
EXPLOITING BOTH SPATIAL AND TEMPORAL

LOCALITY IN PAGE REPLACEMENT

ALGORITHMS

By

XIANG HUI Lru

Bachelor of Science

Peking University

Beijing, P.R.China

1995

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
In partial fulfillment of

the requirements for
the Degree of

MASTER OF SClE CE
December, 2000

EXPLOITING BOTH SPATIAL AND TEMPORAL

LOCALITY IN PAGE REPLACEMENT

ALGORITHMS

Thesis Approved:

11

ACKNOWLEDGMENTS

First and foremost I would like to thank my advisor, Dr. Nohpill Park for his intelligent

supervision, constructive guidance, inspiration and friendship. Without his selfless help I

would not have my thesis done smoothly and timely. I am grateful to my other

committee members Dr. John P. Chandler and Dr. Blayne E. Mayfield, whose guidance,

assistance, encouragement, and friendship are also invaluable. Also I would like to

express my sincere appreciation to Dr. H. K. Dai, who provided much good advice and

assistance for this study.

Moreover, hearty thanks go to my family for their strong encouragement, endless love

and support throughout this whole process. I also would like to give my special

appreciation to my friends for their precious suggestions, invaluable assistance,

understanding and encouragement.

Finally, I would like to thank all of you who helped me during this thesis study.

III

Chapter

TABLE OF CONTE TS

Page

1. INTRODU·CTrON J

1.1 Background 1
1.2 Temlinology 2
1.3 Literature Reviews 3

2. PRELIMINARIES 6

2.1 Virtual Memory 6
2.2 Paging 7
2.3 Locality of Memory References 8
2.4 Page Replacement Algorithms 9

3. PROPOSED EXTENDED LRU ALGORITHM 12

3.1 Overview of Algorithm 12
3.2 Details 0 f Proposed Algorithm 13
3.3 Examples 16
3.4 Stack Algorithm 18
3.5 Perfoffilance Analysis 21

4. SIMULATrONS 30

4.1 Methodology 30
4.2 Results of Simulations 31

5. CONCLUSIONS 41

REFERENCES 42

APPENDIXES 44

APPENDIX A-THE PROOF OF CLAIM 2 44

APPENDIX B-THE PROOF OF CLAIM 3 51

APPENDIX C-THE PROOF OF CLAIM 4 52

IV

Chapter Page

APPENDIXES 44

APPENDIX D-THE PROOF OF CLAIM 5 53

APPENDIX E-THE PROOF OF CLAIM 7 57

APPENDIX F-FLOW CHART OF THE PROPOSED ALGORITHM 58

APPENDIX G-FLOW CHART OF THE LRU ALGORITHM 59

v

LIST OF TABLES

Table Page

1. Results Of LRU Algorithm 17

II. Results Of Proposed Extended LRU Algorithm 17

III. Results Of OPT Algorithm 1~

IV. Reference Strings Used In Figures [9]-[13] 39

vi

LIST OF FIGURES

Figure Page

1. Address Translation Architecture 7

2. ELRU With Different #Distinct Pages In IRM - 1 31

3. ELRU With Different #Distinct Pages In PLM - 1 31

4. Comparison Of Five Algorithms In IRM 32

5. Comparison OfLRU, ELRU, And OPT In PLM 33

6. ELRU With Different #Distinct Pages In IRM - 2 34

7. ELRU With Different #Distinct Pages In PLM - 2 ~4

8. ELRU With Different #Frames In IRM ~s

9. Comparison Of LRU And ELRU - 1 36

10. Comparison OfLRU And ELRU - 2 37

11. Comparison Of LRU And ELRU - 3 37

12. Comparison OfLRU And ELRU - 4 37

13. Comparison OfLRU And ELRU - 5 38

14. An Investigation On The Maximum Length Of Pattern In Reference Strings 40

VII

CHAPTERl

INTRODUCTION

1.1 BACKGROUND

Since the technique of virtual memory was first introduced to allow larger programs than

available physical memory [Silberschatz and Galvin 97], there have been a number of

new mechanisms created to utilize the advantages of virtual memory to benefit the

computer systems and the users, such as segmentation and paging. In a paging scheme,

translation from logical addresses to physical addresses is necessary, and page faults

occur when a virtual page referenced is not in memory. The selection of a page

replacement algorithm, which is used to determine which page in memory should be

removed to make room for currently referenced page, has a dramatic effect on the system

performance since extra overhead will be needed due to page faults, thrashing may

happen, and even slight improvements in paging schemes may yield large gains in system

performance [Silberschatz and Galvin 97].

Although a wide variety of possible replacement algorithms exist, they can be grouped

into two main categories. One is theoretical, which requires future knowledge of the

entire sequence of memory references. Therefore it is impossible to implement in real

time and can only serve as a tool of system analysis, such as Belady's MfN algorithm.

The other is heuristic, which may rely on the history of reference strings.

--

The criterion to design a practical page replacement algorithm is to achieve the lowest

page-fault rate [Silberschatz and Galvin 97]. LRU algorithm is one of the closest

approximations to optimal replacement algorithm. The basic idea of LRU is to pick a

page least recently used as the victim page on a memory miss. But the LRU algoritlun

has a flaw, in that it selects victim pages based on only the time of last reference. In

general, it works well if the number 0 f productive pages is small because the most

recently used pages have a good chance of being in the favored subset of the memory

[Martin et a1. 90]. But once this fact changes, LRU becomes less effective. For example:

given a reference string 0,1,2,3,0,1,2,3,0,1,2,3 and the memory size is 3, we can see that

LRU has no advantage at all in terms of minimizing page-fault rate even though this

reference string owns a very good locality property. Because of this observation, the

purpose of this study is to mostly exploit both temporal and spatial locality without

causing more memory traffic based on LRU algorithm. The idea is that on a memory

miss, the selected victim page should be one which has relatively least locality

relationship with the demanded page with the lowest reference time tag.

1.2 TERMINOLOGY

For the sake of clarity, a few terms which are used throughout the study are defined as

follows .

• Belady's Anomaly reflects the fact that the page-fault rate may increase as the number

of allocated frames increases for some page-replacement algorithms [Silberschatz and

Galvin 97].

2

• Independent reference model assumes that the references are random and independent.

In other words, reference strings in this model do not have any temporal and spatial

locality [Jain 90].

• Locality function is a function with a single page A as a domain and a set of pages

containing A with the size of locality window size as a range. It is used in the proposed

extended LRU algorithm.

• Locality window size defines the number of pages involved in the range 0 f the locality

function.

• Pure loops model provides reference strings consisting of only loops. Within one

loop, every reference is to distinct page and the distances of every two successive

references are the same.

• Victim page corresponds to a page in memory that wi II be removed from memory on

a memory mISS.

1.3 LITERATURE REVIEWS

Since page references by computer programs usually exhibit good locality behavior [Jain

90], the stronger the locality, the more effective memory strategies [Martin et al. 90].

Several studies have concentrated on utilizing hardware techniques to better exploit

temporal locality and/or spatial locality. Compared with set-associative caches, directed­

mapped cache suffers from significantly higher miss rate [Jouppi 90]. In order to better

exploit temporal locality and hence to reduce the miss ratio of directed-mapped caches,

[McFarling 92] used a new hardware technique called dynamic exclusion and [Agarwal

and Pudar 93) used a technique of column-associative caches and by adding a rehash bit

to each cache set, allow most of the conflicting data residing in the cache while the

critical hit access path remains the same. For the same PUlllose, small fully-associative

caches and prefetch buffers are used to support the mostly exploitation of spatial locality

[Seznec 93].

Some page replacement algorithms require the future knowledge of the reference stri ng.

Belady's MIN algorithm is one of them. There are several research studies rely on

Belady's MIN algorithm. [Burger et al. 96) focuses on pin bandwidth consideration for

future microprocessors. It computes effective pin bandwidth and further estimate upper

bound of effective pin bandwidth in terms of traffic inefficiencies defined and measured

based on Belady's MIN policy. [Abraham and Sugumar 93) also explain accurately the

notion of capacity and conflict misses by using Belady's MIN algorithm. Recently an

extension of Belady's MIN algorithm is presented by [Temam 99). It include spatial

locality into Belady's algorithm and exploits spatial and temporal localities

simultaneously and optimally with mi.ss ratio as a cost function. [n this study, they not

only formally prove that the extended algorithm can minimize miss ratios, but also

experimentally show that the near-minimal memory traffic can also be achieved with a

given amount of memory space. [Trivedi 76) defines an optimal demand prepaging

algorithm by knowing the entire reference string in advance.

Since programs can't predict the future, an optimal replacement algorithm is unrealizable.

LRU is a good approximation to optimal replacement algorithms [Hyde 88) and a number

4

of research studies are related to it. [Maruyama 75] proposes a MLRU page replacement

algorithm by bringing M physically contiguous stored pages including the demanded

page into the main memory on a miss instead of only one demanded page in LRU.

[Martin et 311. 90] compares the performances of LRU and its two modifications that are

combinations of LRU and two different prefetching schemes. Under the assumption of

independent reference model, [Van Den Berg and Gandolfi 92] has shown that LRU is

better than FIFO. Furthermore, [Chrobak and Noga 98] proves a conjecture that the

competitive ratio of LRU on each access graph is not more than the competitive ratio of

FIFO. [O'Neil et a1. 93] designs a new page replacement policy called LRU-K method

by analyzing the times of the last k references to memory pages. And the optimality of

this algorithm is proved further using the independent reference model [O'Neil et 311. 99].

5

CHAPTER 2

PRELIMINARIES

2.1 VIRTUAL MEMORY

When people first encountered programs which had larger size than available memory

size many years ago, the solution usually adopted was to split the program into pieces

that were called overlays [Tanenbaum 92]. The overlays were kept on the disk and

swapped in and out of memory by the operating system. Since the generation of overlays

done by the programmer was very time consuming, boring, and complex, a way to

overcome this drawback was soon developed, which is known as virtual memory

[Silberschatz and Galvin 97J.

The basic idea behind virtual memory is that it allows the execution of processes that

may not be completely in memory [Silberschatz and Galvin 97]. So program size is no

long a constraint of programmers and multiprogramming/multitasking become feasible.

The operating system keeps those parts of the program currently in use in main memory,

and the rest on the secondary storage [Tanenbaum 92].

In any virtual memory system, there are two kinds of addresses for programs: virtual

address and actual physical memory address. Virtual addresses are produced by

programs and form the virtual address space. Physical memory addresses are the actual

physical addresses in memory.

6

2.2 PAGING

There are two common techniques used in virtual memory system: paging and

segmentation. In a segmentation scheme, the virtual address space is divided into many

segments with variable sizes and independent address spaces. External fragmentation

exists [Hyde 88]. In a paging scheme, the virtual address space is partitioned into units

with fixed size called pages [Tanenbaum 92]. The units in physical memory that

correspond to pages ofvirtual memory space have the same size and are called page

frames [Carr 84]. Internal fragmentation exists [Hyde 88].

A hardware unit called memory management unit (MMU) is used to translate the virtual

addresses onto the physical memory addresses. Figure [1] shows the architecture of the

address translation [Moote 89].

CPU

, r· · ·

p

d

Physical
memory

""f-------l

:---... MMU

Figure 1. Address Translation Architecture

7

When a virtual address is sent to the MMU, MMU detennines the page number(p) to

which the virtual address belongs, gets the corresponding page frame number(f)

according to the page table, translate the virtual address(~) into the physical

addressE8), and outputs it onto the bus.

If the MMU notices that the page is unmapped, then it will cause the central processing

unit (CPU) to trap to the operating system. This trap is called a page fault [Silberschatz

amd Galvin 97] . Upon the page fault occurs, the operating system will pick a page

frame(called victim page) using an algorithm, writes its content back to the disk ifit is

modified, fetches the page just referenced into the page frame just freed, changes the map

in the page table, and restarts the trapped instruction. Obviously, the occurrence ofpage

faults must cause the slowdown of the system execution and take extra overhead to be

resolved. The worse thing is that if a heavily used page is evicted and it will probably

have to be brought back in quickly, the thrashing may happen.

2.3 LOCALITY OF MEMORY REFERENCES

Locality is the property that references to program tend to cluster into groups in time

and/or space [Thoreson and Long 89] [Denning 72] (Denning 70]. A high degree of

locality ensures that less number of page faults. Locality can be differentiated into two

classes: temporal locality and spatial locality.

8

[Thoreson and Long 89] states that temporal locality is with respect to time clustering for

a set of pages. That is, if a set of pages are referenced during a time interval, it is likely

that they will be referenced again during the immediately following time interval

[Schneider 83]. Temporal locality is well exhibited in short loops.

Spatial locality occurs when two successive references have adjacent virtual spaces. In

other words, if word w is referenced at time t, then words in the range w-i to w+i for

some small i are likely to be referenced at time t+ I [Spiro 77]. In a sequential

environment, straight-line code usually produces good spatial locality [Thoreson and

Long 89].

2.4 PAGE REPLACEMENT ALGORITHMS

Page replacement algorithms are used to determine which pages are removed from the

memory when page faults occur.

Optimal Replacement Algorithm:

Needless to say, on a page fault, the best choice of the victim page is the virtual page that

the program will not reference for the longest period time [Tanenbaum 92]. This is called

the optimal replacement algorithm. [Belady 66] proposed one called MIN algorithm

based on the future knowledge of the entire sequence of page references for a program.

The objective is to determine a minimum sequence of pages needed to be removed and

provide the minimum number of memory misses. The implementation of the algorithm is

9

a two-pass job. The fust pass is to store the program s complete sequence of references.

And the second one is to reconstruct a minimum-replacement sequence by working

backward on the program trace. This algorithm guarantees the minimum miss ratio when

temporal locality is exploited optimally and it can be used for general system studies and

specifically for an evaluation of the heuristic replacement algorithms [Temam 99].

LRU Algorithm:

This algorithm is based on the observation that the recent past is a good indicator of the

immediate future [Tanenbaum 92]. When a page fault occurs, a page selected to be

evicted from the memory is one that is least recently used. The common program

structures supporting this observation are loops, subroutine calls, etc. LRU usually can

provide very low memory miss ratio, however, its implementation requires considerable

hardware and software overhead since there is a time stamp associated to each reference.

LFU Algorithm:

LFU is an approximation to LRD. Instead of having a time tag to each reference, each

page is attached a frequency count of references which is incremented periodically [Hyde

88]. The page removed from the memory is one with the lowest frequency count. The

overhead of LFU is lower than LRU, but the problem is that heavy frequency of a page in

initialization phrase may mislead the victim selection in program execution and a page

with potential heavy references may be evicted immediately after it is brought into the

memory since its frequency count is just 1 at that time.

10

FIFO Algorithm:

A data structure, queue, is used to keep all the pages in the system in the implementation

of the algorithm. On a page fault, it simply replaces the page at the head of the queue and

adds it to the tail of the queue. The FIFO algorithm is easy to implement and has low

overhead, but it is lacking oflocality consideration and causes Belady's anomaly. So it i

rarely used.

11

CHAPTER 3

PROPOSED EXTENDED LRU ALGORITHM

3.1 OVERVIEW OF ALGORITHM

The proposed algorithm is a run-time extended LRU algorithm that exploits both spatial

and temporal locality. A locality window is used in the proposed algorithm, which

contains pages likely to be referenced next due to the spatial and/or temporal locality

considerations. The basic idea is that on a memory miss, the selected victim page should

be the one which has relatively least locality relationship with the demanded page with

the lowest reference time tag, i.e., outside the locality window with the lowest reference

time tag.

There are three parameters to characterize the proposed algori thm:

(I) memory size denoted by Ms defines the number of allocated frames.

(2) locality window size denoted by W gives how many pages are involved in the

locality window.

(3) locality function F: A ---) {A" A2 , ... , Aw, }, where 3i :3 Ai = A and A is the current

page referenced, defines what pages are involved in the locality window.

For example, if a locality function F is defined as

lw -lJ rw -11A---){A- _S-2- ,... ,A-l,A,A+l,... ,A "I-S-2-}' Ws =4,and A=5, then the

12

locality window contains pages 4, 5, 6, and 7.

As in the LRU algorithm, we need to keep track of the time of each reference to

implement the new algorithm.

3.2 DETAILS OF PROPOSED ALGORITHM

Definition: a loop mentioned in the proposed algorithm means XI ,x2"",xk ,XI"" where

d = X j - X j_1 is constant for 2 ~ j ~ k .

How to tell if the reference string is forming a loop: let the current page be Xi where

1~ i ~ k -1 , if the reference string up to the current page is ... ,XI' x 2 , .•• , X k ' Xi and

X j - X j_1 is constant for i + 1~ j ~ k, then there exists a loop and its iteration is Xi , ... , X k .

How to tell if a loop ends: let the current page be Yi and current loop iteration be

Xi, ... ,Xk , if Yi-I (previous reference) is equal to X, for i ~ t ~ k but Yi is not equal to

X,+\ if t +1~ k or Xi if t +1> k , then the loop ends.

Two parameters in the proposed algorithm, locality window size Ws and locality function

F , together determine the locality window thereby significantly affect the selection of a

victim page. Since different reference strings exhibit various locality behaviors, in order

to exploit both spatial and temporal locality mostly and efficiently, they are adaptive

during the algorithm's implementation.

By the definition of spatial locality: if a word w is referenced at time t, then a word in

the range w - i to w+ i for some small i is likely to be referenced at time t + I [Spiro

77]. So if the locality window size is Ws ' then in order to exploit the spatial locality,

initially, in the proposed algorithm, F is defined as

A --> (A -lw,2- 1J...,A-I, A, A +I,...,A +Iw,2-Il· Hence locality window contains

pages which are spatially close to the current page and locality relationship here means

the spatial locality relationship with the current page and every page outside the window

is considered spatially far away from it and serves as a candidate of a victim page.

Temporal locality means that if a set of pages are referenced during a time interval, it is

likely that they will be referenced again during the immediately following time interval

[Schneider 83]. Once the reference string up to and including the current page is fOlming

a loop, then Ws is set to be the length of the loop minus one and F is adjusted to be

A -----+ {A, A + el, ... , A + (Ws -l)el} under the assumption that this loop would last for a

while. And now, pages in the locality window are temporally close to the current page

and temporal locality is the major concern. Once the loop ends, Ws and F will be reset

back to the initial values.

I ...

Since the locality window contains pages which are likely referenced next, the victim

page should be outside the window and have the lowest time tag in order to both exploit

spatial and temporal locality.

Principle of the proposed algorithm:

Initially, the locality window size is W, and locality function F :

A -> {A -lw,2-
1J...,A,... ,A +rw,2-

111which gives W, pages including page A

around page A.

Step (1): IF it is not the end of the reference string, THEN

IF there is a loop existing, THEN go to step (3),

ELSE, go to step (2).

ELSE, stop.

Step (2): On a miss, IF the reference string is forming a loop, THEN

set Ws =L -I where L is the length of one loop iteration, F :

A --; {A, A + d, ... ,A + (Ws -I)d} wherecl is the distance of two successive

references in the loop. And pick_victimO.

Go to Step (4).

Step (3): IF a loop ends, THEN reset Ws and F back to initial values.

On a miss, pick_victimO.

Go to Step (4).

15

Step (4): Process the next reference, go to step (1).

Pick_victimO: pick a page which is not in the locality window and has the lowest time

tag as the victim page if any. If every page is in the window, then pick

one with the lowest time tag. Remove the selected page, set the time tag

of the referenced page the current time, and add the new page into

memory.

Step (2) is to adjust the locality window size to mainly exploit temporal locality behavior

exhibited by the reference string up to and including the demanded page upon the

detection of the existence of a loop. Claim 6 in Section 5.4 will explain why it is adjusted

to this value. For example, if a reference string is 1,3,4,0,2,4,6,0,2,4,6,5, then at the

reference to the third page 1, Ws is set to be 3 and F : A~ {A, A + 2, A + 4}. Step (3) is

to restore the initial values of Ws and F once the loop ends in an attempt to exploit

spatial locality. For the same reference string as above, at the reference to page 5, Ws

and F are reset to initial values since the loop ends there.

In the LRU, at the moment of a page fault, the selection of a page to be evicted from

memory depends only on its time tag, whereas in the proposed extended LRU, it not only

depends on the time tag but also is related to the pages in the current locality window.

3.3 EXAMPLES

Let memory size M s = 4 and a reference string be 0, 1, 2, 3,4, 0, 1,0, 5, 1,2,3,4,5.

16

MI-M4 in the following tables stand for 4 memory slots.

Applying LRU algorithm:

String: 0 I 2 3 4 0 I 0 5 I 2 3 4 5

MI 0 0 0 0 4 4 4 4 4 4 2 2 2 2

M2 I 1 I I 0 0 0 0 0 0 3 3 3

M3 2 2 2 2 1 1 1 1 1 1 1 5

M4 3 3 3 3 3 5 5 5 5 4 4

Page faults * * * * * * * * * * * *

Table I: Results Of LRU Algonthm

The total number of page faults = 12.

Applying proposed extended LRU algorithm:

Initially, let Ws =3 and then F be A ~ {A -1, A, A + I}.

Ws = 3, window={2,3,4}
....

..........

Ws = 4, window={O,l ,2,3}

•......

Ws = 3 , window= {-1 ,0,1 }
.....~.......... ,.

....................................
........

....
..........................

0 1 2 3 4 0 1 0 5 I 2 3 4 5

Ml 0 0 0 0 4 0 0 0 0 0 2 2 2 2

M2 1 I 1 1 1 1 1 1 I 1 1 4 4

M3 2 2 2 2 2 2 5 5 5 5 5 5

M4 3 3 3 3 3 3 3 3 3 3 3

Page faults * * * * * * * * *

Table II: Results Of Proposed Extended LRU Algorithm

The total number of page faults = 9.

17

Applying OPT algorithm:

0 1 2 3 4 0 1 0 5 1 2 3 4 5

Ml 0 0 0 0 0 0 0 0 5 5 5 5 5 5

M2 1 1 1 1 1 1 1 1 I I 3 3 3

M3 2 2 2 2 2 2 2 2 2 2 2 2

M4 3 4 4 4 4 4 4 4 4 4 4

Page faults * * * * * * *

Table ill: Results Of OPT Algorithm

The total number of page faults = 7.

Comparing the results of three algorithms, the proposed algorithm performs much better

than LRU. In the meanwhile, the reference string used in above example exhibits good

spatial locality behavior.

3.4 STACK ALGORITHM

Claim I: The proposed extended LRU algorithm is a stack algorithm"

By [Mattson et al. 70], A replacement algorithm is called a stack algorithm if the memory

contents satisfies the inclusion property for every page trace and every point in time.

Given a page trace xI' xl'" "", XL and any time t (where 1~ t ~ L) , let C stand for the

memory capacity, B, (C) stand for the set of pages in memory just after the completed

18

reference to X" initially, Ba(C) = ¢J, D, stand for the set of distinct pages references in

XI' x 2 ,· .• , XL' and y, stand for the number of pages in D" the inclusion property is:

B, (1) c B/2) ~ ... ~ H, (y,) = B, (y, + I) = ... where IB, (C)I = C for I ~ C ~ y, and

IB,(C)I = y, for C ~ /,.

Proof: In order to prove this claim, it suffices to prove that the algorithm satisfies

B,(C)~B,(C+I) for any O~t~Land I~C<y,.

Prove by mathematical induction on the time t .

(1) t = 0, by the definition, Ba(C) = rjJ and Ba(C + I) = ¢, so Ba(C) ~ Ba(C + I).

t=l,obviously, B,(C)=x1 and BJ(C+I)=xj,so BI(C)~BI(C+1).

(2) Assume that B, (C) ~ B, (C + I) for \It ~ O.

Then for t + 1, the referenced page is X'+I'

(i) If IB,(C)!<C and IB,(C+I)I<C+I,then B,+,(C)=B,(C)u{x,+,},and

B'+1 (C + 1) = B,(C + I) U {X'+I}' so B'+I (C) C B'+I (C + 1).

(ii) If !B,(C)!=C and IB,(C+I)I<C+1,then B'+I(C)=(B,(C)-{xj})u{x,+J

for some Xj , and B'+I (C + I) = B, (C + I) U {X'+I}' so 8'+1 (C) C 8'+1 (C + 1) .

(iii) If IB, (C)I = C and IB, (C + 1)1 = C + 1, then there are three cases for X'+I :

Case I: xl+! E B, (C), hence, X'+1 E B, (C + 1) since B, (C) c B, (C + I).

Case 2: X'+I ~ B, (C), hut X'+I E B, (C + I) .

Case 3: X'+I ~ B
f
(C + I), hence, X I +1 ~ 81 (C) since 8, (C) ~ 8, (C + I).

19

Case 1: since Xt+1 belongs to hoth sets, there is no page faults occurred. By the

Case 2: For the same reason, B,(C + 1) = BI+1(C + 1).

Need to pick a victim page from B, (C) for X I+1 • No matter which page is selected, it has

to reside in BI (C), say Xi where 1::; i ::; t , so B
'
+1(C) = (B, (C) - {Xi }) U {X

'
+1}.

B,(C) c B, (C + 1) =B1+1(C + 1), (B, (C) - (x;}) c B, (C) , and x,+1 E B, (C + 1)

so B'+I (C) = (B, (C) - {Xi}) U {X'+I} ~ B'+I (C + 1), i.e. B
'
+1(C) ~ B'+I (C + 1) .

Case 3: Let R,(C) = {YI"",Yc} and B,(C + 1) = {YI""'YC'YC+I} where

Ym E {Xl' x 2 , ... , x,} for VI::; m ::; C + 1, let Yi be the victim page from B, (C), let Yj be

the victim page from B,(C + 1).

If i =C + I, then no matter what Yi is, 8'+1 (C) ~ B'+I (C + 1) .

If i::; C , then

(a) if Y j is in the window F(x'+I)' then Vm *- i,1 ::; m ::; C + 1, the time tag of Y i < the

time tag of Yin' certainly it is true for Vm *- i,1 ::; m ::; C, so Yi =Yi' therefore,

(b) if Yj is not in the window F(x,+,), then Vm *- i,1 ::; m ::; C +1, Ym either is in the

window or the time tag of Y i < the time tag of Y m . Since the window for C case

20

and C + lease are the same, certainly it is true for \:Im"* j,l ~ m ~ C, so Yi =Yj'

therefore, Br+1(C)cB'+I(C+I) since Br(C)cBr(C+I).

Therefore, Br+1(C) c Br+1(C + 1) for t + 1.

So claim is true. That is, the proposed extended LRU algorithm is a stack algorithm.

Since the proposed extended LRU algorithm is a stack algorithm, it will not suffer from

Belady's Anomaly anu hence it will be able to be predictable and further improved.

3.5 PERFOAAIANCE ANALYSIS

Definition: a pattern is a substring of the reference string in which the distances of every

two references are the same. For example, 1,3,5,7,9,11,13,15.

Analysis on time complexity:

Let N be the length of the reference string up to the current reference, M be the

memory size, i.e., the number of frames, and L be the maximum length of pattern in the

reference string.

Without loss of generality, we assume that N > M .

• The proposed algorithm:

21

To detect if a reference is a hit, it needs to check every page in memory, so the time

needed is O(M),

To detennine if a reference string is fonning a loop, it needs to go through the pattern, so

time needed is O(L) ,

To select a victim page from memory, the needed time is O(M),

The other operations such as assignment, addition, etc need time 0(1) .

Since once an environment is given, M is constant, so OeM) =0(1) .

Therefore, total time complexity =O(NL).

• The LRU algorithm:

To detect if a reference is a hit, it needs to check every page in memory, so the time

needed is O(M) ,

To select a victim page from memory, the needed time is O(M),

The other operations such as assignment, addition, etc need time 0(1) .

Therefore, total time complexity = D(N) .

• Comparison:

By the definition of a paltern in the proposed algorithm, obviously, L ~ the number of

distinct pages in the reference string.

22

The worst case for the proposed algorithm compared with LRU is that every reference is

to a distinct page and the distance of every two successive references are the same, then

L = N and the time complexity is O(N 2
). So the proposed algorithm has some extra

time overhead in comparison with LRU.

Since pages in a pattern must be distinct and evenly distributed, generally, L « N and

O(LN) ~ O(N).

So the proposed algorithm and LRU have the same time complexity of O(N) on the

average.

Analysis on space complexity:

Let N be the length of the reference string up to the current reference, M be the

memory size, i.e., the number of frames, and L be the maximum length of pattern in the

reference string.

Without loss of generality, we assume that N> M .

• The proposed algorithm:

Each page has a time oflast reference associated and it is one of factors affecting the

selection of a victim page.

To keep M pages information in memory, the space needed is O(M),

The pattern used in the algorithm needs space O(L).

23

Space of 0(1) is needed for the other operations.

Therefore, total space complexity = O(L) .

• The LRU algorithm:

The selection of a victim page in LRU is based on only the time of last reference, so the

space of OeM) is necessary to store pages information.

The other operations need space 0(1) .

Therefore, total space complexity =0(1).

• Comparison:

By the similar discussion to comparison of time complexity, the worst case of space

complexity of the proposed algorithm is O(N) but it is approximately 0(1) on the

average.

Analysis on the number of page faults:

Definition: The page-fault rate is the number of page faults in a reference string divided

by its length, which is denoted by PFRate.

Notations:

24

• PLM kn: a pure loops model with n loop iterations and k distinct pages in each loop

• NumPF: the total number of page faults for a reference string.

• N pF : the number of page faults in one iteration, i.e., X I ,X2 , ... ,Xk •

• HI: the number of hits in XI 'X2 ,... ,XII"

• Hili: the number of hits in X\V+l" .• , X(t1+1)\V where n =l:J-1 .

• HI: the number of hits in XI/\V+l,,,,,Xk where n =l:J.

Claim 2: For any reference string in PLM_kn, if memory size is m and the locality

window size set in the proposed algorithm is w, then the total number of page

fau Its wi 11 be

{

k' ifksm,

NumPF =

k + N PF (n -1), otherwise,

where

{

k-(HI +Hm +HI),

N pF -

k , otherwise.

HI =min(m+w-k,m-L),

25

ifm+w-k>O,

_l~I-1
H m - l..H,

1=1

H =

0, otherwise,

and

0, otherwise.

Proof: See Appendix A.

Claim 3: For any reference string in PLMJrn, let memory size be m, then the page-fault

rate in LRU is

~,if k ~m,

1PFRate =

100% , otherwise.

Proof: See Appendix B.

Claim 4: For any reference string in PLMJrn, if the locality window size w is greater

than or equal to k -1, then the number of page faults in proposed algorithm is

independent of w.

26

Proof: See Appendix C.

Claim 5: N PF given in Claim 2 is a non-increasing function of the locality window size

w.

Proof: See Appendix D.

Claim 6: For any reference string in PLMJrn, the locality window size w of k -1 is

optimal in terms of minimizing the number of page faults in proposed

algorithm.

Proof: Directly from Claim 4 and Claim 5.

Claim 7: Initial locality window size has no effect on the number of page faults for any

reference string in PLM_kn in the proposed algorithm.

Proof: See Appendix E.

From Claim 6, the locality window size in the proposed algorithm is set to be the length

of loop - I in an attempt to optimally exploit spatial locality of reference string. From

Claim 3, it is shown that for any reference string in the pure loops model denoted by

PLMJrn, as long as k is greater than the memory size, the number of page faults in LRU

will be the number of references. So this model is the worst case for LRU. However,

reference strings in this model exhibit good spatial and temporal locality. From Claim 2,

it is shown that the proposed algorithm performs much better than LRU under this model.

In the proposed algorithm, the locality window size is set to k -1 once there exists a loop

27

where k is the number of distinct pages in this loop. For a reference string in the

PLM_kn model, the locality window size of k -1 will be set at the second reference to

the first page within the loop. Without loss of generality, we can assume that k > m

since when k 5 m every algorithm achieves k page faults. By substituting w by k -I in

the formula given in Claim 2, we will get N PF = k - m + 1 and the ratio of number of

page faults in the proposed algorithm and LRU is

k + (n -I)(k - m + I) 1 k - m + 1 k - m + 1--'-----'----'----'- =- + - . As n ~ 00, the ratio wi II approach
kn n k kn

k-m+l 1
--- < . So for any reference string in the PLM or its substring, the proposed

k

algorithm must achieve less number of page faults than LRD.

On the other hand, it is possible that pages removed from memory due to locality

consideration in the proposed algorithm will be referenced next and they remain in

memory in LRU algorithm. In this case, we can assume that there exists no loop since

the proposed algorithm must outperform LRU within a loop. Then the reference string

must exhibit bad spatial locality after the memory is full. The reason is because in the

proposed algorithm, the locality window contains the current page A, pages

. lw - 1j} d { w - 1 d d' . . I{A -1,..., A - ~ , an pages A + 1,... , A + _s2- Jan accor Ing to the pnnclp e

of the proposed algorithm the victim page must be outside the window, hence it can not

be spatially close to the current page. For example, given a reference string

1,2,3,4,1,4,2,4 and memory size 3, it turns out that the page-fault rate in LRU is 75% and

100% in proposed algorithm by applying them to this reference string. The numbers of

28

page faults are the same up to the first reference to page 4 between these two algorithms.

The difference arises from the second reference to page 1. In the meanwhile, the

reference string exhibits bad spatial locality from then on.

Consequently, LRU achieves bad performance for a reference string with a large number

of productive pages and the proposed algorithm alleviates this problem. If a reference

string is in the pure loops model, the proposed algorithm must produce no more number

of page faults than LRU in the worst case and on the average much less than LRU. For

random reference strings, they are comparable. However, if a reference string exhibits

good spatial and temporal locality, then generally proposed algorithm should perform not

worse than LRU.

29

CHAPTER 4

SIMULATIONS

4.1 METHODOLOGY

The simulations are based on two models: independent reference model and pure loops

model. Independent reference model assumes that the references are random and

independent. In other words, reference strings in this model do not have any temporal or

spatial locality [Jain 90]. On the other hand, reference strings in the pure loops model are

sequences of loops. They exhibit very good locality behavior.

Five algoritJuns: OPT, LRU, LFU, FIFO, and proposed extended LRU algorithm are

simulated and compared in terms of a traditional metric for performance of memory

replacement algorithm, i.e., the number of page faults.

The proposed algoritJun is characterized by three parameters: memory size, locality

window size, and locality function. Since the algorithm is a stack algorithm, the larger

the memory size, the less the number of page faults. To confirm this result, simulations

with different memory sizes are conducted. Locality window size gives the range of the

locality consideration and locality function defines the specific addresses involved in the

locality consideration. Both locality window size and locality function affect the

selection of victim pages and the number of page faults.

30

4.2 RESULTS OF SIMULATIONS

Notation: ELRU stands for the proposed extended LRU algorithm.

-.-#Pages=3

-+- #Pages=5

-lr- #Pages=7

-::-#Pages=9 I~
~#Pages=151'

#framesl

I~-~ Figure 2: ELRU With Different #Distinct Pages In iRM • 1

I 50
II 45

40

$I 35
3 30

~ 25 ~
~ 20 i
:- 15 i

10 ­
5 .

0---
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 3: ELRU With Different #Distinct Pages In PLM·
1

60

50

Ul 40~
~

of!
30Q)

Cl
ell
Q. 20
~

10 ,

0

-+-#Pages=3
-w-#Pages=5
----6-#Pages=7

1--+:l-#Pages=9
1~#Pages=15

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

#fram es

Figures [2] and [3] are based on simulations of five reference strings in the independent

reference model and pure loops model. In this simulation, the initial locality window size

31

is set to 3 and the length of reference strings is set to 50 randomly. The figures show that

the number of page faults is a non-increasing function of the number of frames.

Moreover, it is a strictly decreasing function before it hits the number of pages in the pure

loops model. Thus, The correctness of Claim 1 is veri tied. That is, the proposed

algorithm is a stack algorithm. In addition, figures indicate that the number of page faults

never exceed the number of pages if the number of allocated frames is no less that it.

And the less the number of pages, the faster the number of page faults decreases as the

number of frames increases in the pure loops model.

Figure 4: Comparison Of Five Algorithms In
IRM

L _

50

45

40 '

~ 35
::::J 30 '
~
(1) 25

~ 20
Co
=It 15

10

5

o
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

#frames

-+-FIFO

-I:r- LFU '

LRU I
Ii

-.::-ELRU "

-'-OPT

Figure [4] shows the comparison of the performance of the five algorithms using one

reference string in the independent reference model. In this simulation, the number of

32

pages is set to 15, the initial locality window size is set to 3, and the length of reference

string is set to 50 randomly. Apparently, OPT has the lowest number of page faults in all

cases of number of frames. The perfonnances of other four algorithms fluctuate.

Figure 5: Comparison Of LRU,ELRU, And
OPT In PLM

60 l
50 1o..:=*"--'~"-+-""""'--'~~+-""""'--+----4~'-""

; 40 I
J!
Q) 30
C)

[20
~ 10

o 1--.--·~--'---'I --.---,. r -~., -

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

#frames

-+-LRU Ii
-.-ELRU I

I~OPT

Figure [5] is to compare the perfonnances of three algorithms using one reference string

in the pure loops model. In this simulation, the number of pages is set to 15, the initial

locality window size is set to 3, and the length of reference string is set to 50 randomly.

It is shown that under this model, ELRU perfonns much better than LRU and is even

closer to OPT. Before the number of allocated frames achieves the number of pages in

the reference string, the more the number of frames, the better ELRU than LRU, whereas

:111 of them cause the same number of page faults after that.

33

'-+- #pages=6
I
-#pages=8

~#pages=10

I-x- #pages=12

1-..#pages=14II

Figure 6: ElRU With Different #Dlstinct Pages In IRM - 2

45 ,

40 1
35 .)IE-*--__.:---..-..........~

2l 30!
:::I ~~"'U--f}---{it-f~EJ:=n::::::X::::::X.<

~ 25 ;

~ 20 ~ -----­i 15 j
10J

~ 1_

r-----

I

1 2 3 4 5 6 7 8 9 10111213141516

initial window size

r--'-'

Figure 7: ELRU With Different #Distinct Pages In PLM - 2

45

40 x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x
35 -, lZ-_{;r_-fr--er--fr--l:r--fr--lI---ilI,...--{jr-i.!l----i:r-.~fr-_{;r_-A

en
;!: 30 .•••••••••••••• ••
:::I
.! 25

~ 20 ;. • • • • • • • • • • • • • • •~ I

~ 15 !

10

5

o

.-+- #p-ag~~~6 1i

:- #pages=8 I
'~#pages=10 •

I[
-x- #pages=12I

,-.. #pages=14 I

1 2 3 4 5 6 7 8 9 1011 1213141516

initial window size

34

Figures [6] and [7] are simulations to test the effect of initial window size on the number

of page faults under the independent reference model and pure loops model. The number

of frames is randomly set to 5 in this simulation. We can see that for the independent

reference model, the different values of initial locality window size cause variation of

number of page faults under the fixed number of frames and reference string whereas the

number of page faults remains the same for the pure loops model. Since the length of

reference strings are the same, when the number of pages is smaller, we can assume that

the reference string generally exhibits better spatial and tempora]]ocality, hence,

achieves less number of page faults. Figure 7 also gives a verification of Claim 7.

Figure 8: ELRU With Different # Frames In IRM

•
--+- #Frames=1 I1-#Frames=21

-t:r- #Frames=31
-l-#Frames=4,

---*-#Frames=5
~#Frames=61'

-#Frames=7!

45 • • • • • • •40
35 ' ••f----i.II-_.....I-_......---I.---i•...--...t---••

In
- 30:J
.! 25 ;

~ 20 i
CO
a. 15 i
~ 10 I

5

o
1 2 3 4 5 6 7 8

initial window size

Figure [8] is to study the effect of number of allocated frames and initial locality window

size on the number of page faults under the independent reference model. The number of

pages is randomly set to 6 in this simulation. Two facts are shown in this figure. One is

that the more the number of frames, the less the number of page faults no matter what the

initial locality window size is. The other is that when the number of frames is greater

than 1 and less than the number of pages, initial locality window size does affect the

number of page faults under this model. Two lines with #Frames of6 and 7 coincide

since they have number of frames no less than the number of pages and hence the

numbers of page faults are both the number of pages. Sometimes larger initial window

size cause more number of page faults. The reason may be because that spatial locality

of page w means that pages in the range of (w - i, w + i) for some small i are likely

referenced next. Ifthe window size is too large, i.e., i is too large, pages in the range of

(w - i, w+ i) may be far away from the current page.

Figure 9: Comparison Of LRU And ELRU • 1

35

30
=>
:J 25

I WI 20
11.
a.
~ 15
:1
:J 10 .
11.' 5
a.
~ o .

-5 2 3 4

#frames

36

f; 7 R

~IRMI'
-il-PLM

Figure 10: Comparison Of LRU And ELRU ·2

35 "

~ 30 J
ill 25 ,

I I
It 20 i

"" 15·::J I
0:: 10"
...J
11.1 5 1

~ 0 I

-5 2 3 4 5 6 7 8

L_
#frames

Figure 11: Comparison Of LRU And ELRU • 3

35 .

~ 30 I
ill 25-

lt
l

20 j
"" 15::J I
0:: 10 .
...J I
11.1 5·
~ O·

-5 J 2 3 4 5 6 7 8

-+-IRM I
'_PLM
I

#frames

Figure 12: Comparison Of LRU And ELRU ·4

35

~ 30

ill 25 1
11.

1 20
Q.

"" 15 .
~ 10)
...J1 5­
11.

~ 0 +--
-5 1 2 3 4 5 6 7 8

#frames

37

Figure 13: Comparison Of lRU And ElRU - 5 l
I

I

1~IRMj
_PLM

8765432

35
~ 30

I uJ 25 ~

u.. 1 20 .
Q.

'II: 15­
::::,
a: 10·
...J1 5­
u..
~ 0 - -I~"'=""'-""_~-""

-5

#frames

Figures [9J - [13] are to compare perfonnances of the LRU and the proposed algorithm

for five di fferent random reference strings under the independent reference model and

pure loops model. The x-axis is the number of frames and the y-axis is the difference of

the number of page faults in LRU and the proposed algorithm, i.e., #PF LRU-

#PF_ELRU. The number of pages is set to 7, the length of reference string is sel to 50,

and the initial locality window size is set to 3 randomly. In the pure loops model, the

ELRU always performs better than LRU and the more the number of frames, the better

the ELRU than LRU. On the other hand, in the independent reference model, LRU and

ELRU are comparable. After the number of frames is equal to or more than 7, the

number of pages, the difference is always 0 since both LRU and ELRU have the number

of page faults equal to the number of pages. By studying five corresponding reference

strings listed below, it is shown that the better the spatial locality exhibited, the less the

number of page faults in the proposed algorithm. This confinns the performance analysis

with respect to the number of page faults conducted in section 5.4.

38

The reference string used in Figures[9]-[13] for PLM is 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3

4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 in this simulation.

The reference strings used in Figures [9]-[13] for IRM in this simulation are listed in

Table IV.

Table fV: Reference Strings Used In Figures [9]-[13]

Fig. Reference string in IRM in Figure

8 03013460652045562532066660041544505154160462613021

9 64062011232306523445516014102234414232430346654543

10 63136626552665520010036065011166021124415641622014

11 34351322010340234054604405161204465243503023151512

12 50204621410310232631525365606554663143112556413211

Figure [14] is a simulation to study the maximum length ofpattem (defined in section

5.4) in reference strings under both the independent reference model and the pure loops

model because the existence ofpattem leads to some extra overhead in time and space in

the proposed algorithm. In this simulation, randomly, the number of allocated frames is

set to 5, the number of distinct pages is set to 8, and the initial window size is set to 3.

The x-axis is used to compute the length of the reference string, which is 50 x 2'< where

x is the x-axis. So, in this simulation, the length of the reference string varies from

50x 2 1 = 100 to 50x 215 = 1638400. The y-axis is the quotient of the maximum length

of pattern in the reference string and the length of the reference string. It is shown that in

39

both models the maximum quotient is 0.8 =the number of distinct pages over the shortest

reference string length. Moreover, it approaches 0 rapidly as the reference string length

increases since the maximum length of pattern only has slight changes whereas the length

of reference string increases exponentially. Therefore, the overhead caused by the usag

of pattern in the proposed algorithm can be negligible on the average under both the

independent reference model and the pure loops model.

---------------------- ----- --

Figure 14: An investigation on the maximum
length of pattern in reference strings

0.09 j
0.08

.r:.-C) -

~ 0.07 1

;, ~
.= ~
.::: 0.06 :
en 1- .c..
~ 0.05 I
~
Q.

'0 .
.r:. 0.04 1-C)
c

oS! 0.03 .
E
~

~ 0.02 1
C1l JE i

0.01!

o 'r·····- - :-.-~-~..~""Q-.--o--O--O--<D---<::>--<)-o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

length of reference string =50*2J\x

40

1
~IRMj'
~!,LM I

- ,

CHAPTERS

CONCLUSIONS

The LRU algorithm is known to be a good approximation to optimal page replacement

algorithm yielding small number of page faults. However, it has a problem that the

selection of a victim page is based only on the time oflast reference, with consequent

hann to result in high memory miss ratio for the reference string with good temporal and

spatial locality and a large number of productive pages. The proposed extended LRU

algorithm introduces adaptive locality window size and locality function into the

conventional LRU algorithm in an attempt to exploit both spatial and temporal locality of

reference strings during the program run time. It is formally proven that the proposed

algorithm is a stack algorithm, hence it will not suffer from Belady's anomaly, which

enables it to be predictable and thereby to be improved. Under the assumption of pure

loops model, the proposed algorithm must perform not worse than LRU with respect to

minimizing the number of page faults. The more the number of allocated frames within

the number of total distinct pages, the better the proposed algorithm than LRU. Under

the assumption of independent reference model, the proposed algorithm and LRU are

comparable in terms of the number of page faults. Moreover, the proposed algorithm

causes some extra overhead in time and space due to the implementation of adaptation of

locality window size and locality function. However, this overhead is negligible and the

proposed algorithm is comparable in efficiency to the LRU algorithm on the average.

41

REFERENCES

[Abraham and Sugumar 93] S.G. Abraham and R.A. Sugumar, "Efficient Simulation of Caches
Under Optimal Replacement with Applications to Miss Characterization", Proc. ACMInt" Conf.
Measurement and Modeling ofComputer Systems, Santa Clara, CA, USA, May 1993.

[Agarwal and Pudar 93] A. Agarwal and S. D. Pudar, " Column-Associative Caches: A
Technique for Reducing the Miss Rate of Direct-Mapped Caches", Proc. 2(jh Int 'I Symp.
Computer Architecture, ACM Inc., pp.179-190, San Diego, Calif., May 1993.

[Belady 66] L.A. Belady "A Study of Replacement Algorithms for a Virtual-Storage
Computer", IBM Systems J., VoL 5, No.2, pp. 78-101. 1966.

[Burger et a1. 96] D. Burger, A. Ka~i and J.R. Goodman, "Memory Bandwidth Limitations of
Future Microprocessors", Proc. 23' ACMInl 'I Symp. Computer Architecture, ACM Inc.,
Phi ladelphia, May 1996.

[Carr 84] R.W. Carr, Virtual Memory Management, UMI Research Press, Ann Arbor, MI, 1984.

[Chrobak and Noga 98] M. Chrobak and J. Noga, "LRU is better than FIFO", Proceedings ofthe
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, ACM Inc., pp. 78-81, 1998.

[Denning 70] PJ. Denning, "Virtual Memory", ACM Computing Surveys, Vol. 2, No.3, pp. 153­
189, September 1970.

[Denning 72] P.J. Denning, "On Modeling Program Behavior", AFIPS, Con! Proc. 40, ACM
Inc., pp. 937-944, 1972.

[Hyde 88] R. L. Hyde, "Overview of Memory Management", Byte; Peterborough, N.H. Vol. 13,
No.4, pp. 219-225,1988.

[Jain 90] R. Jain, "Characteristics of Destination Address Locality in Computer Network: A
Comparison of Caching Schemes", Computer Networks And ISDN Systems, Vol. 18, No.4, pp.
243-254, Amsterdam, May 1990.

[Jouppi 90] N.P. Jouppi, "Improving Direct-Mapped Cache Performance by the Addition ofa
Small, Fully-Associative Cache and Prefetch Buffers", Proc. 17'" ACM Inl" Symp. Computer
Architecture, ACM Inc., pp. 364-373, May 1990.

[Martin et al. 90] T. P. Martin, l. A. Macleod, J. 1. Russell, K. Leese and B. Foster, "A Case
Study of Caching Strategies for a Distributed Full Text Retrieval system", Information
Processing & Managemant, Vol. 26, No.2, pp. 227-247, Oxford, 1990.

[Maruyama 75] K. Maruyama, "MLRU Page Replacement Algorithm in Terms of the Reference
Matrix", IBM Tech. Disc. Bull., Vol. 17, No. 10, pp. 3101-3103, March 1975.

[Mattson et al. 70] R.L. Mattson, J. Gecsei, D.R. Slutz, and L.L. Traiger, "Evaluation Techniques
for Storage Hierarchies", IBM Systems J., Vol. 9, No.2, pp. 78-117, 1970.

42

[McFarling 92] S. McFarling, "Cache Replacement with Dynamic Exclusion', Proc. 11h Ann.
Int 'I Symp. Computer Architecture, ACM Inc., pp. 191-200, Gold Coast, Australia, 19-21 May
1992, also in Computer Architecture News, Vol. 20, No.2, May 1992.

[Moote 89] R. Moote, "Virtual Memory: The Next Generation" Byte; Peterborough, N.H., Vol.
14, No. 12, pp. 342-350, 1989.

[0' eil et al. 93] EJ. O'Neil, P.E. O'Neil and G. Weikum, "The LRU-K Page Replacement
Algorithm for Database Disk Buffering", In Proceedings ofthe 1993 SIGMOD Int'l Con! on
Management ofData, (Washington, D.C., May 26-28), ACM, pp. 297-306, New York, 1993.

[O'Neil et al. 99] E.J. O'Neil, P.E. O'Neil and G. Weikum, "An Optimality Proof of the LRU-K
Page Replacement Algorithm", Journal ofthe Association for Computing Machinery, Vol. 46,
No.1, pp. 92-112, New York, Jan. 1999.

[Schneider 83) R.I. Schneider, A Demand Driven Data Flow Environment for a Locality Study,
Thesis, Oklahoma State University, 1983.

[Seznec 93] A. Seznec, "A Case for Two-Way Skewed-Associative Caches", Proc. 20'11 Int 'I
Symp. Computer Architecture, ACM Inc., pp. 169-178, San Diego, Calif., May 1993.

[Silberschatz and Galvin 97] A. Silberschatz and P.B. Galvin, Operating System Concepts, Fifth
Edition, Addison-Wesley Longman, Inc., Reading, MA, 1997.

[Spiro 77] J.R. Spiro, Program Behavior: Models und Measurement, Ed. Peter J. Denning, New
York: Elsevier North-Holland, Inc., pp. 45-50, 1977.

[Tanenbaum 92) A. S. Tanenbaum, Modern Operating Systems, Prentice Hall, Inc., 1992.

[Temam 99) O. Temam, "An Algorithm for Optimally Exploiting Spatial and Temporal Locality
in Upper Memory Levels", IEEE TransClctions on Computers, Vol. 48, No.2, pp. 150-158, 1999

[Thoreson and Long 89] S.A. Thoreson and A.N. Long, "Locality, a Memory Hierarchy, and
Program Restructuring in a Dataflow Environment", The Journal ofSystems Clnd Software, Vol.
9, No.4, pp. 245-252, New York, May 1989.

[Trivedi 76] K. S. Trivedi, "Prepaging and Applications to Array Algorithms", IEEE
Transactions on Computers, Vol. C-25, No.9, pp. 915-921, September 1976.

[Van Den Berg and Gandolfi 92] J. Van Dcn Berg and A. Gandolfi, "LRU is Better Than FIFO
Under the Independent Reference Model", Journal ofApplied Probability, Vol. 29, No. 1, pp.
239-243, Sheffield, Mar. 1992.

43

APPENDIX A: THE PROOF OF CLAIM 2

Claim 2: For any reference string in PLMJrn, if memory size is m and the locality

window size set in the proposed algorithm is w, then the total number of page

faults is

k, if k ~ m,

NumPF ~{
k + N PF (n -1), otheIWise,

where

N

PF

j k-(Hf +Hm +H,),

1k, otherwise

H J =min(m + w- k,m -1),

l: I-I
H m = tH,

i=1

if m+ w-k > 0 ,

m + w - k , if i ~ lm~ 1J.
H = and

0, otheIWise,

H -,-

0, otheIWise.

44

Proof: If k s m, then the number of distinct pages is no more than the memory capacity.

Tills is demand paging and memory is empty initially, so there are k page faults for

storing k pages in memory. After the first reference to page k , every page is in

memory, and there are no more page faults at all. Therefore, there are totally k page

faults in this case.

The following discussion is based on the condition of k > m .

N PF is actually the number of page faults in one iteration except for the first one.

Without loss of generality, we analyze the second loop here.

For the sake of simpl icity, the following numbers associated with page mean indices of

pages.

After the first reference to page k, the memory content is pages {k, k -1,... ,k - m + I}.

At reference to page I, the locality window contains pages {1,2, ... , w}, so the number of

common pages in memory and locality window is

{

0 if w < k and 111 + W s k ,

No - m + w - k if w < k and m + w> k ,

m if w ~ k.

Case 1: w ~ k

Then every page in memory now is in the locality window. So the victim page is page

k - m + I and pages {k - m + 2, ... ,k} are all in the window.

k - m +1~ 2 => k - m + 2 >= 3 .

45

Before the reference to page k - m + 2 , pages {k - m + 2,... ,k} are always both in the

window and in memory and there is another page in memory to serve as a victim, so

references to these pages are all hits and the rest cause page faults. Therefore, the

number of hits is m -1 .

Case 2: w < k and m + w :::; k

Then w:::; k - m < k - m + 1, so there is no overlap between memory and the locality

window at reference to page 1. Therefore, the proposed algorithm selects the same

victim page as LRU, which is the least recently used page k - m + 1. There is one page

fault occurring. At reference to page 2, page 1 is added to memory and page k - m + 1 is

removed. Even page w +1 is in the window now, since w + 1< k - m + 2 and page 1 has

not resided in the window any more, there is still no overlap existing between memory

and the window and one page fault exists. Keep doing this, we can see that at any

reference, window and memory are disjoint and every reference is a miss. So the number

of hits is O.

Case 3: w < k and m + w > k

k > m implies that k - m + 1> I, and w < k, so the overlap of memory and the window

at reference to page 1 must be pages {k - m + I,k - m + 2, ... , w} and the victim page is

page w + I. Before the reference to page k - m + I , every reference is a miss and since

from page i to page t + 1, even window content changes from {t, t + 1.. .. , i + w -I} to

{i + l,i + 2, ...,i + w-l,i + w}, if i + w is in memory at i, it will be removed from memory

since it is the one outside the window with the lowest time stamp. Therefore, the overlap

46

from page 1 to page k - m are always the same, which is pages

{k - In + 1, k - m + 2,... , w} and references to these pages are hits. So the number of hits

from page 1 to page w = w - (k - m + 1) + 1= w + m - k .

At reference to page nw + 1 for n ~ 1. locality window content is pages

{nw + 1, nw + 2,... ,nw + w} and memory content is

1
nw - i if nw - i > 0 ,

for 0 ~ i ~ m - 1 ,

nw - i + k otherwise,

If m - 1 < nw, then nw - i wi II always be greater than O. So memory content will be

pages {nw -1, nw - 2, ... , nw - m + I} , and there will be no overlap between memory and

the locality window, hence there is no hits.

The following justification is based on the condition of m -1 ~ nw, i.e., n s m -1 .
w

There are two possibilities for the relation between k, w, and n .

(1) k ~ (n + l)w

JlW - i < nw +1 for i ~ 0, so i ~ nw is the necessary condition for that pages nw - i + k

are in the window.-----(a)

if 1 ~ k - i ~ w, then nw + 1~ IlW + k - i ~ nw + w, hence page nw - i + k is in the

window. In other words, when k - w ~ i ~ k -] , pages nw- i + k are in the window.----

-(b)

k ~ (n + l)w implies that k - w ~ nw and k > m implies that k -1> m -I . -----(c)

47

By (a), (b), (c), and 0 ~ i ~ In -I, the sufficient and necessary condition for pages

nw - i + k residing in the window is k - w ~ i ~ In -1. That is, the number of common

pages between memory and the window is In -1- (k - w) + 1= In + w- k. By the

similar discussion at the beginning of case 3, we have that from page nw to page

(n + I)w, before the first element in the overlap, every reference is a miss and the

overlap remains the same. So the number of hits from page nw to page (n + I)w is

m+w-k.

(2) nw < k < (n + l)w

Even the locality window contains pages {nw+ l,nw+ 2, ... ,nw+ w}, since k < nw+ w,

nw - i + k may not be greater than k. nw + 1 ~ nw + k - i ~ k ~ I ~ k - i :s: k - nw. So

when nw ~ i:S: k -1, pages nw- i + k are in window. Since 0 ~ i ~ m -1 and

k - I > m - 1, the sufficient and necessary condition for pages nw - i + k in the window

is nw:S: i :s: m -]. Therefore, the number of hits = 111 -] - nw + 1 = In - nw from page

I1W+ 1 to page k.

In a word, let 11 =l:J' H f stand for the number of hits from page I to page w, H the

number of hits from page nw + 1 to page JlW + w for 1 ~ n :s:l:J-],and HI the number

of hits from page nw + w + 1 to page k, during one iteration(page 1 to page k), we get

(i) Ifw2:k,then m+w-k>O and the number of hits is m-l,i.e., H f =m-1.

(ii) If w < k and m + w - k ~ 0, then the number of hits = O. That is,

H f = H = HI = O.

48

(iii) If w < k and m + w - k > 0, then HI = m + w - k , H = m + w - k if

n,;lm: 1Jand 0 otherwise, and H, ~m-IIW if II ,;lm: IJand 0 otherwise.

w~k>m=>m+w-k~m>m-l,

w<k=>m+w-k<m=>m+w-ksm-l,

1
1'1'1 - 1, if w ~ k ,

so min(m + w- k,m -1) =

m + w - k if w < k .

so HI =min(m+w-k,m-l) if m+w-k>O.

As a result, if k > m , then the number of page faults during one iteration is

Jk-(Hr+Hm+H,),

N
PF 1

k, otherwise.

where

HI =min(m + w- k,m -I),

l~
-I

w

H m = H,
i=J

if m+w-k > 0 ,

m+w-k, ifiSlm~ll

H =

0, otherwise,

and

49

'flkJ lm-1J d k1 - = -- an w< ,
w w

0, otherwise.

Since except for the first loop, the number of page faults are the same. Hence, the

total number of page faults is k + N PF (N -1). The claim is proved.

50

APPENDIX B: THE PROOF OF CLAIM 3

Claim 3: For any reference string in PLM_kn, let memory size be m, then the page-fault

rate in LRU is

fN, if k ~ m,

PFRate~ {

100% , otherwise.

Case 1: if k S; m, obviously, the total number of page faults is k occurring during the

first k distinct page references. After that, every reference is a hit since

every page IS In memory. So the page-fault rate is XN = fN .

Case 2: if k > m ,

Since each page in one iteration is distinct and initially memory is empty,

first k references will cause k page faults. After the first k references, since

k > m and all k pages are distinct, at every reference XIII where 1~ m ~ k •

the memory content is

JXm-i ifm-i>O,

1 for 1,; i ,; m ,

X k+m-; otherwise,

k > m and i ~ m => i < k => k - i + m > m, I S; i => m - i < m, so x m is

not in memory, hence, there is a page fault. Therefore, every reference

causes a page fault. So the page-fault rate is 100%.

51

APPENDIX C: THE PROOF OF CLAIM 4

Claim 4: For any reference string in PLM_kn, if the locality window size w set in the

proposed algorithm is greater than or equal to k - 1, then the number of page

faults is independent of w.

Proof: Without loss ofgenerality, we assume that m > 1.

By Claim 2,

Case 1: If k ~ m, then N PF = k , so the claim is true.

Case 2: k > m , then k > 1.

w ~ k -1 ~ m + w- k ~ m -1 > 0, so N PF = k - (H f + H m + HI) .

H f = min(m+w-k,m -1) =m-I,

k k lkJ-s--=l=> - -I~O~HIII =0,
w k-l w

If w = k -1,

then l~J=I. And

lm-l] lkJ lm-lJk>m~w=k-l>m-1~ ~ =O~ w "# ~ .

So H, =().

Else, w> k - 1~ w ~ k ~ HI = 0 .

Therefore, N PF = k - (m -1) = k - m + 1, which is independent ofw.

That is, the claim is true.

52

APPENDIX D: THE PROOF OF CLAIM 5

Claim 5: N PF given in Claim 2 is a non-increasing function of the locality window siz

w.

Proof: Without loss of generality, we assume that k > m and In ~ 2.

In order to prove claim 5, it suffices to prove that N PF (w) ~ N PF (w + 1) for w ~ I .

There are 3 cases for the relationships of w, w+ 1, and k:

Case I: w ~ k and w + 1 ~ k .

Case 2: w < k and w + I = k .

Case 3: w + 1 < k and w < k .

Case 1: Since w ~ k and w + 1~ k , by the proof of claim 2, we know that

Case 2: Similarly, N PF (w+l)=k-(m-I).

w + I = k ~ w =k -1 ~ m + w - k = m -1 > 0 and l:J= 1, so by claim 2,

H f = min(m -I,m -1) = m - I .

l:J-1 = 0 ~ Hili = O.

m-I lkJ lm-IJk > m ~ w =k - I > m - 1~~ < I:::;, w > ~ ~ HI =o.

Case 3: There are 3 subcases existing for this case:

Subcase 1: w<k-m and w+1=S;k-m.

53

Subcase 2: w = k - m and w+ 1=k - m + 1.

Subcase 3: k> w> k - m and k > w+ 1> k - m.

Subcase I: By claim 2, w+lS;k-m~m+(w+l)-kS;O~NpF(w+l)=k

Subcase 2: For the same reason, N PF (w) =k .

w+ 1=k - m + 1~ m + (w + 1) - k =1~ H f = m in(m + (w + 1) - k, m - 1) =1.

Subcase 3: m + w - k > 0 and m + w +1- k > 0

H'<k~m+w-k<m~m+w-kS;m-l~H; =m+w-k.

w+ 1< k ~ m + w + 1- k S; m -1 ~ H7J = m + w+ 1- k .

m-l k-w k
w> k - m ~ 111 > k - w~ m - 1~ k - w~-- ~-- =- - 1-----(1)

w w w

.. m-l k
SImilarly, -- ~-- -1-----(2)

w+l w+l

m-l k
It! < k ~ m - I < k ~-- S; - -----(3) and

w w

m-I k
-- S;-------(4)
w+ 1 w+ 1

From (1), (2), (3), and (4), we have that either lm~ 1J= l: Jor lm: 1J= l: J-I ,

. lm-lJ lkJ lm-lJ lkJand eIther w+l = w or w+l = w -J.

54

lm-lj lm-Ij lm-lj lm-ljSo either -- = -- or -- = -- + 1.
w w+l w w+l

H,:;'+I - H;;' = t(m + w+ 1- k)-t(m + w-k) = t 2: 0 where

lkj 'lm-Ij lkj lm-lj' lm-lj lkjt =w -1 If ~ =w or t =---;- If ~ =w -1,

H ,W +
J
_H,w =-lW:lj iflm~1j=l:j or H,IV+1-H,'" =0 iflm~lj=l:j-l,

and Htl -HI =(m+w+l-k)-(m+w-k) =1.

So N (w)-N (w+l)=H w
+

'
+H w

+\ +H w
+' -(H'" +H w +HW)=O if

PF PF f m I f m I

lm-lj lkj lm-lj' lm-lj lkj~ = w and NpF(w)-Npr(w+l) = ---;- +1>0 If ---;- = w -1.

. 'lkj l k j lm-1j lm-ljThat IS, Npr(w)~NpF(w+I)If w = w+1 ~1 and ~ = w+l .

lm-1j lm-1jIf ~ = w + 1 + I , then

H w lkj d H w
+

1 0I =m - w w, an I =',

Since l: j= lw:1j~ 1, let p =l: j=lw: 1j. Then

HI + H;' + H;v = (m + w - k) + pm + pw - pk - m - w + k + m - pw = pm - pk + m and

55

H W +1 Hw+' H W +] kf + m + I = pm + pw+ p - p ,

If pw + p < m , then l~j(w +1) ~ m -] => m - 1 2:: l~j => lm - 1j2:: l~j > l_k-J-I,a
w w+] w w+ 1 w w+ 1

contradiction. So pw + P 2:: m. That is, N PF (w) - N PF (w + 1) = pw + p - m 2:: 0 if

lkj l k j lm-Ij lm-ljw = w+ 1 ~ 1 and ----;- = w+ 1 + 1.

By the similar discussion, we can get that N PF (w) 2:: N PF (w + 1) when l:J>lw: 1j.

Sf)

APPE DIX E: THE PROOF OF CLAIM 7

Claim 7: Initial locality window size has no effect on the number of page faults for any

reference string in PLMJm in the proposed algorithm.

Proof: Let the reference string be x"x2 , ... ,xk ' XI"'" x*"'" initial locality window size be

w, and memory size be m .

Since Xi are distinct for 1sis k, no matter what w is, references to XI ,x2 , ... , and

X k all cause page faults. So after the first loop iteration, the number of page faults

is k independent of w. At the second reference to page XI' W is set to be k-l

according to the principle of the proposed algorithm whatever it initially is and it

won't change thereafter.

Therefore, initial locality window has no effect on the number of page faults for

any reference string in PLMJm in the proposed algorithm.

57

APPENDIX F: FLOW CHART OF THE PROPOSED ALGORITHM

Process the first reference

Reset all
variables

F

T
Fit in a
pattern ?

A loop
existing

?

Not a hit
but fit in a
pattern ? F

T

Store current
F page in one

=:;::.--t~ available slot
and set time tag

Substitute the victim page and set time tag

APPENDIX G: FLOW CHART OF THE LRU ALGORITHM

T

Update time tag T
In
memory?

Store currenl
page in one
available slot and
set time tag

Look for the least recently used page

Substitute the victim page and set time tag

59

VITA

Xiang Hui Liu

Candidate for the Degree of

Master of Science

Thesis: EXPLOITING BOTH SPATLAL AND TEMPORAL LOCALITY IN PAGE
REPLACEMENT ALGORITHMS

Major Field: Computer Science

Biographical:

Personal Data: Bom in ZunVi, GuiZhou, P.R.China, the daughter of Ronghua
Liu and Jinqiu Zeng.

Education: Graduated from ZunYi High School, ZunYi, GuiZhou, P.R.China in
July, 1990; received Bachelor of Science degree in Mathematics from Peking
University, Beijing, P.R.China in July, 1995; Completed the requirements for
the Master of Science degree with a major in Computer Science at Oklahoma
State University in December, 2000.

Experience: Employed as a software engineer by the People's Bank of China in
NingBo, P.R.China from July, 1995 to December, 1997; employed by
Oklahoma State University, Department of Mathematics as a teaching
assistant from January, 1998 to August, 1999; employed as a summer intem
during summer, 1999; employed as a research assistant by Department of
Microbiology and Molecular Genetics and School of Mechanical and
Aerospace Engineering, Oklahoma State University from September, 1999 to
August, 2000.

