
Shaft & Vessey/Cognitive Fit of Software Comprehension & Modification

MIS Quarterly Vol. 30 No. 1, pp. 29-55/March 2006 29

RESEARCH ARTICLE

THE ROLE OF COGNITIVE FIT IN THE RELATIONSHIP
BETWEEN SOFTWARE COMPREHENSION AND
MODIFICATION1

By: Teresa M. Shaft
Michael F. Price College of Business
University of Oklahoma
307 West Brooks, Room 306B
Norman, OK  73019-7482
U.S.A.
tshaft@ou.edu

Iris Vessey
University of Queensland and
Queensland University of Technology
126 Margaret Street
Brisbane  Q4000
AUSTRALIA
i.vessey@qut.edu.au

Abstract

Although there is a long tradition of empirical studies of software
developers, few studies have focused on software maintenance.
Prior work is predicated on the belief that higher levels of software
comprehension are associated with higher levels of performance on
modification tasks.  This study provides a more complete under-
standing of the relationship between software comprehension and
modification.  We conceptualize software maintenance as inter-
linking comprehension and modification, and argue that the rela-
tionship between the two is moderated by cognitive fit.  Specifically,
cognitive fit exists when the software maintainer’s dominant mental

1Peter Todd was the accepting senior editor for this paper.

representation of the software and their mental representation of the
modification task emphasize the same type of knowledge.  We
hypothesize that when cognitive fit exists, greater improvements in
comprehension are associated with higher levels of performance on
a modification task.  When cognitive fit does not exist, however, the
software maintainer’s mental representations of the software and of
the modification task do not emphasize the same type of knowledge,
which may mean that attention is devoted to comprehension at the
expense of modification, resulting in lower performance on the
modification task.  In these circumstances, comprehension and
modification tasks may interfere with each other, an effect known as
dual-task interference.  We therefore hypothesize that performance
on a modification task is moderated by the fit between the mental
representation of the software and that of the modification task.

We tested our theory by varying cognitive fit to create matched and
mismatched conditions in a single experiment that used IT
professionals as subjects.  Our findings support our theory:  cogni-
tive fit moderates the relationship between comprehension and
modification.  Specifically, changes in software comprehension and
modification performance are positively related when cognitive fit
exists and negatively related when cognitive fit does not exist.  Our
findings demonstrate the need to examine more complex rela-
tionships among the numerous types of tasks involved in software
development rather than examining software comprehension alone.

Keywords:  Theory of cognitive fit, software modification, software
comprehension, dual-task interference

Introduction
Software maintenance is a high-cost, low-productivity activity
(Sharon 1996) that accounts for 80 percent of the effort associated

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SHAREOK repository

https://core.ac.uk/display/215209756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Shaft & Vessey/Cognitive Fit of Software Comprehension & Modification

30 MIS Quarterly Vol. 30 No. 1/March 2006

with the software function (Hatton 1998).  Despite its importance,
maintenance is an understudied phenomenon (Kemerer and
Slaughter 1999).  Maintenance studies frequently focus on
characteristics of the software such as program complexity, project
size, and added functionality to assess how these characteristics are
related to later maintenance efforts (see Banker et al. 1998).  Such
descriptive studies typically assess an organization’s maintenance
portfolio post hoc with the aim of providing advice on how to
manage these characteristics to improve the quality or main-
tainability of the software.  Such software-level approaches do not,
however, address the fact that software maintenance is conducted by
an IT professional who must change the software to meet the new
requirements.

The human element in software work has long been known to be
problematic; for example, in 1968, Sackman et al. conducted
debugging studies that revealed a 1:26 variability in time to debug
software.  Despite the early establishment of a tradition of studying
software developers, relatively few studies have examined perfor-
mance on software maintenance tasks.  Prior maintenance research
has considered the impact of various factors on maintainers’ ability
to modify software including program structure (Boehm-Davis et al.
1992; Daly et al. 1996; Prechelt et al. 2001; Sheppard et al. 1979;
Shneiderman et al. 1977), the use of different documentation formats
(Curtis et al. 1989; Prechelt et al. 2002), and the cognitive processes
used by software maintainers (Littman et al. 1986).

Rather than focusing on software maintenance per se, researchers
have more often studied software comprehension.  Software compre-
hension involves understanding existing software that frequently is
written by another developer (Lientz et al. 1978), while modification
involves changing, deleting from, or adding to the software.  Com-
prehension studies have sought to understand software developers’
mental representations (Corritore and Weidenbeck 1999; Pennington
1987b), the cognitive processes they use during comprehension
(Koenemann and Robertson 1991; Shaft and Vessey 1995; Vans et
al. 1999; von Mayrhauser and Vans 1995; von Mayrhauser et al.
1997), and how characteristics of the software influence compre-
hension (Shaft and Vessey 1998).

Typically, if a developer modifies software in a comprehension
study, the modification task is a way of engaging the developer in
studying the software; comprehension is assessed before and after
conducting the modification, but performance on the modification
task itself is not examined.  One of the reasons behind the focus on
software comprehension may be that it underlies a number of
software-related tasks, in particular, maintenance and debugging.
Robson et al. (1991), for example, estimate that 50 to 90 percent of
the effort during software maintenance is spent on comprehending
the software, with the remaining 10 to 50 percent of the effort
devoted to changing it.  Further, those researchers who have
addressed modification have assumed that higher levels of com-
prehension lead to higher levels of performance (see, for example,
Hendrix et al. 2002).

Current understanding of software maintenance, however, leads one
to question a direct link between comprehension and modification

performance.  For example, maintenance personnel often success-
fully modify software without understanding it fully (see, for
example, Corritore and Wiedenbeck 1999, Littman et al. 1986,
Pennington 1987b).  Further, given the size of many industrial
applications, it seems unlikely that maintenance personnel could
devote the time necessary to develop a complete understanding of
the entire application in the course of conducting a modification.
Hence, while comprehension is an important aspect of software
development, the quest to find ways to help developers achieve high
levels of comprehension to improve performance across a number
of software tasks may oversimplify the relationship between
comprehension and other software tasks.

Little research has addressed the relationship between compre-
hension and modification empirically.  Further, studies that have
examined both comprehension and modification per se have done so
in separate experiments rather than in a single experiment that would
allow researchers to determine interrelationships (see, for example,
Curtis et al 1989; Sheppard et al. 1979; Shneiderman et al. 1977).

The purpose of this study is to examine the relationship between
software comprehension and modification to provide a more
thorough understanding of the interrelationships between the two
tasks.  We propose that the relationship is more complex than pre-
viously assumed and that high levels of software comprehension
may not always translate into high levels of performance on modi-
fication tasks.  We propose, instead, that the relationship between
comprehension and modification is moderated by the cognitive fit
between the knowledge emphasized in the software maintainer’s
mental representation of the software and the requirements of the
software modification task.  Because all maintenance tasks require
both comprehension of the original software and making the
required changes to the software (i.e., the modification), we believe
that our theory may well apply to other types of maintenance tasks,
such as removing features and making changes, as well as to the
enhancements investigated in this research.  Our focus in this
research is on enhancement because it consistently represents the
largest category among the various software maintenance tasks (see,
for example,  Barry et al. 1999; Lientz et al. 1978).

In the next section, we present theories relevant to our study of the
interrelationship between software comprehension and modification,
and develop our conceptual model.  We then present our proposi-
tions, from which we develop testable hypotheses.  Next we present
the experimental methodology used to test the hypotheses, followed
by the results.  Further, we evaluate two theoretical alternatives to
lend strength to the test of our theoretical arguments.  Finally, we
present the implications of our study for research and practice.

Theoretical Development

In presenting the theoretical underpinnings for our study, we use
information to refer to the contents of the software and knowledge
to refer to the software maintainer’s mental representations of a
software system.  We first present the theoretical basis for our study



Shaft & Vessey/Cognitive Fit of Software Comprehension & Modification

MIS Quarterly Vol. 30 No. 1/March 2006 31

and then address how we applied the theory to our specific context
of modifying computer programs.

Theory on Dual-Task Problem Solving

The basic premise of our theoretical model is that software mainte-
nance involves both comprehending the software and making the
modification; that is, the task as a whole can be viewed as having
two readily identifiable, interrelated subtasks.  Hence we develop a
dual-task problem-solving model to explain how problem solving
takes place when the problem solver must attend to two interrelated
tasks.

Dual-Task Problem-Solving Model

We use as the starting point for developing our theoretical model the
general form of the problem-solving model used by Vessey (1991)
to describe the theory of cognitive fit (Figure 1).  This model views
problem-solving performance as resulting from the interaction
between the external representation and the problem-solving task.
In keeping with the traditions of cognitive science, this model views
processing as taking place within the mental representation (Zhang
1997).  To support the solution of the task, the problem solver
develops a consistent mental representation that is based on
internalization of information in the external representation and any
internal representations relevant to task solution.

We elaborate on this model in two ways for the purpose of our
investigation into dual-task problem solving.  First, we enrich the
model using the work of Zhang and Norman (1994), who distinguish
the internal representation from the mental representation that is
constructed to solve a problem.2  This approach explicitly addresses
both internal and external representations as well as a mental repre-
sentation, in what they refer to as a distributed model of cognition
(see Zhang 1997).  Hence we modify Figure 1 to reflect the fact that
both the internal and external representations, and the interactions
among them, contribute to the mental representation for task
solution that is developed to solve the problem.  (Note that we use
italics to highlight references to specific constructs in all of our
models.)  Figure 2 presents the general model of problem solving
that incorporates notions of distributed cognition.  As an example,
the task of understanding a piece of software is influenced by both
the software itself (external problem representation) and the main-
tainer’s existing knowledge of the software domain (internal repre-
sentation of the problem domain), as well as the task that is required
to be completed (problem-solving task).  Task solution is accom-
plished via the mental representation for task solution.

Second, because we conceive of software maintenance as consisting
of two interrelated subtasks, we present the general model of IS

problem solving on which our investigation of software modification
is based as a dual-task model.  Figure 3 presents a general theoreti-
cal model of interacting tasks in the context of software main-
tenance.  The model essentially consists of three cognitive fit
models, one for each subtask and one for the interaction between
them.  Problem solvers form mental representations for each of the
component tasks.  The maintainer forms a mental representation of
the software based on general knowledge of software and software
development and specific knowledge of the software at hand.  The
maintainer develops a mental representation of the modification task
based on general knowledge of software development and specific
knowledge of the modification task (external representation of the
modification).  While conducting the modification, the maintainer
will engage in further comprehension resulting in changes to his/her
mental representation of the software.  To complete the modifica-
tion, the maintainer must then integrate the two mental represen-
tations into a mental representation for task solution, which is
manifested in problem-solving performance.

Formulating the issue of making software modifications as a dual-
task model opens the way for us to consider situations in which one
task might either facilitate or inhibit the other.

Roles of Dual-Task Interference and Cognitive
Fit in Dual-Task Problem Solving

The phenomenon of dual-task interference, which occurs when
problem solvers perform two (or more) tasks simultaneously, has
been investigated by psychologists for several decades.  It is mani-
fested in performance degradation on one or both of the tasks that
are being addressed simultaneously (see, for example, Durso et al.
1998; Navon and Gopher 1979; Pashler 1994; Wickens 2002).
When dual-task interference occurs, it is difficult for the individual
to allocate attention effectively between the interacting tasks (Durso
and Gronlund 1999), resulting in reduced performance (Van Selst
and Jolicoeur 1997).

Much of the research in the area has focused on the resources
needed to conduct the two tasks simultaneously and, therefore, the
allocation of resources between them (see, for example, Durso and
Gronlund 1999; Kahneman 1973; Wickens 2002).  Although there
is still substantial debate regarding the under lying mechanisms, the
effects have been observed consistently (see, among others, Navon
1990; Navon and Miller 1987; Pashler 1994; Pashler and O’Brien
1993; Sarno and Wickens 1995).  Hence, we apply the basic
premises of dual-task interference to our specific context of IS
problem solving.

Allocating attention between tasks is particularly relevant to
software maintenance because maintainers must divide their
attention between comprehending the existing software and making
relevant changes to the software.  Comprehending the software,
alone, is a substantive task because maintainers must divide their
attention among multiple elements within the software itself (e.g.,
different modules), as well as understand information other than that

2Note that Zhang and Norman (1994) use the term task space rather than the
term mental representation used here. 



Shaft & Vessey/Cognitive Fit of Software Comprehension & Modification

32 MIS Quarterly Vol. 30 No. 1/March 2006

Problem
Representation

Problem-Solving
Task

Mental 
Representation

for Task
Solution

Problem-Solving
Performance

Problem
Representation

Problem-Solving
Task

Mental 
Representation

for Task
Solution

Problem-Solving
Performance

Mental
Representation

for Task
Solution

Internal
Representation
of the Problem

Domain

External
Problem

Representation Problem-Solving
Task

Problem-Solving
Performance

Mental
Representation

for Task
Solution

Internal
Representation
of the Problem

Domain

External
Problem

Representation Problem-Solving
Task

Problem-Solving
Performance

Figure 1.  Cognitive Fit in Problem Solving

Figure 2.  Extended Cognitive Fit Model

in the software (e.g., the external software documentation, etc.).
Modifying software is also a substantive task as maintainers must
both understand the modification to be conducted as well as make
appropriate changes to the software.  

We again draw on the theory of cognitive fit (Vessey 1991) to
provide the theoretical basis for what happens when knowledge of
two tasks is needed for problem solving.  When one is solving a
problem made up of two tasks, two possible types of interaction may
result:  the two tasks may be consistent or compatible with each
other, or they may not.

Matching Representations

When cognitive fit exists, the software maintainer’s mental
representation of the software and their mental representation of the

modification task emphasize similar types of knowledge and have
similar requirements.  Hence no transformations are required to form
the mental representation for task solution and the cognitive
requirements are effectively reduced (Vessey 1991), thereby
increasing the maintainer’s ability to allocate attention between tasks
(see, also, Durso and Gronlund 1999).  A maintainer is able to shift
attention relatively easily, therefore, between comprehension and
modification tasks with comprehension efforts being directed toward
the information embedded in the software that is most relevant to the
modification.  As a result, problem-solving performance is likely to
be more accurate and quicker than would otherwise be the case.

This notion is supported by a number of authors who have observed
that problem solvers have a greater ability to perform two tasks that
are compatible (rather than incompatible) at the same time, thus
reducing the impact of dual-task interference (see, for example,
Koch and Prinz 2002; Whitaker 1979).  We state the following
proposition:



Shaft & Vessey/Cognitive Fit of Software Comprehension & Modification

MIS Quarterly Vol. 30 No. 1/March 2006 33

Internal
Representation

of Software and its
Development Mental

Representation
of the

Software

Mental
Representation

of the Modification
Task

Mental
Representation

for Task
Solution

Problem-Solving
Performance

Software
Comprehension

Task

External
Representation
of the Software

Internal
Representation

of Software
Development

External
Representation

of the Modification Software
Modification

Task

Internal
Representation

of Software and its
Development Mental

Representation
of the

Software

Mental
Representation

of the Modification
Task

Mental
Representation

for Task
Solution

Problem-Solving
Performance

Software
Comprehension

Task

External
Representation
of the Software

Internal
Representation

of Software
Development

External
Representation

of the Modification Software
Modification

Task

Figure 3.  General Model of Interacting Tasks in Software Maintenance

Proposition 1:  When the mental representation of the
software is consistent with the mental representation of
the modification task, increases in software compre-
hension are associated with higher levels of performance
on the modification task.

Mismatching Representations

When cognitive fit does not exist (that is, when knowledge in each
of the two task areas does not mutually support problem solving),
the software maintainer’s mental representation of the software and
the mental representation of the modification task needed to support
task solution emphasize different types of knowledge.  Dual-task
interference occurs, and the maintainer may experience difficulty in
allocating attention effectively between comprehension and
modification tasks that are not mutually supportive.  In other words,
without cognitive fit, there is nothing to guide the maintainer in
working toward task completion (Vessey 1991).  As a result,
comprehension activities are likely to interfere with the maintainer’s
ability to complete the modification task, and performance suffers.

In these circumstances, some kind of transformation must be brought
about before problem solving can proceed:  either the mental

representation of the software must be transformed to emphasize
similar knowledge to that in the mental representation of the modi-
fication task, or vice versa.  Hence the maintainer confronted with
these challenges may take one of two approaches to resolve the
situation:  (1) focus further on comprehending the software or
(2) focus on performing the modification.  In the first case, because
the mental representation of the software tends to drive the
comprehension process (Burkhardt et al. 2002), there is a tendency
for the maintainer to heed information in the software that is
consistent with the knowledge already emphasized in the mental
representation of the software, rather than the knowledge consistent
with their mental representation of the modification task (see
Broadbent 1971).  Changing a mental representation of the software
to reflect an increased understanding of knowledge that is not
consistent with their mental representation of the modification task
does not, however, enhance the maintainer’s ability to modify the
software.  Hence, both efficiency and effectiveness are likely to be
affected and it is likely that improved levels of comprehension will
be associated with lower levels of problem-solving performance.

On the other hand, a software maintainer might focus on the
modification task rather than seeking to further comprehend the
software.  Because problem solvers who focus on task solution
perform more effectively than those who focus more on the present



Shaft & Vessey/Cognitive Fit of Software Comprehension & Modification

34 MIS Quarterly Vol. 30 No. 1/March 2006

state (Durso et al. 1998; Hogg et al. 1995; Vessey 1991), the
software maintainer might be better served by taking this approach,
which would then require switching attention to their mental
representation of the software only when necessary to resolve an
issue directly related to the modification task.  Focusing on the
modification task is also difficult, however.  First, because the type
of knowledge emphasized in a maintainer’s mental representation
of the software tends to be quite stable over time (Corritore and
Wiedenbeck 1999), maintainers have difficulty shifting to a different
mental representation of the software after invoking an
inappropriate one (Taylor et al. 1997).  Second, when a maintainer
attempts to acquire knowledge consistent with that required to
conduct the modification task, it is difficult to map that knowledge
into their mismatched mental representation of the software.  The
process of building up the knowledge essential to conducting the
modification task (that is, developing the mental representation for
task solution) is quite challenging and, again, both efficiency and
effectiveness are likely to be affected.  Therefore, when a maintainer
focuses on the modification task, they will likely make few gains in
comprehension.

Based on the arguments above, therefore, when there is a mismatch
between the maintainer’s mental representation of the software and
their mental representation of the modification task, problem-solving
performance will be inversely related to improvements in
comprehension.  Hence, we state the following proposition:

Proposition 2:  When the mental representation of the
software is inconsistent with the mental representation of
the modification task, greater increases in software com-
prehension are associated with lower levels of perfor-
mance on the modification task, or higher levels of per-
formance on the modification task are associated with
lesser increases in software comprehension.

In summary, then, when the approach to comprehension does not
support the task to be conducted, (1) increasing attention to compre-
hension of the software distracts the programmer from the primary
task of modification or (2) focusing on the modification task
interferes with the programmer’s understanding of the software.  In
both cases, the relationship between comprehension and modifi-
cation performance is an inverse one.

Theory on Mental Representations
in the Domain of Software

We now apply the notions of dual-task problem solving to our
specific task of modifying computer programs by examining mental
representations in the software domain in order to determine what
constitute matching and non-matching situations in this domain.  We
first examine the intrinsic characteristics of software.  We then apply
that knowledge to the mental representations of software that
software maintainers form, as well as to the types of modification
tasks (software modification task) that they may be requested to

accomplish, which is reflected in their mental representation of the
modification task.

We address the characteristics of software and software tasks via the
many types of information that are embedded in a piece of software.
Numerous researchers have addressed the issue in terms of the types
of information embedded in a computer program (see, for example,
Brooks 1987; Curtis et al. 1989; Green 1977; Pennington 1987a,
1987b; Shaft and Vessey 1998).   Part of the essential difficulty of
building and maintaining software comes from the difficulty of
representing these different types of information (see Brooks 1987).

Pennington’s (1987a, 1987b) characterization of the types of
information in software as function, data flow, control flow, and
state information best encompasses the relevant research and has
been used widely in studies addressing the types of information
found in software.  Hence we use Pennington’s characterization in
our research.  Function information reflects the main goals of the
program and the hierarchy of subgoals.  Data flow information
reflects the series of transformations that data objects undergo.  State
information relates to the condition-action information embedded in
a program (i.e., the program actions that result when a set of
conditions is true).  Control flow information reflects execution
sequence (i.e., the order in which actions occur).

Mental Representations of Software

Software maintainers incorporate these different types of infor-
mation into their mental representations of the software.  They may
develop multiple mental representations, each of which emphasizes
a particular type of information.  The types of representations that
they form depend on their experience with software and with their
knowledge of the application domain of the software, among other
factors.  A series of protocol analysis studies have led to the
characterization of these representations as domain, program, and
situation models (Vans et al. 1999; von Mayrhauser and Vans 1995,
1996; von Mayrhauser et al. 1997).

A software maintainer’s domain model focuses on software func-
tionality (Vans et al. 1999).  Therefore, the domain model empha-
sizes the function information contained in the software.  It is a
high-level model that is more closely aligned to the application
domain (that is, the problem rather than the software) and is less
detailed than the other two models (Vans et al. 1999; von
Mayrhauser and Vans 1996).

A software maintainer’s program model emphasizes how the
software accomplishes tasks (von Mayrhauser and Vans 1995).  It
is closely aligned with the programming domain and is the most
detailed of the models (Pennington 1987b).  Therefore, it empha-
sizes the maintainer’s understanding of the control flow and state
information embedded in the software.  Control flow information
reflects the sequencing of actions within the software, while state
information reflects connections between the execution of an action



Shaft & Vessey/Cognitive Fit of Software Comprehension & Modification

MIS Quarterly Vol. 30 No. 1/March 2006 35

Cognitive Fit 

Mental Representation 
of the Modification 

Task

Dominant Mental 
Representation of the 

Software

Performance on 
Modification Task

Changes in 
Comprehension During 

Modification Task

Cognitive Fit 

Mental Representation 
of the Modification 

Task

Dominant Mental 
Representation of the 

Software

Performance on 
Modification Task

Changes in 
Comprehension During 

Modification Task

Figure 4.  Research Model of the Relationships Among Cognitive Fit, Comprehension, and Modification
Performance

and the state of the software when the action occurs (Pennington
1987b).

 A software maintainer’s situation model serves as a bridge between
the domain and program models and may be characterized as
representing the algorithmic level of the software (Vans et al. 1999).
It allows a maintainer to avoid cognitive overload by reorganizing
the knowledge gained through the line-by-line study of the software
into higher-level chunks and reflects the maintainer’s understanding
of data flow information in the software.  We can consider the
domain and program models as being at the opposite ends of a
continuum, with the situation model residing between them.

When engaging in software comprehension, a software maintainer
invokes one of the possible mental representations of the software
(domain, program, or situation model) (Vans et al. 1999), which
then drives the comprehension process (Burkhardt et al. 2002).  For
ease of explication, we refer to this representation as the main-
tainer’s dominant mental representation of the software, or more
simply, the dominant mental representation.  Because the domain
model is linked to the application domain, software maintainers
tend to invoke it when they are familiar with the application domain
(von Mayrhauser and Vans 1995); that is, a maintainer’s domain
model will be activated when the application domain is familiar.
When maintainers lack application domain knowledge, they tend to
invoke the program model, thereby relying on their understanding
of the programming language and standard programming constructs
(von Mayrhauser and Vans 1995); that is, a maintainer’s program
model will be activated when the application domain is unfamiliar.
The situation model is unlikely to be invoked at the outset of
comprehension as it tends to develop after the program model and
only after extensive interaction with a specific piece of software
(von Mayrhauser et al. 1997).

Mental Representations of Modification Tasks

Software modification tasks can be conceptualized as affecting one
of the types of information embedded within software more than the
other types of information.  We can determine the most important
types of modification tasks in practice by examining prior
modification studies and also the tools that embed techniques for
aiding software maintenance.  Prior researchers, for example, have
largely investigated control flow tasks (Barry et al. 1999; Curtis et
al. 1989).  Software metrics tools typically focus on data flow as
well as control flow (Zuse 1991) and program slicing techniques
extract the data flow for a particular (set of) variable(s) relevant to
a modification or debugging task (Weiser 1982).  In this study, we
investigated a control flow modification task, which should be
consistent with a program model because it emphasizes how
software accomplishes tasks (von Mayrhauser and Vans 1995).  We
also investigated a function modification task, which should be
consistent with a domain model because it emphasizes function
information (Vans et al. 1999).

We conceptualize software maintainers as creating a mental
representation of the modification task based on the requirements of
the modification task (the software modification task), the way in
which the modification task is presented (external representation of
the modification), and their existing knowledge of software devel-
opment (internal representation of software development).  The
external representation of the modification is a specification of the
software modification task such as a narrative or graphic.  Essen-
tially, then, their mental representation of the modification task will
emphasize the type of knowledge that is emphasized in the task
requirements (software modification task).  The maintainer’s mental
representation of the software and mental representation of the



Shaft & Vessey/Cognitive Fit of Software Comprehension & Modification

36 MIS Quarterly Vol. 30 No. 1/March 2006

modification task may or may not match in that they may or may not
emphasize the same type of knowledge.

Hypotheses

To test the propositions, we need to establish conditions for
cognitive fit between the maintainer’s dominant mental repre-
sentation of the software and the mental representation of the
modification task.  We address this issue from the perspective of the
dominant mental representation and, from there, establish match/
mismatch relationships with the type of modification task.  We also
address the aspect of comprehension that is relevant to the research
model we use to address our propositions (see Figure 4).  We then
derive hypotheses to test the propositions.

We manipulated the maintainer’s dominant mental representation
of the software by having them conduct modification tasks in
familiar and unfamiliar application domains.  We invoked the main-
tainer’s domain model by using software from a familiar application
domain (Vans et al. 1999) and their program model by using
software from an unfamiliar application domain (von Mayrhauser
and Vans 1995).

We operationalized cognitive fit by using two modification tasks,
one of which emphasized function information, while the other
emphasized control flow information.  A domain model of software
focuses on function information.  Pennington, for example, states
that functional information involves the “main goals of the program
and the hierarchy of subgoals necessary to achieve this goal”
(1987a, p. 101), while von Mayrhauser et al. states that “it is much
easier to decompose the program into functional units if the
programmer is well acquainted with the domain” (1997, p. 311).
Therefore, cognitive fit between the software maintainer’s dominant
mental representation of the software (in this case, the domain
model) and their mental representation of the modification task
occurs when they perform a function-oriented modification.

In an unfamiliar application domain, the software maintainer’s
dominant mental representation of the software is the program
model.  As we have seen, the program model is based on control
flow and state knowledge.  Control flow “reflects the execution
sequence of a program, the order in which actions will occur”
(Pennington 1987a, p. 101).  We used a control flow modification to
operationalize cognitive fit when the software maintainer’s dominant
mental representation of the software is the program model.

We now address that aspect of comprehension that is relevant to our
research model (see Figure 4).  Our theory suggests that the fit
conditions we establish will moderate the effectiveness of the
comprehension that occurs during problem solving.  The compre-
hension that occurs during problem solving is a reflection of changes
to the mental representation of the software.  The important variable
in the relationship between comprehension and problem-solving

performance is the change in comprehension that occurs during
conduct of the modification task.  We therefore motivate change in
the level of comprehension observed during the modification task as
the relevant aspect of comprehension in our study.

In the context of Proposition 1, we state the following hypotheses:

Hypothesis 1a:  When a software maintainer is familiar
with the software’s application domain and conducts a
function-oriented modification task, increases in software
comprehension are associated with higher levels of
performance on the modification task.

Hypothesis 1b:  When a software maintainer is unfamiliar
with the software’s application domain and conducts a
control flow modification task, increases in software
comprehension are associated with higher levels of
performance on the modification task.

Hence when the information emphasized in the programmer’s
mental representation of the software and that of the modification
task are similar, the two tasks are mutually supportive, resulting in
a direct relationship between changes in software comprehension
and performance on the modification task.

Our second proposition is based on conditions in which cognitive fit
does not exist.  We created these conditions by invoking situations
in which the knowledge emphasized in the dominant mental
representation of the software and the mental representation of the
modification task do not match, that is, by counter-crossing the
conditions used to create cognitive fit.  Cognitive fit does not exist
when maintainers perform a function-oriented modification in an
unfamiliar domain, and a control flow-oriented modification in a
familiar domain.

In the context of Proposition 2, we state the following hypotheses:

Hypothesis 2a:  When a software maintainer is unfamiliar
with the software’s application domain and conducts a
function-oriented modification task, greater increases in
software comprehension are associated with lower levels
of performance on the modification task, or higher levels
of performance on the modification task are associated
with lesser increases in software comprehension.

Hypothesis 2b:  When a software maintainer is familiar
with the software’s application domain and conducts a
control flow modification task, greater increases in
software comprehension are associated with lower levels
of performance on the modification task, or higher levels
of performance on the modification task are associated
with lesser increases in software comprehension.

Hence when the information emphasized in the programmer’s
mental representation of the software and the mental representation



Shaft & Vessey/Cognitive Fit of Software Comprehension & Modification

MIS Quarterly Vol. 30 No. 1/March 2006 37

Application Domain

Familiar Unfamiliar

Lack of cognitive fit

Cognitive Fit

Cognitive fit

Lack of cognitive fitControl Flow

Function

M
od

ifi
ca

tio
n 

Ta
sk

Application Domain

Familiar Unfamiliar

Lack of cognitive fit

Cognitive Fit

Cognitive fit

Lack of cognitive fitControl Flow

Function

M
od

ifi
ca

tio
n 

Ta
sk

Figure 5.  Research Design for Testing Cognitive Fit Between Familiarity with the Application Domain
and Type of Modification

of the modification task are dissimilar, the two tasks are not mutually
supportive; each task, therefore, demands specific attention,
resulting in an inverse relationship between changes in software
comprehension and performance on the modification task.

In summary, we operationalize cognitive fit by pairing familiarity
with the application domain and the type of modification task.  We
test our hypotheses by measuring the changes in the maintainer’s
comprehension that occur during the conduct of the modification
task.  We hypothesize a three-way relationship between application
domain familiarity, type of modification task, and changes in
comprehension.   Figure 5 presents the research design.

Research Method

To investigate the hypotheses, we conducted a study in which IT
professionals studied and modified computer software.  As specified
above, combinations of application domain familiarity and modi-
fication task type create four conditions:  two with cognitive fit, two
without cognitive fit.   A software maintainer conducted one of two
types of modification tasks (function or control flow) in each
application domain.  Half of the participants completed a function
modification in both application domains, while the others com-
pleted control flow modifications.  Each participant worked in situa-
tions both with and without cognitive fit.  To evaluate changes in
comprehension, we created sets of comprehension questions that
were administered before and after conducting each modification.

Task Setting

COBOL was the programming language for the experimental
programs because of its predominance as a business programming
language.  An estimated 150 billion to 175 billion lines of COBOL
code are in production worldwide with 83 percent  of transactions
processed by COBOL running on mainframes (Arranga 2000).

COBOL applications, therefore, represent a significant corporate
asset (Coyle 2000), making them particularly relevant to studies of
software maintenance.

Accounting was selected as the familiar application domain because
accounting systems are frequently implemented in COBOL, thereby
increasing the likelihood of identifying potential subjects.  Hydrol-
ogy was selected as the unfamiliar application domain because it is
unrelated to accounting and subjects familiar with accounting were
unlikely to be familiar with hydrology.

Subjects

In total, 24 IT professionals employed in developing and main-
taining COBOL accounting applications participated in the main
study.  The average participant was 36.5 years of age (range:  24 to
52), had 10.7 years professional IS experience (range:  3 to 20),
knew 5 programming languages (range: 1 to 11), and was male in 4
out of 5 instances.  The average self-reported score for COBOL
knowledge was 4.7 on a five-point scale (range:  3 to 5).  Job titles
ranged from senior programmer to team leader.  Accounting domain
knowledge was assessed via the number of accounting credit hours
(average = 10.2 credit hours) and the number of years of experience
in accounting applications (average = 6.7 years).  Participants’
experience was examined to ensure that none had experience in
hydrology or other scientific domains.  Observations during data
collection and comments from participants’ supervisors suggest that
participants were highly motivated to complete the task.

Experimental Materials

The experimental materials included computer programs, compre-
hension questions, and modification specifications.  The computer
programs served as stimulus materials, while the comprehension
questions were used to assess a maintainer’s comprehension of the



Shaft & Vessey/Cognitive Fit of Software Comprehension & Modification

38 MIS Quarterly Vol. 30 No. 1/March 2006

programs.  The modification specifications presented requested
changes to the software.

Computer Programs

Three programs were used in the experiment:  one to familiarize
participants with the experimental procedures, and one each from
the accounting and hydrology domains.  The programs accessed all
files sequentially and contained internal sorts.

The practice program sorted an input inventory file and prepared a
report that listed inventory levels for all items in a prescribed order.
It consisted of 99 source lines of code (SLOC), with 33 SLOC in the
PROCEDURE DIVISION.

The accounting program was a modified version of an operational
payroll program that computed and produced paychecks, mailing
labels, and a pay roster.  The sort sequenced time cards by location,
last name, and social security number.  The pay roster was organized
by location and listed the name, social security number, budget
code, gross pay, and net pay of each individual who received a
paycheck.  Subtotals of net and gross pay for each location and
overall totals were accumulated.  We made modifications to the
software to facilitate comprehension by using more meaningful
paragraph and variable names, and reordering paragraphs.  The
program consisted of a total of 417 SLOC with 160 SLOC in the
PROCEDURE DIVISION.

The hydrology program was a modified version of an operational
water quality management program that computed averages and
variances for seven parameters (coliform, nitrate, chloride, lead,
fluoride, pH, and alkalinity) based on test results.  A sort organized
the test information by well identification number, year, and month.
The report was organized by well identification number and
contained the average, variance, and maximum value of test results
for each month.  We made modifications to improve comprehension
similar to those made to the accounting program.  We also revised
the structure of the program, which had become difficult to under-
stand due to changes made over time.  The program consisted of a
total of 416 SLOC with 162 SLOC in the PROCEDURE DIVISION.

For experimental purposes, it was important that the two programs
be comparable.  Assessing the comparability of software is com-
plicated by the fact that hundreds, if not thousands, of software
metrics exist (Zuse 1991).  Further, no theory suggests which
metrics are appropriate in specific instances.  The confusion is
complicated by the fact that a particular software metric typically
focuses on only one of the many types of information embedded
within a piece of software (usually control flow or data flow; see
Zuse 1991).

Because there is no single accepted software metric, we employed
three metrics to compare our experimental programs:   SLOC, data
density, and decision density.  SLOC controls for size and is used to
assess overall comparability.  SLOC is highly correlated with most

other metrics (Kemerer 1995).  Further, it is as effective a measure
of software comparability as other measures (Munson and
Khoshgoftaar 1989).  The major criticisms of SLOC as a metric are
that it cannot be used to compare effort across programming
languages and that different counting standards can invalidate
within-language comparisons (Jones 1994).  These criticisms are not
relevant to this study because we use a single programming
language and a consistent counting standard (see Jones 1986).
Table 1 presents SLOC counts for the two experimental programs.
Note that the programs are comparable with respect to the DATA
and PROCEDURE DIVISIONS, as well as overall.

We also used data and decision density (see Table 1), two metrics
used by Banker et al. (1998) to investigate maintenance.  Data
density is defined as Halstead’s (1977) N2 software science measure
divided by total lines of code.  N2 is derived from a count of the
number of operands (data elements) referenced in the software.
Decision density is McCabe’s (1976) cyclomatic complexity divided
by total lines of code.  Cyclomatic complexity is a measure of the
number of decision paths in a piece of software.  We used Banker et
al.’s data as estimates for the standard deviations of data and
decision density to conduct t-tests to determine if our experimental
programs were significantly different.3  The accounting and
hydrology programs were not significantly different with regard to
either data (t = –.178, p = .86) or decision density (t = –.351, p =
.73).4  Therefore, the two programs used in this study are
comparable based on the measures of SLOC, data density, and
decision density.

Comprehension Measure

To assess the relationship between comprehension and modification
performance, we needed a measure of the software comprehension
that occurs while maintainers are engaged in the modification task.
We measured this difference by assessing comprehension prior to
and following each modification task.

Apart from the need to measure the change in comprehension that
occurs during modification, introducing an initial study period into
the experiment served a number of other purposes.  First, it
strengthened our manipulation of software maintainers’ reliance on
a domain model when familiar with the application domain (Vans et
al. 1999).  An initial comprehension period did not influence the
mental representations of those maintainers whose dominant mental

3Banker et al.’s study is based on the entire maintenance portfolio of a
national mass-merchandising retailer.  Because it is the only examination of
an entire applications portfolio of which we are aware, it provides the best
available estimates of standard deviation for data and decision density.

4T-tests were used because one can retain the null hypothesis of normality for
data and decision densities (p = .1914 and .1612, respectively).  We
computed the t-statistics as follows:  t = (metricdomain1 – metricdomain2)/
(standard deviation */2).



Shaft & Vessey/Cognitive Fit of Software Comprehension & Modification

MIS Quarterly Vol. 30 No. 1/March 2006 39

Table 1.  Comparability Measures for the Original Programs

Program Characteristics
Familiar

(Accounting)
Unfamiliar

(Hydrology) p-value

SLOC
Identification Division
Environment Division

Data Division
Procedure Division

Total

3
20
234
150
417

3
18
233
162
416

Data Density
Total Operands (N2/Total SLOC)

.6787 .7308 .86

Decision Density
Cyclomatic Complexity (VG1/Total SLOC)

.0312 .0432 .73

representation was the program model because some prior knowl-
edge of the software should not alter the likelihood that maintainers
who are unfamiliar with the application domain will rely upon their
program model (Vans et al. 1999).  Second, an initial comprehension
period followed by a distinct modification period is consistent with
previous comprehension research (Corritore and Wiedenbeck 1999;
Pennington 1987b) and allows us to examine alternative explana-
tions for our findings.  Third, it is similar to practical situations
where a software maintainer has some experience with a piece of
software prior to conducting a modification.  Finally, this approach
creates a measure of comprehension relative to each maintainer’s
comprehension skills; that is, it controls for individual differences
in the effectiveness of comprehension.

Two approaches have been used predominantly to assess pro-
grammers’ comprehension of computer programs:  free recall
(Sheppard et al. 1979; Sime et al. 1973) and responses to compre-
hension questions (Corritore and Wiedenbeck 1999; Curtis et al.
1989, Green 1977, Pennington 1987a, 1987b).  Free recall requires
a programmer to recall a program after a period of study.  It requires
memorization, which may or may not involve understanding
(Boehm-Davis 1988; Curtis et al. 1989), and can be used for only
quite small programs.  Because we wanted to assess comprehension
rather than memorization, we used comprehension questions.
Further, comprehension questions frequently have been employed
to assess a maintainer’s mental representation of software (see
Corritore and Wiedenbeck 1999; Pennington 1987b).

Our assessment of software comprehension required the preparation
of two sets of comprehension questions for each application domain,
one set each to be administered prior to and following the
modification task.  Presentation of the question sets was counter-
balanced so that half of the participants responded to one set
following the study period, and the other set following the
modification period.

To be consistent with previous assessments of comprehension
(Corritore and Wiedenbeck 1999; Pennington 1987a, 1987b), we
developed questions based on each of the different types of infor-
mation:  function, data flow, control flow, and state (Pennington
1987a, 1987b) in the following series of steps.  First, we represented
each program using four documentation formats, each of which
corresponded to a type of information:  functional decomposition to
represent function information, data flow diagrams to represent data
flow information, flowcharts to represent control flow information,
and decision tables to represent state information.  Second, based on
example questions in Pennington (1987a), we used the documen-
tation formats to develop questions relating to each type of infor-
mation.  Third, we then  randomly assigned a question to one of the
two question sets, with five questions relating to each type of infor-
mation, and with 10 “yes” and 10 “no” responses, yielding 20 ques-
tions in each set.  The sequence of questions with respect to the type
of information was randomly generated and the same for each set.

We then evaluated our comprehension instruments in a further series
of steps.  Two knowledgeable colleagues who were not involved in
the research reviewed the questions.  The questions were then tested
in a pilot study whose participants included professional software
maintainers, resulting in minor wording changes.  We assessed the
reliability of the question sets using the Kuder-Richardson statistic
(the special form of Cronbach’s Alpha for dichotomous variables)
using the data from the main experiment.  The average alpha was .72
(accounting domain:  .75 and .60; hydrology domain: .83 and .71),
which meets conventional levels of acceptability and compares
favorably with the values reported in the only other comprehension
study of which we are aware that reported reliabilities (Curtis et al.
1989).  Further, the accuracy of programmers’ responses did not
differ statistically for the two question sets in each domain (p > .05).
Hence, the two sets of questions in each domain were essentially
similar and we could use them to measure comprehension before and
after programmers conducted modifications in those domains.



Shaft & Vessey/Cognitive Fit of Software Comprehension & Modification

40 MIS Quarterly Vol. 30 No. 1/March 2006

Examples of questions representing each knowledge category are
presented below.5  The first two questions are from the familiar
(accounting) domain, and the final two from the unfamiliar
(hydrology) domain.  The first and third questions are correctly
answered by “yes,” the second and fourth by “no.”  Comprehension
questions typically require the software maintainer to translate their
knowledge into application terms (see the first question, which is a
function type item) or to integrate their understanding over different
elements of the program (the remaining questions).  Hence they
require understanding beyond rote memorization.

• Are mailing labels created for each employee?
• Does the value of PARAM-TEST affect the value of TIME-

MAX?
• Is OUTPUT-VALUES performed before OUT-MONTH-

HEADERS?
• Does LOC-DL equal NEW KENSINGTON when ST-

LOCATION equals UP?

Initial and final comprehension scores were created by converting
the number of correctly answered questions into a percentage,
consistent with Pennington (1987b) and Corritore and Wiedenbeck
(1999).  We then computed a score based on the percent change in
comprehension.  Note that simple difference scores (posttest–
pretest) place those who achieve a high initial score at a disadvan-
tage:  due to higher levels of initial comprehension, they cannot
demonstrate as much improvement between the pre- and post- tests.
Therefore, our percent change in comprehension score calculates the
percent change as the percent of possible improvement.6  If a main-
tainer demonstrated higher levels of comprehension after conducting
the modification task, the comprehension score indicates the percent
improvement of the possible improvement as follows:

(final comprehension score – initial comprehension
score)/(100 – initial comprehension score)

We followed similar logic to develop scores for those who demon-
strated a decrease in comprehension after conducting the modifi-
cation task.  The formula computes the percent decrease in compre-
hension of the possible decrease:

(final comprehension score – initial comprehension
score)/initial comprehension score

Note that the range of possible values is consistent for both
formulas:  0 to 100 percent and positive or negative depending upon
whether the software maintainer demonstrated an increase or a de-
crease in comprehension.   Responses to the comprehension ques-

tions were scored by a secretarial assistant and were not available to
the researchers during scoring of the modification tasks.

Modification Tasks

Tasks that emphasized control flow and function information were
required for both application domains.  The control flow tasks
required maintainers to insert a new level of control break into an
existing report.  As noted in our specifications (Appendix A), main-
tainers were provided with copies of the existing and required
(modified) outputs so that they could easily determine that the
modification was a change to an existing report.  Control flow tasks
require maintainers to engage mentally with the details of the current
program’s execution sequence and make enhancements to support
the additional level of control break.  Such a task emphasizes the
program’s execution sequence, which is consistent with the domi-
nant mental representation of the software (program model) in the
unfamiliar domain.  Control flow modification tasks, therefore,
create conditions of fit in the unfamiliar (hydrology) application
domain and no fit in the familiar (accounting) application domain.

The function tasks required software maintainers to alter the existing
programs by incorporating information from a new input file to
create and output new information.  Function tasks require main-
tainers to understand the higher level goals of a program.  Such tasks
emphasize information such as program goals or functional units of
the existing program rather than implementation details.  Function
tasks, when paired with application domain familiarity, create
opposite fit conditions from those for control flow tasks; that is,
function tasks create conditions of fit in the familiar (accounting)
domain and no fit in the unfamiliar (hydrology) domain.

In addition to operationalizing control flow and function type tasks,
two criteria were used to develop the modifications.  First, the modi-
fication should represent a realistic task that could be approached
within our time constraints.  Second, the resulting programs should
be comparable.  We again used three metrics to assess software
comparability.  It was important that the modifications be of
consistent size because the number of lines of code added during a
maintenance task is highly predictive of the effort to conduct the
modification (Sheppard et al. 1979); otherwise, differences in
performance could be attributable to inconsistent levels of effort
required to conduct a modification.  Our primary size criterion was
overall size, followed by size within type of modification task (i.e.,
control flow or function) because a maintainer conducted the same
type of modification task in both application domains to create both
cognitive fit and no-fit conditions.  Table 2 presents the counts of
SLOC required to implement the modifications.  Because the
necessary changes to the input and output record formats were
provided to the participants, these changes are not reflected in the
counts (see the “Pilot Study” section below for further information).
The data and decision densities for both types of modifications also
indicate that they are comparable (Table 3 compares the modi-
fications by application domain and by task type).

5The complete sets of comprehension questions are available from the first
author upon request.

6Note, however, that the simple difference score (posttest–pretest) yields
essentially similar results for hypothesis testing and analyses of alternative
models.



Shaft & Vessey/Cognitive Fit of Software Comprehension & Modification

MIS Quarterly Vol. 30 No. 1/March 2006 41

To assess participants’ perceptions of the difficulty of a modi-
fication, after completing each modification task participants were
asked:  “How difficult was it to develop the modification?”  They
responded on a Likert-style scale with 1 = very easy and 7 = very
difficult as the anchors.  There were no statistically significant
differences between perceptions of the two types of modification
tasks (function = 3.13 versus control flow = 3.54, F1,22 = .68, p =
.42).  Hence, based on both software metrics and participants’
perceptions, the modification tasks appear to be of similar difficulty.

Experimental Design

A mixed design with application domain familiarity as the within-
subjects factor and type of modification task as the between-subjects
factor was used to investigate the hypotheses.  By varying appli-
cation domain familiarity and type of modification task in this
manner, each software maintainer worked in both fit and no-fit
conditions.  As such, each subject served as their own control for
level of programming expertise.  Further, by fully crossing two types
of modification tasks with two levels of application domain
familiarity, we controlled for the possibility that our findings are
idiosyncratic to a particular modification task.

We controlled for application domain familiarity by prescreening
participants.  A further check on application domain familiarity was
made by asking participants to rate their familiarity with the
application domain after the initial comprehension period.  A paired
t-test of differences in responses indicated that participants found the
accounting domain more familiar than the hydrology domain (t23 =
5.84; p < .0001).  The order of presentation of the two application
domains was counterbalanced so that half of the participants worked
in the familiar application domain first, then the unfamiliar domain,
and vice versa.  Participants were randomly assigned to one of the
two types of modification tasks.

Pilot Study

We conducted a pilot study to test the experimental materials and
procedures, and to determine the length of the initial comprehension
period.  Students who had completed a COBOL course served as
pilot subjects initially.  Based on our observations, it was clear that
our manipulation of application domain familiarity was ineffective
as students had insufficient background to be sufficiently familiar
with either application domain for our purposes.  Therefore, for the
later stages of pilot testing and the main experiment, professional
software maintainers experienced with accounting applications
served as participants.  

Early in our study, we decided to restrict the length of the entire
experiment to approximately 4 hours because we regarded 4 hours
as the upper limit for the participation of professionals whose time
was donated by their employers.  The pilot study enabled us to

determine the length of time that needed to be devoted to various
phases of our experiment.  As a result, software maintainers in the
main study were permitted 15 minutes for the initial comprehension
period and 35 minutes for the modification period in each appli-
cation domain.  Note that allowing unlimited time to conduct the
modification task could have created an unnatural setting (Walz et
al. 1993).  Further, allowing unlimited time would have created a
confound with our measure of comprehension because different
maintainers would have worked with the software for unequal time
periods.

The initial comprehension period avoided “ceiling effects” (Sheil
1981), while allowing participants sufficient time to study the source
code.  Most participants had ample time to review the source code
and were studying it for a second time when requested to stop.  The
length of the modification period was sufficient to allow most
participants to design the modification and begin making changes to
the code.  In general, subjects were able to complete all elements of
the experiment within four hours.  A few maintainers took slightly
longer due to the time they took completing the questionnaires or
questions they had during the practice session.

Our pilot study also revealed that making the changes to the DATA
DIVISION proved to be extremely time-consuming.  This process
is somewhat mechanical and did not provide insight into main-
tainers’ ability to conduct the meaningful elements of the modi-
fication task.  Therefore, the necessary changes to the input and
output record formats were made to the program listings in the
DATA DIVISION, but not in the WORKING-STORAGE section.
These versions were compiled to provide cross-reference listings
and the changes made to the DATA DIVISION were highlighted to
aid the participants.  The original and modified listings were
provided to maintainers at the beginning of the modification phase.
These changes were made early in the pilot study, tested on later
pilot subjects, and judged effective.  Some participants commented
that the procedure was similar to having an analyst work out
formatting on a printer spacing chart prior to giving a task to a
programmer.  This adjustment markedly increased the progress
made on the modification task in the allotted time.

Experimental Procedure

The first author ran the subjects individually through the study.  The
experiment took place in three segments:  a practice session (to
familiarize participants with the experimental procedures), followed
by two experimental sessions (one in each application domain).  The
process was the same for all sessions, although the time permitted
differed (see below).  Participants were allowed a short break
following each session.

Each segment consisted of an initial comprehension period and a
modification phase.  At the beginning of a task, the participant was
given a copy of the source code and asked to study the software to
gain as great an understanding of the software as possible in the



Shaft & Vessey/Cognitive Fit of Software Comprehension & Modification

42 MIS Quarterly Vol. 30 No. 1/March 2006

Table 2.  Comparability Measures for Modified Programs

Program Characteristics

Function Modification Control Flow Modification

Familiar
(Accounting)

Unfamiliar
(Hydrology)

Familiar
(Accounting)

Unfamiliar
(Hydrology)

SLOC—PROCEDURE DIVISION
Modified Program
Original Program

SLOC added to PROCEDURE DIVISION
Additions to WORKING STORAGE SECTION

SLOC changed in PROCEDURE DIVISION
Total SLOC added or changed

SLOC Additions to Record/File Formats (Provided to
Participants)

185
(160)

25
2
1

28

22

185
(162)

23
1
–

24

9

192
(1060)

32
7
–

39

19

196
(162)

34
5
–

39

4

Data Density 0.7326 0.8062 0.7478 0.8505

Decision Density 0.0404 0.0432 0.0329 0.0436

Table 3.  Comparison of Data Density and Decision Density for the Modified Programs

Data Density
Decision Density

Familiar (Accounting) Unfamiliar (Hydrology)

Function Control Flow t value
p value

(2 tailed) Function Control Flow t value
p value

(2 tailed)

0.7326
0.0404

0.7478
0.0329

–0.0521
0.2191

0.9588
0.8281

0.8068
0.0432

0.8505
0.0436

–0.1497
–0.0117

0.8821
0.9908

Data Density
Decision Density

Function Control Flow

Familiiar
(Accounting)

Unfamiliar
(Hydrology) t value

p value
(2 tailed)

Familiar
(Accounting)

Unfamiliar
(Hydrology) t value

p value
(2 tailed)

0.7326
0.0404

0.8068
0.0432

–0.2542
–0.0818

0.8012
0.9354

0.7478
0.0329

0.8505
0.0436

–0.3518
–0.3126

0.7276
0.7569

amount of time allocated (5 minutes for the practice program, 15
minutes for each program in the study proper).  After the initial
comprehension period, the participant responded to one set of
comprehension questions with no explicit time limit and without
access to the source code.  They did not have access to the source
code because we wanted to assess their knowledge as represented in
their mental representation of the software.

In the modification phase, the participant was given the source code
they had been studying, the one-page modification specification, the
modified hard-copy listing that contained the changes to input or
output record formats, and any relevant input or output files.  The
participant was asked to work on the modification task for the given
amount of time (10 minutes for the practice program, and 35
minutes for the study proper).  During the practice session, the
researcher showed the participant how to compile, link, and run the

modified practice program, as well as how to print and display the
output generated by the program.  During the study proper, the
experimenter answered only technical questions that were unrelated
to the conduct of the experimental tasks.  At the end of the modifica-
tion phase, the source code and other materials relating to the exper-
imental task were again removed and the participant responded to
the second set of comprehension questions.

Assessment of Performance on
the Modification Task

To assess performance on the modification tasks, objective scoring
criteria were developed for each modification by identifying several
subtasks, some of which were further subdivided.



Shaft & Vessey/Cognitive Fit of Software Comprehension & Modification

MIS Quarterly Vol. 30 No. 1/March 2006 43

Each subtask was assigned a specific point value based on its
importance in accomplishing the modification, for a total of 100
points.  When a participant did not make the changes related to a
subtask in the online version of their program, the researcher
examined the hard-copy program listing the participant used during
the experiment for handwritten changes.  Up to 75 percent of the
points for a particular subtask were awarded, depending on the
completeness of such changes.  The total score for each modification
task was the sum of the points earned from the changes made to the
online version and the hand-written changes to the hard-copy listing.
Points were assigned to give maintainers credit for all the relevant
work that they had accomplished; hence, they could earn partial
credit for any identified subtask.  The first author used this scoring
scheme to assign points to the modifications conducted by the
participants (see Appendix B).

The scoring criteria, therefore, emphasized the amount of progress
made toward completing the task.  The modifications required fairly
standard programming approaches and there were no substantive
differences in the quality of the modifications; that is, all pro-
grammers displayed a professional approach to preparing their
solutions and we were unable to detect much variance beyond the
amount of work accomplished.  We did not explicitly deduct for
errors (of which there were few) because any effort expended on an
incorrect approach would have been at the expense of making the
requested changes and would have resulted in double penalization.

To assess the validity of the scoring criteria, the scores were com-
pared with two sets of rankings.  The first author and a research
assistant, who had two years’ professional experience in COBOL
development and maintenance and no knowledge of the research
hypotheses, ranked a subset of five of the modified programs for
each task type in each domain.  The rankings were based on each
rater’s subjective assessment of how well each maintainer had
progressed on the modification.  The two sets of rankings were then
correlated with the ranks of the scores from the objective assess-
ments (within each domain by task combination).  Correlations
ranged from .82 to 1.00 and all were significant at p < .05.  Satisfied
by the high degree of agreement between the objective scoring and
subjective rankings, we used the objective scores as the modification
performance measure in this study.

Analysis and Results
We first present our analyses and findings with respect to the
theoretical development proposed in this paper.  We then strengthen
the support for our findings by presenting the results of analyses
designed to consider alternative explanations of the results.

Analyses Based on Theoretical Model 

The data were analyzed via SAS PROC MIXED, which allowed us
to specify both within- and between- subjects factors and continuous
variables in the within-subjects effect (Wolfinger and Chang 1995).

PROC MIXED was required because percent change in compre-
hension was measured twice for each participant (once in each
application domain).  Hence, we required a technique that allowed
us to specify percent change in comprehension for both observations
of each participant.  The model specifies performance on the
modification task as the dependent variable and three independent
variables (application domain familiarity, type of modification task,
and percent change in comprehension).  Two of the independent
variables were manipulated in the experiment to form the cognitive
fit conditions:  application domain (familiar and unfamiliar), a
within-subjects factor, and type of modification task (function or
control flow), a between-subjects factor.  The final independent
variable, percent change in comprehension, was specified as a con-
tinuous variable specific to each participant in both application
domains.

Table 4 presents the means and standard deviations of the percent
change in comprehension and modification scores in each of the four
experimental conditions.  From an examination of the means for
percent change in comprehension across the two modification task
types, one might be concerned that there could be a confound due to
a relationship between these two independent variables.  Further
analysis revealed, however, that there is no statistically significant
difference in percent change in comprehension based on modi-
fication task type.  Further, a model that included percentage change
in comprehension as a dependent variable with the experimental
factors (application domain familiarity and type of modification
task) did not yield a statistically significant fit.  Hence, these
variables do not create a confound in our subsequent analysis.

We analyzed the data in three stages:  (1) the main effects
exclusively (application domain familiarity, type of modification
task, and percent change in comprehension); (2) main effects and
two-way interactions; and (3) the full model (main effects and the
two-way and three-way interactions).  This approach allowed us to
test if the addition of the two-way and then the three-way
interactions significantly improved model fit.  If this is not the case,
then the simpler model is preferable (Tabachnick and Fiddell 2000).

Table 5 presents the results of our analyses.  The model with three
main effects was significant overall (i.e., the null model likelihood
test) and the only significant main effect was for application domain
familiarity.  The addition of the two-way interactions resulted in a
model that was significant overall; however, no factors were
significant.  Nonetheless, the model with the two-way interactions
demonstrates a significantly better fit to the data than the main-
effects only model.  The full model (main effects and the two-way
and three-way interactions) was significant overall and the
hypothesized three-way interaction (application domain familiarity
× type of modification task × percent change in comprehension) was
significant (F1,22=8.77, p-value = .007).  Further, the full model
results in a significantly better fit to the data than the model with the
main effects and two-way interactions.



Shaft & Vessey/Cognitive Fit of Software Comprehension & Modification

44 MIS Quarterly Vol. 30 No. 1/March 2006

Table 4.  Means and (Standard Deviations) for Percent Change in Comprehension
and Modification

Type of
Modification

Familiar
(Accounting)

Domain

Unfamiliary
(Hydrology)

Domain Means

Percent Change in Comprehension

Function .16 (.27) .06 (.23) .11 (.25)

Control Flow .24 (.30) .28 (.28) .26 (.28)

Means .20 (.28) .17 (.28) .19 (.26)

Performance on Modification Task

Function 50.75 (23.25) 39.92 (25.84) 45.33 (17.61)

Control Flow 54.08 (18.66) 38.00 (31.67) 46.04 (24.24)

Means 52.42 (20.69) 38.96 (28.28) 45.69 (20.73)

Table 5.  Results of Analysisa

Effects

Main Effects

Main Effects and Two-
Way

Interactions

Main Effects and Two-
Way and

Three-Way Interactions

f-value p-value f-value p-value f-value p-value

Percent Change in
Comprehension 1.93 .179 .85 .366 .69 .414

Type of Modification Task .00 .973 .28 .599 .03 .864

Application Domain Familiarity 5.81 .025 .25 .620 2.13 .159

Percent Change in
Comprehension × Type of

Modification Task
1.77 .197 .02 .881

Percent Change in
Comprehension × Application

Domain Familiarity
3.02 .096 4.01 .058

Type of Modification Task ×
Application Domain Familiarity .00 .957 3.94 .060

Percent Change in
Comprehension × Type of

Modification Task × Application
Domain Familiarity

8.77 .007

Null Model Likelihood Test P² = 7.43 p = .024 P² = 9.45 p = .009 P² = 9.63 p = .008

–2 Residual Log Likelihood 411.1 384.3 366.8

)(–2 Residual Log Likelihood) P² = 26.8 p < .001 P² = 17.5 p < .01

aTests to determine if the inclusion of the interactions terms yields a model with an improved fit are conducted by computing the difference of the
–2 residual log likelihood values for the two models, which is distributed as P² with df equal to the difference in the number of parameters for the
two models.



Shaft & Vessey/Cognitive Fit of Software Comprehension & Modification

MIS Quarterly Vol. 30 No. 1/March 2006 45

The percentage change in comprehension variable is distributed in
a non-normal fashion.  We therefore replicated the analysis using
rank transformed values for the percentage change in comprehension
and modification scores.  Conover (1999) recommends this pro-
cedure to address concerns about a data set meeting the assumptions
of a parametric test, including the possible influence of outliers.  The
analysis of the ranked data confirmed the results obtained from the
parametric analysis—specifically, the three-way interaction is
significant (F1,22 = 8.62, p = .008).  In these circumstances, one can
conclude that the departure from normality is not sufficient to
violate the assumptions of the model and that the results of the
parametric analysis are valid (Conover 1999).

The detection of the three-way interaction is essential to the process
of assessing support for our hypotheses.  Specifically, because of the
complete crossing of the experimental factors, the significant three-
way interaction indicates that the slopes of the lines in the cognitive
fit conditions are significantly different from the slopes in the no-fit
conditions; that is, the relationship between percent change in
comprehension and performance on the modification task differs
from the fit conditions to the no-fit conditions.

To further determine if the significant interaction is consistent with
our hypotheses, we examined the correlations between percent
change in comprehension and modification performance for each
experimental condition.  As we indicate in Figure 6, and consistent
with our hypotheses, in the cognitive fit conditions (familiar appli-
cation domain/function modification and unfamiliar application
domain/control flow modification), the relationships between
percent change in comprehension and modification performance are
positive.  When cognitive fit does not exist (familiar application
domain/control flow modification and unfamiliar application
domain/function modification) the relationships are negative.  In
conditions of cognitive fit, therefore, increases in comprehension of
the software are associated with higher levels of performance on the
modification tasks.  Conversely, when cognitive fit does not exist,
increases in comprehension are associated with lower levels of
modification performance.

To depict visually the nature of the relationship between percent
change in comprehension and performance on the modification task,
we fitted lines to the observations in each experimental condition.
Figure 7 displays the relationship in the two cognitive fit conditions
(familiar application domain/ function modification and unfamiliar
application domain/ control flow modification).  Both lines display
an upward trend, indicating a direct relationship between percent
change in comprehension and performance on the modification task,
consistent with the correlations reported in Figure 6.  Figure 8
displays the relationship in the two conditions in which cognitive fit
does not exist (familiar application domain/control flow modifi-
cation and unfamiliar application domain/function modification).
Both lines display a downward trend, indicating an inverse
relationship between percent change in comprehension and perfor-
mance on the modification task, consistent with the correlations
reported for those conditions in Figure 6.

Hence all of our hypotheses are supported, H1a and H1b for a
positive relationship between increases in comprehension during
modification and performance on the modification task when cogni-
tive fit exists and H2a and H2b for an inverse relationship between
increases in comprehension during modification and performance on
the modification task when cognitive fit does not exist. 

Examination of Figures 7 and 8 also reveals that some maintainers
experienced decreases in comprehension during the modification
process.  Further investigation shows that a total of 10 observations
(distributed over 9 maintainers) demonstrated negative percent
changes in comprehension.  These changes occurred in all experi-
mental conditions with average decreases ranging from 14 to 19
percent.  We believe that the maintainers may have focused their
attention on what they perceived they needed to comprehend in
order to complete the modification task and, as a result, were not
then able to recall some of the information that they did not revisit
during their second exposure to the software.  Hence, the fact that
this second exposure resulted in lower comprehension than the first
reflects the more focused nature of their interaction with the
software.

Analyses Based on Possible
Alternative Explanations

The prior analysis is based on a measure of the change in com-
prehension that occurs while a software maintainer is modifying the
software.  To lend strength to our theoretical formulation, we
consider two alternative explanations for our findings.  First, a soft-
ware maintainer who develops a good initial understanding of the
software may be more effective at conducting the modification.
Second, performance on the modification task may reflect the
maintainer’s understanding of the software after conducting the
modification task.

We examined the first alternative by conducting the same analysis
as presented above, with the maintainer’s score on the initial admin-
istration of the comprehension questions replacing the percent
change in comprehension score.  If higher initial comprehension
levels were associated with higher levels of performance on the
modification task, the score for initial comprehension should be
significant in the analysis.  When we reanalyzed the data, each
model was significant (p < .05), but none of the factors, including
that for initial comprehension, was significant in any of the analyses.
For all models, the analyses based on percent change in compre-
hension (the initial analysis) demonstrate a better fit to the data than
the corresponding model using the initial comprehension scores.7

7The test used to determine if the addition of interaction terms creates a statis-
tically significantly better fit can be used to compare models that are subsets
of one another, but cannot be generalized to compare competing models with
the same number of parameters.  Hence, although the fit indexes are con-
siderably lower (better) for the analysis based on the percent changes in com-
prehension, we were unable to test for statistically significant differences.



Shaft & Vessey/Cognitive Fit of Software Comprehension & Modification

46 MIS Quarterly Vol. 30 No. 1/March 2006

Application Domain

Familiar Unfamiliar

Lack of cognitive fit: negative
relationship between software

comprehension and
performance on modification

task (r = -.30)

Cognitive fit: positive
relationship between software

comprehension and
performance on modification

task (r = .49)

Cognitive fit: positive
relationship between software

comprehension and
performance on modification

task (r = .52)

Lack of cognitive fit: negative
relationship between software

comprehension and
performance on modification

task (r = -.35)

Control Flow

Function

M
od

ifi
ca

tio
n 

Ta
sk

Application Domain

Familiar Unfamiliar

Lack of cognitive fit: negative
relationship between software

comprehension and
performance on modification

task (r = -.30)

Cognitive fit: positive
relationship between software

comprehension and
performance on modification

task (r = .49)

Cognitive fit: positive
relationship between software

comprehension and
performance on modification

task (r = .52)

Lack of cognitive fit: negative
relationship between software

comprehension and
performance on modification

task (r = -.35)

Control Flow

Function

M
od

ifi
ca

tio
n 

Ta
sk

0

20

40

60

80

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8

Percent Change in Comprehension

Pe
rf

or
m

an
ce

 o
n 

M
od

ifi
ca

tio
n 

Ta
sk

Unfamiliar - Control Flow

Familiar - Function

0

20

40

60

80

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8

Percent Change in Comprehension

Pe
rf

or
m

an
ce

 o
n 

M
od

ifi
ca

tio
n 

Ta
sk

Unfamiliar - Control Flow

Familiar - Function

Figure 6.  Observed Relationships Among Cognitive Fit, Comprehension, and Modification Performance

Figure 7.  Relationship Between Percent Change in Comprehension and Performance on Modification
Task in Conditions of Cognitive Fit



Shaft & Vessey/Cognitive Fit of Software Comprehension & Modification

MIS Quarterly Vol. 30 No. 1/March 2006 47

0

20

40

60

80

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8

Percent Change in Comprehension

Pe
rf

or
m

an
ce

 o
n 

M
od

ifi
ca

tio
n 

Ta
sk

Familiar - Control Flow

Unfam iliar - Function

0

20

40

60

80

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8

Percent Change in Comprehension

Pe
rf

or
m

an
ce

 o
n 

M
od

ifi
ca

tio
n 

Ta
sk

Familiar - Control Flow

Unfam iliar - Function

Figure 8.  Relationship Between Percent Change in Comprehension and Performance on Modification
Task in Conditions Where Cognitive Fit Does Not Exist

Hence, a maintainer’s initial comprehension does not appear to
explain problem-solving performance on the modification tasks.

To consider the second alternative, we replaced our percent change
in comprehension score with the maintainer’s score on the final
administration of the questions.  If higher final comprehension levels
were associated with higher levels of performance on the modifi-
cation task, the score for the final administration of the compre-
hension questions should be a significant factor in the analysis.  The
analysis that included the main effects only was significant overall,
but none of the individual factors was significant.  For the two
analyses that include interaction terms, the tests for the overall fit of
the model were not significant, nor were any of the factors.  For
each model, the analyses based on percent change in comprehension
demonstrate a better fit to the data than the corresponding model
using the final comprehension score.  Hence, a maintainer’s final
comprehension does not appear to explain problem-solving
performance on the modification tasks.

In summary, the results of the additional analyses indicate that the
most insightful understanding of a software maintainer’s perfor-
mance on software modification tasks is based on the changes in
comprehension that occur while conducting a modification task
rather than initial or final levels of comprehension.

Discussion and Implications

This section discusses the research findings and implications for
future research and practice.

Discussion of the Findings

Our overarching contribution in this study is to demonstrate the
interrelationships between software comprehension and modification
tasks during software modification and, as a consequence, to
motivate the need to study software tasks other than comprehension
alone.

The results of our analyses support our hypotheses that improved
software comprehension is associated with better performance on
the modification task only when cognitive fit exists between the
maintainer’s dominant mental representation of the software and the
type of modification task conducted (software modification task).
When fit does not exist, improved software comprehension is
associated with lower problem-solving performance on the
modification task.  Our experimental manipulation of fit and no-fit
conditions creates a fully crossed design, which provides a strong
test of the model because it rules out the possibility that a single
experimental condition (i.e., familiarity with the application domain



Shaft & Vessey/Cognitive Fit of Software Comprehension & Modification

48 MIS Quarterly Vol. 30 No. 1/March 2006

or type of modification task) explains our results.  Furthermore,
because each participant worked in both fit and no-fit conditions and
we detected an inverse relationship between changes in compre-
hension and performance on the modification task only in the two
no-fit conditions, we can attribute this finding to the lack of
cognitive fit between the maintainer’s dominant mental represen-
tation of the software and the type of software modification task.  In
addition, we also considered, and ruled out, two alternative explana-
tions for performance on the modification task, providing greater
confidence in the robustness of our results and underlying theory
(Stinchcombe 1968).

While our sample size of 24 software professionals may appear to
be a limitation, our experiment uses a mixed, within-between
subjects design that yields 48 observations.  As a further check on
the adequacy of our sample size, we repeated our analysis using the
Hotelling-Lawley-McKeon and Hotelling-Lawley-Pillai-Samson
F approximations, both of which are recommended over the default
F statistic for small samples.  In both cases, the analysis results in F-
and p-values identical with those reported in our primary analysis,
suggesting that our sample is not small in the statistical sense.
Furthermore, only professional software maintainers with a
minimum of 2 years of experience served as participants.  We
examined participants’ backgrounds regarding the types of appli-
cations with which they had experience.  Other than familiarity with
accounting applications and no experience with scientific appli-
cations, as necessary for our experimental manipulations, we could
find no systematic differences or commonalities that would lead us
to question the representativeness of our sample.

A second potential limitation of our study is that we tested our
theory via the emergent effects of our theoretical model; that is,
rather than examining mental representations for task solution
directly, we assessed problem-solving performance.  In other words,
we used the approach taken by all studies that use the theory of
cognitive fit as their theoretical foundation.

Our study also makes a number of specific contributions to the
literature.  First, our findings are particularly important because they
run counter to the prevailing wisdom that high levels of compre-
hension necessarily lead to improved performance on related
software tasks.

Second, our findings also suggest that software comprehension
studies that use tasks such as maintenance and debugging simply as
a way of allowing developers to interact with the software in order
to assess the effects on software comprehension would be signi-
ficantly richer if they examined performance on the secondary task
as well as on the comprehension task.  For instance, in addition to
addressing how different factors influence comprehension, studies
could investigate how such factors influence the performance on the
related task as well as the relationship between comprehension and
task performance.

Third, the present study extends the research on cognitive fit in two
ways.  First, the original conceptualization of cognitive fit is

extended to consider its role in moderating the relationship between
the performance on two interrelated tasks, the demands for which
may potentially conflict.  This conceptualization is based on the
notion of dual-task interference.  Second, based on the theory of
distributed cognition (Zhang and Norman 1994), we incorporate the
maintainer’s knowledge of software and software development into
the model of cognitive fit as factors that contribute to the software
maintainer’s dominant mental representation of the software.  Such
knowledge is developed over time as a result of prior experiences
with, and therefore knowledge of, software.

Implications for Research and Practice

Studies of software maintenance are important to the information
systems field because of the enormous resources companies devote
to maintenance.  Prior research on software maintenance has focused
largely on software comprehension, perhaps because comprehension
is generally regarded as underlying the majority of maintenance
tasks.  In this research, we take the first steps toward initiating a new
view of the role of software comprehension in maintenance by
focusing on the interaction between comprehension and modi-
fication tasks.

From the viewpoint of future research, our work suggests a number
of further studies.  In assessing problem-solving performance, we
examined the outcome of the problem-solving process rather than
examining the process directly.  Future research could examine the
process more directly by using, for example, protocol analysis.

Studies that examine the relationship between comprehension and
modification more directly are needed.  Protocol analysis could also
provide insight into situations of both fit and non-fit.  Such studies
could investigate more directly the mechanisms of dual-task inter-
ference and help to answer questions such as:  In conditions in
which fit exists, are software maintainers able to gain just the
knowledge needed for the modification, thus allowing them to better
allocate their attention between comprehension and modification?
Or, does the consistency between their dominant mental represen-
tation of the software and the modification task (software modifi-
cation task) allow them to switch between the subtasks of
comprehension and modification more efficiently?  In conditions in
which fit does not exist, it appears that some maintainers may over-
emphasize comprehension at the expense of modification.  Are they
unable to allocate their attention between comprehension and
modification; that is, is the additional knowledge gained during
comprehension simply irrelevant to the modification?  When
cognitive fit did not exist, some maintainers were relatively more
successful at conducting the modification,  What cognitive processes
allowed them to overcome the difficulties of the mismatch?

Another important area for future research is to examine
performance on software tasks other than maintenance tasks, and
modification tasks other than enhancements.  Many software tasks
involve multiple subtasks that might also conflict with each other.



Shaft & Vessey/Cognitive Fit of Software Comprehension & Modification

MIS Quarterly Vol. 30 No. 1/March 2006 49

For example, software design requires a software developer to both
understand the design requirements and translate those requirements
into a solution plan.   The representation used to document the
requirements may be more or less consistent with an appropriate
solution plan, potentially creating dual-task interference.

From the viewpoint of practice, a detailed understanding of the
influence of cognitive fit on the interplay of comprehension and
modification processes would allow researchers to provide better
advice to software maintainers regarding approaches to software
maintenance.  For example, it appears advantageous for the
maintainer to allow the requirements of a modification task to drive
comprehension activities rather than attempting to fully understand
software before initiating a modification.  Such information should
also be introduced into software development and software
engineering education and training.

Given that it would be difficult to control for software maintainers’
existing or dominant mental representations of the software and the
types of software modification task to which they must respond,
practice could focus on creating tools that help maintainers identify
the knowledge necessary to complete the modification (in our study,
control flow or function).  Note that maintainers may need to be
guided in their choice of appropriate tools because they might
otherwise choose tools that highlight information consistent with
their dominant mental representation of the software rather than the
information needed to conduct the modification.  For example, it
might be possible to use a reverse engineering tool to represent a
computer program at a higher level (arguably closer to the applica-
tion domain) to help maintainers adopt a domain model as their
dominant mental representation rather than a program model.

Conclusion

Prior research investigating software comprehension and modi-
fication views them as distinct tasks.  Our findings indicate that they
should be viewed as interrelated tasks because of the complex
interrelationship between them.  Seeking high levels of compre-
hension as a way of improving the ability to conduct other software-
related tasks is beneficial when the software maintainer’s mental
representation of the software and their mental representation of the
modification task emphasize the same type of knowledge.  However,
when there is a mismatch between the software maintainer’s mental
representation of the software and the mental representation of the
modification task, improvement in comprehension impedes per-
formance on the modification task.

Acknowledgments

The authors wish to thank Bob Zmud, Al Schwarzkopf, Shaila
Miranda, Robert L. Glass, and Mark Sharfman for their insightful
comments on earlier drafts of this manuscript.  The authors also

express their gratitude to Sandra Slaughter for providing access to
the data used to estimate standard deviations for data and decision
density.

References

Arranga, E. C.  “In Cobol’s Defense,” IEEE Software (17:2),
March/April 2000, pp. 70-72.

Banker, R. D., Davis, G. B., and Slaughter, S. A.  “Software
Development Practices, Software Complexity, and Software
Maintenance Performance:  A Field Study,” Management Science
(44:4), April 1998, pp. 433-450.

Barry, E., Kemerer, C., and Slaughter, S. A.  “Toward a Detailed
Classification Scheme for Software Maintenance Activities” in
Proceedings of the 1999 Americas Conference, W. D. Haseman
and D. L. Nazareth (eds.), Milwaukee, WI, August 1999, pp.
726-728.

Boehm-Davis, D. A.  “Software Comprehension” in Handbook of
Human-Computer Interaction, M. Helander (ed.), Elsevier
Science Publishers, Amsterdam, 1988, pp. 107-121.

Boehm-Davis, D. A., Holt, R. W., and Schultz, A. C.  “The Role of
Program Structure in Software Maintenance,” International
Journal of Man-Machine Studies (36), 1992, pp. 21-63.

Broadbent, D. E.  Decision and Stress, Academic Press, London,
1971. 

Brooks, F.  “No Silver Bullet,” IEEE Computer (4:4), April 1987,
pp. 10-19.

Burkhardt, J., Détienne, F., and Wiedenbeck, S.  “Object-Oriented
Program Comprehension: Effect of Expertise, Task and Phase,”
Empirical Software Engineering (7), 2002, pp. 115-156.

Conover, W. J.  Practical Nonparametric Statistics, John Wiley and
Sons, Inc., New York, 1999.

Corritore, C. L., and Wiedenbeck, S.  “Mental Representations of
Expert Procedural and Object-Oriented Programmers in a
Software Maintenance Task,” International Journal of Human-
Computer Studies (50), 1999, pp. 61-83.

Coyle, F. P.  “Legacy Integration—Changing Perspective,” IEEE
Software (17:2), March/April 2000, pp. 37-41.

Curtis, B., Sheppard, S., Kruesi-Bailey, E., Bailey, J., and Boehm
Davis, D.  “Experimental Evaluation of Software Documentation
Formats,” The Journal of Systems and Software (8), 1989, pp.
167-207.

Daly, J., Brooks, A., Miller, J., Roper, M., and Wood, M.
“Evaluating the Effect of Inheritance on the Maintainability of
OO Software,” in Empirical Studies of Programmers:  Workshop
6, W. D. Gray and D. A. Boehm-Davis (eds.), Ablex Publishing,
Norwood, NJ, 1996, pp. 39-58.

Durso, F. T., and Gronlund, S. D.  “Situation Awareness,” in Hand-
book of Applied Cognition, F. T. Durso, R. S. Nickerson, R. W.
Schvaneveldt, S. T. Dumais, D. S. Lindsay and M. T. Chi (eds.)
John Wiley and Sons Ltd., New York, 1999.

Durso, F. T., Hackworth, C., Truitt, T. R., Crutchfield, J., Nikolic,
D., and Manning, C. A.  “Situation Awareness as a Predictor of
Performance in En Route Air Traffic Controllers,” Air Traffic
Control Quarterly (6:1) 1998, pp. 1-20.



Shaft & Vessey/Cognitive Fit of Software Comprehension & Modification

50 MIS Quarterly Vol. 30 No. 1/March 2006

Green, T. R. G.  “Conditional Program Statement and Their
Comprehensibility to Professional Programmers” Journal of
Occupational Psychology (50), 1977, pp. 93-109.

Halstead, M.  Elements of Software Science, Elsevier North-
Holland, New York, 1977.

Hatton, L.  “Does OO Sync with How We Think?”  IEEE Software
(15:3), 1998, pp. 46-54. 

Hendrix, D., Cross II, J. H., and Maghsoodloo, S.  “The
Effectiveness of Control Structure Diagrams in Source Code
Comprehension Activities,” IEEE Transactions on Software
Engineering (28:5), 2002, pp. 463-478.

Hogg, D. N., Folleso, K., Strand-Volden, F., and Torralba, B.
“Development of a Situation Awareness Measure to Evaluate
Advanced Alarm Systems in Nuclear Power Plant Control
Rooms,” Ergonomics (11), 1995, pp. 394-413.

Jones, C.  Programmer Productivity, McGraw-Hill, New York,
1986.

Jones, C.  “Software Metrics: Good, Bad, and Missing,” IEEE
Computer (27:9), September 1994, pp. 98-100.

Kahneman, D.  Attention and Effort, Prentice-Hall,  Englewood
Cliffs, NJ, 1973.

Kemerer, C. F.  “Software Complexity and Software Maintenance:
A Survey of Empirical Research,” Annals of Software
Engineering (1), August 1995, pp. 1-22.

Kemerer, C. F., and Slaughter, S.  “An Empirical Approach to
Studying Software Evolution,” IEEE Transaction on Software
Engineering (25:4), July/August 1999, pp. 493-509.

Koenemann, J, and Robertson, S. P.  “Expert Problem Solving
Strategies for Program Comprehension,” in Proceedings of
CHI’89 Conference on Human Factors in Computing Systems, S.
P. Robertson, G. M. Olson, and J. S. Olson (eds.), ACM Press,
New York, 1991, pp. 69-73.

Koch, I., and Prinz, W.  “Process Interference and Code Overlap in
Dual-Task Performance,” Journal of Experimental Psychology:
Human Perception and Performance (28:1), 2002, pp. 192-201.

Lientz, B. P., Swanson, E. B., and Tompkins, G. E.  “Characteristics
of Application Software Maintenance,” Communications of the
ACM (21:6), June 1978, pp. 461-471.

Littman, D. C., Pinto, J., Letovsky, S., and Soloway, E.  “Mental
Models and Software Maintenance,” in Empirical Studies of Pro-
grammers:  First Workshop, E. Soloway and S. Iyengar (eds.),
Ablex Publishing, Norwood, NJ, 1986, pp. 80-98.

McCabe, T. J.  “A Complexity Measure,” IEEE Transactions on
Software Engineering (SE-2:4), 1976, pp. 308-320.

Munson, J. C., and Khoshgoftaar, T. M.  “The Dimensionality of
Program Complexity,” in Proceedings of the 11th Annual
International Conference on Software Engineering, Pittsburgh,
PA, 1989, pp. 245-253.

Navon, D.  “Exploring Two Methods for Estimating Performance
Tradeoff,” Bulletin of the Psychonomic Society (28:2), 1990, pp.
155-157.

Navon, D., and Gopher, D.  “On the Economy of the Human
Processing Systems,” Psychological Review (86), 1979, pp.
254-255.

Navon, D., and Miller, J.  “Role of Outcome Conflict in Dual-Task
Interference,” Journal of Experimental Psychology:  Human
Perception and Performance (13:3), 1987, pp. 435-448.

Pashler, H.  “Dual-Task Interference in Simple Tasks:  Data and
Theory,” Psychological Bulletin (116:2) 1994, pp. 220-244.

Pashler, H., and O'Brien, S.  “Dual-Task Interference and the
Cerebral Hemispheres,” Journal of Experimental Psychology-
Human Perception and Performance (19:2), 1993, pp. 315-330.

Pennington, N.  “Comprehension Strategies In Programming,” in
Empirical Studies of Programmers:  First Workshop, G. M.
Olson, S. Sheppard, and E. Soloway  (eds.), Ablex Publishing,
Norwood, NJ, 1987a, pp. 100-113.

Pennington, N.  “Stimulus Structures and Mental Representations in
Expert Comprehension of Computer Programs,” Cognitive
Psychology (19), 1987b, pp. 295-341.

Prechelt, L., Unger, B., Tichy, W. F., Brössler, P., and Votta, L. G.
“A Controlled Experiment In Maintenance Comparing Design
Patterns To Simpler Solutions,” IEEE Transactions on Software
Engineering  (27:12), December 2001, pp. 1134-1144.

Prechelt, L., Unger-Lamprecht, B., Phillippsen, M., and Tichy, W.
F.  “Two Controlled Experiments Assessing the Usefulness of
Design Pattern Documentation in Program Maintenance,” IEEE
Transactions on Software Engineering (28:6), June 2002 pp.
595-606.

Robson, D., Bennett, K. B. Cornelius, B., and Munro, M.
“Approaches to Program Comprehension,” The Journal of
Systems and Software (14), 1991, pp. 79-84.

Sackman, H., Erickson, W. J., and Grant, E. E.  “Exploratory
Experimental Studies Comparing Online and Offline Pro-
gramming Performance,” Communications of the ACM (11:1),
January 1968, pp. 3-11.

Sarno, K. J., and Wickens, C. D.  “The Role of Multiple Resources
in Predicting Time-Sharing Efficiency,” International Journal of
Aviation Psychology (5), 1995, pp. 107-130.

Shaft, T. M., and Vessey, I.  “The Relevance of Application Domain
Knowledge:  The Case of Computer Program Comprehension,”
Information Systems Research (6:3), 1995, pp. 286-299.

Shaft, T. M., and Vessey, I.  “The Relevance of Application Domain
Knowledge:  Characterizing the Computer Program Compre-
hension Process,” The Journal of Management Information
Systems (15:1), 1998, pp. 51-78.

Sharon, D.  “Meeting the Challenge of Software Maintenance,”
IEEE Software (13:1), January 1996, pp. 122-125. 

Sheppard, S. B., Curtis, B., Milliman, P., and Love, T.  “Modern
Coding Practices and Programmer Performance,” IEEE
Computer (12:12), 1979, pp. 41-49.

Sheil, B. A.  “The Psychological Study of Programming,” ACM
Computing Surveys (13:1), 1981, pp. 101-120.

Shneiderman, B., Mayer R., McKay, D., and Heller, P.
“Experimental Investigations of the Utility of Detailed Flow-
charts in Programming,” Communications of the ACM (20:6),
1977, pp. 373-381.

Sime, M. E., Green, T. R. G., and Guest, D. J.  “Psychological
Evaluations of Two Conditional Constructions Used in Computer



Shaft & Vessey/Cognitive Fit of Software Comprehension & Modification

MIS Quarterly Vol. 30 No. 1/March 2006 51

Languages” International Journal of Man-Machine Studies (5),
1973, pp. 105-113.

Stinchcombe, A. L.  Constructing Social Theories Harcourt, Brace,
and World, Inc., New York, 1968.

Tabachnick, B. G., and Fidell, L. S.  Using Multivariate Statistics
(4th ed.), Allyn and Bacon, Boston, 2000.

Taylor, R. M., Finnie, S., and Hoy, C.  “Cognitive Rigidity:  The
Effects of Mission Planning and Automation on Cognitive
Control in Dynamic Situations,” paper presented at the Ninth
International Symposium on Aviation Psychology, Columbus,
OH, April 1997.

Vans, A. M., von Mayrhauser, A., and Somlo, G.  “Program
Understanding Behavior During Corrective Maintenance of
Large-Scale Software,” International Journal of Human-
Computer Studies (51), 1999, pp. 31-70.

Van Selst, M., and Jolicoeur, P.  “Decision and Response in Dual-
Task Interference,” Cognitive Psychology (33:3), August 1997,
pp. 266-307.

Vessey, I.  “Cognitive Fit:  A Theory-Based Analysis of the Graph
Versus Tables Literature,” Decision Sciences (22:2), 1991, pp.
219-240.

von Mayrhauser, A., and Vans, A. M.  “Industrial Experience with
an Integrated Code Comprehension Model,” Software Engi-
neering Journal (10:5), September 1995, pp. 171-182.

von Mayrhauser, A., and Vans, A. M. “Identification of Dynamic
Comprehension Processes During Large Scale Maintenance,”
IEEE Transactions on Software Engineering (22:6), June 1996,
pp. 424-437

von Mayrhauser, A., Vans, A. M., and Howe, A. E.  “Program
Understanding Behavior During Enhancement of Large-Scale
Software,” Software Maintenance:  Research and Practice (9),
1997, pp. 299-327.

Walz, D. B., Elam, J. J., and Curtis, B.  “Inside a Software Design
Team:  Knowledge Acquisition, Sharing, and Integration,”
Communications of the ACM (36:10), 1993, pp. 63-77.

Weiser, M.  “Programmers Use Slices When Debugging,” Com-
munications of the ACM (25:7), July 1982, pp. 446-452.

Whitaker, L. A.  “Dual-Task Interference as a Function of Cognitive
Processing Load” Acta Psychologica (43:1), January 1979, pp.
71-84.

Wickens, C. D. “Multiple Resources and Performance Prediction,”
Theoretical Issues in Ergonomic Science (3:2), 2002, pp. 159-
177.

Wolfinger, R., and Chang, M.  “Comparing the SAS GLM and
MIXED Procedures for Repeated Measurements Analysis,” SAS
Users Group International Proceedings, Orlando, FL, April 2-5,
1995 (available online at  http://support.sas.com/rnd/app/papers/
mixedglm.pdf).

Zhang, J.  “The Nature of External Representations in Problem
Solving,” Cognitive Science (21:2) 1997, pp. 179-217.

Zhang, J., and Norman, D. A.  “Representations in Distributed
Cognitive Tasks,” Cognitive Science (57), 1994, pp. 87-122.

Zuse, H.  Software Complexity: Measure and Methods, Walter de
Gruyter, New York, 1991. 

About the Authors

Teresa M. Shaft is an associate professor of Management
Information Systems at The University of Oklahoma’s Michael F.
Price College of Business.  She received her Ph.D. in Management
Information Systems from the Pennsylvania State University.  Her
research interests focus on the cognitive processes of systems
developers, the role of information systems in environmental
management, and IT effectiveness.  Her research appears in journals
including Information Systems Research, Journal of Management
Information Systems, Database Advances, and Journal of Industrial
Ecology.  Her research has been supported through grants from the
U.S. National Science Foundation.

Iris Vessey is currently Honorary Professor at the University of
Queensland and Adjunct Professor at the Queensland University of
Technology.  She received her M.Sc., MBA, and Ph.D. in Manage-
ment Information Systems from the University of Queensland,
Australia.  Her research interests focus on the evaluation of
emerging information technologies, knowledge management sys-
tems, and the management and organization of enterprise resource
planning systems (ERPs).  She serves, or has served, as an Associate
Editor at Information Systems Research, Journal of Database
Management, Journal of Management Information Systems, MIS
Quarterly, and Management Science, and serves on the Executive
Board of Information Systems Frontiers.  During the first eight years
of its life, she served as Secretary of the Association for Information
Systems (AIS), as well as of the International Conference on
Information Systems (ICIS) following its merger with AIS.  She is
an inaugural Fellow of the AIS.



Shaft & Vessey/Cognitive Fit of Software Comprehension & Modification

8Specifications were presented to participants with the title of “Modification.” The application domain and modification
task identifiers are included for explanatory purposes and were not provided to the participants.

52 MIS Quarterly Vol. 30 No. 1/March 2006

Appendix A
Modification Specifications

Accounting Domain—Control Flow Task8

Currently the ROSTERFILE prints out subtotals for each department.  Within each department, employees are listed in alphabetical order (on
last name).  Due to changes in reporting requirements, the roster format must be changed.  Modify the program so that
(1) Subtotals are calculated for each budget code, within department.  
(2) FICA withholdings are reported for each individual, each budget code, each department, and the university.  

With the exception of the additions to the ROSTERFILE, the program outputs should remain the same.

A copy of the current ROSTERFILE and the required (i.e., modified) ROSTERFILLE are attached.  The MASTERFILE has been reorganized
to accommodate this change.  The file definition of the MASTERFILE is not affected, just the ordering of the records.  A copy of the new
MASTERFILE is contained in the computer file BMAST.DAT. For testing purposes, copies of the necessary input files are provided on the
computer.

The program is contained in EXAC.CBL.  It contains the necessary changes to the record/file formats.  The changes have been marked with
a highlighter pen on the hard copy.  A new BUDGET-LINE (which matches the format given in the modified ROSTERFILE) has been created.
The necessary changes to the DEPT-LINE, UNIV-LINE, TITLELINE, and LINEOUT have also been made.

Please
(1) Implement the modification described above.
(2) Ensure that the modified program produces the requested outputs.

Hydrology Domain—Control Flow Task

Currently, the program prepares a REPORTFILE that lists statistics for seven parameters for each well.  For each well, the statistics are printed
out for each separate month.  The city wants to keep a watch on each well, and wants the program modified to also print out the average and
variance for each parameter for each well (i.e., for all months).  Modify the program so that
(1) An overall average and variance are calculated for each separate parameter for each well, using all test values.
(2) The statistics are printed out on a separate page.  Utilize the current page headers.

With the exception of the addition of the overall averages and variance, the program outputs should not change.

A copy of the current REPORTFILE and the required (i.e., modified) REPORTFILE are attached.  For testing purposes, all necessary input
files are provided on the computer.

The program is contained in EXHC.CBL.  It contains the necessary changes to the record/file formats.  The changes have been marked with
a highlighter pen on the hard copy.  The format for TOTAL-HEADER-RECORD has been added. 

Please
(1) Implement the modification described above.
(2) Ensure that the modified program produces the requested outputs.



Shaft & Vessey/Cognitive Fit of Software Comprehension & Modification

MIS Quarterly Vol. 30 No. 1/March 2006 53

Accounting Domain—Function Task

Employees often move and change their address.  To simplify the  process of updating addresses, we would like to include this capability in
the program. An update code (ST-NEW-ADDRESS) has been added to the TIMECARD file.  When the code is 'Y', the employee has a change
of address.  The new address is contained in the ADDRESS file.  Modify the program so that
(1) The MASTERFILE is updated to contain the new address for those employees with a change of address.  
(2) Other than changing the master file, the LABELFILE should use the new address.
(3) Should the social security number in the address file not match the masterfile social security number, write a message to the ERRORFILE.

With the exception of the updated MASTERFILE and the changes to the LABELFILE, the program outputs should not change.

A copy of the current MASTERFILE, the updated MASTERFILE, the old and new LABELFILE, the ADDRESS file, the new ERRORFILE,
and the modified TIMECARD file are attached.  For testing purposes, all necessary input files are provided on the computer.

The program is contained in EXAF.CBL.  It contains the necessary changes to the record/file formats.  The changes have been marked with
a highlighter pen on the hard copy. The new ADDRESS file definition has been added.  The ADDRESS-OUT record (to write an error message)
has also been added.

Please
(1) Implement the modification described above.
(2) Ensure that the modified program produces the requested outputs.

Hydrology Domain—Function Task

New regulations have been passed concerning water quality.  In an effort to comply with these regulations, limits for each of the seven
parameters have been identified.  When the average of a parameter is greater than this limit, the well must be rechecked by a hydrologist.
Modify the program so that
(1) The AVERAGE is compared to the RECHECK value for each parameter.
(2) A message is written to the (new) RECHECKFILE when the AVERAGE is greater than the RECHECK limit.  Each message should be

placed on a separate page.

With the exception of the new RECHECKFILE, the program outputs should not change.

A copy of the required RECHECKFILE is attached.  A copy of the new PARAMETERS-FILE is attached; it is also contained in the computer
file PARAM2.DAT.   For testing purposes, all necessary input files are provided on the computer.

The program is contained in EXHF.CBL.  It contains the necessary changes to the record/file formats.  The changes have been marked with
a highlighter pen on the hard copy.  The RECHECK field has been added to the PARAMETERS-FILE.  New record formats to output the
RECHECK message have been added (RECHECK-HEADER1, RECHECK-HEADER2, RECHECK-HEADER3, RECHECK-VALUES,
RECHECK-LEVEL).

Please
(1) Implement the modification described above.
(2) Ensure that the modified program produces the requested outputs.



Shaft & Vessey/Cognitive Fit of Software Comprehension & Modification

54 MIS Quarterly Vol. 30 No. 1/March 2006

Appendix B
Rating Criteria for Modification Tasks

Accounting Control—Flow Modification Task
Points Possible

1. Recognize additional control break
a. BUDGET level control break hold variable initialized in INIT (5)
b. perform final BUDGET control break in WRAP-UP before CONTROL-BREAK (5)
c. subjective:  sees control break (5)

15

2. Change SORT sequence
a. add ST-BUDGET after LOCATION in SORT

10

3. Place PERFORM of budget-level control break in the correct place
a. always PRIOR to any CONTROL-BREAK (10)
b. logic for BUDGET control break independent of CONTROL-BREAK (10)

20

4. New paragraph for BUDGET control break 30
5. Add new variables to Working Storage

BUDGET-GROSS STUD-CT-BUDG
BUDGET-NET BUDGET-WS

10

6. Add FICA variables
a. working storage (7.5)

BUDGET-FICA DEPT-FICA UNIV-FICA
b. change paragraphs to handle summing (7.5)

DEPT — budget level and control break
UNIV — control break and output final totals

15

Hydrology Control—Flow Modification Task
Points Possible

1. Recognize additional control break
a. perform final FINISH-WELL in WRAP-UP after FINISH-MONTH
b. subjective:  sees control break (5)

15

2. Place PERFORM of well level control break in the correct place after FINISH-MONTH in MATCH-
WELL-IDS

20

3. Update intermediate values in/after each FINISH-MONTH
a. for new control break processing
b. save NUM-OBS, SUM-X, SUM-X-SQUARED (10)
c. separate for each parameter (10)

20

4. Output WELL level stats for new control break processing
a. separate page for the new statistics (6)
b. each parameter is handled (6)
c. compute stats properly (13)

25

5. Add TABLE to hold WELL level values in working storage 20



Shaft & Vessey/Cognitive Fit of Software Comprehension & Modification

MIS Quarterly Vol. 30 No. 1/March 2006 55

Accounting Function Modification Task
Points Possible

1. File handling
a. change MASTERFILE to open I/O (10)
b. open (4)/close (3) ADDRESSFILE
c. add EOF for ADDRESSFILE (3)

20

2. Update ADDRESS paragraph
a. correct information (20)
b. REWRITE MASTERFILE (20)

40

3. Place/check address so LABELSFILE is properly updated 20
4. Error processing

a. recognize need for error processing (10)
b. process for mismatched social security numbers (10)

20

Hydrology Function Modification Task
Points Possible

1. File handling (open/close RECHECKFILE) 20
2. Output RECHECK information paragraph

a. separate page/headers (10)
b. correct information for each one (30)

40

3. Check AVERAGE
a. for each parameter (10)
b. correct place (10)

20

4. Modify LOAD-PARAMETERS to input new variable 20




