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NOMENCLATURE

area

time.- dependent,. Fourier cosine series coefficient 1 of the
temperature approximation

rate constant for reaction i

mean specific heat

constant pressure specific heat

constant

activation energy for reaction 1

heat flux parameter considered unity in thils study (see
Appendix I)
standard gravitational acceleration

gravitational dimension constant

enthalpy

enthalpy of vaporization

thermal conductivity

slab thickness, between heated and insulated surfaces
vaporization interface distance from insulated surface

one less than the number of coefficients used in the temperature
approximation

pressure

weighting function in x

heat flux

—_—t



R universal gas constant

T temperature

t time

u internal energy

\' volume

v velocity

v specific volume

X slab distance. from insulated surface

yi integrated value of derivative xi

Greek Letters

o thermal diffusivity

an integrating factor

g density

T ox viscous stress on.the;pléne normal to the x axis in the x
direction

Subscripts

A actual

b back (insulated) surface

D dry region

i index i = 0,1,2,...,N

4 liquid

m index m = 0,1,2,...,N

n index n = 0,1,2,...,N

o front (heated) surface

R reference

] solid

v vapor

.
TR



W wet region

z non-dimensionalization variable
Superscripts

! differentiation with respect to x

(bar) non-dimensional variable

(minus) dry side of the vaporization interface
+ wet side of the vaporization interface

Note: A superscript bar is used to denote non-dimensional representa-

tion of the symbols as defined in Table T.



CHAPTER I

INTRODUCTION

For thousands of years man has known that wet logs do not burn as
well as dry ones, He has also learned that liquids can be used
effectively to douse certain unwanted fires, Man has thus studied the
burning process for two opposing reasons. On one hand he has sought to
improve this process as a tool for constructive uses and on the other
hand he has sought to find ways to disrupt this process to protect him-
self from uncontrolled fires.

Since porous substances (such as wood, paper, fiber board, etc.)
contain varying amounts of liquid when exposed to the natural environ-
ment, the burning of these materials is affected by the presence of this
liquid, Yet, this extra~-cellulosic liquid has been ignored in analytic
studies of the thermal decomposition of porous materials, Considered as
a fire retardant, the vaporization of a liquid possessing a high boiling
point, a high latent heat of vaporization, and a relatively low thermal
conductivity will reduce the overall temperature of the material in
which it was saturated. Thereby the thermal decomposition will be
retarded and the time to ignition of the substance will be increased.

It is advantageous, then, to study the effects caused by applying a
heat flux to various substances initially saturated with some particular
liquid,  The calculation of the time required for the system to reach

the temperature of vaporization of the liquid, the rate at which the



liquid-vapor interface propagates through the system, the temperature

throughout the system, and timé to ignition of the substance would aid

considerably in the study of the burning process and fire retardation,
The Complete Problem

The time dependent temperature distribution within a saturated
porous material (i.e. wood saturated with water) exposed to a heat flux
may be calculated somewhat easily provided that the temperature distri-
bution is not sufficiently high to cause vaporization of the liquid
present or pyrolysis (thermal decomposition) of the material. If this
condition on the temperature is not satisfied the problem of determining
the temperature distribution becomes appreciably complicated and must
include the endothermic process of vaporization and the endothermic or
exothermic reactions of pyrolysis. A complete examination of the
heating of a saturated porous material therefore would include deter-
mining the temperature distribution within the saturated material, the
position and nature of the liquid-vapor interface as vaporization of the
liquid progresses, the temperature distribution within the porous
material after vaporization of the liquid initially present, and the

pyrolysis and subsequent ignition of the material.
Division Into Cases of Study

Since wood is still one of the widest used porous materials and
the thermal decomposition of wood closely follows that of cellulose, a
reasonable choice of constitutents for this problem is cellulose and
water, The thermal decomposition of cellulose has been shown to be

minimal below 300° C (2,21). At standard pressure the vaporization of



water occurs at 100°C. Therefore, with the proper choice of material
and liquid, decomposition of the porous material can be neglected below
the temperature of vaporization of the liquid, The complete examination
of the heating of a saturated porous material can then be divided into
two cases, or areas, of investigation. The first case is the study of
the temperature distribution within the porous material from the initial
application of the heat flux up to and including the vaporization of the
liquid and the propagation of the liquid-vapor interface through the
material. The second case is comprised of the pyrolysis and ignition of
the dried porous material remaining after vaporization of the liquid.
The following sections briefly describe previous investigations of each

case,
Pyrolysis and Ignition of a Porous Solid

The pyrolysis of wood has been studied both analytically and
experimentally by Bamford, Crank and Malan (3). An infinite slab of
wood was considered, symmetrically heated by a flame on each face., One
exothermic reaction was included in the one-dimensional energy equation

of the form

_. 2w (x,tz
973t

where q is the heat liberated at comnstant pressure per gram of volatile
products evolved, w(x,t) is the weight of these products per cubic
centimeter of wood. The rate of change of density (w) with respect to

time was represented by the Arrhenius expression

éﬁL%%LEl = kw exp (-E/RT)

in which k is a frequency of molecular collision constant and E is the



activation energy of the reaction (assumed constant) (22). Although
samples used in the experimental study contained moisture up to 11%, no
additional endothermic reaction was included in the analytic study to
represent the vaporization of extra-cellulosic moisture, The heat flux
applied to the slab was considered a function of the surface temperature
given by Fourier's Heat Conduction Law.

The analysis of a dry porous solid undergéing pyrolysis was sub-
stantially extended by Rittmann (21), Three chemical reactions were
considered, two occurring simultaneously (competitive in nature) and two
occurring consecutively (Figure 1). 1In the case of cellulose the first
reaction is endothermic causing the pure cellulose to lose water and
form a dehydrocellulose. This reaction was assumed to occur after
vaporization of any extra-cellolosic moisture. - Rittmann examined
separately a time dependent, radiative heat flux and a constant, con-
vective heat flux, Also the effect of a density dependent thermal
conductivity was investigated,

One criteria for ignition of porous material (cellulose), which has
been experimentally substantiated, is a temperature of approximately
600°C on the exposed surface of the slab. Martin (14) observed spon-
taneous-flaming ignition.when the exposed surface of alpha-cellulose
sheets reached a constant temperature in the range of 600° - 650° C.
Alvares (1) employed optical temperature measurement techniques and
obtained consistent temperatures of approximately 600° C on the exposed
surface of alpha-cellulose at the onset of ignition regardless of the
magnitude of the radiant heat flux.

Weatherford and Sheppard (25) examined the overall effects of

various ignition criteria and the surface temperature histories of
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Figure 1, Pyrolysis Reactions in the Slab, Rittman (21)



finite-thickness slabs as opposed to the infinitely thick slab, The
authors present a thermal feedback theory in which initial thermal
energy received instantaneously at the surface of symmetry is visualized
as moving back through the slab to the heated surface by a random self-
diffusion process., This criteria is correlated with sustained ignitions
which are dependent on the thickness of the slab, Alvares and Martin
(2), conducting pyrolysis experiments on cellulose in "artificial airs"
composed of different combinations of nitrogen, helium and carbon
dipxide, have ruled out the concept that Sponfaneous ignition is
triggered by the appearance of reactive species in the pyrolysis, Their
hypothesis is one of thermal autoignition dependent on total pressure,

oxidant concentration and inert diluent used.
The Change of Phase Phenomena

The change of phase phenomena is manifest in many physical pro-
cesses involving heat transfer, The solidification of castings,
freezing and thawing of soils and food stuffs, burning of liquid fuels,
fusing of various metals, and the ablation process are a few examples,
. Literature pertaining to the analytic study of vaporization with con-~

sideration given to the location of the liquid-vapor intérface is not
readily available., Much ﬁork, however, has been done on the freezing
and melting problem Involving the location of the solid-liquid intér-
face.

Muehlbauer gnd Sunderland (15) offer a comprehensive survey of ' -
-publications dealing with the melting and freezing of infinite and

‘semi-infinite slabs from Stephen's initial discussion of the problem



up to Moon and Keeler who use quantum mechanics to explain the elec-
tronics and phonon heat conduction between regions in contact,

Murray and Landis (16) review various methods of solution for the
melting or freezing problem and propose two schemes for solution by
finite difference approximations. One scheme is to divide the solid

region into r equally sized space increments of
€
X = =
A s T

(where-€ is the position of the interface) which increases as the
freezing front progresses and a liquid region divided into N-r equally

spaced intervals

(E being the length of the slab) which shrink with time, The second
scheme is to have fixed "lump' sizes where the interface is in the qth
lump at some intermédiate time. Two temperatures are calculated by
interpolation from temperatures in the solid and liquid reglons, respec-
tively, using the fusion temperature and the fusion front location,

The authors state that the variable space network is preferable for
evaluation of the fusion front travel while the fixed space network is
more convenient for temperature representation.

Both of the above methods produce two singularities within the
finite difference equations when € = 0 and E = €, Therefore the problem
mus t be started with an assumed initial value of € and an assumed tem-
perature distribution in the solid region., This procedure can lead to
instability of the solution caused by very small numerical values or by
a step input condition as a result of improper choice of initial tem-

peratures., Lazaridis (12) presents a method to extend the finite



difference technique to multidimensional configurations, ZLongwell (13)
developed a unique extention to the Schmidt graphical method., 1In
solving the freezing problem the time for the interface to move a
distance Ax 1s calculated by moving the interface a distance Ax , and
then performing Schmidt constructions in each phase, The Newmann
problem 1s solved by this method and compared to the exact solution with
good agreement,

Goodman and Shea (10) assumed the applied heat flux at one surface
of a semi-infinite slab was not immediately felt thiroughout the slab.
A time dependent region extending from the surface into the slab was
defined as the thermal-layer thickness., The heat conduction. equation
was then reduced by integrating over this defined region. This method
of integral solution will only satisfy the original heat conduction
equation on the average and is dependent on the time required for the

thermal-layer to develop.
Scope of the Present Study

The object of this study is to develop an analytic model of the
vaporization interface propagation and the temperature distribution
within a semi-infinite, porous slab prior to pyrolysis. A constant,
radiative heat flux is applied to the slab which is initially saturated
with a liquid.

The semi-infinite slab is divided into two regions by the vapori-
zation interface. Three energy balance equations are developed by
application of the first law of thermodynamics to a differential volume
in each region and at the interface then taking the limit as the thick-

ness approaches zero, The integral method of reducing partial



differential equations is employed enabling the combination of the
three energy equations into one,

By choosing cos nTx for the weighting function and the Fourier
cosine series to approximate the temperature, a system of ordinary first
order differential equations is developed. This system of equations
yields valid temperatures for any location within the slab. Hamming's
modified predictor-corrector method of numerical integration is then
used to solve this system of equations for the temperature coefficients
and the interface distance,

As explained in Chapter II, the kinetic and potential energies of
the system are assumed negligible. The densities and thermodynamic
properties are assumed to be constant with the density and thermodynamic
properties for the two component region calculated on a percent unit
volume basis.

The analysis is developed for an idealized liquid and solid, The
assumption is made that the thermodynamic p?operties of the liquid and
solid are equal in each region as discussed in Chapter II, Complexities
of solution and enhancements which might be incorporated in future
investigations are mentioned. The resulting temperature profiles and
the interface velocity are physically realistic. The coupling of this
study with the analysis of chemical reacti ons can then be employed to

solve the complete pyrolysis problem.



CHAPTER II
PROBLEM ANALYSIS
Physical Model

To model the heating of a saturated porous material without sim-
plification is an extremely difficult task., The following factors
might be considered in the analysis:

1, Environment of the model

2, Nature of the applied heat flux

3. Size and shape of the material

4, Variations in the thermodynamic properties

5. Representation of the pyrolysis reactions

6. Criteria to determine ignition

7. Representation of the vaporization process,

The model presented here is assumed to be of a semi-infinite, homogen-
eous (with respect to density and thermodynamic properties), porous slab
of thickness L, initially saturated with a homogeneous liquid in
thermodynamic equilibrium at a reference temperature (TR). The front
surface (x = 1) is exposed to a constant, radiative heat flux (qo) with
the back surface (x = 0) insulated against heat»trénsfer (Figure 2).
This is similar to one-half a slab of thickness 2L symmetrically heated.
Heat is transferred into the saturated slab from the surface by con-
duction. None of the radiant energy striking the slab is assumed to

penetrate below the surface.

TN
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No ignition or chemical reaction of the porous slab is considered.
Vaporization of the liquid is considered when the front surface has
reached the temperature of vaporization (T,) of the liquid. At this
point in time, vaporization of the liquid is assumed to commence. Heat
transfer from and the thermal capacitance of the vapor thus produced is
neglected as it flows out through the pores of the slab,}

As the heat flux is coﬁtinually applied the time dependent liquid-
vapor interface proceeds into the slab in the =x direction, thereby
dividing the slab into .regions, a wetted region preceeding the inter-
face and a dry region behind., The wetted region consequently shrinks
with increasing time as the dry region expands., As stated previously
the wetted region is considered non-reactant since its temperature will
remain well below that which is necessary to cause significant chemical
reaction provided the proper choice of solid and liquid is made,

The pyrolysis of the dry region (second case investigation) can be
modeled after the extensive work of Rittmann (21). If the overall
effects of pyrolysis leading to the ignition of the solid is of main
interest a single endeothermic or exothermic reaction will suffice in
representing a lumped form of the pyrolysis as done by Bamford, Crank,
and Malan (3).

Experimental and analytic research indicates that the ignition of
the porous solid can be approximated as the point in time at which the
front surface of the gemi-infinite slab exceeds 600°C, Thus the

effects, caused by the initial presence of a liquid, on the ignition

For a discussion of this assumption see Appendix A.
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time of a porous solid can be directly related to the surface tempera-

ture, This investigation is left to future studies,
Energy Equation

The energy equation for a semi-infinite saturated slab is developed
by writing an energy balance over a volume element AxAyAz in the x
direction then taking the limit as these dimensions approach zero.

Considering only the fluid, the following equation evolves from

Figure 3,
v2
AR IR = CAANEL ST D
3t P4 “/&+%Vz+gcz A \PVe% T 3x \iPy 2
I - II IIT
3 '8__< -8 )
ax U T3z \Py 8. Vi %
IV v
5 (em) -5 ()
3% \PVe 3% \Txx'4 (2.1)
VI VII
where
Term I = Rate of change of energy per unit volume,
Term II = Net rate of internal energy input per unit volume by
convection.
Term III = Net rate of kinetic energy input per unit volume by
convection.
Term IV = Net rate of energy input per unit volume by conduction.
Term V = Rate of work done on the fluid per unit volume by

gravitational forces,
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Figure 3., Volume Element of the Saturated Slab
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Term VI = Rate of work done on the fluid per unit volume by
pressure forces,
Term VII = Rate of work done on the fluid per unit volume by
viscous forces.
The fluid flows in the x direction only, thus the potential energy is
constant with a rate of change‘consequently equal to zero., The viscous
forces are assumed to be negligible with the fluid velocity considered
small., By combining pressure work, or flow work, with the internal

energy term the differential equation of energy for the fluid is

3
d 2 ) 1 3 /)
3t Py [“z + 8 ] =8z Py [% + sz.z]‘ ax P2Ys 2

3

The solid being fixed in space gives rise to:the following energy

equation,
3 3
8? psus - ax qs (?'3)
I IT

Since again gravitational forces are constant and the solid is
stationary,
Term I = Rate of change of the internal energy of the solid
per unit volume,
Term II = Net rate of energy input per unit volume by conduction.

Combining the fluid and solid the composite energy equation is

3 2o a2 -2y [+t
5t Pror *+ 5t Py BV 3x 97 " 3x P2V “z+pz PL]

I II IT1 Iv

o
Ve

2 =
"3 PV 2 (2.4)

\Y
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Letting the interpal energy be a function of temperature only

u = u(T)
Then
3u
du = (SE) dT = 4T

Differentiation of term I yields

3p
Prer3e T U2 5% T 3¢c "zi"z 3 I " 3x P4y ul,+pz )
I II IIT v v
]
v
3 )
- 20, 5 (2.5)

Vi
Term II in equation (2.5) the absorption or generation of thermal
energy, is frequently represented by one or several chemical reactions
of the form;

9 3¢ T 9 Py SXP RT

where qy is the latent heat liberated or absorbed, a, is a méximum rate
constant, Ei is the enérgy of activation required, and R is the
universal gas constant. Many authors have shown this expression to
closely approximate chemical reactions within the same order of magni-
tude as the energy change and conduction terms (I and III) of the
energy equation (2.5),

If such a function is used to approximate the vaporization process
theivaporization is then distributed throughout the slab.(i.e. for any
given temperature, some vaporization is attained), A plot of

Py
9y At
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versus temperature (Tv) shows that the vaporization is distributed
mainly between Tv - AT and Tv + AT (Figure 4).a

When vaporization is considered a surface occurrence, the density
of the liquid becomes zero at some infinitely small distance Ax from
the surface, Vaporization of a liquid also occurs at a constant tem-
perature thus the vaporization process appears as plotted in Figure 5.

To accomplish this the reaction rate of the function must be very high,

This would require the time assoclated with the approximation of
ap£

i 3t
to be very fast as compared to the time associated with the other
reactions and terms in the energy equatiom,

In lieu of the above, the semi-infinite slab is modeled by dividing
it into.two regions sepafated by the liquid-vapor interface (Figure 2),
The energy equation (2.5) is thus the summation of three energy
balances, one applying to each region and one at the interface. The
thermodynamic properties of each region considered constant within the
range of temperatures to be encountered ylelds the following energy
equations: For the wetted region (0 < x < 4) the fluid is considered
stationary with no generation or absorption of thermal energy, There-

fore, energy equation (2.5) reduces Eo

3T 3
P 3t T Tk W

®In this instance q . represents the latent heat of vaporization,
Py the density of the 1¥quid, and Tv the temperature of vaporization,
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{

Applying Fourier's Heat Conduction Law with the temperature gradiert in

the negative x direction yields

Py C wat Kwax (2.6)

The internal energy, being an extensive thermodynamic property, is
additive for a composite system,

Uy T Uty

differentiating

CWdT = CSdT + Csz

or

pW W W psVsCs + pzvzcz

<.

§ i/
p.C.,=p_ o C +p, 5—C
Ww 8 VW s 4 VW £

For the dry region (£ < x £ L) including the generation or absorp-

tion of thermal energy from equation (2.5)

ap : 3.5, : : ;
3T _D . 3 3 _ 3T, [ 1 ]
pD D3t + Up 3¢ + At Py % Yy KD x> + AX pvvv gv + Py Pv
I II I1I Iv ‘ \'
3
v
2 a4 '
+ 3= Pv'v 2 (2'7)4
Vi

Terms III and VI are kinetic energy terms, If the velocity of the
vapor escaping is assumed small in magnitude these kinetic energy terms

can be neglected. Term V can be rearranged as follows; since

L =% (specific volume)

3

S; pvv§ [uv + —; p 1 Bx p v [uv -+ Pv vv J
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from the definition of enthalpy
h =u + PV

and

§; Py [u + vav ] - ;; pvvv(hv)
This term is then the thermal energy convected by the vapor as it flows
through the dry region. The magnitude of which‘i; discussed in
Appendix A, This convection term is assumed of minimum consequence in
this study., The heat capacity of the vapor is also assumed to be
negligible in the final energy éﬁuation of the dry region. Thus the

heat capacity of the dry region is assumed equal to that of the solid

alone. Therefore, equation (2.7) is reduced to

aT Pp P (2.8)

Cp 3t T ¥ at =K 3%3

°p

At the liquid-vapor interface (x = £) the volume element (Figure 3)
is considered to move in '‘the negative x direction with a velocity di/dt,
The mass flow of fluid entering this moving volume equals the mass flow
of vapor leaving, thus satisfying mass conservation, The time rate of
change of kinetic energy is assumed zero. Within this elemental volume
the temperature is constant and the densities of the liquid and vapor

are also assumed constant. Thus equation (2.5) reduces to

ax ) dt[z sz]“

Integrating with respect to x yields

L L

. db
,pﬂhfsdtl+= q'z-:-

or



as ' AT

pzhfg dt = KD 3x

AT
R
-

with the limit as the length AL .approaches: zero

ds ar| . ar
PeBeg de = foax| " Fuix
I I 111
. Term I =

21

(2.9)

Rate of change of the internal energy of the liquid

per unit volume plus the rate of work done on the

fluid per unit volume by pressure forces.

Term II =
volume,
Term III =

volume,

Energy leaving the interface by conduction per umnit

Energy  entering ‘the intefface by conduction per unit

Initial and Boundary Conditions

Initially the saturated slab is at a constant temperature (TR)

throughout with an insulated boundary (back surface) at x = 0 and an

exposed boundary (front surface) at x = L,

t = 0 are
T(x,0) = TR
PpCp PgCq
V. v
s )
p.C.. = p =—C +p, =—C
WW 8 VW 8 £ VW 2

The initial conditions at

(2.10)

(2.11)

(2.12)

(2.13)

‘ ¥ e i R PN S Teie e
S R T v e i
SRS A Lo Tl et o
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where pi(x,t) is the density of the substance remaining or the products
produced after some amount of chemical reaction (i) has taken place
when pyrolysis is considered (second case of study).

With the introduction of a heat flux (qo) at the front surface the
process is initiated., The entire slab is represented as the wetted
region until the time (tv) at which the front”iurface reaches the
temperature of vaporization of the liquid (Th). The boundary conditions

imposed until vaporization commences (0 < t < tv) are

at x = 0 A
i
Thus
g%? = 0 (2.14)
at x = L
KD :: = constant : (2.15)

with the onset of vaporization (t = tv) the slab is divided into two
regions with the following conditions:

Wetted region (0 £ x < £) at x = 0

3T
KW‘Bx
or as above
AT
AX =0
at’'x = 4
T(x,t) = 2@‘ = constant A (2.16)

® The signs of q; and q_-are negative as a result of the problem
being oriented in the negatfve x direction,
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Dry region ( L £ x < L) at x = £
T(x,t) = IV = constant

at x =1L
5 OT
q, = JQD Sx = constant

The boundary conditions (2,14) and (2.15) with respect to the front and
back surfaces, therefore remain throughout the.entire process with the
addition of a third condition (2,16) when vaporization begins., The
complete problem is thus defined by equations (2.6), (2.8) and (2,9)
with initial conditions (2,10) through (2.13) aﬁd bouridary conditions
(2.14) through (2.16) for all time t 2 0, The assumptions made thus

far can be summarized as follows: A constant, radiative heat flux was
applied to a semi-infinite slab, No ingition or chemical reaction of
the slab was considered, The slab was divided into two regions by the
vaporization interface. The changes in potential and kinetic energies
were neglected in the application of the first lawof thermodynamics to
each region and at the vaporization interface, Work done on the fluid "
by viscous forces was neglected. The internal energy was assumed to be
a function of temperature vnly...The-mafs flow rate of the -fluid entering
the moving vaporization interface was assumed equal to the mass flow of
the vapor leaving, Within the vaporization interface the temperature
and the densities of the liquid and vapor were considered constant,

The dry region was considered as an infinite sink with respect to the
vapor., Therefore the heat capacity of the vapor and the thermal energy
convected away f:om the solid és a result of the flow of vapor through

it were eliminated from the energy equation of the dry region,
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Non-Dimensionalization

All variables in the aforementioned equations and conditions may be
non-dimensionalized by some chosen characteristic dimension of the
problem, The analysis is thus freed of dimensional dependency and
allows the problem to be specified by relatively few pertinent param-
eters, The independent variable x and the dependent variable A4(t) are
non~-dimensionalized by the characteristic length L (slab thickness).

The independent variable t (time) is non-dimensionalized by the
characteristic conduction time Lg/a to yield the Fourier number., The

temperature, measured from some reference temperature T_, is made

R
dimensionless by considering the boundary conditions at the front and
back surfaces. The remaining variables are rendered dimensionless after
division by their initial values., Table I presents a list of the
resulting non~-dimensional wvariables,

When the non-dimensional variables are substituted into the energy .
equations (2.6), (2.8) and (2.9) and the boundary conditions (2.14)
through (2.16) it is possible to form dimensionless groups which sim-
plify computationd4 The new parameters thus formed are used to
.characterize the solution of the problem in place of the non-dimensional
variables separately. These incurred parameters are given in Table II.

The resulting non-dimensional energy equations are;

wetted region (0 < x < Z(Ew))

AT(x, E) T(x, Ey)

- - — | (2.17)
Btw dx

A

*See Appendix B.
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TABLE I

NON-DIMENSIONAL VARIABLES

Dependent Independent

S "R

TeEy) = Ik X = 3

TABLE II

NON-~DIMENSIONAL PARAMETERS

o

h

irh
=
=

|
=N

|
.
|

|

|

=




dry region (E(Ew) <xs<1)
AT(x,ty) .\ T(x, ty) W

- -~ == - -3
atw pD(x,tw) atw ax

‘apD(i9E

liquid-vapor interface (x = Z(Ew))

_ di(E) AT(X,E.) _ AT(x,E)
o — W ik W - % W

dtw AX 4" ¥x ot

The non-dimensional initial conditions become

T(x,0) = 0

C. P (x,0)
= = = D'D
Cppp(x,0) = CPy:0)
G0 - 1
- - Pi(x,O)
Py (x,0) E;?ETET =0

with the non-dimensional boundary conditions

,aE(i,EW)V

_¥®T(x,tE
A T —————
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(2.18)

(2.19)

(2.20)
(2.21)
(2,22)

(2.23)

(2.24)

(2.25)

(2.26)



CHAPTER IIT
MATHEMATICAL SOLUTION
Background

Except in limiting cases non-li{néar.partial differential equations
are not readily amenable to solution by analytic means, Complicated
geometries, boundary conditions or laborious calculations lead to the
use of the dig;tal computer to calculate approximate solutions by
numerical methods. Most methods of solution either approximate the
derivatives and solve the resulting system of algebralc equations or
reduce the non-linear partial differential equations to linear ordinary
differential equations and integrate this resulting set of equations by
some method of numerical quadrature,

The finite~-difference approach is uBed quite extensively in the
solution of boundary value problems. The derivatives are approximated
at given nodal points by various difference schemes, many of which are
described by Bzisik (18). The resulting system of algebraic equations
must be solved at each step (increment of the independent variable),
which becomes cumbersome when many equations are involved requiring
considerable amounts of core storage and computational time., The
repeated solution of thpse equations over a period of time may lead to
an accumulative round-off error within the oxder of magnitdde of the
coefficients involved, The accuracy of the finite-difference method is

controlled by the number of nodal points, or the grid spacing choseﬁ.

27
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Therefore, as accuracy is increased, computer storage, execution time,
and possibly round-off error are increased,

With the development of highly sophisticated computer routines for
the simultaneous integration of ordinary differential equations, :the
integral method, in which partial differential equations are reduced
to ordinary differential equations, has become quite popular, The
method of integral relations describéd by Belotserkovskii and Chushkin
(4) and the procedure used by Goodman and Shea (10) to obtain their
heat balance integral are two examples of the integral method.
Basically, the partial differential equation is multiplied by a
weighting function of the spacial coordinate and then integrated with
respect to this variable, The remaining functions within the integrals
are then approximated by some interpolation formula. The integrals are
then evaluated and the resulting system of ordinary differential
equations can be integrated by any number of numerical methods. . Care
must be taken in the selection of the formulas used to approximate these
integrals (e.g. polynomials, spline functions, trigonometric series,
geometric series)., If a polynomial is chosen, the ordinary differential
equation which results will be dependent on the selection of nodes with
respect to the spacial coordinate much like the finite-difference
method, ‘Also at each step, simultaneous algebraic equations must be
solved where in some cases, (i.e. coefficients with very small values)
the accumulation of round-off error or the singularity of a matrix will
lead to unpredictable integration results,

Some numerical methods. for integrating ordinary differential
equations incorporate a weighting function (chosen by the user) which is

a factor in determining the accuracy of each integration: step.
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Therefore, if the weighting function utilized in reducing the partial
differential equation weights certain areas of the problem for higher
accuracy, care must be taken in applying integration methods to avoid
additive or canceling weights.

The dependence on nodal selective and possible additive round-off
errors can be eliminated by electing the weighting function and the
approximation function to be orthogonal, The calculations required to
solve the problem are also reduced since the integral of the product
of two orthogonal functions, i.e.

)

RASERD

a
is zero except when m and n are equal, With the proper.choice of func-
tions, the heat conduction equation is transformed into an equation
satisfying the original only approximately. This technique or the weak
solution is employed in this study.

The extension of the Schmidt graphical method of solution suggested
by Longwell 03), while of interest, is tedious and its accuracy depends
on the exactness of construction, This method can be used,. however, to
show trends and gross effects within the magnitude of more detailed

solutions if so desiyed.
Application of the Integral Method

The primary concern of this study is the first of the limiting
cases discussed in Chapter I. Accordingly the following equations. are

considered:
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equation (2,17)

3T (X, Ew) 3*T(x,t

3t ax?

W

equation (2,18) minus the energy generation or absorption term

AT, 8 _ AT, E
= A
z =2
atw ax
and equation (2.19)
_ dlE) 3T(X,E) | _ 3TR,EY
H - - . = - K ~
dtw ax R TR | ax it

A and K are given in Table II.

Solving for Ew

is multiplied by the weighting function Q(x) and integrated with res-

> Ev (after vaporization commences) equation (2.17)

pect to X over the interval [0,%]

Iy BTG Igp PIGE)
f Q(x) — dx = I Q(x) =2 dx (3.1)
0 Btw 0 ax v

Applying Leibnitz's forumla for differentiating an integral and integra-

tion by parts yields &

®See Appendix C.
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e .
ar o I 1 ¢
T ; Q(X) T_(X, tw) dx - Q(x) T(X,tw) - =
dty o : ztw
x=4
ety M, M
o) ——- - ¢ ) TG
A% o '0
Ik
+ P ' (x) T(X,E) X (3.2)
0

Similarly multiplying equation (2,18) by Q(i) and Integrating with

respect to x over the interval [Iqu.

L ATE,E _ L aRTEE)
oy — az = &7 @ — & (3.3)
IE) 2w gy %

Applying Leibnitz's formula for differentiating an integral and inte-
grating by parts yields6
1 .
< lot Tx,E @& + o T&,E) 2

dt .
W o At

x=k ()

- A QR TG,EY |
Lt (&

qd x) E(Q,Ew) dx (3.4)

® See Appendix D,
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To obtain the integral over the entire slab [0,1] equations (3,2) and

(3.4) are added to produce when further simplified,

1 - .
d hd " ey ms - - a."[‘(}{’t-pq)
) AUx) T(x,t) dx = Q(x) -
d.tw 0 Ax !-{=—_
I
— _ AT(x,t) _AT(R,E)
- & Q&) Y - Q) Lk
x =1 X %=0
11 III
L ai(i,iw) .
+ A Q(x) ———— - Q') TR, ED |
AX - X =
x=1
v v
Qe TeE) | - R TEE |
x=0 x=1
VI VII
+AQ ®) Tx,t) |
x=4
VITI
I(EW) 1
A T - Ve = = m -
+-f Q (x) T(x,tw) dx +.f Q (x) T(x,tw) dx (3.5)
0 T
X X

Term I is the heat flux exiting the interface in the -x direction and
Term II is the heat flux entering the interface in the -x direction.

In this initial study for simplification A and K are chosen to be unity
and equation (2,19) can be substituted for Terms I and II. Terms V and

VIIT will then add out and the resulting equation is
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1
d dz(tw)
= f Q) T(X,E) 4k = Q&) H ——
dt o dey
I
. 3T(X,E,) _dT(x,E,)
- o) —— | 4 o) ——
3x %=0 3% =1
II I1I
+Q'x) TRED | - Q@) TGE |
x=0 x=1
IV v
1
[ d@® TaE) & (3.6)
0
VI

Substituting boundary conditions (2.24) and (2,25) into Terms 1I and

III respectively, and rearranging

1 -
d e - ) o dl(tw)
< Jo@ T&.E) a = 0@ §—
ity dty

- Q) (0) + Q) (1) + Q' (x) T(0,E) - @ (R) T(L,E)
1
d =~ "= e - -
[ @ TEE @ (3,7
0

The functions chosen for the weighting function (Q(i)) and the tempera-
ture approximation function (E(Q,EW)) must be continuous, complete and
have at least continuous second derivatives on the interval of interest
(0 € x £ 1). Equation (3.7) is void of all derivatives of temperature
with respect to x., The discontinuity of this derivative of temperature
at the interface was removed by substitution of equation (2.19). Thus

the weighting and approximation functions are not required to satisfy

the derivative of temperature with respect to x. The temperature
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throughout the slab and at the boundaries is then the primary require-
ment which these functions must satisfy. The cosine function (i,e,
cos nﬂi)is chosen for two reasons. First, cos nrﬁZexists within the
region 0 < x < 1 and at the boundaries of the semi~infinite slab
(x = 0,1), therefore, the temperature requirement is satisfied.
Secondly, the cosine function (cos nmx) is orthogonal with respect to
itself which greatly reduces computations, The derivative of cos nmx
matches the boundary condition at the back wall (2.24) but does not
match the boundary condition at the surface (2.25). Again this is of no
consequence since the boundary conditions (2.24) and (2.25) along with
equation (2.19) are substituted into the energy equation (3.6) thus
eliminating all derivatives of temperature with respect to X.

Choosing then the weighting function Q(x) to be

Q(x) = cos mmx m = 0,1,2,...,N (3.8)

and approximating the temperature by

N .
E(:’E,Ew) = ZAn(t-:W) cosnmx n = 0,1,2,...,N (3.9)
n=0

equation (3.7) produces N equations of the form~

dA_(t.) _dl(E)
—A W o 2cos am)H — + 2 cos (nm)
dtw dtw
- (nm)? An(EW) (n> 0) (3.10)

and for n = 0

qu (&) al (t,)

- = H

dtw dtw

+ 1 (3.11)

7 See Appendix E,
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In deriving the (N+1) equations (3.10) and (3.1l) above, equations
(2.17) through (2,19) were used with boundary conditions (2,24) and
(2.25). The remaining condition at the interface (x = E(Ew)) is boun-
dary condition (2,26),

T(Z,tw) = Tv = constant

The total derivative of T§ is zero. Then

_ a"fv } aT )
dTV = 0 = —_—-)_ dtw + —2 - dx
Atw X 3x tW
By equation (3.9)
_ N . -
T, = y An(tw) cos (nm i)
n=0

Therefore, the additional equation produced becomes

N
A (t
z --j———-—cos (Jﬂfz)

dz(t )

}Z (jm) A (tw) sin (jmd) 3 =0,1,2,.,,N (3.12)
df J
W j=0
This yields (N+2) equations with (N+2) unknowns. The problem is reduced
then to the simultaneous solution of equations (3.10) through (3.12) to

obtain values of

J j=0,1,2,...,N

then integrating these values with respect to time by some numerical
method resulting in the N+1 coefficients Aj, j=0,1,2,...,N,
As a consequence of utilizing orthogonal functions the set of N+2

simultaneous algebraic equations (3.1Q) through (3.12) may be solved
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once for all time., Thereby the need to solve this set of equations
simultaneously at each step in the problem solution is eliminated,
Solving for the derivative of the interface location with respect to

time yields8

N N
{1+22[cos(jn)cos(jni)]} -Z(jn)aA.cos(jnZ)
aL(E,) I 0 J
. i= . < i= (3.13)
dt :
w ’ ‘H{1+2 ZCOSB(jTTZ)} -Z(jrr) Aj sin (j7d)
j=1 j=1

Substituting the solution of equation (3.13) into equations (3.10) and
(3.11) at each step will yield the values of the coefficient derivatives

A, (t,)
-——J———‘ W A} =0:1:2’v--’N

dtw
to be integrated,

The solution of the problem before vaporization (i.e. £ = 1) can be

accomplished analytically,

<'<- 7 = =
For O tW tv’ 4 1 constant

Equation (3.10) reduces to

dA (EW) .
—2 2 =2cos (am) ~ (am)® A () (3.14)
- n W

dt,,

for n > 0, with equation (3,11) being

dAo(tw)

d tW

= 1 (3.15)

® See Appendix F,
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Integrating equations (3.14) and (3.15) results in®

S (3.16)
Aty = &y

n
A(E) = %—é—%—l)—)z-[exp (- (am? & }- 1J (> 0) (3.17)

The problem is therefore solved algebraically for any increment of
time between zero and the time vaporization commences at the front
surface (i.e. 0 <€ t

w< tv).

Initial Conditions

0f the non-dimensional initial conditions given in Chapter II, only
condition (2.20) is pertinent to the vaporization study.

At EW = 0, condition (2,20) states

T(x,0) = 0
Applying the temperature approximation (3,9) to condition (2.20) vields

N
T(x,0) =) A (0) cos (nmR) n=0,1,2,...,N

n=0
cos 0UT§)W111 be zero for x = % only. Therefore An(O) must be zero.

The initial temperature coefficients are then

A =0
o

A1 = 0

AN = 0

® See Appendix G,
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Computer Technique

The computer program developed to solve the first case or vapori-
zation problem described by equations (3.10) through (3.17) consists of
four sections or subroutines, The main or executive section (MAIN)
initiates all control parameters, non-dimensional parameters, and
equation coefficients, This section solves the algebraic equations
(3.16) and (3.17) for the heating of the saturated porous slab prior to
vaporization (i.e. 0 < EW < EV) and Initiates the integration of
equations (3,10), (3.11l), and (3.13),

The output section (DEROUT) prints and/or punches any desired tem-
peratures along with the vaporization position and velocity for various
increments of time,

The derivative function subroutine (DERFUN) calculates the deriva-
tives of the coefficients, using equations (3.10), (3.11), and (3.13)
for each successive time step employing previous values of the coeffi-
cients obtained from the integration routine.

The integration routine (DHPCG) integrates the calculated values of
the derivatives given by the derivative function and passes the new
values of the coefficients to the output and derivative function
routines, A complete listing of each program section is given in

Appendix I, Table III presents the basic steps followed by the computer

program,
Method of Numerical Integration

Numerical techniques for solving first order ordinary differential
equations with given conditions yi(xo) are usually based on the direct

or indirect use of Taylor's expansion or on the employment of open or
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TABLE III

COMPUTER PROGRAM CYCLE

I'

II.

III.

Main Section

1.

Read summation limit (N), dimensiﬁnal constants, output
and integration routine control parameters.

Initialize numerical constants and non-dimensional param-
eters.

Calcglate coefficients for the temperature approximation

function by the analytic solution (0 < t. < EV). Call

W

output routine,

Repeat step 3 until vaporization commences (Ew = Ev).

Initialize constants required for numerical integratiomn.

Call integration routine (II).

Integration Routine

6.

Apply one-step integrationjmethod.

Call derivative function and output routines,

Apply multistep integration method,

Call derivative function (III) and output (IV) routines.
Repea& steps 3 and 4 until the entire interval specified
is integrated over or an unresolvable error is encoun-
tered.

Return to main section (I).

Derivative Function Routine

1.

Using coefficient values received from the integration
routine (II) calculate the temperature coefficient deriva-

tives for the next integration step.
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TABLE III (Continued)

IV,

2.

1.

2‘

Return to the integration routine (II).

.Output Routine

Determine if output is desired for this step.

Calculate temperatures at specified locatlons throughout
slab,

Determine when vaporization begins,

Print or punch time, interface velocity, interface posi=
tion and desired temperature profiles.

Return to calling routine.
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closed integration formulas., Carnahan, Luther, and Wildes (7) group
these techniques into two classes, one-step methods which calculate the
value Yi41 given only Yy and the multistep methods requiring Yy plus
several other values yi's outside the integral of integration.

One disadvantage of the multistep methods is that they are not
self-startiﬁg and require a one-step method to calculate the initial
values of the solution vy (i.e., y(xl), y(xz), etc.)., Also with
multistep methods it is cumbersome to change the integration step size
once the calculation is initiated, The major advantage of multistep
methods is the fact fhat less computation is required than comparable
one-step methods while producing results of similar accuracy,

The predictor-corrector methods, where an open integration formula
is utilized to predict the integration and a closed integration formula
is employed to correct this estimate, inherit the disadvantages of the
multistep methods, But a considerable advantage of this method is that
solutions can be produced with comparable accuracy and stability of a
fourth order one-step method using as few as two derivative evaluations
at each step, Hamming's modified predictor-corrector method represents
the best compromise between stablility and accuracy and is the most popu-
lar multistep method (7),

The numerical integration method used in this study is an IBM
application program (DHPCL) (24) which employs Hamming's modified
predictor-corrector method with a fourth order Runge-Kutta method,
suggested by Ralston (20), to start the process, This routine incor-
porates an error weighting function and allows the user the option of

changing the integration step size during execution,



CHAPTER IV
COMPUTATIONAL RESULTS
Inert Solution

By the nature of the problem presented in Chapters II and III, an
algebraic solution is: possible for the heating of the saturated porous
slab from time zero till the time of vaporization at the front surface.
To assess this analytic solution the condition of vaporization at the
surface was relaxed and the problem became one of the heating of an
inert slab. Carslaw and Jaeger (8) give the exact solution for an
inert semi-infinite slab heated by a constant heat flux at the front
surface with an adiabatic back surface.

Figure 6 presents a comparison of the computer generated approxi-
mate solution utilizing five coefficients with the exact solution. A
good approximation at the front surface is obtained while the inert cal-
culations match the exact solution precisely at the back surface.
Increasingly the number of coefficients in the inert solution will cause

the exact solution at the front surface to be more closely modeled.
Constant and Parameter Values

The dimensional constantszgn the series of computational runs
discussed here, were chosen to match approximately those of wood and
water. Since the examination of the entire problem will eventually

encompass pyrolysis, the constants and parameters generally match those
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Figure 6, Comparison of Approximate Solution of Inert Slab With
Exact Solution
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of Rittmann (21) for future study. Table 4 lists the pertinent con-

stants and parameters used,
Temperature Relations

Comparison of the temperatures obtained in this inwvestigation with
work previously done in the melting and freezing problem is difficult
for two reasons, Firstly, the studies encountered consider the liquid
or solid at a uniform temperature of solidification or meit%ng before
the process is initiated. - Secondly,. most brevious studies use a step
input of temperature to initiate the melting of_solidification process,
This study assumes the saturated slab is at a reference temperature well
below that of vaporization and consequently when the constant heat flux
is applied the temperature is no longer uniform throughout the slab.
When vaporization commences the temperature profiles and the velocity of
the interface are quite different than presented in other studies. Also
the term containing the temperature at the front surface was deleted
from the energy equation (3.7) as a result of the choice of cosine
weighting and approximation functions., Therefore the application of a .
step input temperature is not. possible.

A time history of temperatures at selected points within the slab
is shown in Figure 7 By comparison with Figure 6, the inert solution,
it can be seen that when the front surface reaches vaporization
(EW = ,05937) the temperature remains constant for some time., This is

caused by the decrease in heat flux entering the remainder of the slab

as a result of vaporization at and near the surface. The temperature

Y The graphs presented have been smoothed over discrete points to
eliminate cosine fluctuations,
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TABLE IV
DIMENSIONAI, CONSTANTS AND
PARAMETERS
L 1.0 em
o
TR 300 K
4, 0.081 cal/cm>-sec
fg 539,05 cal/gm
T 373.15° K
k'
Cy .66 cal/gm-° K
Ky 2.7 X 10* cal-cm/cm®-sec?-9 K
T. .24383
lfv
H 544495
) P .20
A 1.0
K

1.0

46



47

gradient throughout the slab is decreased as a result of the onset of
vaporization, As time increases the points in the dry region, far
enpugh from the interface, are no longer affected by the vaporization
and approach a conduction dominated linear increase in temperature. The
temperature at the back wall increases constantly throughout the entire
process and has virtually reached the temperature of vaporization when
the interface is at a point approximately .4 from the back wall,

The temperature profile through the slab at selected times is
shown in Rigure 8. Here again it can be seen that the temperatures in
the area preceding the vaporization interface (i.e. wetted region)
increase very slowly, but the temperatures within the area aft of the
interface (i.e. dry region) are unhaffected, The temperature gradient
on the wetted side of the interface decreases with time and eventually
reaches zero at-the back surface (boundary condition). This is
physically realistic since the wetted region slowly reaches the tem-
perature of vaporization as the interface moves into the slab.
Therefore, the temperature gradient is significant with the onset of
vaporization and then must decrease as the temperature increases in the

region ahead of the interface.
Interface Velocity

Figure 9 contains discrete points plotted from computatidnal runs
of five and seven coefficients. The oscillations observed are attrib-

uted to the representation of an infinite series, i.e.

=]

Y

-3

n=0

A cos nTUx
n
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by a finite number of coefficients, Approximation of a mean value
curve through these points shows the interféce velocity starting at
zero and rapldly increasing to a value in the neighborhood of .9, The
velocity then increases slowly to a maximum gomewhere in the vicinity
of the center of the slab, From this point on the velocilty drops off
slowly through the remainder of the slab.

The interface velocity obtained appears to be physically realistic
since at the onset of vaporization the surface and immediate area behind
it are at the vaporization temperature, The rate of vaporization
assumed starting at zero increases rapidly as the liquid in this area is
vaporized, Once this initial area is vaporized a certain amount of flux
must be used to heat the area immediately ahead of the interface to
bring it to the temperature of vaporization, As the temperature in the
wetted region increases the interface velocity increases slowly until a
maximum is reached. At this point, the temperature gradient in the dry
region is such that more and more energy is required in raising the
temperature in this region. Thus the interface velocity decreases and
continues decreasing throughout the remainder of the slab as the tem-
perature gradient in the dry region increases.

The initial velocity as shown starts at definite rates of approxi;
mately .32 and .45. This is a consequence of the size of the initial

integration step and also of the number of coefficients used.
Pyrolysis Retardation

Although the primary interest of this investigation is not
pyrolysis, examination of Figure 10 reveals that, for a constant heat

flux with one exothermic reaction considered, deviation from the inert
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2.8 ~1 T T T N ARSI 1 ¥ 1 1

=10
(Front Surface)

Inert
x=0
(Back Surface) -

Inert

TEMPERATURE (T,)

2,0 .. 2.4

TIME (t)

Figure 10, Effect of Heat of Reaction: Temperature History of Front :::
and Back Surfaces -~ Constant Heat Flux, One Exothermic
Reaction, Case 0, Rittmann (21)
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solution occurs at a time: of approximately t = .l, The temperatures at

W
this point for the front and back surfaces are T = 1,3 and T = .9,
respectively. The seven coefficient computation utilized in Figures 7
and 8 obtained complete vaporization of the saturated liquid within a
time a EW = 1,094, The maximum temperature attained by the front
surface being T = .9312.with the baqk surface restricted to T = .2438
(i.e. The temperature of vaporization E&). - Within the same time frame,

(i.,e. 0 < t. < 1.0), comparison of the aformentioned figures discleses

W
the temperature of the front surface in the saturated problem to be just
slightly greater than that of the back surface of the pyrolysis example.
Also, the back surface of the saturated problem is seen to be at a tem-
perature much lower than the corresponding temperature of the pyrolysis
problem, Thus, as expected, the dissipation of heat energy by vapori-
zation of the liquid causes the temperatures within the initially
saturated porous solid to be much lower than the temperatures of the
initially dry heated solid thereby delaying pyrolysis of the solid
material.

The solution of the vaporization problem presented here assumes
thermal properties which yield values of the Fourier number and non-
dimensional temperatures consistent with those used by Rittmann (21) in
the calculation of various constant, radiative heat flux type pyrolysis
problems. These values in no way attempt to model known substances. 1In
Appendix H values of the non-dimensional parameters A and K are computed
assuming water and fir are the substances used in a volumetric ratio of
one to four. The values of A and K thus attained do not approach unity

unless the ratio of liquid to solid is very small. Therefore, in future

investigations the incorporation of these non~dimensional parameters
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into the resultant energy equation must be resolved to extend this study

to various combinations of known substances.



CHAPTER V
SUMMARY AND CONSLUSIONS
Summary

An analytic study of the heating of a porous material initially
saturated with a liquid was undertaken. Examination of the complexity
of the problem led to a division into two areas of analysis, the vapori-
zation of tle liéuid and the pyrolysis of the porous material, This
study concentrated on the phenomena of vaporization.

The vaporization of the liquid from a saturated porous solid was
modeled by a semi~infinite, homogeneous and isotropic slab initially
saturated with a homogeneous and isotropic liquid. The slab was con-
sidered exposed to a constant, radiative heat flux at the front surface
and insulated against heat conduction at the back surface. With the
onset of vaporization the slab was divided into two reglons by the
vaporization interface. - Applying the conservatioﬁ of energy principle
to each region and across the interface produced three energy equations.

Non-dimensionalization of each equation gave rise to the ratios of
thermal diffusivity and thermal conductivity. Considering these param=-
eters unity the integral technique of reducing a partial differential
equation to a system of ordinary differential equations was employed.
Multiplication of each energy equation by a weighting function in the

space variable and then integrating with respect to this space variable

e/



55

enabled the combination of the three energy equations into one equation
representing the entire slab.

The weighting and temperature approximation functions used in
applying the integral method (i.e. cos nmx and the Fourier cosine
series, respectively) were so chosen as to give valid temperatures
throughout the slab. These functions are alsoc orthogonal which reduced
computations. immensely., The fact that the chosen functions do not
represept the slope of the temperature validly for all x within the slab
is not critical since the integrated equation contains no derivatives of
temperature with respect to x and leads to the so-called weak solution
of the original energy equation. It should be noted here that the
temperatures obtained by this method can not be differentiated to yield
local heat flux wvalues,

The resulting N+1 ordinary differential equations along with an
additional equation obtained-from the condition of constant temperature
at the vaporization interface were integrated by a multistep numerical
integration routine employing Hamming's modified predictor-corrector
technique, Computer solutions employing three, five and seven coeffi-
cients in the temperature approximation were generated. While not
modeling any particular substances, the temperature profiles and
interface velocities obtained appear to be physically realistic. The
vaporization process is shown to prevent the temperature of the solid

from attaining values which would cause significant pyrolysis.
Conclusions

The following conclusions and observations evolved from this study:

1, The complex analysis of the heating of a saturated. porous material
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can be divided into two areas of investigation, the vaporization of the
liquid initially present, which was the object of this study and the
pyrolysis of thé dry solid material remaining after wvaporization,

2. The discontinuity of the derivative of temperature with respect to
time and the spacial coordinate at the interface represents the main
difficulty in solving this problem. A transformation of coordinates is
possible but results in singularities at the front and back surfaces,
Thus in order to initialize &he vaporization process a finite distance
into the slab must be approximated, The division of the slab into
regions, with the application of the integral method to reduce. and com-
bine the resulting energy equations into one, thereby eliminating the
discontinuity from the problem, results in a weak solution of the
problem, This d4pproach appears to be the most practical.

3. Two non-dimensional parameters, the ratios of thermal diffusivity
and thermal conductivity, appear in the analysis of the problem. The
incorporation of these parameters in the resultant energy equation must
be resolved in future studies if known liquids and solids are to be
considered in various degrees of combination.

4. The effects of the escaping vapor, neglected in this study, might
be included in future studies depending on the magnitude and type of
heat flux applied at the exposed surface.

5. The vaporization problem solved in this study, whi}e pertaining to
no known substances, appears physically valid. By resolving the thermal
diffusivity and thermal conductivityvparameters, this study can be com-
bined with previous pyrolysis studies to yield solutions of the

heating of a saturated slab from the initial application of a heat flux

to the surface ignition of the solid substance.
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APPENDIX A
EFFECTS OF VAPOR EFFLUX

The effects on the dry region caused by the escaping vapor involves
consideration of flow through a porous media, free convection, and . . -
forced convection., Ignoring free convection the porosity of the solid
and the veloeity of the wvapor must be known to correctly evaluate the
hindrance or contribution of the vapor efflux to the heating of the
slab, Since the porosity of the solid and the velocity of the vapor
are not known, term V of equation (2,7) will be used. This term -
expresses the net rate of thermal energy convected per unit volume by
the vapor as it escapes through the pores of the dry solid

. 1. 2
vv’[uv + Py Pv]‘ T A% pvvvhv o ‘ B CIY

3

3% Pv
At the interface the mass-flow rate of vapor per unit area is equal to
the mass flow rate of liquid per unit area. Thus assuming this mass

flow rate is constant through the dry'solidv

pVV‘V = pzvz (A.Z)

. Substituting (A.2) into (A.1l) yields

2 .
5% PeVeby (4.3)
,QOnsidering‘the velocity of the liquid equal to the interface velocity
(A,3) is then

3 d4

ovv—

3% P dE Ny

an
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or, since the mass flow rate is assumed constant

Enthalpy 1s a function of temperature alone, at constant pressure, thus

ds 3

4 . d4r
Pyt 3%

T dt CP dx (4.5)

r _
i(CP'dt) =
v

From the non-dimensionalization of wariables

x = xL

4 = AL

a _ 2w al
dt = L it
ar _ 1 %"

1
dx L K o v
where Eo is the non-dimensional temperature at the front surface. Sub-

stituting these values into (A.5) yields

K
ds dT _tw_dal 1
Py dc CP dx ZCP C oL = L = TVJ (A.6)
v WW dt
W
Picking

q L

—K°— = 300° x

W

and considering saturated water, saturated steam, and white:fir as the
porous solid yields

P, = 60.053 1bm/f€

- 0
CPV = 4764 Btu/lbm T

.1286 Btu ft/hr ft? °F

=4

26.406 Btu/ft® °F

L = lem = ,3937 ft



Choosing the interface at a point midway into the slab for the seven

coefficient computational run

< o649
ty
T - T = 37407
(o] v
Therefore,‘
~ -, 9L
- — == O‘
[To Tv] » [.37407] 300° Kk
= 112,212 k°
= 1.8 [112.212] Rr®
= 201.98 F°
-p,C_-K
PP W (60,053) (L4764) (. 1286
pwcwl? (26.406) (.3937)
Thus
as dr

) EE'CPV dx

Btu

hr £t° OF

Btu

(.899)(.96949)(201.98) 3

hr ft

.899.hr

176,04

Btu

ft° OF

Btu

hr ft°

On a unit volume basis the vapor is considered to occupy 20% of the

volume, the convective term then yields

] Btu
.2 ft (176'04),hr i3 =

35.21 &——

62

(A.7)

The vapor negotiates a positive temperature gradient, therefore. this

thermal energy can be considered convected away from the solid. The

heat flux at the front surface for this example is

(.1286)(1.8)(300)

9 = 3937 " hr f£°

Btu
hr ft*®

176.39

On a unit volume basis multiplying: by the area and dividing by the

volume
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A _ 176,39 Btu _ ‘ Btu
vl ~ L  hr ft° 448.032 hr fto

Multiplying by the percent of volume occupied by the solid yields

= 3 -Btu _ Btu
Aq0 = ,8 ft° (488.032) he fE2 T 358.43 T (A.8)

The ratio of the thermal energy convected by the vapor to the heat flux

available to the solid is on the order of

= ,0982



APPENDIX B

NON=-DIMENSIONALIZATION OF EQUATIONS

AND BOUNDARY CONDITIONS

Division of x and £(t) by the characteristic length L yields
£ = %
L

A (t)

L

Z(t)

The non-dimensional temperature T and time t are chosen as

— T
T = T
Z
i = L
Tt
Z
where
T = TA‘- TR

.Substituting these terms into.equation (2.6)

T, 3T (x, t ) 73 P T(x,t ) i
W
rearranging
AT(x, t W 3®T(x,t W

- G B

 The subscripts: W and D refer to the wetted and dry regions,
respectively,

A
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The thermal diffusivity is defined as

S
CvPw

Now tz can be defined as

t = =

Lﬁ
z o

=

Here tz is not a time constant as such but is a 'significant time'" or
time scale of the problem. By rearranging, tz can be shown to represent
the product of the thermal capacitance and the internal thermal
resistance (17).

3
L PSR L

L ww _ L)
£, = oy | Ky PyCul A A T Py Cy (KWA/

Therefore EW becomes the Fourier number

Equation (2.6) is then

AT(x, E,) _ ‘a“'f(:'cw,t’:w)

3% 3x? ®-1
W

In a similary manner, equation (2,8) can be non-dimensionalized,

letting
- - . pD(x’t)
pD(x’tD) pD(x’o)
T AT(x,E) T A (x5t)
. 0) -2) 5 (R.T .Y 2V TR, £ )2 D°
(pptx,0) 22) A& E) o) ——2 & (0,(x,0) 2) O TR, E)—2—
z atD Z BtD

LT F*T(x,t,)
= (i'&)KD 'A-: >
X

rearranging
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Again defining thermal diffusivity

- = ¢
CDpD D
: Choosing
e - L
Z dD

yields the Fourier number

to

D
't = I8

Equation (2.8) thus becomes

T(x,E)  AepGeE) TG, E

X x> ®-2)
D

The energy equation at the liquid-vapor interface (2.9) can be written

- = T . 3T(X,E)
ey () O - () TED | L () TED

T\ BT(X,T)
- K, ( ) :
4" X 4t

Z

dividing by‘KW and rearranging

2 - - — -
(hfgL "z) (B _ I(E,T)
R BT a%

(B.3)

Considering the boundary condition at the front surface (x = L)

T . =, =
_ o 2I(x,t) _ ( z\ 3T(x,t) _
q = = - ~ - = constant
o KW dx %=L KW L/ 3% 5e1

or

Choosing



qoL
T OX,
dT(x,E 1
dx =1
and
T(}.E £ = T _ TA.-TR
. = ,
qoL/KW qoL/KW
with
2
YwoT 5_
' W

fhngfIW] dﬂ(tw) i BT(x,tw) ) (EQ) BT(x,tw)
q L = - K -
o dtw ax 4" W 3x ‘Z+

T = hfgpfzaw
q,L
yields
- dz(;w) i AT (x, Epp) _ (EQ) AT(x, t.)
df 3% K/ 3%
W : N A

From the boundary condition at the interface (2.26) and the non~

dimenEtenal temperatire (B.4)

T(I,E) = E& = constant
T(z E ) _ TA-TR _ ,TV—TR
b ] et -
W T, q L7K,
or
T, =T T =T
Td,ty) - =R _ ¥ R
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(B.4)

(B.5)



where
QL _ . S PR
_IZD— T (I',tD) = 'K; 2.t
— - Ky ..
ey = g TdE
Thus
—_— - - KD —_— . -
T(x,t.) = q T(x,ty)
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(B.6)

Two Fourier numbers are created by the non-dimensionalization of the

energy equations. 1In order to combine the energy equations properly

only one dimensional time can exist. The following relationship is

therefore apparent:

t=+t
from
- toy
t = i—é
t Lj = t Ef
DO!D WO!W
EJfRE
D aw W

Adopting T(x,tw) and tW

unchanged but equation (B.2) is transformed to

 _ > _ .
Kw AT(x,t ) Kw T(x,tw) apD(x,tw) K
& o =

W atw W pD(x,tw) atw

D D

aT(x,tw) .\ T(x,tw) ApD(x,_tw) _ o—z]2 ) T(x,tW
= - - = o -2

F*T(x,t.)

-3

3%

(B.7)

as standards, equations (B.l) and (B.5) remain

(B.8)



Defining parameters A and K as

A =

L]

£

%

equations

Q

2]
= |o

(2.17) through (2,19) are obtained.



APPENDIX C

INTEGRATION OF. EQUATION (3,1)

Each term of equation (3.l1) can be integrated as shown

L(t,) Z(t)
W _ BT(x,ﬁm) HW _ BaT(x,Ew) -
I Q(x) - dx = I Q(x) " dx
0 oty 0 Ax
I II
Applying Leibnitz's formula to term I
T(ey) (%) _
d ¥ = - o - FW _ ¥T(x, b))
ke Q(x) T(x,qﬂ) dx = I Q(x) —— dx
¥ 0 oty
(Term I)
Y 16
+ Q(x) T(k, &) _tw"‘
| Y
- =,- = .3
- Q) T(E,Ep) ?9’{‘
%
rearranging
70 (e
1 TR E) . oo
) — e = L [ o Ta.Ep a
0 oty dty o
-V X €9
- Q(x) T(x,t.) _'tw
3ty

Integrating term II by parts

(c.1)
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Z(e) _ R T4
VoRRTR,E) _AaTEEy "
[ e — k= o) —3
0 0
I(t)
VoL ATEE)
e s
0

Integrating once again by parts ylelds

G _ _ G
T TERE) _ATEEY |
[ —F e - Q<X>—s;-:—"\
dx
0 , 0
Z(Ew)

- Q') T,E |
LU

(&

q () ?r'(i,Ew) dx (C.2)

+
O =i

Substituting (C.1l) and (C.2) into equation (3.1) yields equation (3.2).



APPENDIX D

INTEGRATION OF EQUATION (3.3)

Each term of equation (3.3) can be integrated as shown

I 1%
- Q(x) T(x, ) _tw
. Aty
rearranging
1 1
T(X,t,) oL )
‘f Q=) —-—-1 = —c_l—f Qx) T(x,t,) dx
iEy O 8 3 (Ey
dI(L,)
+ Q(x) T(X, &) W
2ty

Integrating term II by parts

792

(D.1)



_ L ) Aaf(i,tw) AT(x, ) 1
] o ——T & - Fo®
E(Ew) 3x 9% f;(t-:w)
T ATEEY
- A I Q (x) dx
I(Ey x
Integrating once again by parts ylelds
1 _PTEEY | ATREY 1
A o) ——T & - Fod —— .
I o A 1¢

_ - 1
- A Q' (®) T(x,t) |

Z (E_w)

1
+ KI q (%) E(Q,E,w) dx
Ity

Substituting (D.1) and (D.2) into equation (3,3) yields equation (3.4).
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APPENDIX E

DERIVATION OF EQUATIONS (3.10) AND (3.11)

Substituting equations (3.8) and (3.9) into equation (3.7) yields

1 N
—Q—J‘cos (mT x) ZA (EW) cos (nmx) dx =
dt n
WO n=0
I
) _ dl(Ey)
cos (mT x) l_ _H - + cos (mT)
x=f dtW
II III
0

N
-(mm) sin ( i)ZAn(EW) cos (nm x) |_
X=

n=0 0
v
0 x
+ (mm) sin (mf x) ZAn(EW) cos (nTx) '_
n=0 x=1
A

1 N
-J' (mm)® cos (mm i)ZAn(EW) cos (nmx) dx (E.1)

0 n=0
VI

For x = 0
sin (m™ x) = sin (0) = O.
For x = 1, sin (mm x) reduces to sin (mm) which is zero for

m = 0,1,2,...,M, therefore terms IV and V are zero. . Since the cosine is

7/



an orthogonal function to itself on the interval [0,1], terms I and VI

exist for m = n only and are zero for all m # n. Equation (E.1)

reduces to

dA (%) d¥ (t;,) .
- W - JE W/
I cos? (nm X) ——E:—4— dx = cos (nm#4) H —— + cos (nT)
0 dtW | dt
1 . .
, ¥ 2 - T =
- J (nm) ™ cos (nﬂ'x)An(tw) dx
0
rearranging
- 1 -
da_ (€ .. _o_dB(E)
———:—4—=f cos® (nmx) dx = cos (nm i) H — + cos (am)
dtw 0 ¥ dtw
1
- (am)?® An(,EW)I cos? (nmx) dx  (E.2)
0
forn # 0
1 ] ) . 1
J cos®(nmx) = [ Ex+ o sin «(2n7mx) ]
‘ 0
0
1
=1'éx-l = 3%
0
Equation (E.2) consequently becomes
aa_(E) _ k() -
——>_ =2 cos (nami) H + 2 cos (nm) - (am)® A_(t.)
- - ntw
dt dt

0



Therefore

dAo(

dt

&

W
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APPENDIX F
DERIVATION OF EQUATION (3.,13)

Expanding the (N+1) equations repreéénted by equations’ (-3A.10)

and (3.11)
TN T

(1) 0+ .A1‘+ ved = 21 I cos ML) =2cosm -naA’l‘

(2) O+0+Ag+ ... - 20 L cos (2nF) =2 cos (2m) - (21)°A,

.

(I.i) 0+0+ ... + AN - z_ﬁl cos (N k) = 2 cos (N7m) - (Nn)'aAN

Expanding equ’étion (3.12) also
A + AI cos (MI)+ Ag cos (2nl) + ... + AN cos (Nm 1)
N

- Z'z (jﬂ)Aj sin (jn ) =0
i=1 ‘

Mdltipiying each_ (n) equation by cos (nm £) and subtracting in turn

~ each (n) equation from eﬁuation (3.12) produces

-

18 The dot used here indicates differentiation with respect to time
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N N
I‘;{ﬁ[l + 22 cos? (jnl)] -Z (37) A, sin (jﬂE)} -
j=1 j=1
) N
- {1 + ?‘ZI_COS (iT) cos (jnl);l} +X (im) gAjco.s(an)
3=1 31

Solving for vields equation (3.13)

N N
{1 + 22{«:03 (jT) cos (jn@)]} -z (jn)"Aj cos (jmni)
.. i=1 4=1

N N
'ﬁ{l + 2}: cos? (jnz)} -Z (jrr)Aj sin (jmi)
j=1 j=1



APPENDIX G
INTEGRATION OF EQUATION (3.14)

Rearranging equation (3.14)

£ A(E) + (am)® A (E) = 2 cos (am)

dtw

This is a first order ordinary differential equation of which the
integration factor is

4 = exp (tm)‘a EW

. Thus

-~

-—?—— (An exp(nm)? EW> = (2 cos (nn)) exp (nm)? Ew
dt
W

or integrating

An(i_iw) exp (nﬂffw = 2.c08 (am exp (nm)? Ew + ¢
(nT)

Multiplying by

exp [- (nm )at'&w}

- 2(-1 n 3w ] .

An(tw) = ety + ¢ exp[— (nm)’ tw : (G.1)
for EW =0

An(tw) =0 T (n>0)

Therefore £rom (G.1)

) n .
0 = 2D L. _exp[—(nﬂ)g (0)]

(am)?
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or

c

and finally

A_( EW)

2(~-1)"

(nm)

2¢-1)7
B <r(m>

{exp [ (am)? ¢, | - 1}
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APPENDIX H
EVALUATION OF PARAMETERS A AND K

To obtain some idea of the relevance of these non-dimensional
parameters, water and white fir are considered in a volumetric ratio of
one to four.

The mean specific heats of water and white fir in the temperature

range of 32-2120 F are approximately

@]
1]

1,004 Btu/lbm OF

O

(@]
1]

.65 Btu/lb
‘m

The average densities of these substances within the same temperature

range are approximately

3
szo 61.582 1b_/ft

3
Prsr 27.0 1b /£t

Assuming constant thermal conductivities of

.367 Btu ft/hr ft? OF

~
|

.069 Btu ft/hr ft° OF

~
]

On a unit volumetric basis

Kw .8(Kfir) + .2(KH20)

Ky .1286 Btu ft/hr ft° OF

Therefore,

Q1



|
|

From Table II

Q,Q
=)

=

A =

where

Pl T 8CppCeyy) t °2(°HZOCH20)

(14.04 + 12,366) Btu/ft® OF

it

26.406 Btu/ft3 °F
and

c

= 3 o

Therefore,

A = (.537) zi;fgg - .808




CARD
0001
0002
0003
0004
0005
0005
0007
n0on
noge
00190
0011
0012
0013
0014
0015
0014
0017
oole
0019
0020
0021
0022
0023
0024
no2%
0026
0027
0028
0029
0o3¢
0031
0032
0033
0034
0035

0034 /

0037
0138
0025
0040
No&4l
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054

APPENDIX I
COMPUTER LISTING OF ALL PROGRAMS

80/80 LIST

000000000111111111122222222223333333333444444444455555555554666666666T7T777777778
123456 7T89012345678901224567T8901234567390123456789012345678901234567R901234567890

st s oo e ol oo ook A O ke e ok ok Rk o R R R o e oK e ok R Rk e R R S KRR MA TNO 010

C %o % : MAIN SECTIGN #X*MATNODQ20
Chkk (INITIALIZATION) ’ #keMAINOORO
s g A e e s e o ook e e ok e e ook Rk e ke e e o R Aok ok ek R R ko ok ko ok ok ek ok ok ok h ke XA RMAIND Q4L Q
EXTERNAL DERFUN,DEROUT MAINQOSO
DOYBLE PRECISION ETAL(L10),ETA2(10)  HyOLDTyGoTVToONEZERDNCH2U, MAINQO&OQ

# TEND, TMIN, TPRT,PT,EL,DELI MAINDO70
COMMON/COML/ETALETA2,,HyDLDT 4Gy TV TyONEy ZERCyCH2Oy TEND,y TMIN,TPR T, MAINOO8O

i " PILELSDELL, MAINNOQO

* NeMCOUNT ¢NCOUNT y NPRNT ¢ NSTEPy ISTEP s I START, MAINOLIOO

* NMLyNP1,NP2 MAINOLL1O
DOUBLE PRECISICN TX.Y{36),DERV{36),A124), MATINO120

C ’ MAINO130
[# THE ABOVE SPECIFICATION CARDS ARE COMMOM ’ MATNO140
[ TO - *MAIN' , *DERQUT® , & 'DERFUN? MATNO 150
C THE FOLLOWING SPECIFICATINNS ARE PARTICULAR MAINOLAD
c TG 'MAINY MAINOLTO
C MAINO180O
® AUX(164936) ¢ PRUT(5) y ASUM,RSUM,PINSQ, MAINOLS0

* HF G RMNWeCPyQOy THERMK 4 TR4TByELL MAINO200O

* DCLyDLMNyERMXNCOS,DSIN MAIND 210

1000 FORMAT({I3) MAINO220
1001 FORMAT{D16.8) MAINO27D

2006  FORMAT{ 0] dokok kool kot dok ook e ook ool 2o ko gk S ok etk ok kb dokok Rk kok Bk kkMATNO 240
ot e o ot ot Ak o o6 ateok ko ol e ool o g e ot ol ool R R ol R R e ok R R R R A kR ok ook Kk Rk RMA TNO 250
ok ) ) MAINO 260
2006 FORMAT (¢ dtoed bk ool okt oot oo o oot o o e sk et 0o ok 0 okl 8 o R XX MA TN 270
oo e e 2 o oo 40 ok ool oo 0 ok e o o X0 e ol 3 ol ok o ol oo e ol ook e o o ok ok R Kok R MA TN Q2R 0
L2 T XN MATND290
2010 FORMAT(Y - ddos dedok e de el de o oo do o ookt e ok s dol o ke dob dok ek otk kb2 %X MA INO 300
Bk DATA wkfkokkdkdekdodkadki ok ook ik ki x b kkdor ik ek deok Au ek ke ek akx v EMAINO3]1O

FhEkEE) MAINO320
2026 FORMAT({' HFG =%4.E13.6," POW =',E13.6," CP =',£13,6, MAINO330
* /' TR =',E13,6,! T8 =9,£13,64" G =0 4F13.6, MAINO340
* o Q0 =',E13.6," EL  =',E1346y'THERMK =1,E13.6 MAINO3S50
® ‘ H =1,E13.6," TV =',E13.6) MAINO360
2040 FORMAT(* TEND=',E13.6,°* DEL =*4yE13.64" DELI="+E13.6, MAINO3T70
x - ' FRMX=*,E13.6,' DLMN=?,E13,6," TMIN=*,E13.6} MAINO380
2050 FORMAT(® *,4(*ETAL(*,12,'1=",F11l.5,' ")} MAINO390
2051 FORMAT(' L4 ('ETA2(*y12,*)="4E11.5y' *)) MATNO4CO
2070 FDRMATU? N = $,13,5X,'NE = ", I13,5X+"MCOUNT = *,13,5X, "NPRNT = ¢, MAINO4IO
* 13,5X 'NSTEP = ?",]3,5X, 'ISTART = 1,13) MAING420
2222 FORMAT{7IS) MAINO&420
4000 FORMATI11H S.5. FOR A) MAINQ 44O
4444 FORMAT(4E20.6) MAINO450
9000 FORMAT(' ERRQOR = 11 **¥¥ DEL = *,E15.8) MAIND4S0
9001 FORMAT(* ERRQOR = 12 *%&*x DEL = ',E15.8) MAIND4TO
9002 FORMAT(* ERROR = 13 %%k DEL = *3E15.8,5X,'DLMX = "4E15.8, MAINO4BO
* SX9'DLMN = *,E15.8) MAINO4Q0
9010 FORMAT (% #*x&xx ENTIRE TIME INTERVAL EXECUTED TEND = ¢, MAINNS00
* D16ebyt kkxx [HLF = 9,14, x%%x PRMT(S) = *,D16.6y ' %%%x?) MAINOS10
9020 FORMAT(*Ox¥#%x% NPRNT [S BEYOND CAPABILITY OF PLOTIT #%&x%x¢) MAINGS520
9030 FNRMAT('0 *%&%x JSTART =',13}) MAINOS530
9701 FORMAT('0',6('A',12,"' =',D014.6,2X)) MAINOS40
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0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
00R5
0086
0087
oose
0089
0090
0091l
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104

0105

0106
0107
0108
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9702 FORMAT(*'O MAIN '/6(* (*,12,4') = *4D12.6)) MAINOSS50
9703 FORMAT{*0V,6(*APY,12," =?'4D14.6,41X)) MAINOS60
9704 FORMAY('0',6('T*,124? =7,D14.642X})) MAINOS70
9705 FORMAT('O*,6(*TP*,12,% =*,D14464+1X)) MAINOS580
9706 FORMAT('0 DLDY ='4D16.6) MAINO590
9708 FORMAT('1l MAIN LEVEL 100') MAING600O
DATA NDFUNMDFUN/0,0/ MAINOG610
IF(NDFUNJEQ.O) WRITE{649708) MAINOG20

NDFUN = 1 MAINO630
READ(541000) N,MCOUNT, NPRNT;NSTEP:ISTART MAINO 64O
READ{5,1001) HFG+ROWs CPeQOEL+ELLy THERMK,TO, TBy TEND,DEL . DELIy MAINOS6SO

* ERMX o DLMNy TMIN MAINO660
READ{5,1001) (ETALUI}»I=1y4)o(ETA2{I) 1=1,4) MAINOSTO

NE =N + 2 MAINO68O
NP1l=N+1 MAINO690
NP2=N+2 MAINO 700

NMl = N - 1 MAINOT1O

ZERD = 0.000+00 MAINO720

ONE = 1.000+00 MAINOT730

TX = (QO*ELL)/THERMK MAINOT740

C THE HEAT FLUX PARAMETER *G* IS INCLUDED MAING 750
C FOR FUTURE REFERENCE. THIS STUDY MAINOT60
C REQUIRES A *G*' OF UNITY, MAINOTTO
6 = TX/TR MAINOT7RO

H ={HFG*ROW) / (TX%(CP) MAINO 790

v = ({TB/Y0} - ONE) /G MATINOS0O

P1 = 3,1415926536D0 MAINOBIO

OLDY = ZERO MAINOB20

PRMT (5) = ZERO MAINO830
NCOUNT = 0 MAINOB4O

ISTEP = O MAINO8SO

2 WRITE(642006) MAINOB60
WRITE(6,2010} MAINOB70
WRITE(6,2006) MAINO88O
WRITE(642020) HFGoROWsCPy QO¢EL ¢ THERMK TRy TBsGoH,TV MAINO890
WRITE(6,2070) N,NE, MCOUNT ,NPRNT,NSTEP,ISTART MAINOS00
WRITE(6,42040) TENDsDELDELTERMX,DLMN,TMIN MAINO910
WRITE{(6,2050) (I,ETAL{I),I=1,4) MAINO920
WRITE(6,2051) (I1+ETA2(I)s1=1,4} MAINO930
WRITE(652006) MAINO940
IF{MCOUNT.EQ.0)GO TO 8 MAINO950
WRITE(742222) NyNE,MCOUNT,NPRNT,NSTEP,ISTART, IPT MAINO960
WRITE(T44444) HFG,ROW,CPyQOyELy THERMK 3 TRy TByELS +GoH, TV, TEND, MAING9TO

* DEL,ERMX,DLMN, TMIN,DELI MAINO980

C ok ek e ool deofok ke s ook ok ook de oo o g kiok Sk ek e ek oo X X 4 Qe Aok *x k5 xuxMAINOIGQ
CHExx CALCULATION OF INITIAL #x%MAIN10OO
[ TEMPERATURE COEFFICIENTS *%%¥MAIN1010
C*********#******##********##**##*#*tt***#******##*t****(‘***#t#*#***##*#MA{Nlozo
8 IF{MDFUN.NE.O} GO TO 268 MAIN10O30
MDFUN = 1 MA IN1040

T = ZERO MAIN1050

DO 9 I=1,4NP1 MAIN1060

A(l) = ZERQ, MAIN1OTO

9 CONTINUE MAIN1080
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0109
0110
OoL11
o112
0113
Oll4
0115
olle
0117
o118
0119
0120
0121
0122
0123
0124
0125
0126
o127
0128
0129
0130
0131
0132
0133
0134
01135
0136
0137
0138
0139
0140
0141
0l42
0143
Ol4ad
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
ni56
0157
0158
0159
0160
0161
0l62
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10 DO 11 J=1,NP1 MAIN1 090
Y(J) = AtY) MAIN1100

11  CONTINUE MAINL1110
Y{NP2) = EL MAIN1120
DERY(NP2) = DLDT MAIN1130

X =T MAINL140

CALL DEROUT{TX Y sDERY IHLF4NE,PRMT) MAIN1 150
IF(PRMT(5).NE.0,O0DO) GO TO 20 MAINL1AO

T =71 + DELIL ' MAINL170

All) =G * T MAIN1180

DO 12 K=24NPL MAIN11G0

NN = K= MAIN1 200

PINSQ = (PI®NN)#**2 MAIN1210

ALK) =(((2.,000%((=0ONE)®R&NNI*G)/PINSQ)*(ONE~({ONE/DEXP(PINSQ%T})}) MAIN1220

12 CONYINUE MAIN1230
GO TO 10 MATIN]1240

€ % e e { kAt e o el o ok oKk o ok o o OR SOR AOROR Ok R OK R HORSOR R R Rk Rk Kk R R kR Rk kR MATN] 250
Chx START OF INTEGRATION *kEMATNL 260
€ R e dok ok e 90 et e s ool ol ool o o e e o ok £k A e o ool ek Nk R R ok kR R R R R MATNL 270
20 CONTINUE MAIN1280
ISTART = 2, MAIN1290
NCOUNT = 11 MATN1300

DO 21 I=1,NP1 MAIN1310

YUI) = At1) MAIN1320

DERY (1} = ONE/NP2 , MATIN]1 330

21 CONTINUE MAIN1340
DERY{(NP2) = ONE/NP2 MAIN1350
Y{NP2) = EL MAINL1360
PRMT(1) = T MATN1370

PRMT (2) = TEND MAIN1380

PRMT (3) = DEL . MAIN1390

PRMT (4) = ERMX MAIN1400
PRMT{5) = ZERD MAIN1410

TPRT = ZERO : MAIN1420

G0 10 2 ) MAIN1430

268 CALL DHPCG(PRMT,YsDERY,NEs IHLFyDERFUN,DERCUT,AUX} MAIN1440
C*#****##***##***#t##*###**#*#***##*******$#t#**#**#***#***#***#****##**MAINI650
C %tk RETURN FROM SDHPCG® *XxExMAINL1460
Cke THLF =? * *XXMAIN14TO
C kel 11 - MORE THAN 10 BISECTIONS OF THE INITIAL *%x&MAIN1 480
Coesex INTERVAL ARE NECESSARY FOR SATISFACTORY =EEMAIN1 490
Corxx ACCURACY. *%EMAINL1500
C ek 12 - INITIAL INCREMENT OF THE INDEPENDENT *%xXMAINLS10
Cokdek VARIABLE (DEL) = O. *EXMAINLS20
C ek 13 - SIGN OF (DEL) NOT EQUAL TO THE SIGN OF *%%XMAIN1S30
Cxkx UPPER BOUND MINUS LOWER BOUND (DLMX-DLMN) *%*MAIN1540
[ 224 *%EMAIN1S550
C Rk OTHERWISE —- THE ENTIRE INTEGRATION INTERVAL MUST HAVE *%%xMAIN1560
(233 WORKED THROUGH. #x&MAIN1570

C ok e e ok ok e el ofe oo e Qe oo % ole g e ook ok o el ol oo dokok ek ok koK koo Rk g ok R k& Rk HEMAINY 580

269

IF{IHLF.NE.11) GO YO 27

WRITE(6,9000) DEL

WRITE(6,9702) (1,Y(1)yI=1,NE)4(14DERY{E),I=1,NE)
sToP

MAIN1590
MAIN1600
MAINL610
MAINLAK20
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0163
0164
0165
0166
0167
0168
0169
0170
o171
0172
0173
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27

271

28

IF(IHLF.NE.L12) GO TO 271
WRITE(6,9001) DEL

sTop

IF(IHLF,NE.13) GO TO 28
WRITE(6,9002) DEL4DLMX,DLMN
stTop

WRITE(6,9010) TEND, IHLFPRMT (S}
STOP

END

MAIN1630
MAIN1 640
MAIN1650
MAIN1660
MAIN1670
MAIN1680
MAIN1690
MAIN1700
MAIN1710
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CARD
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
o018
0019
0020
0021
002?
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
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AN QUTPUT VALUE, WHICH SPECIFIES THE NUMBER OF

c DHCG
c .I....l.l.l"..I.I..I.....l..'........lll...ll.....I..C..I..CUICC.DHCG
¢ DHCG
c SUBROUT INE DHPCG DHCG
¢ ‘ DHCG
c PURPOSE DHCG
c TO SOLVE A SYSTEM OF FIRST ORDER ORDINARY GENERAL DHCG
c DIEFERENTIAL EQUATIONS WITH GIVEN INITIAL VALUES. DHCG
c : DHCG
c USAGE v DHCG
C CALL DHPCG {PRMTyY,DERY,NDIM, IHLF4FCT,QUTP,AUX) DHCG
c PARAMETERS FCT AND OUTP REQUIRE AN EXTERNAL STATEMENT, DHCG
C OHCG
c DESCRIPTION OF PARAMETERS DHCG
¢ PRMT = DOUBLE PRECISION INPUT AND OUTPUT VECTOR WITH DHCG
c DIMENSION GREATER THAN OR EQUAL TO 5, WHICH DHCG
¢ SPECIFIES THE PARAMETERS OF THE INTERVAL AND OF DHCG
¢ ACCURACY AND WHICH SERVES FOR COMMUNICATION BETWEENDHCG
c QUTPUT SUBROUTINE (FURNISHED BY THE USER) AND DHCG
c SUBROUTINE DHPCG. EXCEPT PRMT(5) THE COMPONENTS DHCG
c ARE NOT DESTROYED BY SUBROUTINE DHPCG AND THEY ARE DHCG
c PRMT (1)~ LOWER BOUND OF THE INTERVAL (INPUT), NHCG
¢ PRMT(2)- UPPER BOUND OF THE INTERVAL {INPUTI, DHCG
c PRMT{3)- INITIAL INCREMENT OF THE INDEPENDENT VARIABLE DHCG
c (INPUT), DHCG
c PRMT (4)- UPPER ERROR BOUND (INPUT). IF ABSOLUTE ERROR 1S DHCG
c GREATER THAN PRMT(4), INCREMENT GETS HALVED. DHCG
c TF INCREMENT IS LESS THAN PRMT(3) AND ABSOLUTE DHCG
c ERROR LESS THAN PRMT(4)/50, INCREMENT GETS DOUBLED.OHCG
c THE USER MAY CHANGE PRMT{4) BY MEANS OF HIS DHCG
¢ OUTPUT SURROUTINE. DHCG
¢ PRMT(5)- NO INPUT PARAMETER. SUBROUTINE DHPCG INITIALIZES  DHCG
c PRMT{5)=0. IF THE USER WANTS TO TERMINATE DHCG
¢ SUBROUTINE DHPCG AT ANY OUTPUT POINT, HE HAS TO OHCG
c CHANGE PRMT{5) TO NON-ZERO BY MEANS OF SUBROUTINE DHCG
c QUTP, FURTHER COMPONENTS OF VECTOR PRMT ARE DHCG
¢ FEASIBLE IF ITS DIMENSION IS DEF INED GREATER DHCG
c THAN 5. HOWEVER SUBROUTINE DHPCG DOES NOT REQUIRE DHCG
c AND CHANGE THEM. NEVERTHELESS THEY MAY BE USEFUL  DHCG
c FOR HANDING RESULT VALUES TO THE MAIN PROGRAM OMCG
¢ {CALLING DHPCG) WHICH ARE DBTAINED BY SPECIAL DHCG
C MANTPULATIONS WITH CUTPUT DATA IN SUBROUTINE 0OUTP. DHCG
c Y - DOUBLE PRECISION INPUT VECTOR OF INITIAL VALUES DHCG
C {DESTROYED). LATER Y IS THE RESULTING VECTOR OF DHCG
C DEPENDENT VARIABLES COMPUTED AT INTERMEDIATE DHCG
o POINTS X DHCG
c DERY - DOUBLE PRECISION INPUT VECTOR OF ERROR WEIGHTS DHCG
C {DESTROYED), THE SUM OF ITS COMPONENTS MUST BE DHCG
C EQUAL TO 1. LATER DERY IS THE VECTOR OF DHCG
C NERIVATIVES, WHICH BELONG TO FUNCTION. VALUES Y AT DHCG
C INTERMEDIATE POINTS X. DHCG
c NDIM - AN INPUT VALUE, WHICH SPECIFIES THE NUMBER OF DHCG
c EQUATIONS IN THE SYSTEM. DHCG
C IHLF - DHCG

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240

250

260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
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0055
0056
0057
0058

0059

0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
00RO
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
o101
0102
0103
0104
0105
0106
0107
0l08
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c BISECTIONS OF THE INITIAL INCREMENT. IF IHLF GETS DHCG 550
c GREATER THAN 10, SUBROUTINE OHPCG RETURNS WITH DHCG 560
c ERROR MESSAGE [HLF=11 INTO MAIN PROGRAM, DHCG 570
C ERROR MESSAGE IHLF=12 OR IHLF=13 APPEARS IN CASE DHCG 580
C PRMT (3120 OR IN CASE SIGN(PRMT(3))  NE.SIGN(PRMY(2)~DHCG 590
c PRMTI(1)) RESPECTIVELY. DHCG 600
c FCT - THE NAME GF AN EXTERNAL SUBROUTINE USED. IT DHCG 610
C COMPUTES THE RIGHT HAND SIDES DERY OF THE SYSTEM DHCG 620
c TO GIVEN VALUES OF X AND Y, ITS PARAMETER LIST DHCG 630
C MUST BE XsY,DERY. THE SUBROUTINE SHOULD NOT DHCG 640
c DESTROY X AND Y. OHCG 650
c ouTe = THE NAME OF AN EXTERNAL OUTPUT SUBROUTINE USED. DHCG 660
4 ITS PARAMETER LIST MUST BE XyY4DERY,IHLFyNDIMyPRMT.DHCG 670
C NONE 0)F THESE PARAMETERS (EXCEPT, IF NECESSARY, DHCG 680
C PRMT(4)yPRMT(5)yeea) SHOULD BE CHANGED 8Y DHCG 690
[ SUBROUTINE QUTP. [F PRMT{5) IS CHANGED TO NON-ZERO,yDHCG 700
C SUBROUTINE OHPCG IS TERMINATED, BHCG 710
C AUX = DOUBLE PRECISION AUXILIARY STORAGE ARRAY WITH 16 DHCG 720
C ROWS AND NDIM COLUMNS. DHCG 730
C . . DHCG 740
C REMARKS DHCG 750
C THE PROCEDURE TERMINATES AND RETURNS TO CALLING PROGRAM, IF DHCG 760
c (1) MORE THAN 10 BISECTIONS OF THE INITIAL INCREMENT ARE DHCG 770
C NECESSARY TO GET SATISFACTORY ACCURACY (ERROR MESSAGE DHCG 780
C IHLF=11}, DHCG 790
c (2) INITIAL INCREMENT IS EQUAL TO O OR HAS WRONG SIGN DHCG 800
c (ERROR MESSAGES IHLF=12 OR IHLF=13), OHCG 810
C (3) THE WHOLE INTEGRATION INTERVAL IS WORKED THROUGH, DHCG 820
C (4) SUBROUTINE OUTP HAS CHANGED PRMT(S5) TO NON-ZERO. DHCG 830
c OHCG 840
[ SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED DHCG 850
C THE EXTERNAL SUBROUTINES FCT(X,Y,DERY) AND DHCG 860
C DUTP(X+YDERY,IHLF¢NDIM,PRMT} MUST BE FURNISHED BY THE USER.DHCG 870
c DHCG 880
C METHOD DHCG 890
c EVALUATION IS DONE BY MEANS OF HAMMING®'S MODIFIED PREDICTOR~-DHCG 9N0
C CORRECTOR METHOD., IT IS A FOURTH ORDER METHOD, USING 4 DHCG 910
c PRECEEDING POINTYS FOR COMPUTATION OF A NEW VECTOR Y OF THE DHCG 920
c DEPENDENT VARIABLES. DHCG 930
C FOURTH ORDER RUNGE-KUTTA METHOD SUGGESTED BY RALSTON IS DHCG 940
C USED FOR ADJUSTMENT OF THE INITIAL INCREMENT AND FOR DHCG 950
c COMPUTATION OF STARTING VALUES. DHCG 960
C SUBROUTINE DHPCG AUTOMATICALLY ADJUSTS THE INCREMENT DURING DHCG 970
c THE WHOLE COMPUTATION BY HALVING OR DOUBLING. DHCG 980
[ TO GET FULL FLEXIBILITY IN QUTPUT, AN OUTPUT SUBROUTINE DHCG 990
c MUST BE CODED BY THE USER. DHCG1 000
c FOR REFERENCE, SEE DHCG1010
C (1) RALSTON/WILF, MATHEMATICAL METHODS FOR DIGITAL DHCG1020
[+ COMPUTERSy WILEY, NEW YORK/LONDON, 1960, PP.95-109,. DHCG1030
c (2) RALSTON, RUNGE-KUTTA METHODS WITH MINIMUM ERROR BOUNDS,DHCG1040
C MTAC, VOL.16, £SS.80 (1962), PP.431-437. DHCG1050
C ' DHCG1060
c sesscesssssssssssnssatssscasssncssrasonesssessssssccnsesscssanece s DHCGLOTO
o ’ DHCG1 080
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0113
0114
0115
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0118
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0120
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0122
0123
0124
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0127
0128
0129
0130
0131
0132
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0134
0135
0136
0137
0138
01349
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0142
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0144
0145
0146
0147
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0150
0151
0152
0153
0154
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0156
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0159
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C
Cc
1
[+
c
2
3
[+
c
4
Cc
C
5
6
7
8
C
C
Cc
9
10
C
[of
11
12
C
13

SUBROUTINE DHPCG(PRMT,Y 4DERY yNDIMy IHLF,FCT,0UTP,AUX}

OIMENSION PRMT(1),Y(1),DERY{1),AUX(16,41)

DOUBLE PRECISION Y, DERY AUXyPRMT,XyHyZ,DELT,DABS

N=1

THLF=0

X=PRMT{1)

H=PRMT (3}

PRMT (5)=0,D0

N0 1 I=1,NDIM
AUX{16,1)=0.D0

AUX( 15, I 1=DERY(I)
AUX(Ll,1)=Y{1)
IF{HR(PRMT (2)=X))3,244

ERROR RETURNS
IHLF=12
GOTD 4
IHLF=13

COMPUTATION OF DERY FOR STARTING VALUES
CALL FCT(XsY.DERY)

RECORDING OF STARTING VALUES

CALL OUTP({X,Y,DERY,IHLF4sNDIM,PRMT)
TF(PRMT(5) 164546 .
IF{IHLF)7,7,6

RETURN

DO 8 I=1,NDIM

AUX(8,1)=DERY(I)

COMPUTATION OF AUX{2,1I)
ISW=1
GOTD 100

X=X+H
DO 10 I=1,NDIM
AUX(2,1)=Y(1)

INCREMENT H IS TESTED BY MEANS OF BISECTICN

THLF=THLF+1
X=X-H

DO 12 I=1,NDIM
AUX(4,1)=AUX(2,1)
H=45D0%*H

N=1

ISW=2

GOTO 100

X=X+H

CALL FCY(X,Y,DERY)
N=2

DO 14 I=1,NDIM

DHCG10%0
DHCG1100
DHCGIl10
DHCG1120
DHCG1130
DHCG1140
DHCG1150
OHCG1160
DHCG1170
DHCG11A0
DHCG1190
DHCG1200
DHCG1210
DHCG1220
NHCG1230
DHCG1 240
DHCG1250
DHCG1260
DHCGL270
DHCG1280
DHCG1290
DHCG1300
DHCG1310
DHCG1320
DHCG1330
DHCG1340
DHCG1350
DHCG1360
DHCG1370
DHCG1380
DHCG11390
DHCG1400
DHCG1410
DHCGLl420
DHCGL 430
DHCG1440
DHCGL 450
DHCG1460
OHCG1470
DHCG1480
DHCG1490
DHCG1500

OHCG1510

DHCG1520
DHCG1530
DHCG1540
DHCG1550
DHCG1560
DHCGLS570
DHCG1580
DHCG1590
DHCG1600
DHCG1610
DHCG1620

89



CARD
0163
0164
0165
0166
0167
0168
0169
0170
o171
0172
0173
0174
0175"
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
o186
0187
0138
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
06202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
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AUX(2,1)=YLT)

14 AUX{9I)=DERY(I)
ISW=3
GOTO 100

o0

COMPUTATION OF TEST VALUE DELT

15 DELT=0.D0
DO 16 I=1,NDIM

16 DELY=DELT+AUX(1S5,T1)*DABS{Y(I)=AUX(4,1))
DELT=,06666666666666666TDOXDELT
IF(DELT~PRMT(4)119,19,17

17 IF(IHLF-10111,18,18

C NO SATISFACTORY ACCURACY AFTER 10 BISECTIONS. ERROR MESSAGE.
18 IHLF=11
X=X+H
GOTH 4

Cc THERE IS SATISFACTORY ACCURACY AFTER LESS THAN 11 BISECTIONS.
19 X=X+H
CALL FCT(X,Y4DERY)
D0 20 I=1,NDIM
AUX{3,1)=Y(I}
20 AUX{10,1)=DERY{I)
N=3
ISW=4
GNTO 100

21 N=1}

X=X+H

CALL FCTU{X,Y,DERY)}

X=PRMT (1)

DO 22 I=1,NDIM

AUX(11,1)=DERY(I) '
220Y (1) =AUX{1 1) +H%{ ,375D0%AUX(8,[)+.T91666666666666TDO*AUX(9I, 1)

1-,20833333333333333D0%AUX(10,1)+.04166666666666666TDO*DERYLI))
23 X=X+H

N=N+1

CAtL FCT(X,Y,DERY}

CALL DUTP{XyY+DERY,IHLFsNDIM,PRMT)

IF(PRMT(5)16424,6
24 1F{N=-4)25.,200,200
25 DO 26 I=1,NDIM

AUX(N,I¥=Y(])
26 AUXIN+T, 11=DERY(I)

IF(N-3127,29,200

[

27 DO 28 I=1,NDIM

DELT=AUX{9,1)+AUX{(9,1)

DELT=DELT+DELT
28 Y(I)=AUX(1,1)+4.33333333333333333D0%H*(AUX(8,11+DELT+AUX(10,1))

G070 23

9

29 DO 30 I=1,NDIM

DHCG1630
DHCG1640
DHCG1650
DHCG1660
DHCG1670
DHCGl680
DHCG1690
DHCG1 700
DHCG1710
DHCG1720
OHCG1730
DHCG1740
DHCG1 750
DHCG1760
DHCGL1770
DHCG1780
DHCG1 790
DHCG1800
DHCG1810
DHCG1820
OHCG1830
DHCG1840
DHCG1850
DHCG1 860
OHCG1870
DHCG1880
DHCG1890
DHCG1900
DHCG1910
DHCG1920
DHCG1930
DHCG1940
DHCG1950
OHCGL960
DHCG1970
DHCG1980
DHCG1 990
DHCG2000
DHCG2010
DHCG2020
DHCG2030
DHCG2040
DHCG2050
DHCG2060
DHCG2070D
DHCG2080
DHCG2090
DHCG2100
DHCG2110
DHCG2120
DHCG2130
DHCG2140
DHCG2150
DHCG2160

50
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0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
02556
0257
0258
0259
0260
0261
0262
0263
D264
0265
0266
0267
0268
0269
0270
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30

OO0

100

101

102

103

DELT=AUX{9,1)+AUX{10,1)

DELT=DELT+DELT+DELT

YD) =AUX(L 1) +.375DO%H*{AUX{8, 1) +DELT+AUX(11,1))
GOTD 23

THE FOLLOWING PART OF SUBROUTINE DHPCG COMPUTES BY MEANS OF
RUNGE~KUTTA METHOD STARTING VALUES FOR THE NOT SELF~STARTING
PREDICTOR-CORRECTOR METHOD.

DO 101 I=1,NDIM

ZeHRAUXIN+T, 1)

AUXUS,1)=2

Y{I)=AUX(Ny1)+,4D0%2

Z IS AN AUXILIARY STORAGE LOCATION

L=X+,4D0%H

CALL FCT(Z,Y,DERY)

DO 102 [=1,NDIM

ZxH*DERY (1)

AUX (6412

Y1) =AUX{IN, 1) #.,29697760924775360D0%AUX(5,1)+.,15875964497103583D0%Z

Z=X+.45573725421878943D0%H

CALL FCT{Z,Y,DERY)

D0 103 I=1,NDIM

Z=H*DERY(I)

AUX(T,1)=2
Y(I)=AUX{N,1)+,21810038822592047D0%AUX(5,1)-3,0509651486929308D0*

1AUX(6,1)43,8328647604670103D00%2

Z=X+H (
CALL FCT(Z+Y.DERY)
D0 104 I=1,NDIM

1040Y (1) =AUX(N,[1+.1747602822626903TDO*AUX{S51}~.5514806628787323400%

OO0

200
201

an

202

203

o0

204

LAUX{6,1)%1.,205535599396523500%AUX(7,1)+.17118478121951903D0%
2H*DERY(1)

GOTD(9,13,415,21),ISW
POSSIBLE BREAK-POINT FOR LINKAGE

STARTING VALUES ARE COMPUTED.

NOW START HAMMINGS MODIFIED PREDICTOR-CORRECTOR METHOD.
ISTEP=3

IF(N-8)204,202,204

N=8 CAUSES THE ROWS OF AUX TO CHANGE THEIR STORAGE LOCATIONS
DO 203 N=2,7

DO 203 [=1,NOIM

AUX{N=1,I)=AUX{N,I)

AUX{N+6y 1)=AUX(N+T,4 1)

N=T

N LESS THAN 8 CAUSES N¢1 TO GET N
N=N+1

DHCG2170
DHCG2180
DHCG2190
DHCG2200
DHCG2210
DHCG2220
DHCG2230
DHCG2240
DHCG2250
DHCG2260
DHCG2270
DHCG2280
DHC 62290
DHCG2300
OHCG2310
DHC G2 320
DHCG2330
DHCG2340
OHCG2350
DHCG2360
DHCG2370
DHCG2380
DHCG2390
DHCG2400
DHCG2410
DHCG2420
DHCG2430
DHCG2440
DHCG2450
DHCG2 460
DHCG2470
DHCG2480
DHCG2490
DHCG2500
DHCG2510
DHCG2520
DHCG2530
DHCG2540
DHCG2550
DHCG2560
DHCG2570
DHCG2580
DHCG2590
DHCG2600
DHCG2610
DHCG2620
DHCG2630
DHCG2640
DHCG2650
DHCG2660
DHCG2670
DHCG2680
DHCG2690
DHCG2700



CARD
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323

0324
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C

[aXeXse]

aRel

OO0

OO0

205
206

ODELT=AUX(N-4,1)+1,3333333333333333D0%Hk(AUX(N+6¢])+AUX(N+6,1)~

207

208

209

210

211
212
213
214
215

216
217
218
219

220

COMPUTATION OF NEXT VECTOR Y
DO 205 I=1,NDIM
AUX{N=-1,1)=Y{I)

AUX{N+6, LE=DERY(I)

X=X+H

ISTEP=ISTEP+]

DO 207 I=1,NDIM

LAUXIN+Sy 1) +AUXIN+G, T) +AUX (N+4,1))
Y{I)=DELT-,9256198347107438D0%AUX(16,1)
AUX{16,1)=DELT

PREDICTOR IS NOW GENERATED IN ROW 16 OF AUX, MODIFIED PREDICTOR

IS GENERATED IN Y. DELT MEANS AN AUXILIARY STORAGE.

CALL FCT(X,Y+DERY)
DERIVATIVE OF MODIFIED PREDICTOR IS GENERATED IN DERY

DO 208 I=1,NDIM

DHCG2710
DHCG2720
DHCG2730
DHCG2740
DHCG2750
DHCG2760
DHCG2770
DHCG2780
DHCG2790
DHCG2800
DHCG2810
DHCG2820
DHCG2830
DHCG2840
DHCG2850
DHCG2860
DHCG2870
DHCG2880

ODELT=,125D0% (9, DO*AUX(N=14 1) ~AUX(N-3,1)+3.DO*H*{DERY (I} +AUX(N+6, 1)1DHCG2890

1+AUX(N+6 9 II=AUX(N+S,1)))
AUX {16, 1)=AUX{16,1)-DELT
Y(I)=DELT+,07438016528925620D0*%AUX(16,1)

TEST WHETHER H MUST BE HALVED OR DOUBLED
DELT=0.D0

DO 209 I=1,NDIM
DELT=DELT+AUX(15,1)*DABS(AUX{(1641))}
IF(DELT~PRMT(4))1210,222,222

H MUST NOT BE HALVED. THAT MEANS Y(I) ARE GOOD.
CALL FCT{X,Y,DERY}

CALL OUTPIXsYoDERY,IHLF,NDIM,PRMT)
IF(PRMTI5))212,211,212

IF(IHLF~-11)213,212,212

RETURN

IF(HR(X=PRMT(2)))214,212,212
IF(DABS{X-PRMT(2))-.100%DABS({H))212+215,215
IF{DELT=-.02D0%PRMT(4}))216+216,201

H COULD BE DOUBLED IF ALL NECESSARY PRECEEDING VALUES ARE
AVATLABLE

IF(IHLF)201,201,217
IF(N-T7)201,218,218
IF(ISTEP-4)201,219,219
IMOD=ISTEP/2
IF{1STEP-IMOD-IMDD) 20142204201
H=H+H -

THLF=THLF~1

ISTEP=0

DO 221 I=1,NDIM
AUX{N=1,T1)=AUX(N~2,1)}

AUX{N=2y 1)=AUX(N~&4,1)
AUXIN-3, 1) =AUX{N-6,1)

DHCG290Q0
DHCG2910
DHCG2920
DHCG2930
DHCG2940
DHCG2950
DHCG2960
DHCG2970
OHCG29R0
DHCG2990
DHCG3000
DHCG3010
DHCG3020
DHCG3030
DHCG3040
DiCG3050
DHCG3060
DHCG3070
DHCG3080
DHCG3090
DHCG3100
DHCG3110
DHCG3120
DHCG3130
DHCG3140
DHCG3150
DHCG3160
DHCG3170
DHCG3180
DHCG3190
DHCG3200
DHCG3210
DHCG3220
DHCG3230
DHCG3240
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CARD

0325 AUX{N®6 4 [ ) mAUX(N+5,1) DHCG3250
0326 AUX{N+5, 1) =AUXIN+3,1) ) DHCG3260
0327 AUX{N+4, 11=AUXIN+1,1) DHCG3270
0328 DELT=AUXIN®6 4 1) +AUXIN+5,1) OHCG3280
0329 DELT=DELT+DELT+DELT DHCG3290
0330 2210AUX(16,1)28.96296296296296300%(Y{1)=-AUX{N=3,1)) DHCG3300
0331 1-3,36111111111101111D0*H*(DERY(1)+DELTH+AUX(N+4,1)) DHCG3I310
0332 GOTD 201 DHCG3320
0333 ¢ DHCG2330
0334 C DHCG3340
0335 ¢ H MUST BE HALVED . DHCG3350
0336 222 THLF=IHLF+1 DHCG3360
0337 IF(IHLF=- 10'223’2239210 DHCG3370
0338 223 H=,5D0%H . DHCG3380
0339 ISTEP=0 OHCG31390
0340 DO 224 1=1,NDIM DHCG3400
0341 IY(11=,390625D0-2%(8,D1*AUX(N-1,1)+4135.00%AUX(N-2,1)+4.D1*AUX{N=3,1)DHCG3410
0342 1+AUX(N=4,1))=,11T1875D0% (AUX(N+641)=6,DO%AUX{N+5, 1) -AUX{(N+4+1))*H DHCG3420
0343 OAUX(N=4y 11=,390625D~2%(12.D0%AUX(N~1,1)+135,D0%AUX(N=2,1)+ DHCG3430
0344 11084 DOXAUXIN=3, 1) +AUX(N=4¢1))~.0234375D0%(AUX(N+6,1)+ DHCG3440
0345 218, DOXAUXIN4S5+1)~9,DO*AUX(N+4 4 1)) *H DHCG3450
0346 AUX{N=3y TV 2AUX(N=2,1} DHCG3460
0347 226 AUX(IN#&4, I)=AUX(N+5,1) DHCG3470
0348 XnX=H DHCG3480
0349 DELT=X={H+H) DHCG3490
0350 CALL FCT(ODELT,Y,DERY) DHCG3500
0351 00 225 I=1,NDIM DHCG3510
0352 AUXIN=2, )=y () DHCG3520
0353 AUXUIN+5, 1)=DERY(T) DHCG3 530
0354 225 Y(1)=AUX(N=4,1) OHCG3540
0355 DEL T=DEL T~ (H&H) DHCG3550
0356 CALL FCTU(DELT. Y,DERY) DHCG3560
0357 DO 226 I=1,NDIM DHCG3570
0358 DELT=AUX{N#S, 1) +AUX{(N+4,1) DHCG3580
0359 DELT=DELT+DELT4DELT DHCG3590
0360 OAUX(1641)=28.962962962962963D0% (AUX(N-1,1)-Y ()} DHCG3600
0361 1-3,3611111111111111D0%H*(AUX(N+6,1)+DELT+DERY(I}) DHCG3610
0362 226 AUXIN+3,1)1=DERY(I) DHCG3620
0363 GOTO 206 DHCG3630
0364 END DHCG3640
0365

0366
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0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
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0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
00438
0049
0050
0051
0052
0053
0054
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. SUBROUTINE DERFUN(TX,Y,DERY]} DFUNOO10
C et ko dok ol kR ok SO0k kok doksokokkok ok ok ok ok ok ok kR ook ok ek k kkkkkkk DFUNO 020
Chkx ROUTINE TO EVALUATE THE ***DFUNOO30
CHxx ERIVATIVE GF (NE) **xDFUNOO4O
Caxx TEMPERATURE COEFFICIENTS *%x&DFUNOOSO

Caok ok ook Xk Rk kR Rk ok ok ook ok ok ok ok Rk kR ko kg kKRR ok ok kK Rk k kX DFUNO 060
: DOUBLE PRECISION ETAL(10)+ETA2(10),+HsDLOT+GsTV,T,0ONE,2ZERO4CH20, DFUNOOTO

* TEND, TMINs TPRT,PI,ELDELT . DFUNOORQ
COMMON/COML/ETALSETA2,HsDLDT Gy TV, ToONEs ZERO+CH20,TEND, TMIN,TPRT, DFUNOOSO

* PI+EL,DELI, DFUNO100

* Ny MCOUNT yNCOUNT 9y NPRNT¢NSTEP+ ISTEP,ISTART, DFUNO110

* NM14NP1yNP2 DFUNO120
DOUBLE PRECISION TX,Y(36),DERY{(36),A(24), DFUNO130

C DFUNO140
C THE ABOVE SPECIFICATION CARDS ARE COMMON . DFUNO150
c TO - 'MAIN' , 'DEROUT* , & 'DERFUN' DFUNO160
c THE -FOLLOWING SPECIFICATIONS ARE PARTICULAR DFUNO170
C TO *DERFUN' DFUNO180
C DFUNQ130
* DA{24) 4DEXP, ASUM,BSUM,CSUM,DSUM, ABSUM, DFUNQ200

* CDSUM, COSJUPI,COSJUPL,SINJPL,DCOS,DSIN DFUNO210

6000 FORMAT(*' *,6(E12.6)}) DFUNO220
9708 FORMAT{'0 DERFUN LEVEL 100') DFUN0230
DATA NDFUN/O/ OFUN0240
IF(NDFUN.EQ.C) WRITE(6,49708} OFUNO250

NDFUN = 1 - DFUNO260

NE = N + 2 DFUN0270
CHEREBEERERERRERRRERRERER KRR RERR AR RREE KR RERREERBRER KR AR RERR SRRk kR 2 ek DFUNO 280
Coekk **¥DFUNO 285
Coamded gk Aok A koK Rk ok kAR R Rk kR R Rk ok Rk ok ok ok kR Rk kR ke kxR R R DFUNO 290
10 00 11 J=1,NP1 DFUNO300
A(J) = Y(J) DFUNO310

11 CONTINUE | DFUNO 320
EL = Y(NP2) DFUNO330
CHARRRKEREREIR R KR AR R RE R AR R R AR kR Rk ek kR iRk Rk ok ok kR R Rk k5 DFUNO 340
Cxix ] CALCULATION QF TEMPERATURE DERIVATIVE **%0OFUNO350
Calik ik kokdokk ok ko kR KRRk Rk ko kR Rk ok Rk ok R kX Rk kk Rk DFUNO 360
20 ASUM = ZERO DFUNO370
BSUM = ZERQ ‘ DFUNO380

CSUM = 7FROD DFUNO390

DSUM = ZERQ DFUNQ400

D0 21 J=1,N ) DFUNO410
C0s4Pl = DCOS(JI*PI) DFUNO420
COSJPL =" DCOS{J*PI*EL) DFUNQ430
SINJPL = DSIN{J*PI*EL) DFUNO440

ASUM = ASUM + (COSJPI*COSJPL) DFUNO450

BSUM = BSUM + (A(J+1I*((PI*j)**2}%CQASIPL} OFUNO460

CSuM = CSUM + (COSJPL**2) DFUNO4T0

DSuUM = DSUM + (A(J+1)I*(PI*JI*SINJIPL]} DFUNO480

21 CONTINUE DFUNO0490
ABSUM = (G¥((2.0DO*ASUM) +ONE) )~ BSUM DFUNOSCO
COSUM = (H*{ (2,000%CSUMI+ONE}) - DSUM DFUNOS10

DLDYT = ~{ABSUM/CDSUM) DFUNDS20

DA(1l) = (H*DLDT)+G DFUNDS30
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CARD .

0055 D0 22 J=14N DFUNOS540
0056 ASUM = DCOS{J*PI*EL }*H*DLDT DFUNOS50
0057 BSUM = {({(-ONE)**J1%G DFUNO560
0058 DA({J+1) = (2.0D0%{ASUMEBSUMI ) ~(((PI%J)*¥2)%A(J+]1)) DFUNOSTO
0059 22 CONTINUE DFUNOSBQ
0060 30 DO 31 J=1,NP1 DFUNO590
0061 DERY(J) = DA(J) DFUNO 60O
0062 31 CONTINUE DFUNO610
0063 DERY (NP2} = DLOT DFUNO 620
0064 RETURN DFUNO630

0065 END DFUNO640O
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0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
00238
0029
00130
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
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SUBROUTINE DERQUT{TX,YyDERYy IHLFy)NE,PRMT) 0ouUTO0010
C ook ik ok ok ok ks ko kb ok gk ok kR kR ook ok koK ok ok ok ok ok ok ok ke k& O0UT 0020
C %k QUTPUT ROUTINE **%D0UT0030

C ookt ok e e kAR AR R R ok R ook ok ok ko e ko koo ok ok ok dokok ok kR Kk ok R DOUT 0040
DDUBLE PRECISION ETAL(10),ETA2(10)yHsDLDT+GoTVyT,ONE,ZERQ,CH20, DOUT0050

TENDy TMIN, TPRT,PI+ELDELI DOUTO0060
COMMON/COMI/ETAL.ETAZ,H DLDT+GyTV,T,ONEy ZEROyCH20,TENDy TMIN,TPRT, DCUYO0070

* PI+EL,DELI, 00UT0080

* NyMCOUNT»NCOUNT,NPRNTyNSTEP+ ISTEP,ISTART, 00UT0090

* NML 4 NP1 ,NP2 pouTotoo
DOUBLE PRECISION TX, Y(%ﬁ)'DERY(36ioA(Z4)' DouUTO0110

C 0oUTO0120
C THE ABOVE SPECIFICATION CARDS ARE COMMON DOUTO0130
c TN - YMAIN' , 'DEROUT® , & *DERFUN? DOUTO 40
C THE FOLLOWING SPECIFICATIONS ARE PARTICULAR DOUTO150
C TO *DERQUT! DOUTO160
C DOUTO170
* AUX(16¢36)4PRMT(5) ¢ ELy ASUM,TCHK,DABS, oQuUTOo180

* X{10) 4y XX{10) 4 TEMP(10), TTEMP(10),COSPNX,DCOS DOUTO190

1010 FORMAT(* * TEMPERATURE PROFILE *',98X,%*) DOUTO0200
1020 FORMAT{® *¢,9(J1y*) Xx* F4.2,3X),124") Xx*yF4.292Xs %) 00UT0210
1111  FORMAT(* *1,10E12.4,"*') DouT0220
2010 FORMAT{' * COEFFICIENYS *',105X,"*"') DOoUT0230
2020 FORMAT((* #*,5(11,") A(*yTLls*) ="4E12.593X)},"%") 00UT0240
2777 FORMAT(*4¢,]121X,yt%") 0ouT0250
2888 FORMAT(® *¢,120X,**") DOUT0260
2999  FORMAT{ ? 0F /7 Ok dokhkok ik kkok dedokodokdor ok dok kdokdok kbdolok ok gk bk dok kkokokkkokx % ', DOUT0270
% Skk  STEP 0,14, rddkkpkerirkiorsdkkioiiokrirkiokkkokikkks, bDouTO0280

* € sokokk Rk ROk SRk kR ) DouUT0290

3000 FORMAT(® * TIME = *,E11.5,22X,'INTERFACE RATE = *,E11.5,16X, 00UT0300
* ! INTERFACE POSITION = *,E11.5,' *') DouyTOo310

5000 FORMAT('0 *%xx DESIRED # OF PRINTS ACCOMPLISHED NSTEP= ',[3) D0UT0320
5002 FORMAT(® ®kkkkkfokirkhsffidrdrdiiisdxirsnhkibhrnirhuionsxnbkrt*s,H0UT0330
* § d ook Aok R kO Kk Rk ok kR Rk kR Rk kR kR Rk ke kR i 4, DOUTO 340

* Pk dkoRk KRRk ) opUTO0350

6000 FORMAT(*0 *kkx VAPORIZATION LIMIT REACHED *x%v) DOUT0360
6666 FDRMAT(3({EL15.8,45X)/12,8X,E15.8) DOUTO370
9708 FORMAT(*0 DERQUT LEVEL 100*) DOUTO0380
DATA INTSPNDFUN,TCHK/0,0,0.100-02/ DOUT0390
IF{NDFUN.EQ.0) WRITE(6,9708) DOUTO0400

NDFUN = 1 DOUT0410

T =7X DOUT0420

DELT = T-TPRT pouTOo430
NCOUNT = NCOUNT + 1 DOUT0440

INTSP = INTSP + 1. DOUTO450
IF(ISTART.GE.2) GO TO 4 DCUTO0450

€tk ook fofokok fokolor ok K R kKR R oKk Aok Rk Kok kR Rk ok ok ok o kokok kR Rk kR DOUTO04T0
C*%x ITERATIVE CYCLE TO CALCULATE *x¥DOUT0480
CHaxxk . THE INERT SOLUTION UP TO *xDOUT 0490
Crux THE TEMPERATURE OF VAPORIZATION *%%DOUTOS00
CHxx AT THE FRONT SURFACE ##%DOUTOS10
C e ok Rk o ok ok ok Rk ok ok ko ook R Rk ok ok ok Rk Kk ke k 2k DOUT0520
ASUM = ZERO DOUT0530

X{10) = 0.100+01 DOUT0540
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0055 DO 3 I=1,NPL DOUTO550
0056 i1 = I-1 DOUT0560
0057 COSPNX = DCOS(PI*II*X(10)} DouTOS570
0058 ASUM = ASUM + ({Y(I)*COSPNX) DOUTOS80
0059 3  CONTINUE oouUT0590
0060 TEMP (10} = ASUM DOUT0600
0061 IFITEMP{10),LT.TV) GO TO 4 . DOUTO610
0062 IF(TEMP{10).EQ.TV) GO TO 6 DOUT0620
0063 IF(TEMP{10)«GToTV.ANDDABS(TV~TEMP{10)) LE.0.10D~05) GO TO 6 DOUT0630
0064 T = 7 « DELI O0UT0640
0065 DELT = DEL1/0.10D+02 DOUT 0650
0066 RETURN DOUT0660
0067 € koo kool 3k ok ok s fe 2ol e ek o sl o e e 40k ok oK o koK ROk 3ok ROk aOK RO oK ook ok kiR KRB R DOUT06TO
0068 6 PRMT(5) = 1,000 DOUT0680
0069 G0 10 5 NOUT0690
0070 4 IF(NCOUNT.GE NPRNT,OR,DELT.GE.TMIN} GO TO S DouTo0700
0071 RETURN DnyTo710
0072 5 TPRT =7 oouTo720
0073 NCOUNT = 0 DOUTO 730
0074 IF{EL.GE.0.99D0) NCOUNT = 11 pouUT0 740
0075 10 DO 11 J=1,NP1 DOUTO 750
0076 Af(J) = Y(J) poUT0 760
0077 11  CONTINUE DOUTO770
0078 EL = Y(NP2) nouTo780
0079 DLDT = DERY{NP2) oouT0790

0080 € &k kb ok S H R XK AR AKAKIRRRR AR BRAK kK ok & Sk fddkokk Rk xRk ok hk bk SR &SR %4 NOUTOB00
D0R] Chkkxtktkke kbt hhsd xkxhkkkdtkd CALCULATION DF #odsddokixrddhik ki d4xs46%DOUTO8L0
0082 Crsdfsixikdbikkikbkiekhikaksr TEMPERATURE (X) dsckktordkkbshsskdixnsrixsxDOUTOR20
0083 € kkdkkikg ki dhkki kit ki RRikhmhdnRdionkinkhi et kb kok okt sk 226 D0UT0A30

0084 20 DO 21 J=1,10 nauUTO840
0085 ASUM = ZERO DouTLA8s0
0086 X(J) = J/10.0 DOUTOB60
0087 DO 22 I=1,NP1 DouUY0870
0088 1T = I-1 oouTo880
0089 COSPNX = DCOS(PI*II¥X{J4)) poUTO0890
0090 ASUM = ASUM + (ACI)}*COSPNX) DoUT0900
0091 22 CONTINUE nouTg910
0092 TEMP(J) = ASUM DOUT0920
0093 21 CONTINUE DouUY0930
0094 30 DO 31 J=1,8 DOUT0940
0095 ASUM = ZERO nOUTO950
0096 XX{J) = ETAL{J)*EL DOUT0960
0097 IF(J6Ts4) XX(J) = (ETA2(JI-4)*(ONE-EL)) + EL DOUTO0970
0098 DO 32 TI=1,NP1 pouTOo980
0099 It = 1-1 DOUTO0990
0100 COSPNX = DCOS(PI*II*XX{J)) DouT1000
0101 ASUM = ASUM + (A(I)*COSPNX) bouTiolo
0102 32 CONTINUE DOUT1020
0103 TYEMP(J) = ASUM DOUT1030
0104 31 CONTINUE 00UT1040
0105 XX{(9y = ZERO DOUT1050
0106 XX(10) = ZEROD DOUT1060
0107 IF(MCOUNT.EQ.O0} GO TO 33 oouTl070

0108 WRITE(T16666) T,DLDTyEL,(14A(L1),I=14NPL) DOUT1080
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0109 33 WRITE(6,2999) INTSP DOUT1090
0110 WRITE(6,+3000) T,DLDT,EL pDOUT1100
o111 WRITEL6,5002) DouTlllO
0112 WRITE(6,2010) bouTil20
0113 WRITE(6,2020) (I+1,A¢1),1=1,NPL) DOUT1130
0l1lé WRITE(A,2777) DOUTL140
0115 WRITE(6,5002) DOUTI150
0l1s WRITE(6,1010) OOUT1160
0117 WRITE(641020) (14X(1}eI=1,10) DouTLL70
0118 WRITE(6,2888) nouT1180
0119 WRITE(6,2111) (TEMP(I),I=*1,10} DOUT1190
0120 WRITE(645002) nouT1200
o121 WRITE(6,1020) (I1+XX(1)s1=1,8) pouTl210
0122 WRITE(K,2777) DOUT1220
0123 WRITE(6,2A88) DOUT1I230
0124 WRITE(6, 21110 (TTEMPUL) 4I=148) DOUT1 240
0125 WRITE(642777) 00uUT1250
0126 WRITE(%,5002) NOUT1260
0127 IF(NSTEP.EQ.0) GD YO 34 pouTi270
0128 ISTEP = ISTEP '+ 1 DOUT1 280
0129 [FUISTEP.GE.NSTEP) GO TD 40 bouytT1L290
0130 34 IF(T.GE.TEND} GO TO 40 DOUT1 300
0131 IF{EL.LE.0.100-01) GO TO 50 nouUT1310
0132 RETURN ) 0OUT1320
0133 40 WRITE(6,5000) NSTEP DCUT1330
0134 STOP D0UT 1 340
0135 50 WRITE(646000) touT1350
0136 STOP ) D0OUT1360

0137 END nOouUT1370
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