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CHAP'Hrn 1 

INTRODUCTION 

Nearly all sciences are concerned with the analysis of 

measurement data. The following chapters will present a new 

tool for the analysis of time series measurements; in par­

ticular, a new method of spectral estimation is presented. 

Many spectral estimation methods already exist and, in­

creasingly, new methods continue to be developed; therefore, 

it is appropriate to reflect,. briefly, upon the reasons for 

such continued activity in an area already so well re­

searched. 

A synergism exists between advances in computer tech­

nology and advances in practical methods of time series 

analysis. As more effective (and complex) methods of time 

series analysis are developed, the demands for smaller, 

cheaper, and faster digital circuitry (capable of imple­

menting these methods within the size/cost/power constraints 

of various applications) are increased. As smaller, 

cheaper, faster and more reliable digital circuitry becomes 

available, more complex (and effective) methods of time 

series analysis become practical. Fundamentally, however, 

it is the demand for improved solutions to engineering prob­

lems that motivates the desire for more effective methods of 

time series analysis. 

1 
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Motivation 

Most information we have about the world around us is 

received indirectly through time series measurements. In 

the case of vision, one determines the shape (and other 

characteristics) of an object by reception (measurement) of 

light waves scattered by the object. In the case of speech, 

one determines the intended message of the speaker by re­

ception (measurement) of acoustic pressure waves. Pros­

pecting, manufacturing, astronomy, medicine, and economics 

are but a few of the areas that can benefit from improved 

methods of time series analysis. 

Spectral estimation is one of the most important areas 

of time series analysis. In many cases, knowledge of the 

time series spectrum is adequate to answer all important 

questions regarding the system producing the time series; in 

the case of a stable time-invariant linear input-output 

system, knowledge of the output process spectrum (together 

with the statistics of the stationary input process) will 

completely characterize the system. 

Noise corruption is among the fundamental problems of 

time series analysis. All useful analysis techniq_ues for 

measurement data are at least mildly tolerant of noise since 

there always exists a small probability of measurement 

error; some techniques are specifically designed to account 

for knowledge of the noise statistics in the analysis of 

noise-corrupted measurement data. Regardless of the analy­

sis technique, the fundamental performance limits are always 
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reduced by the presence of noise. 1 Consequently, it is 

always advisable to minimize noise corruption as much as is 

practical; still, practical constraints imposed by some 

situations do not permit the reduction of noise corruption 

to insignificant levels so that sophisticated analysis tech-

niques are required to achieve the best possible per-

formance. 

·Spectral estimation is of fundamental importance to the 

various applications of speech analysis and practical con-

straints imposed by many of these applications do not permit 

the reduction of noise corruption to insignificant levels. 

Examples of such applications include low data rate 

digital voice communications systems and speech 

recognition/understanding systems among others; often the 

cost and/or inconvenience of shielding from environmental 

noise makes significant acoustic noise corruption inevi-

table. 

Autoregressive (AR) spectral models have been sue-

cessful for various systems involving speech analysis; more-

over, numerous speech synthesis systems based upon the AR 

model have become commercially available in recent years. 

Because the currently available practical methods for AR 

parameter estimation yield poor results in common noise 

1rn some specialized circumstances the performance 
limits are unchanged by the presence of noise. Even when 
this . is the case, the complexity of the analysis methods 
required to achieve these limits is usually increased by the 
noise presence. 
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environments but are effective in sufficiently quiet en­

vironments, it is reasonable to retain the AR model for the 

speech process while attempting to develop improved methods 

for estimating the AR parameters. 

'rhe fundamental limit to the performance of any esti­

mation procedure depends upon the available information. In 

theory, even the most obscure (but not unrelated) additional 

information may be used to improve a parameter estimate; of 

course, one should rely first upon ~nformation that is both 

easily available and expected to provide substantial im­

provement. 

Most recent efforts to overcome the poor performance of 

classical AR estimators in noise, including the present one, 

have attempted to employ ·information regarding the noise 

statistics in addition to the noise corrupted time series 

observations. This information is often provided simply by 

deploying additional sensors intended to measure the noise 

directly; other speech analysis systems employ prior seg­

ments of the primary observation signal that are thought to 

be free from speech activity to predict the current relevant 

noise statistics. 

The present work does not address the problem of ob-

taining accurate noise statistics. 

noise statistics to be available, 

develop a new and improved method 

Assuming appropriate 

the following chapters 

of estimating the AR 

signal parameters from noise corrupted time series obser­

vations. 
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As might be expected, the method entails increased 

computational cost over less effective techniques; it is 

expected that performance req_uirements of speech analysis 

(and other) applications - as well as cost reductions that 

are continually provided by advances in computer technology­

shall, in many cases, make the advantages of this method 

appear relatively inexpensive. 

Overview 

Chapter II provides a general discussion of the various 

issues and techniques of spectral estimation; particular 

attention is given to the problems of AR spectral esti-

mat ion. In addition, this discussion introduces basic 

formulae and provides an historical perspective for the 

subsequent chapters. 

Chapter III presents the theoretical foundations of the 

new (weighted information) estimation procedure. After some 

additional motivational discussion, the method is formulated 

as an approximation to an ideal (but intractable) formu­

lation and a generalization of a commonly employed (noise 

filtering) estimation procedure. In addition to the general 

formulation, significant contributions of this 

include the analogy leading to Equation (3.20) 

properties developed in the fifth section. 

chapter 

and the 

Chapter IV discusses a variety of computational methods 

relevant to AR estimation based upon the weighted infor­

mation formulation. The author considers the area of 
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computational procedures as requiring the greatest attention 

for further extension and refinement of this work. Only the 

formulae 

(4.58a) 

for vector q_uanti za ti on, 

and (4.81), appear 

cost/performance analyses. 

in particular Equations 

ready for detailed 

Chapter V demonstrates clearly that the weighted infor­

mation formulation leads to reduced estimation error as 

compared to the more common noise filtering formulation. 

Examples from both simulated and real speech are provided. 

The demonstration relies upon the reader's visual assessment 

of scatter plots; thus it is somewhat qualitative. A more 

quantitative assessment (e.g. a comparison of empirical 

variance to theoretical performance bounds) would be inter­

esting; however, one would still have difficulty evaluating 

the significance of a reduction in empirical variance to the 

performance of a particular system. Without a full imple­

mentation one must rely upon experience and judgement as 

well as the available experimental evidence. 

Finally, Chapter VI summarizes the results of this 

effort and provides suggestions as to how this work may be 

effectively extended and refined. 



CHAP'fER II 

GENERAL DISCUSSION 

Spectral estimation is a problem of statistical infer-

ence with a long history due to its pervasive importance in 

scientific applications [1 J. Modern empirical spectral 

analysis began to take shape as an organized discipline with 

the introduction in 1893 of the periodogram by Schuster [2]. 

Given N observations !xn; n=0,1, ... ,N-1} of a time 

series at unit time intervals the periodogram, f(e), is 

defined as 

where 

N-1 

~ Xn z-n 

n=O 

( 2. 1 ) 

(2.2) 

Still in use today, the periodogram was practically the sole 

computational tool of empirical spectral analysis until Yule 

introduced in 1927 his method of autoregressive (AR) spec­

tral analysis [3]. 

An AR(P), or pth order autoregressive, model spectrum, 

g( e), is characterized by a model gain, ir, and a monic pth 

7 
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order polynomial, zPAp(z), and is defined by them as 

(2.3) 

The polynomial may be characterized by a variety of parame-

ter sets. One parameter set, known as predictor coef-

ficients {an; n=1 ,2, ... ,P}, defines the polynomial according 

to 

Ap(z) = 

p 

L an z-n 
n=O 

(2.4) 

In contrast to Schuster's nonparametric method of spectral 

analysis, Yule's parametric method first introduces the 

above mathematical model, justified by physical arguments, 

and then uses the available data to estimate the model pa-

rameters. These estimates are provided by the solution to 

the Yule-Walker [4] equations 

p 

~ r. a = o-2 6 L..J in-ml m n 
m=O 

where 

N-n-1 

rn = L Xm Xm+n/N 
m=O 

n=O, 1 , ••• , P 

n=O, 1 , ... , P 

are the biased sample autocorrelation lag estimates. 

(2.5) 

(2.6) 
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Model Selection 

A variety of other parametric spectral models have been 

introduced and studied during the past half century; several 

of them are worth noting. The moving-average (MA) model, 

like the AR model, is characterized by a polynomial but 

differs in that the polynomial appears in the numerator; the 

Schuster periodogram may be viewed as an MA model spec-

trum. 1 Similarly, ARMA models are described by both numer-

ator and denbminator polynomials; these spectra are of 

particular importance in engineering applications since they 

characterize all stable linear systems with a finite dimen-

sional state vector. The Blackman-Tukey [5] model spectrum 

consists of a finite sum of cosine terms; it is obtained by 

:E1ourier [ 6 J transformation of the product of the autocorre-

lation sequence and a finite support window. The Pisarenko 

[ 7 J model consists of a constant plus a finite number of 

delta functions. Various combinations of these models are 

also occasionally employed. 

Most often a new model is introduced (together with a 

procedure for estimating its parameters) simply because it 

seems reasonable relative to the phenomenon being studied 

and due to deficiencies in the currently popular 

1Facts such as these tend to blur the distinction 
between parametric and nonparametric methods. Since any 
estimate can be described as a member of some parametric 
family once it has been derived, the distinction may be seen 
as one of spirit rather than substance. 
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models. 2 ' 3 More recently the various results of this "un-

scientific" approach have been "justified" theoretically; 

this justification usually takes the form of a principle 

that should be employed as a guide when the requirement of 

consistency with the available information leaves several 

alternatives. The principle is usually embodied in the form 

of a functional whose extreme value is to be found while the 

information is provided in the form of constraint equations 

(or inequalities) for this variational problem. 

Much of the current literature is devoted to the "prin-

ciple of maximum entropy" which was enunciated by Jaynes 

[8, 9]. If the process is zero-mean stationary and Gaus-

sian1 it is completely characterized by its power spectral 

density function, g(e), (or "spectrum" for short) and the 

process entropy is expressed in terms of it by 

Q = J :n g(a) da/2~ (2.7) 
-1T 

2we shall adopt this pragmatic view later when modeling 
speech in an acoustically noisy environment. 

3sometimes a model is used in spite of its less 
reasonable form simply because the available parameter 
estimation methods yield more successful overall results. 
Thus AR models are employed (instead of the Pisarenko model) 
to estimate the frequencies of pure sinusoids in white noise 
from short data records. 

4The Gaussian assumption may be avoided in the case of 
correlation constraints. Working directly with probability 
densities the Gaussian form may be derived as that' which 
maximizes the entropy [10, p. 944]. 
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As demonstrated by Burg [11 ], if the entrop.v is subsequently 

maximized subject to correlation constraints? 

rn ~ Jw g'(9) eina d9 /2w n=O, 1 , ••• , P ( 2. 8) 

-'TT 

one may derive the AR(P) form for g(e) as given by Equation 

( 2 • 3 ) . The AR(P) form together with the constraint Equa-

tions (2.8) are then sufficient to yield the Yule-Walker 

Equations (2.5) from which the model parameters may be de­

termined. If cepstral constraints6 are employed in place of 

correlat;ion constraints the spectrum maximizing Equation 

( 2. 7) has an MA form while both correlation and cepstral 

constraints lead to an ARMA model. The Pisarenko model is 

"justified" by deriving it as the minimum energy solution 

under correlation constraints?, excepting the energy (n = 0) 

constraint [12]. 

Another principle discussed in the recent literature is 

the "principle of minimum cross-entropy" [ 13 J. Introduced 

by Kull back (under the name "directed divergence") as an 

5The values on the left-hand side are given in terms of 
the data; for example, by Equation (2.6). 

6These place constraints directly on the· "cepstrum" (or 
log power spectrum) and ar,e expressed by Equations ( 2. 8) if 
g(e) is replaced by its logarithm while the left-hand side 
values are expressed in terms of the data. 

7rt may also be related to the maximum entropy prin­
ciple by noting that the AR(P) model approaches the 
Pisarenko model as r 0 is decreased to the point where the 
correlation matrix becomes singular [7, p. 355]. 
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information measure [ 14], it has a number of interesting 

properties neatly collected in [ 1 5 J. In terms of proba-

bility densities the cross-entropy is given by 

S(q,p) = ~ q(X) ln[q(X)/p(X)] dX (2.9) 

and measures the expected information for discriminations 

per observation from q(x) [14]. A symmetric version of this 

measure, S(q,p) + S(p,q), was introduced earlier by Jeffreys 

[ 16 J who emphasized the invariance of this measure with 

respect to coordinate transformations; unlike entropy, 

cross-entropT shares this important property. 

As an inference procedure, minimum cross-entropy analy­

sis requires a prior estimate of the density, p(x), as well 

as new information in the form of constraints and derives a 

new posterior estimate of the density, q(x), by minimizing 

S(q,p) subject to the constraints [17]. In the case that 

the prior density is uniform the procedure is equivalent to 

maximum entropy; with correlation constraints the posterior 

density is found to be Gaussian AR(P) with parameters satis~ 

fying the Yule-Walker Equations (2.5). 

ti on 
that 
es is 

8Fully, S(q,p) is said to measure the expected informa­
for discrimination in favor of the (correct) hypothesis 
the density i~ q(~) an~ against the (?ompeting) ~1poth­
that the density is p(x) per observation from q(xJ. 
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Parameter Estimation 

The foregoing discussion leaves the impression that the 

correct path to formation of a spectral estimate is clear: 

simply select a guiding principle (undoubtedly related to 
. ' 

the notion of entropy), gather the available information, 

and solve the well defined mathematical problem that re-

sults. Seldom is the practical situation so simple. 

Typically the numerical constraints are not given con-

veniently, say, in terms of exact knowledge of the autocor-

relation function at equally spaced lags. More often, only 

a few irregularly spaced noise corrupted samples of the time 

series are available; from this data the numerical con-

straints must be estimated. Even when permitted the luxury 

of bountiful regularly spaced and noise-free data, numerous 

difficulties remain. Assuming a maximum entropy principle, 

should estimates of the autocorrelation, cepstral, or some 

other numerical constraints be formed? How · should these 

estimates be formed and how many9 of them should be formed? 

The Yule AR(P) estimation procedure outlined at the 

beginning of thi;~ chapter provides one sol u-tion: having 

selected the model as AR and its order as P, form the biased 

autocorrelation lag estimates, Equation (2.6), and use these 

9This is the problem of order determination. Various 
estimators of the order parameter, based upon notions of 
information theory, have been proposed and discussed by 
Akaike [18] and Parzen [19, 20] among others. Often the 
order parameter is selected simply upon the basis of experi­
ence with the phenomenon under study. 
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as if they were the true values. These autocorrelation lags 

then uniquely determine the AR(P) model parameters (and 

vice versa) via the Yule-Walker Equations ( 2. 5). This de-

scription is explicit but fails to provide significant in-

sight as to why it might be good. The formulation may be 

derived from a variety of viewpoints, each with its own 

merit and yielding greater understanding of the procedure. 

Linear Prediction (LP) theory leads to one derivation 

of this formulation [21]. In this derivation the AR model 

is viewed as a predictor and the model parameters are deter-

mined to minimize the prediction error 

p 

" L en = Xn - Xn = Xn + a Xn-m m (2.10) 

m=l 

in a mean-square sense. Depending upon the details of 

treatment of the ends of the data record one may derive the 

Yule-Walker procedure (also known as the "autocorrelation LP 

method") or a variant known as the "covariance LP method". 

Both of these methods have their proponents. The Linear 

Prediction theory is very similar to Yule's original consid-

erations in which the en are viewed as random driving dis­

turba~ces to the pth order inhomogeneous difference Equation 

(2.10). 

Other variants of the autocorrelation LP method are 

based upon a recursive lattice structure for the prediction 

filter [22]. In addition to the "forward" predictor Ap(z), 

these variants consider a "backward" predictor, Bp ( .z); both 
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predictors are characterized by the set of reflection coef­

ficients tkn; n=1 ,2, ... ,P} according to 

(2.11a) 

(2.11b) 

rrhe z-transform of the forward prediction error process 

after n filtering stages is simply An(z) X(z); similarly the 

z-transform of the backward prediction error process is 

Bn(z) X(z). Mean-square criteria are applied to the forward 

and backward error processes to obtain a variety of 

estimators for the reflection coefficients; one of 

particular importance, due to Burg [23], determines kn to 

minimize the sum of the variances of the forward and 

backward error processes after n filtering stages. For 

truely ergotic processes, all these AR estimation procedures 

are asymptotically equivalent to the autocorrelation LP 

method for large values N· , as parameter estimation 

procedures these methods are most important for problems 

involving mildly nonstationary data of limited quantity. 

In addition to these various "minimum mean square pre-

diction error" formulations, another important derivation of 

the Yule procedure is due to Itakura and Saito [24 J. As­

suming an AR(P) model for the zero-mean stationary Gaussian 

process, they employ the maximum likelihood method and show 
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that the solution is obtained, asymptotically for large N, 

by minimizing a "spectral matching criterion" 

'TT 

I(f,g) = f {[f(9)/g(9)] - ln[f(9)/g(9)] - 1 I d9/2• 

-'TT 

(2.12) 

where f(e) is the Schuster periodogram given by Equation 

(2.1). 

It is readily verified, by differentiating I(f,g) with 

respect to the parameters of g( 0), that the minimum is ob­

tained when the correlation matching property 

'TT f f(a) eina de/2• = 
-'TT . 

(2.13) 

is satisfied for n=0,1, ... P. By recognizing the left-hand 

side as the lag product autocorrelation estimates 

rn = r•f(e) eine dB/2• 

~-'TT 

(2.14) 

the correlation matching property leads easily to the Yule-

Walker Equations (2.5); see [25, pp. 445-6]. Recently Kay 

[26] has developed another variant by similarly applying the 

maximum likelihood method to zero-mean stationary Gaussian 

AR(P) processes but eliminating the large N approximation; 

again this variant treats the problem of limited data. 

The functional (2.12), although it is usually attrib~ 

uted to Itakura and Saito in the current speech literature, 

was apparently first developed by Pinsker [27]. Assuming 
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only that the two processes are zero-mean and Gaussian, 

Pinsker showed10 

Lim 
N---oo 

S(p,q)/N = I(p,q)/2 (2.15) 

This theorem provides an information theoretic interpreta­

tion of the Itakura~Saito spectral matching criterion. 

Moreover, from a functional inference point of view, one 

might derive the Yule-Walker procedure by replacing q by an 

assumed AR(P) spectral model, g(e), replacing p by a rough 

spectral estimate provided by f(e), and then minimizing 

I(f,g). 

The last derivation should be contrasted with the mini-

mum cross-entropy development discussed earlier. In that 

formulation the AR(P) form was derived from given correla-

tion constraints while this formulation derives the cor-

relation constraints from the given AR(P) form. Both 

developments employ (different) prior estimates and minimize 

a measure of information divergence between the prior and 

posterior estimates; however, the information divergence is 

not a symmetric measure and the unknown (posterior) estimate 

appears as the second argument in the current formulation 

1 OThe notation is somewhat abused here. On the left 
p and q represent the joint probability densities of N con­
secutive random variables; on the right p and q are power 
spectral density functions. 
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while it appears as the first argument in the minimum cross­

entropy development. Nonetheless, the resultant procedures 

are both the same as the Yule procedure. In the next chap­

ter a variant of this last derivation will be considered. 

Noise Corruption 

The problem of noise corruption ·to the observatiohs 

pervades estimation problems. Generally all useful estima­

tors are at least mildly tolerant of noise corruption while 

their performance degrades if the corruption becomes par­

ticularly severe. The most common problem considered is 

that of an additive independent noise process; this problem 

is of considerable importance in practical applications. 

Upon initial reflection, the problem of estimating the 

parameters of both the noise and signal processes from time 

series observations alone may seem impossible. Indeed, the 

problem of determining the individual variances of two inde­

pendent additive zero-mean stationary white Gaussian proces­

ses is completely confounded regardless of the q_uanti ty of 

data available. However, if one process is non-Gaussian, 

estimates of third and higher order statistics can be useful 

in estimating these lower or~er statistics. Parzen discus­

ses the use of the "bispectrum" to estimate the spectrum of 

a non-Gaussian process in additive independent white Gaus­

sian noise [28]. 

When both processes are 

always confounded. Since 

Gaussian the problem is not 

the sum of two additive 
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independent ARMA processes is also an ARMA process one might 

hope to find estimators for the parameters of the two addi­

tive processes when the number of parameters for the com­

bined process is not exceeded by the total number of 

parameters of the two processes. For example, Pagano [29] 

discusses the problem of estimating the P + 2 parameters of 

additive AR(P) and white processes by first estimating the 

2P + 1 parameters of a single equivalent ARMA(P,P) process 

and then using these 2P + 1 estimates to initialize a pro­

cedure for estimating the originally sought P + 2 parame­

ters; it seems critical however that the order of the AR 

process does not degenerate (i.e. is actually nonzero). 

This latter problem is fairly close in spirit to the 

problem considered in the following chapters. There the 

signal and noise processes are additive, independent, and 

zero-mean Gaussian; moreover, the signal process is AR(P). 

The problem may seem more complex because the noise process 

need not be white; however, a considerable simplification is 

achieved because the noise process spectral density (hence, 

all its statistics) is assumed to be known in addition to 

the time series observations. In practice the noise statis­

tics are estimates provided by other observations but the 

large amount of data available for these estimates makes 

them quite reliable. 
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Noise Filtering 

Wiener [30] considered the intimately related problem 

of extrapolating a time series from noise corr~pted obser­

vations. When the zero-mean signal and noise processes are 

additive and independent with known power spectral density 

functions (g(0) and µ(0) respectively) then the minimum 

variance linear extrapolating filter is the Wiener filter 

whose freq_uency response characteristic is 

H(a) = g(e)/[g(a) + µ(e)J (2.16) 

'rhis is sometimes referred to as the unrealizable Wiener 

filter since it is noncausal; the corresponding impulse 

response function extends both backward and forward in time 

to infinity. It is easy to show that the variance of the 

extrapolation can only be reduced to zero if the support of 

the signal spectrum has a null (or zero-measure) inter­

section with the support of the noise spectrum; in this case 

the frequency response, H(e), will be unity on the support 

of g( e) and zero elsewhere. Others, most notably Kalman 

[31 J, have since extended and refined Wiener's pioneering 

work. 

A common procedure for dealing with additive noise is 

to first form a realizable estimate of the Wiener filter (or 

some other "optimal" filter), H(a), and apply it to the 

noise corrupted observations. The resulting data are then 

treated as noise-free observations of the signal process and 
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standard estimation procedures are employed to obtain an 

estimate of the signal spectrum. When the noise spectrum, 

µ(0), is known this procedure involves some mildly circular 

reasoning since Equation (2.16) indicates that knowledge of 

H(0) is equivalent to knowledge of g(a).11 Nonetheless, this 

process has been demonstrated to be advantageous in speech 

analysis and other applications; a survey of these methods 

may be found in [32]. 

Much recent effort [33-39] has concentrated upon imple­

mentation structures and estimation procedures for H(a); 

typically these procedures employ side information in ad-

dition to the noise corrupted time series observations. 

Often the methods are nonlinear and time-varying with both 

theoretical and heuristic foundations. Regardless of the 

technique, one may always subsequently define a short-time-

invariant linear equivalent frequency response character-

istic in terms of the short-time input and output signal 

z-transforms, X(z) and Y(z), by 

(2.17) 

11 Hence we would have g = µH/ ( 1-H). The conceptual 
difficulties may be circumvented by considering the overall 
noise cancelling filter/spectral estimation scheme as a 
single estimation procedure; especially since the procedure 
usually does not employ (2.16) to form the final estimate of 
the signal spectrum. 
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One convenient categorization distinguishes frequency 

domain methods [33-36 J from time domain methods [37-39]. 

Among the frequency domain methods, the noise cancelling 

filter frequency response characteristic usually appears 

explicitly; the simpler (and less heuristic) methods present 

H(9) as a function of the short~time signal to noise spec­

tral density ratio estimate12 

(2.18) 

Two important classes of filter response characteristics are 

the subtraction class given.by13 

H1 (e;a,13) = {SNR(e;a)/[1 + SNR(9;a)]} 13 (2.19) 

and the soft suppression class given by 

fr2 (e;a,13) = l[1 + H: 1 (e;a,1/2)]/2l!~(e;a,13)/[1 + ~(e;a,13)]} 
(2.20a) 

12Equation (2.18) employs the menus function, defined 
by x.Ly = (x-y + lx-yl )/2, to insure a nonnegative result. 

13various special frequency response characteristics 
are worth separate mentj.on here. The Wiener filter [30 J 
frequency response is H1 (9;1,1 ). The power subtraction 
filter and the magnitude subtrac;ion filter [35] have fre­
quency response characteristics H1(e;1,1/2) and R1 (e;1/2,1) 
respectively. Finally, the soft suppression class due to 
~cAulay and Malpass [36] has the frequency response 
H2 ( 9 ; 1 , 13) . 
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where 

~ ( 8 ; a , 13 ) = exp [ - 13 J I 0 [ 2 J 13 [ 1 + S NR ( 0 ; a ) ] ] (2.20b) 

and I 0 [-J denotes the zero~h order modified Bessel function 

of the first kind. These "suppression rules" are plotted 

for selected values of a and 13 as a function of SNR( 0) in 

Figure 1 • 

Effect on Resolution 

In speech applications, vocal tract resonances are not 

extremely sharp and are moderately well separated in fre-

q_uency; conseq_uently one . is generally concerned with ac-

curate estimation of the spectral shape and high resolution 

estimation is not a priority.14 In other applications (such 

as sonar, radar, and medicine) accurate freq_uency estimation 

and resolution of discrete ("line") and narrowband spectra 

are isslles of fundam~ntq.l importance. Periodogram and 

Blackman-Tukey spectral estimates have a fundamental fre-

q_uency resolution limit determined by the length of the 

observation interval; AR estimators have become quite popu-

lar due, in part, to their greatly improved resolving power. 

14Hence, even very low resolution methods that divide 
the ( 4 kHz) voice bandwidth into fewer· than two dozen 
"channels" can be q_uite etfective. 
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Still, the resolution (as well as other performance indi-

cators) varies among the different AR estimators and, for 

each, is influenced by a variety of factors. 

Noise corruption is one of the important factors 

limiting the resolving power of AR estimators. Several 

authors have considered the problem. of estimating the pa-

rameters of a fixed number of sinusoids from discrete-time 

~bservations corrupted by zero-mean additive white Gaussian 

noise of unknown variance. For this specialized problem the 

Cram~r-Rao performance bounds15 may be computed [40]. As is 

well known, the complicated nonlinear maximum likelihood 

estimation procedure will achieve these bounds; Tufts and 

Kumaresan [ 41 J, using AR estimation procedures, have de-

veloped computationally simpler high resolution frequency 

estimators that nearly achieve these bounds while Cadzow, 

et. al. [42J claim still better performance using a singular 

value decomposition (SVD) approach. In many practical cir-

cumstances additional information may be available so that 

15In general, the Cram~r-Rao bounds indicate the mini­
mum variance a parameter estimate can achieve [43]. An 
estimate achieving the minimum variance is an "efficient" 
estimate. In [ 40 J the bounds upon an unbiased fTequency 
estimate are considered (they depend upon the assumed 
distribution as well as the number of data points) and are 

fresented as a function of the signal to noise ratio. In 
44J, the efficiency loss of any method based upon the use 

of correlation estimates instead of the original data is 
studied. 
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these bounds may be exceeded;16 for example, Quirk and 

Liu [ 45] describe a simple filtering and decimation scheme 

(which employs knowledge of the frequency bands in which the 

sinusoids are located) that improves the resolution of (any) 

subsequent AR estimator. In a similar vein, adaptive pre-

filters (that employ a. reference process correlated with 

either the signal or noise portion of the objective process, 

but not both) have been devised to "enhance" narrowband 

signals in noise [46]. 

Quantization and Computation 

While spectral estimation, per se, is not concerned 

with the problems of quantization and computation, the ulti-

mate utility of an estimation procedure can depend strongly 

upon these (and other) issues. If the procedure explicitly 

recognizes that only one of a finite predefined set of 

conclusions can be reached, the situation is sometimes dis-

tinguished by referring to the "detection" (instead of the 

"estimation") problem. 

In many digital speech recognition and communication 

systems the goal of spectral analysis is to solve a detec-

tion problem; in addition, the system designer must solve 

the problem of selecting the best finite set of models to 

1 6More precisely, the true bounds are reduced by the 
availability of additional information. Consequently new 
estimators that account for this additional information can 
be devised that outperform (in terms of variance) any esti­
mator that does not account for the additional information. 
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employ. Until recently, these systems would find the solu­

tion to an estimation problem and then employ a (somewhat ad 

hoc) quantization procedure to select a model from among the 

finite set. If the number of models in the finite set was 

sufficiently large, this procedure could be quite effective; 

however, one measure of goodness for the finite set of 

models is often how few models are in the set. 

In the past decade technological advances have permit­

ted the use of increasingly complex computational procedures 

while still meeting size/cost/power constraints imposed by 

the application. Consequently more sophisticated and ef­

fective (but previously unmanagable) techniques for esti­

mation/detection and quantization of spectral models have 

been studied in earnest. The numerous variants of a class 

of techniques generally referred to as "vector quantization" 

[47-53] have recently achieved considerable success by re­

ducing the finite number of models by about 9 orders of 

magnitude with only slight degradation in other measures of 

system performance. 

Many of these vector quantization techniques are 

founded upon minimization of the asymptotic information 

divergence I ( f, g). Of considerable interest in the use of 

this measure is the triangle equality property; if g( e) 

minimizes I(f ,g) over the set of all stable AR(P) models and 

h(e) is any other model in a (possibly finite) subset then 

I(f ,h) = I(f ,g) + I(g,h) ( 2. 21 ) 
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As a consequence of this property one may solve the detec­

tion problem, which minimizes I(f,h), by first solving the 

estimation problem, which minimizes I(f,g), and then solving 

the quantization problem which minimizes I(g,h). 

Remarks 

The general problem of spectral estimation has been 

discussed; this discussion has emphasized issues and methods 

associated with autoregressive estimation. Autoregressive 

spectral models are important in numerous practical applica­

tions; consequently they have received considerable at­

tention in the literature. The AR form may be derived from 

either the maximum entropy or the minimum cross-entropy 

principle when correlation constraints are considered; al­

ternatively the AR form may be assumed and correlation con­

straints derived using a linear prediction formulation. The 

correlation constraints, together with the AR form, are 

sufficient to derive the Yule-Walker equations which relate 

the model parameters to the prescribed correlation values.· 

The asymptotic maximum likelihood formulation of 

Itakura and Saito assumes an AR form and derives the corre­

lation constraints; in the course of this development a 

"spectral matching criterion" is minimized. The earlier 

derivation by Pinsker of this spectral matching criterion 

from an asymptotic information divergence formulation makes 

clear that, while the AR form is necessary to derive the 
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Yule-Walker eg_ua tions, the spectral matching criterion is 

applicable independant of the spectral model form. 

Noise corruption pervades estimation problems and use­

ful estimators are generally at least mildly tolerant of 

additive noise. Often additional data is available to help 

characterize or distinguish the noise and signal processes; 

many estimation problems are concerned with the development 

of effective and computationally feasible methods for in­

corporating this additional information. A common pro­

cedure, employed when an accurate noise spectrum estimate is 

known, first applies an estimated noise cancelling filter to 

the corrupted data and then uses the output as "noise-free" 

data from which to estimate the signal spectrum. Ultimately 

the effect of noise corruption will be to decrease the best 

performance possible with any spectral estimator. 

In the following chapters a new spectral estimator is 

developed. As is common, the fundamental observations are 

assumed to be equally spaced samples of a zero-mean station­

ary Gaussian time series corrupted by additive independent 

zero-mean stationary Gaussian noise of known power spectral 

density, µ( e). This problem occurs in many applicati ans 

involving speech analysis (as well as others) wherein the 

noise spectrum is estimated from data taken during speech 

inactivity. 

The amount of data available to estimate the signal 

spectrum is usually limited by the nonstationary character 

of speech; the speech statistics are usually stationary only 
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over very short time intervals varying in duration. One 

study [ 54 J has observed speech waveforms and subjectively 

judged that the duration for which a segment may be con­

sidered stationary varies from about 4 ms. to over 360 ms. 

with most of the distribution contained in the range of 12 

ms. to 174 ms.; most speech analysis systems employ a fixed 

analysis interval approximately 20 to 25 ms. in duration. 

The use of a fixed analysis interval (with no particular 

at,tempt at optimum time alignment of end points) is simply a 

practical methbd of limiting the computational burden; while 

suboptimal spectral estimates are thereby achieved for long 

acoustic events, perhaps the most severe deleterious effect 

is the slurring of very short events and transitions. 

In order to employ at a later time a noise estimate 

obtained during speech inactivity, the noise statistics are 

assumed to remain stationary over much longer time inter­

vals; since one of the primary noise sources is ambient 

environmental noise acoustically coupled to the speech, the 

validity of this assumption must be checked in each situ­

ation. In many practical circumstances the noise is 

stationary over long intervals; for example, in aircraft, 

the noise statistics typically vary only with the flight 

condition. On the other hand, if the corrupting noise is 

another speech signal the assumption of long term noise 

stationarity is certainly invalid. 



CHAPTER III 

THEORETICAL FORMULATION 

In this chapter several related procedures for esti-

mating AR ( P) process parameters from noise corrupted time 

series observations are developed. In the first section the 

problem is motivated as one arising in speech applica-

tions. In the next section an ideal formulation is discus-

sed; unfortunately the resulting nonlinear system of 

eq_1J.ations is sufficiently complicated to make analytical 

solution intractable. 1 In the third section a first a p-

proximation to the ideal formulation is developed and shown 

to be essentially equivalent to the noise filtering pro-

cedures discussed in Chapter II. In the fourth section a 

second, improved, approximate formulation employing a 

weighted information measure is developed; 2 some important 

1Numerical solution may be feasible in some cases but 
this is not investigated in the present work. 

2rrhis weighted information formulation assumes a cen­
tral role in this work. In fact, this was the original 
foundation and was developed heuristically following the 
work of Chu and Messerschmi tt [ 55, 56 J. The theoretical 
foundation (as an approximation to the "ideal" formulation) 
was subsequently developed because the heuristic development 
could only specify the weight function qualitatively and a 
more quantitative characterization was required. 

31 
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properties of the weighted information measure are derived 

in the fifth section. Finally, the last section reflects 

upon these formulations, their relationship to other estima­

tion procedures, and problems of spectral estimation and 

speech analysis to which they may be applied. 

Application ~o Speech Analysis 

Acoustic events in speech are often modeled as a white 

zero-mean Gaussian stationary excitation of a linear system. 

The linear system response is usually identified with the 

vocal cavity response which depends upon the position of 

speech articulators (tongue, lips, teeth, etc.); the exc i­

tation is usually assumed to be physically localized al­

though its position may vary with different speech events. 

The linear system model may be criticized in various 

ways; still it has had considerable success in practical 

situations. The particular case of an AR (or all-pole 

line'lr) system model can be justified on the basis of a 

lossless acoustic tube of varying cross-sectional area. The 

analogy of an acoustic tube with the oral or nasal cavity 

alone is clear; however, some speech sounds reflect the 

combined response characteristics of the oral and nasal 

cavities indicating that a full ARMA model would be more 

appropriate. A more complete discussion of acoustic tube 

modeling of the vocal tract may be found in [21 ]. 

Based upon the considerable success of AR models in 

speech applications, as well as the physical analogies that 
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may be drawn between AR models and the vocal tract via 

acoustic tube modeling, the AR speech model is adopted here. 

In most applications the deleterious effects of the pressure 

transducer, analog amplifier, anti-aliasing prefilter, and 

the digitizer have been carefully minimized and may be ig­

nored. Some applications permit the system designer to 

ensure that the pressure transducer response reflect only 

the speech of the intended speaker; more often, conflicting 

goals deny the designer this flexibility so that the micro­

phone transduces other ambient environmental acoustic events 

that appear as unwanted "noise" in the observed signal. 

Consequently, while the AR model is adopted for the speech 

spectrum, it is inadequate as a model for the observed sig­

nal spectrum. 

Some ambient noise is a direct environmental response 

to the speech itself (e.g. echoes) or is short, transient, 

and generally unpredictable by nature (e.g. a gunshot, 

dropped book, engine backfire, cough, etc). Other ambient 

noise is repetitive (e.g. machine-gun fire) or steady by 

nature (e.g. drone of engines, rushing air, running water, 

whine of a turbine). ~his last (steady) type of noise is 

the primary focus of many speech analysis systems; typically 

these systems exploit the steady nature of the noise to 

determine noise statistics during speech activity from sig­

nal observations made during speech inactivity. With multi­

ple transducers (or other clever system design techniques) 

the statistics of a much broader class of noises may be 
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known during speech activity. In the following it is only 

assumed that, during each analysis interval, the noise in 

the primary (objective) observation signal be zero-mean 

Gaussian stationary additive and independent of the speech; 

the noise is, therefore, completely characterized by a spec­

tral density function, µ(0), which is assumed to be known. 

The goals of speech analysis are many and varied. In 

communications the goal is often to achieve a minimal data 

rate subject to a quality or communicability constraint. In 

artificial intelligence the goal is usually to "understand" 

the speech with phonetic or written transcription often 

arising as an intermediate step. Some other goals include 

the identification of the speaker, the identification of the 

language, translation of the voice of one speaker to that of 

another in the same or a different language, and the 

screening/diagnosis of disease (e.g. laryngeal cancer). 

Spectral estimation is at the foundation of speech analysis 

for all these goals and accurate AR model estimation in 

noise is fundamental to the estimation of speech spectra in 

practical environments. 

Ideal Formulation 

Let 

h(e) = g(e) + µ(e) ( 3. 1 ) 
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be the observed process power spectral density model where 

µ(0) is the known additive noise process spectrum and g(O) 

is the unknown AR(P) power spectral density model 6haracter­

izing the signal process; see Equation (2.3). Let f(e) be 

the Schuster periodogram defined for the N time series ob­

servations by Equation (2.1). If the signal and noise pro­

cesses are independent zero-mean real stationary Gaussian 

processes then the maximum likelihood method is asymp­

totically eqQivalent, for large N, to minimizing I(f,h) with 

respect to the AR(P) process parameters. Any parameter set 

minimizing I(f,h) and corresponding to a stable AR(P) pro­

cess shall be considered here to be an ideal solution to the 

estimation problem. 

This formulation of the estimation problem as a minimi­

zation problem may also be derived from an information theo­

retic viewpoint. Let f(e) be the true observed process 

power spectral density so that I(f,h) represents the asymp­

totic information divergence between the true spectrum and 

an arbitrary model spectrum. Clearly it is desirable to 

find the model h(a) minimizing I(f,h); if the minimum value 

is zero then h(e) = f(a) almost everywhere. Since f(a) is 

unavailable, replace it by a rough estimate, f( a), and find 

h(a) to minimize I(f,h). 

Minimization of I(f,h) is subject to several inter­

esting interpretations; the maximum likelihood and minimum 

information divergence interpretations have been given 
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above, a third noise filtering interpretation is now pro-

vided. Notice that I(f,h) = I(Hf ,g) where H(e) is the fre-

quency response of the Wiener filter given in Equations 

(2.16). The quantity H(e)f(0) may .be interpreted as a rough 

estimate of the spectrum of a process obtained by passing 

the observed process through a filter whose power3 spectral 

response characteristic is H( 0); minimization of I ( f, h) = 

I(Hf ,g) may then be understood as a standard LP (or maximum 

entropy, etc.) fit to the noise filtered process. Of 

course, H(e) is not known but is a function of the unknown 

parameters of g( 0); one must simply imagine finding a pa­

rameter set defining H(e) that also corresponds to the best 

LP fit, g(e), to the output process. 

The functional I ( f, h) is minimized by computing its 

derivative with respect to each parameter of g(e) and set-

ting the result to zero. For an arbitrary parameter, ; , 

this is 

1T 

J{[H{e) 
-TI 

g(e) - H2(e) f(e)]/g2 (e)} (ag(e)/a;) d0/2rr = o 

(3.2) 

3This is not to say that the observed process is passed 
through a Wiener filter whose frequency response is H( 9). 
Recall that the Wiener filter is designed to minimize the 
mean-square prediction error; the output process doing this 
does not have the si6nal process spectrum, g(0), but instead 
the spectrum H(0)g\9). Alternatively, H(9)f(9) may ·be 
interpreted as a rough estimate of the cross-spectrum 
between the input and output processes of the Wiener filter. 
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Using Equations (2.3) and (2.4), the partial derivatives of 

g( e) are 

ag(e)/a~2 = g(e)/~ 2 (3.3a) 

and, for 1=1,2, ..• ,P 

p 

ag(e)/aa1 = -g2 (e) L 2am cos[ (1-m)eJ/~2 (3.3b) 
m=O 

Defining4 

f~a2 (a) f(a) - H(a) g(a)} eine da/2u 
-iT 

(3.4) 

. and substituting Equation (3. 3) in Eouation (3.2) yields 
·~ 

2 (aP./~ ) V £-m = 0 (3.5a) 
m=O 1=0 

and, for £=1,2, ••. ,P 

p 

L (9iJi/~2) VP.-ID = 0 (3.5b) 
m=O 

while a little further manipulation of Equations (3.5) 

4rt is worth noting that the ~uantities, Vn, defined by 
Equations (3.4) are the components of the gradient vector of 
I(Hf,g) where differentiation is defined with respect to the 
inverse correlation parametrization of g( 9); see Equation 
(3.22). 
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p 

L am V .f-m = 0 
m=O 
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(3.6) 

The symmetry of the functions f(e), g(e), and H(e) may be 

used to demonstrate that V_n = Vn while it is easy to see 

that Equations (3.6) are satisfied if 

n=0,1, ... ,P (3.7) 

To show that Equations (3. 7) must be satisfied if a 

stable filter is to be obtained, rewrite the system of 

Equations ().6) in matrix form as 

a1 . . . ap_1 ap 0 0 • • • 0 0 Vo 0 

a1 a2 • • • ap 0 0 1 ••• 0 0 V1 0 
• • • • • • • • + • • • • = • • • • • • • • • • 

aP-1 ap ••• 0 0 0 ap_2 ••• 1 0 VP-1 0 
ap 0 • • • 0 0 0 aP-1 • • • a1 1 Vp 0 

( 3. 8) 

The coefficients of a stable P-1st order predictor {an; n = 
1 ,2, ... ,P-1} are given recursively in terms of a stable pth 

order predictor according to 

A 

a1 a1 
[I + kp J]-1 • 

(3.9) • = • • • A 

ap_1 ap_1 
ap 0 
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where I is the identity matrix, J is the reversal matrix 

0 0 0 

0 0 0 

J = (3.10) 

0 0 0 

1 0 0 0 

kp = ap is a reflection coefficient5 and 

[I + kp Jj-1 = [I - kp J]/(1 - kp2) (3.11) 

Applying the nonsingular transformation6 [I + kp J J- 1 to 

Equation (3.8) does not change the solution and yields 

A A 

a1 ap_1 0 0 0 0 0 Vo 0 
A A 

a1 a2 0 0 0 0 0 V1 0 

+ = 
A 

0 0 0 0 ap_2 ••• 1 0 Vp_1 0 aP-1 
0 0 0 0 0 

A A 

Vp 0 ap_1 ... a1 

(3.12) 

5These are the same reflection coefficients used in the 
forward-backward recursion; see Equation (2.11 ). 

6Bounded input, bounded output (BIBO) stability re­
quires and is guaranteed by the condition lknl < 1 for n = 
1,2, ... ,P which also guarantees that the indicated 
transformation is nonsingular. 
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The last equation shows Vp to be a linear combination of 

V0 ,V1, ... ,Vp_ 1 and the reduced system 

A A 

0 a1 aP-1 0 ... 0 Vo 0 
A A 

0 0 ... 0 V1 0 a1 a2 

+ = 
A 

0 0 0 
A . 1 Vp_1 0 ap_1 ap_1 . 

(3.13) 

is of the same form as Equation (3.8). Consequently, sta-

bility requires that each Vn be a linear combination of the 

previous vi.' l.=0, 1 ' ••• ,n-1' while the final reduced system 

is simply V0 = O. Hence, if only stable minima of I(f ,h) 

are sought these minima must satisfy Equations ( 3. 7) which 

may be rewritten, for n=0,1, ... ,P, as 

JH~e) H(e) f(e) eine de/2rr = J;(e) g(e) eine de/2,,- (3.14; 
-1T -1T 

This is a highly complicated nonlinear system of equa-

tions that appears to be very difficult to solve analyti-

cally. 

H( 0) = 

Note that, in the absence of noise, µ( 0) = 0 and 

so that the system reduces to Equations (2.13) as 

expected; in this case it is well known that the system 

always possesses a unique stable solution. 

In general no admissable solution exists; the following 

example will serve to illustrate. Consider an AR(O) process 

corrupted by white noise of known variance µ. The system of 
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equations reduces to 

TT 

r 0 = J f(e) de/2rr = ~2 + µ 

-'IT 

(3.15) 

If r 0 2_ µ the system is solved by o-2 = r 0 - µ which yields 

the minimum value I(f,h) = I(f,r 0 ) = Q. If r 0 < µ the 

system does not possess a real solution; however, I(f,h) is 

always minimized by selecting o-2 = r 0 ~ µ. 

Noise Filtering Formulation 

Since Equations (3.14) appear so difficult to solve, it 

is natural to consider alternate formulations. From the 

observation that l(f,h) = I(Hf ,g) and the interpretation of 

H( e) as the power spectral response of a noise filter a 

simple and reasonable procedure is to replace H( e), which 

depends upon unknowns, by an estimate H(e). Several classes 

of estimates have been presented in Equations ( 2. 1 9) and 

(2.20). 

Once the data has been processed by the filter with 

power response H(e) a "noise-free" rough estimate is avail-

able 

f(e) = H(e) f(e) (3.16) 

Then, minimization of I(f ,g) = I(Hf ,g) is achieved by the 
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solution to the equations 

1T f H(e) f(9) ein9 d0/2n 

-iT 

= 1:(0) eln9 dS/2n 

--TT 
for n=0,1, ... ,P (3.17) 

This, 04 cpurse, leads easily to the Yule-Walker equations 

with the difference that the estimated correlation values 

are now given by the left-hand side of Equation (3.17); the 

reader is urged to compare this equation with Equations 

(3.14) and (2.13). 

Weighted Information Formulation 

The previous approximate formulation encompasses a wide 

variety of estimation procedures that have been studied in 

recent years. If f ( e), given by Equation (3 .16), is a good 

rough estimate of the noise-free power spectral density the 

resultant model parameters can be expected to be accurate. 

Consequently, considerable effort has been expended trying 

to find the best form of H( e) and, ultimately, the best 

means of computing the correlation values on the left hand 

side of Equation (3.17). 

Generally speaking, any estimate can be expected to be 

more accurate if there is less corrupting noise; in particu­

lar, f(e) can be expected to be more accurate in those spec-

tral regions where the signal to noise density ratio is 

large. Since the reliability of the rough estimate f ( e) 

varies with frequency, the criteria for fitting a model to 
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f(0) should reflect this variation in reliability. The 

frequency weighted spectral distance measure introduced by 

Chu and Messerschmi tt L 55, 56 J provides precisely the re-

quired flexibility for such a criteria. The criteria is 

derived f~om the asymptotic information divergence, I(f,g), 

by noting that the integrand in Equation (2.17) is a non-

negative error measure; the frequency weighted variant is 

obtained by introducing a multiplicative nonnegative weight 

function to the integrand of I(f ,g) to yield 

Iw(f,g) = J"w(e){[f(e)/g(e)],.. ln[f(e)/g(e)] - 1} de/2rr 

-~ (3.18) 

If W(e) is constant, minimization of Iw(f ,g) = Iw(Hf ,~) 

is equivalent to minimization of I(f,g) = I(Hf,g). To re­

flect the greater reliability of f(e) in some spectral re­

gions, W(S) should be selected to be large where the signal 

to noise density ratio is large. To remain consistent with 

AR estimation procedures that work well in the absence of 

noise, H(e) should approach unity and W(e) should approach a 

constant as µ( 8) approaches zero. Specific procedures for 

selecting H(e) have been studied in the past [32-39] and 

important examples are given in Equations (2.19) and (2.20); 

the above considerations provide a qualitative understanding. 

of an appropriate selection for W( e) but a more specific, 

quantitative understanding is required. 
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To minimize Iw(Hf,g) Equation (3.18) is differentiated 

with respect to the parameters of g(e) and the results are 

set to zero. The procedure is the same, mutatis mutandis, 

as that followed for minimizing I(Hf·,g) and yields the 

system of equations 

g(e) einS de/2'TT (3.19) 

Comparison of Equations ( 3. 1 9) to Equations ( 3 .14) , which 

result from the ideal formulation, immediately suggests the 

required quantitative criteria for selecting W(e). Specifi­

cally, W( e) should be selected so that, at least approxi-

mately, 

w(e) = H(e) (3.20) 

A 

and H( e) should estimate H( e). This selection is supported 

by the previous heuristic considerations which indicated 

that W(e) should be large where the signal to noise density 

ratio is large. 

Properties of the Weighted Information 

In this section three important results concerning the 

weighted information measu~e, Iw(f,g), are developed. These 

results also apply to the asymptotic information divergence, 

I(f,g), as a special case where W(e) = 1. The first result 

generalizes the triangle equality property for I(f,g), see 
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Equation (2.21 ); that this property generalizes appro-

priately is of interest to the use of the weighted 

information measure .in place of the (unweighted) asymptotic 

information divergence for vector quantization. 

The Kullback information number ·and the asymptotic 

information divergence are well known to be convex with 

respect to general classes of probability and spectral den-

sities. With the appropriate definition for convex super-

position of AR(P) spectra, the second important result is 

that the class of stable AR(P) spectra is convex and the 

weighted information measure is strictly convex with respect 

to this class.7 As a consequence, Iw(Hf,g) can have at most 

one local minimum with respect to this class; moreover, if 

such a minimum exists it is also a global minimum. 

Finally, the third result shows that the second mixed 

partial derivative of Iw(~f,g) defines a positive definite 

quadratic form. This shows that any stable solution to 
..... 

Equation (3.19) is a local minimum of Iw(Hf,g); this could 

also have been demonstrated using the strict convexity. 

Combined with the previous result this shows that Equation 

7 A set, 9', is convex if it always contains the convex 
superposition of two elements in the set. A convex super­
position is a map x3 = CS(x1 ,x2;Y) defined for 0 _s_ y _s_ 1 and 
~11 x1,x2 ~9' sucli that x3 = x1 if Y= 1 and x3 = x2 
1~ Y = O; 1f ~1 = x2 then x3 = x2 = .x1 f?r all Y. A fun?­
t1on f(x) defined on a convex set 9' is said to be convex if 
:f(x1) + (1-Y) f(x2) ~ f(x3) and strictly convex if equality 
implies x1 = x2· 
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( 3. 1 9) can have at most one stable solution (al though un-

stable solutions can, and often do, exist); more~ver, if 

such a solut:Lon exists, it is the global minimum among 

stable AR(P) spectral models. 

The question of existence is not addressed in this set 

of results. The existence of a stable solution to Equations 

(3.19) is assumed but remains an open question in general; 

existence can be demonstrat~d in special cases, e.g. W(e) = 
1 , while experimental results are discussed in Chapter V. 

Because the proofs are nonconstructive, they do not assist 

with the question of existence nor do they provide algo-

ri thms for computation of a solution; computational pro-

cedures are discussed in Chapter IV. It is worth noting 

that if no solution to Equations (3.19) exists then, since 
A 

Iw(Hf ,g) must possess a minimum in the closure of the set of 

stable AR(P) spectra, the minimum occurs as a limit point of 

the set. 

To simplify the following discussion the set of stable 

AR(P) spectra shall be denoted &lp· Each element of the set 

may be charg,cterized by .a P+1-tuple of real parameter values 

satisfying appropriate (stability) criteria. Four charac-

terizations of ~p are presented below: 

Predictor Coefficients. Let Ap(z) be given by Equation 

(2.4) with all roots of Ap(z) inside the unit circle. Then 

(o-,a1,a2,•••,ap) denotes an arbitrary element of ~p if 

0-) o. 
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Reflection Coefficients. Let Ap(z) be given by 

Equation ( 2. 11 ) with I kn I < for n= 1 , 2, ••• , P. Then 

( er, k1 , k2, .•. , kp) denotes an arbitrary element of .o/lp if 

CT ) Q • 

Au~ocorrelation Coefficients. 

T~eplitz quadratic form given by 

T(x) = 

p 

L~m-nl Xm Xn 

m,n=O 

Let the real symmetric 

(3.21) 

be positive definite. Then (r0 ,r1, .•• ,rp) denotes an arbi­

trary element of alp. 

Inverse Correlation Coefficients. Let 

1/g(e) = (3.22) 

be a positive function of e in [-1T,"rr). Then (u0 ,u1, ..• ,up) 

denotes an arbitrary element of &lp. 

These represent only a few of the infinitely many ways 

of characterizing &lp. The first three parametrizations are 

well known with the corresponding terminology well estab-

lished in the literature. Each set o.f predictor coeffi-

cients is related to a unique set of reflection coefficients 

by· a continuous ·bijection defined by the Levinson-Durbin 

recursion. Each set of autocorrelation coefficients defines 

a unique set of predictor coefficients according to the 

Yule-Walker equations while the autocorrelation coefficients 
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may be retrieved from the predictor coefficients using Equa-

tions (2.3) and (2.8). 

The last parametrization is less common than the other 

three; these parameters have been denoted "inverse car-

relation coefficients" si nee they are the autocorrelation 

coefficients of a moving-average process whose spectral 

density function is inverse to that of the defined AR(P) 

spectrum. Each set of predictor coefficients uniquely de-

fines the inverse correlation coefficients according to 

P-n 

L am am+n/<r2 
rn=O 

n=O, 1 , ••• , P (3.23) 

That the predictor coefficients may be retrieved in a unique 

fashion from the inverse correlation coefficients ·is more 

difficult to establish. Positivity of Equation (3.22) gen-

erally establishes only the possibility of several appro-

priate predictor coefficient sequences; closer inspection 

reveals that only one of these sequences satisfies the sta-

bility requirements. The question is taken up in somewhat 

greater detail by Blackman and Tukey [5, pp. 126-7]. 

The first result follows easily using the inverse car-

relation coefficient parametrization of the AR(P) spectral 

density, Equation (3.22), together with Equations (3.19) and 

(3.18). 
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Theorem 3-1 . (Triangle Equality) . Let g1 ( e) be an 

AR(P) spectral density satisfying Equation (3.19) and let 

g 2 (e) be any other AR(P) spectral density. Then 

,._ A 

Iw(Hf,g2) = Iw(Hf,g1) + Iw(g1 ,g2) (3.24) 

The inverse correlation coefficient parametrization of 

AR(P) models in &lp is used here to define the convex super-

position of two models according to 

(3.25) 

for 0 < 'I < 1 • Since (3.22) remains a strictly positive 

function for u3 when u 1 and u 2 define strictly positive 

functions, this shows .CWp to be a convex set and leads to the 

second result. 

Lemma 3-1 • (Strict Convexity). Let g3 (e) be a stable 

AR( P) spectrum defined by the convex superposition of the 

two stable AR(P) spectra g1 (e) and g2 (e). Then 

(3.26) 

for 0 <'I < 1 with equality only if g 1 (6) = g2 (a). 

Proof. Using the inverse correlation coefficient pa­

rametrization and the definition of convex superposition for 

AR(P) spectra it is easy to show that 



Together with Equations (3.18) this yields 

Ylw(f,g1) + (1-Y) Iw(f,g2) 

~ f ~ ( e) ln { [ g 1 ( e ) ] Y 

-'IT 

- Iw(f ,g3) 
1-Y . 

[g2(0)] /g3(e)} 
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(3.27) 

de /21T (3.28) 

From the theorem on geometric and harmonic means the argu-

ment of the logarithm in Equation (3.28) is not less than 

one and equals one only if g1 (e) = g2 (e). The lemma follows 

easily. 

Theorem 3-2. (Uniqueness). Iw(f,g) can have at most 

one local minimum in ~p; if such a minimum exists it is also 

a global minimum. 

Proof. Let g1 (0) and g2(0) be two distinct local mini­

ma and form their convex superposition g3 (e). Without loss 

of generality assume Iw(f,g1 ) 2_ Iw(f,g2 ). With 'I~ 1 the 

previous lemma gives 

(3.29) 

But g5(e) is arbitrarily close8 to g 1 (e) for Y arbitrarily 

8 The Euclidean metric applied to the inverse corre­
lation coefficients shall suffice to define closeness here. 
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close to one, so that this inequality contradicts the 

assumption that g1 (e) is a local minimum. The second part 

of the theorem follows -by assuming g1 ( 8) is a local minimum 

while g2(8) :is any distinct element of~p such that 

Iw(f ,g2) ~ Iw(f ,g1) and then repeating the above argument. 

In order to establish the final theorem of this section 

the second mixed partial derivative of Iw(ftf ,g) is shown to 

define a positive definite quadratic form. The variables 

for n=O 
(3-30) 

for 

are defined for n=0,1 , ... ,P so that the first partial deriv-

atives are 

Vn = a Iw(Hf ,g) I a vn 

: f~(a){fi(a) f(a) - g(a)l cos(ne) da/2n 

-Tr 

(3-31) 

and the second mixed partial derivatives are 

Lnm = avn/ ovm 

: f ~(a) [g( a) J2 cos(na) cos(ma) d0/2n 

-rr 

(3.32) 

Clearly, the quadratic form 
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I: Xn 
m,n=O 

is positive definite. This proves the following 
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d0/2TI" 

(3°33) 

Theorem 3-3. (Absence of False Solutions). Any stable 

AR ( P) solution to Equations ( 3 .1 9) is a local minimum. 

Note that this does not eliminate the possibility of 

unstable solutions to Equations (3.19), nor does it estab-

lish the existence of a stable solution. Since the previous 

theorem has established the uniqueness of a minimum this 

theorem establishes the 

Corrollary 3-1. Equations (3.19) can have at most one 

stable AR(P) solution. If such a solution exists it is the 

unique absolute minimum of Iw(:Hf, g) over 87/p. 

Remarks 

Three general formulations for estimating the parame­

ters of an AR(P) process in noise have been discussed. The 

first "ideal" formulation has theoretical foundations 

resting upon principles of information theory as well as the 

maximum likelihood method. The second two formulations are 

developed as approximations to the first. 

The need for approximate formulations arises due to the 

difficulty posed by the nonlinear equations resulting from 

the ideal formulation. The first approximate formula ti on 
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leads to the Yule-Walker equations but with modified corre-

lation values; algorithms for solving the Yule-Walker equa-

tions · are computationally simple and well understood while 

methods for evaluating the modified correlation values have 

been carefully studied in recent years. 

While this first, noise filtering, approach has led to 

demonstrable performance improvements in noise environments 

over the standard noise free formulation (and reduces to the 

noise free formulation in noise free environments), still 

better performance is desired. Rather than attempt direct 

solution of the ideal formulation the second approximate 

formulation is developed. Evidence that this weighted in-

formation formulation leads to improved performance over the 

noise filtering formulation is presented in Chapter V; 

neither approximate formulation is expected to perform as 

well as the "ideal" formulation. 

The weighted information formulation is related to 

other techniques that have appeared in the literature. 
L 

Consider the si tuat:Lon wherein the desired signal spectrum 

is essentially zero outside the region 9E[-TI/~, TI/~) while 

the noise spectrum is essentially zero inside this region. 

The foregoing theory indicates that an appropriate selection 

for the weight function is 

9 E [-TI/~, TI/~) 
"' w(e) = H(e) = (3-34) 

0 otherwise 
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so that the weighted information is 

A 

Iw(Hf ,g) f rr/'IJ = {[f(e)/g(e)] - ln[f(e)/g(e)] 

-rr/'SJ 

- 1} d9/2rr (3-35) 

ltli th the change of variable e/'.tl = e this may be rewritten 

Iw(lif,g) = (1/'1l) f"{[f(0/'1l}/g(0/'1l)) -
-Tr 

ln[f(ij/'SJ)/g(§/'.tl)] - 1} d§/2rr (3.36) 

Clearly the indication here is to low pass filter and deci­

mate the observed signal before fitting the AR(P) model to 

the resulting data. This is precisely the technique em-

ployed by Quirk and Liu [45] to improve the resolution of 

AR(P) estimation in noise; they considered the use of AR(P) 

estimators to determine the frequencies of sinusoids in 

noise and demonstrated that the filtering/decimation scheme 

is clearly advantageous when the sinusoids are a priori 

known to lie in some fixed frequency range. 

The problem which motivates the present work concerns 

signal and noise spectra that are both generally nonzero 

throughout the en ti re frequency range, [ -rr, rr); hence the 

luxury of simple filtering/decimation schemes is not permit-

ted. On the other hand, the difficulties associated with 

very limited quantities of data are not the primary focus of 

this work so that the asymptotic formulation is considered 

adequate. 
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Computational issues for the weighted information for-

mulation are discussed in Chapter IV. Equations (3.19) arc 

cast in algebraic form and their (exact) analytical solution 

is discussed. Approximate (numerical) solution methods 

might be developed based upon the resulting analytical 

system of equations or directly upon minimization of 

" Iw(Hf,g); the latter approach is adopted to develop a simple 

iterative procedure based upon the notion of a contraction 

mapping. In addition, computational procedures appropriate 

to the use of the weighted information for vector quantiza-

tion are discussed. Since in many applications the "vector 

quantization codebook" may. be designed "off-line" using 

noise free speech data, questions associated with the code~ 

book design problem are not discussed; instead, computa-

" tional procedures for the "on-line" minimization of Iw(Hf ,g) 

over the finite codebook are developed. 



CHAPTER IV 

COMPUTATIONAL FORMULATION 

In this chapter computational procedures for the 

solution of Equations (3.19) are discussed. In the first 

section the system is reduced to an algebraic form by as­

suming the weight function to take the form of an AR(M) 

power spectral density; once cast as a nonlinear algebraic 

system of equations, analytic procedures for solving the 

system are discussed. In the second section, techniques for 

evaluating the coefficients of the system are discussed. 

Analytic solution of the nonlinear algebraic system 

becomes increasingly difficult as the order of the weight 

function, M, is increased. While numerical polynomial root 

solving procedures could be systematically applied, the 

third section develops instead an iterative procedure based 

upon the idea of a contraction mapping. Together with 

sampled frequency domain processing techniques, these iter­

ative procedures do not restrict the weight function to an 

all-pole form. The fourth section develops computational 

formulae required for the use of the weighted information in 

vector quantization; an extension 

developed to permit closed form 

of Jensen's theorem is 

evaluation of the ap-

propriate integrals when the weight function assumes an 

56 
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AR(M) form. Finally, the last section concludes this chap-

ter with some final remarks concerning these computational 

methods. 

Reduction to Algebraic Form 

Let 

Pn = J "'II ( 9 ) ii ( 8 ) f ( 8 ) e i ne d9 / 2" 

-TT ( 4. 1 ) 

n = 0,1, ... ,P 

denote the coefficients appearing on the left hand side of 

Equations (3.19). Let 

A J~(e) g(e) eine de /2TT (4.2) Pn = 
-TT 

n = 0, 1 , ••• , P+M 

denote the quantities appearing on the right hand side of 

Equations (3.19). 
A 

Observe that the index of Pn is permitted 

to range beyond P to P+M. If W(e) is an AR(M) spectrum 

given by 

(4.3a) 
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where 

(4-3b) 

and if g(e) is an AR(P) spectrum given by Equations (2.3) 

and (2.4) then their product is an AR(P+M) spectrum given by 

(4.4a) 

where 

(4-4b) 

The quantities defined by Equation (4.2) are related to 

the polynomial coefficients in Equation (4-4b) by the Yule-

Walker equations 

0 

= 

0 

Eq_uations (3.19) assign numerical values to some of the 

entries in the coefficient matrix according to 

n=0,1, •.• P (4.6) 
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while the remaining entries are to be considered as un-

knowns. The elements of the column vector are defined as a 

linear combination of the coefficients of the unknown poly-

nomial, Ap(z), by Equation (4.4b) which may be rewritten in 

matrix form as 

= 

0 

0 

0 

0 

0 

(4.7) 

Equations (4.5), (4.6), and (4.7) define a nonlinear 

system of P+M+1 multi variate polynomials in the P+M+1 un-
A A A 

knowns a-, a1' a2, · · ·' ap, · PP+1' PP+2' '' ·' PP+M' Each 

polynomial is a first order function of each unknown while 

each term in these polynomials may involve up to two dis-

tinct unknowns. The properties of the weighted information 

developed in Chapter III indicate that this system of 

equations can have at most one stable solution; if a stable 

solution exists it is the solution sought. 

Assuming the AR(M) weight function to be stable the 

product polynomial, CP+M(z), also has all its roots inside 

the unit circle and may be expressed recursively in terms of 

a set of reflection coefficients according to 

(4.8) 
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for n = 1 , 2 , ... , P+M . If the coefficient matrix in Equation 

(4.5) were entirely known then the Levinson-Durbin re­

cursion 1 could be applied to yield CP+M. ( z). Since some of 

the entries in the coefficient matrix are unknown, the 

Levinson-Durbin recursion cannot proceed beyond the determi-

nation of Cp(z); the remaining reflection coefficients 

{kp+1 , kp+2 , ••• , kP+Ml are unspecified (beyond the stability 

requ.i rement that lknl < 1 ) by Equations ( 4. 5) and may be 

considered as new unknowns replacing { PP+1 , Pp+2 , ••• , PP+M.}. 

These remaining reflection coefficients should be se-

lected so that CP+M(z) = 0 mo.dulo BM(z). Once these have 

been determined the solution may be obtained by simple poly-

nomial division from 

(4.9) 

together with 

P+M 
<T2 = ( Po/ <T~) n ( 1-k~) (4.10) 

n=l 

To determine the remaining reflection coefficients it 

is generally simpler to consider the polynomials 

1This well-known algorithm may be found in many fairly 
recent publications; for example, see [ 21 , p. 55ff J. An 
exposition by the authors is contained in [57] and [58]. 
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(4.11) 

(4.12) 

so that the condition to be satisfied is 

(4.13) 

Modulo reduction is then accomplished more simply by re-

peated use of the substitution 

-M z 

M-1 

= - L blVI-£ 
£=0 

-£ z (4.14) 

in CP+M(z) until all powers of z-1 larger than M-1 have been 

eliminated. The reduction process is facilitated by using 

the recursion (4.8) to express CP+M(z) as 

(4.15) 

where 

'""E ( ) - 1 '""E ( ) k . - ( n - 1 ) '""p. ( -1 ) • '""E0 ( z ) --1 n z =z n-1 z + P+n z n-1 z ' (4.16a) 

(4.16b) 
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and 

(4.17) 

With these formulae the reduction is accomplished in part by 

determining 

DM-1(z) = Cp(z) mod BJVI(z) ( 4. 1 8a) 

and 

( 4. 1 8b) 

The condition to be satisfied is then 

(4.19) 

Modulo reduction of the left-hand side of Equation 

( 4. 1 9) leads to an JVI-1 st order polynomial whose M coef­

ficients must be equated to zero; this yields a system of M 

nonlinear polynomial equations in the M unknowns {kp+1 , 

kp+2' •.. , kP+M}. While these equations are nonlinear some 

reflection will reveal that each polynomial equation is 

linear (i.e., of first degree) in each of the unknowns; the 

nonlinearity enters by way of terms involving products of 

different unknowns. 
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Because of this structure, systematic algebraic elimi­

nation2 will yield an Mth order polynomial in a single un-

known; each acceptable root of this polynomial will yield an 

M-1st order polynomial in a second unknown. Continuing in 

this fashion one successively solves Mth, M ..... 1 st, . . . order 

polynomial equations possibly generating M factorial po­

tential solutions of which at most one satisfies the sta-

bili ty criteria. This method is feasible for small values 

of M (e.g. M _s_ 4) but for larger values of M one must gener­

ally resort to numerical polynomial root solving pro­

cedures. 3 

For the case M=2, let 

-1 z (4.20a) 

(4.20b) 

2several methods (such as. those due to Euler, Eezout, 
or Sylvester) are available; one should take care not to 
introduce extraneous roots. For a general discussion see 
[59, Vol. II, P• 70ff] or [60, p. 277ff]. 

3The recommendation that M not exceed four is made 
based upon the fact that general polynomial equations of 
degree five and higher cannot be solved algebraically [ 59, 
Vol. II, p. 286 J. Of course this does not eliminate the 
possibility of transcendental solutions [59, Vol. I, p. 274] 
or the possibility that some special structure, unrecognized 
by the present author, may be discovered (or imposed) to aid 
in the solution. 
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3 

"'"""' g z - m L-1 m 
m=O 
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( 4. 21 ) 

denote the left hand side of Equation (4.19). Using 

Equations (4.16) these coefficients are 

(4.22a) 

""' 
g1 = do kP+1 kP+2 + do kp+1 + d1 kP+2 (4.22b) 

(4.22c) 

(4.22d) 

while modulo reduction yields 

(4.23a) 

(4.23b) 

Expanding Equations (4.23) yields 

(4.24a~ 

(4.24b) 
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where 

(4.25a) 

(4.25b) 

(4.25c) 

(4.25d) 

(4.25e) 

(4.25f) 

(4.25g) 

(4.25h) 

So that the solutions are given, upon elimination, by 

(4.26) 

and 

(4.27) 
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where 

(4.25a) 

(4.25b) 

(4.25c) 

(4.25d) 

(4.25e) 

(4.25f) 

(4.25g) 

(4.25h) 

So that the solutions are given, upon elimination, by 

(4.26) 

and 

(4.27) 
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By simply cascading two of these filters a new filter is 
A A 

created whose power spectral response is H( 8) H( 8). The 

coefficients in Equation (4.1) may then be computed in the 

usual manner (lag products of the windowed data) from the 

output of the cascaded filter structure. This scheme, de-

picted in Figure 2, assumes the relationship expressed by 

Equation (3. 20) al though this relationship may generally be 

avoided by replacing one of the filters in the cascade by a 

filter with W( e) as its power spectral response. For each 

data window, a "snapshot" of the impulse response of the FIR 

filter could be, used to estimate the parameters of W( 8). 

Since the response of the FIR filter may differ slightly 

from the response of the weight function a somewhat more 

consistent procedure would use the weight function pa­

rameters to implement an infinite impulse response (IIR) 

filter as the second filter in the cascade. 

Frequency domain noise filtering methods generally 

provide greater flexi.bili ty in response function selection 

than is available with time domain methods. These method,s 

involve an explicit transformation to the frequency domain, 

often by using the discrete Fourier transform (DFT), and 

determine the multiplicative response function, ~(8), in 

sampled form using a formula such as Equation ( 2 .19) or 

(2.20). "' The sampled form of H ( 8) may be used to estimate 

the parameters of W(e). If the noise filtered signal is not 

required, frequency samples of the weight function may be 

used multiplicatively before evaluating the coefficients; 
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alternatively, one may avoid re-evaluating the weight func-

"' tion and simply apply H( 9) twice. This latter alternative 

is depicted in Figure 3. 

A mixed time-frequency domain method is employed to 

obtain some of the results presented in Chapter V. In this 

method a Hamming window is applied to the observed data 

which is then zero-extended before computing the DFT. A 

sampled noise spectrum estimate is used together with these 

transform values to compute a noise filter spectral re­

sponse, H(e),. according to Equations (2.19) or (2.20).4 

Thi$ frequency sampled noise filter response is applied 

multiplicatively to the transform values and an inverse DFT 

of these modified transform values (with their original 

phase values) is computed. A random phase characteristic is 

computed and introduced to the frequency ~ampled noise 

filter spectral response which is inverse transformed to 

obtain an impulse response characteristic. Standard (auto-

correlation method) LP analysis is applied to this impulse 

response characteristic ·to determine the parameters of the 

weight function. These parameters are used to implement a 

4rt is generally found to be useful to modify the fre­
quency response characteristic slightly by smoothing the 
response obtained from ( 2. 1 9) or ( 2. 20) across frequency. 
The smoother should eliminate features narrower than those 
expected in the final signal spectrum while retaining 
broader features; a recursive median filter with a total 
length of about 2. 5% of the single-sided bandwidth is a 
current favorite of this author. End conditions (near the 
DC and Nyquist frequencies) can be properly handled using 
the known periodic nature of the frequency response. 
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(lattice structure) filter; beginning in the all-zero state 

the noise filtered (inverse transformed) data values are 

passed through this filter which is then permitted to "ring" 

awhile. 5 Lag products computed from this output then pro-

vi de the req_ui red coefficient estimates; the overall pro-

cedure is depicted in Figure 4. 

Finally, it is worth mentioning that each of these 

methods has recommended computing the final coefficient 

estimates as lagged products. The reason for this is that 

various quantization effects may occur up to the point of 

obtaining the modified data samples; however, if full pre-

cision is maintained in the final lag product computations, 

the resulting coefficient estimates will define a positive 

definite symmetric Toeplitz ·quadratic form in all but a very 

few highly exceptional cases (such as all modified data 

samples being identically zero). 

Iterative Techniques 

Equations (3.19) may be solved when the weight function 

has an · AR(M) form by using the algebraic procedures de-

scribed in the first section of this chapter; this method is 

appropriate if M ~ 4. Unfortunately, it is expected that 

accurate estimation of speech spectra will require weight 

functions with greater variation than is possible with an 

5That is to say that a zero input is applied to the 
filter after all the noise filtered data values have been 
applied as input. 



OBJECTIVE.._, WINDOW I I ... , 

SIGNAL & OFT 
INVERSE I __ ,LATTICE 

1 • 1 OFT ..--.. Fil TER 

FORM 
LAGGED COEFFICIENT 

PRODUCTS ESTIMATES 

WEIGHT 
I Iii- FUNCTION 

DETERMINE 
SAMPLED 

NOISE I NOISE Fil TER 
SPECTRUM • RESPONSE 

DETERMINE 
RANDOM 
PHASE 

RESPONSE 

INVERSE 
OFT & LP 

ANALYSIS 

PARAMETERS 

Figure 4. Mixed Time-Frequency Domain Coefficient Evaluation. 

-.J 
f\) 



73 

AR( 4) form. The procedures of the first section might be 

extended by applying numerical polynomial root solving pro-

cedures when M becomes large but at present such an approach 

appears somewhat cumbersome. 6 In this section alternate 

numerical formulations are discussed that do not make spe­

cific (parametric) assumptions as to the form of the weight 

function; these techniques are iterative and based upon the 

notion of a contraction mapping. A good general reference 

for this section is Collatz [61 ]. 

Most (single-step) iterative procedures can be ex­

pressed in the form7 

(4.29) 

6For the reader wishing to pursue this approach it is 
worth noting that one stumbling block is that the previous 
uniqueness theorem has not eliminated the possibility of an 
unstable (or imaginary) solution to Equations (4.5), (4.6), 
and (4.8) for which some (but not all) of the reflection 
coefficients are real and in the interval (-1, 1). If one 
could devise a method which guarantees that only the 
solution sought has real parameters isolated in (-1, 1), or 
some other known interval, the development of a numerical 
algorithm would be greatly facilitated. The reader is re­
ferred to [ 60, p. 99ff] or any similar discussion of nu­
merical methods for determining real roots of polynomials. 

7Parenthesized superscripts shall denote instances of 
the parameter vector while subscripts shall denote com­
ponents of the parameter vector. 
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where v( n) is the nth iterate of the parameter vector v. 

The solutton sought is a fixed point of the map 'ip. 

satisfies a Lipschitz condition8 

If 'ip 

(4°30) 

for some 0 < SI! < 1 then 'ip is said to be a contraction map. 

Contraction maps are often used to prove existence theorems 

because the seq_uence of iterates generated by ( 4. 29) is 

Cauchy. 

The problem of designing an iterative procedure for 

solving a system of eq_uations can be viewed as the problem 

of finding a contraction map whose fixed points coincide 

with the solutions sought. One usually begins with a map 

having the appropriate fixed points and then tries to show 

it satisfies a Lipschitz condition; often one employs the 

mean value theorem which states that if 'Pn is a continuously 

differentiable function of the parameter vector v then9 

8The map ifJ is assumed to have its domain in a Banach 
space with norm 11-11 and its range contained by the domain. 

9Two notational conventions are introduced here. First 
'Pn/J. denotes fJcpn/av1 and second the Einstein summation con­
vehtion (with respect to repeated subscripts) is employed. 
The summation range is 0,1, ..• ,P so that the Einstein con­
vention implies summation with respect to the 
subscript J. (only) over this range on the right hand side of 
(4°31 ). These conventions are used in this section only. 
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'Pn(v(l)) - cpn(v(2)) = 'Pn/1 ('{v(1) + [1-Y] v(2)) {v}1) - v}2)l 

(4-31) 

for some 0 < y < 1 . If one can determine a constant !P < 1 

major izi ng the norm of the matrix with components <Pn/£ then 

cp has been demonstrated to satisfy a Lipschitz condition. 

Using Equations (3.22), (3.30), (3.31 ), (3.32) and 

(4.1) the system of Equations (3.19) may be expressed as 

n = 0,1, ..• ,P (4-32) 

where 

,... 
V n = Pn - 1 nm v m (4-33) 

Defining 

LnmL = fnw(e)[g(e)]3 cos(ne) cos(me) cos(te) de/2n (4·34') 
-'TT 

and 

0 n ~ m 

0nm = (4.35) 

n = m 
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the following relations may be easily verified 

(4.36) 

A 

Vn/£ = - Lnm/£ vm - 1 nm vm/£ 

(4.37) 

Consider the map ij) with components 1 O 

[- -1 J A 

<Pn = v n - A Lo . nm V m (4.38) 

where A is a nonzero scalar constant. Use of this map for 

an iterative procedure is essentially a modified Newton 

method. First observe that ij) has a fixed point if and only 

if the second term on the right hand side of (4.38) 

vanishes. This term vanishes if and only if Equations 

(4.32) are satisfied since, as shown in Chapter III, L (and 

so also L-1 an~ L~ 1 ) is positive definite. 

1 Orf 1 denotes the matrix with 1ntries L m and L-1 
the inverse of this matrix then( L~ shall d1enote L-1 
evaluated at the initial iterate v OJ and [1~1 Jnm its 
entries. 
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Next, using (4.37), consider 

'Pn/L 

(4.39) 

which, if evaluated at v -(0) = v , is 

m( Q) = ( 1 ') i: ..-n/1 -/\ uni (4.40) 

Clearly, (4.40) is majorized by !Z = 11-A.I so that 

A should be selected in the range 0 < A< 2 if the Lipschitz 

condition is to be satisfied. More generally, since the 

last term in ( 4. 39) is positive definite, A. should be se­

lected in the range 0 < A. < 2/A.max where 

(4.41) 

bounds the matrix norm. With this selection 

2_ 1 - A. A.max > -1 ( 4. 42) 

and the matrix no rm of 'Pn/£ is bounded by one. 

Apparently the choice A.= 1 /Amax would lead to the most 

rapid convergence while smaller values would lead to slower 
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convergence and guarantee that 'Pn/£. is positive definite. 

Unfortunately, the right hand side of inequality (4.41) is a 

function of the parameter vector v and cannot be bounded by 

a constant, Xmax, for all v in £Rp; consequently the Lip­

schitz condition cannot be satisfied. everywhere in .%>p· 

If a solution, g*(e), exists in Mp it is possible to 

find a constant Gmax sufficiently large such that 

for all 9E[-n,n). For such a constant the solution will be 

contained in that portion of Mp for which 

g(e) ~ Gmax (4.44) 

for all 9E[-n,n). Then from 

(4.45) 

where 

W( e) ~ Wmax (4.46) 
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f o r al 1 8 E [ - ir, ir ) and 

(4.47) 

it is clear that any choice 

(4.48) 

will suffice to satisfy the Lipschitz condition for that 

portion of &Ip• 

To recapitulate, the map 'CP, defined by (4.38), has 

fixed points coinciding with the solutions to (4.32). More-

over, if there exists a solution in &Ip and the domain of 

"Cf5 is suitably restricted to a subset of &lp containing this 

solution then there exists :X > 0 sufficiently small such 

that q5 satisfies a Lipschitz condition on this subset and 

(4.39) is positive definite. This implies that application 

of the map 'CfJ to any element of the subset will generate a 

new parameter vector closer (in norm) to the solution. 

Hopefully, repeated application of "Cf will generate a se-

q_uence of parameter vectors approaching the solution; this 

will be the case if each new parameter vector is also in the 

restricted domain of qi. 

Providing a guarantee that each new parameter vector 

will be within the restricted domain of ;p is not a simple 

task. Without such a guarantee it is possible to devise a 

computational test to check for this condition; then, if the 
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test is violated, some method must be devised to restart the 

iterations. In practice the situation is not expected to be 

quite so pathological; if A is selected to be conservatively 

small (smaller if the solution is expected to be a sharply 

peaked spectrum) and a reasonably good initial estimate is 

provided, one does not expect to encounter convergence dif-

ficul ties. This more optimistic approach shall be taken in 

the following. 

To implement the iterative procedure assume W( e) is 

available in sampled form. The components of the nth iter-

ate parameter vector may be used to evaluate 

p 

gn(e) = 1/{ LvJn) cos(£e)} 
1=0 

(4.49) 

in sampled form. If the sample mesh is equally spaced at 

k = -N, ... ,0,1, ... ,N-1 

then the components v~n) may be computed from 

P, -m 

N-1 

L W ( ek) gn ( ek) cos ( m 8k) / 2N 
k=-N 

and the components of the next iterate are provided by 

v(n+1) = v(n) _ A[L-1 J y(n) 
J. J. o J.m m 

(4.50) 

(4.51) 

(4.52) 
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A crude test that the nth iterate is· in &Ip is provided in 

the course of these computations by verifying that the de­

nominator of (4.49) is positive on the sample mesh. 

The procedure can be initialized by the solution to the 

Yule-Walker equations where the elements of the coefficient 

matrix are given by Pm· Equations (3.23) and (3-30) may 

then be used to evaluate vjO) while the elements [1~ 1 ]nm may 

be obtained by inverting the real symmetric matrix with 

entries 

N-1 
[10 ]nm = L W( 9k) [g0 ( €\:) ] 2 cos(nek) cos(mek)/2N 

k=-N 

The coefficients Pm may be evaluated from 

N-1 

L 
k=-N 

( 4. 53) 

(4.54) 

Alternatively, the computational methods described in the 

previous section may be employed to evaluate the Pm as 

lagged products of modified data values. 

A simple test for iteration completion is to simply 

check that 

p 

l/Jn = L [v~n)J2 (4.55) 
m=O 

is less than some small preselected value. Finally, to 

obtain filter coefficients as are required by many 
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applications, it is perhaps simplest to first compute 

correlation values from 

N-1 L gn ( ek) cos (mek) 

k=-N 

(4.56) 

and then solve the Yule-Walker equations. 

If at some step prior to iteration completion an iter-

ate falls outside ~P' one may attempt to reinitialize the 

procedure using one of the last few iterates inside ~p· 

Formulae for Vector Quantization 

In this section formulae relevant to the problem of 
A 

minimizing Iw(Hf ,g) over a specified finite collection of 

AR(P) model spectra are developed. Consider first that 

according to Equation ( 3. 24) this problem is equivalent to 

minimizing Iw( g1 , g) where g1 ( 8) is an AR ( P) model spectrum 

satisfying Equation (3.19). Next, observe that minimizing 

Iw(g1 ,g) is equivalent to minimizing 

Jw(g1 ,g) = j[w(a) g1 (a)/g(a) + w(a) ln g(a)] da/2ir (4.57) 

-'TT 

Since g(e) is an AR(P) model given by Equation (3.22) the 

first term in Equation (4. 57) may be rewritten as 

J"w(a) g1(e)/g(a) da/2ir = 
-'TT 

(4.58a) 



83 

where the fact that g1 (e) satisfies Equation (3.19) has been 

used together with Equation ( 4.1). Similarly, the second 

term in Equation (4. 57) may be rewritten as 

(4-58b) 

In general Jw(g1 ,g) will be minimized over the finite 

collection of AR(P) spectra by evaluating this quantity for 

each model spectrum in the collection. For any given model 

spectrum the first term may be easily evaluated using 

(4.58a); the coefficients Pn may be determined from the data 

using one of the methods outlined in the second section of 

this chapter. The second term presents somewhat greater 

difficulty; when W(e) = 1 the last term in (4.58b) may be 

shown to vanish as a consequence of Jensen's theorem but, in 

general, this term will not vanish. 

When W( e) has an AR(M) form an extension of Jensen's 

theorem, which shall be developed presently, permits the 

evaluation of this term from a simple formula. In order to 

establish the general theorem it shall be necessary to first 

establish the following lemma. 

Lemma 4-1 . Let 

p 

TT ( 1 - ,.,m z) 
m=l 

(4.59) 



84 

have no roots inside the unit circle, r • 

also within the unit circle then 

(4.60) 

Proof. The method of proof is essentially the same as 

that used for Jens en's theorem by Hille [ 62, pp. 256-7]. 

Assume without loss of generality tl;lat a narrow strip from 

Tk to vk = tk/ I Tkl is free of the 11m and consider the inte­

gral 

{ln[(z-Tk)/(1- T1 z)]} d[ln Ap(z- 1 )]/21Ti (4.61) 

around the contour, ~ , depicted in Figure 5. The loga-

rithm, determined so that ln(-1) = rri, is analytic within 

~ and Ap ( z-1 ) has neither poles nor zeros within ~ so 

As the radius of the circular portion of the 

contour, ~, surrounding the singularity Tk tends to zero it 

offers no contribution to this integral. As the di stance 

between the two straight sections of the contour tends to 

zero they provide the contribution 

z= T 

~k =~=v[:p(z-1)]-1 d[Ap(z-1)] 

k 

= ln Ap(Ti1 ) - ln Ap(v~1) (4.62) 
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-1 

Figure 5. The Contour Win the Complex Z-Plane 
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For the remaining portion of the contour, integration by 

parts yields 

(4.63) 

where the integrated part is 

(4.64) 

Subs ti tut ion of ( 4. 62) and ( 4. 64) along with A.tk = 0 into 

Equation (4.63) completes the proof. 

A simple variable substitution may be used to obtain 

the related formula 

~ ! ln Ap(z) l / !(z-Tk) ( 1- T1 z)} dz/2-rri 

= {ln Ap(ri1)}/(1- TkTl ) 

which together with (4.60) establishes the 

(4.65) 



Corollary 4-1 . 

(4.66) 

Finally, sufficient background has now been presented 

to establish the 

Theorem 4-1. Let W(e) have an AR(M) form given by 

where n(z) has the partial fraction expansion 

M 

n(z) = L w1 /(1- T1 z-1 ) = (Jw/BM(z) 
£=1 

(4.67) 

(4.68) 

with jT1 j< 1. Then with g(e) given by equation (2.3) the 

second term in (4-57) is 

Jtr w(a) ln g(a) da/2tr ~ 
-1T 

where 

M 

T = 2 L wk n(Tk1 ) ln Ap(Tk1) 
k=l 

- T (4.69) 

(4.70) 
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Proof. Using (2.3), (4.67), and (4.68) 

T = f" In( ei9) 12 ln I Ap ( e i9 lj 2 de /2" 
-TI 

M 

= L ~ W 1 ~ { 1 n A p ( z ) A p ( z - 1 ) l / ! ( z- T k ) ( 1 - T1 z ) l dz/ 2 TI i 

k,£ =1 ~r 

Together with the above corollary· this yields 

,··:: 
., M 

T = L (wkw£ /(1-TkT£ )} ln Ap(-rk 1 ) Ap(Ti"""1) 
k,£ ::;l 

(4.71) 

I 
(4.72) 

and (upon splitting the logarithm and collecting terms) 

Equation ( 4. 70). 

With W(e) = 1 this theorem yields 

f "1n g(e) de/2" = ln ~ 2 
-TI 

(4.73) 

which is a special case of Jens-en's theorem [62, Theorem 

9.2.5]. The first term in Equation (4.69) is easy to com­

pute while the second term, T, given by Equation (4.70) may 

offer the reader some difficulty. First observe that (4.70) 

req_uires knowledge of the parameters of the partial fraction 

expan~ion (4.68). These are fairly easy to determine once 
i 
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the roots Tk of BM(z) are known by recognizing that wk 

eq_uals 11 

(4.74). 

evaluated at z = ~k· Hence, the basic difficulty is that of 

determing the roots, Tk. 

Since extracting the roots of BM(z) can be a difficult 

problem for large values of M it is advantageous if BM(z) is 

already known as a product of low order factors. To ac-

complish this, recall that BM(z) is determined so that W(e) 
"' approximates H(e). If W(e) is a product of known AR(2) 

models 

(4.75) 

then BM( z) is easily known as a product of second order 

factors. In order to determine W( 0) in this manner one may 
A 

first determine W 1 ( e) to approximate H( e) , then W 2 ( e) to 
A 

approximate H(e)/W1 (e), then w3(e) to approximate 
A 

H ( e) I [ W 1 ( e) W 2 ( e)] and so on. To obtain the best overall 

approximation it is probably advantageous to develop some 

simple ad hoc method to force the approximation at each 

11 This assumes the roots, Tk, are distinct. The 
formulae become mildly more complicated when this is not the 
case. 



90 

stage to fit no more than one strong resonance in the 

function being approximated. 

Remarks 

This chapter has explored computational procedures 

related to the weighted information estimation formulation 

developed in Chapter III; it is worth noting that the author 

does not consider any of these methods entirely satisfactory 

for all applications. 

The first section employed an assumed AR(M) form for 

the weight function which enabled the problem to be cast in 

the form of a nonlinear system of polynomial eq_uations. 

Solution of the system was found to be a relatively simple 

task for small values of M but one that becomes rapidly more 

complex as M is increased beyond four. As a general ap­

proach, the assumption of a parametric form for the weight 

function has considerable promise for the development of 

efficient computational methods; the basic difficulty is 

that of finding a clever parametrization which provides 

sufficient flexibility in the form of the weight function 

(for the given application) while leading to a simple and 

efficient computational algorithm. 

The second section discussed the computation of various 

coefficients that arise within the computational formulae. 

Choice of a specific procedure will ultimately be influenced 

by the demands of the specific application; interdependant 



91 

factors to be considered include the quantity of data avail­

able, rounding/truncation effects, fixed/floating point rep-

resentation format, algorithm structure, memory require-

ments, and computational speed. The coefficient evaluation 

procedures discussed are variants of methods proposed (and 

sometimes implemented) for real time speech analysis appli-

cations. 

The third section discussed single-step iterative 

methods within the general framework provided by the notion 

of a contraction mapping. Multi-step methods were not dis-

cussed; in general, convergence characteristics are more 

difficult to prove for multi-step methods in spite of the 

. fact that they tend to converge faster in practice. 12 These 

iterative methods offer significantly more flexibility in 

the form of the weight function 13 at the expense of a 

greater computational cost. The notion of a contraction .· 

map, sometimes employed for nonconstructive existence 

proofs, provides a useful general framework within which a 

12Faster convergence, in terms of a reduced number of 
iterations, should not be confused with reduced computa­
tional cost. Each iteration of a multi-step method gener­
ally is more expensive computationally than a comparable 
single-step method so that a detailed analysis is· usually 
required to compare costs. 

13That is, compared to the parametric approach to 
weight function selection discussed in the first section. 
In this sense one might describe these methods with a 
seemingly contradictory phrase such as "nonparametric 
autoregressive estimation". 
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variety of iterative methods may be discussed; the specific 

method presented is a modified Newtonian iteration chosen 

as a tradeoff between simplicity and effectiveness. A pos­

sibly more effective iterative procedure would be a steepest 

descent method; generally such a procedure attempts to mini-

mize a scalar function U = U( v) by using a map with com-

ponents 

( 4. 76) 

where the scalar function A. = A.( v) is chosen to minimize 

U(~) at each iteration. 

The fourth section considers the problem of minimizing 

" Iw(Hf, g) over a given finite collection of AR ( P) models. 

'rhe procedure involves the computation of a cost function 

for each model in the collection. The cost function in-

valves two terms; the first term is evaluated quite simply 

(regardless of the form of the weight function) using 

formula (4.58a) which is identical to one arising in 

"standard" (unweighted) vector quantization. The second 

term is usually quite simple in "standard" vector quanti­

zation, see Equation (4.73), but becomes far more complex 

when the weighted information formulation is employed. 

An extension of Jensen's theorem provides a formula 

which may be employed to evaluate this term when W(e) has an 

AR(M) form; however, the reader is admonished to bear in 
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mind that it is probably far simpler to discretize this 

integral and evaluate it numerically as a sum of products 

from 

Juw(e) ln g(e) de/2u = 

-1T 

where 

N-1 

2.: w(ek) ~k 
k=-N 

( 4. 77) . 

(4-78) 

This has the additional advantage of not imposing an AR(M) 

form upon the weight function. More generally, W( e) might 

be expressed as a sum of perhaps only a dozen nonnegative · 

"shape functions" by 

W( 9) = (4-79) 

so that, if the quantities 

IYk = J~k(e) ln g(e) d0/2n (4.80) 
-1T 

are precomputed for each AR model in the finite collection, 

the second term may be easily evaluated from 

Juw(e) ln g(e) d0/2u = 
-1T 

( 4. 81 ) 



CHAPT'ER V 

RESULTS 

In this chapter the weighted information estimation 

formulation is demonstrated to provide improved performance 

relative to the noise filtering formulation. It is worth 

noting that, although existence has not been proven in pre-

vious chapters, several thousand data frames have been ana-

lyzed using the weighted information formulation and not one 

counterexample has been encountered. 

Gaussian Signals 

In order to study the performance of the weighted in-

formation formulation pseudorandom sequences were gener-

ated. A zero-mean white Gaussian process was simulated 

using a congruential multiplicative random number generator; 

the resulting sequence of independent uniformly distributed 

samples was transformed to Gaussian form using the Box-

Mi.ill er 

aging. 1 

transformation followed by Central-Limit aver­

Zero-mean AR(P) Gaussian processes were simulated 

1rn theory, the Box-Muller transformation is adequate. 
However, if the input deviates from a uniform distribution 
the output will, correspondingly, deviate from a Gaussian 
distribution; Central-Limit averaging will tend to reduce 
any such deviations from a Gaussian form. 

94 
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by applying the simulated white Gaussian process to an all­

pole (lattice structure) digital filter; the first few 

thousand output values from the filter were consistently 

ignored in order to avoid the transient response of the 

filter. 

By adding two independent zero-mean Gaussian AR pro­

cesses at a specified signal to noise ratio appropriate test 

data was produced. For many of the examples the "signal" 

process had an AR( 2) spectrum defined by the reflection 

coefficient values 

k1 = -.8 and k2 = -.9 ( 5. 1 ) 

This signal process spectrum, evaluated from these parameter 

values, is displayed in Figure 6a. While some examples 

employ a white Gaussian corrupting noise process, others 

employ an AR( 2) process defined by the reflection coef­

ficient values 

k1 = +.8 and k2 = -.9 (5.2) 

This ''colored" noise process spectrum is displayed in Figure 

6b. 

As a basis for comparison, the standard autocorrelation 

analysis method was applied to 100 different 400 sample 

Hamming windowed frames of data from the uncorrupted signal 

process. Each resulting estimate is characterized by a pair 
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of reflection coefficients which define a single dot in 

Figure 7. For this "scatter plot" (and all subsequent 

scatter plots) the ordinate and the abcissa correspond to 

the first and second reflection coefficients, respectively; 

for convenience, cross-hairs indicate the location of the 

true parameter values. 

Figures 8 and 9 each present various estimates of a 

single 200 sample Hamming windowed frame of data. In both 

cases the frame of data consists of the signal and colored 

noise processes summed at a 10 dB signal to noise ratio. 

The periodogram estimates in Figures 8a and 9a clearly dis­

play the signal resonance (near the fractional frequency 

value of .8) and the noise resonance (near the fractional 

frequency value of .2). 

Figures 8b and 9b display power spectrum estimates 

obtained using the noise filtering formulation. The esti-

mate presented in Figure Sb is a result of using the· noise 

filter response displayed in Figure 8c which was determined 

by using the power subtraction rule; 2 similarly, Figure 9b 

results from the use of the noise filter response displayed 

in Figure 9c which wa13 qetermined by using the magnitude 

subtraction rule. 

2As indicated in the caption, the noise filter response 
was smoothed across frequencies before being applied. Al­
though many smoothing algorithms are possible, only a re­
cursive median smoother (with a length about 2. 5% of the 
displayed bandwidth) was ever employed to obtain results 
presented in this chapter. 
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Figures 8d and 9d display power spectrum estimates 

obtained using the weighted information formulation. The 

algebraic solution method, which requires an AR(M) form for 

the weight function, was used in both cases; coefficient 

evaluation was performed using the mixed time-frequency 

domain method presented in Figure4. The same noise filter 

response functions were employed and the weight functions, 

displayed in Figures Se and 9e, were determined as an AR(2) 

fit to their respective noise filter response functions. 

By comparing Figures 8 and 9 to the true signal spec­

trum shown in Figure 6a the deficiencies of these typical 

estimates becomes app'.;irep.t. In Figure Sb the noise 

filtering formulation leads to an estimate which is overly 

flat; the weighted information formulation (Figure 8d) has 

improved the estimate by.· raising the peak and lowering the 

valleys. In Figure 9b th,e noise filtering formulation leads 

to an estimate which is overly sharp; the weighted infor­

mation formulation ( Figure 9d) has improved the estimate by 

lowering the peak and raising the valleys. Since the weight 

functions are similar in both figures it is apparent that 

frequency weighting cannot be simply interpreted as 

increasing or decreasing the sharpness of a spectral esti­

mate; rather, the weight function reduces distortions in the 

estimate by requiring a more accurate fit to the data in 

those spectral regions where the weight function is large. 

Figures 10 and 11 present the result of analyzing 100 

different 400 sample Hamming windowed frames of data using 
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various different methods. Figure 10 presents the results 

obtained using the noise filtering formulation; the smoothed 

noise filter response was determined using different rules 

ranging (roughly) from the least severe rule in Figure 1 Oa 

to the most severe in Figure10e. The results presented in 

Figure 11 represent an analysis of the same 100 data frames 

and the same noise filter response functions but the ana­

lysis uses the weighted information formulation with an 

AR(2) weight function fit to the noise filter response 

function. 

It is clear that in each case (a through e) the esti­

mation error is reduced by the weighted information formu­

lation. The best results in both figures are obtained by 

the most severe rules. Figure 1 O, while exhibiting less 

variance, shows an increased deviation (bias) of the main 

cluster from the true values for the more severe rules; 

apparently, variance error of the noise filtering formu­

lation may be reduced at the expense of increased bias error 

by using the more severe rules. Comparing, for example, 

Figures 10e and 11e it is apparent that the weighted infor-

mation formulation achieves still greater variance reduction 

while correcting the bias error. Comparison of Figures 11 e 

and 7 indicate that one has little, if any, hope of 

achieving significantly better performance than that pro­

vided by the weighted information formulation in this case. 

Figures 12 and 13 show similar results for the same 100 

frames of data; the analysis methods used to produce these 



.;' 
-. 7 

. . .. ·.:~ ... :~ ,..,..-: . .. 
-.a 

.., .. .,,,,,,•:':::' •\ . 

-.9 

-.a -.i -.• 
(a) POWER SUBTRACTION - UNSMOOTHED 

-. 7 

'~J;...:..Z.··~ ........ .. 
-.a 

-.9 

-.a -.i -,4 

(b) SOFT( 4) SUPPRESS !ON - UNSMOOTKED 

-. 7 

-.a .... ·~·· .. ....,. 
"' . 

-.9 

-.B -.i -.• 
(c) SOFT(6) SUPPRESSION - UNSMOOTHED 

-.7 

-.a 
• ., .. p. 

.,,! 

-.9 

-;a -.i -.' 
( d) SOPT(8) SUPPRESS ION - UNSMOOTHED 

-.7 

--..· : " 
IA••......._'••' -.e 

-.9 

-.9 -.6 -.• 
( e) MAGNITUD!l SUJlTRACTION - UNSMOOTHBD 

Figure 12. Noise Filtering: 
Gaussian Signal & Colored 
Noise (10 dB) 

-. 7 

• ·:.'..,,:1.'r+, .. " . .. 
-.a -· ...... 

-.9 

-.a -.• -.• 
(a) POllllR/UllBllOOTH!lD .l AR(2) WBIGHTl!lD IllPO. 

-.7 

·'·--.a .··: . ... 

-.t 

-.B -.& -.• 
(b) SOFT(4)/UllSMOOTHED .l AR(2) VE !GHTl!D INPO. 

-.7 

-.a 
.,_ : 

"'!;'• ~ .. 

-.• 

-.B -.i -.• 
(c) SOPT(6)/UNBMOOTHED .l AR(2) WEIGHTED INFO. 

-.7 

-.e 
"!;\ . " 

-.9 

-.a -.i -.• 
( d) SOFT(8)/UNSMOOTHED .!: AR(2) WEIGHTED 111PO. 

-. 7 

-.a . '!!. • .. 

-.9 

-.a -.• -.4 

(e) llAGNITUDJIJ/UHSMOOrHED "' AR(2) WBIOHTl!D 111ro. 

Figure 13. Weighted Inforrra­
tion: Gaussian Signal & 
Colored Noise (10 dB) 

103 



104 

figures differ from the method used to produce Figures 10 

and 11 only in that no smoothing algorithm was applied to 

the noise filter response. All the same trends are apparent 

in figures 1 2 and 1 3 as were apparent in Figures 1 0 and 11 ; 

somewhat greater variance is exhibited in these figures 

indicating that smoothing produces a generally beneficial 

effect in this case. 

Figures 14, 15, 16, and 17 display similar results for 

the case of white corrupting noise at a 10 dB signal to 

noise ratio. Again, each plot represents analysis of the 

same 100 different 400 sample Hamming windowed frames of 

data. For each method of determining noise filter response, 

the weighted information formulation leads to less variance 

and bias error than the comparable (unweighted) noise 

filtering formulation. As may be expected,3 all these esti-

ma tors yield poorer performance in this white noise case 

than in the previous colored noise case. 

Figures 18, 19, 20, and 21 again present similar re-

sults; while the corrupting noise is still white the signal 

to noise ratio is now zero dB. One small difference is 

worth noting: in Figures 10 through 17 the parts b, c, and 

d employed a soft suppression rule with suppressiori factors 

3The reader will recall that if the signal and noise 
processes are completely separated in frequency (i.e., do 
not have overlapping spectra), the Wiener filter can com­
pletely eliminate the noise. Since the colored noise case 
exhibits greater spectral separation from this signal pro­
cess than the white noise case, an estimate can be expected 
to provide superior performance. 
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of 4, 6, and 8 respectively; in Figures 18 through 21 the 

parts b, c, and d again employ a soft suppression rule but 

with increased suppression factors of 6, 8, and 10 re-

spectively. 

Speech and Speech-Like Signals 

Many speech waveforms exhibit a nonrandom periodic 

character; their spectra display a fine harmonic structure 

(with peaks separated by integral multiples of the pitch 

frequency) with a roughly AR modulation. The harmonic 

structure is generally attributed to the periodic glottal 

pulses while the AR modulation is generally attributed to 

the response characteristics of the vocal tract. 

To simulate such waveforms the all pole filter with 

frequency response displayed in figure 6a was excited with a 

periodic stream of impulses (with a period of 79 samples). 

No figure comparable to Figure 7 is included here since, in 

the absence of noise, the analysis of 100 different 400 

sample Hamming windowed frames of data (with a random dis­

tribution of phase displacement) presents no apparent esti-

mation error. 4 Consequently, while part of the apparent 

estimation error in the scatter plots of Figures 10 through 

21 must be attributed to the random character of the signal 

4Tha t is, on the scale used for these scatter plots. 
On a greatly enlarged scale, a small amount of bias and 
variance error may be observed. 
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itself, all of the apparent estimation error in the fol­

lowing scatter plots ( Figures 24 through 35) may be attri­

buted to the presence of noise. 

Figures 22 and 23 each present various estimates of a 

single 200 sample Hamming windowed frame of data. In both 

cases the frame of data consists of the aforementioned peri­

odic signal process and a colored Gaussian noise process 

summed at a 10 dB signal to noise ratio. The periodogram 

estimates in Figures 22a and 23a clearly display the fine 

harmonic structure of the signal spectrum near the filter 

resonance (fractional frequency of .8) while this structure 

breaks down near the noise resonance (fractional frequency 

of . 2) . 

Figures 22b and 23b display estimates obtained using 

the noise filtering formulation; Figures 22c and 23c display 

the noise filter response characteristics that produced 

these estimates. Clearly the estimate appearing in Figure 

22b is overly flat while the estimate appearing in Figure 

2)b is overly sharp. ·Figures 22d and 23d display the 

estimates obtained using the weighted information 

formulation; comparison with Figure 6a reveals that both 

these estimates are improved relative to their counterparts 

in Figures 22b and 23b. Finally the AR(2) weight functions 

approximating the noise filter response functions are 

presented in Figures 22e and 23e. 

Figures 24, 25, 26, and 27 display a variety of scatter 

plots; each scatter plot presents the result of analyzing 



•It 

-1• 

·······:········:········ 

.1 .3 .• ·' .• 

(a) LlJ'I .P™ER SPECTRLM (dB vs FRPCT!cw\L FREQUENCY); PERIOOO-
QWI ESTIMATE OF SIQW. • OJLlJRED NOISE: SNR • 10 dB 

+1t •' • • •' •-:-·• • • ou~••' • ••••: •• ••' •••~•••• • '•~••• • ••••~ •••• ••••~•••••••~••••••••]·· •••••• 

-It ....... ~ ....... :. , •··· .. : . ·•. •• .~ ....... ; .:: ::::: :: :::::1::::::::::::::::1:::::::: 
. . . 

-3' ········~·······1········; ........ ~ ...... -;. ....... ~·······-r-······i········1········ 

• I .3 . 1 .1 •• 
(b) LOG rnwER SPECTRLJ.t (dB vs FRACTictlAL FREQUENCY) ; AR(Z) 

ESTIMATE lEING S1-0Jl1iED POWER SUBTRACTION FILTER 

+It ....... +··· ····:·~······i ... • ···7·· ..... ~ ...... ··j···· ····t ... ····r·. ··•··1········ 
....... :···ii··j·· ...... , .. i"!:'"~ ~ : ~ : : 

-It · Q ... ~,. ·· +· u+ ..... ; ........ ~ ....... ~ ....... ; ........ : ....... . 
: . ·····~·-······; ........ ! ........ ; ....... ; ........ 1 ....... . 

-3' .. ..... .. .... ······:·······! ....... L .... + ... ...j ........ j ........ I 
.I .3 .5 • 7 .. 

(c) SUPPRESSION FtJ;CT!ON (AITENUATION [dB)) Vs FRACT!ctlAL FRE· 
QllENC'i; NOISE FILTER RESPONSE- ·SMXlfHED POWER SUB.. R1JLE 

+tt ........ ;. ....... .: .......• ; ....... .;. ....... .: ........ ; ........ :······ 

-It 

. . . . . . 
1-:.:=~.......:---~, .. ::-:-...... 7c ...... ; ........ : ........ , ....... ; ........ : ....... . 

. . 
: ; -31 ................ , ................. , ...... , ........ , ....... ., ....... , ........ , ...... .. 

.l .3 . 5 ·' .. 
(d) LOG POWER SPECTRLM (dB vs FRACTIONAL !'RElµllCY); AR(Z) 

ESTIMATE USING WEIGUED INFO. & SM.JOIHliD POWER SUB. 

+lt ....... -~- ..... -~· ...... -~ .... ····~ ..... ··~· ..... ··: ...... ··: ....... ~· ... ····~- ...... . . . 

....... ·~··· .... ~-··· .... : ....... -~- .... ··~·· .. ····· ... . 

-1t I--.;.....~ . .,., .. -:-:,.,., ... :-: .. ::'. .. ::'.:.::-: ...... .,. ....... ; ........ , ........ , ....... ; ........ , ....... . 

-31 

. . . 
••••.•• ....:. ••••••• 7 ........ :·······~······ ~-·······=·······-~·······~········~·-······ 

. . . 
. ... • .•. . . . ... • .• • • . • • ••••••. ... • •• • . . •• • • . . • • . •. . • - .. -~ .•••••• ~-·· •.••. !•• ••.•.. 

.t .l .5. . 7 .9 

(e) WEIQ!f FUNCT!CN (dB "" FRACTIONAL FRE<;UENCY); AR(Z) FIT 
TO fMJOIHED POWER SUBTRACTION FILTER RESIUISE 

Figure 22. Periodic Signal & 
Colored Noise (10 dB) 

111 

•It 

-1• 

-· 

....... , ............ :········~········• .... ···j·""''"1""""'""~'"'"' j 
....... ..;. ..•.... ~-- ...... ! ....... .;. ... ····~·-··· ... ; ..... ···~· ... ··~·· ..... : 

-1• ·····+······1.·······(·····f ·"""1"''""'''"''' ·'·······'····· .. ·:········ 

: . : : ' . : . . -• ··--···r·····T ....... :·······-:-······_, ....... T ...... r ...... , ............. . 

.I .3 .I .7 .a 
(b) LOG POWER Si'ECTRt.M (dB "" FRilCTictlAL FREQUENC\') ; AR( 2) 

ESTIMATE lEING SMXJI'HED MAG'II1UIE SUBTRACTIOO RULE 

... ·······t· .. --·~···· .... ~·-·· ... + ....... 1 ........ ~ .... ····: .. ·····r ....... , ....... . 
·······f···· .. ·j········i·······7 ·······;··.::·":.:;··;;.:·'~·· ... ··--......,.-......,._--1 

-It ······+······'········:·" .. ; ..... f ........ ~ ........ f ....... ; ........ : 

.. . .. t· ...... ~--· ···: ...... :··--. ··~·-···· ··f """" .. f """ ... ~·· ...... ; ....... . -· ..... .;. ....... ; ...... ; ...... ; ...... .; ........ ; ........ ; ....... ; ........ ; ...... . 

. I .3 .I ,7 .9 

(cl SUPPRES.Slctl FWCTION. (ATI'ENUATION [dB]) vs FRACT!rnAL FREQUENCY; 
OOISE FILTER RESPONSE- -SKXJ'l1iED MAG'll1UIE SUBTRACTION RULE 

. . . . . . . . . 
+tt ....... ~······+·····+·······'""""''········~········~······ ; ....... ; ....... . 

······-~····--·~········; ....... .;. ....... ~ ........ ~ ........ r. ····~·-···· ; __ 
-1• ....... .:, ....... ; ........ , ....... ~ ....... ; ........ :. . ... , ....... ; ........ : ..... . 

. . . 

. . . . . . . ...... ..:.. ....... ; ........ :. 

-31 ....... -:- ....... ~ ........ ; ........ : ........ ~ ........ ; ........ ~·······~········~···· 

.I ,J .I .7 .9 

(d) LOG POWER SPECTR!M (dB vs FRACTlctlAL FREq)ENCYJ; AR(Z) EST!-
. loi'.TE !Ell'«i WEIGUED INRl. & Slf:lO'll!ED MAG/IroIE SUBTRACTION 

. . ' . .... . ...... 7 ...... ·~· ...... -~ .... ···-:- .... ···~· .. ·····~ .. ······~ ....... ~- ....... ~- ...... . 

. . . . . . . 

. ...... ·7···· ... ~--~ ..... ~ ....... -7-···· .. -~·· ...... ~---···· ·:O···· ... ~-- ...... ~- ...... . -· ........ , ....... , ........ , ........ , ................ , ........ , ....... , ........ , ....... . 

.. .3 .7 .9 

(e) WEIQ!T FtWCT!ON (dB vs FRACTIONAL FREQUENCY); AR(Z) FIT 
TO 3olX1lllED MAGll1UIE SUBTRACTION FILTER RESPONSE 

Figure 23. Periodic Signal & 
Colored Noise (10 dB) 



-.7 
.~ ... _ .,.,..... ...... .,.,,. 

-.I l--t ..... OC::::~-----------1 

-.I 

-,I -.I -.• 
(a) POWER SUBTRACT!CN - S1oDJTIIED 

-.7 

-.1 
_ .. a.-•" 

-·· 
-.• -.• 

; -·· 
(b) SOFT(4) SUPPRESSION - SMJOl'HEll 

-.7 

-.1 ,__,_.it----=•'-"''-' _ .. _. ----------! 

-.9 

-.I -.• -.• 
(c) SOFT(6) SUPPRESSirn - st.OOiliED 

-.7 

-.I ._,_ ..... _, . .:.,•,;;;,"'------------l 

-.9 

-.I -.i -.• 
(d) SOFT(B) SUPPRESSICN - SMJC1l1iED 

-.7 

-.8 1-:: ....... --"=-' _._. ----------1 

-.s 

-.e -.i -.+ 
( e) MAQIITUIE SUBTRACTION - ::MXm!ED 

Figure 24. Noise Filtering: 
Periodic Signal & Colored 
Noise (10 dB) 

-.7 

.. 
-.I l----<i ........ ~Cl!:::..,.:..;''~----------1 

-.• 

-.1 -·· -·· 
(a) POWER/SMXITHED & AR( 2) WEIGrl'EJJ !NRJ. 

-.7 

-.1 1----...,_,:...;.. __________ ...j 

-.1 

-.I -·· -.• 
(b) SOFT(4)/SMXJ'IHED & AR(2) WEICHl'Ell INRJ. 

-.7 

-.I 

-·· 
-.i -.I -.• 

(c) SOFT(6)/SM:x:/lllED & AR(2) WE!CHl'Ell INFO. 

-.7 

-·· -------------------' 
-.• 

-.1 -.i -.• 
(d) SOFT(B)/SM:Xm!ED & AR(2) WEIG!I'ED INFO. 

-.1 

-.I 

-.• 

-.a -.i -.• 
(e) M\Q/InmE/SMXJ'IHED _ & AR(2) WEICHl'Ell INFO. 

Figure 25. Weighted Informa­
tion: Periodic Signal & 
Colored Noise (10 dB) 

112 



·" 
-.7 

-.• 
-.1 

-.1 ... -.+ . 
(a) POllER SUBTRACTION - UNSMOOTHED 

-.7 .. --· .. __ ...,,,,..,,.,,...... 
-.1 

·.I 

-.I -.I -.4 

(b) SOFT(4) SUPPRESSION - UHSMOOTHED 

"·7 ... -· -~ ... 
_____ .,.,.,.,.. 

-.I 

-.1 -.I -.+ 
(c) SOFT(6) SllPPR.!ISSIOll - llNSMOOTHED 

-.7 ... 
~-

....,,.,. ... · 
·,I 

-.I 

-.a ·.I -.+ 
(d) SOFT(B) SUPPRESSION - UHSMOOTllED 

-.7 

~· --·--.1 

-.9 

-.e .,, -.4 

(e) MAGNITUDE SUBTRACTION - UNSllOOTHED 

Figure 26. Noise Filtering: 
Periodic Signal & Colored 
Noise (10 dB) 

-.7 

_ _,,,, ~······"' 
-·· 
•,I 

-.I -.• -.+ 
(a) POllER/UNSMOOTHED .!: AR(2) lll!IGHTED INFO. 

-.7 

... 
-.I 

__ ..,.., 

-.1 

-.1 -·· -.+ 

(b) SOP'T(4)/UNSMOOTHED .!: AR(2) llEIGHHD INPO. 

-.7 

-.ii 
.... ... 

-.1 

-.I ... -.+ 
(c) SOFT(6)/UHSMOOTHED .!: AR(2) WEIGHTBD INFO. 

-.1 

. ,. ... -.• 

-.1 

-.1 •,I ... 
(d) SOFT(B)/UllSMOOTllED .!: AR(2) llllIGHTl!D IHPO. 

-.7 

.. .. 
·,I 

-.1 

•,I ... -.+ 

( e) MAGNITUDE/UNSl~OOTHED .!: AR( 2) llEIGHTl!D INFO. 

Figure 27. Weighted Informa­
tion: Periodic Signal & 
Colored Noise (10 dB) 

113 



-.7 

-.a !--:~fl-·--.···"::.;.;;.;''-~-.. -----------! 

-·· 
-.1 -.I -.• 

(a) POWER SUBTRACTION - SMOOTHED 

-.7 

-.I 
..... 

-.• 

-.1 -.I -.• 
(b) SOFT(4) SUPPRESSION - SMOOTHED 

-.7 

..... ,.._ ... -.I to-,11,lt.lrlo'...._ ___ """-". ________ -1 

-.t 

-.1 -.I -.• 
(c) SOFT(6) SUPPRESSION - SMOOTHED 

-.1 1111.,.111, ~-i-.,:-'-------------1 

-.1 

-.I -.i -.• 
(d) SOFT(B) SUPPRESSI"ON - SMOOTHED 

-.1 

-.1 .. 

-.1 

-.a -.i -.• 
( e) MAGNITUDE SUBTRACTION - SMOOTHED 

Figure 28. Noise Filtering: 
Periodic Signal & White 
Noise (10 dB) 

-. ' 

-.a 

-.• 

-.I -.& -.4 

(a) POWER/SMOOTHED .!: AR(2) WEIGHTED IllPO. 

-.7 

-.• r-.•·-.. · ... ·-------------; 

-.• 

-.• -.I -.• 
(b) SOFT(4)/SMOOTHED .!: AR(2) VEIGHT!D IH.!'O. 

-.7 

-.• 

-.t 

-.I -.I -.•. 
(c) SOFT(6)/SMOOTHED .!: AR(2) WEIGHTED INFO. 

-.1 

•·• Hlt~IE.-'---...--....----.-------l 

-.I 

-.a -.I -.• 
(d) SOFT(8)/SMOOTHED .!: AR(2) WEIGHTED INPO. 

-.7 

-.• 

-.I 

-.8 -.i -.• 

( e) MAGNITUDE/SMOOTHED .!: AR(2) llEI(}HTJ!JD IllPO. 

Figure 29 . Weighted Informa­
tion: Periodic Signal & 
White Noise (10 dB) 

114 



-.7 

.. ~····· 
-·· i---t"'-'-------------1 

-.• 

... -.• -.• 
(a) POWER SUBTRACTICN - lKMXJJllED 

-.7 

--" ........ ... 
-.I 

..• -·· -·· (b) SOFJ:(4) SUPPRESS!(}! • lKMXJJllED 

-.1 ' 
- .Mao.-'I. -.• 

·,I 

·,I -.• -.• 
(c) SOFl'(6) SUPPRESS I(}! - lNSMJJ1liED 

-.7 

-.1 
~ ... ,... ..... 

-,I 

..• -.• -.• 
(d) SOFl'(8) SUPPRESSICN - lNSMX1fHED 

-.7 

-.1 ~·· 

... 
-.e -.r ... 

(e) ~ITIJIE SUBTRACTICN - LNS!-OOIHED 

Figure 30. Noise Filtering: 
Periodic .'3ignal & White 
Noise (10. dB) 

-.7 

_,,,,,..-;.~· 

·.I 1--__,l""•..-·-------------t 

-.I 

-.• -.I -·· (a) POWER/lJolSMXJJHED & AR(Z) WEIGITED INFO. 

-.7 

_-Mllfi""''. -.• 

-.• 

-.• -·· -·· (b) SOFI'( 4) /l!'ISMXmlED & AR( 2) WEI G!l"ED INRJ. 

-.7 

-.I ......~ .. ·· 
-.• 

-.I -.• -.• 
(cl SOFJ:(6)/rnsM:XmiED & AR(2) WEIOITED INFO. 

-.7 

~ .... · 
-.1 

-.I 

-.I -.I -.• 
(d) SOFl'(8)/UNSMlCllHED & AR(2) WEIG!l'ED INFO. 

-.7 

i... 
-.1 

-.9 

-.e -.i -.• 
(e) M.'GII11JIE/™SKlOIHED & AR(2) WEIG!l'ED INFO. 

Figure 31. Weighted Informa­
tion: Periodic Signal & 
White Noise (10 dB) 

115 



-,, 

-.I 

-.I 

-,, 

... 
.. •:• •I ; 

. . ·. .. 

•,I -·· ... 
(a) POWER SUBTRACTICN - SMJOTilED 

·, .. 

" 
. ; .... ·" 

-.I J--1.'-''-IP+-'• !._'._.~_,_. ·-··-· --'-------~ . ~ 
-.I 

-.1 -.• ... 
(b) S0Fr(6) SUPPRESSICN - :MO'l1iED 

-,, 
.· 

-·· !~.~ •• --1 ..... : : •• ·~ • . .. 
' · .. 

-.• 

-.I -.• ... 
(c) SOFT(B) SUPPRESSICN - :MO'l1iED 

-., . · 
-.I ~!·. 

:~:.:~ · .. 
-.I 

-·' 

-.a -.I -.4 

(d) SOFI'(lO) SUPPRESSICN - g.()JfHED 

·. .. 
... ... :' .- •.. 

. . .. . ~ . ; .. .... : ..... 
~. . , .. 

.. -
-.1 t----i---:----_._------~ 

-.• 

-.8 -.i -.• 
( e) MAGNITIJ!E SUBTRACTICN - sr.roIHEll 

Figure 32. Noise Filtering: 
Periodic Signal & White 
Noise (0 dB) 

·.· · .. .... 
-.7 

..... !. 

:• 
. ..... 

-.• 1---11---------------i 

•,I 

..• -.i . .. 
(a) POWER/SKXJlllED & AR(Z) WEllE'ED 'INFO. 

-.7 ... 
't. :: ' ~I ..• ~~~·"4-.,~· ... --......,.._ _________ -i 

-.• 

-.1 -.1 ... 
(b) 9JFI'(6)/SMXYJliED & AR(Z) WEicmEIJ INFO. 

·.. . ·-
.,, 

1~.:..1 ••• • -.I l-'l'li,....,_._ ____________ -1 

·1-~ .~ .. 

-.• 

·-.7 

-.• 

-.7 

. . 

-,I ·.I -·· 
(c) SOFT(S)/SMlOIHED & AR(2) WEIGll'ED INFO. 

"' . 
'4!-f' .. 

-.I -.I 
~·· 

(d) 9JFT(lO)/SMJCll1iEIJ & AR(Z) WE!Gri'ED INFO • 

. . . . . . 
1' ....... . ·. . ~· . .... 

. . .. .· .· 
-.1 _ ........ _._·_t_· .. · -----------i 

-.• 

-.a -.i -·· 
(e) MAGNI11JJE/SKXJl1iED & AR(2) WEHHl'ED INFO. 

Figure 33. Weighted Infonna­
tion: Periodic Signal & 
White Noise (0 dB) 

116 



: .. ~ 
-.7 

-.1 

-.• 

-.I -.I -.4 

(a) POWER SUBTRACTION - UNSMOOTHED 

-.7 

... ' .. . ..... · 
. ·! • .. ··: .... . '. . ....... . .. . ····~ :- . 

-.a i----,~.----.:.----------1 

-.I 

~· . ~· ~4 
(b) SOFT(6) SUPPRESSION - UHSllOOTHED 

• lw 

-.7 ···~· .:··.-::· 
• • .. • •# '· ... • :·,!· . .>~,. .. ... . 

'· -.... · ... 
-.I 1--1-...-------------1 

-.• 

-.7 

-.1 

-.• 

-.7 

-.I -.• -.4 

(c) SOFT(B) SUPPRESSION - !JNSMOOTHED 

... . .... 
t . .... ,-::,."" .. : • •• ... :.:'' -.. 

-.a -.1 

....... ·.· 

-.4 

(d) SOFT( 10) SUPPRESSION - UHSllOOTHED 

-·· i--t---'------------1 

-.• 

-.a -.I -.• 
(e) MAGNlTUDE SUBTRAC'rION - UNSMOOTHED 

Figure 34. Noise F'ilter­
ing: Periodic Signal 
White Noise (0 dB) 

& 

-.7 

-.• 

-.• 

-.7 

-.I 

-·· 

-.7 

-.• -.I -.4 

(al rowER/ltl9«lCll'HEll & AR(2) WEIGrl'ED INFO. 

•\ .. '· ,. ... . .... . : ~. 

··: .. r . . · ... .., :, .. :r. 
' . 

-.I -.I -.4 

(b) SOF1'(6)/l.NSMXllllED & AR(2) WEHlfl'Ell INFO. 

... 
!. • ' •' I . ·::·~: .. 

. ... 

-~·~~- .. 
-.• 1--..::,· ... ··-""'-'-'-------------i 

-.I 

-.I -.I -.4 

(c) SOFl'(S)/l.NSMXm!ED & AR(2) WEIGfl'ED INFO. 

. : 
-.7 

····" l . • 
·~-z,.-:.'?! . 

-.1 l-~~---------------1 

-.• 

-.I -.i -.4 

(d) SOFl'(lO)/IHilDJJliED & AR(2) WEICHTED INFO. 

-.7 

-.a 1--1--------------1 

-.I 

-.ii -.i -.4 

(el MArnITUIE/l.NSMXllllED & AR(ZJ WEIGfi'ED INFO. 

Figure 35. Weighted In­
formation: Periodic 
Signal & White Noise 
(0 dB) 

117 



118 

100 different 400 sample Hamming windowed frames of data; 

the same 100 data frames were employed for each plot. As 

mentioned above, because the signal process is periodic and 

not random in character all of the apparent estimation error 

can be attributed to the added colored Gaussian noise 

( SNR = 1 0 dB) • 

Figures 24 and 25 employ smoothed rioise filter response 

characteristics while Figures 26 and 27 employ the un-

smoothed characteristics. 5 Figures 24 and 26 display the 

results obtained with the noise filtering formulation while 

Figures 25 and 27 display the results obtained with the 

AR(2) weighted information formulation. Once again, the 

weighted information formulation leads to less estimation 

error than the comparable noise filtering formulation; in 

Figures 25d and 25e the estimation error is so small as to 

be almost imperceptible on the scale employed for these 

plots. Smoothing still appears to display a generally 

beneficial effect. 

Figures 28, 29, 36, ~nd 31 present similar results for 

the case of white Gaussian noise corruption to the periodic 

signal processes (SNR = 10 dB). As with the Gaussian signal 

5some caution is advised regarding the use of smoothers 
here. The dimensions of the lobes within the fine harmonic 
structure are controlled by the length and shape of the data 
window so that a smoother that works well with one frame 
length may not work well with longer frames or a differently 
shaped window. 
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process, all the estimates present degraded performance in 

this white noise case as compared to ~he colored noise case. 

To complete these simulations, Figures 32, 33, 34, and 

35 present analysis results for the case of white Gaussian 

noise corruption to the periodic signal process at a zero dB 

signal to noise ratiio. As with the Gaussian signal pro­

cess, parts b, c, and d of these figures employ soft sup­

pression rules with increa~ed suppression factors of 6, 

8,and 10 respectively. 

The following summarizes the description of these scat­

ter plots. Figures 1 0-1 3 and 24-:27 correspond to colored 

noise corruption at a 10 dB signal to noise ratio; Figures 

14-17 and 28-31 correspond ~o white noise corruption at a 10 

dB signal to noise ratio; Figures 18-21 and 32-35 correspond 

to white noise corruption at a 0 dB signal to noise ratio. 

Figures 10-21 correspond to a Gaussian random signal; 

Figures 24-35 correspond to a periodic (period = 79 samples) 

signal. Figures 10, 11, 14, 15, 18, 19, 24, 25, 28, 29, 32, 

and 33 employ a smoothed noise filter response while the 

remainder employ an unsmoothed response; parts a and e of· 

each of these figures determine the noise filter response 

using the power and magnitude subtraction rules respectively 

while parts b, c, and d employ the soft suppression rules. 

In Figures 10-17 and 24-31 the suppression factors for parts 

b, c, and d are 4, 6, and 8 respectively; in Figures 18-21 

and 32-35 the suppression factors and 6, 8, and 10 re­

spectively. Finally, Figures 10, 12, 14, 16, 18, 20, 24, 
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26, 28, 30, 32 and 34 display the results of the (un-

weighted) noise filtering analysis while Figures 11, 13, 15, 

17, 19, 21, 25, 27, 29, 31, 33, and 35 display the results 

of the AR(2) weighted information analysis. 

Before concluding this chapter, several examples re­

sulting from the analysis of a real speech segment are pro-

vided. Figure 36a shows. a periodogram estimate obtained 

from a Hamming windowed 400 sample segment taken from the 

vowel portion of the word "wrap"; 6 from the fine harmonic 

structure it is apparent that the pitch of this segment is 

about 135 Hz (about 59 samples). Figure 36b shows a tenth 

order AR estimate of the spectrum obtained as the result of 

an autocorrelation method analysis of the same Hamming 

windowed segment; four vocal tract resonances are clearly 

visible.7 

Figures 37a and 37b show periodogram and tenth order AR 

estimates obtained from this same vowel segment after adding 

white noise at a 10 dB signal to noise ratio. Clearly, the 

fine harmonic structure of the periodogram estimate has been 

partially obscured and, while four resonances are still 

visible, the AR estimate is severely distorted. 

6The word,. spoken in context by an adult male in a 
quiet environment, was taken from the sentence "Don't gift 
wrap the tall glass." and was appropriately filtered before 
sampling at 8 kHz. 

71ower and higher order analyses were applied to this 
segment and it was judged from plots such as these that a 
tenth order model is appropriate. 
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Figure 36. Vowel ·Spectrum in Quiet Environment 
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Figures 38 and 39 display the result of applying vari-

ous other estimators to the same white noise corrupted data 

frame. Figure 38 shows results obtained with the smoothed 

power subtraction rule and Figure 39 shows results obtained 

with the smoothed magnitude subtraction rule. Part a of 

each figure shows the result obtained with the noise fil-

tering formulation; the noise filter response functions are 

displayed in part b. The weighted information estimates, 

displayed in part c, were obtained using the modified Newton 

iteration described in Chapter IV; the weight functions, 

displayed in part d, were selected as an AR ( 6) fit to the 

noise filter response functions displayed in part b. 8 

Comparison of Figures 38a and 39a to Figure 36b reveals 

the deficiencies of these noise filtered estimates; in par-

ticular, the reader should note the amplitude of the third 

and fourth (highest frequency) resonance peaks as well as 

the depth of the valleys near the fractional frequency 

values of zero and one. These features are partially car-

rected in Figures 38c and 39c by the weighted information 

formulation; most notable is the correction of the valley 

depth near the fractional frequency value of zero. Also 

worth noting is the improved valley depth near the frac­

tional frequency of one in Figure 38c and the improved 

amplitude of the fourth resonance peak in Figure 39c. 

8 The weight functions need not be selected to have an 
AR form; however, the author's experience with this iter­
ative method indicates that convergence is more difficult to 
achieve with more complex weight function forms. 
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CHAP1rER VI 

CONCLUSION 

A new method of spectral estimation has been presented. 

The method addresses the problem of noise cor~uption to the 

time series measurements and assumes knowledge of the noise 

power spectral density.1 The method has been demonstrated 

to yield superior performance, in terms of reduced esti-

mat ion error, and has been suggested for use in speech 

analysis applications. 

Al though the Gaussian assumption is invoked for the 

theoretical development of the method, examples have been 

provided that show the method yields superior performance 

for other signals as well. Similarly, the author also ex-

pects the method to be fairly robust w-i th respect to the 

other assumptions. 2 It is worth noting that while the AR 

signal model has been assumed throughout, this assumption is 

by no means necessary to the theoretical development so that 

1 Actually, only knowledge of the frequency response of 
a filter designed to eliminate the noise is assumed. Know­
ledge of the noise power spectral density merely leads to 
one common method of designing such a filter. 

2A possible exception is the assumption of independence 
between the signal and noise processes for it is this as­
sumption that leads to the model of additive signal and 
noise power spectral densities. 
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other (e.g. ARMA, Pisarenko, etc.) models may also be con­

sidered. 3 

Computational procedures relevant to the problem of AR 

model estimation (using the weighted information formu­

lation) have been explored. An algebraic method, applicable 

when the weight function assumes an AR(M) form, has been 

discussed; when M ~ 4, this method will obtain the solution 

using an algorithm of reasonable complexity for many appli-

cations. Iterative techniques have been discussed that 

obtain the solution while permitting an extremely flexible 

class of weight functions; the price of this greater flexi-

bili ty is a considerable increase in complexity as well as 

the need for much user interaction. Several methods. of 

coefficient evaluation were presented; one was implemented 

and used to obtain the simulation results. 

The problem of AR model detection (vector quantization) 

requires the evaluation of two integrals for each model in 

the finite collection. Evaluation of the first integral is 

accomplished by Equation (4.58a); this equation requires the 

same number of additions, multiplications, and (read-only) 

storage locations as is required by the usual (unweighted) 

3The new formulation would still require minimization 
of Iw(Hf ,g) and the analogy leading to Equation (3.20) still 
applies. The only difference is in the selection of a para­
metric signal model and the system of equations that fol­
lows. Uniqueness questions would need to be addressed 
separately but one may hope to find that similar convexity 
arguments would apply. Of course, the computational pro­
cedures discussed earlier may no longer be appropriate. 
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methods of vector quantization. The second integral is 

evaluated as a constant (independent of the data but de­

pending upon the model) by the usual (unweighted) methods of 

vector quantization; Equation (4.81) is advocated for evalu­

ation of the second integral with the weighted information 

formulation. With about ·a dozen terms, as suggested for 

speech analysis applications, evaluation of the second inte­

gral using Equation (4.81) is about equivalent in complexity 

to evaluation of the first integral. 

Suggestions for Future Research 

There are numerous ways to extend and refine the ideas 

and methods presented here. The following suggestions, 

offered in no particular order, are thought to be worth­

while. 

•Extension to other spectral models. As mentioned 

earlier, the AR model form is not necessary; moreover, 

for some applieations it may not even be appropriate. 

• Assuming an AR model, determine the conditions for (and 

a proof of) existence. Empirical evidence for ex­

istence is strong; it is thought that the condit:Lons 

are quite mild from a practical viewpoint (e.g. that 

the weight function is bounded). While the question of 

existence is mostly of theoretical interest by itself; 

the methods used to prove existence (and the precise 
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conditions for existence) should have practical value. 

For example, a proof based upon a contraction map is 

likely to yield a highly effective iterative solution 

procedure as well. 

•Further investigation of methods of coefficient evalu-

at ion. These should be studied in close relation to 

the specific application in order to select a design 

offering a reasonable tradeoff between computational 

effort and performance. 

•Investigation of numerical methods for solution of the 

ideal formulation. It is thought that the ideal formu-

lation should yield still better performance, particu-

larly at very low signal to noise ratios; it is 

expected that these methods will be very compu-

tationally expensive. 

•Development of related formulations assuming a cor-

related noise model. The cross-spectrum (between the 

sigrial and noise processes) may be known, say, as a 

function of the unknown signal model spectrum and the 

known noise spec tru.m in some applications; this may 

occur, for example, if additive independent signal and 

' noise processes were passed through a known nonlinear 

system prior to observation. 
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•Further investigation of computational methods ap­

propriate for the AR weight function model; investi­

gation of computational methods appropriate for other 

parametric weight function models. While the unique-

ness result guarantees that only one product model, 

CP+M(z), satisfying Equations (4.13) and (4.15) has all 

its "additional" reflection coefficients { kp+1 , kP+2, 

. . . ' kP+Ml inside the interval (-1, 1) it is not known 

if the other product models satisfying these equations 

have ::.i.11 their "additional" reflection coefficients 

outside this interval (of course, they must have at 

least some of their "additional" reflection 

coefficients outside this interval); if this were true, 

the development of an efficient algorithm for higher 

order AR weight function models would be greatly 

facilitated. In general, the author believes 

parametric weight function models provide the greatest 

hope for procedures yielding a flexible choice of 

weight function together with an efficient solution 

algorithm. 

• Investigation of the appropriate selection of "shape 

functions" in connection with use of the weighted in­

formation formulation for vector quantization, see 

Equations (4.79), (4.80), and (4.81). For speech 

analysis applications, the author envisions each shape 
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function as the power spectral response function of a 

bandpass filter with response characteristics similar 

to those filters found in "channel vocoder" systems. 

•Performance evaluation in specific (speech analysis and 

other) applications using (global) measures appropriate 

to the particular application. In a voice communi­

cations system an appropriate measure may be the result 

of some formal subjective listening test. In a recog­

nition system the recognition error rate may be an 

appropriate measure. Systems that predict stock market 

activity might measure overall investment performance. 

•Extension of the formulation to problems of multi­

dimensional spectral estimation. 

•Use of the basic concepts/ideas of the weighted infor­

mation formulation to develop a proced~re treating the 

issues of limited data and noise corruption simultane­

ously, perhaps in combination with notions of Kalman 

filtering and the Burg algorithm. 
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