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CHAPTER 1

Introduction

1.1 Motivation

In computer arithmetic, multiplication is not commonly utilized as much as addi-

tion, but it plays an important role for microprocessors, digital signal processors,

and graphics engines [1]. Computers spend a large amount of time and power when

performing multiplication, whether it is utilized in software or hardware. Early com-

puters used only parallel adders and a few storage registers, so multiplication was

often performed via a sequence of add and shift instructions [2]. Subsequently, future

designs utilized high-speed multipliers by employing faster adders as well as better

and more optimized memory.

With a multiplication operation, difficulty occurred when the input operands are

two’s complement. Shaw [2] developed an algorithm for two’s complement multipli-

cation, but these algorithms usually require more hardware, therefore, the complexity

of distorted systems increased. To solve this problem, some designers utilize differ-

ent numeric recoding such as Booth multiplier [3]. This algorithm utilizes a number

shift and serial multiplication operations along with some recoding to handle two’s

complement number.

Another multiple algorithm proposed in [4] is a fully parallel multiplier called a

Wallace tree. This algorithm uses a group of (3, 2) and (2, 2) counters to reduce the

number of partial product bits to 2 operands (carry and sum), then they are added by

using a faster adder. A new scheme presented in [5], called Dadda tree, utilized the

lower bound of combining different types of counters to optimize the number of (3, 2)
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and (2, 2) counters. Later, in [6], this tree was optimized to find optimum building

block for implementing of a multiplier with a larger input size.

Over the several decades, Very Large Scale Integration (VLSI) technology and

integrated circuit processing have dramatically improved. According to Moore’s Law,

the number of transistors in a die doubles approximately every 18 months [1]. As the

number of transistors and speed in a chip increase, more specific units and elementary

functions are added to computer’s arithmetic unit, allowing it to run faster. Therefore,

computer’s performance is improved and more complex scientific problems can be

solved.

Squaring is a special operation of multiplication. It plays an important role

in a computer’s arithmetic unit and many applications such as, image compres-

sion [7, 8], equalization [9], multimedia applications [10–12], and decoding and de-

modulation [13, 14]. It can also be an efficient way to compute other basic func-

tions [15–17]. Therefore, improving the performances of squarer is a goal for many

researchers.

Another type of multiplication is powering function (XY ). It is also needed for

computer 3D graphics, digital signal processing (DSP ), scientific computing, artificial

neural networks, logarithmic number systems, and multimedia applications [12], and

other important functions [15]. Cubing (X3) is a special instance of powering and

plays an important role in many algorithms, like signal processing, image processing,

cryptography [18,19], and elementary function approximation [20–23].

Recently, with the increment of density of gates in each die, parallelism through

single instruction multiple data (SIMD) processing can optimize processing for more

than one operation. By enhancing application specific and embedded processors are

ways to provide higher levels of parallelism [24]. These enhancements are combined

with an extended instruction set that takes advantage of additional hardware by al-

lowing more operations to be encoded in a single instruction. With this increased

3



parallelism and the shrinking feature sizes, the next generation of application-specific

processor can execute significantly more work. Consequently, new techniques for cal-

culating the squaring and cubing units in parallel without the use of basic multipliers

or tables becomes an attractive alternative.

For these reasons, squaring and cubing operations still are objects of many re-

searchers. They should be calculated with a minimum amount of latency as to not

slow down these calculations, especially for real-time systems [25].

1.2 Research Contributions

This dissertation will discusses modification to algorithms to compute parallel squar-

ing and cubing units in both unsigned and signed representation. After that truncated

techniques are applied to get an optimal performance.

Each unit is modeled and estimate its area, delay by linear evaluation. Hardware

design using V erilog code is used in this dissertation. A C program is used to gener-

ate V erilog code for each unit. These units are simulated and verified in Hardware

Description Language (HDL) simulators. Area, delay, and power consumption are

calculated for each of the designs and compared with previous approaches in both

V irtex 5 Xilinx FPGAs and IBM 65nm ASIC standard-cell libraries. The follow-

ing are contributions of this work

1. Propose a new model for unsigned squaring and cubing unit.

2. Investigate signed squaring, cubing units.

3. Estimate the Area, Delay, and Power of these units by using linear model.

4. Propose a model for truncated squaring, cubing units.
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1.3 Dissertation Organized

The remaining portion of this thesis is structured as follows : Chapter 2 will review

the background information on the parallel multiplication. Chapter 3 presents various

ideas of truncated multiplication . Chapter 4 illustrates squaring units and proposed

a new model to improve their performance. Chapter 5 gives information on parallel

cubing units and propose a new way to implement it. Chapter 6 analyses truncated

squaring and cubing units with previous technique presented in Chapter 3. Chapter 7

used Linear-Delay model for analyzing area and delay of each units. Chapter 8 is

an implementation of squaring and cubing units in both techniques FPGA and ASIC

and conclusion.
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CHAPTER 2

Multiplication

Multiplication is frequently required in digital signal processing applications (digital

filtering, FFT, convolution,...). Parallel multipliers [4, 5] provide fast multiplication

for these applications, but require large amount of area. This parameter increases pro-

portionally with the square of the word size. Therefore a large number of transistors

are needed, hence, multipliers consume a large amount of power [26].

A multiplier is one of vital parts in application-specific processors, such as digital

signal processing (DSP ) systems. This is because many signal processing algorithms

heavily utilize multiplication. To improve performances of multipliers, high speed

parallel architectures are often used. These architectures contribute significantly to

the overall power dissipation of these systems [27]. Consequently, reducing power

consumption of parallel multipliers is important in design of digital signal processing

systems. In the past, several techniques have been proposed to reduce power dissipa-

tion of parallel multipliers. Some of them tried to reduce dynamic power dissipation

by eliminating spurious transitions [28]. The others tried to develop multiplier archi-

tectures [29]. Although these techniques help reduce power dissipation, but further

reductions are needed for future DSP systems [28].

Since current and future portable devices using DSP hardware have become pop-

ular. As more of these devices increase, so does the power consumption. Hence, long

battery life is a higher priority feature for most users.

To illustrate multiplication algorithms, a partial product matrix is often used. A

m× n bits multiplication can be viewed as forming n partial products of m bits each

6
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Figure 2.1: Partial Products Matrix of Multiplication.

and then summing the appropriately shifted partial products to produce (m+ n)-bit

result P . Theoretically, multiplication of two n bits unsigned fraction A and B will

yield 2n bits products P , as shown below:
A =

∑n−1
i=0 ai · 2−n+i

B =
∑n−1

i=0 bi · 2−n+i

P =
∑2n−1

i=0 pi · 2−2n+i

(2.1)

Digital architectures for multiplication usually involve three separate steps:

1. Partial Product Generation (PPG) to utilize a collection of gates to generate

the partial product bits.

2. Partial Product Reduction (PPR) to utilize adders to reduce the partial prod-

ucts to sum and carry vectors.

3. Final Carry Propagate Addition (CPA) to add the sum and carry arrays to

produce the product.

Figure 2.1 illustrates the generation and summing of partial products in n × n bits

multiplication. When A and B become larger, dot diagram is used to represent partial

products more conveniently. For example, Figure 2.2 shows a dot diagram for an 8-bit
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Figure 2.2: 8x8-bit Dot Matrix Diagram of Multiplication.

multiplier. Each dot is equal to each bit in partial product matrix. It can be either

”0” or ”1” depends on the value of multiplicand and multiplier.

There are several techniques that can be used to implement multiplication. In

general, the choice is base upon factors such as latency, throughput, area, and design

complexity. The latency factor is related to the height of the dot diagram. This rela-

tionship can vary from logarithmily to linearly [30]. The simplest way to implement

a multiplier is used an (n + 1)-bit CPA to add the first two partial product arrays,

then another CPA to add the third one to the running sum, and so forth. This

technique will require (n − 1) CPAs, so it is slow even if a fast CPA is being used.

More efficient parallel approaches use some sort of array or a tree of full adders to

sum the partial product bits and using pipeline to reduce the cycle time and increase

the throughput. In addition, this technique can save a large amount of area.

8
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2.1 Carry Save Concept

After finishing first step PPG, all bits in this matrix will be added to get the final

result by utilizing adders to reduce the execution time. Because the major delay of

adders is come from the carrier chain, therefore, it is important to reduce the total

time is involved in summing carries [31]. There are two principles to help save time

arriving at a product:

• Carry-Save Addition (CSA): idea of utilizing addition without the carriers

connected in series, but just to count.

• Carry-Propagate Addition (CPA): idea of the carries connected in series to

produce a result in either conventional or redundant notation.

For these methods, each adder above acts the same as the full adder, however,

the view in which each connection is made from adder to adder is where the main

difference lies. Because both adders compute both carry and save information, some-

times V LSI designers refer to it as a Cary-Save Adder (CSA) [31]. The summation

of the partial product bits is done by using a CSA, each adder attempts to count the

number of inputs that are ”1”, so it also referred as a counter. These counters can

9



be connected by several different topologies. These topologies are referred as regular

and irregular ones. In the former, the counters are connected in a normal pattern

that is replicated so that the design of partial product array can be connected as a

hierarchical design. On the other hand, in the latter, the counter are connected in

order to minimize the delay. The different of these topologies can be seen in array or

tree multipliers.

A (c, d) counter is a special adder, in which c is the number of columns to be added

and d is the number of outputs. For example, a (3, 2) counter counts its inputs with

the same weight and has 2 outputs. Fig 2.3 shows a typical (3, 2) counter. Therefore,

a n-bit CSA has three n-bit input operands and two n-bit outputs, one for sum and

the other for carry. Large operand sizes would require more CSAs to produce a result.

However, a CPA would be required to produce the correct result [31]. For example,

Figure 2.4 shows how to add four operands together A + B +D + E with the value

5 + 12 + 7 + 10. The implementation utilizing carry-save concept for this example is

shown in Figure 2.5. Higher order counters can be created by putting together various

sized counters. A higher counter (p, q) takes p input bits and produces q output bits.

Because q is a number between 0 and 2q − 1 so the value of p must be smaller than

2q.

2.2 Carry-Save Array Multipliers (CSAM)

A Carry-Save Array Multipliers is the simplest multiplier in which each partial prod-

uct bit is being added [32] similar to paper and pencil multiplication is performed.

Its operation is based on paper and pencil style multiplication where each partial

product bit is added in array. The topology of a CSAM is a regular one, so it is easy

be built by a hierarchical design. Figure 2.6 shows an implementation of a 8× 8-bit

unsigned multiplier. Each diagonal in CSAM corresponds to a column in the mul-

tiplication matrix shown by the bold line in Figure 2.6. Because of implementing in

10
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Figure 2.6: 8× 8-bit Carry-Save Array Multiplier.

a square shape, CSAMs allow metal tracks or interconnect to have less congestion,

thus, reducing capacitance as well as it is easier to organize [31].

A CSAM generates partial product bits by utilizing AND gates and uses an

array of CSA′s to perform reduction. These AND gates form the partial product’s

and the CSA′s will be used to sum these products together or reduce them. Because

half the lower part of the product is computed by the reduction, therefore, only
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the upper half of the product need to be added in the final CPA [31]. To perform

CSAM , each adder is modified so that it can perform partial product generation and

addition. Two type of adders are used for CSAM and called the modified half adder

(MHA), and the modified full adder (MFA). A MHA consists of an AND gate to

generate the partial product bit and one half adder (HA) to add this partial product

bit with another one from the previous row. A MFA consists of an AND gate for

generating partial product bit, and a full adder FA. This FA is used to add this

partial product bit with the sum and carry bits from previous row. Figure 2.7 shows

the block diagram of the MHA and the MFA.

2.3 Tree Multipliers

Tree topologies are a fast way for summing partial products. In a tree, counters

are connected in different ways for each slice [30]. Therefore, to reduce the delay of

array multipliers, tree reduction are often employed. A tree multiplier, which have

O(log(n)) delay [31], uses an idea of reduction to reduce their partial product height

down until it is equal 2, then a high speed CPA is applied to get the final result.

Tree multipliers vary in a way that each CSA performs partial product reduction.

The main objective is to reduce the its height by utilizing the carry-save concept.

Each partial product bit is reorganized, so that it can achieve an efficient reduction

13



i

(3, 2) counter(2, 2) counter

i+1 i i+1

Figure 2.8: (2, 2) and (3, 2) Counters in Tree Multiplier.

in the column. This is possible for multiplication, because each bit in the matrix is

commutative and associative with respect to addition.

The first trees were introduced in [4],called a Wallace tree, by utilizing a reduction

using (3, 2) and (2, 2) counters in parallel. A Dadda tree [5] is an improvement

of Wallace tree in which the number of reduction stages are minimized. Another

tree presented in [33] improved multiplier’s area compared with both Wallace and

Dadda trees. In a tree multiplier, (3, 2) and (2, 2) counters are defined and used as

in Figure 2.8.

2.3.1 Wallace Tree Multipliers

In 1964, a fast multiplier is defined using a column compression technique [4]. Partial

product bits in the matrix of multiplier are reduced to two arrays carry and sum. In

the final stage, a fast CPA is utilized by adding these two arrays together to get a

final product. This technique has a total delay which is proportional to the logarithm

of the operand word length, so these multipliers are faster than array multipliers [35].

Because all bits in the partial product matrix can be moved and interchanged as

long as they are kept in the same column. Therefore, they can be reorganized in a

proper way. Following are steps to implement a Wallace tree multiplier:

1. Reorganize dot matrix into inverted pyramid.
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2. Group rows into a group of 3.

3. Starting at rightmost column using (2, 2) and (3, 2) counters as long as each

subset of 3 has at least 3 rows.

4. Repeat Step 2 and 3 until the final height of the reorganized matrix is 2.

As can be seen in the Figure 2.9, each row are grouped in to set of three by using

(3, 2) counter as maximum as possible, the rest is group into set of two by using (2, 2)

counter. Rows that are not part of a three row set or two row set is transferred to

the next reduction stage. The height of the matrix in the jth reduction stage is wj

will be defined by the following recursive equation: w0 = n

wj+1 = 2×
⌊wj

3

⌋
+ (wj mod 3)

(2.2)

For example, apply Equation 2.2 to the case of n = 8, four stages with their height

w1 = 8, w2 = 6, w3 = 4, and w4 = 3 can be computed, respectively. Figure 2.9 is

an implementation of 8× 8-bit Wallace tree multiplier. As can be seen in this figure,

four steps of reduction are processed step by step. In the first stage, 16 FAs and

5 HAs will be used to reduce matrix to the new one with the height is equal to 6.

In the second stage, 10 FAs and 6 HAs are employed to get a new matrix with its

height is 4. In the third stage, 7 FAs and 5 HAs will be used. In the last stage, 3

FAs and 8 HAsare employed to reduce the matrix height to 2. The final product is

generated by using an 11 -bit length CPA. Hence, this multiplier requires 64 AND

gates, 36 FAs, 24 HAs and an 11 -bit CPA. The total delay is the sum of one AND

gate delay, 4 FA delay (through 4 stages) and the delay of the 11 -bit length CPA.

In general, the total HA, FA, and the length of CPA can be expressed as in [26].
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2.3.2 Dadda Tree Multipliers

In 1965, Wallace tree was modified in [5], in which, a unique placement strategy for

the stages reduction was proposed. This technique minimizes the number of (3, 2)

and (2, 2) counters [34], but increases the CPA length. Therefor the number of

intermediate stages is set in term of lower bound. According to [31], the height of

partial product matrix (Dadda sequence) can be defined as:

2 → 3 → 4 → 6 → 9 → 13 → 19 → 28 → 42 → 63 · · ·

Following are stages to implement Dadda tree multipliers:

1. Reorganize dot matrix into inverted pyramid (optional).

2. Figure out Dadda sequence and where the height of the dot matrix falls within

this sequence:  h0 = 2

hi+1 =
⌊
hi × 3

2

⌋
.

(2.3)

Where hi is the height for the ith stage from the end

3. Draw a dotted line within Dadda multiplier representing next Dadda sequence.

4. Starting at right most column, reduce stage until Dadda sequence is meet from

Step 3.

5. Repeat from Step 3 until final height is 2.

For example, when n = 8, Equation (2.3) is applied, the height sequence h0 = 2,

h1 = 3, h2 = 4, h3 = 6, and h4 = 8, consecutively is established. Four stages

are needed for this tree reduction. Figure 2.10 represents an 8 × 8-bit Dadda tree

multiplier. In the first stage, a dotted line divides the matrix into 2 sections with

the heights are h3 = 6 . As can be seen in this figure, starting form the right most

to the 5th column, each of them has a height smaller or equal to 6, but from the 6th
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column, its height is 7, so one (2, 2)counter must be employed to reduce its height

to 6. This counter will bring one carry to the 7th column. Hence, one (3, 2) and one

(2, 2) counter should be used to reduce the height of 7th column to 6. The process

continues to the next until the left most column, and hence, a new matrix with the

maximum height is 6 is established.Further steps are continued until the height of the

final matrix is 2. In the final stage, a 14 -bit CPA is used for generating final product.

Figure 2.10 shows that this unit requires 64 AND gates, 33 FAs, 9 HAs and one

14 -bit length CPA. The total delay of this multiplier is the sum of one AND gate,

4 FA (though four stage reduction) and the delay through the 14 -bit length CPA.

In general, the number of (3, 2) and (2, 2) counters and the length of CPA in a

Dadda tree is computed in [35]:

N(3,2)counters = n2 − 4n+ 3

N(2,2)counters = n− 1

CPAlength = 2n− 2 (2.4)

2.3.3 Reduced Area (RA) Multipliers

The RA multiplier is another way to improve both Wallace and Dadda reduction

techniques. The difference among RA and Wallace, Dadda tree multiplier is that the

maximum number of FAs are utilized as early as possible, and HAs are carefully

placed to reduce the word size of the CPA. This is an algorithm that is typically

classified as a greedy algorithm. The following is the algorithm for a RA multiplier:

1. Reorganize dot matrix into inverted pyramid.

2. For each stage, the number of FAs used in column ith is equal
⌊
bi
3

⌋
, where bi is

the number of bits in column ith

3. HAs are only used as follows:
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Figure 2.10: Dadda Tree Multiplier.
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(a) In the right most column.

(b) When required according to Dadda.

Figure 2.11 shows a PPM for 8 × 8-bit RA tree multiplier. In the first stage,

step 2 is applied to through column 2th to 12th, and only step 3(a) is applied to the

column 1th. In the second stage, step 2 is applied to through column 3th to 12th, step

3(a) is applied to the column 2th, and step 3(b) is applied to the column 8th because

of violating Dadda sequence. Third and fourth stage will be continue doing in the

same way to get carry/sum arrays. The last stage is implemented by using a 10 -bit

length CPA to get the final result.

As can be seen in Figure 2.11, a 8 × 8-bit RA tree multiplier requires 64 AND

gates, 39 FAs, 7 HAs, and one 10 -bit CPA. The total delay for generating final

product is the sum of the one AND gate, 4 FA (through 4 stages reduction), and

the delay through the 10 -bit CPA.

2.4 Baugh and Wooley Multiplication

The previous section gave a general idea for unsigned multiplication. For signed ones,

Baugh and Wooley [36] proposed a straightforward way for calculating the output

product. Using n-bit length multiplier A and multiplicand B, presented in two’s
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Figure 2.12: PPM of Baugh and Wooley Multiplier.

complement number system, and P is an output product, they can be expressed as:

A = −an−1 · 2n−1 +
n−2∑
i=0

ai · 2i

B = −bn−1 · 2n−1 +
n−2∑
i=0

bi · 2i

P = an−1 · bn−1 · 22n−2 +
n−2∑
i=0

n−2∑
j=0

ai · bj · 2i+j

−[
n−2∑
j=0

an−1 · bj2n−1+j +
n−2∑
i=0

an−1 · bi · 2n−1+i]

= an−1 · bn−1 · 22n−2 +
n−2∑
i=0

n−2∑
j=0

ai · bj · 2i+j

+[
n−2∑
j=0

an−1 · bj · 2n−1+j +
n−2∑
i=0

an−1 · bi · 2n−1+i]

+22n−1 + 2n (2.5)

The PPM of this multiplier can be established as in Figure 2.12. To implement

this matrix, some of NAND gates are used instead of AND gates, two bits ”1” are

added in proper columns for signed adjustment. Figure 2.13 is an implementation of

8× 8-bit Baugh and Wooley multiplier in hardware.
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2.5 Modified Booth Multipliers with Radix 4

A recoding scheme introduced by Booth [3] reduces the number of partial product

bits and the height of its matrix nearly by half, hence, reduces hardware requirement

and improve multiplier’s performance. Straightforward extensions of the Booth re-

coding scheme [37, 38] called Modified Booth Multiplier (MBP ) can further reduce

the number of partial product bits. A digit ith of a MBP with radix 4 (sometimes

called Booth 2 ) can be recoded as

Bi = xi+1xixi−1

= −2 · xi+1 + xi + xi−1 (2.6)

A signed number X presented in two’s complement can be expressed as

X = x2n−1x2n−2 · · · x1x0

= −x2n−1 · 22n−1 +
2n−2∑
i=0

xi · 2i

= (−2 · x2n−1 + x2n−2 + x2n−3) · 22(n−1)

+(−2 · x2n−3 + x2n−4 + x2n−5) · 22(n−2)

+ · · ·+ (−2 · x3 + x2 + x1) · 22

+(−2x1 + x0 + 0) · 20

= Bn−1Bn−2 · · ·B1B0

=
n−1∑
i=0

Bi · 22i (2.7)

The output of a multiplier unit can be expressed as

P = X · Y

=
n−1∑
i=0

(Bi · Y ) · 22i (2.8)

Because Bi is recoded as in Equation 2.6, so the value of Bi will be in the set

{−2,−1, 0, 1, 2}, hence, each partial product row Bi · Y will come from the set

24



Table 2.1: Partial Product Selection

x2i+1 x2i x2i−1 Bi · Y

0 0 0 0

0 0 1 + Multiplicand

0 1 0 + Multiplicand

0 1 1 +2 × Multiplicand

1 0 0 -2 × Multiplicand

1 0 1 - Multiplicand

1 1 0 - Multiplicand

1 1 1 - 0

{−2Y,−Y, 0, Y, 2Y }. Table 2.1 is selection table for partial product in Booth 2 mul-

tiplication.

Because it is signed multiplication, the most significant partial product bit of

multiplicand operand is kept at the same, no more bits is added to guarantee a

positive result . When ± Multiplicand (entries 1, 2, 5 and 6 from the partial product

selection table) is selected, the n+1 bit section of the effected partial product is filled

with a sign extended copy of the multiplicand. This sign extension occurs before

any complementing that is necessary to obtain -multiplicand. The PPM of Booth 2

multiplier can be viewed as in the Figure 2.14, in which, S is signed bit of Bi, and E

is signed extension bit. The leading ”1” strings, created by assuming that all partial

products were negative, are cleared in each partial product under a slightly different

condition. The leading ”1” string for a particular partial product is cleared when

that one is positive. For signed multiplication this occurs when the multiplicand is

positive and the multiplier select bits chooses a positive multiple, and also when the

multiplicand is negative and the multiplier select bits choose a negative multiple.

A simple EXCLUSIV E − NOR between the sign bit of the multiplicand and the
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high order bit of the partial product selection bits in the multiplier generates the

one to be added to clear the leading ”1”s correctly [38]. Although the sign extension

presented in [38] is efficient at creating two’s complement multipliers, it ultimately

has a negative effect in that it does not compute positive results well. The reason

for incorrect result occurs is that −0 and +0 is really not specified as a multiplicand

partial product [39]. To fix that, sign extension bit is synthesized as in Figure 2.15.

Each row of dots in the Figure 2.14 is a partial product row and can be generated by

using logic functions as in the Figure 2.16.
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CHAPTER 3

Truncated Multipliers

In most DSP systems, the results of the basic operation are kept at a constant word

length. This action is applied for multiplications that uses two n bits inputs and

produces a product of 2n bits. The output then rounded to n bits. Consequently,

the full addition of the partial product is executed before rounding to get accurate

results. Is there any efficient way to do that, so the area and power consumption of

a multiplier can be reduce is the goal of many designers. Truncated multipliers are

the answer for this question.

Truncated multiplier can produce a fairly accurate result while significantly low-

ering area requirements. In addition, because of neglecting partial product bits in

the least significant columns, truncated multipliers save a large amount of power

consumption [28]. The first idea of truncated multiplier was introduced in [40], in

which, there are two main methods for compensating the error caused by truncated

the less significant part. The first one used a constant to estimate the weight of the

truncated part. The second one, called conditional correction, used sum of the first

r partial product terms in the (n + k)th column to estimate the sum of the first r

partial product terms of the (n+ k + j)th and (n+ k + j + 1)th column.

The constant correction method was refined by Schulte and Swartzlander [41].

Their idea is to use a similar method to [40], except that they used a rounding error

to add to the constant. The value of the constant is total of rounding error and the

mean of the truncated partial product terms. This idea developed further in [42] in

which nearly half of the area of multiplier is truncated. This scheme saves significant
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area, but produces a large error [43], especially when the width of the multiplicand

and multiplier increase. The reason that the error in [42] is larger than that one in [41]

is because only one bit ′1′ is used for compensation. To get results with more accuracy,

one more parameter k is used [28,41]. When k increases, the error decreases, but the

area and delay of the truncated multiplier increase. It is a trade-off between accuracy

and area. Because of using a constant for compensating the error, all multipliers

depend on this method are called correction constant truncated multiplier (CCT ).

According to [44], the CCT method is easy for implementation, but has larger

error compared with other methods. There are two main issues with error of CCT

method. First, because of adding a constant for all data inputs, the resulting product

will have non-zero DC component. Second, to limit the range of the maximum error to

be less than an LSB of the data path, the area and power saving cannot be maximized.

To reduce the error more, another technique was introduced in [21,44–46], in which,

the sum of all partial product bits in the most significant column of truncated part

is used for compensating the reduction operation. One additional element of the

rounding error in the CCT method is also used. Because the value of that sum

is a variable that depends on the inputs of multiplier, hence, this is called variable

correction truncated multiplier (V CT ).

Many researchers extended the idea of V CT to develop their own variant truncated

multipliers. In [43, 47, 48] proposed a scheme, in which half of columns in partial

product matrix are truncated. To compensate the error, a circuit made by AND−OR

gates is used to generate carries to the next column. The inputs of this circuit are

get from two most significant columns in the truncated part. A similar approach

presented in [42] saves a lot of area but the circuit has a long critical delay part and

no guarantee that the error can be compensated. To solve this problem, [49] proposed

a fixed-width signed multiplier in which the circuit generates carries like in [43] are

generalized by considering either the partial product terms in the n+ k + 1th column
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or their complements. This technique then is extended to the different value of h [50].

Another scheme presented in [51] attempts to explain the result obtained in [50], but

the circuit is complicated for implementation and does not improve the performance

compared to [50]. Others attempt in [52–54] represented a truncated scheme utilized

a modified Booth encoding technique to reduce more area.

According to [45], the maximum error of V CT is smaller than that one of CCT ,

but it can be costly for the implementation. Another restriction of both CCT and

V CT is that the error is not symmetrical. To overcome this restriction, another

scheme in [55] was proposed. This architecture looks like V CT except that one more

logic circuit is used to adjust V CT error.

Another technique called hybrid correction truncated multiplier (HCT ) presented

in [28] also tried to reduce error. This technique used a parameter that is the per-

centage of partial product bits in the most significant column of the truncated area

to calculate a constant for compensation. HCT actually is the combination of CCT

and V CT methods. The maximum error of the HCT is greater than that one of the

V CT , but smaller than that one of the CCT method [28].

Recently, there was another approach [56–61], in which, mean square error of

a truncated multiplier is minimized. This approach uses the idea of the V CT , but

a function with inputs are the terms in (n + k + 1)th column are used instead of a

variable. In [62] was additional method with mean error is reduced but mean square

error is increased compared with that one in [56].

Another technique presented in [63] tried to predict and select a carry bit in a

proper way. This technique is suitable when the width of multiplier is small, but not

applicable when the width is high, due to the fast growing computational cost of the

prediction process.

Truncated multiplier can be illustrated as in Figure 3.1. All (n−k) less significant

columns in the matrix are omitted, they are not participate in to form the product
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Figure 3.1: Product Matrix of Truncated Multiplier

result. As can be seen in this figure, only (n + k − 1) most significant columns are

used to compute the product. After that, the product is rounded to r-bit. Because of

the truncation and rounding actions, there is a difference between the real result and

the truncated result. To make the value of this error becomes smaller, an amount of

correction is needed. Depending on the method of compensating for the error is the

type of truncated multipliers.

3.1 Truncated Multiplication with Correction Constant (CCT)

Parallel multipliers are typically implemented as either carry-save array or tree mul-

tiplier [35]. An unsigned n-bit multiplicand A is multiplied by an unsigned n-bit

multiplier B will produce an unsigned 2n-bit product P . For fractional number, the

value of A, B, P can be expressed as in the Equation 2.1.
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In many systems, the 2n-bit products are rounded to r-bit avoid growth in word

size. This idea was introduced in [40] and then developed in [41]. In this method,

a constant is added to truncated partial product matrix for compensating the value

of the less significant columns that are truncated. As can be seen in Figure 3.1,

define P is the true product, Ereduct is the error that caused by the truncation of

the less significant columns, Eround is an error that caused by rounding to r-bit, C

is the constant for compensating error, and P̂ is the computed product, they can be

expressed as:

P̂ = P + Ereduct + Eround + C (3.1)

The error between computed P̂ and real product P is

ϵ = P̂ − P = Ereduct + Eround + C (3.2)

To minimize this error, the correction constant C is selected as the inverse of Ereduct

+ Eround that depends on the value of input A and B. As can be seen, the probability

of any input bit ai or bj being one is1
2
, therefore the partial product bit aibj being one

is 1
4
, hence, the expectation value of this partial product bit is 2−(m+n)+i+j

4
. On the

other hand, column kth in the partial product matrix has (k+1)-bit, so the reduction

error is the inverse of the sum of all partial product bits in the truncated area.

Ereduct = −1

4

n−k−1∑
i=0

(i+ 1)2−2n+i (3.3)

Figure 3.1 also shows that n+ k− 1 columns of the most significant part are used to

compute n+k-bit product, that is rounded to r bits. Therefore, all bits from column

(n− k)th to (r− 1)th cause rounding error. Because the probability of pi being one is

1
2
, the rounding error can be calculated as

Eround = −1

2

r−1∑
i=n−k

2−2n+i (3.4)

The total error that caused by truncation and rounding operations is

Etotal = Ereduct + Eround (3.5)
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The constant C is obtained by rounding Etotal to r + k fractional bits such that

CCCT =
round(2r+kEtotal)

2r+k
(3.6)

where round(x) indicates that x is rounded to the nearest integer. For example, if

n = r = 8 and k = 2, errors and correction constant C can be calculated as:

Ereduct = −1

4

5∑
i=0

(i+ 1)2−16+i

= −0.001224517822265625

Eround = −1

2

7∑
i=6

2−16+i

= −0.00146484375

Etotal = Ereduct + Eround

= −0.002689361572265625

CCCT = −round(2n+kEtotal)

2n+k

= 0.001953125

= 2−9 (3.7)

Figure 3.2 represents partial product matrix and Figure 3.3 is hardware implementa-

tion of this example. A specialized half adder (SHA) is used for adding the constant

C to proper columns in the matrix. The architecture of a SHA is equivalent to a

MFA, but it has an internal input which is set to ”1” corresponded to the value of

the constant C. Figure 3.4 is a hardware implementation of a SHA unit. As can

be seen in Figure 3.3, to save more area, a reduced half adder (RHA) and a reduced

full adder (RFA), which are the same as a HA and a FA, respectively, but produce

only a carry output.

To improve performances of this multiplier, one of three methods in Section 2.3

is applied. Figure 3.5 is Dadda tree diagram for this truncated multiplier, in which,

a bit ′1′ in the column 1th is represented for correction constant C.
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Figure 3.2: PPM of 8× 8-bit Truncated Multiplier in CCT with k = 2.
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As can be seen, the maximum absolute error occurs when all partial product bits

in truncated area and the bits in the column 2n− r − k to 2n− r − 1 are ′1′ or they

are all ′0′. When they are all ”0”, the absolute error is C. When they are all ”1” the

absolute error is

ϵ =
2n−r−k−1∑

q=0

(q + 1)× 2−2n+q + 2−r(1− 2k) (3.8)

So the maximum absolute error is

Emax = max(C,
2n−r−k−1∑

q=0

(q + 1)× 2−2n+q + 2−r(1− 2k)) (3.9)

3.2 Truncated Multiplication with Variable Correction (VCT)

Truncated multiplier with variable correction was introduced in [44]. To compensate

the error made by truncation, the partial product bits in the column (n − k − 1)th

are added to the column (n− k)th. For rounding error, a constant is added through

column (n− 2)th to column (n− k)th, so the value of Cround is

Cround = 2−n−1(1− 2−k+1) (3.10)

For example, 8× 8-bit V CT with k = 2, Cround can computed as

Cround = 2−8−1(1− 2−2+1) = 2−10 (3.11)

Figure 3.6 shows the partial product matrix for this example. Six terms in the column

5th and one bit ′1′ for Cround are added to the column 6th. Like the CCT method, the

V CT multiplier can also be implemented in CSAM , Wallace, Dadda, or RA tree.

Figure 3.7 represents this multiplier in a CSAM implementation, and Figure 3.8 is

Dadda tree implementation. The maximum error of V CT can be calculated as

|EV CT | = 2−1 + 2−r−k−1 +

⌊n−k
2 ⌋∑

q=1

(n− k + 2− 2q)2−r−k−2q−1 (3.12)
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These errors occur when two operand and the k product bits from the column (n−k)th

to (n− 1)th are

an−k−1 · · · a0, bn−k−1 · · · b0 =

 0xx · · · xx1, 0xx · · · xx1 if n− k is even

0xx · · · xx1, 0xx · · · xx1 if n− k is odd

pn−1 · · · pn−k = 1 · · · 1 (3.13)

Where x is either ”0” or ”1”. When these inputs fall in these patterns, all bits in the

column (n − k − 1)th are ”0”. Therefore, the partial product bits in truncated area

make the maximum error occurs with the k-bit truncated product from (n− 1)th to

(n− k)th. The maximum error of the k-bit final product from (n− 1)th to (n− k)th is

a half of unit in the last place of the n-bit result since the constant rounding Cround

is added.

3.3 Truncated Multiplication with Hybrid Correction(HCT)

According to previous sections, the maximum error of V CT is less than that one of

CCT for a given value of r and k, but the area of V CT is greater than that one of

CCT because it uses more partial product bits in the PPM . To improve the V CT ,

a new method that use both constant and variable correction to make a compromise

between both method was introduced in [28]. Since CCT has a maximum absolute

error when all bit in truncated area is ”1”, and V CT has maximum absolute error

when all that bits close to ”0”, HCT multiplier achieves a lower average and maximum

absolute error compared to CCT and V CT multipliers.

To implement HCT , a new parameter p, that is the percentage of variable correc-

tion is used. This parameter shows that how many partial product bits in the column

(n − k − 1)th will be used to add into the next column. The number of that bits is

computed as:

NHCT = ⌊(NV CT × p)⌋ (3.14)
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The constant for HCT can be expressed as

CHCT =
1

2
× 2−r−k−1 ×NHCT (3.15)

A new constant is established based on the difference between the new variable and

the constant in CCT method in Equation 3.6. Hence, rounding constant for this

method can be expressed as

CroundHCT
=

round((CCCT − CHCT )× 2r+k)

2r+k
(3.16)

Using the same example like in the previous section n = r = 8, k = 2 and p = 0.5,

parameters of HCT can be calculated as

NHCT = ⌊(6× 0.5)⌋

= 3

CHCT =
1

2
2−11 × 3

= 3−12

CroundHCT
=

round((2−9 − 3× 2−12)× 210)

210

= 2−10 (3.17)

Because NHCT = 3, it means that only 3 bits in the column 5th are used to add

to the next column. Not lose the generality, these terms a4b1, a2b3 and a0b5 are

chosen. Figure 3.9 is CSAM and Figure 3.10 is Dadda tree implementation of a

HCT multiplier for this example.
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CHAPTER 4

Squaring Unit Architectures

4.1 Unsigned Squaring Unit Architectures

Theoretically, a n-bit unsigned integer X is input operand and P is the output of a

squaring unit, can be express as

X = xn−1xn−2 . . . x1x0

=
n−1∑
i=0

xi · 2i

P = X2

= (
n−1∑
i=0

xi · 2i)2

=
n−1∑
i=0

xi · 22i +
n−2∑
i=0

n−1∑
j=i+1

xi · xj · 2i+j+1 (4.1)

Generally, to calculate an output of a squaring unit, the same number is supplied

to the inputs of a multiplier as the multiplicand and the multiplier. This is simplest

way, but a regular multiplier used as a squaring unit will be redundant [64], and also

requires more area, power and delay [65]. To improve its performance, a dedicate

squaring unit is necessary

4.1.1 Folded Squaring Units

The folding technique, first introduced in [66] and then developed in [67], utilized the

symmetrical characteristic of squarer’s PPM to reduce the number of its bits and

height by nearly a half as in the Equation 4.1. The folding technique for squaring

units employs the following steps:
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1. Optimization of PPM

(a) A pair of partial product bits xi · xj and xj · xi with i ̸= j in the column

(i+ j)th is reduced to one bit xixj, then shifted to the left one position in

the column (i+ j + 1)th.

(b) All bits xi · xi in the column (2i)th are reduced to xi and kept in the same

column.

2. The matrix height reduction is applied by column compression techniques, such

as Dadda [5], to obtain the carry/sum arrays.

3. Applying a CPA to the carry and sum arrays to obtain the final result.

According to [68], the form of the folded partial product matrix varies slightly based

on the value of n is whether odd or even. Figure 4.1 and 4.2 illustrate folded partial

product matrix for n = 7 and n = 8, respectively. Due to the symmetry in the

PPM of a squaring unit, specialized n-bit squaring circuits requires less hardware

and delay than those ones in a regular n× n multiplier.

4.1.2 Merged Squaring Units

The merging technique presented in [69] and developed in [68,70] augments the con-

ventional folding technique, and reduces the critical path by shifting the partial prod-

ucts on the diagonal by one column to the left. Depending on whether the value of

n is odd or even, the height of the PPM is reduced by one compared with that one

in folded technique. The idea of this technique is combine to bits xi · xi−1 and xi in

the row (2i)th of the folded PPM together. The equation of this technique can be

represented as

(xi · xi−1 + xi) · 22i = xi · xi−1 · 22i+1 + xi · xi−1 · 22i (4.2)
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Figure 4.4: PPM of Merged Squaring Unit with n = 8

Applied this equation to the folded PPM , n − 1 terms are moved one column to

the left hand side. The same like in the folded method, the merged PPM is slightly

changed when the length of the input n is odd or even. Figure 4.3 and 4.4 illustrate

PPM for this method with n = 7 and n = 8. As observed in these figures, when n is

even, the height of merged PPM is smaller than that one in the folded PPM .

4.1.3 Divide and Conquer Squaring Unit

This method was presented in [71,72], bases on V edic mathematics. A squaring unit

base on this method is implemented by the following steps
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Figure 4.5: PPM of a Squaring Unit in Divide and Conquer Method

1. Step 1: The input operand X is divided into two parts A = x2m−1 . . . xm and

B = xm−1 . . . x0, each part contains m-bit, and the final result P can be repre-

sented as

X = A · 2m +B

P = X2

= (A · 2m +B)2

= A2 · 22m + A ·B · 2m+1 +B2 (4.3)

Because each operand A and B has m-bit length, each term A2, A ·B, B2 will

have 2m-bit length. Therefore, when all the value of A2, A ·B, B2, are known,

PPM of this squaring unit is established and the value of P can be computed.

This means that this method can only be applied to input operands that are

power of two and also each squaring operation is completed in repeated serial

steps. Figure 4.5 is PPM for an 2m-bit squaring unit.

2. Step 2: Repeat Step 1 until n = 4.

3. Step 3: Implement a squaring unit of 4-bit input. X = x3 · x2 · x1 · x0, hence,

A = x3 ·x2, B = x1 ·x0. All terms A2, B2, A ·B will have only 4-bit length and

have been expressed as in Figure 4.6

4.1.4 Proposed Squaring Unit

This section proposes a new method that utilizes more regularity of merged PPM to

reduce more bits and its height. Following are stages for optimizing its PPM :
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Table 4.1: Truth Table of Stage 1

xi xi−1 xi−1 xixi−1 xi−1xi−2 C1
2i S1

2i−1

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 1 0 0 0 0 0

0 1 1 0 1 0 1

1 0 0 0 0 0 0

1 0 1 1 0 0 1

1 1 0 0 0 0 0

1 1 1 1 1 1 0

• Stage 1: From the merged PPM , two bits xi ·xi−2 and xi−1 ·xi−2 in the column

(2i − 1)th are added together. As can be seen in Table 4.1, the carry and sum

bits of this adder can be calculated as:

S1
2i−1 = xi · xi−1 · xi−2 + xi · xi−1 · xi−2

C1
2i = xi · xi−1 · xi−2 (4.4)

Figure 4.7 is an illustration for this stage

• Stage 2: In this stage, carry bit from Stage 1 C1
2i = xi · xi−1 · xi−2 = M is

combined with 2 bits xi · xi−1 = N and xi+1 · xi−2 = Q in row (2i)th to form a

special full adder. As can be seen in Table 4.1.4, carry and sum outputs of this

special full adder are represented as:

S2
2i = xi+1 · xi · xi−2 + xi+1 · xi · xi−2 + xi · xi−1 · xi−2

C2
2i+1 = xi+1 · xi · xi−2 (4.5)
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Table 4.2: Truth Table of A Special Adder in Stage 2

xi+1 xi xi−1 xi−2 M N Q C2
2i+1 S2

2i

0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0

0 1 0 0 0 1 0 0 1

0 1 0 1 0 1 0 0 1

0 1 1 0 0 0 0 0 0

0 1 1 1 0 0 1 0 1

1 0 0 0 0 0 0 0 0

1 0 0 1 1 0 0 0 1

1 0 1 0 0 0 0 0 0

1 0 1 1 1 0 0 0 1

1 1 0 0 0 1 0 0 1

1 1 0 1 1 1 0 1 0

1 1 1 0 0 0 0 0 0

1 1 1 1 1 0 1 1 0
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Figure 4.7: Optimization of a Squaring Unit at Stage 1

s

x 4x5x613
1S

5x6x

4x7x

5x6x7x

6x7x

6x7x

S2
12x x x67 4x7 6x x x x7 6 5

x x7 6 S13
1

x7x3

S11
1

x5x4

x5x4x3

x6x3

x7x2

x6x5x3

S1
11

x7x3

x7x2

S2
10

x6x2

x7x1

S1
9

x5x x4 2

S9
1

x x6 2

x7x1

x4x3

x5x2

x6x1

x7x0

x4x3x2

S2
8

x6x1

x7x0

x5x1

x6x0

S1
7

x5x1

x6x0

S7

1

x4x3x1

x4x1

x5x0

x3x2

x3x2x1

S2
6

x5x0

x4x0

S1
5

x3x2x0

S1
5

x4x0

x2x1

x2x1x0

x3x0

S4
2

S3
1

S3
1

x1x0 0 x0

x1x0 0 x0

c sc

Figure 4.8: Optimization of a Squaring Unit at Stage 2

Figure 4.8 is an illustration for this stage

• Stage 3: In this stage, carry and sum bits from previous stages C2
2i+1 = xi+1 ·xi ·

xi−2 and S1
2i+1 = xi+1 · xi · xi−1 + xi+1 · xi · xi−1 are combined together. Because

these two bits are not equal to 1 at the same time, therefore, the result will be

only 1 bit, which means that one bit in PPM can be saved. As can be seen in

Table 4.1.4, the sum of these bits can be expressed as:
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Table 4.3: Truth Table of Stage 3

xi+1 xi xi−1 xi−2 C2
2i+1 S1

2i+1 S3
2i+1

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 0 1 1 0 0 0

0 1 0 0 0 0 0

0 1 0 1 0 0 0

0 1 1 0 0 1 1

0 1 1 1 0 1 1

1 0 0 0 0 0 0

1 0 0 1 0 0 0

1 0 1 0 0 1 1

1 0 1 1 0 1 1

1 1 0 0 0 0 0

1 1 0 1 1 0 1

1 1 1 0 0 0 0

1 1 1 1 1 0 1
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Figure 4.9: Optimization of a Squaring Unit at Stage 3

S3
2i+1 = xi+1 · xi · xi−2 + xi+1 · xi · xi−1 + xi+1 · xi · xi−1 (4.6)

Figure 4.9 is an illustration for this stage

4.2 Signed Squaring Unit Architectures

4.2.1 Booth Folding Squaring Unit

A squaring unit using Booth Folding technique was presented in [10,11], in which the

symmetry property of a squaring unit and Booth 2 feature are combined to improve

its performance. A 2m-bit input X of a signed number represented using two’s

complement notation can be expressed as Equation 2.7. The partial product matrix

of this unit can be seen in the Figure 4.10. Row ith (i = 0 · · ·m − 2) in the folded

matrix can be expressed as:

Ri = (Pi · 23 + Ci)

Pi = 2 ·Bm−1 ·Bi · 22(m−1+i) + 2 ·Bm−2 ·Bi · 22(m−2+i) + · · ·

+2 ·Bi+2 ·Bi · 22(i+2+i) + 2 ·Bi+1 ·Bi · 22(i+1+i)

= (Bm−1 · 22m−2i−4 +Bm−2 · 22m−2i−6 + · · ·

+Bi+2 · 22 +Bi+1) ·Bi · 24i+3

Ci = = Bi ·Bi · 24i (4.7)
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Because Bi is encoded by using Booth 2 as in the Equation 2.6, so Pi can be viewed

as

Pi = [(−2 · x2m−1 + x2m−2 + x2m−3) · 22m−2i−4

+(−2 · x2m−3 + x2m−4 + x2m−5) · 22m−2i−6 + · · ·

+(−2 · x2i+5 + x2i+4 + x2i+3) · 22 + (−2 · x2i+3 + x2i+2

+x2i+1)] ·Bi · 24i+3

= [(−x2m−1 · 22m−2i−3 + x2m−2 · 22m−2i−4 + · · ·

+x2i+3 · 2 + x2i+2) + x2i+1] · (−2 · x2i+1 + x2i + x2i−1) · 24i+3

= (Wi + x2i+1) · (−2 · x2i+1 + x2i + x2i−1) · 24i+3 (4.8)
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Figure 4.10: PPM of Folding Squaring Unit in Booth 2
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where

Wi = x2m−1x2m−2 · · · x2i+3x2i+2

= −x2m−1 · 22m−2i−3 + x2m−2 · 22m−2i−4 + · · ·

+x2i+3 · 2 + x2i+2 (4.9)

According to Equation 4.8, Pi can be calculates as following:

• When x2i+1 = 0, Bi is a positive number hence Pi = Wi ·Bi · 24i+3.

• When x2i+1 = 1, Bi is a negative number, Equation 4.8 can be rewritten as

Pi = (Wi + 1) ·Bi · 24i+3

= −(Wi + 1) · |Bi| · 24i+3

= Wi · |Bi| · 24i+3 (4.10)

where Wi obtained by complementing all bits of Wi:

Wi = x2m−1 x2m−2 · · · x2i+3 x2i+2 (4.11)

Hence, Equation 4.8 can be expressed as

Pi =

 Wi ·Bi · 24i+3, if Bi ≥ 0

Wi · |Bi| · 24i+3, if Bi < 0
(4.12)

Because Wi is represented in two’s complement, so Pi in the Equation 4.12 can be

evaluated using a simple one’s complement circuit [11]. As can be seen in the Equa-

tion 4.9, Wi has (2m − 2i − 2)-bit length, −2 ≤ Bi ≤ 2, hence, Pi should have

(2m − 2i − 1)-bit length and runs from lsb = (4i + 3)th to msb = (2m + 2i + 1)th.

Truth Table 4.4 and logic equation for each bit of Pi can be established as a following

equation:
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Table 4.4: Truth Table for Partial Product Pi in Booth 2 Folding Technique

Bi x2i+1 x2i x2i−1

Pi

msb msb− 1 msb− 2 · · · · · · lsb+ 1 lsb

0 0 0 0 1 0 0 · · · · · · 0 0

1 0 0 1 x2m−1 x2m−1 x2m−2 · · · · · · x2i+3 x2i+2

1 0 1 0 x2m−1 x2m−1 x2m−2 · · · · · · x2i+3 x2i+2

2 0 1 1 x2m−1 x2m−2 x2m−3 · · · · · · x2i+2 0

-2 1 0 0 x2m−1 x2m−2 x2m−3 · · · · · · x2i+2 0

-1 1 0 1 x2m−1 x2m−1 x2m−2 · · · · · · x2i+3 x2i+2

-1 1 1 0 x2m−1 x2m−1 x2m−2 · · · · · · x2i+3 x2i+2

-0 1 1 1 1 0 0 · · · · · · 0 0



Pi[4i+ 3] = (x2i+2 ⊕ x2i+1) · (x2i ⊕ x2i−1)

Pi[4i+ 4] = (x2i+3 ⊕ x2i+1) · (x2i ⊕ x2i−1)

+(x2i+2 ⊕ x2i+1) · (x2i+1 ⊕ x2i) · (x2i ⊕ x2i−1)

...

Pi[2m+ 2i] = (x2m−1 ⊕ x2i+1) · (x2i ⊕ x2i−1)

+(x2m−2 ⊕ x2i+1) · (x2i+1 ⊕ x2i) · (x2i ⊕ x2i−1)

Pi[2m+ 2i+ 1] = (x2m−1 ⊕ x2i+1) · (x2i+1 ⊕ x2i) · (x2i ⊕ x2i−1)

(4.13)

The most significant bit of Pi is inverted and hence, a constant is added to adjust the

correction. On the other hand, Ci in the Equation 4.7 has three bits length and can

be expressed as: 
Ci[2] = (x2i+1 ⊕ x2i) · (x2i ⊕ x2i−1)

Ci[1] = 0

Ci[0] = (x2i ⊕ x2i−1)

(4.14)

So the partial product matrix of this unit can be illustrated as in Figure 4.11 and

Dadda tree is applied to get the final result.
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Figure 4.11: PPM of a Squaring Unit in Booth 2 Folding Technique

4.2.2 Booth 2 Left-to-Right Dual Recoding Squaring Unit

This method was presented in [73, 74]. A 2m-bit input X of a signed number rep-

resented using two’s complement notation can be expressed as in the Equation 2.7.

Define Xi as follow

Xi = x2i+1x2i · · · x1x0

= −x2i+1 · 22i+1 +
2i∑

k=0

xk · 2k

= x2i+1x2i · · · x1x0 (4.15)

Following conclusions can be drawn:

Xi+1 +Xi = −x2i+3 · 22i+3 +
2i+2∑
k=0

xk · 2k − x2i+1 · 22i+1 +
2i∑

k=0

xk · 2k

= −x2i+3 · 22i+3 + x2i+2 · 22i+2 + 2 ·
2i∑

k=0

xk · 2k

= x2i+3x2i+2x2i · · · x1x00

= Qi+1 (4.16)

Xi+1 −Xi = −x2i+3 · 22i+3 +
2i+2∑
k=0

xk · 2k + x2i+1 · 22i+1 −
2i∑

k=0

xk · 2k

= (−2 · x2i+3 + x2i+2 + x2i+1) · 22i+2

= Bi+1 · 22(i+1) (4.17)
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Table 4.5: Truth Table of Pi in Left-to-Right Dual Recoding Method

Bi x2i+1 x2i x2i−1

Pi

4i+ 1 4i 4i− 1 · · · · · · 2i+ 2 2i+ 1

0 0 0 0 0 0 0 · · · · · · 0 0

1 0 0 1 0 0 x2i−2 · · · · · · x1 x0

1 0 1 0 0 1 x2i−2 · · · · · · x1 x0

2 0 1 1 1 x2i−2 x2i−3 · · · · · · x0 0

-2 1 0 0 1 x2i−2 x2i−3 · · · · · · x0 1 + 1

-1 1 0 1 0 1 x2i−2 · · · · · · x1 x0 + 1

-1 1 1 0 0 0 x2i−2 · · · · · · x1 x0 + 1

-0 1 1 1 0 0 0 · · · · · · 0 0

Equation 4.16 and 4.17 ensure that

X2
i+1 −X2

i = (Xi+1 +Xi) · (Xi+1 −Xi)

= Qi+1 ·Bi+1 · 22(i+1) (4.18)

From iteration Equation 4.18 , the output of a n-bit squaring unit can be expressed

as

X2 = X2
m−1

=
m−1∑
k=1

Qk ·Bk · 22k +B2
0 (4.19)

Assuming Pi = Qi ·Bi ·22i, the truth table for Pi can be expressed as in the Table 4.5.

According to this Table each bit of Pi can be expressed as
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

Pi,2i+1[0] = (x0 ⊕ x2i+1) · (x2i ⊕ x2i−1) + x2i+1 · x2i · x2i−1

Pi,2i+1[1] = x2i+1 · x2i + x2i+1 · x2i−1

Pi,2i+2[0] = (x1 ⊕ x2i+1) · (x2i ⊕ x2i−1) + (x0 ⊕ x2i+1) · (x2i+1 ⊕ x2i)·

·(x2i ⊕ x2i−1)

...

Pi,4i−1[0] = (x2i−2 ⊕ x2i+1) · (x2i ⊕ x2i−1) + (x2i−3 ⊕ x2i+1) · (x2i+1 ⊕ x2i)·

·(x2i ⊕ x2i−1)

Pi,4i[0] = (x2i−2 ⊕ x2i+1) · (x2i+1 ⊕ x2i) + (x2i+1 ⊕ x2i) · (x2i ⊕ x2i−1)

Pi,4i+1[0] = (x2i+1 ⊕ x2i) · (x2i ⊕ x2i−1)

(4.20)

PPM of this unit is generated as in Figure 4.12, then Dadda tree is applied to get

final result.
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CHAPTER 5

Cubing Units

The simplest way to perform cubing operation is a using of traditional multipliers

in serial fashion. That is, in the first multiplier, the input operand is multiplied by

itself and the result of this multiplier is stored in a temporary register. The final

result is obtained by multiplying the original operand by the stored result from the

second multiplier. A disadvantage of this method is that latency of cubing operation

will approximately be twice the amount of the multiplier. And, hence, when operand

lengths increase the latency of the operation grows exponentially [25]. To improve

this method, squaring unit [66, 68] is utilized for the intermediate result, and then a

non-rectangular multiplier will generate the final result.

For parallel cubing computation, several methods were previously proposed. The

first one in [67] suggested a reduced parallel cubing technique in which not only

calculates the cube of an operand in parallel, but employs three reduction techniques

that greatly reduce the height of the partial product generation. By doing that, the

latency of the resulting CSA tree is reduced. The second one in [25] presents an

extension to this technique by enhancing the method of [67] using a different ordering

of the calculation as well as new partial product reduction technique.

Another recent technique presented in [71, 75] that using V edic mathematics to

provide an efficient way of constructing a straight cubing system without using con-

ventional multiplication methods. Although this method presents an easy way to

compute the cube of a function using pen and paper, it does not lend itself to larger

operand sizes. In this section, a new way for calculating cubing unit is presented by
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dividing the input into small pieces, similar to the method that uses V edic mathe-

matics, and then uses the three partial product reduction techniques in [67] to reduce

the height of its PPM .

Define a 2m-bit unsigned integer X is input operand and P is the output of cubing

unit, they can be expressed as

X = x2m−1x2m−2 . . . x1x0

=
2m−1∑
i=0

xi · 2i

P = X3

= (
2m−1∑
i=0

xi · 2i)3

=
2m−1∑
i=0

xi · 23i + 3 ·
2m−2∑
i=0

2m−1∑
j=i+1

xi · xj · (22i+j + 2i+2j)

+6 ·
2m−3∑
i=0

2m−2∑
j=i+1

2m−1∑
k=j+1

xi · xj · xk · 2i+j+k (5.1)

In traditional way, these bits in the Equation 5.1 are organized as in a PPM as in Fig-

ure 5.1. The problem with expressing this equation as a PPM , as in multiplication,

is that the size of the partial product grows exponentially. Simplifying the output

expression of P calculated by adding each row in this PPM from the right to the

left hand side can produce equations for the number of bits that must be assimilated

together as well as the height of the PPM . Therefore, the complexity of reducing

the PPM results in the following items

PPAbit = (2m)3

PPAheight = 2m+ 2(2m− 1) + · · ·+ 2(m+ 1) +m

= 3m2 (5.2)
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3n−4 01n−2n−1n2n−32n−22n3n−23n−1 3n−3

Figure 5.1: Partial Product Matrix of Cubing Unit
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5.1 Liddicoat and Flynn Cubing Units

To overcome the restriction on the size of the PPM , [67] proposed a method, in which

cubing unit can be implemented by following steps:

1. Step 1: Minimized PPM :

(a) All terms xi ·xi ·xi in the row (3i)th are reduced to xi and kept in the same

row.

(b) All three terms xi · xi · xj, xi · xj · xi, xj · xi · xi in the row (2i + j)th are

reduced to one bit xi · xj and kept in the same row. Hence, the weight of

these bits is 3.

(c) All six terms xi · xj · xk in the row (i+ j + k)th are reduced to one bit and

shifted to the next row (i+ j+k+1)th on the left hand side, so the weight

of these terms now is 3.

Figure 5.2 is an illustration for Step 1 with 4-bit input.

2. Step 2: All the bits that have the weight of 3 are used to form an PPM . Wallace

tree [4] is applied to get carry and sum arrays. Figure 5.3 is an illustration of

Step 2.

3. Step 3: The carry and sum arrays in the previous step are doubled and shifted

on position to the left to form 2x in weight. These bits are combined with

2m-bit xi in the Step 1 and then using carry free (5, 5, 4) counters to reduce the

height of this matrix to get carry and sum arrays.

4. Step 3 CPA is utilized for carry and sum arrays to get the final result.
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Figure 5.2: Liddicoat and Flynn Method for Step 1
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5.2 Stine and Blank Cubing Units

Another method presented in [25], also focused on minimizing PPM by utilizing more

regularity of PPM to reduce its height further. Following are steps of this method:

1. Step 1: Minimized PPM.

(a) All terms xi ·xi ·xi in the row (3i)th are reduced to xi and kept in the same

row.

(b) All three term xi · xi · xj, xi · xj · xi, xj · xi · xi in the row (2i + j)th are

reduced as xi · xi · xj + xi · xj · xi + xj · xi · xi = 3xi · xj = 2xi · xj + xi · xj

so they are replaced by two bits xixj, one in the same row (2i + j)th and

the other in next row (2i+ j + 1)th on the left hand side.

(c) All six terms in the row (i + j + k)th are calculated as 6 · xi · xj · xk =

2 · (2 ·xi ·xj ·xk+xi ·xj ·xk), so they are also replaced by two bits xi ·xj ·xk,

one in the next row (i + j + k + 1)th, and the other is in next two row

(i+ j + k + 2)th on the left hand side.

Figure 5.4 is an implementation of a cubing unit for this method with 4-bit

input for this step.

b) Step 2: Improving regularity.

As can be seen in the previous step, three term xi ·xi−1 ·xi−1 are replaced by two

bits xi · xi−1, one is in the row (3i− 2)th and the other is in the row (3i− 1)th.

However, three terms xi ·xi ·xi−1 are also replaced by two bits xi ·xi−1, one is in

the row (3i− 1)th and the other is in the row (3i)th. So three bits xi · xi−1 with

two of them are in the row (3i − 1)th and one is in the row (3i)th are reduced

by equation xi · xi−1 · 23i + xi · xi−1 · 23i−1 + xi · xi−1 · 23i−1 = xi · xi−1 · 23i+1. In

other word, it means that these bits are replaced by only one bit xi ·xi−1 in the

row (3i+ 1)th. An implementation for this step is shown in Figure 5.5
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Figure 5.4: Stine and Blank Method Stage 1

c) Step 3: Calculate the final result.

In this step, Dadda tree [5] is applied to reduce the height of this matrix, carry

and sum arrays are generated.

d) Step 4: In the last stage a CPA is used to get the final result.

5.3 Divide and Conquer Cubing Units

Recently, in [75], another method was introduced by using V edic mathematics. V edic

mathematics is a method that ancient civilizations utilized to help with computing

large numbers. The implementation given in [75] is interesting is it tried to apply this

method, but unfortunately these methods sometimes do not apply well to hardware.

On the other hand, the method is interesting in that it attempts to compute the cube

of an operation by breaking it down into simple and smaller cubing elements, hence
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Figure 5.5: Stine and Blank Method Stage 2

it is called the Divide & Conquer technique. Following are steps to implement this

unit:

1. Step 1: The input operand X is divided into two parts A = x2m−1 . . . xm and

B = xm−1 . . . x0, each part contains m-bit, and the final result P can be repre-

sented as

X = A · 2m +B

P = X3

= (A · 2m +B)3

= A3 · 23m + 3 · A2 ·B · 22m + 3 · A ·B2 · 2m +B3 (5.3)

Because each operand A and B has m-bit length, hence each term A3, A2 · B,

A · B2, B3 will have 3m-bit length. The 3× terms 3 · A2 · B and 3 · A · B2 can

be expressed as 3 · A2 · B = 2 · A2 · B + A2 · B, 3 · A · B2 = 2 · A · B2 + A · B2.

Therefore, when all the value of A3, A2 ·B, A ·B2, B3 are known, PPM of this

cubing unit is established and the value of P can be computed. This means
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that this method can only be applied to input operands that are power of two

and also each cubing operation is completed in repeated serial steps. Figure 5.6

is PPM for a cubing unit of 2m-bit input.

2. Step 2: Repeat Step 1 until m = 4.

3. Step 3: Implement a cubing unit of 4-bit input. X = x3x2x1x0, A = x3x2, B =

x1x0. All terms A3, B3, A2 · B,A · B2 will have only 5-bit length and have

been expressed as following, in which E = x3 · x1 · x0 + x2 · x1 · x0 and F =

x3 · x2 · x0 + x3 · x2 · x1, partial product matrix of this unit can be generated as

in Figure 5.7

As stated previously, the method proposed by [75] based on V edic mathematics,

therefore it is rather slow as the input operand grows (as will be shown later). This

is because this method has to compute the cube of n = 4 first, and then sequentially

computes the cube of n = 8 and so on until it reaches its designed power of two

operand size. Although this method is slow, the idea can be elaborate to combine all
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three methods. The only difference is that, the intermediate steps within the method

in [75] can be removed.

5.4 Proposed Cubing Unit.

In this section, a new way to implement a cubing unit will be presented [76]. The

following are proposed steps

1. Step 1: Minimized PPM

The 2m-bit input operand X is divided into m parts:

Xi = x2i+1x2i (5.4)

so the output of cubing unit can be represented as

P = X3

= (
m−1∑
i=0

Xi · 22i)3

=
m−1∑
i=0

X3
i · 26i + 3 ·

m−2∑
i=0

m−1∑
j=i+1

X2
i ·Xj · 22(2i+j)

+3 ·
m−2∑
i=0

m−1∑
j=i+1

Xi ·X2
j · 22(i+2j)

+3 ·
m−3∑
i=0

m−2∑
j=i+1

m−1∑
k=j+1

Xi ·Xj ·Xk · 22(i+j+k)+1 (5.5)

The PPM is formed for all 3x terms with the position of these terms depends

on the weight of themselves. That is , the input operand is grouped into smaller

elements, so that the equal terms (i.e.,weights) can be grouped together (e.g.

3 ×X in the equation above). For example, using an 8-bit input cubing unit,

the input operand is grouped into following assuming a BNF format: X[7 : 0] =

X[7 : 6], X[5 : 4], X[3 : 2], X[1 : 0] or four sub-divisions.

2. Step 2: Dadda tree is applied for PPM reduction to get the carry and sum

arrays. PPM for Step 1 and 2 is illustrated as in Figure 5.8
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3. Step 3: The carry and sum arrays in the previous step are doubled and shifted

one position to the left hand side to form the 2x terms. These bits combined

with X3
i to calculate the final result. This step is illustrated as in Figure 5.9

In this example, the smaller elements are just shifted to the left, depending on

where the sub-division is. Consequently, and shown from equation above, these terms

get accumulated in to a value which has prefix of 3. This mean they can be reduces
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into one term and multiplied by the value of 3. The method in [67] has a similar 3

prefix, but in this method, the cubing unit is just reduced into smaller cubing units

slightly similar to the method in [75] except that the proposed method is formed to

aggregate all the columns via the Equation 5.5.

In summary, the new PPM is composed of two major elements: elements with

prefix of 3 and the original X3
i elements. The idea in terms of interval is similar to [75]

in term of breaking the operand into sub-intervals, but the different is that the new

sub-intervals are utilized to form the PPM in power of two and then reduced and

combined with the X3
i . Then, the power of powers of two sub-intervals are easy to

form into an array (e.g.(11)3 = 11011). If Q is defined as

Q =
m−2∑
i=0

m−1∑
j=i+1

X2
i ·Xj · 22(2i+j)

+
m−2∑
i=0

m−1∑
j=i+1

Xi ·X2
j · 22(i+2j)

+
m−3∑
i=0

m−2∑
j=i+1

m−1∑
k=j+1

Xi ·Xj ·Xk · 22(i+j+k)+1 (5.6)

This breaks the output P down into the following equation

P = 3 ·Q+ (
m−1∑
i=0

Xi · 22i)3

= 2 ·Q+Q+ (
m−1∑
i=0

Xi · 22i)3 (5.7)

The two elements Q and X3
i are shown at the bottom of the Figure 5.9. Conversely,

in [75] the grouping is done to form a smaller cube(e.g., m = 4) and then utilized to

create a lager cuber after the final cube operation is formed. That is, the result for

n = 4 is used to create n = 8 and onward, which can be in efficient in hardware. On

the other hand, the method in [75] may be helpful for software routines. Moreover,

the proposed method works provided the operand size in even, whereas, the method

in [75] only works for power of two operand size (2, 4, 8, 16, 32, 64, ...).
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CHAPTER 6

Truncated Squaring and Cubing Units

6.1 Truncated Squaring Units

This section will show how to implement a truncated squaring unit presented in [11], [74], [71]

and [77] with CCT technique in Chapter 3. A constant C is calculated and PPM

of each unit is established. Dadda tree is applied to get carry and sum arrays. After

that, a fast adder CPA is utilized to get final result.

6.1.1 Truncated Squaring Units using Booth 2 Folding Technique

For Booth 2 folding method, truncated PPM of a squaring unit can be illustrated

as in Figure 6.1. As explained in Chapter 3, there two types of errors for truncated

0

−2m

2m−k bitsk bits

Final Product

Constant for Truncation

TRUCACATED AREA

−2m−k−1 −4m+4 −4m−2m+5 −2m−1 −2m−k−2m+3

P
1

m
P

m−1
P

2m bits
1 0 −1 −2 −3 −4

Constant for Sign Extenssion Adjustion

P

Figure 6.1: PPM of Truncated Squaring Unit in [56]
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squaring units, reduction and rounding, that are expressed as

Ereduct =

j∑
i=0

(E[Pi−trunc])

Eround =
1

2

k∑
i=1

2−2m−i (6.1)

in which Pi−trunc is partial product row ith in truncated area and E(Pi−trunc) is its

expectation. The number of row j that are truncated is depend of value of number

of column to be kept k. Because Pi runs from lsb = −4i to msb = −2i+ 3, hence, if

−4i ≥ −2m−k, Pi is not truncated, otherwise a part of Pi is truncated. It means that,

when i run from a =
⌈
2m+k

4

⌉
to m, Pi will be truncated. According to Equation 4.13,

the expectation of these bits in this row are calculated as

E(Pi,−4i) = 1
2

E(Pi,−4i+1) = 0

E(Pi,−4i+2) = 1
4

E(Pi,−4i+3) = 1
4

E(Pi,−4i+4) = 3
8

...

E(Pi,−2i) = 3
8

E(Pi,−2i+1) = 3
8

E(Pi,−2i+2) = 3
8

E(Pi,−2i+3) = 1
8

(6.2)

The truncation of Pi and its expectation of each bit can be illustrated as in Figure 6.2

As can be seen in this figure, Pi is truncated when i ≥ a, the value of this part can

be estimated as

E(Pi−trunc) =
3

8

−4i+4∑
j=−2m−k−1

2j +
1

4
2−4i+3 +

1

4
2−4i+21

2
2−4i

= 3× 2−2m−k−3 − 5

2
× 2−4i

(6.3)
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Figure 6.2: Truncation of Pi in [56]

.

The truncation error can be estimated as

Ereduct =
m∑
i=a

(E[Pi−trunc])

=
m∑
i=a

3× 2−2m−k−3 − 5× 2−4i−1

= 3(m− a)2−2m−k−3 − 1

6
2−4a+4 +

1

6
2−4m (6.4)

The rounding error can be calculated as

Eround =
1

2

k∑
i=1

2−2m−i

= (2−2m−1 − 2−2m−k−1) (6.5)

The constant correction C can be calculated by replace Equation 6.4 and 6.5 to 3.2.

6.1.2 Truncated Squaring Unit using Booth 2 Left-to-Right Encoding

Technique.

The partial product matrix of a truncated squaring unit with this method can be

illustrated as in Figure 6.3. The error of reduction is calculated as same as Equa-

tion 6.5. The error of truncation depends on the expectation of bits of Pi in the
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Equation 4.20, that are calculated as

E(Pi,−2m−2i+1[0]) = 3
8

E(Pi,−2m−2i+1[1]) = 3
8

E(Pi,−2m−2i+2[0]) = 3
8

...

E(Pi,−4i[0]) = 3
8

E(Pi,−4i+1[0]) = 1
8

(6.6)

The truncation of Pi can be illustrated as in Figure 6.4. As can be seen in this

figure, when −2m − 2i + 1 ≥ −2m − k, Pi will not be in the truncated area. When

−4i + 1 ≤ −2m − k − 1, all bits of Pi will be in truncated area. Otherwise, part of

Pi will be in truncated area. Define a =
⌊
k+1
4

⌋
, and b =

⌊
2m+k+2

4

⌋
, the estimation of
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Figure 6.4: Truncation of Pi in Left-to-Right Encoding

Pi and Pi−trunc will be computed as

E(Pi) =
1

4
2−4i+1 +

3

8

−2m−2i+1∑
j=−4i

2j +
3

8
2−2m−2i+1

=
5

8
2−4i+1

E(Pi−trunc) =
3

8

−2m−2i+1∑
j=−2m−k−1

2j
3

8
2−2m−2i+1

=
3

8
2−2m−k (6.7)

So truncation error can be calculated as

Ereduct = −
b∑

i=a+1

E(Pi−trunc)−
m−1∑
b+1

E(Pi)− E(B2
m)

= −3(b− a− 1)

8
2−2m−k − (

1

12
(2−4b − 2−4m+4))− 3

2
2−4m (6.8)

The rounding error can be calculated as Equation 6.5, hence, the correction constant

C can be calculated by replace Equation 6.5 and 6.8 into 3.2.

6.1.3 Truncated Squaring Unit using Divide and Conquer Technique.

The partial product matrix of a truncated squaring unit using Divide and Conquer

technique can be illustrated as in Figure 6.5. Rounding error can be expressed as

Eround = −1

2

2m−1∑
i=2m−k

2−4m+i (6.9)
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The truncation error is hard to calculate but we can see that, the expectation of each

bit in truncated is grater than zero, so the constant correction C will be

round(22m+k × Eround)

22m+k
≤ C (6.10)

Replace Equation 6.9 to 6.10

2−2m−1 ≤ C (6.11)

As can be seen in the Figure 6.5, the expectation of each bit in the truncated area is

smaller than 1
2
so truncation error will be smaller than Etrunc−max, in which

Etrunc−max =
1

2
(
2m−k−1∑

i=0

2−4m+i +
2m−k−1∑
i=m+1

2−4m+i) (6.12)

So the correction constant C is bounded by

C ≤ round(22m+k(Eround + Etrunc−max))

22m+k
(6.13)

By replacing Equation 6.9, 6.12 into 6.13, ones can have

C ≤ 2−2m−1 (6.14)

Equation 6.11 and 6.14 ensure that C = 2−2m−1.

6.1.4 Proposed Truncated Squaring Unit

The proposed truncated squaring unit is implemented by applying CCT method to

squaring unit in [77]. PPM of this unit can be view as in Figure 6.6. The number

79



−2m−2−2m

2m−k bitsk bits

Final Product

Constant for Truncation

TRUCACATED AREA

−2m−k−1 −4m+4 −4m−2m−k

2m bits
−1 −2m+1−2m+2−5−2 −3 −4 −2m−1

Figure 6.6: PPM of Proposed Truncated Squaring Unit

of partial product bits in the column (−2m − k − 1)th is
⌊
2m−k−1

2

⌋
, in which one

bit come from either Stage 2 or Stage 3, the others are in form xi · xj. According

to Equation 4.5, 4.6, the expectation of this bit is 3
8
, hence, the expectation of the

column (−2m− k − 1)th is:

E(−2m−k−1)th = (
3

8
+

1

4
(

⌊
2m− k − 1

2

⌋
− 1)) · 2−2m−k−1

= (

⌊
2m− k − 1

2

⌋
+

1

2
) · 2−2m−k−3 (6.15)

So the reduction error caused by truncation operation is calculated as

Ereduct =
2m−k−1∑

j=5

Eith + 41 · 2−4m−2

=
2m−k−1∑

j=5

(

⌊
j

2

⌋
+

1

2
) · 2−4m+j + 41 · 2−4m−2 (6.16)

The rounding error is calculated as Equation 6.5. Replace Equation 6.5, 6.16 into 3.2,

correction constant C will be calculated.
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Figure 6.7: PPM of Truncated Cubing Unit in [75] .

6.2 Truncated Cubing Units

6.2.1 Truncated Cubing Unit using Divide and Conquer Technique.

Figure 6.7 illustrates the PPM of a truncated cubing unit base on [75] method, in

which (4m− k) less significant columns are truncated. Because each bit in this area

has probability of being one is less than 1
2
, hence, the truncated error can calculated

as

Ereduct ≤ −1

2
(
2m−1∑
i=0

2−6m+i +
2m−1∑
i=m

2−6m+i +
2m−1∑
i=m+1

2−6m+i) (6.17)

As we can see in the Figure 6.7, all bits from column (4m− k)th to (4m− 1)th cause

rounding error. Because the probability of these bits being one is also less than 1
2
,

rounding error can computed as

Eround = −1

2
(
4m−1∑
i=2m

2−6m+i) (6.18)
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TRUNCATED AREA

Figure 6.8: Correction Constant for Truncated Cubing Unit in [75] when k = 2m.

Hence, the total error is the sum of reduction and rounding error is bounded by

Etotal = Ereduct + Eround

≤ 1

2
(
2m−1∑
i=0

2−6m+i +
2m−1∑
i=m

2−6m+i +
2m−1∑
i=m+1

2−6m+i) +
1

2
(
4m−1∑
i=2m

2−6m+i)

Etotal ≤ 2−4m−1 + 2−5m−1 − 2−6m + 2−2m−1 − 2−4m−1

Etotal ≤ 2−2m−1 + 2−5m−1 − 2−6m (6.19)

The constant C is obtained by rounding Etotal to r + k fractional bits such that

C =
round(22m+k × Etotal)

22m+k
(6.20)

Where round(x) indicates x is rounded to nearest integer. Replace Equation 6.19

into 6.20, C can computed as

C ≤ 2−(2m+1) (6.21)

Figure 6.8 and 6.9 illustrate how to compute C when k = 2m and 0 < k < m,

respectively. Figure 6.10 and 6.11 show Dadda tree reduction for truncated cubing

units, in which k = 2m and 0 < k < m. As can bee seen, when k = 2m, total m+ 1

HAs, 5m FAs, and 4m-bit CPA are needed; when 0 < k < m total m + 2 HAs,

m + 3k + 1 FAs, and 2m + k-bit CPA are needed for implementing this unit. It
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Figure 6.9: Correction Constant for Truncated Cubing Unit in [75] when 0 < k < m.

means that when the parameter k is reduced, the area and delay of this unit can be

reduced, but the error will be increased.

6.2.2 Proposed Truncated Cubing Unit

The proposed truncated cubing unit is base on technique presented in [76]. The same

method CCT is applied for error compensation. Following are steps to implement

this unit:

1. Step 1: Establish truncated PPM for all terms that have the weight of 3:

Using PPM generated as in the Figure 5.8, truncated PPM of terms with the

weight of 3 is established by omitting (4m − k) columns in the lower part of

that PPM , in which k is the number of columns to be kept.

2. Step 2: Dadda tree reduction

Dadda tree is applied to get the carry and sum arrays. Figure 6.12 is an example

of these steps for 8-bit truncated cubing unit with k = 8.
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Stage: 3

Height: 3
HA: 1

Final stage

FA:3m

CPA: 4m

3m4m5m−15m5m+16m−1 6m−2 2m2m+13m−23m−13m+14m−14m−24m+15m−2

k = 2m

Figure 6.10: Dadda Tree of Truncated Cubing Unit in [75] when k = 2m.
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Figure 6.11: Dadda Tree of Truncated Cubing Unit in [75] when 0 < k < m.
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Figure 6.12: PPM for Truncated Proposed Cubing Unit at Step 1, 2
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Figure 6.13: Partial Product Matrix for Proposed Cubing Unit at Step 3

3. Step 3: The carry and sum arrays in the previous step are doubled and shifted

one position to the left hand side to form the 2x terms. These bits combined

with X3
i , that are truncated too, and the correction constant C to calculate

the final result. This step is illustrated as in Figure 6.13.

The correction constant C is estimated by calculating Ereduct and Eround. The round-

ing error Eround can be easily calculated as the same as in the Equation 6.18. The

truncated error is hard to calculate because it depends on the probability of each bit

in terms of X2
i · Xj, Xi · X2

j , and Xi · Xj · Xk. First of all, truncated error for the

PPM in the Figure 6.12 should be calculated. Then it is tripled and added with the

rounding error Eround to establish the total error. As can be seen in the Figure 6.12,

partial product term X2
i · Xj has 5-bit length, from (4i + 2j)th to (4i + 2j + 4)th.

Whenever (4i + 2j) ≤ (2n − k − 5) this term will be truncated in a whole. When

(2n− k − 4) ≤ (4i+ 2j) ≤ (2n− k − 1) this term is truncated in a part. Otherwise,

it is not in truncated area. The same thing is applied for the terms Xi · X2
j , and

Xi ·Xj ·Xk. Hence, it is not practical for formulating the correction constant C, but

we can get that value by running a C program in the section below.
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Table 6.1: Errors Comparison for Truncated Squaring Units in [11]

n k C Eavg Esqr Emax

8
2 9.77E-04 9.38E-04 2.05E-06 3.19E-03

4 1.71E-03 1.45E-04 1.24E-06 2.09E-03

16

2 7.63E-06 2.40E-06 2.91E-11 1.65E-05

4 7.63E-06 3.55E-07 1.96E-11 9.13E-06

6 7.63E-06 4.22E-08 1.94E-11 7.94E-06

8 7.57E-06 2.29E-08 1.93E-11 7.66E-06

32

4 1.02E-10 4.18E-11 6.40E-21 2.12E-10

8 1.16E-10 2.27E-12 4.52E-21 1.21E-10

12 1.16E-10 1.19E-13 4.52E-21 1.17E-10

14 1.16E-10 2.67E-14 4.52E-21 1.16E-10

15 1.16E-10 1.16E-14 4.52E-21 1.16E-10

6.3 Errors Comparison

Define Eavg is average error, Esqr is mean square error and Emax is maximum error.

A C program was written for calculating these errors with various input length and

number of column to be kept k.

For squaring units, methods in [11], [74], [71] and [77] are used for generating

PPM . CCT technique is applied to each unit, a correction constant C is calculated.

The output of each truncated unit is produced, and each type of error is generated.

Table 6.1, 6.2, 6.3 and 6.4 are errors comparison of truncated squaring units for

each method above. As can be seen in these tables, errors reduce when value of k is

increased.

Table 6.5 represents RNE errors of a squaring unit. Table 6.6, 6.7 shows the

average, mean square and maximum absolute error, and the correction constant for

several truncated cubing units in both [75] and [76] methods. According to this Table,
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Table 6.2: Errors Comparison for Truncated Squaring Units in [74]

n k C Eavg Esqr Emax

8

2 1.95E-03 3.81E-05 1.24E-06 2.21E-03

4 1.71E-03 1.45E-04 1.24E-06 2.09E-03

16

2 1.14E-05 1.41E-06 2.55E-11 1.27E-05

4 8.58E-06 5.69E-07 1.98E-11 8.85E-06

6 7.87E-06 1.81E-07 1.94E-11 7.87E-06

8 7.63E-06 2.29E-08 1.93E-11 7.66E-06

32

4 1.46E-10 1.82E-12 4.65E-21 1.69E-10

8 1.18E-10 4.56E-13 4.52E-21 1.19E-10

12 1.16E-10 5.13E-14 4.52E-21 1.17E-10

14 1.16E-10 1.59E-14 4.52E-21 1.16E-10

15 1.16E-10 1.68E-14 4.52E-21 1.16E-10

all of these errors will be reduced when the number of keeping column k is increased,

but the trade off is the increasing in the number of column in partial product matrix,

hence, their area and delay will be increase. Table 6.8 shows the average, mean

square and maximum absolute error of rounding to nearest even, in which r is the

length of cubing unit we want to keep. According to Table 6.6 and Table 6.7, all

of these errors in Table 6.6 in which k = n are smaller or equal these one in the

Table 6.7. This indicates that truncated cubing unit with k = n produces the output

that is the same as that one of rounding to nearest even with r = n.
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Table 6.3: Errors Comparison for Truncated Squaring Units in [71]

n k C Eavg Esqr Emax

8

2 1.95E-03 2.29E-05 1.25E-06 2.33E-03

4 1.95E-03 9.91E-05 1.20E-06 1.94E-03

16

2 7.63E-06 1.35E-06 2.26E-11 1.13E-05

4 7.63E-06 2.66E-07 1.95E-11 8.46E-06

6 7.63E-06 3.49E-10 1.93E-11 7.75E-06

8 7.63E-06 2.95E-08 1.93E-11 7.63E-06

32

4 1.16E-10 6.53E-12 4.58E-21 1.31E-10

8 1.16E-10 4.25E-13 4.52E-21 1.17E-10

12 1.16E-10 1.76E-14 4.52E-21 1.16E-10

14 1.16E-10 9.19E-20 4.52E-21 1.16E-10

15 1.16E-10 1.78E-15 4.52E-21 1.16E-10

Table 6.4: Errors Comparison for Truncated Squaring Units in [77]

n k C Eavg Esqr Emax

8
2 1.95E-03 2.28E-05 1.25E-06 2.33E-03

4 1.95E-03 9.91E-05 1.20E-06 1.94E-03

16

2 7.63E-06 1.35E-06 2.26E-11 1.13E-05

4 7.63E-06 2.66E-07 1.95E-11 8.46E-06

6 7.63E-06 3.49E-10 1.93E-11 7.75E-06

8 7.63E-06 2.95E-08 1.93E-11 7.63E-06

32

4 1.16E-10 6.53E-12 4.58E-21 1.31E-10

8 1.16E-10 4.25E-13 4.52E-21 1.17E-10

12 1.16E-10 1.76E-14 4.52E-21 1.16E-10

14 1.16E-10 9.19E-20 4.52E-21 1.16E-10

15 1.16E-10 1.78E-15 4.52E-21 1.16E-10
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Table 6.5: Rounding to Nearest Even (RNE) Errors of Squaring Unit

n r Eavg Esqr Emax

8 8 -9.92E-05 1.20E-06 1.94E-03

16 16 -2.95E-08 1.93E-11 7.63E-06

32 32 -1.77E-15 4.52E-21 1.164E-10

Table 6.6: Errors Comparison for Truncated Cubing Unit in [75]

n k C Eavg σ2
avg Emax

4 4 3.125E-02 9.766E-03 2.135E-04 3.052E-02

8 4 1.953E-03 1.106E-04 1.289E-06 2.127E-03

8 8 1.953E-03 1.907E-05 1.271E-06 1.953E-03

16 8 7.629E-06 6.083E-08 1.924E-11 7.725E-06

16 12 7.629E-06 1.799E-08 1.924E-11 7.632E-06

16 16 7.629E-06 1.543E-08 1.924E-11 7.629E-06

32 24 1.164E-10 9.252E-15 4.516E-21 1.164E-10

32 32 1.164E-10 9.252E-15 4.156E-21 1.164E-10

Table 6.7: Errors Comparison for Truncated Cubing Unit in [76]

n k C Eavg σ2
avg Emax

4 4 3.125E-02 9.766E-04 2.135E-04 3.052E-02

8 4 1.953E-03 2.785E-04 1.409E-06 2.632E-03

8 8 1.953E-03 1.907E-05 1.271E-06 1.953E-03

16 8 7.629E-06 3.326E-07 1.937E-11 8.603E-06

16 12 7.629E-06 3.568E-08 1.924E-11 7.670E-06

16 16 7.629E-06 1.636E-08 1.924E-11 7.630E-06

24 24 2.980E-08 9.727E-12 2.955E-16 2.980E-08

24 26 2.980E-08 9.695E-12 2.955E-16 2.980E-08
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Table 6.8: Error Comparison of Rounding to Nearest Even(RNE)

n r Eavg σ2
evg Emax

4 4 9.766E-04 2.135E-04 3.052E-02

8 8 1.907E-05 1.271E-06 1.953E-03

16 16 1.543E-08 1.924E-11 7.629E-06

32 32 9.130E-15 4.516E-21 1.164E-10
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CHAPTER 7

Area and Delay Analyses

Previous chapters presented some types of squaring and cubing units and proposed a

new model for implementing both squaring and cubing units. These units, then are

used for truncation. This chapter will analyses to make a performance comparison in

area, delay and power consumption of each units in previous chapters. The method is

used to do that is Linear-Delay analyses. Although this approach is simplistic, it is

helpful in establishing algorithmically the complexity of each algorithm. More elabo-

rate and more detailed models can also be utilized, however, research has previously

demonstrated that linear-delay analysis is a good method in assessing algorithmic

complexity for a given design.

According to [78], a Dadda [5] is better than a Wallace [4] reduction scheme in

both delay and area performance. Hence, in this dissertation, a Dadda tree will be

used for all units instead of Wallace tree. To estimate the area, the total number of

AND gates for generating the PPM and the total number ofHA, FA using inDadda

tree reduction are counted equally regardless of the gate or fan-out utilized (e.g., AND

gate). For example, Figure 7.1 shows a simple half-adder gate that consumes 4 gates

and has a critical path of 3∆.
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Figure 7.1: Half Adder Implementation

7.1 Area Estimation of Squaring Units.

7.1.1 Folded Squaring Unit.

According to Figure 4.7 , to form the folded matrix, the number of AND gates are

used for generating xi · xj (i ̸= j) is

NAND =
n(n− 1)

2
(7.1)

The folded matrix is established by n bits of xi, and
n(n−1)

2
bits of xixj, so the total

number of bits in this matrix can be calculates as

NPPB = n+
n(n− 1)

2

=
n2 + n

2
(7.2)

Because Dadda tree is used for column compression, the number of HAs is

NHA = n− 1 (7.3)

As can be seen, each FA takes the 3 inputs and produces 2 outputs, hence, the number

of bits in the PPM is reduced by 1 after using 1 FA for reduction. Therefore, the

total number of FA in all stages is the differential between the number of bits in

original PPM and the length of final result, which is 2n bit, but the bit in the column
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1th is always equal 0, so the number of FAs can be calculated as

NFA = NPPB − (2n− 1)

=
n2 + n

2
− (2n− 1)

=
n2 − 3n

2
+ 1 (7.4)

According to Figure 7.1 each HA contains 4 gates, ones can easy get that a FA will

contain 9 gates. Hence, the total number of gates using in folded method is calculated

as

Nfolded = NAND + 4NHA + 9NFA

= 5n2 − 10n+ 5 (7.5)

7.1.2 Merged Squaring Unit.

According to Figure 4.7, each term xi+1xi with i = 0 · · ·n − 2 is established by 1

Inverter and 1 AND gate. Hence, the number of Inverters and AND gates are

used to generate merged matrix are

NINV = n− 1

NAND = n− 1 +
n(n− 1)

2

=
(n+ 2)(n− 1)

2
(7.6)

Because the merged method groups some of two bits in folded matrix and generates

two other bits, so the total number of partial product bits in merged matrix is the

same as that one in folded matrix. According to Equation 7.2, this number is

NPPB =
n2 + n

2
(7.7)

The number of HAs for this matrix when applied Dadda tree for column compression

is

NHA = n− 2 (7.8)
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The number of FAs is the differential between the total bits in PPM and the length

of final result can be calculated as

NFA = NPPB − (2n− 1)

=
n2 + n

2
− (2n− 1)

=
n2 − 3n+ 2

2
(7.9)

The total number of gates for merged method can be calculated as

Nmerged = NINV +NAND + 4NHA + 9NFA

= 5n2 − 8n− 1 (7.10)

7.1.3 Divide & Conquer Squaring Unit

For the squaring unit in [71], to calculate the output of 2m-bit input, squaring of the

m-bit and the multiplier of the m-bit are calculated first, then Equation 4.3 is applied

to get the final result. These steps are repeated until the input is equal to 4. Hence,

to apply this method, the length of input should be power of 2. Define n = 2k, the

total number of gates for a 2k-bit squaring unit will be expressed as

Nsqr(2k) = 2 ·Nsqr(2k−1) +Nmult(2k−1) +NDadda(2k−1) (7.11)

The total gates of (2k−1)-bit squaring unit is

Nsqr(2k−1) = 2 ·Nsqr(2k−2) +Nmult(2k−2) +NDadda(2k−2) (7.12)

As can be seen in Figure 4.6, Nsqr(2) = 4, Nmult(2) = 7, NDadda(2) = 30, total gates of

4-bit squaring unit is

Nsqr(4) = 2 ·Nsqr(2) +Nmult(2) +NDadda(2)

= 45 (7.13)
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Replace Equation 7.12, 7.13 to 7.11, total bit of a 2k-bit squaring unit is calculated

as

Nsqr(2k) = 2k−2 ·Nsqr(4) +
k−1∑
i=2

2k−i−1 ·Nmult(2i) +
k−1∑
i=2

2k−i−1 ·NDadda(2i) (7.14)

According to Equation 2.4, total gates of 2i-bit multiplier is

Nmult(2i) = 10 · (2i)2 − 14 · (2i) (7.15)

According to Figure 4.5, total gates for 2i-bit squaring unit in Dadda tree is

NDadda(2i) = 11 · (2i)− 9 (7.16)

Replace Equation 7.13, 7.15, 7.16 to 7.14, total gates for this unit is

NDivide&Conquer = 5n2 − 53n

4
− 3n

2
· (log2(m)− 2) + 9 (7.17)

7.1.4 Proposed Squaring Unit.

According to Figure 4.7, in the Stage 1, (n− 2) special HAs are used. Each of these

adders takes 2 inputs and produces 2 output. Hence, the number of bits in the matrix

after this stage does not change. But in the Stage 2, (n − 3) special full adders are

used, each of them takes 3 inputs and produces 2 outputs, so 1 bit is reduced. The

same thing happen with the Stage 3, (n − 3) special half adders are used, each of

them takes 2 inputs and produces 1 output, so it can reduce matrix by one bit. In

the column (2n− 2)th, 2 bits xn−1 · xn−2 and xn−1 · xn−2 · xn−3 are combined to 1 bit,

hence, the total partial product bits in proposed matrix is

NPPB =
n2 + n

2
− (n− 3)− (n− 3)− 1

=
n2 − 3n

2
+ 5 (7.18)

The number of HAs for Dadda tree reduction applied to this PPM

NHA = n− 2 (7.19)
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The number of FAs is the differential between the partial product bits in the matrix

and the length of final result, so it can be calculated as

NFA = NPPB − (2n− 1)

=
n2 − 3n

2
+ 5− (2n− 1)

=
n2 − 7n

2
+ 6 (7.20)

As in Equation 4.5, 4.6, to generate partial product bits S2
2i and S3

2i+1, 8 and 6 gates

are needed, respectively. According to Figure 4.8, 4.9, each partial product bit in

column 3th and (2n − 2)th requires 3 gates, and [n
2−3n
2

+ 2(n − 3)] AND gates are

used to generate the rest of partial product bits in the proposed matrix. Hence total

number of gates for this method can be calculated as

Nproposed = 8(n− 3) + 6(n− 3) + 6 +
n2 − 7n

2
+ 11

+4NHAsquarerproposed
+ 9NFAsquarerproposed

= 5n2 − 17n+ 17 (7.21)

7.1.5 Booth 2 Folding Squaring Unit.

According to Figure 6.1, each array Pi will run from (−2i + 3)th to (−4i)th, but the

bit in position (−4i+ 1)th is always zero, so the length of Pi is 2i+ 3-bit. Hence the

total partial product bits in this matrix is calculated as

NPPB = 1 +
m∑
i=1

(2i+ 3)

= m2 + 2m

=
n2

4
+ n (7.22)

The number of HAs can be approximated as

NHA ≈ 3n

4
− 1 (7.23)

98



The number of FAs is

NFA = NPPB − (2n− 1)

=
n2

4
− n+ 1 (7.24)

According to Equation 4.13 and 4.14, the number of gates to generate Pi is

NPi
= 5 + 9(2i− 2) + 3 + 3 + 1

= 18i− 6 (7.25)

The total gates to generate this matrix is

Ngatematrix
=

m∑
i=1

(NPi
)

=
9n2

4
− 15n

2
(7.26)

From Equation 7.23, 7.24 and 7.26, total gate for squaring unit in Booth 2 Folding

method can be calculated as

NStrollo = 4NHA + 9NFA +Ngatematrix

=
9n2

2
− 27n

2
+ 5 (7.27)

7.1.6 Booth 2 Left-to-Right Recoding

Like Booth 2 Folding technique, the number of partial product bits in Booth 2

Left-to-Right Recoding can be calculated as

NPPB = 3 +
m−1∑
i=0

(2m− 2i+ 2)

=
n2

4
+

5n

2
− 2 (7.28)

The number of HAs can be approximated as

NHA ≈ 13n

8
− 9 (7.29)
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Total FAs for this unit is

NFA = NPPB − (2n− 1)

=
n2

4
− n

4
− 1 (7.30)

According to Equation 4.20, the number of gated for generating Pi is

NPi
= 7 + 5 + 10(2m− 2i− 2) + 8 + 4

= 20m− 20i+ 4 (7.31)

Ngatematrix
= 5 +

m−1∑
i=0

(NPi
)

=
5n2

2
+ 17n− 15 (7.32)

From Equation 7.29, 7.30 and 7.32, total gate for squaring unit in Booth 2 Left-to-

Right Recoding technique can be calculated as

NMatula = 4NHA + 9NFA +Ngatematrix

=
19n2

4
+

51n

4
− 60 (7.33)

7.2 Delay Estimation of Squaring Units

The delay of squarer unit depends on the delay of generating PPM , the height of

this matrix and the length of CPA. Define ∆ is delay for one gate, these parameters

can be calculated as
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• Delay for generating PPM:

tppmfolded
= 1∆

tppmmerged
= 2∆

tppmDivide&Conquer
= tppmmultiplier

tppmStrollo
= 5∆

tppmMatula
= 5∆

tppmproposed
= 3∆ (7.34)

• The height of PPM : According to Figure 4.1 and 4.2, the shape of PPM is

different when n is odd or even, but its height can be formulated as:

PPHfolded =
⌊n
2

⌋
+ 1 (7.35)

For merged method, 2 bits xixi−1 and xi in the same column are grouped to-

gether. It produces 2 other bits, one in the same and one in the next column.

The shape of this matrix depends on either n is odd or even. For whatever n,

the height of merged matrix can be calculated as

PPHsquarermerged
=

⌈n
2

⌉
(7.36)

For the Divide & Conquer method, the height of PPM is always equal 2

PPHsqrDivide&Conquer
= 2 (7.37)

According to Figure 4.9, proposed matrix is established by reducing merged

PPM 2 more steps. The height of proposed matrix is

PPHproposed =
⌈n
2

⌉
− 1 (7.38)

According to Figure 4.11, 4.12 the matrix height of squaring unit using Booth
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2 folding and Left-to-Right recoding are calculated as

PPHStrollo =

⌈
n+ 3

4

⌉
+ 1

PPhMatula =

⌈
n+ 3

4

⌉
(7.39)

• The length of CPA: The carry and sum array of folded method run from the

column 2th to the (2n− 2)th, so the length of CPA can be calculated as

CPAfolded = (2n− 2)− 2 + 1

= 2n− 3 (7.40)

The carry and sum arrays of merged method run from the column 3th to the

(2n− 1)th, so the length of CPA can be calculated as

CPAmerged = (2n− 1)− 3 + 1

= 2n− 3 (7.41)

The carry and sum of Divide & Conquer method run from (m+1)th to (4m)th,

so the length of CPA can be calculated as

CPADivide&Conquer = (4m)− (m+ 1) + 1

= 3m (7.42)

The carry and sum arrays of proposed methods run from the column 5th to the

(2n− 1)th, so the length of CPA can be calculated as

CPAproposed = (2n− 1)− 5 + 1

= 2n− 5 (7.43)

The carry and sum arrays of Booth 2 folding method run from 4th to the

(2n− 1)th, so the length of CPA can be calculated as

CPAStrollo = (2n− 1)− 4 + 1

= 2n− 4 (7.44)
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The carry and sum arrays of Booth 2 Left-to-Right method run from 3th to

the (2n− 1)th so the length of CPA can be calculated as

CPAMatula = (2n− 1)− 34 + 1

= 2n− 3 (7.45)

According to [31], with the length of CPA is k the delay of RCA can be calculated

as

tRCA = (2k + 2)∆ (7.46)

So the delay of CPA for each method can be represented as

tCPAfolded
= tCPAmerged

= tCPAMatula

= [2(2n− 3) + 2]∆

= (4n− 4)∆

tCPAproposed
= [2(2n− 5) + 2]∆

= (4n− 8)∆

tCPAStrollo
= [2(2n− 4) + 2]∆

= (4n− 4)∆ (7.47)

7.3 Area Estimation of Cubing Units

7.3.1 Liddicoat and Flynn Method.

According to Figure 5.2, 5.3 the terms xixj appear two times and the terms xi ·xj ·xk

appear one time in the minimized matrix, so the number AND gates in Liddicoat′s

method is calculated as

NAND = C2m
2 + C2m

3

=
4m3 −m

3
(7.48)
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and the number of bits in this matrix is

NPPB = 2× C2m
2 + C2m

3

=
4m3 + 6m2 − 4m

3
(7.49)

Because this matrix is reduced to get sum and carry arrays, which run from the row

1th through the row (6m− 2)th, hence, if S is the number of Wallace’s stages, so the

total bits in sum and carry arrays can be calculated as

Nsum = [6m− 2]− 1 + 1

= 6m− 2

Ncarry = [6m− 2]− 1− S

= 6m− 3− S (7.50)

The carry and sum arrays have weight of 3, they must be doubled and combined with

2m of 1x term xi to calculate the final result. Because the final result has 6m-bit

length, so the total FAs for Liddicoat′s cubing unit is

NFA = NPPB − (Nsum +Ncarry)

+2(Nsum +Ncarry) + 2m− 6m

=
4m3 + 6m2 + 20m

3
− 5− S (7.51)

The number of HAs can be calculates as

NHA ≈ m2

6
+ 32m− 60 (7.52)

From Equation 7.48, 7.51, 7.52, the total gates for implementing Liddicoat′s cubing

unit is

NLidd = NAND + 4NHA + 9NFA

≈ 40m3 + 55m2 + 564m

3
− 285− 9S (7.53)
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7.3.2 Stine and Blank method.

For Stine′s cubing unit in [25], 3× terms in each row are replaced by two bits, one

in this row and one in the next row on the left hand side. The same thing is applied

for the 6× terms but these two bits are shifted one position to the left. In the step of

improving the regularity, three terms xi · xi−1 with two are in the same row (3i− 1)th

and one in the next row (3i)th, are replaced by only one term in the row (3i + 1)th,

so two bits are reduced. Because i runs from 1 to 2m, hence the total number of bits

that are saved in this step is 2(2m − 1). With this approach, the total number of

AND gates and bits in this matrix are calculated as

NAND = C2m
2 + C2m

3

=
4m3 −m

3
(7.54)

NPPB = 4C2m
2 + 2C2m

3 + 2m− 2(2m− 1)

=
8m3 + 12m2 − 14m

3
+ 2 (7.55)

Because Dadda tree is applied for column compression, the number of HAs and FAs

can be calculated as

NHA ≈ 15m

4
(7.56)

NFA = NPPB − 6m

=
8m3 + 12m2 − 32m

3
+ 2 (7.57)

Hence, the total gates of Stine′s cubing unit is

NStine = NAND + 4NHA + 9NFA

≈ 76m3 + 108m2 − 274m

3
+ 18 (7.58)
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7.3.3 Divide and Conquer method.

For cubing unit in [75], to calculate the output of 2m-bit input, cubing of m-bit and

squarer-multiply of m-bit, must be calculated first. After that using Equation 5.3 to

get the final result. These iterations are repeated until the input is equal to 4. So

n = 2m should be power of 2. In general, set n = 2k, the total number of gates of

2k-bit cubing unit is expressed as

Ncube(2k) = 2Ncube(2k−1) + 2Nsqrmult(2k−1) +NDadda(2k−1) (7.59)

The total gates of (2k−1)-bit cubing unit and then is calculated as

Ncube(2k−1) = 2Ncube(2k−2) + 2Nsqrmult(2k−2) +NDadda(2k−2) (7.60)

Replace Equation 7.60 to Equation 7.59 ones have

Ncube(2k) = 2k−2Ncube(22)

+2Nsqrmult(2k−1) + 22Nsqrmult(2k−2) + . . .+ 2k−2Nsqrmult(22)

+NDadda(2k−1) + 2NDadda(2k−2) + . . .+ 2k−3NDadda(22

= 2k−2Ncube(22) +
k−1∑
i=2

2k−iNsqrmult(2i) +
k−1∑
i=2

2k−i−1NDadda(2i) (7.61)

When the length of operand X is 4, X = x3x2x1x0, the value of A and B can be

expressed as A = x3x2, and B = x1x0, so the value of A3, B3, A2 ·B, A ·B2 will have
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five bits length. They can be represented as

A3 = (x3x2)
3

= (x3 · x2) (x3) (0) (x3 · x2) (x2)

B3 = (x1x0)
3

= (x1 · x0) (x1) (0) (x1 · x0) (x0)

A2B = (x3x2)
2(x1x0)

= (x3 · x2 · x1) (F ) (x3 · x2 · x0) (x2 · x1) (x2x0)

AB2 = (x3x2)(x1x0)
2

= (x3 · x1 · x0) (E) (x2 · x1 · x0) (x3 · x0) (x2 · x0) (7.62)

in which

E = x2 · x1 · x0 + x3 · x1 · x0

F = x3 · x2 · x0 + x3 · x2 · x1 (7.63)

The partial product matrix of a 4-bit cubing can be generated as in the Figure 5.7.

Implementation of this unit in Dadda tree can be seen as in Figure 7.2 . To establish

E and F , 8 gates are needed. Hence, to generate this matrix total 16 gates are used.

According to this figure, 6 HAs and 16 FAs are used to get the final result. So the

total gates of a 4-bit cubing unit is

Ncube(22) = 16 + 6× 4 + 16× 9

= 184(gates) (7.64)

In [75], the folded method is used to get the squarer. According to Equation 7.5, if

the length of input is 2i, the number of gates used to build squarer unit is

Nsqr(2i) = 5(2i)2 − 10(2i) + 5 (7.65)
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The number of AND gates to establish PPM of squarer-multiplier unit is

NANDsqrmult(2i)
= [2(2i)− 1](2i)

= 2(2i)2 − (2i) (7.66)

Because Dadda tree is applied to reduce this matrix, so the number of HAs and FAs

can be calculated as

NHAsqrmult(2i)
= 2i (7.67)

NFAsqrmult(2i)
= [2(2i)− 1](2i)− 3(2i)

= 2(2i)2 − 4(2i) (7.68)

Hence, the total gates using in squarer-multiplier unit is

Nsqrmult(2i) = Nsqr(2i) +NANDsqrmult(2i)

+4NHAsqrmult(2i)
+ 9NFAsqrmult(2i)

= 25(2i)2 − 43(2i) + 5 (7.69)

According to Figure 5.6 the number of HAs and FAs used in (2i)-bit Dadda tree are

NHADadda(2i)
= 2(2i) (7.70)

NFADadda(2i)
= 12(2i) (7.71)

The total gates used in Dadda tree is

NDadda(2i) = 4NHADadda(2i)
+ 9NFADadda(2i)

= 116(2i) (7.72)

Replace Equation 7.64, 7.69 , and 7.72 into 7.61, the total gates forDivide & Conquer

method can be calculated as

NDivide&Conquer = 100m2 − 133m+ 15m log2(m)[1 + log2(m)]− 10 (7.73)
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7.3.4 Proposed method.

For proposed method, the input X is break into smaller pieces. Each piece Xi has

2-bit length, so the each terms X3
i , X

2
i ·Xj, Xi ·X2

j , Xi ·Xj ·Xk will have 5-bit length.

According to Equation 7.62, to get the output of X3
i , only one gate is needed. X2

i ·Xj,

Xi ·X2
j can be expressed as

Xi2j = X2
i Xj

= (x2i+1x2i)
2 · (x2j+1x2j)

Xi2j[0] = x2i · x2j

Xi2j[1] = x2i · x2j+1

Xi2j[2] = x2i+1 · x2ix2j

Xi2j[3] = x2i+1 · x2i · x2j + x2i+1 · x2ix2j+1

Xi2j[4] = x2i+1 · x2i · x2j+1

Xij2 = XiX
2
j

= (x2i+1x2i) · (x2j+1x2j)
2

Xij2 [0] = x2i · x2j

Xij2 [1] = x2i+1 · x2j

Xij2 [2] = x2i · x2j+1 · x2j

Xij2 [3] = x2i · x2j+1 · x2j + x2i+1 · x2j+1 · x2j

Xij2 [4] = x2i+1 · x2j+1 · x2j (7.74)

As can be seen in Equation 7.74, 9 gates are needed for each X2
i ·Xj or Xi ·X2

j unit.

Xi ·Xj ·Xk is implemented as in the Figure 7.3. To generate this matrix in Figure 7.3,

8 gates are used. To get the output of Xi ·Xj ·Xk, 1 HA and 3 FAs are employed.
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X

Figure 7.3: Implementation of XiXjXk

Hence, the total number of gates for this unit is

NXiXjXk
= 8 + 4× 1 + 3× 9

= 39 (7.75)

Hence, the number of gates to generate the proposed matrix is

Nmatrix = 9× 2Cm
2 + 39× Cm

3

=
13m3 − 21m2 + 8m

2
(7.76)

The number of bits in this matrix is

NPPB = 5× 2Cm
2 + 5× Cm

3

=
5

6
(m3 + 3m2 − 4m) (7.77)

The number of HAs for Dadda reduction is

NHA ≈ 3m (7.78)

As can be seen in Figure 5.8, the sum array of 3× term is from row 2th to row

(6m − 3)th. In the final stage, the sum array is doubled and combined with 5 × 2m
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bit of X3
i terms, so the number of FAs can be calculated as

NFA = NPPB − [(6m− 3)− 2 + 1]

+2[(6m− 3)− 2 + 1] + 5× 2m− 6m

=
5

6
(m3 + 3m2 + 8m)− 4 (7.79)

The number of gates for proposed cubing unit is

NProposed = Nmatrix + 4×NHAProposed
+ 9×NFAProposed

= 14m3 + 12m2 + 76m− 36 (7.80)

7.4 Delay Estimation of Cubing Units

• Delay for generating PPM:

tppmLiddicoat
= 1∆

tppmStine
= 1∆

tppmDivide&Conquer
= tsquarer−multiplier(m)

tppmproposed
= 3∆ (7.81)

(7.82)

• The height of PPM:

PPHcubeLiddicoat
=

1

2
m2 +

1

2
m

PPHcubeStine
= m2 +m

PPHcubeDivide−Conquer
= 5

PPHcubeproposed =
3

8
m2 +

1

4
m (7.83)
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CHAPTER 8

Hardware Implementation and Conclusions

8.1 Hardware Implementation

8.1.1 Implementation on FPGA Technology

The design flow diagram on FPGA is described as in Figure 8.1. The architecture

design phase for each squaring and cubing unit was presented in previous chapter.

In the HDL design entry phase, V erilog code for each module is generated by using

a C program. These modules are simulated in Behavioral simulation phase to verify

the correction. If these modules work correctly, they will be synthesized and then

implemented. Timing, area analyses and power estimation will given the performance

of each unit.

In this dissertation, a Xilinx XC5V TX240T FPGA device with a FF1759 pack-

age at speed −2 of a Xilinx V irtex 5 family is used. Area is estimated by calculating

total number of slices that are used in each design and delay is obtained from the

placed and routed layout. The power estimation are generated from a 100, 000-vector

V CD file and analyzed back through Xilinx′s Xpower Analyzer tool. All modules

are also coded to account for fast carry-chains within the final CPA of the FPGA.

Table 8.1 gives the area, delay and power comparison of squaring units with the

input operand sizes running from 8 to 32 bits for each method in FPGA technology.

As can be seen , for all values of input length, the delay of the proposed method is

always smaller than those one of previous methods. The area of proposed method is

greater than those one in both [56] and [74], but it is smaller than that one in [66],
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Figure 8.1: FPGA Flow Diagram

[69] and [71]. This is suitable with the analyses in previous section.

Table 8.2, gives a comparison of truncated squaring units with k = 2, k = 4 and

n = 8, 16, 32, respectively. As can be seen in these tables, truncated squaring unit

for proposed method always give the best performance on delay, but for area and

power consumption, other methods are better. Table 8.3 gives the area, delay and

power of cubing units with the input operand sizes running from 8 to 32 bits for

each method in FPGA technology. As can be seen in Table 8.3, the delay of the

proposed method are significantly smaller than those one of previous methods, but

the area is greater than that one in [75]. However, the method in [75] is computed
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Figure 8.2: ASIC Flow Diagram

serially and consumes much delay for larger operand sizes. Therefore, it is conceivable

that the method in [75] is not practical for operands greater than 8-bit. On the other

hand, the proposed method demonstrates significant saving in area (30.2%) and delay

(9.2%) over method presented by Liddicoat/F lynn and could potentially make cubing

readily available for many 32-bit and 64-bit architectures. For truncated cubing units,

method in [76] will be used. Comparison is given as in Table 8.4

8.1.2 Implementation on ASIC Technology

The Application Specific Integrated Circuit ASIC flow diagram is presented as in Fig-

ure 8.2. A Hardware Description Language Verilog code is simulated usingModelSim
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running on Linux. After testing the output results, Synopsys Design Compiler is

used along with Oklahoma State University IBM 65nm cell library for logic syn-

theses. Delay, Timing&Area, Gate Nestlist and Constrain files are generated. After

that IC Compiler is used to get the chip layout.

Table 8.5 is are Area, Delay comparison of all squaring units implemented in

ASIC. IBM 65nm technology. Table 8.6, gives a comparison of truncated squaring

units with the length of input is 8, 16, 32 respectively. Table 8.7 and 8.8 are results

of cubing and truncated cubing units implemented in ASIC.

8.2 Summary and Future Work

This work starts with a review of basic squaring and cubing architectures. Both

unsigned and signed units were discussed with algorithmically analysis. The trade-

offs between delay and area is presented. After that, structures of squaring and cubing

are introduced, which offers a broad insight in how to build them.

This dissertation proposed a new architecture of both squaring and cubing units.

For unsigned squaring units, PPM was optimized more deeper, so the number of

partial product bits and the height of this matrix was reduced more compared with

previous methods. For singed squaring units, Booth 2 Folding, Booth 2 Left-to-

Right Recoding and Divide & Conquer techniques are utilized to get a comparison

for each method. For cubing unit, a new architecture was proposed by dividing the

larger input to smaller pieces. This actually is the combination of previous methods

to reduce the height and number of partial product bits in PPM to improve its

performance.

The truncated units with the CCT technique is applied to reduce the area and

power consumption on both squaring and cubing units. For each type of these units,

dissertation shows how to calculate the correction constant C. Errors are generated

for comparison to determine how many bits we want to kept. Diagram for this work
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is followed as in Figure 8.3

Area and Delay of squaring and cubing units are formulated by using Linear-

Delay model. From that, general idea about performance of each unit can be

viewed. These units then are implemented in both techniques FPGA Xilinx and

ASIC IBM 65nm.

Because of time limitations, just the CCT method is applied for truncated units,

and just proposed truncated cubing unit is generated. In the future, the V CT ,

HCT will be applied and all types of truncated cubing units will be generated and

implemented to get comparison between them.
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Table 8.1: Area, Delay, and Power Comparison of Squaring Units on Virtex 5 FPGA

n Method Area(Slices) Delay(ns) Power(mW)

8

Folded [66] 29 6.532 3.083

Merged [69] 34 6.903 3.083

Divide & Conquer [71] 44 7.079 3.083

Booth 2 Folding [56] 34 6.594 3.083

Booth 2 Dual Recoding [74] 37 6.301 3.082

Proposed [77] 28 5.932 3.082

16

Folded [66] 178 9.037 3.786

Merged [69] 183 8.943 3.790

Divide & Conquer [71] 215 9.738 3.775

Booth 2 Folding [56] 152 9.670 3.752

Booth 2 Dual Recoding [74] 154 9.316 3.740

Proposed [77] 166 8.591 3.782

32

Folded [66] 871 11.205 5.166

Merged [69] 892 10.439 5.163

Divide & Conquer [71] 941 11.981 5.071

Booth 2 Folding [56] 644 11.013 5.166

Booth 2 Dual Recoding [74] 633 10.816 5.156

Proposed [77] 786 10.370 5.156
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Table 8.2: Performances Truncated Squaring Units on FPGA Virtex 5.

n k Method Area(Slices) Delay(ns) Power(mW)

8

2

Divide & Conquer [71] 40 7.116 2.810

Strollo [56] 32 6.746 2.810

Matula [74] 26 6.512 2.806

Proposed [77] 24 6.128 2.808

4

Divide & Conquer [71] 45 7.074 2.809

Strollo [56] 36 6.645 2.809

Matula [74] 34 7.076 2.810

Proposed [77] 26 6.182 2.808

16

2

Divide & Conquer [71] 154 9.737 3.152

Strollo [56] 118 8.901 3.172

Matula [74] 101 8.936 3.163

Proposed [77] 114 8.015 3.162

4

Divide & Conquer [71] 175 9.163 3.157

Strollo [56] 134 9.018 3.173

Matula [74] 116 9.005 3.162

Proposed [77] 133 8.591 3.163

32

2

Divide & Conquer [71] 661 11.978 3.760

Strollo [56] 424 10.540 3.823

Matula [74] 378 10.423 3.818

Proposed [77] 468 10.168 3.817

4

Divide & Conquer [71] 663 11.979 3.765

Strollo [56] 461 10.486 3.841

Matula [74] 413 10.504 3.821

Proposed [77] 511 10.187 3.816
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Table 8.3: Gates, Delay, and Power Comparison of Cubing Units on FPGA Virtex 5

n Method Area(Slices) Delay(ns) Power(mW)

4

Liddicoat/Flynn [67] 18 4.786 2.915

Stine/Blank [25] 17 4.782 2.916

Divide and Conquer [75] 17 4.682 2.916

Proposed [76] 17 4.678 2.916

8

Liddicoat/Flynn [67] 243 10.506 3.452

Stine/Blank [25] 339 11.002 3.484

Divide and Conquer [75] 199 9.926 3.448

Proposed [76] 170 10.191 3.436

16

Liddicoat/Flynn [67] 1,618 14.633 4.447

Stine/Blank [25] 2,704 14.077 4.940

Divide and Conquer [75] 855 14.835 4.433

Proposed [76] 1,333 13.813 4.386

32

Liddicoat/Flynn [67] 12,674 17.171 6.613

Stine/Blank [25] 21,437 17.662 10.418

Divide and Conquer [75] 3,960 18.871 6.496

Proposed [76] 9,161 16.442 6.435

Table 8.4: Comparison for Truncated Cubing Units in Virtex 5 FPGA

n k Area (Slices) Delay (ns) Power (mW)

8
4 96 10.385 2.779

8 142 10.389 2.781

16
8 680 13.381 3.124

16 1,128 14.288 3.127

32
16 4,670 16.417 3.727

32 7,161 16.758 3.730
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Table 8.5: Area, Delay, and Power Comparison of Squaring Units on ASIC IBM

65nm

n Method Num. Cells Area(µm2) Delay(ns) Power(mW)

8

Folded 218 1,261.44 0.564 1.465× 10−3

Merged 194 1,154.40 0.585 1.337× 10−3

Divide & Conquer 259 1,434.73 0.615 1.670× 10−3

Booth 2 Folding 219 1,323.36 0.597 1.723× 10−3

Booth 2 Dual Recoding 236 1,221.60 0.606 1.513× 10−3

Proposed 191 952.80 0.517 1.127× 10−3

16

Folded 986 5,258.40 0.895 6.190× 10−3

Merged 982 5,148.00 0.903 5.976× 10−3

Divide & Conquer 1,008 5,708.16 1.009 6.400× 10−3

Booth 2 Folding 835 5,018.40 0.883 6.073× 10−3

Booth 2 Dual Recoding 864 5,282.40 0.889 6.766× 10−3

Proposed 880 4,675.20 0.868 5.631× 10−3

32

Folded 3,548 19,956.00 1.281 0.0245

Merged 3,728 21,161.28 1.257 0.0256

Divide & Conquer 4,172 23,258.40 1.449 0.0280

Booth 2 Folding 3,237 19,679.04 1.285 0.0236

Booth 2 Dual Recoding 3,016 15,535.68 1.293 0.0202

Proposed 3,560 19,392.96 1.254 0.0238

121



Table 8.6: Performances Truncated Squaring Units on ASIC IBM 65nm.

n k Method Num. Cells Area(µm2) Delay(ns) Power(mW)

8

2

Divide & Conquer 193 1,135.20 0.605 1.330*10

Strollo 195 1,110.24 0.591 1.424*10

Matula 195 1,015.20 0.587 1.247*10

Proposed 163 737.76 0.544 0.898*10

4

Divide & Conquer 200 1,060.80 0.641 1.209*10

Strollo 220 1,199.04 0.639 1.576*10

Matula 207 1,189.92 0.598 1.511*10

Proposed 164 957.60 0.542 1.170*10

16

2

Divide & Conquer 773 4,659.36 0.961 5.449*10

Strollo 672 4,183.20 0.860 5.645*10

Matula 540 3,324.00 0.865 4.322*10

Proposed 673 3,696.96 0.838 4.447*10

4

Divide & Conquer 791 4,602.72 0.957 5.321*10

Strollo 732 4,121.76 0.919 5.518*10

Matula 629 3,963.84 0.861 5.311*10

Proposed 757 4,083.36 0.846 4.915*10

32

2

Divide & Conquer 2,887 16,667.04 1.294 0.0200

Strollo 2,157 11,953.44 1.140 0.0160

Matula 2,017 11,063.52 1.136 0.0145

Proposed 2,267 12,189.60 1.173 0.0148

4

Divide & Conquer 2,876 16,197.12 1.325 0.0195

Strollo 2,222 12,887.52 1.187 0.0175

Matula 2,187 12,456.48 1.152 0.0165

Proposed 2,411 13,732.80 1.215 0.0169
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Table 8.7: Gates, Delay, and Power Comparison of Cubing Units in ASIC IBM 65nm

n Method Num. Cells Area(µm2) Delay(ns) Power(mW)

8

Liddicoat [67] 1,044 9,454.08 1.146 0.0109

Stine [25] 1,267 11,109.12 1.111 0.0125

Divide & Conquer [75] 862 6,202.08 1.136 7.222× 10−3

Proposed [76] 976 7,233.60 1.147 8.217× 10−3

16

Liddicoat [67] 5,705 45,445.44 1.791 0.0513

Stine [25] 8,639 67,039.20 1.828 0.0734

Divide & Conquer [75] 4,127 23,978.88 2.022 0.0280

Proposed [76] 5,298 39,013.92 1.770 0.0447

32

Liddicoat [67] 33,257 220,509.60 3.141 0.2398

Stine [25] 56,729 348,901.44 2.989 0.3588

Divide & Conquer [75] 17,832 102,316.32 2.903 0.1211

Proposed [76] 34,438 219,468.96 2.874 0.2377

Table 8.8: Comparison of Truncated Cubing Units on ASIC

n k Num. Cells Area (µm2) Delay (ns) Power (mW)

8
4 511 2,952.96 1.148 3.086× 10−3

8 845 4,968.48 1.245 5.465× 10−3

16
8 3,254 18,964.32 1.862 0.0203

16 5,206 32,597.92 1.990 0.0341

32
16 20,704 103,946.40 2.954 0.1063

32 32,566 158,580.48 3.320 0.1589
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