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CHAPTER I 

INTRODUCTION 

A variety of file structures have organizational 

methods to aid data management. For example, programs using 

sequential files, tree structured files, or hash files 

manipulate their data with a single primary key. 

Traditional, static hashing methods frequently outgrow 

overflow buckets by continuous insertions. This problem has 

been somewhat mollified by implementing dynamic hashing 

methods [FAGI79, RAMA85, LARS87, TAMM82]. 

Dynamic hashing methods do not suffer severe 

degradation from overflow bucket storage. They achieve this 

by reorganizing their shape continuously with the insertion 

of data. These structures adapt their structures 

dynamically without any loss of efficiency. File structures 

that provide multikey access to data are of great interest 

in various situations. For example, the organization of a 

physical database for efficient query needs two or three 

dimensions without favoring a certain dimension. To achieve 

this goal, several multikey file structures that avoid the 

deficiencies of inverted fil~s have been suggested. These 

strategies generally combine all fields into a single access 

path so that the structure treats every field as a primary 

1 



key~ None of these single structures can be optimal under 

all circumstances. 

The optimal structure is the bitmap representation 

[VALL76J. The bitmap representation of a record reserves 

one bit for each possible record in the total data space, 

and at the same time represents whether the record is 

present in the file or not. The bitmap representation 

appears to be an ideal solution for the multikey file 

structure because it does not require reorganization of the 

structure. However, the bitmap approach does present a 

major inconvenience since it needs an impracticably large 

amount of storage space. 

2 

One attempt to deal with the bitmap storage problem 

was proposed by Nievergelt [NIEV84]. By introducing a 

dynamic directory, Nievergelt suggests a grid file 

structure, which is both symmetric and adaptive for multikey 

access. Symmetry means that every field is a primary key. 

Adaptability means that the directory adapts its structure 

both dynamically and automatically to the bucket. 

Consequently, the directory size responds even at such 

primitive level operations as inserting, deleting, and 

finding in an automatic and dynamic manner. A further 

advantage of this structure is that the expected access time 

for a retrieval should be the same over the entire file by 

the adapted directory. 

Using the Nievergelt structure, analyses [REGN85, 

SARI87J, applications [HINR83, HINR85], and also 
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concurrencies [HAN88, SALZ86] have been researched actively. 

By utilizing two directory levels, the grid file structure 

is not only good for a highly dynamic multikey structure, 

but, it can conquer the storage problem since the grid 

structure handles a large amount of data. 1 

By using a simplified recombination method proposed by 

Cranston [CRAN75], a new directory partition method is 

presented. The new partition method ~mproves the worst-case 

numbers of disk access. Also bucket size for an actual 

record is reduced using various compression .techniques. 

This thesis presents the ramifications of this research 

and its practical applications. Chapter II previews both 

several primary key dynamic hashing methods and multi-key 

hashing methods. Chapter III previews various data 

compression methods for implementing the grid file 

structure. The general grid file structure and primitive 

operations are explained in Chapter IV. Chapter V outlines 

the directory compression method and the organization of the 

data compression method applied to the grid file structure. 

Chapter VI concludes the overall structural analysis and 

evaluates the expected cost and complexity of the storage. 

1 The comparison of one level and two levels of grid 
diectory is done by Han [HAN88]. 



CHAPTER II 

OVERVIEW OF HASHING TECHNIQUES 

Introduction 

Hashing is one of the fastest techniques for managing 

direct access files. The address calculation technique is 

so simple that retrieval, insertion, and deletion of records 

can be done using the hash function. Compared to tree 

structured techniques which require several accesses, the 

hashing technique allows the retrieval of a record in one 

access, when a file or a table is almost static. If the 

file, or the table, is dynamic, then since the performance 

of hashing is possibly prone to disintegration by a 

collision of data, the performance of tree structures is 

much better. 1 Several dynamic hashing methods have been 

suggested for handling a dynamic set of data [FAGI79, 

LARS87, LITWBO]. These hashing algorithms work efficiently 

for the dynamic files. However, all of the above structures 

are ranges of hash functions are linear. When the records 

have suitable only for one-dimensional data sets in which 

1 Use of the hashing technique required both the size 
of the file and the physical storage space allocated for the 
file to be known in advance in order to avoid collision. 
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the several attributes, it is necessary to have a multi­

dimensional data structure for handling all attributes of a 

record efficiently. One main advantage of a multi­

dimensional data structure is that it can handle partial 

match queries very easily. Several multi-dimensional 

dynamic hashing methods [BURK83, HUAN85, OUKS83, TAMM82] 

have been developed from one dimensional hashing methods. 

Single-key Hashing Methods 

5 

Dynamic hashing [LARS87] is based on conventional 

hashing, except that the allocation of storage space can be 

increased and dec~eased dynamically without reorganizing the 

file. The index structure of the dynamic hashing is 

reorganized dynamically, according to the number of records 

actually stored in the file. The initial index and bucket 

1 2 LEVEL 0 index 

I l data file 

Figure 2-1. Initial Structure of a Dynamic Hashing File. 
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storage structure of the dynamic hashing is given in. 

Figure 2-1. External nodes represented by the box shapes 

contain actual data bucket addresses. If the record to be 

inserted is represented as R, then the initial hash function 

H0 (R) is used for addressing. Ho(R) is a standard hashing 

function, so the value of Ho(R) separates the level 0 

indexes and puts the record R into the appropriate bucket 

storage. For example, the hashing function is 

Ho(R) = (R mod 2) + 1 

in Figure 2-2. As a result, if a record R has a even value, 

then that record stores in the bucket storage under index 1; 

otherwise, it stores in the bucket storage under index 2. 

By inserting data.continuously, the bucket storage 

overflows. Then, partitioning of the data bucket becomes 

necessary, in order to contain this overflow. Storage space 

for the new bucket is allocated and the records are divided 

between two buckets. At the same time, the index of the 

separated bucket must be updated. Figure 2-2 shows the 

dynamic hashing structure after three partitionings. 

Retrieval of a record, R, can be accomplished using 

H0 (R) and B(R); where, the hash function, B(R), is a 

uniquely defined pseudo-random number associated with R. 

This function is performed by the equation 

b~ E {0, 1}. 

The root of a search tree can be located using H0 (R). The 

searching for the record R in the index tree structure can 

be determinated using B(R). The determination of left or 



LEVEL 0 

LEVEL 1 

LEVEL 2 

100 

/ 

20 21 

101 

1 2 3 4 

Figure 2-2. The Dynamic Hashing Structure after 
the Third Partition Operation. 

5 

right subtree paths is done using b~; where, i = level + 1. 

7 

The pseudo-random function, B(R), balances the tree yielding 

short search paths. 

If the number of records in two brother buckets becomes 

less than or equal to the capacity of one bucket, these two 

brother buckets merge into one bucket. Two buckets are 

brothers if the two external nodes which point to these 

buckets have the same father node. At the same time, that 

these two brother external nodes are being deleted, the 

internal node associated with these two external nodes is 
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itself changed to an external node. The new external node 

points to the new bucket by the merger of the brother 

buckets. The dynamic hashing structure maintains its 

structure according to insertions and deletions without the 

use of overflow chains. When index trees are maintained in 

main storage, a maximum of one access to the storage 

structure is guaranteed. However, this performance depends 

upon the index structure being small enough to fit into main 

storage. 

Extendible hashing [FAGI79] is developed from the 

randomly grown radix search tree [FRED60]. It only has a 

directory structure and a bucket structure. The structure 

contains a header which represents the total depth, d, of 

00 

01 

10 

11 

Directory Leaf pages 

2 

I 1 I 
h(-) = 0 .... 

I 2 j 
h(-) = 10 .... 

2 I 
h(-) = 11. ... 

Figure 2-3. Extendible Hashing with Total Depth d = 2. 
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the directory. Figure 2-3 shows the case, where d = 2, at 

the structure. The directories with pointers to the bucket 

storage follow the header. The number of directories is 2d 

because directories are doubled each time directory 

partitioning is invoked. Each leaf page has a header that 

contains a local depth d'; consequently, all keys in the 

local page have the same first d' bits. The total depth, d, 

of the directory is the maximum of the local depth, d', of 

all the leaf pages. When the leaf page overflows, the first 

reaction is to check the local depth, d', with depth d. If 

Directory 

000 

001 

010 

011 

100 

101 

110 

111 

3 
1 

-

Leaf pages 

1 I 
h(-) = 0 ..... 

2 I h(-) = 10 .... 

2 I h(-) = 11. ... 

3 I 
h(-) = 111 ... 

Figure 2-4. Extendible Hashing with Total Depth d = 3. 



d' < d, then only one new bucket is created; there is no 

directory doubling. The structure shown in Figure 2-4 is 

the double state of the directory shown in Figure 2-3. 

10 

To retrieve the record, R, from the extendible hashing 

structure, h(R) must be calculated and its first d bit must 

be found. Using the address computation method, the 

location of the directory which has the same first d bit 

patterns can be ascertained. Then, the bucket can be found 

using the pointer from the directory. A maximum of two-disk 

accesses is guaranteed. 

The cost of directory doubling is not as expensive as 

it appears because the actual data buckets are not changed. 

Also, the doubling of a directory is done using the buddy 

system [PECH82], so the merging of buckets occurs without 

external access. 

Linear hashing [LITW80] suggested by Litwin is another 

dynamic hashing techniques. The hashing function 

H = (he, h:~., h::z, h3·, ... , h~, ... ) , 

where 0 :5 i < oo 

grows as record insertion makes the data in a bucket 

collide. To illustrate this principle, u is the total key 

space and N is the total number of buckets. Hence, in the 

equation 

ho : U -> { 0, 1, · · . , N - 1} 

the initial hashing function for loading is denoted by ho. 

The hashing functions h:~., h::z, h3, ... , h~, are called 

split functions of initial function ho if they satisfy the 



following rules: 

h:1. u -> { 0 I 1, ... I 2 :i.N-1 } 

For any u either: 

ho ho 

200 

10 21 
50 61 
80 

0 1 

or 

22 
32 

2 

49 
69 

9 

Figure 2-5. Collision of Data Bucket 0. 

For example, the initial state of a data bucket is made by 

the function ho where the number of data items, N, is 10 

(N=10) and bucket capacity, b = 3, is shown in Figure 2-5. 

11 

Also, for this diagram, there is no overflow bucket to allow 

highly dynamic structures. If the next datum inserted is 

200, then bucket 0 overflows. In this case, the hash 
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function, h 0 , is changed: 

if ho(U) = 0, then 

h(u) = h:~.(u) 

else h(u) = h 0 (u); 

where, h 0 (u) = u mod N, and h:~.(u) = u mod 2N. The bucket 

content after splitting is shown in Figure 2-6. 

As a result, the linear hashing scheme increases and 

decreases its bucket storage dynamically according to the 

incoming data. 

h:l. ho 

80 21 22 49 10 
200 61 32 69 50 

0 1 2 9 10 

Figure 2-6. Extended Bucket Storage by h 1 Function. 

To retrieve a record R, the following algorithm is used 

for calculating the bucket index. 

idX = hr..EVEr..(R) 

if idx < NEXT, then 

idX = hr..EVEL+:l(R); 
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The two variables LEVEL and NEXT are defined as: 

- NEXT points to the next candidate for splitting 

- LEVEL contains a value which is the number of times 

the total space has doubled and is represented by 

LEVEL = l log2(n/N) J 
where n is the current number of buckets and N is the 

initial number of buckets. 

In linear hashing, if the record to be inserted is 

dynamic, then the mean number of accesses per search 

approaches 1 and the loading factor is about 90% by using 

chains according to Litwin [LITWBO]. A further advantage of 

this method is that the address computation is simple and 

rapid. 

Multi-key Hashing Methods 

The extendible cell method [TAMM82] is an application 

of the extendible hashing [FAGI79] to two dimensional files. 

The methods uses the assumption that the total area 

A= [0,1) x [0,1). The point (x,y) E A has the binary 

representation 

X = 

The hashing function, h(x,y), is computed as 

h(x,y) = 

Here, the extendible cell implementation of a point file F 

on area A is the structure obtained by applying the 

extendible hashing method on the region ([0,1)) 2 to h(F). 

Because calculation of the hash function h(F) can be costly. 
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However, the extendible cell method has a directory 

structure. When directory doubling is initiated, the domain 

is halved alternatively in the x and y direction. However, 

the directory doubling does not affect the leaf bucket page 

at all. Directory doubling is initiated by the increment of 

total depth, d, which is the same as the extendible hashing 

method. So, instead of using hash function h(F), the two-

dimensional directory index function index(x,y) below is 

used: 

index(x,y) 
J + l J 

where dx =f d/2 l, dy =l d/2 J and total depth d = dx + dy 

The index function index(x,y) can be used as a two-

dimensional directory index. In the case of a structure 

with more than two-dimensions, the merging process can cause 

a deadlocked state. To avoid a deadlock, the merging 

sequence should be made the reverse of the partition 

sequence. This is effected by maintaining the history of 

the partition sequence as suggested by Huang [HUAN85]: 

The storage mapping for multi-dimensional linear 

dynamic hashing (MLDH) [OUKS83] is adapted from the linear 

hashing method. As an example of the MLDH method, let 1 be 

the total number of partition sequences completed along all 

dimensions. Because of the cyclic nature of partition 

sequences along all dimensions, l can be expressed as 

1 = Ld + r, where L is the number of splitting cycles 

completed, and d is a dimension; r is the next bucket for 

splitting by the given sequence. For example, if the 
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hashing function H~ is given for the record, R, 

where R = (R 0 , R~, ... , Rd-~) for the d dimensions. 

H~ (R) = ( hL+~ (Ro), • • • , hL+:L (Rr-1), 

hL ( Rr) 1 . . . , hL ( Rd- :1. ) ) 

Then, the next sequence of the split occurs along the axis r 

and the hashing function H~+:L is 

hL+ :1. ( R,..) 1 hL ( Rr+ :1. ) , • • • 1 hL ( Rd- :1. ) ) 

Hence, the sequence of hashing functions H1 , H2 , H3 is the 

split function of MLDH if thei satisfy the range condition 

and the split condition below: 

RANGE CONDITION 

H~ : R -> { 0, 1, 2, ... , 2~- 1 }. 

SPLIT CONDITION 

H~+:l (R) = H~ (R) 

or 

(hL+:L(Ro), ••• , hL+:L(Rr-:L), 

, hL(Rd-:L)) 

= H~ ( R) + ( 0, 0, 0, . . . , , 0 ) . 

For example, insert the two dimensional data below 

(10, 201), (45, 300), (77, 2095), (90, 1000), 

(100, 103), (4, 4000), (99, 220) 

into the MLDH where the bucket capacity b = 2. For the 

simplicity, no overflow bucket is used. 

Initially, the number of the bucket is 1. Records are 

inserted by Ho = (ho, ho), where ho(R) = R mod 1. 



dimension 1 

(10,201) 
(45,300) 

16 

dimension 0 

Figure 2-7. H = (ho, ho) in a Two-Dimensional MLDH File. 

Figure 2-7 depicts the state after two records are inserted. 

Insertion of record (77, 2095) initiates the splitting of 

the bucket because the bucket capacity is b = 2. 

dimension 1 

(10,201) (77,2095) 
(45,300) 

dimension 0 

Figure 2-8. H = (h~, h 0 ) in a Two-Dimensional MLDH File. 
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Figure 2-8 depicts the state after one split along dimension 

0. The hashing function is 

H~ = (h~, ho), where h~(R) = R mod 2. 

The continuous insertion of records results in the structure 

shown in Figure 2-9. 

dimension 1 dimension 1 

(10,201) (10,201) (77,2095) 
(100,103) (100,103) 

(90,1000) (77,2095) (90,1000) {99,2001) 
(45,300) (40,4000) (45,300) 

dimension 0 dimension 0 
a) b) 

Figure 2-9. H = (h~, h~l in a Two-Dimensional MLDH File. 

If d is a dimension, and if r~ are d - tuples of 

integers, then the storage mapping function M: r~ -> I 

satisfies 

M(H~(R) + (0, 0, .. I 2L, 0, , 0)) = M(H~(R)) + 2~ 

which follows 

M(io, ''I .. , i~-~) 

= M ( io, • • • I 

where l = Ld + r. 

To retrieve a record R = ( Ro, R~, .. , R~-~) by given 
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1 = Ld + r, the following algorithm applies: 

2. idx <- M(H~(R)) = E 

where P~ determines the coordinate of projection. 

3. If idx < NEXT then 

idx <- M(H~+~(R)) 

The definitions of idx and NEXT are the same as those used 

for linear hashing. 

Compared to the multi-dimensional tree structures 

[FINK74, ROBIBl], the MLDH method does not have any 

directory structures; therefore, traversing of the directory 

is not necessary, so the access time of records to approach 

0(1) from above. 

Linear hashing offers several other distinct 

advantages. An interpolation-based index maintenance 

[BURK83] is adapted from linear hashing; it does not have a 

tree-structured directory to traverse. The average 

successful search length is close to 1, and the space 

utilization can be easily controllable by the user. 2 

Interpolation-based index maintenance and the MLDH 

method are derived from linear hashing. Both methods use 

the address calculation method to find a bucket and use 

chaining to handle overflow under a controlled loading 

factor. However, the chaining can cause a long disk access 

chain for retrieving a record. Both the extendible cell 
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method and the multidimensional extendible hashing method, 

derived from extendible hashing, use directory partitioning 

for handling bucket overflow. However, the partition is not 

a function of density of data. As a result, if the data is 

biased heavily over the data area, then the utilization of 

the directory may be poor [HINR85]. 

In contrast to other hashing methods, the grid file 

structure offers significant advantages to streamlining data 

storage. First, the grid file structure does not have any 

overflow chains. Second, the partitioning of directory is 

flexible, since it follows the density of the data 

distribution. Ultimately, these advantages provide 

increased flexibility with a maximum two-disk accesses, and 

adaptability for various data distributions. 

2 The theoretical worst case of interpolation-based 
index maintenance has time complexity O(n) steps for total n 
records due to allowing the chaining structure to prevent 
overflow. 



CHAPTER III 

DATA COMPRESSION METHODS 

Many data processing applications store large volumes 

of alphanumeric data, such as names, addresses, inventory 

descriptions, or a general ledger account chart description. 

On-line manuals and help files in computer systems also need 

massive amounts storage. Recently, the proliferation of 

computer communication networks and teleprocessing 

applications further have complicated the questions of 

adequate storage by involving massive data transfer over 

long-distance communication links. 

Data reduction implies a need to reduce the redundancy 

in the data representation, that is to compress or compact 

the data. Since compression techniques reduce the size of a 

file by 30%- 90% [DAVI73], it is surprising that these 

technique are not used more widely. The term "data 

compaction'' as defined by Severance [SEVE83], means that the 

data must be encoded in such a way that data size is reduced 

while all relevant information is preserved. 1 There are a 

variety of ways to reduce file sizes. 

1 Data compression is a reversible data compaction 
process which can be used for encryption also. 

20 
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First, data size can be reduced by avoiding empty 

space. Empty space avoidance in a file assumes all the 

fields of the file are a fixed length. If one or more data 

fields frequently are empty, then the database can be 

reduced by one additional field. If the field exists, then 

set its bit to one otherwise, set to zero. 

Adaptive pattern substitution is another reduction 

method. It uses two passes without relying on any existing 

patterns. An adaptive pattern substitution algorithm first 

scans the entire data, by examining it for frequent, common 

patterns of two or more bytes. Then, this method 

substitutes an unused byte pattern for the frequent common 

pattern. At that time, the substitution dictionary is 

updated for that byte pattern. For example, if text is 

DAABFABCABAB, then this can be replaced as DAaFaCaa where a 

is the entry a = AB in substitution dictionary. Thus, the 

total length of this field has been reduced by 4. 

For a variety of reasons, commercial databases usually 

have a large number of blanks, zeroes, and other characters 

used for the padding empty data or variable-length data 

fields. The general scheme for suppressing empty fields is 

called run-length encoding. Martin [MART77] explains a run 

suppression technique for EBCDIC data with no lowercase 

characters. Using this method, the second bit of all EBCDIC 

characters is always 1. When using EBCDIC characters for 

run-length encoding, the second bit represents the run­

length encoding code. 



X 0 X X X X X X 

I I I I I I 
I These six bits give length 

0 means null suppression 

0 means suppression of zeros 

1 means suppression of blanks 

Figure 3-1. Suppression of Repeated Character Method. 

For example, if only blanks and zeroes are suppressed 

as in Figure 3-1, then a single bit can be used to 

distinguish between them. 6 bits remain to designate run 

lengths as long as 64. characters. Furthermore, if only a 

single null type is suppressed, then there is no need to 

identify it explicitly. 

Huffman [HUFF52] also has approached the problem of 

22 

file-size reduction, developing an optimum method of coding 

an ensemble of messages consisting of finite numbers. 

Huffman coding is a variable-length coding which has 

supplied an optimal length code successfully also. One can 

construct a Huffman coding for any problem by building a 

binary tree. Initially, encoding units are listed in order 

of their probability of occurrence. Next, the two units 

with the smallest weights are removed from the table: a 0 

branch is assigned to one and a 1 branch to the other. 
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Their weights are added, then assigned to a new combined 

unit which is merged into the diminished list to maintain 

order. This procedure is repeated until a single unit 

remains as the root of the binary tree just as constructed 

in Figure 3-2. 

Char Weight Code 

A 30 

B 25 

' 1 11 

10 
l 1 
lo 

c 20 1 ROOT 01 

D 10 1 0 011 

E 8 1 0 0001 

F 4 

G 3 

00001 

00000 

11 0 
0 

lo 

Figure 3-2. Huffman Coding Tree. 

The example presented in Figure 3-3 shows the 

efficiency of this method. The data string in the top 

portion can be decoded immediately by reading left to right 

without waiting for the end of the string, since each 0 

(or 1) represents the path to the leaf node from the root. 

The algorithm for implementing encoding and decoding was 

done by Schwartz [SCHW64]. 



24 

Encoding message 00000 011 10 11 011 10 

Decoded message G D B A D B 

Figure 3-3. Encoding and Decoding of Huffman Coding. 

However, if one or more bits are lost during the 

communication through noise or error, then the data cannot 

be understood in its entirety. When the third bit of the 

encoded message in Figure 3-3 has an error which changes it 

to 1 by any error, then the total message cannot be 

understood because the Huffman encoding method used a 

variable length encoding technique. 

Even though the Huffman coding method has been 

evaluated as the optimum minimal encoding method, it 

presents unique problems: two-pass construction is 

unavoidable for making the weight table, a factor which can 

be the weak point of data communication. 2 For example, when 

the actual weight of each unit is either unknown or changed 

over time, as is the case "-'-1-. w~ l....:...t a data message block over 

a transmission line, then whatever data compression method 

2 The weight or the probability of weight already has 
been studied in commercial database. 
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is used needs to have only one pass rather than two passes. 

A class of universal coding methods [DAVI73, ZIV72, 

ZIV77, ZIV78] can compensate for this lack of knowledge. By 

using the sibling property defined by Gallager [GALL78], 

Knuth [KNUT85] showed that the same weight node in the 

Huffman tree can be exchanged by the changing of its weight, 

so the Huffman tree dynamically adapts its structure. 

Mcintyre [MCIN85] applied the static and dynamic Huffman 

coding techniques to 530 source programs in four different 

languages. The ·results show that the static Huffman coding 

method makes significantly smaller compressed files than the 

dynamic Huffman coding method for originally small files. 

Pechura [PECH82] further s~rveyed and tested the static 

Huffman coding method using small computers where the 

secondary storage is relatively small. The compression 

potential is invaluable to reclaim the usable storage space. 

As a further advantage, he also found that both reading and 

writing speed increased when using compression method. 

Despite its obvious advantages, the Huffman code 

[HUFF52] may have some distinct drawbacks. The variability 

of the Huffman code may be a drawback because almost all 

computers are word-oriented rather than bit-oriented. 

However, this shortcoming may be avoided by using restricted 

variability codes. 

Figure 3~4 presents a conventional 2/4 code where the 

11 is used as the switch code. Generally, the 2/4 code can 

represent 7 characters. In this example, the 3 most 
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frequently used characters are represented by 2 bits. The 

switch code "11" is used to distinguish between these 

frequently used 3 character codes and the less frequently 

used 4 character codes. However, t~is restricted 

variability code generates a less efficient code than the 

Huffman coding which is explained below. To represent 7 

characters, at least 3 bits are needed. Therefore, the 

total number of bits used for representing characters in 

Figure 3-4 are 3 x 100 = 300 bits, if the standard character 

representation-method is used. 

The restricted variability coding method needs 250 

bits, which is as efficient as the Huffman coding (which 

needs 247 bits in Figure 3-2). If the combined weights of 

A, B, C are sign:ficantly heavier than D, E, F, G, then this 

Char weight Code 

A 30 oc 

B 25 o: 

c 20 10 

D 10 1100 

E 8 1101 

F 4 1110 

G 3 llll 

Figure 3-4. 2/4 Code. 
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compression method is adequate for the task. Also, by using 

the fixed length code, data access is ultimately more 

efficient in performance than the Huffman coding method. 

Cormack [CORM85] developed the top-down construction 

algorithm applied on the IBM's 11 Information Management 

System 11 as yet another method for providing reduction of 

file size. Although this algorithm is slower than the 

Huffman coding, Cormack's method is acceptably fast and 

allows better compression. Additionally, the algorithm does 

not require a lot of working space for the encoding table. 

The Bentry group [BENT86] has suggested a data 

compression scheme that exploits locality of reference, 

which occurs when words are used frequently over short 

intervals in a b:ock and then fall into long periods of 

disuse. This algorithm is based on a simple heuristic for a 

self-organizing sequential search. If the message of one 

block is all upper case letters separated by single spaces 

and terminated by ''! '', then for ·purposes of demonstration we 

can use 

"THE SCOOTER ON THE LEFT HIT THE SCOOTER I LEFT!" 

Here, sender and receiver maintain identical arrays using 

the "move to front" heuristic for fast searching of the 

frequent word. The arrays are initially empty. To send the 

word W, the sender searches for the W in the array. If W 

exists, then the sender transmits I, which is the index of 

array, then the receiver decodes by writing the Ith element 

in the array. Then, both move W to the front of their 
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array, shifting the array from the 1 .. I - 1 to the. 2 .. I 

position. However, if W does not exist in the array of N 

words, then the sender transmits the integer value N + 1, 

followed by the word W. The receiver can now detect that 

the new word should be added to the array if the integer 

value N + 1 is greater than the size of the current maximum 

word number N. Then, both sender and receiver move the new 

word W to the front of their arrays. In this example, after 

transmitting the first three words of the above message, 

both of them have the identical array content, 

"ON SCOOTER THE" 

The next word, "THE", is encoded by the integer 3, 

because "THE" is already in the array. 

is encoded as 

The entire message 

1 THE 2 SCOOTER 3 ON 3 4 LEFT 5 HIT 3 5 6 I 5 ! 

Each word is transmitted as a string of letters exactly 

once; subsequent occurrences are encoded by integers. The 

Bentry group [BENT86] reports that this compression method 

although sometimes significantly better than the word­

oriented Huffman coding method is never significantly worse. 

By selecting an appropriate method which has a 

reasonable compression ratio and complexity, compression can 

be applied to almost all database environments. This is 

especially true in practical database systems. Decoding 

time is given the greatest priority because data decoding is 

required whenever data is retrieved. Encoding, a much less 

frequently used operation, requires only when insertion or 
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update is necessary. The only time a large amount of 

compression is required here is during a complete reloading 

of the database file. 



CHAPTER IV 

THE GRID FILE 

Introduction 

The traditional single key access methods for table 

look-up on files, such as either the B-tree algorithms or 

hashing algorithms, rely on having keys with a value within 

the range of values for the table in the file. However, if 

the key has many fields or attributes, traditional single 

key access methods cannot be used. The grid file structure 

proposed by Nievergelt [NIEV84] is the one of the multikey 

structures which can handle all attributes without favoring 

any one attribute. Handling all attributes without favoring 

any one attribute means treating all attributes as primary 

keys. 

By using scales and directories, the grid file 

structure performs the two following tasks: the two disk 

search and efficient range queries with respect to all 

attributes. An exact matching query must retrieve a single 

record within at most two disk accesses whether searching is 

successful or not. If two levels of directory and scales 

are used for the grid file structure, then the upper level 

of the structure is composed of the "grid directory" and the 

"grid scale". They are also called the "resident directory" 

30 
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and the "resident scale" because they are always kept in the 

memory. Also, the lower level of structure is composed of 

the "block directory" and the "block scale", which are also 

referred to as the 11 subdirectory" and the "subscale." 

The first access to retrieve a record, is to the block 

directory, which is kept on disk. The result of this access 

is the loading of the subdirectories and subscales into 

memory. The second access loads the correct data bucket by 

the using subscales and subdirectories. The bucket 

structure must preserve the orders of each of the attribute 

scales to effect data-key locality. 

The grid file structure adapts its shape dynamically 

from the continuous insertions and deletions of records. 

The grid file consists of three abstract data types: the 

linear scale, the directory, and the data bucket. The 

following illustration explains these three abstract data 

types. 

Let the k-dimensional data area be represented by 

S =So X S~ X S2 X ... X Sk-~• 

MaxScale be a maximum number of partitions in one dimension, 

and r represent the data record. 

file can be computed as follows: 

The structures of the grid 

LINEAR SCALE 

Structure Scale~[MaxScale] of ScaleType 

K one dimensional ScaleType indexed set. 

ScaleType has a boundary. 

0 $ i $ k - 1 



Operation : 

Findidx : Findidx returns the indexes of scales for 

record r. 

PartitionScale : make one partition scale into two. 

MergeScale : Merge two scales into one. 

DIRECTORY 

Structure Dir[no][n~J [nk-~J of DirectoryType. 
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one k dimensional DirectoryType set which 

addresses the data bucket. DirectoryType has 

a pointer to data bucket and one additional 

bit to represent shared directory or not. 

Operation : 

GetDirectory : returns the pointer of the directory 

GetBuddyDirectory : returns the pointer of the buddy 

directory. 

PartitionDirectory : partition the directory in two. 

MergeDirectory : merge two directories in one. 

BUCKET 

Structure 

Operation : 

fixed~sized type of record, where the actual 

data records are stored. 

PartitionBucket allocate a new bucket storage and 

separate records in two buckets 

by the given boundary. 

Merge Bucket merge two bucket records into one. 
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The k linear scales represent k dimensions, i.e., 

attributes, and are divided by certain intervals using the 

binary buddy partition method. The k scales are used as the 

indexes to the directories. Each boundary in a scale 

represents a (k -1) dimensional partition which separates 

the directory into two parts. Each grid directory is an 

one-to-one mapping from the directory to the actual data 

bucket address in the disk storage. Several grid 

directories may share one data bucket, but no grid directory 

can have two or more data buckets. Data buckets are fixed-

sized structures of records in which actual data is stored. 

Using these structures and primitive operations, basic 

operations, such as find, insert, delete, can be performed. 1 

An example of a multikey searching is shown in Figure 

4-1. If the search record is (1980, c), then the search 

algorithm looks up the scales to find the indexes. By using 

the indexed directory, the data bucket which holds the 

searching data can be found easily. 

For handling large amounts of data, the grid file has 

two levels of directories: resident directory and bucket 

directory. The resident directory always is kept in the 

memory, while the bucket directory is kept on the disk. 

1 The specific structures and operations of the grid 
file are discussed in the next chapter. 
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search data (1980, c) 

resident resident 
scale directory 
,..---

z 
'--

u 
-
M 

-
F 

-
c X 

..._ 

resident 
scale 11000 1500 1750 1875 2000 

block block 
scale directory 
,..---
cz 
r--
CD X -
'-- Bucket 
BB 

-
AD 
r--
AA ____. (1980, c ) 

-
r block 

scale 1775 1800 1825 1850 1875 

Figure 4-1. A Search for a Record in the Grid File. 
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A search algorithm references the resident scales and find 

the appropriate resident directory. The resident directory 

holds the physical addresses of subdirectories, which are 

kept on the disk because of large amounts data space they 

require. After loading the subdirectories and subscales, 

Resident 
Directory 

Bucket Direct9 
_ ....... ---~ 

Figure 4-2. Double Levels of the Directory. 
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the data bucket can be found using the same procedure. As a 

result, at most two disk accesses are needed for retrieving 

a record whether it is successful or not. 

Adaptability of the Grid File 

Figures 4-2 to 4-5 provide an example both of the 

adaptability and of the dynamics of the grid file. The data 

bucket is full after continuous insertions are done. 

Continuous insertion means that the data for insertion is 

requested continuously. Those requests trigger the 

partition of the grid directory. As a result, the structure 

grows by those requests. The merging of two directories is 

triggered by repeated deletio~s making the bucket empty. 

Initially, a single bucket B1 of capacity c = 4 

pictured in Figure 4-3 is assigned to the entire record 

0 0 0 0 

B~ 
0 0 

0 0 

Figure 4-3. Grid Directory and Bucket. 
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space. Inserting one more record causes the Bl bucket to 

overflow, resulting in the split of the scale and the 

directory, and a new bucket B2 is assigned to the newly 

0 

I 0 

0 
0 0 0 

0 B~ 
0 

0 0 

Figure 4-4. Splitting of a Directory. 

partitioned directory. 

If bucket B~ overflows again, then its grid directory 

is split according to the same splitting policy as pictured 

in Figure 4-4. For the efficient range queries with respect 

to all attributes, the splitting direction should be 

alternated. The bottom half of the records which were in Bl 

are moved to the bucket B3 as pictured in Figure 4-5. But 
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I 0 

0 

0 0 

0 0 0 

0 

0 0 

0 0 

0 

0 

I 0 

0 

II 

Figure 4-5. Subsequent Splitting of a Directory. 

here the bucket B2 has not overflowed. Consequently, the 

partitioning of B2 is not necessary for efficient memory 

utilization. 

Splitting Policy 

The grid file structure adapts its shape dynamically 

to the continuous insertions by splitting its directories 

and scales. There are several methods for choosing a 

boundary for a split, including the binary buddy systems 

[KNUT73, PETE84], the Fibonacci buddy system [BROM80, 

CRAN75], and the weighted buddy system [CHOW87]. In each 

case, some range Sn is partitioned into two subranges by the 
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formula below: 

If k = 1, then it is a binary buddy syste~. 

If k = 2, then it is a Fibonacci buddy system. 

The grid file structure proposed by Nievergelt [NUEV84] 

used the binary buddy system. The buddy system is an 

outgrowth of the neighbor system, both of which are pictured 

in Figure 4-6. In the k-dimensional buddy system, a merging 

is performed with exactly one adjacent buddy in each of the 

k dimensions. In the more generous k-dimensional neighbor 

system, merging can be performed with either left or right 

adjacent neighbors. Any of 2k neighbors in k dimensional 

structure can be merged as illustrated in Figure 4-6. 

Because, a bucket only can be merged to its buddy to avoid a 

deadlock situation (defined in the Merging Policy section of 

this chapter), the buddy system is more restrictive than the 

neighbor system. 

Even though the boundary for each scale can be 

different types of keys (i.e. integer, character string, 

etc.), assume that each boundary range is the unit interval 

[0,1) (left closed and right open) and create a binary buddy 

system. If an interval [a,b) can be obtained in [0,1) by 

repeated bisection, then that interval is called a binary 

radix interval. The number of bisections necessary to get 

the binary radix interval I is called the level of I and is 
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Bucket to be merged 

n I r I c 
n .~ ~ll 
' -

Neighbor System 

D 0! Jr--'\ 
r,;;' - !1!7,'7, II/ 1/h 11:1'!/1!);1 

~ 
0 ;;,. 

Buddy System 

II IWII 
1~11 

r-

'- '- I- '--

Figure 4-6. Buddy System and Neighbor System. 

represented as level(I). Figure 4-7 provides a detailed 

example of the process. If the interval is [0, ~), then the 

level is 1 since it requires one bisection of interval [0, 

1 \ 
.1. I ' For each binary radix interval I which is not [0,1), 

there is exactly one binary radix interval; i.e. buddy, J 

such that I and J are disjoint and their union I U J is a 
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. binary radix interval of [0,1) . 2 

1 

level(2) 

level(1) 
level(O) 

Figure 4-7. Finding Levels of the Scale. 

Splitting occurs at four different levels: data 

buckets; subdirectories and subscales; directory page; root 

A4rectories and root scales. If a directory page or a data 

bucket must be split, then one of two things may happen: 

either several directories share one bucket, or only one 

directory has the bucket. In the latter case, the boundary 

should be split into one of the scales and the one-to-one 

mapping is updated from the directory to the data bucket. 

In essence, this is the method illustrated in the procession 

from Figure 4-3 to Figure 4-4. 

2 Comparison of the binary buddy system with the 
Fibonacci buddy system is done by Peterson [PETE84] for the 
view point of internal and external fragmentation. 
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Finding the appropriate scale for splitting can be done 

by the cyclic method or the level method. 3 The cyclic 

method uses a cyclic sequence for choosing the partitioning 

scale. For example, if the i~n dimensional scale is used 

for partitioning, then the next candidate for the partition 

is the (i + 1)th scale. The level method searches the 

smallest levels of all k dimensional scales and chooses the 

smallest level scale as the next partition candidate. The 

new boundary is formed from the bisection of the binary 

radix interval. From this point, the two methods are 

identical: the data bucket records are separated according 

to the scale which is partitioned, and a new bucket is 

allocated to store the partitioned data records. 

Splitting a directory involves an adjustment of scales 

and directories. The scale is divided into two new scales 

at the boundary as shown in Figure 4-8. The directory is 

divided into two parts along the split boundary represented 

by the double line at the partitioned scale. If the shared 

directories have to be partitioned, then the buckets 

assigned to these shared directories cannot be shared. 

Hence, buckets whose directories are shared at the boundary 

must be split. 

3 The performance difference is analyzed by Han 
[HAN88]. 
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Figure 4-8. Splitting of a Directory Page. 

Merging Policy 

The grid file merging process is the mirror image of 

the splitting process. It occurs at all four levels of the 

splitting process. Although the processing itself is the 

mirror image of splitting, the merging sequence is not 

necessarily performed in the reverse order of the splitting 

sequence, a factor which is derived from inherent 
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limitations of the extendible cell method [TAMM82]. Similar 

to the splitting strategy, the candidate normally is limited 

to its buddy, as long as this buddy is not the neighbor 

which may cause the deadlock as shown in Figure 4-9. 

I 
D 

I 
-

Figure 4-9. Deadlock in a Neighbor System. 

Normally, if directory 1 in Figure 4-9 were 

underflowing, a neighbor directory is sought to initiate 

merging. However, in this example, there is no directory 

with which directory 1 can merge. This dilemma illustrates 

the deadlock problem which is both inherent and problematic 

in the grid file structure. The buckets cannot be merged 

again, because they no longer form a box shape. Deadlock is 

a destructive and significant problem, it leads to a non-
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adaptable structure which decreases memory utilization. In 

the buddy system, every shared directory region is the 

Cartesian product of binary radix intervals. For this 

reason, any candidate for merging must be one of the 

underflowing directory's k dimensional buddies: none of any 

of 2k buddies of the underflowing directory's neighbor are 

eligible for merging. Thus, the case in Figure 4-9 cannot 

occur when the buddy system is used. 

With the buddy system, a deadlock situation can also 

occur in a grid file structure of three or more dimensions. 

/ 

2 ' 

2 
3 4 

/ 
/ 

/ 

4 ,/ 

3 4 

6 

5 6 

Figure 4-10. Partition of a 3-Dimensional Directory. 
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In the 3-dimensional grid directory in Figure 4-10/ 

partitioned directories 1 and 2, 6 and 8, and 3 and 5 are 

merged. The resulting directory shown in Figure 4-11 is in 

a deadlock state because directory number 4 has no buddy 

with which to merge. 

/ 
/ 

' 

/ 

/ 
4 

Figure 4-11. A Deadlock State in a 3-dimensional 
Directory. 

This deadlock state can be avoided by an algorithm 

explained by Hinrich [HINR85]. Hinrich employs two 

important definitions to explain the deadlock state: the 

block region and the closed region. The block region is a 

box-shaped, Cartesian product of binary radix intervals. 
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The closed region is also box-shaped; here the projection, 

n~(k), onto each dimension should be a binary radix interval 

where 0 $ i $ k -1. Also, if a block region B intersects a 

closed region C, then all of the directories in the block 

region B are a subset of closed region C. 

To illustrate Hinrich's prevention of deadlock 

algorithm, B is a block region and C is a closed region. 

The possibility of deadlock when merging block region D~ and 

D2 can be checked by starting from the total directory T. 

The particulars of this prevention algorithm are shown in 

Figure 4-12. 

D = D~ U D2 

R = T 

MergePossible = True; 

while (R <> D) and (MergePossible) 

if exist closed region R~ and"R 2 

where R = R~ U R2, R~ n R2 = ¢, and (DC R~ or DC R2 ) 

if ( D C R~) 

R = R~ 

else R = R2 

else MergePossible = False 

end while 

return {MergePossible) 

Figure 4-12. Deadlock Prevention Algorithm. 
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A merging algorithm can be developed using Figure 4-12. It 

is explained in Figure 4-13. 

1. Find all k buddies which are potential candidates 

for merging. 

2. Put all candidates in the queue by level. 

3. If the queue is not empty, then 

a. get the first candidate in the queue. 

b. Check whether deadlock occurs by using 

prevention algorithm explained by Figure 

4-12. 

c. If deadlock does not occur, then merge 

the candidate and quit the algorithm. 

d. If a deadlock situation occurs, then 

repeat step 3. 

Figure 4-13. Merging Algorithm. 

Buckets need to be merged only when their added 

occupancy is far below the bucket capacity, which is 

generally 60% of bucket capacity. Otherwise, a few 

insertions may produce a splitting operation of the newly 

merged bucket. Unfortunately, there is no published study 

about the best threshold for merging buckets. So, the case 

is remains as an open question. After the buckets are 
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merged, the scale should be checked as to whether that 

boundary is still needed or not. If the boundary is no 

longer necessary, then it is removed and the directories are 

updated according to the adjusted scale. However, removing 

the boundary may invoke the directory page merging if its 

directory utilization is lower than a certain threshold. 

Finding the candidate for a merging buddy directory 

page invokes a situation similar to that illustrated by the 

merging algorithm. The subscales of the merging dimension 

can be obtained by appending the two subscales, and is the 

actual mirror image of the splitting in Figure 4-8. Two 

directory pages may be merged if the memory utilization of a 

combined new page is below the threshold of the bucket 

merging case. The cost of splitting the directory page is 

significantly higher than that of the bucket merging, 

because only one disk access is needed. For the boundary 

which separated the two pages is checked and removed if 

necessary, which leads to a directory adjustment. 



CHAPTER V 

COMPRESSION TECHNIQUES APPLIED TO 

THE GRID FILE STRUCTURE 

Directory Compression 

The grid file structure proposed by Nievergelt [NIEV84] 

has two structures available for handling data: a directory 

and a bucket storage structure. This type of structure 

allows record retrieval to be accomplished within two disk 

accesses using the directory in combination with the bucket 

storage structure. However, partitioning still involves a 

relatively large number of disk accesses and is somewhat 

unpredictable because of the distribution factor of the 

input data. 

The level and the buddy of a directory can be 

calculated by the interval of the directory if a binary 

buddy system [KNUT73] is used. However, record insertion 

can be time consuming, as the directory may be partitioned 

many times before the records in the bucket is partitioned 

into two buckets. The following example illustrates this 

problem. Using Figure 5-1, assume bucket capacity to be 

b = 1. Here, the insertion of two records in the bucket 

will require four directory partitions because of the 
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Figure 5-l. 4 Partitions Are Needed in a 2-Dimensional Grid 
File Structure where Bucket Capacity b = 1. 

proximity of the record positions. 

Using the extendible cell method [TAMM82] or 

multidimensional extendible hashing [OUKS83], these 

structures do have a directory to partition. However, if 

the partitioned interval is not at exactly the midpoint of 

the interval, then these structures do not have any way to 

separate the partitioned directory .. 

The grid file does, however, have a scale structure 

which can be used to separate the partitioned directory at 

some interval other than the exact midpoint. By 

partitioning the boundary of the scale, an interval value, 

which is not exactly the midpoint, but which nonetheless 

guides a subsequent partition of the directory, is assigned. 



52 

There is no compelling reason to partition at the 

midpoint of the interval, especially when data is not well 

distributed. An alternative to using this interval midpoint 

or to relying on the binary buddy system is to use a 

midpoint between given records in a field, hereafter 

referred to as the "midpoint of record." Figure 5-2 

illustrates partitioning using the midpoint of record 

method. 

Figure 5-2 illustrates that, provided the directory and 

the bucket are partitioned at the midpoint of the input 

records, any insertion which causes overflow of bucket needs 

no more than one directory partition. 

0 0 

1 

Figure 5-2. Partition at the Midpoint of Record in 
2-Dimensional Grid File Structure. 



There is a more important reason for using the .binary 

buddy system. Partitioning the space exactly in half, 

avoids the deadlock state in the grid file structure as 

defined by Hinrichs [HINR83] and discussed in Chapter IV. 
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If there were another way to find a buddy, then partitioning 

of the given space in half would not be necessary. 

The Cranston method [CRAN75] limits partitioning 

neither to the space of the interval at midpoint nor to a 

specific required interval as is normally required by the 

binary or the Fibonacci method. Cranston developed an easy 

way to partition and recombine with the Fibonacci buddy 

system by using two additional bits named the B bit and the 

M bit. In Figure 5-3, the B bit represents the buddy bit. 

If the B bit is zero, then the buddy is on its right side, 

otherwise the buddy is on the left side. The M bit is used 

to retain data for reconstruction of the original structure. 

B M 

level 0 

level 1 

g level 2 

Figure 5-3. Cranston's Partitioning and Merging Method. 
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Originally, at level 0, the B bit and the M bit are 

represented as X andY, where X and Y can be either zero or 

one. After one partitioning, the level 0 scale is 

partitioned into two different scales, band c, at level 1. 

By the same principle, the level 2 scale is further 

partitioned from level 1, and thus level 2 has 4 partitions. 

The b scale of level 1 has the B bit as zero because 

its buddy, the c scale, is on the right side. The M bit is 

X, the B bit of its predecessor scale. Also, the c scale at 

level 1 has the B bit as one because its buddy, which is the 

b scale, is on the left side. Here, the M bit is Y, again 

where Y is the M bit of its predecessor scale. However, in 

level 2, the e scale, which has B = 1 and M = X, and the f 

scale, which has B = 0 and M = 1, can not be buddies, but 

only neighbors. This determination is easily checked by the 

B bits of both scales. The recombination of scales reverses 

the order of partitioning. Also, the original X and Y bits 

can be reconstructed. 

Simulations whose data set are a 3-dimensional randomly 

generated file and the data file for a magazine index 

illustrate the midpoint of record method Here, a double-

level grid file as defined by NievergeJt [NIEV84] is used 

for analysis of the directories and scales. However, a 

single-level grid file result can be extracted by checking 

the data just before invoking the grid level partition. In 

the case of this single-level grid file structure, when a 

randomly generated data set is used, the number of the 
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Figure 5-4. Single-Level Biased Data Grid File Comparison. 
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directories and the number of the buckets are very close in 

both the binary buddy and midpoint o: record methods even 

though the method of partitioning is different. However, as 

illustrated by Figure 5-4.a, when a biased data set is used, 

the number of the directories in the ~idpoint of record 

partition method is better than the binary partition method 

by a factor of two. Biased data means that the data set is 

not distributed equally over the total data area. If the 

biased level is heavier, then the number of directories may 

be reduced further. 

In the case where two levels of the grid file with a 

biased data file are used, then the number of directories in 

the midpoint of record method is reduced to almost 65% of 

the binary method, as shown in Figure 5-5.a. However, the 

number of buckets required is slightly more than that of the 

binary method. Also, as Figure 5-6 shows, the number of 

directories in the midpoint of record method is slightly 

better, while the number of buckets is slightly worse. The 

reason for this result is that the upper, grid level 

partitioning cannot be done by using the interval midpoint 

for the middle block scale value, because each block 

directory and the block scales have different boundaries for 

the different sets of data. In the simulation, grid level 

partitioning is done by the binary method. As a result, 

each grid directory partition induces the bucket partitions 

of n - 1 hyperplanes of its subdirectories. For example, 

originally, the bucket capacity was b = 1 and the maximum 



59 

number of partitions was 2 in Figure 5-?.a. Here, the left 

upper corner numbers represent the indexes of the 

directories. If a new record x in bucket number 3 is 

2 3 X 2 3 X 2 3 X 

0 0 0 

0 0 0 

0 1 0 0 1 0 0 1 0 

0 0 0 

a b c 

Figure 5-7. Grid Partition Methods. 

inserted, a grid partition, represented by the double line 

in Figure 5-7, is necessary. Block partition is impossible 

since the maximum number of partitions for the block limited 

to only 2. 

In Figure 5-?.b, a binary partition occurs, while in 

Figure 5-?.c the midpoint of record method is used. In the 

case of Figure 5-7~b, the records in the bucket pointed by 

directory 1 and directory 3 must be partitioned because 

different block directory and block scales are unable to 

share a single bucket while maintaining the two-disk access 

principle. Even though the midpoint of record partition 
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method is used for the grid level partition, all block 

directories in the n - 1 hyperplane, except the current 

block directories, should separate their bucket records for 

the same reason as indicated in Figure 5-?.b. This is the 

main reason that the bucket numbers of the midpoint of 

record partition are more than those of the binary partition 

method in Figure 5-5.b and Figure 5-6.b. 

There is one other advantage to the midpoint of record 

partition method. Because the partitioning follows the 

midpoint of the block directory, it is guaranteed that one 

grid partition and one block partition are enough to divide 

any kind of the data set for a partition. Thus, the worst 

case number disk accesses in the part~tion is fixed to the 

n - 1 hyperplanes of both grid partition and block 

partitions. The abstract data type and its operations of 

the partition by the midpoint of record is: 

ABSTRACT DATA TYPE FOR A SCALE 

Scale [MaxScale] of ScaleType 

1 < MaxScale < oo, MaxScale : integer 

Structure of ScaleType 

B bit : Buddy bit, if budcy is rig~t side then 0 

else 1 

M bit Memory bit, used for reconstructing original 

memory 

UpperBound : biggest data fit into this memory 



Operation : 

Partition(Scale, i, NewBoudnary) : 

Partition of Scale [1] into Scale [i] and Scale [i+1]. 

Scale[i+1].UpperBound = Scale[i].UpperBound 

Scale[i+1].B = 1 

Scale [i+1].M = Scale[i].M 

Scale[i].UpperBound = NewBoundary 

Scale [i].M =Scale [i].B 

Scale [i].B = 0 

Merging(Scale, i) Merging of Scale [i] and Scale[i+1] 

into Scale [i] 

Scale [i].B =Scale [i].M 

Scale [i].M =Scale [i+1].M 

Scale [i].UpperBound =Scale [i+1].UpperBound 

Bucket Compression 
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The bucket storage is a fixed sized structure; its 

occupancy is about 69% [NIEV84] if a relatively large bucket 

size is used. Also, each field does not consume all the 

space it has available for storage (i.e. internal 

fragmentation of field). Thus, by its very nature, this 

structure presents the possibility of compression due to 

this habitually unused space. The actual file size, 

therefore, may reduced significantly if, instead of using 

fixed-length record bucket size, a variable-length record 

bucket is used. However, managing the variable length file 

is not easy. 
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Figure 5-8. Compression of Bucket Record. 



An alternative to using a variable length bucket size 

is to apply two different bucket storages and to try to 

reduce the total size of bucket file. This alternative is 
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presented in Figure 5-8. Here, two different bucket storage 

structures are created and a reduction method is applied to 

try to compress the total size of the bucket file. In this 

structure, the Huffman compression technique [HUFF52] is 

used for compressing bucket records. One of the bucket 

structures has the original size and stores records without 

using any compression technique. The other one has a 

smaller sized compressed bucket and stores records in a 

compressed form. In this case, the main reason for using 

two different sized buckets is to overcome the worst-case of 

the Huffman method, which is explained in Chapter III. 

Obviously, the total file size never outgrows the grid file 

bucket size. 

A further aid in reducing the complexity of the 

compression technique may be to establish a certain 

threshold for compression. For example, if bucket occupancy 

is less than 70%, then compress the bucket records, 

otherwise leave them in the non-compressed form. 

The converter of the grid file in Figure 5-4 is 

composed into a Compressor and Decompressor. 

data type of Compressor is: 

The abstract 



Huffman tree 1 of HuffmanNodeType 

Structure of the HuffmanNodeType: 

char character of the node if the node is external. 

left pointer to the left son 

right : pointer to the right son 

father : pointer to the father pointer 

Operation : 

FindCharater ( BitString, char) 

search Huffman tree by given bit-string until the 

external node. 

return the character of that external node. 

The abstract data type of the Decompressor is also 

presented: 

Huffman table [NumChar] of HuffmanTableType. 

0 < NumChar < ~, NumChar : integer. 

Structure of the HuffmanTableType 

char: character for translating into bit-string 

BitStr1ng: bit-string of the character form 

Operation : 

FindBitString(char, BitString) 

Search for the character in the Huffman table. 

Return the BitString. 

1 The construction of the Huffman tree algorithm was 
developed by Schwartz [SCHW64]. 

64 



65 

By changing the compressed bucket size from zero to the 

same size as the bucket size, the total file size can be 

easily searched. Figure 5-9 illustrates this concept by 

using the binary partition method. Here the bucket size is 

10 records and the 3000 records are being inserted. As 

Figure 5-9 shows, the graph experiences an almost 66% 

reduction of the original file size. 
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In summary, the midpoint of record partition method has 

several characteristic results. In the case of a single­

level grid file structure, if the midpoint of record 

partition method is used, the compression ratio of bucket 

and directory is proportional to the distributions of the 

incoming data. If a double-level grid file structure is 

used, the bucket storage is increased if the midpoint of 

record partition method is used. However, the directory 

size is reduced to around 65% of the original directory 

size, and it is also proportional to the distribution of the 

data. The bucket reduction ratio in Appendix B further 

illustrates the compression ratio's relation to bucket 

occupancy. 



CHAPTER VI 

SUMMARY, CONCLUSION, AND SUGGESTED FUTURE WORK 

In conclusion, there are several reasons for adapting 

the midpoint of record method. The simulation clearly 

demonstrates that this method has several advantages over 

the binary buddy system. The midpoint of record method 

limits worst case accesses for the partition. Furthermore, 

in the case of a single-level grid file structure for a 

biased data set, compression is enhanced by a factor of two 

for the directory, while the number of buckets is reduced to 

nearly 70% of the binary buddy system. Similarly, in the 

double-level grid file structure for a biased data set, the 

directories are compressed to 65% of their original size. 

An extrapolation from experience with the biased data set 

indicates the results should be similar for a random data 

set. Further, if the data file is much more heavily biased 

than the files of our simulation, then the compression ratio 

should be better than the factor of two compression results 

of this study. Thus, the results reveal that, despite 

claims for the dynamic nature of a grid file structure that 

utilizes the binary buddy system, the new partitioning 

method, the midpoint of record method, provides a 

significantly more dynamic adaptation for an incoming data 
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set. 

In the case of the bucket storage, the bucket 

compressions of the grid file structure yields compression 

ratio of 66% mentioned in the Chapter V. Also, even when 

a randomly generated file is used as a data file, the 

compression ratio is around 59% due to the internal 

fragmentation of the input file and the two different bucket 

sizes. (See the graph in Figure 6-1.) 
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There are several directions that need to be explored 

in the future using this study as a base. The binary 

partitioning method and the midpoint of record method ought 

to be compared in the upper level of the grid file to see if 

the results are comparable to those examined in the lower 

level by this study. This research may add to the 

efficiency of the midpoint of record for it yields an even 

more dramatic reduction in the overall numbers of 

directories. More study must also be applied to the 

relationship between bucket occupancy and optimal reduced 

bucket size. This information may lead to a chart showing 

optimal reduced bucket size for a variety of data files. 

Other users could avoid costly and time-consuming 

calculation of optimal reduced bucket size by consulting 

this chart. 
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APPENDIX A 

BUCKET OCCUPANCY OF THE GRID FILE STRUCTURE 

4 

Figure A-1. 
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Figure A-1 illustrates approximately 69% occupancy at bucket 

size b = 20 using a randomly generated data file. 
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Figure A-2 illustrates approximately 59% occupancy at bucket 

size b = 20 using a biased data file. 



APPENDIX B 

TOTAL FILE COMPRESSION USING THE MIDPOINT 

OF RECORD PARTITION METHOD 

2.80000.0 ------ -----

/ 
240000.0 ------~-------~---------+---~----1 

w 
N 
rJ) 200000.0 
w 
_J 

lL.. 

_J 

~ 160000.0 1-----''r+· 

~ ' /// ,, 
-~-- -/----120000.0 ~--

\ -
\ .... "-/./ 

80000.0 
0.0 100.0 200.0 300.0 

REDUCED BUCKIT SIZE 

400.0 500.0 

Figure B-1. Total File Size Variation using a Randomly 
Generated Data File. 

Total file size variation at bucket size b = 10 using a 

randomly generated data file with midpoint of the record 

partition method. 
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