in the literature. The AR form may be derived from
either the maximum entropy or the minimum cross-entropy
principle when correlation constraints are considered; al-
ternatively the AR form may be assumed and correlation con-
straints derived using a linear prediction formulation. The
cdrrélation constraints, together with the AR form, are
sufficient to derive the Yule-Walker equations which relate
the model parameters to the prescribed correlation values.

The asymptotic maximum 1likelihood formulation of
Itakura and Saito assumes an AR form and derives the corre-
lation constraints; in the course of this development a
"spectral matching criterion" is minimized. The earlier
derivation by Pinsker of this spectral matching criterion
from an asymptotic information divergence formulation makes

clear that, while the AR form is necessary to derive the
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Yule-Walker equations, the spectral matching criterion is
applicable independant of the spectral model form.

Noise corruption pervades estimation problems and use-
ful estimators are generally at least mildly tolerant of
additive noise. Often addifional data is available to help
characterize or distinguish the noise and signal processes;
many estimation problems are concerned with the development
of effective and computationally feasible methods for in-
corporating this additional information. A common pro-
cedure, employed when an accurate noise spectrum estimate is
known, first applies an estimated noise cancelling filter to
the corrupted data and then uses the output as "noise-free"
data from which to estimate the signal spectrum. Ultimately
the effect of noise corruption will be to decrease the best
performance possible with any spectral estimator.

In the following chapters a new spectral estimator is
developed. As is common, the fundamental observations are
assumed to be equally spaced samples of a zero-mean station-
ary Gaussian time series corrupted by additive independent
zero-mean stationary Gaussian noise of known power spectral
density, p(0). This problem occurs in many applications
involving speech analysis (as well as others) wherein the
noise spectrum is estimated from data taken during speech
inactivity.

The amount of data available to estimate the signal
spectrum is usually limited by the nonstationary character

of speech; the speech statistics are usually stationary only
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over very short time intervals varying in duration. One
study [54] has observed speech waveforms and subjectively
Judged that the duration for which a segment may be con-
sidered stationary vafies from about 4 ms. to over 360 ms.
with most of the distribution contained in the range of 12
ms. to 174 ms.; most speech analysis systems employ a fixed
analysis interval approximately 20 to 25 ms. in duration.
The use of a fixed analysis interval (with no particular
attempt at optimum time alignment of end points) is simply a
practical method of limiting the éomputational burden; while
suboptimal spectral estimates are thereby achieved for long
acoustic eventé, perhaps the most severe deleterious effect
is the slurring of very short events and transitions.

In order to employ at a later time a noise estimate
obtained during speech inactivity, the noise statistics are -
assumed to remain stationary over much longer time inter-
vals; since one of the primary noise sources is ambient
environmental noise acoustically coupled to the speech, the
validity of this assumption must be checked in each situ-
ation. In many practical circumstances +the noise 1is
stationary over 1long intervals; for example, in aircraft,
the noise statistics typically vary only with the flight
condition. On the other hand, if the corrupting noise is
another speech signal the assumption of long term noise

stationarity is certainly invalid.



CHAPTER III
THEORETICAL FORMULATION

In this chapter several related procedures for esti-
mating AR(P) process parameters from noise corrupted time
series observations are developed. In the first section the
problem 1is motivated as one arising 1in speech applica-
tions. In the next section an ideéi formulation is discus-
sed; unfortunately +the resulting nonlinear system of
equations 1is sufficiently complicated to make analytical

solution intractable.1

In the third section a first ap-
proximation to the ideal formulation is developed and shown
to be essentially equivalent to the noise filtering pro-
cedures discussed in Chapter IL. In the fourth section a

second, improved, approximate formulation employing a

weighted information measure is developed;2 some important

! Numerical solution may be feasible in some cases but
this is not investigated in the present work.

2DPhis weighted information formulation assumes a cen-
tral role in this work. In fact, this was the original
foundation and was developed heuristically following the
work of Chu and Messerschmitt [55, 56]. The theoretical
foundation (as an approximation to the "ideal" formulation)
was subsequently developed because the heuristic development
could only specify the weight function qualitatively and a
more quantitative characterization was required.

31
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properties of the weighted information measure are derived
in the fifth section. Finally, the last section reflects
upon these formulations, their relationship to other estima-
tion procedures, and problems of spectral estimation and

speech analysis to which they may be applied.

Application to Speech Analysis

Acoustic events in speech are often modeled as a white
zero-mean Géussian stationary excitation of a linear system.
The linear system response 1is usually identified with the
vocal cavity  response which depends upon the position of
speech articulators (tongue, lips, teeth, etc.); the exci-
tation 1is wusually assumed to be physically localized al-
though its position may vary with different speech events.

The linear system model may be criticized in various
ways; still it has had considerable success in practical
situations. The particular case of an AR (or all-pole
linear) system model can be justified on the basis of a
lossless acoustic tube of varying cross-sectional area. The
analogy of an acoustic tube with the oral or nasal cavity
alone 1s clear, however, some speech sounds reflect the
combined response characteristics of +the oral and nasal
cavities indicating that a full ARMA model would be more
appropriate. A more complete discussion of acoustic tube
modeling of the vocal tract may be found in [21].

Based upon the considerable success of AR models in

speech applications, as well as the physical analogies that
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may be drawn between AR models and the vocal tract via
acoustic tube modeling, the AR speech model is adopted here.
In most applications the deleterious effects of the pressure
transducer, analog amplifier, anti-aliasing prefilter, and
the digitizer have been carefully minimized and may be ig-
nored. Some applications permit the system designer to
ensure that the pressure transducer response reflect only
the speechvof the intended speaker; more often, conflicting
goals deny the designer this flexibility so that the micro-
phone transduces other ambient environmental acoustic events
that appear as unwanted "noise" in the observed signal.
Consequently, while the AR model is adopted for the speech
spectrum, it is inadequate as a model for the observed sig-
nal spectrum.

Some ambient noise 1s a direct environmental response
to the speech itself (e.g. echoes) or is short, transient,
and generally unpredictable by nature (e.g. a gunshot,
dropped book, engine backfire, cough, etc). Other ambient
noise 1is repetitive (e.g. machine-gun fire) or steady by
nature (e.g. drone of engines, rushing air, running water,
whine of a turbine). This last (steady) type of noise is
the primary focus of many speech analysis systems; typically
these systems exploit the steady' nature of the noise to
determine noise statistics during speech activity from sig-
nal observations made during speech inactivity. With multi-
ple transducers (or other clever system design techniques)

the statistics of a much broader class of noises may be
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known during speech activity. In the following it is only
assumed that, during each analysis interval, the noise in
the primary (objective) observation signal be zero-mean
Gaussian stationary additive and independent of the speech;
the noise is, therefore, completely characterized by a spec-
tral density function, (@), which is assumed to be known.
The goals of speech analysis are many and varied. In
communications the goal is often to achieve a minimal data
rate subject to a quality or communicability constraint. In
artificial intelligence the goal is usﬁally to "understand"
the speech with phonetic or written +transcription often
arising as an intermediate step. some other‘goals include
the identification of the speaker, the identification of the
language, translation of the voice of one speaker to that of
another in the wsame or a different language, and the
screening/diagnosis of disease (e.g. laryngeal cancer).
Spectral estimation is at the foundation of speech analysis
for all these goals and accurate AR model estimation in
noise is fundamental to the estimation of speech spectra in

practical environments.

Ideal Formulation

Let

(o) = g(0) + u(e) (3.1)
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be the observed process power spectral density model where
w(#) is the known additive noise process spectrum and g(6)
is the unknown AR(P) power spectral density model c¢haracter-
izing the signal process; see Equation (2.3). Let f(8) Dbe
the Schuster periodogram defined for the N time series ob-
servations by Equation (2.1). If the signal and noise pro-
cesses are independent zero-mean real stationary Gaussian
processes then the maximum 1likelihood method is asymp-
totically equivalent, for large N, to minimizing I(f,h) with
respect tdﬁthe AE(P) process parameters. Any parameter set
minimizing I(f,h) and corresponding tb a stable AR(P) pro-
cess shall be considered here to be an ideal solution to the
estimation problem.

This formulation of the estimation problem as a minimi-
zation problem may also be derived from an information theo-
retic viewpoint. Let f(e) be the true observed process
power spectral density so that I(f,h) represents the asymp-
totic information divergence between the true spectrum and
an arbitrary model spectrum. Clearly it is desirable +to
find the model h(6) minimizing I(f,h); if the minimum value
is zero then h(e) = f(6) almost everywhere. Since f£(0) is
unavailable, replace it by a rough estimate, f(o), and find
h(e) to minimize I(f,h).

Minimization of I(f,h) is subject to several inter-
esting interpretations; the maximum likelihood and minimum

information divergence interpretations have ©been given
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above, a third noise filtering interpretation is now pro-
vided. Notice that I(f,h) = I(Hf,g) where H(6) is the fre-
quency response of the Wiener filter given in Equations
(2.16). The quantity H(8)f(®) may be interpreted as a rough
estimate of the spectrum of a process obtained by passing
the observed process through a filter whose power3 spectral
response characteristic is H(®); minimization of I(f,h) =
I(Hf,g) may then be understood as a standard LP (or maximum
entropy, etc.) fit to the noise filtered process. of
course, H(®) is not known but is a function of the unknown
parameters of g(6); one must simply imagine finding a pa-
rameter set defining H(®) that also correspondé to the best
LP fit, g(®), to the output process.

The functional I(f,h) is minimized by computing its
derivative with respect to each parameter of g(6) and set-
ting the result to zero. For an arbitrary parameter,&,
this is

m™ .
f{[H(e) g(e) - #2(e) £(6)]/g%(0)} (ag(®)/88) do/2m = O
T (3.2)

3This is not to say that the observed process is passed
through a Wiener filter whose frequency response is H(@).
Recall that the Wiener filter iIs designed to minimize the
mean-square prediction error; the output process doing this
does not have the signal process spectrum, g(6), but instead
the spectrum H(e)g(e). Alternatively, H(®)f(®) may be
interpreted as a rough estimate of the cross-spectrunm
between the input and output processes of the Wiener filter.
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Using Equations (2.3) and (2.4), the partial derivatives of

g(@) are
25(8) /002 = g(6) /o2 (3.38)

and, for £=1,2,...,P

P
28(0) /08y = -g2(8) D 2ay cos[(1-m)e]/s? (3.3b)
: m=0
Defining®
Vp = jiH2(6> £(e) - H(e) g(e)} &1 do/2w (3.4)

~and substituting Equation (3.3) in Equation (3.2) yields

P P
> (ay/e?) Y (ay/e?) ¥y =0 (3.58)
m=0 £=0

and, for g2=1,2,...,P

P
:E: (ag/o2) Vg =0 (3.5b)

m=0

while a 1little further wmanipulation of Equations (3.5)

41t is worth noting that the quantities, V_, defined by
Equations (3.4) are the components of the gradient vector of
I(Hf,g) where differentiation is defined with respect to the
inverse correlation parametrization of g(8); see Eguation

(3.22). :
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yields, for 2=0,%,...,P

1]
Il av]
(@)

am Vf—m = 0 . (3'6)

The symmetry of the functions f(e), g(®), and H(®) may be
used to demonstrate that V_p = V, while it is easy to see

that Equations (3.6) are satisfied if
Vn = O ; n=O,1,o--’P (3'7)
To show that Equations (3.7) must be satisfied if a

stable filter is to be obtained, rewrite the system of

Equations (%.6) in matrix form as

(r 1 T N r . -]
1 23.1 e ap_ ap 0 O oo 0O O VO 0
a1 8.2 LI a,P (.) ? 1. oo 0 ? V‘l (.)

4 : : hd hd + : L4 . [ } : = :
aP__1 éP eee O 0 0 ap_p *°* 1 0 VP-—1 0

LL?P 0 ««e 0 O] [0 apqeeeag 1]] |Vp | |O

_J (3.8)

The coefficients of a stable P-15% orger predictor {ﬁn; n =
1,2,...,P=1} are given recursively in terms of a stable pth

order predictor according to

o T
a4 a4
[I +kp ]! : = |- (3.9)
ap—_1 ap_1
a 0
K A
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where I is the identity matrix, J is the reversal matrix

0 0
0 0
J = Do
0 1
1 0

kp = ap 1s a reflection coefficient? and

[I +xp d)°T =

(I - kp J1/(1 = kp2)

(3.10)

(3.11)

Applying the nonsingular transformation® [I + kp J171 +o

Equation (3.8) does not change the solution and yields

(— A
1 aq
3 A
A
QP_1 0
0 0
-

ap-1

o 1 [0]
V4 0
VP—1 0]
| Vp 0

5These are the same reflection coefficients used in the

forward-backward recursion; see Equation (2.11).

6Bounded

input,

bounded

output

(BIBO)

quires and is guaranteed by the condition

1,2, 000,P

which
transformation is

also

guarantees
nonsingular.

that

stability re-

[k, |
the

< 1 for n =

indicated
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The last equation shows Vp to be a linear combination of

VosV4yee.,Vp_1 and the reduced system

s : 3
i A ap_q] 0 0 0] (Vg ] [0
A Ao+ O 0 1 s 0 v 9
W I O O EA I
LéP_1 0 eee O J _O ZS,P_1 o . 1_ L_VP—1_ _O ]

\ J (3.1%)

is of the same form as FEquation (3.8). Consequently, sta-
bility requires that each Vn be a linear combination of the
previous VI’ £=0,1,...,n=-1, while the final reduced system
is simply V, = 0. Hence, if only stable minima of I(f,h)
are sought these minima must satisfy Equations (3.7) which

may be rewritten, for n=0,1,...,P, as

™ ™
fH(e) H(e) £(e) 8 gg/2m = /H(e) g(e) ¢in® gqg/on  (3.14)
-1 -

This is a highly complicated nonlinear system of equa-
tions that appears to be very difficult to solve analyti-
cally. Note’that, in the absence of noise, w(e) = 0 and
H(®) = 1 so that the system reduces to. Equations (2.13) as
expected; in this case it is well knbwn that the system
always possessés a unique stable solution.

In general no admissable solution exists; the following
example will serve to illustrate. Consider an AR(QO) process

corfupted by white noise of known variance p. The system of
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equations reduces to

s
ry = .[‘f(e) de/2m = el 4 p (%3.15)
-
If ro > b the system is solved by o2 = ro —k which yields
the minimum value I(f,h) = I(f,r,) = 0. If r, < B the

system does not possess a real solution; however, I(f,h) is

always minimized by selecting o2 = roy = Mo

Noise Filtering Formulation

Since Equations (3.14) appear so difficult to solve, it
is natural ¢to consider alternate formulations. From the
observation that I(f,h) = I(Hf,g) and the interpretation of
H(®) as the power spectral response of a noise filter a
simple and reasonable procedure is to replace H(e), which
depends upon unknowns, by an estimate ﬁ(e). Several classes
of estimates have been presented in Equations (2.19) and
(2.20).

Once the data has been processed by the filter with
power response ﬁ(e) a "noise-free" rough estimate is avail-

able
£(8) = H(e) £(e) (3.16)

Then, minimization of I(f,g) = I(ﬁf,g) is achieved by the
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solution to the equations

™ m
jﬁ(e) f(o) eind gg/on =f g(e) elnd gg/on
- "'“for n=0,1,...,P (5.17)

This, of course, leads easily to the Yule-Walker equations
with the difference that the estimated correlation values
are now given by the left-hand side of Equation (3.17); the
reader 1is urged +tn compare this equation with Equations

(3.14) and (2.13).

Weighted Information Formulation

The previous approximaté formulation encompasses a wide
variety of estimation procedures that have been studied in
recent years. If f(9), given by Equation (3.16), is a good
rough estimate of the noise-free power spectral density the
resultant model parameters can be expected to be accurate.
Consequently, considerable effort has been expended trying
to find the best form of H(6) and, ultimately, the best
means of computing the correlation values on the left hand
side of Equation (3.17).

Generally speaking, any estimate can be expected to be
more accurate if there is less corrupting noise; in particu-
lar, f(e) can be expected to be more accurate in those spec-
tral regions where the signal to noise density ratio is
large. Since the reliability of the rough estimate £(o)

varies with frequency, the criteria for fitting a model to
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~

£(08) should reflect this variation in reliability. The
frequencykweighted spectral distance measure introduced by
Chu and Messersohmitt [55, 56] provides precisely the re-
quired flexibility for such a criteria. The criteria is
derived from the asymptotic information divergence, I(f,g),
by noting that the integrand in Equation (2.17) is a non-
negative error measure; the frequency weighted variant is
obtained by introduoing a multiplicative nonnegative weight

function to the integrand of I(f,g) to yield

L(£,8) = j_W(e)i[f(e)/g(e)] ~ 1n[£(0)/g(8)] - 1} do/2n
-m (3.18)

If W(e) is constant, minimization of Iy(f,g) = Iy(Hf,g)
is equivalent to minimization of I(f,g) = I(ff,g). To re-
flect the greater reliability of £(8) in some spectral re-
gions, W(G) should be selected to be large where the signal
to noise density ratio is large. To remain consistent with
AR estimation procedures that work well in the absence of
noise, H(®) should approach unity and W(®) should approach a
constant as u(e) approaches zero. Specific procedures for
selecting f(e) have beeﬁ studied in the past [32-39] and
important examples are giveﬁ in Equations (2.19) and (2.20);
the above considerations provide a qualitative understanding
of an appropriate selection for W(e) but a more specific,

quantitative understanding is required.
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To minimize Iw(ﬁf,g) Equation (3.18) is differentiated
with respect to the parameters of g(®) and the results are
set to zero. The procedure is the same, mutatis mutandis,
as that followed for minimizing I(Hf,g) and yields the

system of equations

m ™

fw(e) f(e) (o) eind gg/on = /w(e) g(e) eind® gp/2n (3.19)
L -

Comparison of Equations (3.19) to Equations (3.14), which
result from the ideal formulation, immediately suggests the
required quantitétive criteria for selecting W(®). Specifi-
cally, W(®e) should be selected so that, at least approxi-

mately,
w(e) = H(e) (3.20)

and ﬁ(e) should estimate H(©). This selection is supported
by the previous heuristic considerations which indicated
that W(8) should be large where the signal to noise density

ratio is large.

Properties of the Weighted Information

In this section three important results concerning the
weighted information measure, Iy(f,g), are developed. These
results also apply to thé asymptotic information divergence,
I(f,g), as a special case where W(6) = 1. The first result

generalizes the triangle equality property for I(f,g), see
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Equation (2.21); +that +this property generalizes appro-
priately is of ‘interest +to +the use of the weighted
information measure in place of the (unweighted) asymptotic
information divergence for vector quantization.

The\’Kullback information number and the asymptotic
information divergence are well known to be convex with
respect to general classes.of probability and spectral den-
sities. With the appropriate definition for convex super-
position of AR(P) spectra, the second important result is
that the class of stable AR(P) spectra is convex and the
weighted information measure is strictly convex with respect
to this class.! As a consequence, Iw(ﬁf,g) can have at most
one local minimum with respect to this class; moreover, if
such a minimum exists it is élso a global minimum.

Finally, the third result shows that the second mixed
partial derivative of Iw(ﬁf,g) defines a positive definite
quadratic form. This shows that any stable solution +to
Equation (3.19) is a local minimum of Iy(ff,g); this could
also have Dbeen demonstrated using the strict convexity.

Combined with the previous result this shows that Equation

Tp set, &, 1is convex if it always contains the convex
superposition of two elements in the set. A convex super-
position is a map xz = CS(X1,X2;Y) defined for O < ¥ < 1 and
all x4,xp €& sucH that xs = xq if y=1 and xz = Xp
if v=0; if x4 = xp then x3 = xp = xq for all Y. 7A func-
tion f(x) defined on a convex set & is said to be convex if
Yf(Xj) + (1-Y) £(x5) Z_f(x;) and strictly convex if equality
implies x4 = Xp.
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(3.19) can have atbmost one stable solution (although un-—
stable solutions can, and often do, exist); moreover, if
such a solution exists, 1t 1s the global minimum among
stable AR(P) spectral models.

The question of existence is not addressed in this set
of results. The existence of a stable solution to Equations
(3.19) is assumed but remains an open question in general;
existence can be demonstrated in special cases, e.g. W(®) =
1, while experimental results are discussed in Chapter V.
Because the proofs are nonconstructive, they do not assist
with the question of existence nor do they provide algo-
rithms for computation of a solution; computational pro-
cedures are discussed in Chapter IV. It is worth noting
that if no solution to Equations (3.19) exists then, since
Iw(ﬁf,g) must possess a minimum in the closure of the set of
stable AR(P) spectra, the minimum occurs as a limit point of
the set.

To simplify the following discussion the set of stable
AR(P) spectra shall be denoted &p. Each element of the set
may be characterized by a P+1-tuple of real parameter values
satisfying appropriate‘(stability) criteria. Four charac-

terizations of &p are presented below:

Predictor Coefficients. Let Ap(z) be given by Equation

(2.4) with all roots of Ap(z) inside the unit circle. Then

(c,21,a0,...,ap) denotes an arbitrary element of Rp if

o> 0.
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Reflection Coefficients. Let Ap(z) be given by

Equation (2.11) with |ky| <1 for n=1,2,...,P. Then
(03k1,k2,...,kP) denotes an arbitrary element ofé%§ if
o> 0. '

Autocorrelation Coefficients. Let the real symmetric

Toeplitz quadratic form given by

. |
(%) = Zr,m__nl Xp Xn (3.21)

be positive definite. Then (ro,r1,...,rP) denotes an arbi-

trary element ofé%@.

Inverse Correlation Coefficients. Let

P

1/g(8) = :E:lﬂnleine (3.22)
=_p

be a positive function of 6 in [-mm). Then (ug,uq,...,up)

denofes an arbitrary element of H#p.

These represent only a few of the infinitely many ways
of characterizing #p. The first three parametrizations are
well known with the corresponding terminology well estab-
lished in the literature. Each set of predictor coeffi-
cients is related to a unique set of reflection coefficients
by a continuous bijection defined by the Levinson-Durbin
recursion. Bach set of autocorrelation coefficients defines
a unique' set of predictor coefficients according to the

Yule-Walker equations while the autocorrelation coefficients
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may be retrieved from the predictor coefficients using Equa-
tions (2.3) and (2.8). |
The last parametrization is less common than the other
three; these parameters have been denoted "inverse cor-
relation coefficients" since they are the autocorrelation
coefficients of a moving-average process whose spectral
density function is inverse to that of the defined AR(P)
spectrum. Each set of predictor coefficients uniquely de-

fines the inverse correlation coefficients according to

P

=

U, = Ay am+n/°2 ; ag =1 ;3 n=0,1,...,P (3.23)

=0

=1

That the predicfor coefficients may be retrieved in a unique
fashion from the inverse correlation coefficients is more
difficult to establish. ©Positivity of Equation (3.22) gen-
erally establishes only the possibility of several appro-
priate predictor coefficient sequences; closer inspection
reveals that only one of these sequences satisfies the sta-
bility requirements. The question is taken up in somewhat
greater detail by Blackman and Tukey [5, pp. 126-=7].

The first result follows easily using the inverse cor-
relation coefficient parametrization of the AR(P) spectral
density, Equation (3.22), together with Equations (3.19) and
(3.18). |
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Theorem %-1. (Triangle Equality). Let g1(8) be an

AR(P) spectral density satisfying Equation (3.19) and let

g-,(8) be any other AR(P) spectral density. Then
Iy(HE,80) = Iy(HE,g1) + Iy(gy,82) (3.24)

The inverse correlation coefficient parametrization of
AR(P) models in %#p is used here to define the convex super-
position of two models according to

W5 = CS (Wp,Up;Y) = Y& + (1-Y) Wy | (3.25)

for 0 < Y < 1. Since (3.22) remains a strictly positive
function for 53 when Ty and ﬁz define strictly positive
functions, this shows Rp to be a convex set and leads to the

second result.

Lemma 3-1. (Strict Convexity). Let gz(e) be a stable
AR(P) spectrum defined by the convex superposition of the

two stable AR(P) spectra gy(e) and g,(6). Then

Iy(f,83) < YIy(E,g) + (1=Y) Iy(£,gp) (3.26)

for 0 <Y < 1 with equality only if g, (8) = g5(8).

Proof. Using the inverse correlation coefficient pa-

rametrization and the definition of convex superposition for

AR(P) spectra it is easy to show that
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g5(0) = 1/{[Y/g1(8)] + [(1-Y¥)/gp(0) ]} (3.27)

Together with FEquations (3.18) this yields

Yig(f,g81) + (1-V) Iy(f,gp) - Iy(f,s3)

= u/QW(e) 1n{[g (0)]" [gz(G)Jl_Y/g3(6)} de/2m  (3.28)

—T

From the theorem on geometric and harmonic means the argu-
ment of the logarithm in Equation (3.28) is not less than
one and equals one only if g4(8) = g5(6). The lemma follows

easily.

Theorem 3-2. (Uniqueness). Iy(f,g) can have at most

one local minimum in_gﬁg if such a minimum exists it is also

a global minimum.

Proof. Let g1(6) and go(6) be two distinct local mini-
ma and form their convex superposition g3(e). Without loss

of generality assume IW(f,g1) > Iy(f,go). With Y# 1 the

previous lemma gives

IW(fygS) < YIW(f,g1> + (1-Y) -[W(f,g2> < IW(f’g1) (5-29)

But gz(6) is arbitrarily close® to g1(e) for Y arbitrarily

8ne Buclidean metric applied to the inverse corre-
lation coefficients shall suffice to define closeness here.
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close to one, so that +this 1inequality contradicts the
agssunption that g](e) is a local minimum. The second part
of the theorem follows by assuming g1(e) is a local minimum
while go(8) is any distinct element of #p such that
Iy(f,gp) < Iy(f,gy) and then repeating the above argument.
In order to establish the final theorem of this section
the second mixed partial derivative of Iw(ﬁf,g) is shown to

define a positive definite quadratic form. The variables

U, for n=0
2u,  for n#0

are defined for n:O,1,...,P:so that the first partial deriv-

atives are

8 Iy(fif,g)/ avy

i

W(e){H(e) £(e) - g(e)} cos(ne) do/2m (3.31)

<>

I

1

-

and the second mixed partial derivatives are

e
1l

nm 8Vn/ dvpy

fw(e)[g(e)]2 cos(ne) cos(mé) de/2w (3.32)

-

Clearly, the quadratic form
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w(e)[g(e)]? x, cos(ne)| de/2nm

(3.33)

0=
[o]
o]
el
B
j
=
B
il
e
g
] g
o

is positive definite. This proves the following

Theorem 3-3. (Absence of False Solutions). Any stable

AR(P) solution to Equations (3.19) is a local minimum.

Note that this does not eliminate the possibility of
unstable solutions to Equations (3.19); nor does it estab-
lish the exiSfence of a stable solution. Since the previous
theorem has established the uniqueness of a minimum this

theorem establishes the

Corrollary %-1. ©Equations (3.19) can have at most one

stable AR(P) solution. If such a solution exists it is the

unique absolute minimum of Iy(ff,g) over Rp.
Remarks

Three general formulations for estimating the parame-
ters of an AR(P) process in noise have been discussed. The
first "ideal" formulation has theoretical foundations
réstihg upon principles of information theory as well as the
maximum likelihood method. The second two formulations are
developed as approximations to the first.

The need fof approximate formulations arises due to the
difficulty posed by the nonlinear equations resulting from

the 1ideal formulation. - The first approximate formulation
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leads to the Yule-Walker equations but with modified corre-
lation values; algorithms for solving the Yule-Walker equa-
fions‘are computationally simple and well understood while
methods for evaluating the modified correlation values have
been carefully studied in recent years.

While this first, noise filtering, approach has led to
demonstrable performance improvements in noise environments
over the standard noise free formulation (and reduces to the
noise free formulatidn in noise free environments), still
better performance is desired.‘ Rather than attempt direct
solutidn of the ideal formulation +the second approximate
formulation is developed. Evidence that this weighted in-
formation formulation leads to improved performance over the
noise filtering formulation is presented in Chapter V;
neither approximate formulation is expected to perform as
well as the "ideal" formulation. |

The welighted information formulation is related to
other +techniques that have appeared in the 1literature.
Consider the situation wherein the desired signai spectrum
is essentially zero outside the region @¢[-n/D, 7/D) while
the noise spectrum ié essentially zero inside this region.
The foregoing theory indicates that an appropriate selection

for the weight function is

~ 1 GEE—TT/S), TT/@)
W(e) = fi(e) - (3.34)

0] otherwise
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gso that the weighted information is

) /3
Iy(HE,g) = [ {[f(e)/g(8)] - 1In[f(e)/g(e)] - 1} de/2n (3.35)

_“-/g

With the change of variable 6/ =8 this may be rewritten

1,(df,8) = (1/9)-/.{[f(§/®)/g(5/®)] -

In[f(8/9)/g(8/9)] - 1} d&/2n (3.36)

Clearly the indication here is to low pass filter and deci-
mate the observed signal before fittiﬁg the AR(P) model to
the resulting data. This‘is precisely the technique em-
ployed by Quirk and Liu [45] to improve the resolution of
AR(P) estimation in noise; they considered the use of AR(P)
estimators to determine +the frequencies of éinusoids in
noise and demonstrated that the filtering/decimation scheme
is clearly advantageous when the sinusoids are a priori
known to lie in some fixed frequency range.

The problem which motivates the present work concerns
signal and noise spectra that are both generally nonzero
throughout the entire frequenoy range, [-w,7); hence the
luxury of simple filtering/decimation schemes is not permit-
ted. On the other hand, thé difficulties associated with
very limited quantities of data are not the primary focus of

this work so that the asymptotic formulation is considered

adequate.
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Computational issues for the weighted information for-
mulation are discussed in Chapter IV. Equations (3.19) are
cast in algebraic form and their (exact) analytical solution
is discussed. Approximate (numerical) solution methods
might be developed based upon the resulting analytical
system of equations of directly wupon minimization of
Iw(ﬁf,g); the latter approach is adopted to develop a simple
iterative procedure based upon the notion of a contraction
mapping. In addition, computational procedures appropriate
to the use of the weighted information for vector quantiza-
tion are discussed. Since in many applications the "vector
quantization codebook" may . be designed "off-line" wusing
noise free speech data, questions associated with the code-
book design problem are not discussed; instead, computa-
tional procedures for the "on-line" minimization of Iw(ﬁf,g)

over the finite codebook are developed.



CHAPTER IV
COMPUTATIONAL FORMULATION

In +this chapter computational procedures for the
solution of Equations (3.19) are discussed. In the first
section the system is reduced to an algebraic form by as-
suming the weight function to take the form of an AR(M)
power spectral density; once cast as a nonlinear algebraic
system of equations, analytic procedures for solving the
system are discussed. In the second section, techniques for
evaluating the coefficients of the system are discuésed.

Analytic solution of +the nonlinear algebraic system
becomes increasingly difficult as the order of the weight
function, M, is increased. While numerical polynomial root
solving procedures could be systematically applied, the
third section develops instead an iterative procedure based
upon the idea of a contraction mapping. Together with
sampled frequency domain processing techniques, these iter-
ative prbcedures do not restrict the weight function to an
all-pole form. The fourth section develops computational
formulae required for the use.of the weighted information in
vector quantization; an extension of Jensen's theorem is
~developed to permit closed form evaluation of the ap-

propriate integrals when the weight function assumes an

56
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AR(M) form. Finally, the last section concludes this chap-

ter with some final remarks concerning these computational

methods.

Reduction to Algebraic Form

Let

denote the coefficients appearing on the left hand side of

Equations (3.19). Let

Py = U/QW(e) g(0) etn® qg /2 (4.2)

denote the quantities appearing on the right hand side of
Equations (%.19). Observe that the index of %n is permitted

to range beyond P to P+M. If W(e) is an AR(M) spectrum

given by

W(e) = o&/[By(el®) By(e~10)] | (4.3a)



58
where
M
By(z) = D by 2% by = , (4.3b)
m=0

and if g(e) is an AR(P) spectrum given by Equations (2.3)

and (2.4) then their product is an AR(P+M) spectrum given by

W(e) gle) = o 02/[Cp (el®) Cp,y(e™10)] (4.4a)
where
P+M
Com(z) = Ap(a) By(z) = D cpa™ cof = (4.4D)
m=0

The quantities defined by Equation (4.2) are related to
the polynomial coefficients in Equation (4.4b) by the Yule-

Walker equations

A ~ A 7 [~ 7 - 7
%) 21 f?+M 1 1
P Po SRR TV ¢ 0
oio? (4.5)
P+ Ppam—t s P0G | O ]

Equations (%.19) assign numerical values to some of the

entries in the coefficient matrix according to

Pn ’ n=0,1,...P (4'6)
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while the remaining entries are to be considered as un-
knownsf The elements of the column vector are defined as a
linear combination of the coefficients of the unknown poly-
nomial, Ap(z), by Equation (4.4b) which may be rewritten in

matrix form as

1 1 0 .o 0 1
C1 b1 1 s o 0 3,1

= |. . . . (4.7)
_CP+Md -O 0] oo bM LaP_

Bquations (4.5), (4.6), and (4.7) define a nonlinear
system of P+M+1 multivariate polynomials in the P+M+1 un-
knowns Ty 81y B0y eoey aP’-BPH’ 6P+2’ ooy 6P+M' Eé.ch
polynomial is a first order function of each unknown while
each term in these polynomials may involve up to two dis-
tinct unknowns. The properties of the weighted information
developed in Chapter III indicate that +this system of"
equations can have at most one stable solution; if a stable
solution exisfs it is the solution sought.

Assuming the AR(M) weight function to be stable the
product polynomial, Cp,y(z), also has all its roots inside
the unit circle and may be expressed recursively in terms of

a set of reflection coefficients according to

Calz) = Cyq(2) + &y 27 ¢4 (a=1); C (z) = 1 (4.8)
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for n =1,2,...,P+M. If the coefficient matrix in Equation
(4.5) were entirely known then the Levinson-Durbin re-

cursion1

could be applied to yield CP+M(Z). Since some of
the entries in theb coefficient matrix are unknown, the
Levinson-Durbin recursion cannot proceed beyond the determi-
nation of CP(z); the remaining reflection coefficients
{kpy1, kpyps-++, kp,yl are unspecified (beyond the stability
requirement that lk, | < 1) by Equations (4.5) and may be
considered as new unknowns replacing { 6P+‘I , 6P+2' cee, 6P+M} .
These remaining reflection coefficients should be se-
lected so that Cp,y(z) = O modulo By(z). Once these have
been determined the solution may be obtained by simple poly-

nomial division from

Ap(z) = Cpy(z)/By(z) (4.9)

together with

P+M
2 = (py/o8) H(1—kr21) (4.10)
sl
To determine the remaining reflection coefficients it

is generally simpler to consider the polynomials

1This well-known algorithm may be found in many fairly
recent publications; for example, see [21, p. 55ff]. An
exposition by the authors is contained in [57] and [58].
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EP+M(Z) = z—(P+M) CP+M(Z—1) (4.11)
EM(Z) = zM By (z71) | (4.12)
so that the condition to be satisfied is

Cpp(z) =0 nodulo By(z) | (4.13)

Modulo reduction is then accomplished more simply by re-

peated use of the substitution

M-1
Z—M = - ZbM—l Z-l (4-14)
£=0

in EP+M(Z) until all powers of 2~

larger than M-1 have been
eliminated. The reduction process 1is facilitated by using
the recursion (4.8) to express af+M(z) as

~ _PN

Cpan(z) = Cplz) By(z) + 27 Tp(a™") Fy(a) (4.15)

where

Eh(z) 7~ Eh_1(z) + Kp,p, z—(n=1) ﬁh_1(z—1); Eg(z)=1 (4.16a)

~

Fo(z)=2"1 ¥4 (2) + kp,, 271V B (271); F (2)=0 (4.16b)
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and
Cplz) = &7F Cp(a™) (4.17)

With these formulae the reduction is accomplished in part by

determining

ﬁM_1(z) = af(z) mod %M(z) (4.18a)
and

Dy_q(z) = Cp(z) mod ﬁM(z) =z~ % EP(Z—1) mod EM(Z) (4.18Db)

The condition to be satisfied is then
B’M—'](Z) EM(Z) + Dm_1 (Z) FM(Z) = 0 mod ﬁM(Z) (4-19)

Modulo reduction of the left-hand side of Equation
(4.19) 1leads to an M-15% order polynomial whose M coef-
ficients nmust be_equated to zero; this yields a system of M
nonlinear - polynomial equations in the M unknowns {kP+1’
kP+2’ ooy kP+M}' While these equations are nonlinear some
reflection will reveal that each polynomial equation is
linear (i.e., of first degree) in each of the unknowns; the
nonlinearity enters by way of terms involving products of

different unknowns.
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Because of this structure, systematic algebraic elimi-

nation® will yield an Mt orger polynomial in a single un-
known; each acceptable root of this polynomial will yield an
M-15% order polynomial in a second unknown. Continuing in

MR M-8t .. order

this fashion one successively solves
polyqomial equations possibly generating M factorial po-
tential solutions of which at most one satisfies the sta-
bility criteria. This method is feasible for small values
of M (e.g. M;S 4) but for larger values of M one must gener-
ally resort +to numerical polynomial root solving pro-

cedures.3

For the case M=2, let

Dy(z) = dy + dy =z (4.20a)
Dy(z) = 4y + dq 27! | (4.20D)
2Severa1 methods (such as‘those due to Euler, Bezout,

or Sylvester) are available; one should take care not to
introduce extraneous roots. For a general discussion see
[59, Vol. II, p. 7O0ff] or [60, p. 277ff].

5The recommendation that M not exceed four is made
based upon the fact that general polynomial equations of
degree five and higher cannot be solved algebraically [59,
Vol. II, p. 286]. Of course this does not eliminate the
possibility of transcendental solutions [59, Vol. I, p. 274 ]
or the possibility that some special structure, unrecognized
by the present author, may be discovered (or imposed) to aid
in the solution.
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and let

~

3
G5(2) = Dy(2) Bpla) + Dy(2) Fp(z) = ) gy " (4.21)
m=0

denote the 1left hand side of Equation (4.19). Using

Equations (4.16) these coefficients are

8y = dgy Kpyo _ (4.22a)
g1 = do kpyq kpyp + dg kpyq + dy kpyp | (4.22p)
8 = dg + Ty kpyq kpyp + 4y kpyg (4.22¢)
g5 = 4 | (4.224)

while modulo reduction yields

8o = P2 8 + by by g5 =0 (4.232)
81 - b{ g + (b§-by) g5 = 0 (4.23Db)
Expanding Equations (4.23%) yields

Po Kpip + Py = kP+1(% kpio + ay) (4.242,

A

o kpyp + Dy = kpiq (3o kpyp + dq) (4.24b)
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where -

Po =‘5o | (4.25a)
py = dy by by - dy by (4.25b)
Bo = d (4.25¢)
By = 4y (p§-bp) - Iy by (4.254)
9 = dy by  (4.25)
a = dy by (4.25¢)
A = 4 vy - d : (4.25g)
4 = 4y by - 4, (4.25h)

So that the solutions are given, upon elimination, by

1

kpyy = (Do Kpyp + P1)/(ag Kpyp + 4y) (4.26)

and

L
kP+2 = [ —S1 i JS12 - 4So 52 _l /282 (4'27)
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where -

Po =‘5o | (4.25a)
py = dy by by - dy by (4.25b)
Bo = d (4.25¢)
By = 4y (p§-bp) - Iy by (4.254)
9 = dy by  (4.25)
a = dy by (4.25¢)
A = 4 vy - d : (4.25g)
4 = 4y by - 4, (4.25h)

So that the solutions are given, upon elimination, by

1

kpyy = (Do Kpyp + P1)/(ag Kpyp + 4y) (4.26)

and

L
kP+2 = [ —S1 i JS12 - 4So 52 _l /282 (4'27)
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By simply cascading two of these filters a new filter is
created whose power spectral response is ﬁ(e) ﬁ(e). The
coefficients in Equation (4.1) may then be computed in the
usual manner (lag products of the windowed data) from the
butput of the cascaded filter structure. This scheme, de-
picted in Figure 2, assumes the relationship expressed by
Equation (%.20) although this relationship may generally be
avoided by replacing one of the filters in the cascade by a
filter with W(e) as its power spectral response. TFor each
data window, a "snapshot" of the impulse response of the FIR
filter could be. used to estimate the parameters.of w(e).
Since the response of the FIR filter may differ slightly
from the response of the weight function a somewhat more
consistent procedure would use the weight function pa-
rameters to implement an infinite impulse response (IIR)
filter as the second filter in the cascade.

Prequency domain noise filtering methods generally
provide greater flexibility in response function selection
than is available with time domain methods. These methods
involve an explicit transformation to the frequency domain,
often by wusing the discrete Fourier transform (DFT), and
determine the multiplicative response function, ﬁ(e), in
sampled form using a formula such as Equation (2.19) or
(2.20). The sampled form of ﬁ(e) may be used to estimate
the parameﬁers of W(e). If the noise filtered gsignal is not
required, frequency samples of the weight function may be

used multiplicatively before evaluating the coefficients;
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alternatively, one may avoid re-evaluating the weight func-
tion and simply apply ﬁ(e) twice. This latter alternative
is depicted in Figure 3.

A mixed time-frequency domain method is employed +to
obtain some of the results presented in Chapter V. In this
method a Hamming window 1is applied to the observed data
which iskthen zero-extended before computing the DFT. A
sampled noise spectrum estimate is used together with these
transform values to compute a hoise filter spectral re-
sponse, ﬁ(e),- according to Equations (2.19) or (2.20).4
This frequency sampled noise filter response 1is applied
multiplicatively to the transform values and.an inverse DFT
of these modified transform values (with their original
phase values) is computed. A random phasé characteristic is
computed and introduced to the frequency sampled noise
filter spectral response which is inverse +transformed to
obtain an impulse response characteristic. Standard (auto-
correlation method) LP analysis is applied to this impulse
response characteristic to determine the parameters of the

weight function. These parameters are used to implement a

4It is generally found to be useful to modify the fre-
quency response characteristic slightly by smoothing the
response obtained from (2.19) or (2.20) across frequency.
The smoother should eliminate features narrower than those
expected in +the final wsignal spectrum while retaining
broader features; a recursive median filter with a total
length of about 2.5% of the single-sided bandwidth is a
current favorite of this author. End conditions (near the
DC and Nyquist frequencies) can be properly handled using
the known periodic nature of the frequency response.
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(lattice structure) filter; beginning in the all-zero state
the noise filtered (inverse transformed) data values are
passed through this filterhwhich is then permitted to "ring"
awhile.? Lag'products computed from this output then pro-
vide the required coefficient estimates; the overall pro-
cedure is depicted-in Figure 4.

Finally, it is worth mentioning that each of these
methods has recommended computing the final coefficient
estimates as lagged products. The reason for this is that
various quantization effects may occur up to the point of
obtaining the modified data samples; however, if full pre-
cision is maintained in the final lag product computations,
the resulting coefficient estimates will define a positive
definite symmetric Tdeplitz quadratic form in all but a very
few highly exceptional cases (such as all modified data

samples being identically zero).

Iterative Techniques

Equations (3.19) may be solved when the weight function
has an AR(M) form by using the algebraic procedures de-
scribed in the first section of this chapter; this method is
appropriate if M < 4. Unfortunately, it is expected that
accurate estimation of speech spectra will reQuire weight

functions with greater variation than is possible with an

5That is to say that a zero input is applied to the
filter after all the noise filtered data values have been
applied as input.
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AR(4) form. The procedures of the first section might be
extended by applying numerical polynomial root solving pro-
cedures when M becomes large but at present such an approach
appears somewhat cumbersome.6' In this' section alternate
numerical formulations are discussed that do not make spe-
cific (parametric) assumptions as to the form of the weight
function; these techniques are iterative and based upon the
notion of a contraction mapping. A good general reference
for this section is Collatz [61].

Most (single-step) iterative procedures can be ex-

pressed in the form7

g(nt1) o 5(g(n)) | (4.29)

6For the reader wishing to pursue this approach it is
worth noting that one stumbling block is that the previous
uniqueness theorem has not eliminated the possibility of an
unstable (or imaginary) solution to Equations (4.5), (4.6),
and (4.8) for which some (but not all) of the reflection
coefficients are real and in the interval (-1, 1). If one
could devise a method which guarantees that only the
solution sought has real parameters isolated in (-1, 1), or
some other known interval, the development of a numerical
algorithm would be greatly facilitated. The reader is re-
ferred to [60, p. 99ff] or any similar discussion of nu-
merical methods for determining real roots of polynomials.

TParenthesized superscripts shall denote instances of
the parameter vector while subscripts shall denote com-
- ponents of the parameter vector.
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where V(n) is the n iterate of the parameter vector V.

The solution sought is a fixed point of the map o. If o

satisfies a Lipschitz condition®

le(v(1)) - 3(v@)y) <« 2s() - (@) (4.30)

for some O < £ < 1 then ¢ is said to be a contraction map.
Contraction maps are often used to prove existence theorems
because the sequence of iterates geﬁerated by (4.29) is
Cauchy.

The problem of designing an iterative procedure for
solving a system of equations can be viewed as the problem
of finding a contraction map whose fixed points coincide
with the solutions sought. One wusually begins with a map
having the appropriate fixed points and then tries to show
it satiéfies a Lipschitz condition; often one employs the
mean value theorem which states that if ¢, is a continuously

differentiable function of the parameter vector Vv then?

8The map ¢ is'éssumed to have its domain in a Banach
space with norm ||-|| and its range contained by the domain.

I1ywo notational conventions are introduced here. First
¢,/, denotes 08¢,/8v, and second the Einstein summation con-
vefition (with respect to repeated subscripts) is employed.
The summation range is 0,1,...,P so that the Einstein con-
vention implies summation with respect to the
subscript ¢ (only) over this range on the right hand side of
(4.31). These conventions are used in this section only.
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(,,n(v(ﬂ) - ¢n(v(2)) = /e (vol1) & [1-v] v(2)) {ij“) _ Vz(z)}

(4.31)

for some O < v < 1. If one can determine a constant £ < 1

majorizing the norm of the matrix with cbmponents Pn /4 then

¢ has been demonstrated to satisfy a Lipschitz condition.
Using Equations (3%.22), (3%.30), (3.31), (3.32) and

(4.1) the system of Eguations (3.19) may be expressed as

ﬁn =03; n = 0,1,...,P o (4.32)
where

T, = py = Ly Yy (4.33)
Defining

Loy = ./~w(e)[g(9)]3 cos(ne) cos(me) cos(£0) de/2m (4.34)
and

0 n#mn
om = (4.35)
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the following relations may be easily verified

Tam/e = "? Lhmg (4.36)
vn/ﬂ == Ion/ Vm ~ Lom Va/

= 2 Lypy Vp = Inp Oy

=2 Ly, = Ly, = Ly, . (4.37)

Consider the map ¢ with components10

0 = vy - AL05 g Ty | | (4.38)

where A is a nonzero scalar constant. Use of this map for
an 1iterative procedure 1is essentially a wodified Newton
method. PFirst observe that ¢ has a fixed point if and only
if +the second +term on the right hand side of (4.38)
vanishes. This term vanishes if and only if Eqguations
(4.32) are satisfied since, as shown in Chapter III, L (and

so also L~V and LST) is positive definite.

-1

L and L
shall 1&gﬁote L'1
and [Lg'],, its

1OIf L denotes the matrix with ,?ntries
the inverse of +this matrix then %"
evaluated at the initial iterate v(o
entries.

o
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Next, using (4.37), consider

-1 A
“nft = Vnft ~ ALLS Tnp Vi /i

Gnl - A[L51]nm Ly (4.39)
which, if evaluated at v = ¥.9), is
49) = (1-2) 8y, (4.40)

Clearly, (4.40) 1is majorized by £= |[1-A| so +that
A should be selected in the range 0 < A< 2 if the Lipschitz
condition is +to be satisfied. More generally, since the
last term in (4.3%9) is positive definite, A should be se-

lected in the range O < A < 2/A where

max

-1
Mnax 2 usffl U LL5" Jnn Ty 9y (4.41)

bounds the matrix norm. With this selection

inf =

sup -1
fajj=1 % /e % Maj=1 Batto Jon fae 9

> I=AApay > ~1 (4.42)

and the matrix norm of ?n/y 1s bounded by.one-

Apparently the choice A= 1/A would lead to the most

max

rapid convergence while smaller values would lead to slower
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convergence and guarantee that ?n /e is positive definite.
Unfortunately, the right hand side of inequality (4.41) is a
function of the parameter vector ¥ and cannot be bounded by

a constant, A for all v in S&p; consequently the Lip-

max’
schitz condition cannot be satisfied everywhere in Hp.
If a solution, gx(6), exists in dp it is possible to

find a constant G, ,, sufficiently large such that

X

for all O¢[-m,m). For such a constant the solution will be

contained in that portion of #p fdr which

8(0) < Gpay (4.44)

for all 6¢[-m,m). Then from

"2F£l qn[L51]nm Loy 4y
< it e e
< Wy G2,/ . (4.45)
where
W(e) < Wpay | (4.46)
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for all O¢-m,m) and

inf (0 ’

it is clear that any choice

A Z_wméx Grznax/6 (4.48)

max
will suffice to satisfy the Lipschitz condition for that
portion of Hp.

To recapitulate, the map @, defined by (4.38), has
fixed points coinciding with the solutions to (4.32). More-
over, 1if there exists a solution in #p and the domain of
? is suitably restricted to a subset of & containing this
solution then there exists A> O sufficiently small such
that ¢ satisfies a Lipschitz condition on this subset and
(4.39) is positive definite. This implies that application
of the map ¢ to any element of the subset will generate a
new parameter vector closer (in norm) to the solution.
Hopefully, repeated application of ¢ will generate a se-
quence of parameter vectors approaching the solution; this
will be the case if each new parameter vector is also in the
restricted domain of @.

Providing a guarantee that each new parameter vector
will be within the restricted domain of @ is not a simple
task. Without such a guarantee it is possible to devise a

computational test to check for this condition; then, if the
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test is violated, some method must be devised to restart the
iterations. In practice the situation ié not expected to be
quite so pathological; if A is selected to be conservatively
small (smailer if the solution is expected to be a sharply
peaked spectrum) and a reasonably good initial estimate is
provided, one does not expect to encounter convergence dif-
ficulties. This more optimistic approach shall be taken in
the following.

To implement the iterative procedure assume W(0) is

available in sampled form. The components of the nth jter-
ate parameter vector may be used to evaluate

P
g,(0) = 1/{ ZEIan) cos(£06)} | (4.49)

in sampled form. If the sample mesh is equally spaced at
ek = Trk/N ; k = —N,..-,O,1,---,N—1 (4-50)
then the components ﬁén) may be computed from

N-1
é = By = 2{: W(6y,) g,(8,) cos(m8y)/2N (4.51)
k=-N

and the components of the next iterate are provided by

vior) oop{n) sty Wi (4.52)
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A crude test that the nth

iterate is indp is provided in
the course of these computations by verifying that the de-
nominator of (4.49) is positive on the sample mesh.

The procedure can be initialized by the solution to the
Yule-Walker equations where the elements of the coefficient
matrix are given by gy. Equations (3.2%) and (3.30) may

then be used to evaluate y}o) while the elements [L51]nm may

be obtained by inverting the real symmetric matrix with

entries
N-1

(Lolom = Z W(8) [8,(8)]% cos(ney) cos(me,)/2N  (4.53)
k=N

The coefficients py may be evaluated from

N-1
P = :E: W(ey) H(ey) £(8,) cos(mey)/2N (4.54)
k=-N
Alternatively, the computational methods described in +the
previous . section may be employed to evaluate the p, as
lagged products of modified data values.

A simple test for iteration completion is to simply

check that
P

b= ), L2 | (4.55)
m=0

is less than some small preselected value. Finally, to

obtain filter coefficients as are required by many
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applications, it 1s perhaps simplest +to first compute
correlation values from

N-1
ry = Z g,(0,) cos(mey) (4.56)

k=-N
and then solve the Yule—Wélker equations.

If at some step prior to iteration‘completion'an iter-

ate falls outsideé%@, one may attempt to reinitialize the

procedure using one of the last few iterates inside Hp.

Formulae for Vector Quantization

In this section formulae relevant to the problém of
minimizing Iw(ﬁf,g) over a specified finite collection of
AR(P) model spectra are developed. Consider first that
according to Equation (3.24) this problem is equivalent to
minimizing Iy(gy,g) where g4(6) is an AR(P) model spectrum
satisfying Equation (3.19). Next, observe that minimizing

Iy(g1,8) is equivalent to mihimizing

Jy(gy,8) = jEW(e) g1(0)/g(e) + W(e) 1n g(e)] de/2m (4.57)

L

Since g(0) is an AR(P) model given by Equation (3.22) the

first term in Equation (4.57) may be rewritten as

j w(e) gy(e)/g(e) do/2m = Z Ui fn (4.58a)

- n=-p
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where the fact that gy(6) satisfies Equation (3.19) has been
used together with Egquation (4.1). Similarly, the second

term in Equation (4.57) may be rewritten as

jw(e) 1n g(e) de/2m = 1n(c?) fw(e) de/2n

—Tr -

™ : .
- fw(e) 1n[Ap(e®) Ap(e™1®)] qe/2nm (4.58Db)
w

In general Jy(gy,g) will be minimized over the finite
collection of AR(P) spectra by evaluating this quantity for
each model spéctrum in the collection. For any given model
gspectrum the first term may be easily evaluated wusing
(4.58a); the coefficients Py Ay be determined from the data
using one of the methods outlined in the second section of
this chapter. The second term presents somewhat greater
difficulty; when W(e) = 1 the last term in (4.58b) may be
shown to vanish as a consequence of Jensen's theorem but, in
general, this term will not vanish.

When W(©) has an AR(M) form an extension of Jensen's
theorem, which shall be developed presently, permits the
evaluation of this term from a simple formula. In order to

establish the general theorem it shall be necessary to first

establish the following lemma.

P
apz™h) = T (1 - 1y =) (4.59)
m=1
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have no roots inside the unit circle, I'. If 7. and T, are

also within the unit circle then

2y, Sbr (1n Ap(e=1)}/{(z=1) (1= 7,2)} dz/eni

{1n Ap(rEN)}/(1=T 7, ) (4.60)

Proof. The method of proof is essentially the same as
that used for Jensen's theorem by Hille [62, pp. 256-T7].
Assume without loss of generality that a narrow étrip from
T, to v = Tk/|1k| is free of the hm and consider the inte-

gral

Bk = 96 {1n[ (z-7.)/(1- Q z)1} alln Ap(z™')]/2mi  (4.61)
€

around the contour, € , depicted in Figure 5. The loga-
rithm, determined so that In(-1) = wi, is analytic within

€ and AP(Z’1) has neither poles nor gzeros within € so
Elk = 0. As the radius of the circular portion of +the
contour, € , surrounding the singularity T, tends to zero it
offers no contribution to this integral. As the distance
between the two straight sections of the contour tends to

zero they provide the contribution

W
I

Z=T, v
f [ap(z=1) 171 alap(z)]
Z=Vk

1n Ap(7g') - 1n Ap(vg!) (4.62)



Figure 5.

v

The Contour € in the Complex Z-Plane
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For the remaining portion of the contour, integration by

parts yields

(1 =TTy ) Ty = Ry = Eppe + Ap/2ni (4.63)

where the integrated part is

Z

Arz {ln AP(‘Z—1) ln[(Z-Tk)/(1—T£Z)]}

1n Ap(vg') {271 + In[ye-1) /(1= 7, %) ]

-1n Ap(vg!) {1n[(ve=m) /(1= 7, 1) ]

2wi 1n Ap(vg') (4.64)

Substitution of (4.62) and (4.64) along with &, = O into
Equation (4.6%) completes the proof.
A simple variable substitution may be used to obtain

the related formula

i
[
=
=
g
—
<
e
S~
]
-
=
iy

(4.65)

which together with (4.60) establishes the
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Corollary 4-1.

To + Ty 96 {In Ap(z) AP(Z_1)}/i(z—Tk)(1— T,z)} dz/2wi
r

{1n Ap(7g") Ap(eh)}/(1=m 7, ) (4.66)

Finally, sufficient background has now been presented

to establish the

Theorem 4-1. Let W(®) have an AR(M) form given by
W(e) = |a(el®)]|? (4.67)
where ©(z) has the partial fraction expansion

M
az) = D w/(1- 7 271) = oy/By(z) (4.68)
£=1

with |T|< 1. Then with g(6) given by equation (2.3) the

second term in (4.57) is

j W(e) 1n g(e) de/2wm = 1n o2 fﬂw(e) de/2nm - T (4.69)

- -

where

M
T = 2 ZE: W, Q(TE1) 1n AP(TE1) (4.70)
k=1
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Proof. Using (2.3), (4.67), and (4.68)

P o= f lQ(eie)IZ lnIAP(eie) 2 do/2m
m& o
= Z @ W, ¢{ln Ap(z) ‘AP(Z“1)}/{(z—rk)'(1—'r£z)} dz/2nwi
k,2=1 T

(4.71)

Together with the above corollary this yields

S »
W . &
¥ .

M i

T = fo w, /(1=mc71 )} 1n Ap(rE!) Ap(r ) (4.72)
K,0=1

and (upon splitting the logarithm and collecting terus)

FEquation (4.70).’

-

With W(6) = 1 this theorem yields

s
[ 1n g(0) do/2m = 1n o2 (4.73)

—
which is a special éase of Jensen's theoren [62, Theorem
9.2.5]. The first term in Equation (4.69) is easy to com—
pute while the second term, T, given by Equation (4.70) may
offer the reader some difficulty. First observe that (4.70)
requires knowledge of the parameters of the partial fraction

expansion (4.68). These are fairly easy to determine once

i
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the roots 7, of BM(Z) are. known by recognizing that

equals11

(z-7) 2% 2(z) = oy(z-m)/{zF By(z)} (4.74)

evaluated at z = 7). Hence, the basic difficulty is that of
determing the roots, Ty.

Since extracting the roots of By(z) can be a difficult
problem for large values of M it is advantageous if By(z) is
already known as a product of low order factors. To ac=-
complish this, recall that By(z) is determined so that W(6)
approximates ﬁ(e). If W(e) is a product of known AR(2)

models
w(e) = W1(9) Wo(0) ... WM/2(9> (4.75)

then BM(z) is easily known as a product of second order
factors. In order to determine W(®) in this manner one may
first determine W,(6) to approximate ﬁ(e), then W,(6) 1o
approximate ﬁ(e)/w1(e), then w3(e) to approximate
ﬁ(e)/[w1(e) Wy(6)] and so on. To obtain the best overall
approximation it is probably advantageous to develop some

simple ad hoc method to force the approximation at each

"17his  assumes the roots, T, are distinct. The

formulae become mildly more complicated when this is not the
case.
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stage to fit no more than one strong resonance in the

function being approximated.
Remarks

This chapter has explored computational procedures
related to the weighted information estimation formulation
developed in Chapter IIL; it is worth noting that the author
does not consider any of these methods entirely satisfactory
for all applications.

The first section employed an assumed AR(M) form for
the weight function which enabled the problem to be cast in
the form of a nonlinear system of polynomial equations.
Solution of the system was found to be a relatively simple
task for small values of M but one that becomes rapidly more
complex as M is increased beyond four. As a general ap-
proach, the assumption of a parametric form for the weight
function has considerable promise for the development of
efficient computational methods; the Dbasic difficulty is
that of finding a clever parametrization which provides
sufficient flexibility in the form of the weight function
(for the given application) while leading to a simple and
efficient computational algorithm.

The second section discussed the computation of various
coefficients that arise within the computational formulae.
Choice of a specific procedure will ultimately be influenced

by the demands of the specific application; interdependant
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factors to be considered include the quantity of data avail-
able, rounding/truncation effects, fixed/floating point rep-
resentation format,l algorithmk structure, memory require-
ments, and computational speed. The coefficient evaluation
procedures discussed are variants of methods proposed (and
sometimes implemented) for real time speeoh analysis appli-
cations.

The  third section discussed single-step 1iterative
methods within the general framework provided by the notion
of a contraction mapping. Multi-step methods were not dis-
cussed; 1n 'general, convefgence characteristics are more
difficult to prove for multi-step methods in spite of the

- fact that they tend to converge faster in practice.12

These
iterative methods offer significantly more flexibility in
the form of the weight function'? at the expense of =
greater computational cost. The notioh of a contraction .

map, sometimes employed for nonconstructive existence

proofs, provides a useful general framework within which a

1ZFaster convergence, in terms of a reduced number of
iterations, should not be confused with reduced computa-
tional cost. Each iteration of a multi-step method gener-
ally is more expensive computationally than a comparable
single-step method so that a detailed analysis is usually
required to compare costs.

15That is, compared to the parametric approach to
weight function selection discussed in the first section.
In this sense one might describe these methods with a
seemingly contradictory phrase such as '"nonparametric
autoregressive estimation". :
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variety of iterative methods may be discussed; the specific
method presented is a modified Newtonian iteration chosen
as a tradeoff between simplicity and effectiveness. A pos-
8ibly more effective iterative procedure would be a steepest
descent method; generally such a procedure attempts to mini-
mize a scalar function U = U(V) by using a map with com-

ponents
¢y = Vo - AU/ov, (4.76)

where the scalar function A = A(V¥) is chosen to minimize
U(®) at each iteration.

The fourth section considers the problem of minimizing
Iw(ﬁf,g) over a given finite collection of AR(P) models.
The procedure involves the computation of a cost function
for each model in the collection. The cost function in-
volves two terms; the first term is evaluated quite simply
(regardless of the form of the weight function) using
formula (4.58a) which 1is 1identical to one arising in
"standard" (unweighted) vector quantization. The second
term is usually quite simple in "standard" vector quanti-
zation, see Equation (4.73), but becomes far more complex
when the weighted information formulation is employed.

An extension of Jensen's theorem provides a formula
which may be employed to evaluate this term when W(©) has an

AR(M) form; however, the reader is admonished to bear in
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mind that it 1is probably far simpler +to discretize this

integral and evaluate it numerically as a sum of products

from
m N-1

fw(e) In g(e8) de/2m = Z W(ey) % (4.77)
- k=-N

where

9. = [1n g(e,)]/(2N) (4.78)

This has the additional advantage of not imposing an AR(M)
form upon the weight function. More generally, W(6) might
be expressed as a sum of perhaps only a dozen nonnegative’

"shape functions" by

W(e) = D b M(0) (4.79)
k

so that, if the quantities

F, = f“”k(e) 1n g(e) de/2w (4.80)

are precomputed for each AR model in the finite collection,

the second term may be easily evaluated from

fw(e) 1n g(®) d6/2m = Z by Fi (4.81)



CHAPTER V
RESULTS

In +this chapter the weighted information estimation
formulation is demonstrated to provide improved performance
relative to the noise filtering formulatioﬁ. It is worth
noting that, although existence has not been proven in pre-
vious chapters, several thousand data frames have been ana-
lyzed using the weighted information formulation and not one

counterexample has been encountered.

Gaussian Signals

In order to study the performance of the weighted in-
formation formulation pseudorandom sequences were gener-
ated. A zero-mean white Gaussian process was simulated
using a congruential multiplicative random number generator;
the resulting sequence of independent‘uniformly distributed
samples was transformed to Gaussian form wusing the Box-
Miller transformation followed by Central-Limit aver-

1

aging. Zero-mean AR(P) Gaussian processes were simulated

11n theory, the Box-Miller transformation is adequate.
However, if the input deviates from a uniform distribution
the output will, correspondingly, deviate from a Gaussian
distribution; Central-Limit averaging will tend to reduce
any such deviations from a Gaussian form.

U
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by applying the simulated white Gaussian process to an all-
pole  (lattice structure) digital filter; the first few
thousand output values from the filter were consistently
ignored in order to avoid thé transient response of the
filter.

By adding two independent zero-mean Gaussian AR pro-
cesses at a specified signal to noise ratio appropriate test
data was produced. For many of the examples the "signal"
process had an AR(2) spectrum defined by the reflection

coefficient values
ky = -.8 and kp = -.9 (5.1)

This signal process spectrum, evaluated from these parameter
values, 1is displayed in Figure 6a. While some examples
employ a white Gaussian corrupting noise process, others
employ an AR(2) process defined by the reflection coef-

ficient values
ky = +.8 and kp = -.9 (5.2)

This "colored" noigse process spectrum is displayed in Figure
6b.

As a basis for comparison, the standard autocorrelation
analysis method was applied to 100 different 400 sample
Hamming windowed frames of data from the uncorrupted signal

process. BEach resulting estimate is characterized by a pair
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LOG POWER SPECTRUM (dB vs FRACTIONAL FREGUENCY)
¥k ¥k AR(2) SIGNAL SPECTRUM; (K1,K2} = {-.8,-.33 dewx w¥¥

Figure 6a. True Spectrum; Test Signal Process

A _ .3 .5 7 .9
LOG POWER SPECTRUM (dB vs FRACTIONAL FREQUENCY)
#H% #%%  AR(2) NOISE SPECTRUM; {K1,K2} = {+.8,-.93  #x% wx%

Figure 6b. True Spectrum; Test Noise Process

Figure 6. Test Signal Spectra
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of reflection coefficients which define a single dot in
Figure 7. For this "scatter plot" (and all subsequent
scatter plots) the ordinate and the abcissa correspond to
the first and second reflection coefficients, respectively;
for oonvenience, cross-hairs indicate the location of the
true parameter values.

Figures 8 and 9 each preéent various estimates of a
single 200 sample Hamming windowed frame of data. In both
cases the frame of data consists of the signal and colored
noise processes summed at é 10 dB signal to noise ratio.
The periodogram estimates in Figures 8a and 9a clearly dis-
play the signal resonance (near the fractional frequency
value of .8) and the noise resonance (near the fractional
frequency value of .2).

Figures 8b and 9b display power spectrum estimates
obtained using the noise filtering formulation. The esti-
mate presented in Figure 8b is a result of using the noise
filter response displayed in Figure 8c which was determined
by using the power subtréction rule;2 similarly, Figure 9b
results from the use of the noise filter response displayed
in Figure 9c which wag determined by using the magnitude

subtraction rule.

2As indicated in the caption, the noise filter response
was smoothed across frequencies before being applied. Al-
though many smoothing algorithms are possible, only a re-
cursive median smoother %with a length about 2.5% of the
displayed bandwidth) was ever employed to obtain results
presented in this chapter.
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Figures 84 and 9d display power spectrum estimates
obtained using the weighted information formulation. The
algebraic soiution method, which requires an AR(M) form for
the weight function, was used in both cases; coefficient
evaluation was performed using the mixed time-frequency
domain ﬁethod presented in Figure4. The same noise filter
response functions were employed and the weight functions,
displayed in Figures 8e and 9e, were determined as an AR(2)
fit to their respective noise filter response functions.

By comparing Figures 8 and 9 to the true signal spec-—-
trum shown in Figure 6a the deficiencies of these typical
estimates becomés apparent. In Figure 8b the noise
filtering formulation leads to an estimate which is overly
flat; the weighted information formulation ( Figure 8d) has
improved the estimate by raising the peak and lowering the
valleys. In Figure 9b the noise filtering formulation leads
to an estimate which is overly sharp; the weighted infor-
mation formulation ( Figure 9d) has improved the estimate by
lowering the peak and raising the valleys. Since the weight
functions are similar in both figures it is apparent that
frequency weighting <cannot be simply interpreted as
increasing or decreasing the sharpness of a spectral esti-
nate; rather, the weight function reduces distortions in the
estimate by requiring a more accurate fit to the data in
those spectral regions where the weight function is large.

Figures 10 and 11 present the result of analyzing 100

different 400 sample Hamming windowed frames of data using
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various different methods. TFigure 10 presents the results
obtained using the noise filtering formulation; the smoothed
noise filter response was determined using different rules
ranging (roughly) from the least severe rule in Figure 10a
to the most severe in Figure10e. The results presented in
Figure 11 represent an analysis of the same 100 data frames
and the same noise filter response functions but the ana-
lysis uses the weighted information formulation with an
AR(2) weight function fit +to +the noise filter response
function.

It is clear that in each case (a through e) the esti-
mation error is reduced by the weighted information formu-
lation. The best results in both figures are obtained by
the most severe rules. Figure 10, while exhibiting less
variance, shows an increased deviation (bias) of the main
cluster from the true values for the more severe rules;
apparently, variance error of the noise filtering formu-
lation may be reduced at the ex?ense of increased bias error
by using the more severe rules. Comparing, for example,
Figures 10e and 11e it is apparent that the weighted infor-
mation formulation achieves still greater variance reduction
while correcting the bias error. Comparison of Figures 11e
and 7 1indicate that one has 1little, if any, hope of
achieving significantly better performance than that pro-
vided by the weighted information formulation in this case.

Pigures 12 and 13 show similar results for the same 100

frames of data; the analysis methods used to produce these
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figures differ from the method used to produce Figures 10
and 11 only in that no smoothing algorithm was applied to
the noise filter response. All the same trends are apparent
in figures 12 and 13 as were apparent in Figures 10 and 11;
somewhat greater variance 1is exhibited 1in these figures
indicating that smoothing produces a generally beneficial
effect in this case.

Figures 14, 15, 16, and 17 display similar results for
the case df white corrupting noise at a 10 dB signal to
noise ratio. Again, each plot represents analysis of +the
same 100 different 400 sample Hamming windowed frames of
data. For each method of determining noise filter response,
the weighted information formulation leads to less variance
and bias error than +the comparable (unweighted) noise
filtering formulation. As may be expected,3 all these esti-
mators yield poorer performance in this white noise case
than in the previous colored noise case.

Figures 13, 19, 20, and 21 again present similar re-
sults; while the corrupting noise is still white the signal
to noise ratio is now zero dB. One small difference is
worth noting: in Figures 10 through 17 the parts b, c, and

d employed a soft suppression rule with suppression factors

5The reader will recall that if the signal and noise
processes are completely separated in frequency (i.e., do
not have overlapping spectra), the Wiener filter can com-
pletely eliminate the noise. Since the colored noise case
exhibits greater spectral separation from this signal pro-
cess than the white noise case, an estimate can be expected
to provide superior performance.
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of 4, 6, and 8 respectively; in Figures 18 through 21 the
parts b, ¢, and d again employ a soft suppression rule but
with increased suppression factors of 6, 8, and 10 re-

spectively.

Speech and Speech-Like Signals

Many speech waveforms exhibit a nonrandom periodic
character; their spectra display a fine harmonic structure
(with peaks separated by integral multiples of the pitch
frequency) with a roughly AR modulation. The hérmonic
structure 1is generally attributed to the periodic glottal
pulses while the AR modulation 1is generally attributed to
the response characteristics of the vocal tract.

To simulate such waveforms the all pole filter with
frequency response displayed in figure 6a was excited with a
periodic stream of impulses (with a period of 79 samples).
No figure comparable to Figurel is included here since, in
the absence of noise, the analysis of 100 different 400
sample Hamming windowed frames of data (with a random dis-
tribution of phase displacement) presents no apparent esti-
mation error.4 Consequently, while part of the apparent
estimation error in the scatter plots of Figures 10 through

21 must be attributed to the random character of the signal

4That is, on the scale used for these scatter plots.
On a greatly enlarged scale, a small amount of bias and
variance error may be observed.
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itself, all of the apparent estimation error in the fol-
lowing scatter plots ( Figures 24 through 35) may be attri-
buted to the presence of noise.

Figures 22 and 23 each present various estimates of a
single 200 sample Hamming windowed frame of data. In both
cases the frame of daﬁa consists of the aforementioned peri-
odic signal process and a colored Gaussian noise process
summed at a 10 dB signal to noise ratio. The periodogram
estimates in Figures 22a and 23a clearly display the fine
harmonic structure of the‘signal spectrum near the filter
resonance (fractional frequency of .8) while this structure
breaks down near the noise resonance (fractional frequency
of .2).

Figures 22b and 25b display estimates obtained using
the noise filtering formulation; Figures 22c and 23c display
the noise filter response characteristics that produced
these estimates. Clearly the estimate appearing in Figure
22b is overly flat while the estimate appearing in Figure
25b 1is overly sharp. "Figures 224 and 23d display the
estimates obtained using the weighted information
formulation; comparison with Figure 6a reveals that Dboth
these estimates are improved relative to their counterparts
in Figures 22b and 23b. Finally the AR(2) weight functions
approximating the noise filter response functions are
presented in Filgures 22e and 23e.

Figures 24, 25, 26, and 27 display a variety of scatter

plots; each scatter plot presents the result of analyzing
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100 different 400 sample Hémming windowed frames of data;
the same 100 data frames were employed for each plot. As
mentioned above, because the signal process is periodic and
not random in character all of the apparent estimation error
can be attributed to +the added colored Gaussian noise
(SNR = 10 dB).

Figures 24 and 25 employ smoothed noise filter response
characteristics while Figures 26 and 27 employ the un-
smoothed characteristics.? Pigures 24 and 26 display the
results obtained with the noise filtering formulation while
Figures 25 and 27 display the results obtained with the
AR(2) weighted information formulation. Once again, the
welghted information formulation leads to less estimation
error than the comparable noise filtering formulation; in
Figures 254 and 25e the estimation error is so small as to
be almost imperceptible on the scale employed for these
plots. Bmoothing still appears to display a generally
beneficial effect. f

Figures 28, 29, 30, and 31 présent similar results for
the case of white Gaussian noise corruption to the periodic

signal processes (SNR = 10 dB). As with the Gaussian signal

5Some caution is advised regarding the use of smoothers
here. The dimensions of the lobes within the fine harmonic
structure are controlled by the length and shape of the data
window so that a smoother that works well with one frame

length may not work well with longer frames or a differently
shaped window.
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process, all the estimates present degraded performance in
this white noise case as compared to the colored noise case.

To complete these simulations, Figures 32, 33, 34, and
35 present analysis results for the case of white Gaussian
noise corruption to the periodic signal process at a zero dB
signal to noise ratiio. As with the Gaussian signal pro-
cess, parts b, ¢, and d of these figures employ soft sup-
pression rules with increased suppression factors of 6,
8,and 10 respectively.

The following summarizes the description of these scat-
ter plots. Figures 10-13 and 24-27 correspond to colored
noise corruption at a 10 dB signal fo noise ratio; Figures
14-17 and 28-31 correspond to white noise corruption at a 10
dB signal to noise ratio; Figures 18-21 and 32-35 correspond
to white noise corruption at a O dB signal to noise ratio.
Figures 10-21 correspond to a Gaussian random signal;
Figures 24-35 correspond to a periodic (period = 79 samples)
signal. Figures 10, 11, 14, 15, 18, 19, 24, 25, 28, 29, 32,
and 33 employ a smoothed noise filter response while the
remainder employ an unsmoothed response; parts a and e of’
each of these figures determine the noise filter response
using the power and magnitude subtraction rules respectively
while parts b, c, and d employ the soft suppression rules.
In Figures 10-17 and 24-31 the suppression factors for parts
b, ¢, and 4 are 4, 6, and 8 respectively; in Figures 18-21
and 32-35 the suppression factors and 6, 8, and 10 re-

spectively. Pinally, Figures 10, 12, 14, 16, 18, 20, 24,
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26, 28, 30, 32 and 34 display the results of the (un-
weighted) noise filtering analysis while Figures 11, 13, 15,
17, 19, 21, 25, 27, 29, 31, 33, and 35 display the results
of the AR(2) weighted information analysis.

Before concluding this chapter, several examples re-
sulting from the analysis of a real speech segment are pro-
vided. Pigure 3%6a shows a periodogram estimate obtained
from a Hamming windowed 400 sample segment taken from the
vowel portion of the word "ﬁrap";6 from the fine harmonic
structure it is apparent that the pitch of this segment is
about 135 Hz (about 59 samples). Pigure 36b shows a tenth
order AR estimate of the spectrum obtained as the result of
an autocorrelation method‘;analysis of the same Hamming
windowed segment; four vocal tract resonances are clearly
visible.'

Figures 37a and 37b show periodogram and tenth order AR
estimates obtained from this same vowel segment after adding
white noise at a 10 dB signal to noise ratio. Clearly, the
fine harmonic structure of the periodogram estimate has been
partially obscured and, while four resonances are still

visible, the AR estimate ié severely distorted.

6The word, spoken in context by an adult male in a
quiet environment, was taken from the sentence "Don't gift

wrap the tall glass." and was appropriately filtered before
sampling at 8 kHz.

TLower and higher order analyses were applied to this
segment and it was judged from plots such as these that a
tenth order model is appropriate.
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(a) Log Power Spectrum (dB vs Fractional Frequency); Periodogram

Estimate of Vowel Spectrum; Noise Free
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(b) Log Power Spectrum (dB vs Fractional Frequency); AR(10) Esti-
mate Using Autocorrelation Method; Noise Free

Figure 36. Vowel Spectrum in Quiet Environment
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(a) Log Power Spectrum (dB vs Fractional Frequency); Periodogram
Estimate of Vowel + White Noise Spectrum; SNR = 10 dB

+10

(b) Log Power Spectrum (dB vs Fractional Frequency); AR(10) Esti-
mate Using Autocorrelation Method; SNR = 10 dB

Figure 37. Vowel Spectrum in White Noise



123

Figures 38 and 39 display the result of applying vari-
ous other estimators to the same white noise corrupted data
frame. Pigure 38 shows results obtained with the smoothed
power subtraction rule and Figure 39 shows results obtained»
with the smoothed magnitude subtraction rule. Part a of
each figure shows the result obtained with the noise fil-
tering formulation; the noise filter response functions are
displayed in part D. The weighted information estimates,
displayed in part c, were obtained using the modified Newton
iteration described in Chapter 1IV; the weight functions,
displayed in part d, were selected as an AR(6) fit to the
noise filter response functions displayed in part b.8
| Comparison of Figures 38a and 39a to Figure 36b reveals
the deficiencies of these noise filtered estimates; in par-
ticular, the reader should note the amplitude of the third
and fourth (highest frequency) resonance peaks as well as
the depth of +the valleys near the fractional frequency
values of zero and one. These features are partially cor-
rected in Figures 38c and 39c by the weighted information
formulation; most notable is the correction of the valley
depth near the fractional frequency value of zero. Also
worth noting is the improved valley depth near the frac-
tional frequency of one in Figure 38c and the improved

amplitude of the fourth resonance peak in Figure 39c.

8rhe weight functions need not be selected to have an
AR form; however, the author's experience with this iter-
ative method indicates that convergence is more difficult to
achieve with more complex weight function forms.
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Figure 38. Vowel Spectrum
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Figure 39. Vowel Spectrum



CHAPTER VI
CONCLUSION

A new method of spectral estimation has been presented.
The method addresses the problem of noise corruption to the
time series measurements and assumes knowledge of the noise

1 The method has been demonstrated

power spectral density.
to yield superior performance, in terms of reduced esti-
mation error, and has Dbeen suggested for wuse 1in speech
analysis applications.

Although the Gaussian assumption is invoked for the
theoretical development of the method, examples have been
provided that show the method yields superior performance
for other signals as well. Similarly, the author also ex-
pects the method to be fairly robust with respect to the

2 It is worth noting that while the AR

other assumptions.
signal model has been assumed throughout, this assumption is

by no means necessary to the theoretical development so that

1Actu_ally, only knowledge of the frequency response of
a filter designed to eliminate the noise is assumed. Know-
ledge of the noise power spectral density merely leads to
one common method of designing such a filter.

2p possible exception is the assumption of independence
between the signal and noise processes for it is this as-
sumption that leads to the model of additive signal and
noise power spectral densities.
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other (e.g. ARMA, Pisarenko, etc.) models may also be con-
sidered.”

Computational procedures relevant to the problem of AR
model estimation (using the weighted information formu-
lation) have been explored. An algebraic method, applicable
when the weight function assumes an AR(M) form, has been
discussed; Wﬁen M < 4, this method will obtain the solution
using an algorithm of reasonable complexity for many appli-
cations. Iterative +techniques have been discussed that
obtain the solution while permitting an extremely flexible
class of weight functions; the price of this greater flexi-
bility is a considerable increase in complexity as well as
the need for much wuser interaction. Several methods of
coefficient evaluation were presented; one was implemented
and used to obtain the simulation results.

The problem of AR model detection (vector quantization)
requires the evaluation of two integrals for each model in
the finite collection. Evaluation of the first integral is
accomplished by Equation (4.58a); this equation requires the
same number of additions, multiplications, and (read—only)

storage locations as is required by the usual (unweighted)

5The new formulation would still require minimization
of I (Hf,g) and the analogy leading to Equation (3.20) s$ill
applles. The only difference is in the selection of a para-
metric signal model and the system of equations that fol-

lows. Uniqueness questions would need to be addressed
separately but one may hope to find that similar convexity
arguments would apply. Of course, the computational pro-

cedures discussed earlier may no longer be appropriate.



127

methods of vector quantization. The second integral 1is
evaluated as a constant (independenf of the data but de-
pending upon the model) by the usual (unweighted) methods of
vector quantization; Equétion (4.81) is advoéated for evalu-
ation of the second integral with the weighted information
formulation. With about a dozen terms, as suggested for
speech analysis applications, evaluation of the second inte-
gral using Equation (4.81) is about equivalent in complexity

to evaluation of the first integral.

Suggestions for Future Research

There are numerous ways to extend and refine the ideas
and methods presented here. The following suggestions,
offered in no particular order, are thought to be worth-

while.

® fixtension +to other spectral models. As mentioned
earlier, the AR model form is not necessary; moreover,

for some applications it may not even be appropriate.

e Assuming an AR model, determine the conditions for (and
a proof of) existence. Empifical evidence for ex-
istence is strong; it is thought that the conditions
are quite mild from a practical viewpoint (e.g. that
the weight function is bounded). While the question of
existence is mostly of theoretical interest by itself;

the methods used to prove existence (and the precise
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conditions for existence) should have practical value.
For example, a proof based upon a contraction map 1is
likely to yield a highly effective iterative solution

procedure as well.

Further investigation of methods of coefficient evalu-
ation. These should be studied in close relation to
the specific application in order to select a design
offering a reasonable tradeoff between computational

effort and performance.

Investigation of numerical methods for solution of the
ideal formulation. It is thought that the ideal formu-
lation should yield still better performance, particu-
larly at very 1low signal to noise ratios; 1t 1is
expected that these methods will be very compu-

tationally expensive.

Development of related formulations assuming a cor-
related noise model. The cross-spectrum (between the
signal’and noise processes) may be known, say, as a
function of the unknown signal model spectrum and the
known noise spectrum in some applications; this may
occur, for example, if additive independent signal and
noise processes were passed through a known nonlinear

system prior to observation.
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e Further investigation of computétional methods ap-
propriate for the AR weight function model; investi-
gation of computational methods appropriate for other
parametric welght function models. While the unique-
ness result guarantees that only one product model,
Cpym(z), satisfying Equations (4.13) and (4.15) has all
its "additional" reflection coefficients {kP+1’ kP+2’
.e+, kp,y} inside the interval (-1,1) it is not known
if the other product models satisfying these equations
have ali their "additional" reflection coefficients
outside this interval (of course, they must have at
least some of their "additional" reflection
coefficients outside this interval); if this were true,

‘the development of an efficient algorithm for higher
order AR weight function models would be greatly
facilitated. In general, the author Dbelieves
parametric weight function models provide the greatest
hope for procedures yielding a flexible choice of
weight function together with an efficient solution

algorithm.

e [nvestigation of the appropriate selection of "shape
functions" in connection with use of the weighted in-
formation formulation for vector quantization, see
Equations (4.79), (4.80), and (4.81). For speech

analysis applications, the author envisions each shape
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function as the power spectral response function of a
bandpass filter with response characteristics similar

to those filters found in "channel vocoder" systems.

® Performance evaluation in specific (speech analysis and
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