
COMPRESSION TECHNIQUES FOR THE GRID FILE

BY

SEI HOON ¥,HUN

Bachelor of Science in Electrical Engineering

Hanyang University

Seoul, Korea

1985

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1988

•.
., . '

Oklahoma State Univ. Library

COMPRESSION TECHNIQUES FOR THE GRID FILE

Thesis Approved:

~ 1!-k~ Thesis Advisor ~

Dean of the Graduate College

ii

ACKNOWLEDGMENTS

I want to show my sincere respect and the

appreciation to my major advisor Dr. George E. Hedrick, for

his guidance on this study and also for his warm

encouragement during my academic career in Oklahoma State

University. I would like to extend my thanks to Dr. K. M.

George and Dr. M. Samadzadeh for serving as members of my

graduate committee.

I would like to express my appreciation for helpful

discussions of Dr. David L. Nofziger. Also, I am grateful

to Charles Ellis, Michael Gibson, and Judas Riley for

proofreading the thesis.

Most of all, I would like to express my thanks to my

parents, Yung Il Chun, and Jung Eui Chun for their love and

support during my thesis writing.

iii

Chapter

I.

II.

TABLE OF CONTENTS

INTRODUCTION ...

REVIEW OF HASHING TECHNIQUES.

Introduction
Single-key hashing method.
Multi-key hashing method

III. DATA COMPRESSION METHOD

IV. THE GRID FILE ..

Introduction
Adaptability of the grid file.
Splitting policy
Merging policy

V. COMPRESSION TECHNIQUES APPLIED
TO THE GRID FILE STRUCTURE.

Directory compression.
Bucket compression . .

VI. SUMMARY, CONCLUSION, AND SUGGESTED FUTURE WORK.

BIBLIOGRAPHY.

APPENDICES ..

APPENDIX A - BUCKET OCCUPANCY OF THE GRID FILE
STRUCTURE. . ..

APPENDIX B - TOTAL FILE COMPRESSION USING THE
MIDPOINT OF RECORD PARTITION

Page

1

4

4
5

13

20

30

30
36
38
43

50

50
61

67

70

74

74

METHOD 76

iv

LIST OF FIGURES

Figure

2-1. Initial Structure of a Dynamic Hashing File.

2-2. The Dynamic Hashing Structure after the
Third Partition Operation

2-3. Extendible Hashing with Total Depth d=2.

2-4. Extindible Hashing with Total Depth d=3.

2-5. Collision of Data Bucket 0

2-6. Extended Bucket Storage by h:t Function

2-7. H = (ho, ho) in a Two-Dimensional MLDH File.

2-8. H = (h:J., ho) in a Two-Dimensional MLDH File.

2-9. H = (h:1. t h:t) in a Two-Dimensional MLDH File.

3-1. Suppresion of Repeated Character Method.

3-2. Huffman Coding Tree. .
3-3. Encoding and Decoding of Huffman Coding.

3-4. 2/4 Code

4-1. A Search for a Record in the Grid File

4-2. Double Levels of the Directory

4-3. Grid Directory and Bucket.

4-4. Splitting of a Directory .

4-5. Subsequent Splitting of a Directory.

4-6. Buddy System and Neighbor System

4-7. Finding Levels of the Scale.

4-8. Splitting of a Directory Page.

v

Page

5

7

8

9

11

12

16

16

17

22

23

24

26

34

35

36

37

38

40

41

43

Figure Page

4-9. Deadlock in a Neighbor System . . 44

4-10. Partition of a 3-Dimensional Directory. 45

4-11. A Deadlock State in a 3-Dimensional Directory 46

4-12. Deadlock Prevention Algorithm 47

4-13. Merging Algorithm . . . 48

5-1. 4 partitions Are Needed in a 2-Dimensional Grid
File Structure where Bucket Capacity b = 1 ... 51

5-2. Partition at the Midpoint of Record in
2-Dimensional Grid File Structure .

5-3. Cranston's Partitioning and Merging Method.

5-4. Single-Level Biased Data Grid File Comparison

5-5. Double-Level Biased Data Grid File Comparison

5-6. Double-Level Random Data Grid File Comparison

5-7. Grid Partition Methods.

52

53

55

56

57

59

5-8. Compression of Bucket Record. 62

5-9. Total File Size Variation using a Biased
Data File 65

6-1. Total File Size Variation using a Randomly
Generated Data File . : 68

A-1. Grid File Bucket Occupancy using a Randomly
Generated Data File 74

A-2. Grid File Bucket Occupancy using a Biased Data
File. 75

B-1. Total File Size Variation using a Randomly
Generated Data File . . . 76

B-2. Total File Size Variation using a Biased Data
File. 77

vi

CHAPTER I

INTRODUCTION

A variety of file structures have organizational

methods to aid data management. For example, programs using

sequential files, tree structured files, or hash files

manipulate their data with a single primary key.

Traditional, static hashing methods frequently outgrow

overflow buckets by continuous insertions. This problem has

been somewhat mollified by implementing dynamic hashing

methods [FAGI79, RAMA85, LARS87, TAMM82].

Dynamic hashing methods do not suffer severe

degradation from overflow bucket storage. They achieve this

by reorganizing their shape continuously with the insertion

of data. These structures adapt their structures

dynamically without any loss of efficiency. File structures

that provide multikey access to data are of great interest

in various situations. For example, the organization of a

physical database for efficient query needs two or three

dimensions without favoring a certain dimension. To achieve

this goal, several multikey file structures that avoid the

deficiencies of inverted fil~s have been suggested. These

strategies generally combine all fields into a single access

path so that the structure treats every field as a primary

1

key~ None of these single structures can be optimal under

all circumstances.

The optimal structure is the bitmap representation

[VALL76J. The bitmap representation of a record reserves

one bit for each possible record in the total data space,

and at the same time represents whether the record is

present in the file or not. The bitmap representation

appears to be an ideal solution for the multikey file

structure because it does not require reorganization of the

structure. However, the bitmap approach does present a

major inconvenience since it needs an impracticably large

amount of storage space.

2

One attempt to deal with the bitmap storage problem

was proposed by Nievergelt [NIEV84]. By introducing a

dynamic directory, Nievergelt suggests a grid file

structure, which is both symmetric and adaptive for multikey

access. Symmetry means that every field is a primary key.

Adaptability means that the directory adapts its structure

both dynamically and automatically to the bucket.

Consequently, the directory size responds even at such

primitive level operations as inserting, deleting, and

finding in an automatic and dynamic manner. A further

advantage of this structure is that the expected access time

for a retrieval should be the same over the entire file by

the adapted directory.

Using the Nievergelt structure, analyses [REGN85,

SARI87J, applications [HINR83, HINR85], and also

3

concurrencies [HAN88, SALZ86] have been researched actively.

By utilizing two directory levels, the grid file structure

is not only good for a highly dynamic multikey structure,

but, it can conquer the storage problem since the grid

structure handles a large amount of data. 1

By using a simplified recombination method proposed by

Cranston [CRAN75], a new directory partition method is

presented. The new partition method ~mproves the worst-case

numbers of disk access. Also bucket size for an actual

record is reduced using various compression .techniques.

This thesis presents the ramifications of this research

and its practical applications. Chapter II previews both

several primary key dynamic hashing methods and multi-key

hashing methods. Chapter III previews various data

compression methods for implementing the grid file

structure. The general grid file structure and primitive

operations are explained in Chapter IV. Chapter V outlines

the directory compression method and the organization of the

data compression method applied to the grid file structure.

Chapter VI concludes the overall structural analysis and

evaluates the expected cost and complexity of the storage.

1 The comparison of one level and two levels of grid
diectory is done by Han [HAN88].

CHAPTER II

OVERVIEW OF HASHING TECHNIQUES

Introduction

Hashing is one of the fastest techniques for managing

direct access files. The address calculation technique is

so simple that retrieval, insertion, and deletion of records

can be done using the hash function. Compared to tree

structured techniques which require several accesses, the

hashing technique allows the retrieval of a record in one

access, when a file or a table is almost static. If the

file, or the table, is dynamic, then since the performance

of hashing is possibly prone to disintegration by a

collision of data, the performance of tree structures is

much better. 1 Several dynamic hashing methods have been

suggested for handling a dynamic set of data [FAGI79,

LARS87, LITWBO]. These hashing algorithms work efficiently

for the dynamic files. However, all of the above structures

are ranges of hash functions are linear. When the records

have suitable only for one-dimensional data sets in which

1 Use of the hashing technique required both the size
of the file and the physical storage space allocated for the
file to be known in advance in order to avoid collision.

4

the several attributes, it is necessary to have a multi­

dimensional data structure for handling all attributes of a

record efficiently. One main advantage of a multi­

dimensional data structure is that it can handle partial

match queries very easily. Several multi-dimensional

dynamic hashing methods [BURK83, HUAN85, OUKS83, TAMM82]

have been developed from one dimensional hashing methods.

Single-key Hashing Methods

5

Dynamic hashing [LARS87] is based on conventional

hashing, except that the allocation of storage space can be

increased and dec~eased dynamically without reorganizing the

file. The index structure of the dynamic hashing is

reorganized dynamically, according to the number of records

actually stored in the file. The initial index and bucket

1 2 LEVEL 0 index

I l data file

Figure 2-1. Initial Structure of a Dynamic Hashing File.

6

storage structure of the dynamic hashing is given in.

Figure 2-1. External nodes represented by the box shapes

contain actual data bucket addresses. If the record to be

inserted is represented as R, then the initial hash function

H0 (R) is used for addressing. Ho(R) is a standard hashing

function, so the value of Ho(R) separates the level 0

indexes and puts the record R into the appropriate bucket

storage. For example, the hashing function is

Ho(R) = (R mod 2) + 1

in Figure 2-2. As a result, if a record R has a even value,

then that record stores in the bucket storage under index 1;

otherwise, it stores in the bucket storage under index 2.

By inserting data.continuously, the bucket storage

overflows. Then, partitioning of the data bucket becomes

necessary, in order to contain this overflow. Storage space

for the new bucket is allocated and the records are divided

between two buckets. At the same time, the index of the

separated bucket must be updated. Figure 2-2 shows the

dynamic hashing structure after three partitionings.

Retrieval of a record, R, can be accomplished using

H0 (R) and B(R); where, the hash function, B(R), is a

uniquely defined pseudo-random number associated with R.

This function is performed by the equation

b~ E {0, 1}.

The root of a search tree can be located using H0 (R). The

searching for the record R in the index tree structure can

be determinated using B(R). The determination of left or

LEVEL 0

LEVEL 1

LEVEL 2

100

/

20 21

101

1 2 3 4

Figure 2-2. The Dynamic Hashing Structure after
the Third Partition Operation.

5

right subtree paths is done using b~; where, i = level + 1.

7

The pseudo-random function, B(R), balances the tree yielding

short search paths.

If the number of records in two brother buckets becomes

less than or equal to the capacity of one bucket, these two

brother buckets merge into one bucket. Two buckets are

brothers if the two external nodes which point to these

buckets have the same father node. At the same time, that

these two brother external nodes are being deleted, the

internal node associated with these two external nodes is

8

itself changed to an external node. The new external node

points to the new bucket by the merger of the brother

buckets. The dynamic hashing structure maintains its

structure according to insertions and deletions without the

use of overflow chains. When index trees are maintained in

main storage, a maximum of one access to the storage

structure is guaranteed. However, this performance depends

upon the index structure being small enough to fit into main

storage.

Extendible hashing [FAGI79] is developed from the

randomly grown radix search tree [FRED60]. It only has a

directory structure and a bucket structure. The structure

contains a header which represents the total depth, d, of

00

01

10

11

Directory Leaf pages

2

I 1 I
h(-) = 0

I 2 j
h(-) = 10

2 I
h(-) = 11. ...

Figure 2-3. Extendible Hashing with Total Depth d = 2.

9

the directory. Figure 2-3 shows the case, where d = 2, at

the structure. The directories with pointers to the bucket

storage follow the header. The number of directories is 2d

because directories are doubled each time directory

partitioning is invoked. Each leaf page has a header that

contains a local depth d'; consequently, all keys in the

local page have the same first d' bits. The total depth, d,

of the directory is the maximum of the local depth, d', of

all the leaf pages. When the leaf page overflows, the first

reaction is to check the local depth, d', with depth d. If

Directory

000

001

010

011

100

101

110

111

3
1

-

Leaf pages

1 I
h(-) = 0

2 I h(-) = 10

2 I h(-) = 11. ...

3 I
h(-) = 111 ...

Figure 2-4. Extendible Hashing with Total Depth d = 3.

d' < d, then only one new bucket is created; there is no

directory doubling. The structure shown in Figure 2-4 is

the double state of the directory shown in Figure 2-3.

10

To retrieve the record, R, from the extendible hashing

structure, h(R) must be calculated and its first d bit must

be found. Using the address computation method, the

location of the directory which has the same first d bit

patterns can be ascertained. Then, the bucket can be found

using the pointer from the directory. A maximum of two-disk

accesses is guaranteed.

The cost of directory doubling is not as expensive as

it appears because the actual data buckets are not changed.

Also, the doubling of a directory is done using the buddy

system [PECH82], so the merging of buckets occurs without

external access.

Linear hashing [LITW80] suggested by Litwin is another

dynamic hashing techniques. The hashing function

H = (he, h:~., h::z, h3·, ... , h~, ...) ,

where 0 :5 i < oo

grows as record insertion makes the data in a bucket

collide. To illustrate this principle, u is the total key

space and N is the total number of buckets. Hence, in the

equation

ho : U -> { 0, 1, · · . , N - 1}

the initial hashing function for loading is denoted by ho.

The hashing functions h:~., h::z, h3, ... , h~, are called

split functions of initial function ho if they satisfy the

following rules:

h:1. u -> { 0 I 1, ... I 2 :i.N-1 }

For any u either:

ho ho

200

10 21
50 61
80

0 1

or

22
32

2

49
69

9

Figure 2-5. Collision of Data Bucket 0.

For example, the initial state of a data bucket is made by

the function ho where the number of data items, N, is 10

(N=10) and bucket capacity, b = 3, is shown in Figure 2-5.

11

Also, for this diagram, there is no overflow bucket to allow

highly dynamic structures. If the next datum inserted is

200, then bucket 0 overflows. In this case, the hash

12

function, h 0 , is changed:

if ho(U) = 0, then

h(u) = h:~.(u)

else h(u) = h 0 (u);

where, h 0 (u) = u mod N, and h:~.(u) = u mod 2N. The bucket

content after splitting is shown in Figure 2-6.

As a result, the linear hashing scheme increases and

decreases its bucket storage dynamically according to the

incoming data.

h:l. ho

80 21 22 49 10
200 61 32 69 50

0 1 2 9 10

Figure 2-6. Extended Bucket Storage by h 1 Function.

To retrieve a record R, the following algorithm is used

for calculating the bucket index.

idX = hr..EVEr..(R)

if idx < NEXT, then

idX = hr..EVEL+:l(R);

13

The two variables LEVEL and NEXT are defined as:

- NEXT points to the next candidate for splitting

- LEVEL contains a value which is the number of times

the total space has doubled and is represented by

LEVEL = l log2(n/N) J
where n is the current number of buckets and N is the

initial number of buckets.

In linear hashing, if the record to be inserted is

dynamic, then the mean number of accesses per search

approaches 1 and the loading factor is about 90% by using

chains according to Litwin [LITWBO]. A further advantage of

this method is that the address computation is simple and

rapid.

Multi-key Hashing Methods

The extendible cell method [TAMM82] is an application

of the extendible hashing [FAGI79] to two dimensional files.

The methods uses the assumption that the total area

A= [0,1) x [0,1). The point (x,y) E A has the binary

representation

X =

The hashing function, h(x,y), is computed as

h(x,y) =

Here, the extendible cell implementation of a point file F

on area A is the structure obtained by applying the

extendible hashing method on the region ([0,1)) 2 to h(F).

Because calculation of the hash function h(F) can be costly.

14

However, the extendible cell method has a directory

structure. When directory doubling is initiated, the domain

is halved alternatively in the x and y direction. However,

the directory doubling does not affect the leaf bucket page

at all. Directory doubling is initiated by the increment of

total depth, d, which is the same as the extendible hashing

method. So, instead of using hash function h(F), the two-

dimensional directory index function index(x,y) below is

used:

index(x,y)
J + l J

where dx =f d/2 l, dy =l d/2 J and total depth d = dx + dy

The index function index(x,y) can be used as a two-

dimensional directory index. In the case of a structure

with more than two-dimensions, the merging process can cause

a deadlocked state. To avoid a deadlock, the merging

sequence should be made the reverse of the partition

sequence. This is effected by maintaining the history of

the partition sequence as suggested by Huang [HUAN85]:

The storage mapping for multi-dimensional linear

dynamic hashing (MLDH) [OUKS83] is adapted from the linear

hashing method. As an example of the MLDH method, let 1 be

the total number of partition sequences completed along all

dimensions. Because of the cyclic nature of partition

sequences along all dimensions, l can be expressed as

1 = Ld + r, where L is the number of splitting cycles

completed, and d is a dimension; r is the next bucket for

splitting by the given sequence. For example, if the

15

hashing function H~ is given for the record, R,

where R = (R 0 , R~, ... , Rd-~) for the d dimensions.

H~ (R) = (hL+~ (Ro), • • • , hL+:L (Rr-1),

hL (Rr) 1 . . . , hL (Rd- :1.))

Then, the next sequence of the split occurs along the axis r

and the hashing function H~+:L is

hL+ :1. (R,..) 1 hL (Rr+ :1.) , • • • 1 hL (Rd- :1.))

Hence, the sequence of hashing functions H1 , H2 , H3 is the

split function of MLDH if thei satisfy the range condition

and the split condition below:

RANGE CONDITION

H~ : R -> { 0, 1, 2, ... , 2~- 1 }.

SPLIT CONDITION

H~+:l (R) = H~ (R)

or

(hL+:L(Ro), ••• , hL+:L(Rr-:L),

, hL(Rd-:L))

= H~ (R) + (0, 0, 0, . . . , , 0) .

For example, insert the two dimensional data below

(10, 201), (45, 300), (77, 2095), (90, 1000),

(100, 103), (4, 4000), (99, 220)

into the MLDH where the bucket capacity b = 2. For the

simplicity, no overflow bucket is used.

Initially, the number of the bucket is 1. Records are

inserted by Ho = (ho, ho), where ho(R) = R mod 1.

dimension 1

(10,201)
(45,300)

16

dimension 0

Figure 2-7. H = (ho, ho) in a Two-Dimensional MLDH File.

Figure 2-7 depicts the state after two records are inserted.

Insertion of record (77, 2095) initiates the splitting of

the bucket because the bucket capacity is b = 2.

dimension 1

(10,201) (77,2095)
(45,300)

dimension 0

Figure 2-8. H = (h~, h 0) in a Two-Dimensional MLDH File.

17

Figure 2-8 depicts the state after one split along dimension

0. The hashing function is

H~ = (h~, ho), where h~(R) = R mod 2.

The continuous insertion of records results in the structure

shown in Figure 2-9.

dimension 1 dimension 1

(10,201) (10,201) (77,2095)
(100,103) (100,103)

(90,1000) (77,2095) (90,1000) {99,2001)
(45,300) (40,4000) (45,300)

dimension 0 dimension 0
a) b)

Figure 2-9. H = (h~, h~l in a Two-Dimensional MLDH File.

If d is a dimension, and if r~ are d - tuples of

integers, then the storage mapping function M: r~ -> I

satisfies

M(H~(R) + (0, 0, .. I 2L, 0, , 0)) = M(H~(R)) + 2~

which follows

M(io, ''I .. , i~-~)

= M (io, • • • I

where l = Ld + r.

To retrieve a record R = (Ro, R~, .. , R~-~) by given

18

1 = Ld + r, the following algorithm applies:

2. idx <- M(H~(R)) = E

where P~ determines the coordinate of projection.

3. If idx < NEXT then

idx <- M(H~+~(R))

The definitions of idx and NEXT are the same as those used

for linear hashing.

Compared to the multi-dimensional tree structures

[FINK74, ROBIBl], the MLDH method does not have any

directory structures; therefore, traversing of the directory

is not necessary, so the access time of records to approach

0(1) from above.

Linear hashing offers several other distinct

advantages. An interpolation-based index maintenance

[BURK83] is adapted from linear hashing; it does not have a

tree-structured directory to traverse. The average

successful search length is close to 1, and the space

utilization can be easily controllable by the user. 2

Interpolation-based index maintenance and the MLDH

method are derived from linear hashing. Both methods use

the address calculation method to find a bucket and use

chaining to handle overflow under a controlled loading

factor. However, the chaining can cause a long disk access

chain for retrieving a record. Both the extendible cell

19

method and the multidimensional extendible hashing method,

derived from extendible hashing, use directory partitioning

for handling bucket overflow. However, the partition is not

a function of density of data. As a result, if the data is

biased heavily over the data area, then the utilization of

the directory may be poor [HINR85].

In contrast to other hashing methods, the grid file

structure offers significant advantages to streamlining data

storage. First, the grid file structure does not have any

overflow chains. Second, the partitioning of directory is

flexible, since it follows the density of the data

distribution. Ultimately, these advantages provide

increased flexibility with a maximum two-disk accesses, and

adaptability for various data distributions.

2 The theoretical worst case of interpolation-based
index maintenance has time complexity O(n) steps for total n
records due to allowing the chaining structure to prevent
overflow.

CHAPTER III

DATA COMPRESSION METHODS

Many data processing applications store large volumes

of alphanumeric data, such as names, addresses, inventory

descriptions, or a general ledger account chart description.

On-line manuals and help files in computer systems also need

massive amounts storage. Recently, the proliferation of

computer communication networks and teleprocessing

applications further have complicated the questions of

adequate storage by involving massive data transfer over

long-distance communication links.

Data reduction implies a need to reduce the redundancy

in the data representation, that is to compress or compact

the data. Since compression techniques reduce the size of a

file by 30%- 90% [DAVI73], it is surprising that these

technique are not used more widely. The term "data

compaction'' as defined by Severance [SEVE83], means that the

data must be encoded in such a way that data size is reduced

while all relevant information is preserved. 1 There are a

variety of ways to reduce file sizes.

1 Data compression is a reversible data compaction
process which can be used for encryption also.

20

21

First, data size can be reduced by avoiding empty

space. Empty space avoidance in a file assumes all the

fields of the file are a fixed length. If one or more data

fields frequently are empty, then the database can be

reduced by one additional field. If the field exists, then

set its bit to one otherwise, set to zero.

Adaptive pattern substitution is another reduction

method. It uses two passes without relying on any existing

patterns. An adaptive pattern substitution algorithm first

scans the entire data, by examining it for frequent, common

patterns of two or more bytes. Then, this method

substitutes an unused byte pattern for the frequent common

pattern. At that time, the substitution dictionary is

updated for that byte pattern. For example, if text is

DAABFABCABAB, then this can be replaced as DAaFaCaa where a

is the entry a = AB in substitution dictionary. Thus, the

total length of this field has been reduced by 4.

For a variety of reasons, commercial databases usually

have a large number of blanks, zeroes, and other characters

used for the padding empty data or variable-length data

fields. The general scheme for suppressing empty fields is

called run-length encoding. Martin [MART77] explains a run

suppression technique for EBCDIC data with no lowercase

characters. Using this method, the second bit of all EBCDIC

characters is always 1. When using EBCDIC characters for

run-length encoding, the second bit represents the run­

length encoding code.

X 0 X X X X X X

I I I I I I
I These six bits give length

0 means null suppression

0 means suppression of zeros

1 means suppression of blanks

Figure 3-1. Suppression of Repeated Character Method.

For example, if only blanks and zeroes are suppressed

as in Figure 3-1, then a single bit can be used to

distinguish between them. 6 bits remain to designate run

lengths as long as 64. characters. Furthermore, if only a

single null type is suppressed, then there is no need to

identify it explicitly.

Huffman [HUFF52] also has approached the problem of

22

file-size reduction, developing an optimum method of coding

an ensemble of messages consisting of finite numbers.

Huffman coding is a variable-length coding which has

supplied an optimal length code successfully also. One can

construct a Huffman coding for any problem by building a

binary tree. Initially, encoding units are listed in order

of their probability of occurrence. Next, the two units

with the smallest weights are removed from the table: a 0

branch is assigned to one and a 1 branch to the other.

23

Their weights are added, then assigned to a new combined

unit which is merged into the diminished list to maintain

order. This procedure is repeated until a single unit

remains as the root of the binary tree just as constructed

in Figure 3-2.

Char Weight Code

A 30

B 25

' 1 11

10
l 1
lo

c 20 1 ROOT 01

D 10 1 0 011

E 8 1 0 0001

F 4

G 3

00001

00000

11 0
0

lo

Figure 3-2. Huffman Coding Tree.

The example presented in Figure 3-3 shows the

efficiency of this method. The data string in the top

portion can be decoded immediately by reading left to right

without waiting for the end of the string, since each 0

(or 1) represents the path to the leaf node from the root.

The algorithm for implementing encoding and decoding was

done by Schwartz [SCHW64].

24

Encoding message 00000 011 10 11 011 10

Decoded message G D B A D B

Figure 3-3. Encoding and Decoding of Huffman Coding.

However, if one or more bits are lost during the

communication through noise or error, then the data cannot

be understood in its entirety. When the third bit of the

encoded message in Figure 3-3 has an error which changes it

to 1 by any error, then the total message cannot be

understood because the Huffman encoding method used a

variable length encoding technique.

Even though the Huffman coding method has been

evaluated as the optimum minimal encoding method, it

presents unique problems: two-pass construction is

unavoidable for making the weight table, a factor which can

be the weak point of data communication. 2 For example, when

the actual weight of each unit is either unknown or changed

over time, as is the case "-'-1-. w~ l....:...t a data message block over

a transmission line, then whatever data compression method

2 The weight or the probability of weight already has
been studied in commercial database.

25

is used needs to have only one pass rather than two passes.

A class of universal coding methods [DAVI73, ZIV72,

ZIV77, ZIV78] can compensate for this lack of knowledge. By

using the sibling property defined by Gallager [GALL78],

Knuth [KNUT85] showed that the same weight node in the

Huffman tree can be exchanged by the changing of its weight,

so the Huffman tree dynamically adapts its structure.

Mcintyre [MCIN85] applied the static and dynamic Huffman

coding techniques to 530 source programs in four different

languages. The ·results show that the static Huffman coding

method makes significantly smaller compressed files than the

dynamic Huffman coding method for originally small files.

Pechura [PECH82] further s~rveyed and tested the static

Huffman coding method using small computers where the

secondary storage is relatively small. The compression

potential is invaluable to reclaim the usable storage space.

As a further advantage, he also found that both reading and

writing speed increased when using compression method.

Despite its obvious advantages, the Huffman code

[HUFF52] may have some distinct drawbacks. The variability

of the Huffman code may be a drawback because almost all

computers are word-oriented rather than bit-oriented.

However, this shortcoming may be avoided by using restricted

variability codes.

Figure 3~4 presents a conventional 2/4 code where the

11 is used as the switch code. Generally, the 2/4 code can

represent 7 characters. In this example, the 3 most

26

frequently used characters are represented by 2 bits. The

switch code "11" is used to distinguish between these

frequently used 3 character codes and the less frequently

used 4 character codes. However, t~is restricted

variability code generates a less efficient code than the

Huffman coding which is explained below. To represent 7

characters, at least 3 bits are needed. Therefore, the

total number of bits used for representing characters in

Figure 3-4 are 3 x 100 = 300 bits, if the standard character

representation-method is used.

The restricted variability coding method needs 250

bits, which is as efficient as the Huffman coding (which

needs 247 bits in Figure 3-2). If the combined weights of

A, B, C are sign:ficantly heavier than D, E, F, G, then this

Char weight Code

A 30 oc

B 25 o:

c 20 10

D 10 1100

E 8 1101

F 4 1110

G 3 llll

Figure 3-4. 2/4 Code.

27

compression method is adequate for the task. Also, by using

the fixed length code, data access is ultimately more

efficient in performance than the Huffman coding method.

Cormack [CORM85] developed the top-down construction

algorithm applied on the IBM's 11 Information Management

System 11 as yet another method for providing reduction of

file size. Although this algorithm is slower than the

Huffman coding, Cormack's method is acceptably fast and

allows better compression. Additionally, the algorithm does

not require a lot of working space for the encoding table.

The Bentry group [BENT86] has suggested a data

compression scheme that exploits locality of reference,

which occurs when words are used frequently over short

intervals in a b:ock and then fall into long periods of

disuse. This algorithm is based on a simple heuristic for a

self-organizing sequential search. If the message of one

block is all upper case letters separated by single spaces

and terminated by ''! '', then for ·purposes of demonstration we

can use

"THE SCOOTER ON THE LEFT HIT THE SCOOTER I LEFT!"

Here, sender and receiver maintain identical arrays using

the "move to front" heuristic for fast searching of the

frequent word. The arrays are initially empty. To send the

word W, the sender searches for the W in the array. If W

exists, then the sender transmits I, which is the index of

array, then the receiver decodes by writing the Ith element

in the array. Then, both move W to the front of their

28

array, shifting the array from the 1 .. I - 1 to the. 2 .. I

position. However, if W does not exist in the array of N

words, then the sender transmits the integer value N + 1,

followed by the word W. The receiver can now detect that

the new word should be added to the array if the integer

value N + 1 is greater than the size of the current maximum

word number N. Then, both sender and receiver move the new

word W to the front of their arrays. In this example, after

transmitting the first three words of the above message,

both of them have the identical array content,

"ON SCOOTER THE"

The next word, "THE", is encoded by the integer 3,

because "THE" is already in the array.

is encoded as

The entire message

1 THE 2 SCOOTER 3 ON 3 4 LEFT 5 HIT 3 5 6 I 5 !

Each word is transmitted as a string of letters exactly

once; subsequent occurrences are encoded by integers. The

Bentry group [BENT86] reports that this compression method

although sometimes significantly better than the word­

oriented Huffman coding method is never significantly worse.

By selecting an appropriate method which has a

reasonable compression ratio and complexity, compression can

be applied to almost all database environments. This is

especially true in practical database systems. Decoding

time is given the greatest priority because data decoding is

required whenever data is retrieved. Encoding, a much less

frequently used operation, requires only when insertion or

29

update is necessary. The only time a large amount of

compression is required here is during a complete reloading

of the database file.

CHAPTER IV

THE GRID FILE

Introduction

The traditional single key access methods for table

look-up on files, such as either the B-tree algorithms or

hashing algorithms, rely on having keys with a value within

the range of values for the table in the file. However, if

the key has many fields or attributes, traditional single

key access methods cannot be used. The grid file structure

proposed by Nievergelt [NIEV84] is the one of the multikey

structures which can handle all attributes without favoring

any one attribute. Handling all attributes without favoring

any one attribute means treating all attributes as primary

keys.

By using scales and directories, the grid file

structure performs the two following tasks: the two disk

search and efficient range queries with respect to all

attributes. An exact matching query must retrieve a single

record within at most two disk accesses whether searching is

successful or not. If two levels of directory and scales

are used for the grid file structure, then the upper level

of the structure is composed of the "grid directory" and the

"grid scale". They are also called the "resident directory"

30

31

and the "resident scale" because they are always kept in the

memory. Also, the lower level of structure is composed of

the "block directory" and the "block scale", which are also

referred to as the 11 subdirectory" and the "subscale."

The first access to retrieve a record, is to the block

directory, which is kept on disk. The result of this access

is the loading of the subdirectories and subscales into

memory. The second access loads the correct data bucket by

the using subscales and subdirectories. The bucket

structure must preserve the orders of each of the attribute

scales to effect data-key locality.

The grid file structure adapts its shape dynamically

from the continuous insertions and deletions of records.

The grid file consists of three abstract data types: the

linear scale, the directory, and the data bucket. The

following illustration explains these three abstract data

types.

Let the k-dimensional data area be represented by

S =So X S~ X S2 X ... X Sk-~•

MaxScale be a maximum number of partitions in one dimension,

and r represent the data record.

file can be computed as follows:

The structures of the grid

LINEAR SCALE

Structure Scale~[MaxScale] of ScaleType

K one dimensional ScaleType indexed set.

ScaleType has a boundary.

0 $ i $ k - 1

Operation :

Findidx : Findidx returns the indexes of scales for

record r.

PartitionScale : make one partition scale into two.

MergeScale : Merge two scales into one.

DIRECTORY

Structure Dir[no][n~J [nk-~J of DirectoryType.

32

one k dimensional DirectoryType set which

addresses the data bucket. DirectoryType has

a pointer to data bucket and one additional

bit to represent shared directory or not.

Operation :

GetDirectory : returns the pointer of the directory

GetBuddyDirectory : returns the pointer of the buddy

directory.

PartitionDirectory : partition the directory in two.

MergeDirectory : merge two directories in one.

BUCKET

Structure

Operation :

fixed~sized type of record, where the actual

data records are stored.

PartitionBucket allocate a new bucket storage and

separate records in two buckets

by the given boundary.

Merge Bucket merge two bucket records into one.

33

The k linear scales represent k dimensions, i.e.,

attributes, and are divided by certain intervals using the

binary buddy partition method. The k scales are used as the

indexes to the directories. Each boundary in a scale

represents a (k -1) dimensional partition which separates

the directory into two parts. Each grid directory is an

one-to-one mapping from the directory to the actual data

bucket address in the disk storage. Several grid

directories may share one data bucket, but no grid directory

can have two or more data buckets. Data buckets are fixed-

sized structures of records in which actual data is stored.

Using these structures and primitive operations, basic

operations, such as find, insert, delete, can be performed. 1

An example of a multikey searching is shown in Figure

4-1. If the search record is (1980, c), then the search

algorithm looks up the scales to find the indexes. By using

the indexed directory, the data bucket which holds the

searching data can be found easily.

For handling large amounts of data, the grid file has

two levels of directories: resident directory and bucket

directory. The resident directory always is kept in the

memory, while the bucket directory is kept on the disk.

1 The specific structures and operations of the grid
file are discussed in the next chapter.

34

search data (1980, c)

resident resident
scale directory
,..---

z
'--

u
-
M

-
F

-
c X

..._

resident
scale 11000 1500 1750 1875 2000

block block
scale directory
,..---
cz
r--
CD X -
'-- Bucket
BB

-
AD
r--
AA ____. (1980, c)

-
r block

scale 1775 1800 1825 1850 1875

Figure 4-1. A Search for a Record in the Grid File.

35

A search algorithm references the resident scales and find

the appropriate resident directory. The resident directory

holds the physical addresses of subdirectories, which are

kept on the disk because of large amounts data space they

require. After loading the subdirectories and subscales,

Resident
Directory

Bucket Direct9
_ ---~

Figure 4-2. Double Levels of the Directory.

36

the data bucket can be found using the same procedure. As a

result, at most two disk accesses are needed for retrieving

a record whether it is successful or not.

Adaptability of the Grid File

Figures 4-2 to 4-5 provide an example both of the

adaptability and of the dynamics of the grid file. The data

bucket is full after continuous insertions are done.

Continuous insertion means that the data for insertion is

requested continuously. Those requests trigger the

partition of the grid directory. As a result, the structure

grows by those requests. The merging of two directories is

triggered by repeated deletio~s making the bucket empty.

Initially, a single bucket B1 of capacity c = 4

pictured in Figure 4-3 is assigned to the entire record

0 0 0 0

B~
0 0

0 0

Figure 4-3. Grid Directory and Bucket.

37

space. Inserting one more record causes the Bl bucket to

overflow, resulting in the split of the scale and the

directory, and a new bucket B2 is assigned to the newly

0

I 0

0
0 0 0

0 B~
0

0 0

Figure 4-4. Splitting of a Directory.

partitioned directory.

If bucket B~ overflows again, then its grid directory

is split according to the same splitting policy as pictured

in Figure 4-4. For the efficient range queries with respect

to all attributes, the splitting direction should be

alternated. The bottom half of the records which were in Bl

are moved to the bucket B3 as pictured in Figure 4-5. But

38

I 0

0

0 0

0 0 0

0

0 0

0 0

0

0

I 0

0

II

Figure 4-5. Subsequent Splitting of a Directory.

here the bucket B2 has not overflowed. Consequently, the

partitioning of B2 is not necessary for efficient memory

utilization.

Splitting Policy

The grid file structure adapts its shape dynamically

to the continuous insertions by splitting its directories

and scales. There are several methods for choosing a

boundary for a split, including the binary buddy systems

[KNUT73, PETE84], the Fibonacci buddy system [BROM80,

CRAN75], and the weighted buddy system [CHOW87]. In each

case, some range Sn is partitioned into two subranges by the

39

formula below:

If k = 1, then it is a binary buddy syste~.

If k = 2, then it is a Fibonacci buddy system.

The grid file structure proposed by Nievergelt [NUEV84]

used the binary buddy system. The buddy system is an

outgrowth of the neighbor system, both of which are pictured

in Figure 4-6. In the k-dimensional buddy system, a merging

is performed with exactly one adjacent buddy in each of the

k dimensions. In the more generous k-dimensional neighbor

system, merging can be performed with either left or right

adjacent neighbors. Any of 2k neighbors in k dimensional

structure can be merged as illustrated in Figure 4-6.

Because, a bucket only can be merged to its buddy to avoid a

deadlock situation (defined in the Merging Policy section of

this chapter), the buddy system is more restrictive than the

neighbor system.

Even though the boundary for each scale can be

different types of keys (i.e. integer, character string,

etc.), assume that each boundary range is the unit interval

[0,1) (left closed and right open) and create a binary buddy

system. If an interval [a,b) can be obtained in [0,1) by

repeated bisection, then that interval is called a binary

radix interval. The number of bisections necessary to get

the binary radix interval I is called the level of I and is

40

Bucket to be merged

n I r I c
n .~ ~ll
' -

Neighbor System

D 0! Jr--'\
r,;;' - !1!7,'7, II/ 1/h 11:1'!/1!);1

~
0 ;;,.

Buddy System

II IWII
1~11

r-

'- '- I- '--

Figure 4-6. Buddy System and Neighbor System.

represented as level(I). Figure 4-7 provides a detailed

example of the process. If the interval is [0, ~), then the

level is 1 since it requires one bisection of interval [0,

1 \
.1. I ' For each binary radix interval I which is not [0,1),

there is exactly one binary radix interval; i.e. buddy, J

such that I and J are disjoint and their union I U J is a

41

. binary radix interval of [0,1) . 2

1

level(2)

level(1)
level(O)

Figure 4-7. Finding Levels of the Scale.

Splitting occurs at four different levels: data

buckets; subdirectories and subscales; directory page; root

A4rectories and root scales. If a directory page or a data

bucket must be split, then one of two things may happen:

either several directories share one bucket, or only one

directory has the bucket. In the latter case, the boundary

should be split into one of the scales and the one-to-one

mapping is updated from the directory to the data bucket.

In essence, this is the method illustrated in the procession

from Figure 4-3 to Figure 4-4.

2 Comparison of the binary buddy system with the
Fibonacci buddy system is done by Peterson [PETE84] for the
view point of internal and external fragmentation.

42

Finding the appropriate scale for splitting can be done

by the cyclic method or the level method. 3 The cyclic

method uses a cyclic sequence for choosing the partitioning

scale. For example, if the i~n dimensional scale is used

for partitioning, then the next candidate for the partition

is the (i + 1)th scale. The level method searches the

smallest levels of all k dimensional scales and chooses the

smallest level scale as the next partition candidate. The

new boundary is formed from the bisection of the binary

radix interval. From this point, the two methods are

identical: the data bucket records are separated according

to the scale which is partitioned, and a new bucket is

allocated to store the partitioned data records.

Splitting a directory involves an adjustment of scales

and directories. The scale is divided into two new scales

at the boundary as shown in Figure 4-8. The directory is

divided into two parts along the split boundary represented

by the double line at the partitioned scale. If the shared

directories have to be partitioned, then the buckets

assigned to these shared directories cannot be shared.

Hence, buckets whose directories are shared at the boundary

must be split.

3 The performance difference is analyzed by Han
[HAN88].

43

-,..-.

- -

- -

_.__
I I I I I I
I I I I ' '

-- -r-

- ,..-. - 1--

- - - i--

-'-- --
I I I I I I I I

Figure 4-8. Splitting of a Directory Page.

Merging Policy

The grid file merging process is the mirror image of

the splitting process. It occurs at all four levels of the

splitting process. Although the processing itself is the

mirror image of splitting, the merging sequence is not

necessarily performed in the reverse order of the splitting

sequence, a factor which is derived from inherent

44

limitations of the extendible cell method [TAMM82]. Similar

to the splitting strategy, the candidate normally is limited

to its buddy, as long as this buddy is not the neighbor

which may cause the deadlock as shown in Figure 4-9.

I
D

I
-

Figure 4-9. Deadlock in a Neighbor System.

Normally, if directory 1 in Figure 4-9 were

underflowing, a neighbor directory is sought to initiate

merging. However, in this example, there is no directory

with which directory 1 can merge. This dilemma illustrates

the deadlock problem which is both inherent and problematic

in the grid file structure. The buckets cannot be merged

again, because they no longer form a box shape. Deadlock is

a destructive and significant problem, it leads to a non-

45

adaptable structure which decreases memory utilization. In

the buddy system, every shared directory region is the

Cartesian product of binary radix intervals. For this

reason, any candidate for merging must be one of the

underflowing directory's k dimensional buddies: none of any

of 2k buddies of the underflowing directory's neighbor are

eligible for merging. Thus, the case in Figure 4-9 cannot

occur when the buddy system is used.

With the buddy system, a deadlock situation can also

occur in a grid file structure of three or more dimensions.

/

2 '

2
3 4

/
/

/

4 ,/

3 4

6

5 6

Figure 4-10. Partition of a 3-Dimensional Directory.

46

In the 3-dimensional grid directory in Figure 4-10/

partitioned directories 1 and 2, 6 and 8, and 3 and 5 are

merged. The resulting directory shown in Figure 4-11 is in

a deadlock state because directory number 4 has no buddy

with which to merge.

/
/

'

/

/
4

Figure 4-11. A Deadlock State in a 3-dimensional
Directory.

This deadlock state can be avoided by an algorithm

explained by Hinrich [HINR85]. Hinrich employs two

important definitions to explain the deadlock state: the

block region and the closed region. The block region is a

box-shaped, Cartesian product of binary radix intervals.

47

The closed region is also box-shaped; here the projection,

n~(k), onto each dimension should be a binary radix interval

where 0 $ i $ k -1. Also, if a block region B intersects a

closed region C, then all of the directories in the block

region B are a subset of closed region C.

To illustrate Hinrich's prevention of deadlock

algorithm, B is a block region and C is a closed region.

The possibility of deadlock when merging block region D~ and

D2 can be checked by starting from the total directory T.

The particulars of this prevention algorithm are shown in

Figure 4-12.

D = D~ U D2

R = T

MergePossible = True;

while (R <> D) and (MergePossible)

if exist closed region R~ and"R 2

where R = R~ U R2, R~ n R2 = ¢, and (DC R~ or DC R2)

if (D C R~)

R = R~

else R = R2

else MergePossible = False

end while

return {MergePossible)

Figure 4-12. Deadlock Prevention Algorithm.

48

A merging algorithm can be developed using Figure 4-12. It

is explained in Figure 4-13.

1. Find all k buddies which are potential candidates

for merging.

2. Put all candidates in the queue by level.

3. If the queue is not empty, then

a. get the first candidate in the queue.

b. Check whether deadlock occurs by using

prevention algorithm explained by Figure

4-12.

c. If deadlock does not occur, then merge

the candidate and quit the algorithm.

d. If a deadlock situation occurs, then

repeat step 3.

Figure 4-13. Merging Algorithm.

Buckets need to be merged only when their added

occupancy is far below the bucket capacity, which is

generally 60% of bucket capacity. Otherwise, a few

insertions may produce a splitting operation of the newly

merged bucket. Unfortunately, there is no published study

about the best threshold for merging buckets. So, the case

is remains as an open question. After the buckets are

49

merged, the scale should be checked as to whether that

boundary is still needed or not. If the boundary is no

longer necessary, then it is removed and the directories are

updated according to the adjusted scale. However, removing

the boundary may invoke the directory page merging if its

directory utilization is lower than a certain threshold.

Finding the candidate for a merging buddy directory

page invokes a situation similar to that illustrated by the

merging algorithm. The subscales of the merging dimension

can be obtained by appending the two subscales, and is the

actual mirror image of the splitting in Figure 4-8. Two

directory pages may be merged if the memory utilization of a

combined new page is below the threshold of the bucket

merging case. The cost of splitting the directory page is

significantly higher than that of the bucket merging,

because only one disk access is needed. For the boundary

which separated the two pages is checked and removed if

necessary, which leads to a directory adjustment.

CHAPTER V

COMPRESSION TECHNIQUES APPLIED TO

THE GRID FILE STRUCTURE

Directory Compression

The grid file structure proposed by Nievergelt [NIEV84]

has two structures available for handling data: a directory

and a bucket storage structure. This type of structure

allows record retrieval to be accomplished within two disk

accesses using the directory in combination with the bucket

storage structure. However, partitioning still involves a

relatively large number of disk accesses and is somewhat

unpredictable because of the distribution factor of the

input data.

The level and the buddy of a directory can be

calculated by the interval of the directory if a binary

buddy system [KNUT73] is used. However, record insertion

can be time consuming, as the directory may be partitioned

many times before the records in the bucket is partitioned

into two buckets. The following example illustrates this

problem. Using Figure 5-1, assume bucket capacity to be

b = 1. Here, the insertion of two records in the bucket

will require four directory partitions because of the

50

v
e
r
t
i
c
a
1

s
c
a
l
e

1

0

0

3 1

.

0

1

2

4

Horizontal
scale

51

Figure 5-l. 4 Partitions Are Needed in a 2-Dimensional Grid
File Structure where Bucket Capacity b = 1.

proximity of the record positions.

Using the extendible cell method [TAMM82] or

multidimensional extendible hashing [OUKS83], these

structures do have a directory to partition. However, if

the partitioned interval is not at exactly the midpoint of

the interval, then these structures do not have any way to

separate the partitioned directory ..

The grid file does, however, have a scale structure

which can be used to separate the partitioned directory at

some interval other than the exact midpoint. By

partitioning the boundary of the scale, an interval value,

which is not exactly the midpoint, but which nonetheless

guides a subsequent partition of the directory, is assigned.

52

There is no compelling reason to partition at the

midpoint of the interval, especially when data is not well

distributed. An alternative to using this interval midpoint

or to relying on the binary buddy system is to use a

midpoint between given records in a field, hereafter

referred to as the "midpoint of record." Figure 5-2

illustrates partitioning using the midpoint of record

method.

Figure 5-2 illustrates that, provided the directory and

the bucket are partitioned at the midpoint of the input

records, any insertion which causes overflow of bucket needs

no more than one directory partition.

0 0

1

Figure 5-2. Partition at the Midpoint of Record in
2-Dimensional Grid File Structure.

There is a more important reason for using the .binary

buddy system. Partitioning the space exactly in half,

avoids the deadlock state in the grid file structure as

defined by Hinrichs [HINR83] and discussed in Chapter IV.

53

If there were another way to find a buddy, then partitioning

of the given space in half would not be necessary.

The Cranston method [CRAN75] limits partitioning

neither to the space of the interval at midpoint nor to a

specific required interval as is normally required by the

binary or the Fibonacci method. Cranston developed an easy

way to partition and recombine with the Fibonacci buddy

system by using two additional bits named the B bit and the

M bit. In Figure 5-3, the B bit represents the buddy bit.

If the B bit is zero, then the buddy is on its right side,

otherwise the buddy is on the left side. The M bit is used

to retain data for reconstruction of the original structure.

B M

level 0

level 1

g level 2

Figure 5-3. Cranston's Partitioning and Merging Method.

54

Originally, at level 0, the B bit and the M bit are

represented as X andY, where X and Y can be either zero or

one. After one partitioning, the level 0 scale is

partitioned into two different scales, band c, at level 1.

By the same principle, the level 2 scale is further

partitioned from level 1, and thus level 2 has 4 partitions.

The b scale of level 1 has the B bit as zero because

its buddy, the c scale, is on the right side. The M bit is

X, the B bit of its predecessor scale. Also, the c scale at

level 1 has the B bit as one because its buddy, which is the

b scale, is on the left side. Here, the M bit is Y, again

where Y is the M bit of its predecessor scale. However, in

level 2, the e scale, which has B = 1 and M = X, and the f

scale, which has B = 0 and M = 1, can not be buddies, but

only neighbors. This determination is easily checked by the

B bits of both scales. The recombination of scales reverses

the order of partitioning. Also, the original X and Y bits

can be reconstructed.

Simulations whose data set are a 3-dimensional randomly

generated file and the data file for a magazine index

illustrate the midpoint of record method Here, a double-

level grid file as defined by NievergeJt [NIEV84] is used

for analysis of the directories and scales. However, a

single-level grid file result can be extracted by checking

the data just before invoking the grid level partition. In

the case of this single-level grid file structure, when a

randomly generated data set is used, the number of the

~
l
r
i
c
t
0
I'
~

tl
u

~
e
r

B
u
c
k
e
t
H
u

"' b
e
I'

. -·~--·--" ... , .. "" ; ... " ". '•'." i. '•"" "

I

._,:,.._,/
I . . .

~·-·-·-·1 :

.......... : ·~:.:..!!~~l~'ll~IJll(........... :.
. I;

Data· Hualbtr

: ·"'
.I

I

·············:···············:···············:····· , ',.!······
; ; B~HAI!Y PAI'ftTIOH;
: : : /./ :

; /
·.•·

... " : . " . " / ... "
/

: ·

12
Data Hu!Dblr

1:1
<X 100>

i

15
<X 100>

55

Figure 5-4. Single-Level Biased Data Grid File Comparison.

~
I
r
t
c
t
0
r
II

H
u

~
e
r

I
u

~
t

" u

c
I
r

0

il D 1 rli'ctor!j Compu 1 son

.......... ' 1.. i 1 } ·~ ·~ ; ,'

.... : ·:· i ·~· ·;!. ~
: : ~~--J

. " .
¥I HAD' 'PARTinOH

....................... ~ -;-/~.-:(.~· j
. " :.­

,;
i' :

•••••• ~ ••••• 0 ••••• ~- •••••••••• 0 ~ ••••••••••

i : :

tata NuMtr ex i&c,

It luoktt. CollpviiOII

. . ··········:············:············
Bl~'t PAiTITlolf , ...!' ~ ~

. : ; , : : : ··········r·····>-- ····~_..,Am_ .. _.
. .

ex i5cx))

Figure 5-5. Double-Level Biased Data Grid File
Comparison.

56

»
i
r
t
c
t
0
r
y

li
u
II
b
e
r

I
u
c
k

' t
H
u
• b

' r

I

... ,.,·'

. :t:~
.......... ' -~· ' ·;. ·~ .-: ."": .. . ~:

BINARY PA~TIT!Jlli. / ~IDD; ARTITION 0

/:
.. . 1. . .. : ,. :

/

... ' ... •'•

Data HuMtr

...?"
/'

/

............. : :, :
: "' - BIHARY PARTIT!Ofl : / . .

RECORD

Figure 5-6. Double-Level Random Data Grid File
Comparison.

57

58

directories and the number of the buckets are very close in

both the binary buddy and midpoint o: record methods even

though the method of partitioning is different. However, as

illustrated by Figure 5-4.a, when a biased data set is used,

the number of the directories in the ~idpoint of record

partition method is better than the binary partition method

by a factor of two. Biased data means that the data set is

not distributed equally over the total data area. If the

biased level is heavier, then the number of directories may

be reduced further.

In the case where two levels of the grid file with a

biased data file are used, then the number of directories in

the midpoint of record method is reduced to almost 65% of

the binary method, as shown in Figure 5-5.a. However, the

number of buckets required is slightly more than that of the

binary method. Also, as Figure 5-6 shows, the number of

directories in the midpoint of record method is slightly

better, while the number of buckets is slightly worse. The

reason for this result is that the upper, grid level

partitioning cannot be done by using the interval midpoint

for the middle block scale value, because each block

directory and the block scales have different boundaries for

the different sets of data. In the simulation, grid level

partitioning is done by the binary method. As a result,

each grid directory partition induces the bucket partitions

of n - 1 hyperplanes of its subdirectories. For example,

originally, the bucket capacity was b = 1 and the maximum

59

number of partitions was 2 in Figure 5-?.a. Here, the left

upper corner numbers represent the indexes of the

directories. If a new record x in bucket number 3 is

2 3 X 2 3 X 2 3 X

0 0 0

0 0 0

0 1 0 0 1 0 0 1 0

0 0 0

a b c

Figure 5-7. Grid Partition Methods.

inserted, a grid partition, represented by the double line

in Figure 5-7, is necessary. Block partition is impossible

since the maximum number of partitions for the block limited

to only 2.

In Figure 5-?.b, a binary partition occurs, while in

Figure 5-?.c the midpoint of record method is used. In the

case of Figure 5-7~b, the records in the bucket pointed by

directory 1 and directory 3 must be partitioned because

different block directory and block scales are unable to

share a single bucket while maintaining the two-disk access

principle. Even though the midpoint of record partition

60

method is used for the grid level partition, all block

directories in the n - 1 hyperplane, except the current

block directories, should separate their bucket records for

the same reason as indicated in Figure 5-?.b. This is the

main reason that the bucket numbers of the midpoint of

record partition are more than those of the binary partition

method in Figure 5-5.b and Figure 5-6.b.

There is one other advantage to the midpoint of record

partition method. Because the partitioning follows the

midpoint of the block directory, it is guaranteed that one

grid partition and one block partition are enough to divide

any kind of the data set for a partition. Thus, the worst

case number disk accesses in the part~tion is fixed to the

n - 1 hyperplanes of both grid partition and block

partitions. The abstract data type and its operations of

the partition by the midpoint of record is:

ABSTRACT DATA TYPE FOR A SCALE

Scale [MaxScale] of ScaleType

1 < MaxScale < oo, MaxScale : integer

Structure of ScaleType

B bit : Buddy bit, if budcy is rig~t side then 0

else 1

M bit Memory bit, used for reconstructing original

memory

UpperBound : biggest data fit into this memory

Operation :

Partition(Scale, i, NewBoudnary) :

Partition of Scale [1] into Scale [i] and Scale [i+1].

Scale[i+1].UpperBound = Scale[i].UpperBound

Scale[i+1].B = 1

Scale [i+1].M = Scale[i].M

Scale[i].UpperBound = NewBoundary

Scale [i].M =Scale [i].B

Scale [i].B = 0

Merging(Scale, i) Merging of Scale [i] and Scale[i+1]

into Scale [i]

Scale [i].B =Scale [i].M

Scale [i].M =Scale [i+1].M

Scale [i].UpperBound =Scale [i+1].UpperBound

Bucket Compression

61

The bucket storage is a fixed sized structure; its

occupancy is about 69% [NIEV84] if a relatively large bucket

size is used. Also, each field does not consume all the

space it has available for storage (i.e. internal

fragmentation of field). Thus, by its very nature, this

structure presents the possibility of compression due to

this habitually unused space. The actual file size,

therefore, may reduced significantly if, instead of using

fixed-length record bucket size, a variable-length record

bucket is used. However, managing the variable length file

is not easy.

62

Scale Resident Directory
.--

X

r-

-

'--

Scale

Bucket Directory

..--

r-

" J.

r--

0
~

[
scale

I I I l Converter J

1 +
Head l I I Head I I

Non-Compressed File Compressed File

Figure 5-8. Compression of Bucket Record.

An alternative to using a variable length bucket size

is to apply two different bucket storages and to try to

reduce the total size of bucket file. This alternative is

63

presented in Figure 5-8. Here, two different bucket storage

structures are created and a reduction method is applied to

try to compress the total size of the bucket file. In this

structure, the Huffman compression technique [HUFF52] is

used for compressing bucket records. One of the bucket

structures has the original size and stores records without

using any compression technique. The other one has a

smaller sized compressed bucket and stores records in a

compressed form. In this case, the main reason for using

two different sized buckets is to overcome the worst-case of

the Huffman method, which is explained in Chapter III.

Obviously, the total file size never outgrows the grid file

bucket size.

A further aid in reducing the complexity of the

compression technique may be to establish a certain

threshold for compression. For example, if bucket occupancy

is less than 70%, then compress the bucket records,

otherwise leave them in the non-compressed form.

The converter of the grid file in Figure 5-4 is

composed into a Compressor and Decompressor.

data type of Compressor is:

The abstract

Huffman tree 1 of HuffmanNodeType

Structure of the HuffmanNodeType:

char character of the node if the node is external.

left pointer to the left son

right : pointer to the right son

father : pointer to the father pointer

Operation :

FindCharater (BitString, char)

search Huffman tree by given bit-string until the

external node.

return the character of that external node.

The abstract data type of the Decompressor is also

presented:

Huffman table [NumChar] of HuffmanTableType.

0 < NumChar < ~, NumChar : integer.

Structure of the HuffmanTableType

char: character for translating into bit-string

BitStr1ng: bit-string of the character form

Operation :

FindBitString(char, BitString)

Search for the character in the Huffman table.

Return the BitString.

1 The construction of the Huffman tree algorithm was
developed by Schwartz [SCHW64].

64

65

By changing the compressed bucket size from zero to the

same size as the bucket size, the total file size can be

easily searched. Figure 5-9 illustrates this concept by

using the binary partition method. Here the bucket size is

10 records and the 3000 records are being inserted. As

Figure 5-9 shows, the graph experiences an almost 66%

reduction of the original file size.

w
N
(/}

w
__J

LL.

__J
<(
1:-
0
1--

280000.0

200000.0

\
160000.0 \

120000.0

\
\

\\ /
J'

8 0000. 0 L-.J__L_.J.__,_-J-_.._..J.._J_....J._ __J_..J.._L. __ _,__ ---'--'--'----'---'---'--'--'--~

0.0 100.0 2DCl.O 300.0 400.0 500.(}

REDUCED BUCKET SIZE

Figure 5-9. Total File Size Variation Using
a Biased Data File.

66

In summary, the midpoint of record partition method has

several characteristic results. In the case of a single­

level grid file structure, if the midpoint of record

partition method is used, the compression ratio of bucket

and directory is proportional to the distributions of the

incoming data. If a double-level grid file structure is

used, the bucket storage is increased if the midpoint of

record partition method is used. However, the directory

size is reduced to around 65% of the original directory

size, and it is also proportional to the distribution of the

data. The bucket reduction ratio in Appendix B further

illustrates the compression ratio's relation to bucket

occupancy.

CHAPTER VI

SUMMARY, CONCLUSION, AND SUGGESTED FUTURE WORK

In conclusion, there are several reasons for adapting

the midpoint of record method. The simulation clearly

demonstrates that this method has several advantages over

the binary buddy system. The midpoint of record method

limits worst case accesses for the partition. Furthermore,

in the case of a single-level grid file structure for a

biased data set, compression is enhanced by a factor of two

for the directory, while the number of buckets is reduced to

nearly 70% of the binary buddy system. Similarly, in the

double-level grid file structure for a biased data set, the

directories are compressed to 65% of their original size.

An extrapolation from experience with the biased data set

indicates the results should be similar for a random data

set. Further, if the data file is much more heavily biased

than the files of our simulation, then the compression ratio

should be better than the factor of two compression results

of this study. Thus, the results reveal that, despite

claims for the dynamic nature of a grid file structure that

utilizes the binary buddy system, the new partitioning

method, the midpoint of record method, provides a

significantly more dynamic adaptation for an incoming data

67

68

set.

In the case of the bucket storage, the bucket

compressions of the grid file structure yields compression

ratio of 66% mentioned in the Chapter V. Also, even when

a randomly generated file is used as a data file, the

compression ratio is around 59% due to the internal

fragmentation of the input file and the two different bucket

sizes. (See the graph in Figure 6-1.)

w
N
(/)

w

Z4000C : <C· ------- ______ ._ ------- ------- -------

20000(:.•:!:>
\

\------

\
/

/

-/---
/

~ 16000(:I:!) ~-----\--+------ ------- --/----
_J
<(
t­
o
1-

//

\ / _ / _\ ___ --y--
\ ,/

\ /
___,'

12000C: ·:.[) 1-----

0.0 100.0 200.0 300.0 400.0 500.0

REDUCED ElUCKET SIZE

Figure 6-1. Total File Size Variation using a Randomly
Generated Data File.

69

There are several directions that need to be explored

in the future using this study as a base. The binary

partitioning method and the midpoint of record method ought

to be compared in the upper level of the grid file to see if

the results are comparable to those examined in the lower

level by this study. This research may add to the

efficiency of the midpoint of record for it yields an even

more dramatic reduction in the overall numbers of

directories. More study must also be applied to the

relationship between bucket occupancy and optimal reduced

bucket size. This information may lead to a chart showing

optimal reduced bucket size for a variety of data files.

Other users could avoid costly and time-consuming

calculation of optimal reduced bucket size by consulting

this chart.

BIBLIOGRAPHY

[BENT86] Bentley, J. L., and Sleator, D. D., and Tarjan, R.
E., and Wei, V. K. "A locally adaptive Data
Compression Scheme." CACM 29, 4 (Apr. 1986),
320-330.

[BROM80] Bromley, A. G. "Memory fragmentation in buddy
methods for dynamic storage allocation." Acta
Inf. 14 (1980), 107-117.

[BURK83] Burkhard, W. A. "Interpolation-based index
maintenance." BIT 23 (1983), 274-294.

[CHOW87] Chowdhury, S. K., and Srimani, P. K. "Worst case
performance of weighted buddy systems." Acta
Inf. 24 (1987), 555-564.

[CORM85] Cormack, G. V. "Data compression on a database
system." CACM 28, 12 (Dec. 1985), 1336-1342.

[CRAN75] Cranston, B., and Thomas, R. "A simplified
recombination scheme for the Fibonacci buddy
system." CACM 18, 6 (June 1975), 331-332.

[DAVI73] Davisson, L. D. "Universal noiseless coding." IEEE
Trans. Inf. Theory 19 (1973), 783-795.

[FAGI79] Fagin, R., and Nievergelt, J., and Pippenger, N.,
and Strong, H.R. "Extendible hashing-A fast
access method for dynamic files." ACM Trans.
Database Syst. 4, 3 (Sept. 1979), 315-344.

[FINK74] Finkel, R. A., and Bentley, J. L. "Quad trees-a
data structure for retrieval on composite
keys." Acta Inf. 4 (1974), 1-9.

[FRED60] Fredkin, E. "Trie memory." Comm. ACM 3, 9 (Sept.
1960) 1 490-499,

[GALL78] Gallager, R. G. "Variations on a theme by Huffman."
IEEE Trans. Inf. Theory IT-24 (1978), 668-674.

70

71

[HAN88] Han, C. "A grid file approach to large
multidimensional dynamic data structures." MS
Thesis, Oklahoma State University, (May 1988).

[HINR83] Hinrichs, K., and Nievergelt, J. "The grid file: a
data structure designed to support proximity
queries on spatial objects. 11 In Proc. Workshop
on Graph Theoretic Concepts in Computer
Science, Osnabruck, (1983), 100-113.

(HINR85] Hinrichs, K. "Implementation of the grid file:
design concepts and experience." BIT 25, 4
(1985), 569-592.

[HOR084] Horowitz, E., and Ai-Suwaiyel, M. "Algorithms for
Trie Compaction." ACM Trans. Database
Systems, 9, 2 (June 1984) I 243-263.

[HUAN85] Huang, S. "Multidimensional Extendible Hashing for
Partial-Match Queries." Int JC Inf 14, 2
(1985), 73-82.

[HUFF52] Huffman, D. "A method for the construction of
minimum redundancy codes." Proc. I. R. E. 40,
9 (Sept. 1952), 1098-1101.

[KNUT73] Knuth, D. E. "the Art of Computer Programming."
Vol. 3. Addison-Wesley, Reading, Mass.,
(1973).

[KNUT85] Knuth. G. E. "Dynamic Huffman Coding." J.
Algorithms 6, 2 (June 1985), 163-180.

[LARS87] Larson, P. E. "Dynamic hashing 11 BIT 18 (1987), 184-
201.

[LITW80] Litwin, W. "Linear Hashing: a new tool for file and
table addressing." In Proc. 6th International
Conf. on Very Large Data Bases, (1980) I 212-
223.

[MART77] Martin, J. "Computer Database Organization. 11

Englewood Cliffs. N.J. Pr intice-Hall, (1977).

[MCIN85] Mcintyre, D. R., and Pechura, M. A. "Data
compression using static Huffman· code-decode
tables." CACM 28, 6 (June 1985), 612-616.

[NIEV84] Nievergelt, J., and Hinterberger, H., and Sevcik,
K. "The Grid File: An adaptable, symmetric
multikey file structure." ACM Trans. Database
Systems, 9, 1 (Mar. 1984), 38-71.

72

[OUKS83] Ouksel, M., and Scheuermann, P. "Storage mapping
for multidimensional linear dynamic hashing."
Proc. of the Second ACM SIGACT-SIGMOD
symposium, (Mar. 1983) 90-105.

[PECH82] Pechura, M. "File archival techniques using data
compression." CACM 25, 9 (Sept. 1982), 605-
609.

[PETE84] Peterson, J. L., and Norman T. A. "Buddy systems."
ACM Trans. Database Systems, 9, 1 (Mar. 1984),
89-99.

[RAMA85] Ramamohanarao, K., and Sacks, R. "Partial match
retrieval using recursive linear hashing."
BIT (1985) I 477-484.

[REGN85] Regnier, U. "Analysis of grid file algorithm.", BIT
25 (1985) 1 335-357 •

[ROBI81] Robinson, J. "The K-D-B tree: A search for large
multidimensional dynamic Indexes." Proc. ACM
SIGMOD (1981) I 10-18.

[SALZ86] Salzberg, B. "Grid file concurrency." Inf. Syst.
111 3 (1986), 235-244.

[SARIS?] Saritepe, H. N. A. "An analytic comparison of grid
file and k-d-b tree structures." MS Thesis,
Oklahoma State University, (Dec. 1987).

[SCHW64] Schwartz, E. S., and Kallick, B. "Generating a
canonical prefix encoding." CACM 7, 3 (Mar.
1964) 1 166-169.

[SEVE83) Severance, D. "A practitioner's guide to data base
compression." Inf. Syst. 8 1 1 (1983), 51-62.

[TAMM82] Tamminen, M. "The extendible cell method for
closest point problems." BIT 22 (1982), 27-
41.

[VALL76] Vallarino, 0. "On the use of bit maps for multiple
key retrieval." ACM SIGPLAN Notices 11 (Mar.
1976)1 108-114.

[ZIV72] Ziv, J. "Coding of sources with unknown statics -
part I. Probability of encoding error." IEEE
Trans. Inf. Theory (1972) I 384-394.

[ZIV77] Ziv, J., and Lempel, A. "A universal algorithm for
sequential data compression." IEEE Trans.
Inf. Theory 23 (1977), 337-343.

73

(ZIV78] Ziv, J., and Lempel, A. "Compression of individual
sequences via variable-rate coding." IEEE
Trans. Inf. Theory 24 (1978), 530-536.

t.}. i

APPENDIX A

BUCKET OCCUPANCY OF THE GRID FILE STRUCTURE

4

Figure A-1.

it
NUMBER OF RECORDS

l
-;

.. -j
j

~
-i

""--4
.J
I

l
1
-1

' . ' .. ---t

i
I

24
(~--:. 1000)

Grid File Bucket Occupancy using a
Randomly Generated Data File.

Figure A-1 illustrates approximately 69% occupancy at bucket

size b = 20 using a randomly generated data file.

74

;-

i-
0.4f-·

i
i
r-
....

j
!

!
l

' ' ' ' . ' . •, ' .. ' . ' .. _,
i

!

... ~
j
~
:

-;

" .]

.. --i

.... --!
:

l
~

i- ~
0,3 1~· ~~--~~~~~~~~~-L~--~~~-L~--~~~-L~--L-~~

0

Figure.A-2.

NUMBER OF RECORDS

Grid File Bucket Occupancy Using
a Biased Data File.

.j c:
,.l.· ... ·

(X 10CJC)

75

Figure A-2 illustrates approximately 59% occupancy at bucket

size b = 20 using a biased data file.

APPENDIX B

TOTAL FILE COMPRESSION USING THE MIDPOINT

OF RECORD PARTITION METHOD

2.80000.0 ------ -----

/
240000.0 ------~-------~---------+---~----1

w
N
rJ) 200000.0
w
_J

lL..

_J

~ 160000.0 1-----''r+·

~ ' /// ,,
-~-- -/----120000.0 ~--

\ -
\ "-/./

80000.0
0.0 100.0 200.0 300.0

REDUCED BUCKIT SIZE

400.0 500.0

Figure B-1. Total File Size Variation using a Randomly
Generated Data File.

Total file size variation at bucket size b = 10 using a

randomly generated data file with midpoint of the record

partition method.

76

LLI
('-~

L')

w
-'
LL

-'
4:
f-
0
1--

280000.C· ------ ------

240000.0 ---

\
\.

--+--·------ -------200000.0 --~--
\

\
\

160000.0

_ __L__
,/

77

0.0 100.0 200.0 300.0 400.0 500.0

REDUCED BUCKET SIZE

Figure B-2. Total File Size Variation using
a Biased Data File.

Total file size variation at bucket size b = 10 using a

biased data file with midpoint of the r€cord partition

method.

~
VITA

Sei Hoon Chun

Candidate for the Degree of

Master of Science

Thesis: COMPRESSION TECHNIQUES FOR THE GRID FILE

Major Field: Computing and Information Science

Biographical:

Personal Data: Born in Seoul, Korea, January, 1960, the
son of Mr. Yung Il Chun and Jung Eui Chun.

Education: Graduated from Kyung-Bock High School,
Seoul, Korea, in February, 1978; received Bachelor
Science degree in Electrical Engineering from
Hanyang University in February, 1985; completed the
requirements for the Master of Science degree at
Oklahoma State University in December, 1988.

Professional Experience: Programmer, Oklahoma State
University, Agronomy Department, August, 1987, to
September, 1988.

