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Abstract 

Deterioration of bridges is often attributed to declining performance of the 

longitudinal connections between precast members or transverse deck joints. 

Ultra-high performance concrete (UHPC) is a cementitious composite with 

mechanical and durability properties far exceeding those of conventional 

concrete, making it an ideal material for bridge deck joints. This project included 

a multi-faceted evaluation of the proprietary UHPC material, Lafarge Ductal®, to 

determine best practices for placing UHPC joints and to better understand their 

behavior. Composite modulus of rupture (MOR) specimens were tested in 

flexure to determine the effects of varying interface angles and levels of surface 

roughness on bond strength. Slant shear tests were performed on composite 

cylinders to provide a baseline of bond strength with no surface manipulation. 

Static and fatigue flexural testing was performed on three medium-scale slabs 

with heat cured UHPC joints to determine their flexural capacity and the effects 

of cyclic loading on the joint interface. The MOR specimens exceed the flexural 

strength of the base concrete, and most did not experience interface failure. 

Two slabs, tested statically in flexure, had experimental capacities exceeding 

the estimated capacity. The third slab, loaded cyclically, achieved 3 million 

cycles of a load less than the cracking load and experienced degradation in 

performance. It then failed at a much lower number of cycles after the load was 

increased. These results indicate that UHPC provides superior structural 

performance for slab joints and is worth studying further in future research. 
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1.0 Introduction 

This thesis describes a project involving the evaluation of ultra-high 

performance concrete (UHPC) as a repair material for bridges in Oklahoma. 

UHPC is a type of concrete that has high compressive and tensile strength, 

high durability, low permeability, and increased potential for longer-lasting repair 

applications. Although UHPC is more expensive than other types of concrete, 

there is potential for a clear benefit when using it in small quantities for 

applications that will have a long-lasting impact. The use of UHPC can 

potentially give new concrete structures a longer life and extend the life of 

existing structures. It therefore can limit the cost and frequency of repairs, 

maintenance, and rehabilitation in comparison to normal strength concrete 

(NSC). Because UHPC is a fairly new material, more research is needed to 

study its behavior and possible applications. 

1.1 Purpose of Study 

 The Oklahoma Department of Transportation (ODOT) is looking for 

information on the feasibility of UHPC as a solution for replacing deteriorated 

bridge joints. The short required steel embedment lengths and high impact 

resistance allow for a small quantity of highly durable material to be used in the 

vicinity of the joint. This has the potential to reduce the amount of material that 

must be removed and to replace steel angles used to protect the corners of the 

joint. In addition, difference in elevation between a UHPC repair and existing 

concrete can be corrected by grinding when no steel is used. UHPC has been 
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used in many precast applications, but the primary interest of ODOT is to 

assess the most efficient method of using UHPC as a repair material after old 

bridge joints have been sawn out, and limited data on this application are 

available. The results obtained from testing both the composite specimens and 

the medium-scale slab specimens will be used to make recommendations for 

field applications of UHPC in bridge joint repair. 

1.2 General Overview 

The use of UHPC is a fairly recent stride in the realm of high strength 

concrete. First introduced in the year 2000, UHPC is now being considered for 

more widespread use. It has been proven to solve issues commonly 

encountered with aging or deteriorated NSC including cracking, shrinkage, low 

durability, and freeze-thaw degradation. A primary advantage of UHPC is that it 

achieves extremely high strengths; compressive strengths are typically greater 

than 21 ksi and tensile strengths are typically greater than 0.72 ksi (Graybeal 

2011). It is also highly flowable and more durable than other types of concrete 

(Graybeal 2011). UHPC has a negligible permeability; therefore, it is considered 

to be suitable as a protective barrier and repair material. UHPC achieves its 

high strength, enhanced durability, and workability with a mix composed of a 

wide range of aggregate sizes with a reduced amount of coarse aggregate, a 

water-cement ratio that is typically less than 0.25, and small fibers for 

reinforcement. The mix requires high-range water reducer (HRWR) to increase 

workability without adding more water to the mix. Table 1 outlines some typical 

properties of UHPC for reference. 
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Table 1. Typical UHPC Properties (Graybeal 2014) 

Material Characteristic Average Result 

Density 155 lb/ft3 

Compressive strength (28-day) 21 ksi 

Modulus of elasticity (28-day) 7,000 ksi 

Direct tension cracking strength 1.2 ksi 

Tensile strain capacity before crack localization and fiber 
debond 

>0.003 

Long-term creep coefficient 0.78 

Long-term shrinkage 555 microstrain 

Total shrinkage 790 microstrain 

Coefficient of thermal expansion 8.2*10-6 in/in/°F 

Abrasion resistance 0.026 oz. lost 

Freeze-thaw resistance RDM = 99% 

 

Construction using UHPC requires a number of different procedures than 

for NSC. It requires a higher mixing energy input and a longer mixing time, and 

it is important to make sure it does not overheat during mixing. Because UHPC 

is typically considered to be self-consolidating and contains steel fibers, internal 

vibration is not necessary during placement, nor recommended, as it may re-

orient fibers. The compressive strength value at which the concrete has 

reached an acceptable level of hydration to allow the concrete to be put into 

service is typically 14 ksi. UHPC also has a longer set time than typical NSC. 

For this reason, heat curing is often used. Due to its differing properties from 

NSC, different quality control testing procedures are required for UHPC. For 

example, rather than the typical range of 28 to 42 psi/s for compressive testing 

of NSC, 150 psi/s is a more feasible stress rate that ensures the test is not 

unnecessarily prolonged (Graybeal 2011). Cube compression tests are also a 
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viable method to assess UHPC strengths. Because UHPC is self-consolidating 

and flows freely, mortar flow tests are more appropriate than slump tests. 

1.3 Previous Implementation 

While UHPC is a relatively new material, substantial previous research 

has been performed on UHPC properties and there have been multiple 

applications that serve as examples of its properties and methods of 

implementation. Table 2 shows different instances of UHPC use in practical 

applications. The most common applications thus far employed when 

considering bridges tend to be the use of UHPC for tee beams and girders of 

multiple shapes, as well as for joints between precast deck panels and 

longitudinal and transverse deck joints. The use of UHPC in joints between 

precast members in new construction has been extensively studied and 

implemented according to the literature. It has not, however, been extensively 

explored and implemented as a repair material for bridge joints (initially made of 

NSC) that have been removed or sawn out and require replacement. Although 

there has been a limited amount of research on UHPC as a repair material, its 

feasibility in this capacity is supported by previous research for other 

applications, which is a reasonable starting point to motivate further research. 
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Table 2. UHPC Applications in the United States (Graybeal 2013) 

Name Year Application Reference 

Mars Hill Bridge, Wapello 

County, IA 
2006 

Three 45 in.-deep bulb tee 

beams 

Bierwagon 

et al.    

Endicott 

Route 624 over Cat Point Creek, 

Richmond County, VA 
2008 Five 45 in.-deep bulb tee girders 

Ozyildirim & 

Volgyi 

Jakway Park Bridge, Buchanan 

County, IA 
2008 

Three 33 in.-deep pi-shaped 

girders 

Keierleber et 

al. 

State Route 31 over 

Canandaigua Outlet, Lyons, NY 
2009 

Joints between full-depth bulb 

tees 
Shutt 

State Route 23 over Otego 

Creek, Oneonta, NY 
2009 

Joints between full-depth deck 

panels 
Royce 

Little Cedar Creek, Wapello 

County, IA 
2011 

Fourteen 8 in.-deep waffle deck 

panels 
Moore 

Fingerboard Road Bridge over 

Staten Island Expressway, NY 

2011-

2012 
Joints between deck bulb tees Royce 

State Route 248 over Bennett 

Creek, NY 
2011 Joints between deck bulb tees Royce 

U.S. Route 30 over Burnt River 

and UPRR bridge, OR 
2011 

Haunch and shear connectors & 

transverse joints 
Bornstedt 

U.S. Route 6 over Keg Creek, 

Pottawatomie County, IA 
2011 

Longitudinal and transverse 

joints between beams 
Graybeal 

Ramapo River Bridge, 

Sloatsburg, NY 
2011 

Joints between full depth deck 

panels 
Anon 

State Route 42 Bridges (2) near 

Lexington, NY 
2012 

Joints between full depth deck 

panels and shear pockets 
Anon 

State Route 31 over Putnam 

Brook near Weedsport, NY 
2012 

Joints between full depth deck 

panels 
Anon 

I-690 Bridges (2) over Peat 

Street near Syracuse, NY 
2012 

Joints between full depth deck 

panels 
Anon 

I-690 Bridges (2) over Crouse 

Avenue near Syracuse, NY 
2012 

Joints between full depth deck 

panels 
Anon 

I-481 Bridge over Kirkville Road 

near Syracuse, NY 
2012 

Joints between full depth deck 

panels 
Anon 

Windham Bridge over BNSF 

Railroad on U.S. Route 87 near 

Moccasin, Montana 

2012 
Joints between full depth deck 

panels 
Anon 
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1.4 Research Conducted 

In order to meet the stated goals and objectives, the major areas of 

research conducted in this study focused on bond strength, interface angles, 

and surface preparations between the base concrete and a UHPC repair. 

Composite specimens composed of half normal strength portland cement 

concrete and half UHPC were tested in flexure to evaluate bond strength. 

These composite specimens were comprised of different combinations of 

surface preparation and bond angle to determine the resulting effects of these 

variables on the interface strength. Larger specimens (medium-scale slabs) 

were then statically and cyclically tested to determine flexural capacity and 

observe the effects of fatigue loading on flexural strength over time. The 

specific UHPC material examined in all testing is the Lafarge product Ductal®. 

1.5 Hypotheses 

Although this research will explore several combinations to determine the 

best surface preparation and bond angle for UHPC to base concrete 

connections, there is a preconceived idea of which combination may work best, 

based on related research found in the literature. The hypotheses for this study 

are as follows:  

1. As seen in other research, a rougher bonding surface tends to 

yield the best results when assessing bond strength between two 

concrete materials. The roughest surface preparation 

implemented in this study will likely have the highest bond 

strength. 
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2. Orienting the bonding surface at some angle, either 45 or 60 

degrees, or utilizing a shear key, will yield better results during 

testing of the composite specimens than a 90-degree bond angle 

(vertical interface).  

3. Behavior of the medium-scale slab will be reasonably predicted by 

the smaller-scale composite MOR  results. 

1.6 Goals and Objectives 

The study described in this thesis is part of a multi-phase project 

sponsored by ODOT (Floyd et al., 2016) with the overall goal of implementing 

UHPC as a repair material in Oklahoma and extending the service life of 

bridges with deteriorating joints. The objectives of the project are to identify 

appropriate mix design for UHPC made with local materials for use in joints, 

evaluate joint details, evaluate long-term performance of trial joints, and create 

specifications for UHPC construction in Oklahoma. The study was focused on 

the following objectives: 

 Determine the best bond angle based on performance during 

composite MOR flexural interface testing 

 Determine the best surface preparation based on performance 

during composite MOR flexural interface testing 

 Assess the feasibility of using the best tested combination for field 

applications   

 Apply the knowledge gained during small-scale testing to perform 

larger-scale testing of slab sections to determine initial cracking 
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moment, flexural capacity of the joint, and joint failure mode  

 Make recommendations to ODOT about the best practice for 

UHPC replacement joints and develop a baseline standard to 

which future research can be compared to predict UHPC joint 

behavior and strength 
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2.0 Literature Review 

 UHPC is a cementitious composite material with increased durability and 

strength properties compared to NSC. UHPC was first developed in the late 20th 

century and is a product of advancements in superplasticizers, fiber 

reinforcements, supplementary cementitious materials, and optimized gradation 

of dry materials (Graybeal 2014). Its properties differ from those of typical 

portland cement concrete, so many of the methods for casting UHPC and 

determining its fresh and hardened material properties have been modified from 

the methods used for conventional concrete. Connections that are cast using 

UHPC can extend the life of a structure and allow for less maintenance over 

time. The use of UHPC for connecting precast elements has been the focus of 

many case studies and research projects. It has also been studied as an 

overlay material to repair and/or extend the life of existing bridges. However, 

the use of UHPC as a repair material for existing joints in bridges has not been 

extensively studied. 

2.1 Placement, Curing, and Strength Gain 

 UHPC can be mixed in mortar/grout mixers as well as in traditional 

concrete mixers; however, traditional concrete mixers and ready-mix trucks may 

be less efficient than mixers with higher shear (Graybeal 2014). Higher shear 

mixers can decrease the duration of the mixing process, since they impart 

greater energy into the mix. It should also be noted that, typically, the maximum 

amount of UHPC that should be mixed in any mixer is about half the volume of 

conventional concrete that could be mixed (Graybeal 2014). It is typically placed 
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and moved using wheelbarrows or buckets. When there are two successive 

pours, the new UHPC should be poured directly over the most recently poured 

layer; sometimes rodding is necessary to limit the amount of separation 

between layers.  

UHPC does not require the same type of finishing as traditional concrete. 

Because of its flowability and viscid nature, finishing with a trowel is not 

effective or necessary. UHPC should be poured into closed forms to provide a 

smooth top surface and minimize dehydration (Graybeal 2014). It can also be 

ground after curing to the desired surface texture or appearance. 

For curing, the UHPC should be sealed in some way that does not allow 

moisture to escape and cause dehydration; moist curing is also an option. 

Multiple factors contribute to the extended initial set time of UHPC: temperature 

at time of placement, ambient temperature, admixtures, cement type, and 

constituent material properties (Graybeal 2014). Heat can be added to the 

UHPC after placement to accelerate strength gain. This is usually done by 

using external sources such as heating mats or lamps, or internal sources like 

resistance heating wires (Graybeal 2014). Figure 1 shows UHPC being mixed 

in the field with typical mixers. Figure 2 depicts the process for transporting 

UHPC from the mixer to the site of the pour and the pouring procedure for a 

longitudinal connection. 
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Figure 1. UHPC mixing operations (Graybeal 2014) 
 

 

Figure 2. UHPC placement into longitudinal connection (Graybeal 2014) 
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2.2 UHPC as a Repair Material 

 The strength and durability properties of UHPC make it a good candidate 

to be a repair material that may provide a longer life to structures that are 

deteriorated or have been weakened. Both Sarkar (2010) and Denarie and 

Bruhwiler (2006) explored the feasibility of UHPC as a repair material. In both 

studies, UHPC was considered as an overlay repair material to be poured as a 

thin top layer on an existing roadway or bridge. While conducting research on 

the process of field implementation of a 3 cm thick UHPC overlay on a bridge in 

Switzerland, Denarie and Bruhwiler (2006) found that implementing UHPC in 

this capacity could “simplify the construction process, increase the durability of 

structures and their mechanical performance (stiffness and resistance), and 

decrease the number of interventions during their service life”. They performed 

analysis of the rehabilitation by noting the construction process and performing 

compressive and uniaxial tensile tests, ultimately determining that the benefits 

of implementing UHPC far outweigh the costs and surpass those of lower 

quality traditional solutions (Denarie and Bruhwiler 2006). Sarkar (2010) 

performed extensive evaluation of UHPC and its feasibility as an overlay 

material by performing slant shear tests, splitting tensile tests, and third point 

loading flexural tests on specimens with a 1 in. thick UHPC overlay. This study 

found that, based on its mechanical properties and the tensile properties 

exhibited during testing, UHPC achieves adequate bond strength to other 

concrete materials and is likely feasible as a repair material. Habel et al. (2004) 

also performed testing on a UHPC composite overlay configuration to 
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determine the bending behavior of the composite element. The study used a 

four point loading system, seen in Figure 3.  

 

Figure 3. Four point loading system for Habel et al. (2004) experiments. 
Notations f1-f7 are LVDT locations, and dimensions are given in cm. 

Three different types of overlays were studied (each having different 

depths and rebar configurations), and the following conclusions were made: (1) 

the enhanced mechanical properties of UHPC contribute to improved structural 

response of composite elements due to its strain-hardening behavior under 

uniaxial tension (2) the stiffness of the composite elements was increased 

under service loads, and no large cracks formed until the maximum force was 

reached, and (3) the addition of tensile reinforcement in the UHPC layer 

increased resistance and stiffness of the composite elements and delayed 

localized macrocracks (Habel et al., 2004). 

2.3 UHPC Bond Strength as Determined by Slant Shear Tests 

Sufficient bond strength between the existing concrete and repair 

material is one of the requirements for successful repair of any concrete 
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structure. There are multiple ways to assess bond strength, but the American 

Society for Testing and Materials (ASTM) has not specified a standardized 

method for applying slant shear to a regular concrete substrate and a repair 

concrete rather than epoxy for a composite specimen. Most researchers use a 

modified version of ASTM C882 and adaptations to other applicable standards, 

often referred to as slant shear tests, as a method to evaluate the behavior of 

composite specimens. Climaco et al. (2001) performed tests on prisms of 

different sizes and proportions, finding that the size of the specimens had little 

to no effect on the results obtained from testing. Carbonell Munoz et al. (2014) 

used prismatic slant shear specimens with an 89 mm by 89 mm cross-section 

and a height of 356 mm based on the British Standard (BS EN 12615:1999) of 

using prisms with a cross-section length and width that are one quarter of the 

height. In this study, the dimensions remained constant, while the interface 

angles were varied between 55, 60, and 70 degrees. Tayeh et al. (2013) 

performed experiments on prismatic slant shear specimens with a cross-section 

length and width of 100 mm, height of 300 mm, and interface angle of 60 

degrees from the horizontal. Figure 4 shows an example of a prismatic 

specimen. 

Some researchers that have adapted tests for slant shear have used a 

larger cylindrical version of the original ASTM C882 slant shear test. ASTM 

C882 specifies the cylinder size to be 3 in. by 6 in. for assessing mortar bonds, 

but researchers like Diab et al. (2017) used larger composite cylinders with 

diameters that were half of the height, finding smaller coefficients of variation 
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and results that were more consistent. Sarkar (2010) also performed slant 

shear tests on cylindrical specimens, seen in Figure 5. This study utilized 3 in. 

by 6 in. composite cylinders composed of half normal-strength concrete and 

half UHPC at a 30-degree angle. 

 

 

Figure 4. Prismatic specimen and testing setup for Tayeh et al. (2013) 
experiments 
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Figure 5. Cylindrical specimen and testing setup for Sarkar (2010) 
experiments 

 

According to Climaco et al. (2001), the stress state in slant shear tests at 

failure depends on the quality of the bond. In many of the experiments in 

previous research, the composite specimen failure occurred within the normal 

concrete substrate rather than the bond, indicating that these bonds could have 

resisted higher stresses and demonstrating the superior bond behavior of 

UHPC (Tayeh et al. 2013; Carbonell Munoz et al. 2014). In the Carbonell 

Munoz et al. (2014) experiments, the specimens “obtained a bond capacity, at 

the age of 3 days, greater than the [strength] requirements given by ACI 546-06 

[Guide for Repair of Concrete Superstructures] (ACI 2006) at 7 days and also 

satisfies the requirements at 28 days.” 
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Momayez et al. (2005) performed a study on the bond strength between 

concrete substrates and various repair materials. This study included several 

types of tensile and shear testing, including pull-off tests, splitting prism tests, 

slant shear, and bi-surface shear testing. Although the study did not use UHPC 

as a repair material, the six repair materials used (each with a different mix 

design) provided useful information on the factors that affect bond strength, 

especially when using slant shear tests. Momayez et al. (2005) drew the 

following conclusions: 

 The measured bond strength is highly influenced by the type of 

test performed. Each test that was conducted had an acceptable 

coefficient of variation, but it is crucial to select tests that 

represent the stress state of the structure or configuration in the 

field. 

 Slant shear testing typically yields the highest measured bond 

strength. 

 Bond strength between the repair material and the concrete 

substrate increases with the amount of silica fume in the repair 

material. 

 Preparation of the concrete substrate surface that increases the 

roughness leads to a higher bond strength—about 25% higher for 

slant shear tests. 
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2.4 Surface Preparation  

Preparation and alteration of cast concrete surfaces provides an 

increase in roughness and texture that allows materials subsequently cast 

against the prepared surface to adhere more thoroughly and form a better 

bond. The International Concrete Repair Institute (1997) provides a concrete 

surface preparation (CSP) index that describes nine different rubber profiles 

representing different degrees of roughness. There is also a macrotexture 

depth test in ASTM E965 that measures different degrees of roughness. In the 

experiments carried out by Carbonell Munoz et al. (2014) to test the effects of 

surface preparation on bond strength, the researchers examined six different 

surface preparations: smooth, slightly brushed; chipped; brushed; sandblasted; 

grooved; and rough, exposed aggregate. Figure 6 depicts the different surface 

preparations used in this study. The specimen with a deeply grooved substrate 

was the only one that had increased strength in the ambient dry substrate 

condition. In this case, the UHPC fit into the grooves rather than relying on bond 

strength alone. In slant shear testing, all specimens with a brushed surface 

(brushed during finishing) failed in the bond, which is to be expected for a 

surface with low roughness (Carbonell Munoz et al., 2014).  
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Figure 6. Substrate Surfaces: (a) smooth, slightly brushed; (b) chipped; (c) 
brushed; (d) sandblasted; (e) grooved; (f) rough, exposed aggregate 

(Carbonell Munoz et al., 2014) 
 

All the bond strengths observed during testing by Carbonell Munoz et al. 

satisfied or exceeded bond requirements as outlined by the ACI 546-06 Guide 

to Concrete Repair (ACI 2006), but proved to be weak in comparison to the 

stand-alone strength of UHPC (Carbonell Munoz et al., 2014). Carbonell Munoz 

et al. (2014) also found that Ductal® performs better with concrete substrate 

that is saturated, and stated that “If the appropriate wetting conditions of the 

substrate are achieved, the degree of roughness . . . is not a critical factor to 

obtain good bond strength”. One important characteristic discovered in these 

experiments is that the bond and the strength of the UHPC had an important 

measurable turning point around the time that the concrete reached 2 to 3 days 

of age, where there was a significant increase in strength. At 2 days of age, the 

strength was significantly lower than at 3 days of age, and then from 3 days 

onward there was little to no change in strength (Carbonell Munoz et al., 2014). 
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This follows the pattern of the UHPC hydration process in which there is a 

dormant period followed by a significant energy release.  

The results of the experiments carried out by Tayeh et al. (2013) and 

Sarkar (2010) also showed that a rougher surface yields a higher bond 

strength. When using split cylinder testing to determine tensile strength, as 

specified in ASTM C496, the sand blasted and grooved surface preparations 

performed the best, while the wire brushed surfaces failed prematurely (Tayeh 

et al., 2013). Sarkar (2010) found that in slant shear tests, specimens that had a 

smooth surface at the interface failed in the bond, while specimens with 

prepared surfaces—grooves and shear keys—failed in the substrate. The 

results of this study indicated that bond strength in shear/compression was 

increased by preparing the specimen surface, and that “UHPC can achieve 

adequate bond strength to other concretes so long as the surface preparation is 

appropriate for the loading conditions” (Sarkar 2010). Similarly, other research 

confirms that, typically, smooth brushed surfaces are too smooth to replicate 

real world situations of repair (Climaco et al., 2001). 

2.5 Development Length 

The development length required for reinforcing bars embedded in 

UHPC is much less than for NSC. Extensive research confirming the minimal 

development length required when using UHPC was conducted by Graybeal 

(2014), and is not uncharted territory due to the known effect of high 

compressive strength on reducing required development length. The shorter 

development length is considered an advantage because structural elements 
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can be connected using a smaller quantity of steel with less complicated bends 

and a smaller joint width and resulting amount of material can be used to make 

the connection. Cost and complexity of the joints both decrease with shorter 

development length. One example of implementation focuses on a set of 

bridges built in Syracuse, New York in 2013. The top and bottom mats of slab 

reinforcement only required a 6 in. wide connection (Graybeal 2014). Another 

example of implementation was carried out for a bridge on County Road 47 in 

Stockholm, New York, where yet again, the specification required a minimum 

lap splice length of only 6 in. for two precast slabs connected by a UHPC joint 

(Graybeal 2014).  

2.6 Previous Laboratory Testing on UHPC Slab Joints 

Apart from studying the behavior of interface bond for small-scale 

composite specimens, it is also beneficial to consider the bond behavior of 

UHPC and NSC in a slab-joint configuration. This information can be applied to 

similar configurations for bridges in the field and can connect small-scale testing 

data with field performance. Graybeal (2010) conducted research on six slab-

joint configurations representing both transverse connections between precast 

deck panels and longitudinal connections between deck bulb-tee girders. The 

specimens were constructed with precast half-panels connected by a UHPC 

joint after about three weeks of curing. The UHPC joint was poured and cured 

for two weeks before being statically and cyclically tested in flexure. Cyclic 

loading was performed for at least 7 million total cycles at a maximum 

frequency of 6 Hz. Figures 7 and 8 depict the testing setup for both types of 
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joint (transverse and longitudinal). From this testing, several promising 

conclusions were made (Graybeal 2010): 

 Performance of the connections tested equaled or exceeded what 

would be anticipated from a monolithic slab with no joint at mid-

span. 

 The development length of the reinforcement (#5 mild steel 

reinforcing bars) proved to be less than or equal to 5.9 in. and no 

debonding was observed.  

 The cracking behavior of the specimens was not greatly affected 

by cyclic loading below the cracking moment, and cyclic loading 

just above the cracking moment did not greatly influence the 

structural behavior.  

 The bond performance between the precast half-panels and the 

UHPC joint indicate that the precast panel bridge decking system 

(transverse) tested is unlikely to leak along the connection 

interface under cyclic service loads or static overloads.  



23 

 

Figure 7. Layout for transverse joint specimen (Graybeal 2010) 

 

Figure 8. Layout for longitudinal joint specimen (Graybeal 2010) 
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2.7 Summary 

 UHPC has been extensively studied and implemented for use in precast 

applications and new construction. Its material properties, overall behavior, and 

placement techniques are fairly well known and have been tested time and 

again. However, assessments of the flexural strength of composite specimens 

based on the MOR test have not been widely conducted. The effects of surface 

preparation on bond strength have been studied as well, but not exclusively for 

the application of UHPC as a joint repair material. There is limited information 

about UHPC used for repairs at all, save for the few studies done to explore 

UHPC as an overlay material. A limited number of studies exist focused on 

determining the behavior of a UHPC joint in a slab under static and cyclic 

loading in flexure, and these considered specific joint reinforcing details for new 

construction, not retrofits. These gaps in information serve as a starting point for 

the research done in the current study. 
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3.0 Experimental Program 

 The purpose of this section is to outline the methods that were utilized to 

conduct the research described in Chapter 1. All research took place at Donald 

G. Fears Structural Engineering Laboratory unless otherwise specified. 

Additional photos of testing procedures and specimens are provided in 

Appendix B.  

3.1 Composite MOR Specimens 

 To determine the effect of interface angles and surface preparations on 

flexural strength, 36 composite UHPC and NSC MOR specimens were cast and 

tested. Three surface preparations and four interface configurations were 

combined in order to construct the specimens. 

3.1.1 Preliminary NSC Mix Design 

 This study began with identifying a suitable mix design meeting ODOT 

specifications for bridges and that is similar to the typical Dolese Bros. Co. 

mixes delivered to construction sites. The final NSC mix design chosen was 

intended to meet the ODOT Standard Specifications (2009) for Class AA 

concrete, seen in Table 3. The mix design was adapted using a spreadsheet 

previously developed by the research group and was based on past Class AA 

mixes obtained from Dolese Bros. Co. The purpose of meeting these 

parameters was to ensure a concrete substrate suitable for further comparison 

and easily replicable for implementation in the field.   
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Table 3. ODOT Standard Specifications (2009) for Concrete Related to 
Bridge Repair 

Concrete 
Class 

Min. Cement 
Content, 

lb/yd3 

Air 
Content, 

% 

Water/Cement 
Ratio lb/lb 

Slump, 
in. 

Min. 28-Day 
Strength (f’c) 

psi 

AA 564 6.5 ± 1.5 0.25 – 0.44 2 ± 1 4000 

A 517 6.0 ± 1.5 0.25 – 0.48 2 ± 1 3000 

HDC 825 6.5 ± 1.0 < 0.35 0.5 ± 1 4000 

VES I 900 ± 1.5 < 0.30 1 – 8 3000 

VES III 600 6.0 ± 1.5 < 0.35 1 – 8 3000 

 

Several trial batches were conducted to determine appropriate amounts 

of constituent materials and concrete properties to satisfy required 

specifications. These trial batches were mixed individually, and each had a 

volume of 1.5 ft3. A chemical air-entraining agent, MasterAir AE90, was used to 

obtain the desired air content. Glenium 7920, a high-range water reducer, was 

added to increase the flow and workability of the concrete without increasing 

the water-cement ratio. Five trial batches were conducted over a period of three 

weeks, with varying water-cement ratios, amounts of high-range water reducer, 

and amounts of chemical air entraining agent, until the required fresh and 

hardened concrete properties were obtained. The first four trial batches were 

conducted to identify consistent mix proportions that yielded the appropriate 

values for the desired ODOT parameters for class AA concrete. Every time a 

new mix design was tested, only one variable was altered to isolate the effect of 

that specific variable. Each batch was tested for temperature, slump, air 

content, and compressive strength (in accordance with ASTMs C1064, C143, 
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C231, and C39, respectively). The fifth batch was conducted as a control batch 

to double check that the chosen mix design was consistent and behaved as 

expected. The trial mix designs and their corresponding data are shown in 

Table 4. The final mix design chosen was mix design 4, which satisfied the 

required standard. Although the slump for this mix was slightly higher than 

ODOT specifications, it was achieved through the use of high-range water 

reducer, and the overall performance was satisfactory. This mix design was 

used for the normal strength portion of the composite specimens. 

 

Table 4. Trial Mix Designs 

Mix 
Design 

 

Cement 
Content, 

lb/yd3 

Air 
Content, 

% 

Water/Cement 
Ratio lb/lb 

Slump, 
in. 

 28-Day 
Strength (f’c) 

psi 

1 588 7.80 0.31 9.50 8020 

2 588 12.75 0.37 4.75 3700 

3 588 3.20 0.37 1.25 6900 

4  588 6.50 0.37 4.00 4220 

 

3.1.2 Casting of NSC for Composite MOR Specimens 

 After choosing mix design 4, it was then used to batch the NSC that 

comprised half of each composite MOR specimen. Twelve full-length NSC 

MOR specimens with dimensions based on ASTM C78 (6 in. by 6 in. by 20 or 

21 in.) were initially cast along with twelve half-length NSC MOR specimens in 

four different batches. Each batch included casting of 4 in. by 8 in. cylinders to 

be tested and to monitor compressive strength over time. Due to the slight 
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variance in compressive strength between specimens cast from different 

batches, MOR test results were normalized in such a way that they can be 

compared equitably. The normal strength specimens were cast in either wood 

or metal forms, some of which were modified to achieve a specific interface 

angle and surface roughness. The specimens were cast such that three surface 

preparations could be examined: wire-brushed, sandblasted, and exposed 

aggregate. The surface preparations were combined with four specified 

interface configurations: 90 degrees, 60 degrees, 45 degrees, and a shear key. 

The different surface preparations and configurations were later combined with 

UHPC to create a total of 36 composite specimens. 

 Due to limited production capacity in the lab, the specimens were cast in 

separate groups based on interface configuration. The 90 degree specimens 

were cast in batch N1, 60 degree specimens were cast in batch N2, 45 degree 

specimens were cast in batch N3, and the shear key specimens were cast in 

batch N4. Each specimen that was set to be wire-brushed or sandblasted were 

cast in their forms as full-length specimens that were later saw cut at the 

specified angle at 28 days of age. Each specimen that was set to have an 

exposed aggregate finish was cast as a half specimen because the exposed 

aggregate surface roughness condition cannot be carried out as efficiently after 

the concrete has cured. A list of the different combinations and their casting 

types can be seen in Table 5. Completed specimens and their companion 

cylinders were cured wrapped in wet burlap and plastic sheeting at 72°F. Figure 

9 depicts the standard layout used to cast each batch. 
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Table 5. NSC Casting Types and Quantities 

Configuration Surface Preparation 
Casting Type and 
Quantity 

Resulting # 
Composite 
Specimens 

90 degrees Sand-Blasted 2 full specimens 4 

90 degrees Wire-Brushed 2 full specimens 4 

90 degrees Exposed Aggregate 3 half specimens 3 

60 degrees Sand-Blasted 2 full specimens 4 

60 degrees Wire-Brushed 2 full specimens 4 

60 degrees Exposed Aggregate 3 half specimens 3 

45 degrees Sand-Blasted 2 full specimens 4 

45 degrees Wire-Brushed 2 full specimens 4 

45 degrees Exposed Aggregate 3 half specimens 3 

Shear Key Exposed Aggregate 3 half specimens 3 

 

 

Figure 9. Layout of formwork ready for concrete to be cast. From left to 
right: two for sandblasted specimens, two for wire-brushed specimens, 

and three for exposed aggregate specimens 
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3.1.3 Surface Preparations 

 Surface preparations were carried out in conjunction with saw cutting at 

the 28-day mark, at which time the specimens had reached a compressive 

strength of at least 4,000 psi. 

Cutting Full Length Specimens 

 All specimens that required cutting were cut with a diamond blade 

concrete table saw, as seen in Figure 10. The saw was used to cut each full 

specimen into two halves, each having the same interface angle.  A completed 

cut is shown in Figure 11. This same process was performed on all 45 degree, 

60 degree, and 90 degree specimens (minus those with exposed aggregate). 

The standard for MOR specimens is to rotate them for testing so that the trowel-

finished top surface of the specimen is on the side, and the smoother portions 

of the specimen become the top and bottom of the testing surface. The 

specimens were cut in such a way that the angled interface was measured 

clockwise from the top of the testing surface. This can be seen in Figure 12. 
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Figure 10. Concrete table saw used to cut MOR specimens 
 

 

Figure 11. 45 degree specimen immediately after cutting 
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Figure 12. Relationship of interface angle to loading direction at top of 
testing surface 

 

Creating the Shear Key 

 The specimens with shear keys required wooden inserts to form the 

shape of the shear key. A triangular shear key was used to create this shape in 

the exposed aggregate specimen. The wooden formwork insert is shown in 

Figure 13, and a completed specimen half is shown in Figure 14. The 

orientation of the shear key in relation to the testing direction is shown in Figure 

15. The shear key specimens had an exposed aggregate surface only—this 

interface configuration was not combined with wire-brushed or sandblasted 

preparations.  
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Figure 13. Wood insert for shear key 

 

Figure 14. Shear key specimen after being de-molded 
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Figure 15. Relationship of shear key direction to loading direction 

Exposed Aggregate Surface Preparation 

 All exposed aggregate specimens were cast as half specimens in the 

same forms used for the full NSC MOR specimens. Wooden inserts were used 

to create each of the four interface configurations (45 degree, 60 degree, and 

90 degree as well as a shear key). The face of each wooden insert, seen in 

Figure 13, was coated with a general purpose spray adhesive and subsequently 

coated in sugar. Sugar naturally retards the curing process of concrete. This 

prevented the face of each concrete specimen in contact with the sugar from 

fully curing, allowing excess pieces of unhardened cement and aggregate to be 

removed. The excess material was removed by power washing the exposed 

face of the specimen at 28 days of age, thus exposing the remaining aggregate.  

A completed exposed aggregate surface is shown in Figure 16. This surface 

preparation, intuitively, provides the highest amount of material interlock 

between the NSC substrate and the UHPC. 
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Figure 16. Exposed aggregate surface after power washing 
 

Sand-Blasting 

 Each interface surface for sand-blasted specimens was sand-blasted 

until a uniform surface roughness was visually observed. This took place in a 

standard sand-blasting cabinet. This preparation provides a roughness level 

that is in between the exposed aggregate and the wire brushed (smooth) 

finishes.  

Wire Brushing 

 Wire brushing was performed on the smooth cut surface of the wire 

brushed specimens to clean away any debris. This surface preparation has no 

appreciable roughness and is considered smooth in comparison to the other 

surface preparations. 
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3.1.4 Casting and Curing of UHPC for Composite MOR Specimens 

 The UHPC portion of the composite specimens was cast after all of the 

surface preparation was completed (with all specimens no more than 35 days of 

age). This was the second and final step to complete casting of the composite 

MOR specimens. As previously mentioned, the UHPC used is the pre-mixed 

proprietary product, Ductal. A high shear mortar mixer is best for mixing 

UHPC. A 4.25 ft3 Imer Mortarman 120 Plus mortar mixer that could mix 

approximately 100 lb of material per batch without overloading the mixer was 

used for all UHPC batches. Flow measurements were not taken, but the 

specific mixing procedure for Ductal as specified by the manufacturer, Lafarge 

North America, was followed in order to achieve the intended final product and 

maintain consistency between batches. Figures 17-20 depict various stages of 

the mixing process. The mixing steps were: 

1. Ductal premix dry components were mixed for 2 minutes 

2. Half the amount of specified high range water reducer was 

combined with the water 

3. Water-high range mixture was added slowly over the course of 2 

minutes 

4. After one minute the remaining amount of high range water 

reducer was added 

5. Mixing was continued until the material reached a consistency 

similar to that seen in Figure 20 
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6. Steel fibers were added to the mix, and mixing was continued until 

they were dispersed evenly 

 

Figure 17. Beginning stages of mixing after water was added to dry premix 

 

Figure 18. Progression of mix immediately after all high range water 
reducer was added 
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Figure 19. Consistency after several minutes of mixing beyond final 
addition of high-range water reducer, no additional components were 

added to reach this point 
 

 

Figure 20. Final consistency of UHPC mixture prior to adding steel fibers 
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 Because of the limited volumetric capacity of the mortar mixer used, 

each set of MOR specimens required four individual UHPC batches for 

completion. There were eleven specimens per set. The UHPC portion of the 

specimens was cast in the same groupings as the NSC specimens to maintain 

consistency of testing age. The 90 degree specimens were cast in batch U1, 60 

degree specimens were cast in batch U2, 45 degree specimens were cast in 

batch U3, and shear key specimens were cast in batch U4. No consolidation 

measures were utilized during casting. Once the UHPC was cast, the 

composite specimens were allowed to cure for 28 days in an environmental 

chamber at 72°F covered with moistened burlap before being tested in flexure 

in accordance with ASTM C78. Figure 21 shows composite specimens 

immediately after casting, and Figure 22 shows specimens after curing. For the 

NSC portion of the specimens, 4 in. by 8 in. cylinders were tested in 

compression at 1 and 28 days as well as the day of flexural testing. For the 

UHPC portion, 3 in. by 6 in. cylinders were tested in compression at 3 and 28 

days (test day). 
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Figure 21. Composite specimens immediately after casting 

 

Figure 22. Composite specimens after curing 
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3.2 Composite MOR Testing 

 All of the composite MOR specimens were tested as simple beams with 

third-point loading in accordance with ASTM C78 once the UHPC portion 

reached 28 days of age. This testing was done using a Forney testing machine 

and the apparatus shown in Figure 23. The purpose of this test was to 

determine flexural strength and evaluate the effects, if any, each tested variable 

had on the flexural strength at the interface. At failure, a caliper was used to 

take measurements of the exact length and width of the failure surface. If the 

specimen failed along the interface, length and width measurements were taken 

for both sides of the specimen. These measurements were used to calculate 

the flexural stress at failure. In the instance of interface failure with two sets of 

measurements, the lowest flexural stress value was recorded. 

 

Figure 23. Testing setup for composite MOR specimens 
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3.3 Slant Shear Specimens 

 A total of five slant shear specimens were cast to evaluate the feasibility 

of using the test for quality control in UHPC joint application. The slant shear 

specimens were cast as 6 in. by 12 in. cylinders, similar to those used by 

Sarkar (2010). The NSC portion of the slant shear specimens was cast using 

the same mix design as the composite MOR specimens. The UHPC portion of 

the slant shear specimens was cast using Ductal and the same procedure as 

the composite MOR specimens. No additional surface preparation was 

conducted to the as-cast surface. The slant shear specimens underwent the 

same curing regimen as the composite MOR specimens to ensure consistency. 

A completed slant shear specimen is shown in Figure 24. 

 

Figure 24. Composite slant shear specimen after curing 
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3.4 Slant Shear Testing 

 For slant shear specimens, testing was performed in accordance with 

ASTM C882. There were five total specimens tested at a loading rate of 35 ± 7 

psi/second. The slant shear specimens were two times the size specified in 

ASTM C882. Because of this difference, bond strength values were determined 

by dividing the maximum failure load by the elliptical area of the interface, rather 

than using the area given in ASTM C882. 

3.5 Construction of Medium-Scale Slab Specimens 

3.5.1 Casting and Reinforcement 

 A total of three composite slabs were constructed to examine the 

effectiveness of UHPC connections. These slabs were NSC on either side, with 

a UHPC joint running through the slab at mid-span, and were intended to 

represent a connection between two sections of concrete bridge deck. Each 

slab consisted of two 4 ft by 4 ft by 8 in. thick reinforced concrete slab panels 

connected by a 1 ft wide UHPC joint. The slab panels were reinforced with #5 

Grade 60 steel reinforcing bars as flexural reinforcement and temperature and 

shrinkage steel approximately matching the standard bridge deck reinforcement 

for Oklahoma bridges. The flexural reinforcing bars were spaced 12 in. on 

center. The reinforcement layout can be seen in Figure 25. The panels were 

cast with a portion of the reinforcing steel (5 in.) sticking out beyond the slab 

face (Figure 26). This exposed reinforcing steel was intended to represent the 

steel that may be exposed in the field after an existing deck joint is sawn out to 

be replaced, and the length was chosen based on the short development 
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lengths expected for UHPC. The concrete for casting the slab panels was 

supplied by Dolese Bros. Co. due to the large quantity needed for this portion of 

the study. The mix design for this concrete and a comparison to the concrete 

used for the composite MOR specimens can be seen in Table 6.  

 

 

 

Figure 25. Overhead and cross-sectional view of rebar layout for slab 
specimens 
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Table 6. Concrete Mix Designs for Slabs and MOR Specimens 

Material for Slabs 
Quantity for Slab Mix 

Design 
Quantity for MOR Mix 

Design 

Cement (lb/yd3) 470.0  588.0 

Fly Ash (lb/yd3) 118.0  0 

Water (lb/yd3) 153.3  218.0 

Aggregate (lb/yd3) 1858.9  1855.0 

Air Entraining Agent (oz/yd3) 3.3  4.1 

Glenium 7920 (oz/yd3) 17.6  20.6 

 

Slab reinforcement prior to casting is shown in Figure 26. Similarly to the 

composite MOR specimens, the slabs were cured for 28 days. The slabs were 

cured in the ambient temperature conditions of the lab high bay. For the first 

week of curing, the concrete was covered with burlap and kept damp, as shown 

in Figure 27. The surface preparation for the slabs was wire-brushed. After 

curing, the UHPC joints were poured between two slab panels, resulting in 

three 4 ft by 9 ft slab specimens. Prior to the UHPC being poured, the 

protruding steel from each slab panel was joined together with a 10 in. long #5 

splice bar to ensure proper development of forces between the two panels. The 

complete joint reinforcement before casting the UHPC is shown in Figure 28. 

The UHPC was mixed and poured through one end into closed forms and 

allowed to flow to the opposite end. The UHPC joints were formed over and left 

¼ in. high, as is the practice recommended by the manufacturer. No 

consolidation measures were utilized. For compressive strengths, the NSC 

portion of the slab was tested with 4 in. by 8 in. cylinders at 1, 7, and 28 days as 
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well as test day. For the UHPC portion of the slab, 3 in. by 6 in. cylinders were 

tested at 12 hours (immediately after heat curing), 28 days, and test day. 

 

Figure 26. Rebar layout prior to casting slab panels 

 

Figure 27. Slab panels curing covered in burlap 
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Figure 28. Rebar layout for UHPC joint 
 

3.5.2 Heat Curing 

 Immediately after pouring the UHPC, each joint was heat cured using a 

radiant heat lamp for 12 hours. The target internal concrete temperature was 

190°F, and temperature data showed that internal temperature reached 

approximately 180°F. This heat curing regimen was chosen based on 

conclusions from a prior study done by fellow graduate student Connor Casey. 

Thermocouples were used to monitor the internal temperature at different 

depths within the joint and evaluate effectiveness of the heat curing. When the 

joint had been heat cured for 12 hours, the heat lamp was removed and the 
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joint was allowed to cure in ambient conditions for the remainder of 28 days. A 

completed and cured joint is shown in Figure 29.  

 

Figure 29. Completed UHPC joint after curing 
 

3.6 Slab Testing under Static and Cyclic Loading 

 Each slab specimen was tested in a steel portal frame and loaded using 

a hydraulic ram and pump. Each specimen was supported by a 6 in. wide 

concrete beam at either end with rubber pads between the slab and the support 

beam. The span length of each specimen was 8 ft 6 in., and the load point was 

located 5 ft 2 in. from the west end of the slab. Measurements of deflection 

were taken manually with a steel ruler at the load point during static load testing 

as well as digitally using 7 linear variable differential transformers (LVDTs) 

placed beneath the slab (locations shown in Figure 30). LVDTs 4, 6, and 7 were 
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placed 2 in. away from supports and slab edges. LVDTs 2, 3, and 5 were 

placed 2 in. from slab edges and 5 in. from the joint interface. Concrete strain 

was measured using 4 strain gages on the sides of the slab (locations shown in 

Figure 30). Strain gages 2 and 4 were placed directly in the center of the UHPC 

joint. Strain gages 1 and 3 were placed on either side of strain gage 2, 

approximately 1 in. from each joint interface. Each strain gage was 

approximately 0.4 in. from the bottom of the specimen. Load was measured 

using a load cell. All sensors were connected to a single data acquisition 

system collecting data at 20 Hz. The load was applied and distributed to each 

slab through a 10 in. by 20 in. metal load plate on top of a 1 in. thick rubber pad 

directly adjacent to the joint interface as seen in Figure 30. Each slab had the 

same support conditions and testing setup. 

 

Figure 30. Instrumentation and layout for slab testing 
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3.6.1 Slabs 1 and 2 

 Slab 1 and Slab 2 were tested initially using a 22 kip capacity 

electronically controlled servo valve MTS hydraulic ram to produce a static load. 

Each slab was loaded in this manner at increments of 1 kip until the threshold of 

the machinery was reached. After each load increase, the slab specimens were 

visibly inspected for cracks and any observed cracks were marked with the load 

increment. After reaching approximately 22 kips, the specimen was unloaded 

and the electronically controlled system was switched out with a manually 

controlled hand pump (with a higher loading capacity of 50 kips). Before 

resuming the test, all LVDTs were removed from underneath the slab, and 

LVDTs 2, 3, and 5 (see Figure 30) were replaced with wire potentiometers 

(pots) with a longer stroke to prevent the instrumentation from being damaged if 

the slab were to deflect beyond the stroke of the LVDTs or collapse during 

testing. Once the manually controlled system was in place, the slab was loaded 

using the same 1 kip increments until failure occurred. Failure was considered 

to be the point at which the specimen could no longer support any increase in 

load. 

3.6.2 Slab 3 

 Slab 3 was tested using the same electronically controlled hydraulic ram 

used for the initial portions of the static tests to induce a cyclic load. The load 

cycled from a 0.5 kip minimum to a specified maximum load using a haversine 

waveform with a frequency of 1 Hz. For the first 3 million cycles, it was planned 

to load the slab to a maximum load of 90% of the load corresponding to the 
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calculated cracking moment. Initially, the calculated cracking moment was 

determined to be 13.9 kips, for which the applied cyclic load was 12.5 kips. 

Because the testing setup varied slightly from that assumed for initial 

calculations, the load was lowered to 9 kips for the first 3 million cycles. After 

the first 3 million cycles, the load was to be increased to a maximum load 5% 

greater than the load corresponding to the calculated cracking moment (14.6 

kips) with the same instrumentation for 2 million more cycles (or until failure). 

Testing was stopped and restarted once each day due to data storage 

limitations. After 5 million total cycles, the slab was to be statically loaded to 

failure (if not already failed). Figure 31 depicts one of the slabs prior to testing. 

 

 

Figure 31. Testing setup for slabs 
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4.0 Test Results and Discussion 

4.1 Compressive Strength Results 

 Tables 7-11 contain the results for compressive strength testing done in 

accordance with ASTM C39 for each concrete type. All testing for NSC was 

performed on 4 in. by 8 in. cylinders. Testing for UHPC was performed on 3 in. 

by 6 in. cylinders because the high strengths of the UHPC would require high 

loads. The compressive strength of concrete is the most recognized property 

and is important to document for use in comparisons and for establishing a 

baseline standard. Note that all strengths are given as averages of multiple 

values (given 3 specimens) and all strength values can be found in Appendix A.  

4.1.1 NSC Trial Batches 

Table 7. Compressive Strengths for Trial Batches 

Age 
Mix Design 1 
Strength (psi) 

Mix Design 2 
Strength (psi) 

Mix Design 3 
Strength (psi) 

Mix Design 4 
Strength (psi) 

1 - day 4130 2160 3490 2000 

7 - day 6630 3420 N/A 3690 

28 - day 8020 3700 6900 4220 

 

 In the process of conducting trial batches to determine the best mix 

design, mix design 4 most closely matched the properties listed in the ODOT 

specifications for class AA concrete. Slump, air content, and compressive 

strength were all factors that were taken into account (refer to Table 4). As 

shown in Table 6, the compressive strength of mix design 4 was just greater 

than the 4,000 psi target at 28 days of age. 
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4.1.2 Composite MOR NSC 

Table 8. Compressive Strengths for MOR NSC 

Age N1 (psi) N2 (psi) N3 (psi) N4 (psi) 

1 - day 2350 1730 2390 2960 

28 - day 4990 3550 4650 5850 

Test Day N/A 3760 4730 6570 

 

 Because the NSC for the composite MOR specimens was batched 

separately for each group of specimens, the different groups (N1, N2, N3, and 

N4) have different measured compressive strengths. The 28-day strengths 

have a standard deviation of 825 psi. The reason for these variations is unclear, 

but it may be attributable to human error and the fact that each batch was done 

on separate days. Due to these differences, the final results of the MOR testing 

are normalized to represent an equitable comparison. Three out of four batches 

(N1, N3, and N4) reached the minimum target strength of 4,000 psi. 

4.1.3 Composite MOR UHPC  

Table 9. Compressive Strength for MOR UHPC 

Age U1 (psi) U2 (psi) U3 (psi) U4 (psi) 

3 - day 11,620 11,650 12,360 12,600 

28 - day 21,740 22,040 21,690 21,630 

 

 Each UHPC mix was performed in the same manner, which is reflected 

by the results of the compressive testing. The consistency of the results shown 

in Table 8, as compared to the NSC, is a product of the Ductal premix used, 

and the lack of aggregate moisture effects during mixing. The compressive 
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tests reveal that the UHPC, without heat curing, typically achieved a 

compressive strength of over 21 ksi at 28 days of age. The target strength was 

approximately 21 ksi, simplified from the 21.7 ksi potential strength referenced 

in the literature (Graybeal 2011). 

4.1.4 Medium-Scale Slab NSC 

Table 10. Compressive Strength for Slab NSC 

Specimen 
1 – Day 

 (psi) 
7 – Day 

(psi) 
28 – Day 

(psi) 
Test Day 

(psi) 

All Slabs 3080 4790 5980 5780 

 

 All small-scale slabs were poured at the same time using the same mix. 

The measured compressive strengths more than satisfy the ODOT requirement 

of a minimum 28-day compressive strength of 4,000 psi for class AA concrete. 

Contrary to the strengths for the MOR specimens, these strengths are more 

consistent because all three slabs were poured at the same time. This will likely 

result in more consistent results than those obtained for the MOR specimens. 

4.1.5 Medium-Scale Slab UHPC 

Table 11. Compressive Strength for Slab UHPC 

Specimen 
12 - Hour 

 (psi) 
28 – Day 

 (psi) 
Test Day 

(psi) 

Joint 1 21,430 22,870 22,680 

Joint 2 16,390 20,460 24,360 

Joint 3 17,310 20,590 23,000 

 

 The compressive strength testing results for the UHPC used for the 

medium-scale slab joints are slightly higher than for the UHPC used for the 
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composite MOR specimens. This UHPC was heat cured for 12 hours and 

generally had a higher compressive strength at test day because it was allowed 

to gain strength beyond 28 days. The compressive strength measurements 

were all greater than 22 ksi by the time flexural testing was carried out. The 

compressive strengths for the heat cured UHPC used for the joints had more 

variation than was observed for the UHPC used for the composite MOR 

specimens. Differences in the rate of strength gain can possibly be attributed to 

variations in cylinder placement under the heat lamps during the heat curing 

process. Overall, the UHPC for the slab specimen reached an acceptable 

strength by the 28-day mark. 

4.2 Slant Shear Test Results 

 As previously mentioned, slant shear testing was performed using 6 in. 

by 12 in. cylinders—a modification to ASTM C882. The bond strength was 

determined by dividing the maximum load by the area of the interface. Because 

the specimens were twice the size of that specified in ASTM C882, the area of 

the interface was quadruple the value given in the ASTM. This was confirmed 

by calculating the area of the elliptical interface using the specimen dimensions. 

All specimens failed at the interface. The results are shown in Table 12. 
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Table 12. Maximum Load and Bond Strength for Slant Shear Specimens 

Specimen 
Maximum 
Load (lb) 

Bond 
Strength 

(psi) 

Corresponding 
Compressive 
Strength (psi) 

NSC 28-Day 
Compressive 
Strength (psi) 

Cylinder 1 122,670 2170 4340 

5850 

Cylinder 2 146,840 2600 5190 

Cylinder 3 177,245 3130 6270 

Cylinder 4 154,800 2740 5480 

Cylinder 5 153,430 2710 5430 

Average 150,997 2670 5340 

Std. Deviation 17,487 308 619 

 

These bond strength results, while generally within the same range, vary 

by up to 31%. This is attributable to the small sample size and the potential 

variations in the NSC surface for each specimen. 

4.3 Composite MOR Test Results 

 The composite MOR specimens were tested on the day that the UHPC 

reached 28 days of age (NSC was 53 days of age). Testing was done in four 

groups, based on the age of the specimens and the configurations. The MOR 

(maximum tensile stress at failure) was determined by inputting measured 

values into Equation 1 taken from ASTM C78. The results are also compared to 

would-be results for a monolithic NSC MOR specimen of the same compressive 

strength as determined by Equation 2 taken from ACI 318 (2014). 
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𝑅 =  
𝑃𝐿

𝑏𝑑2           (1)  

where 

R = MOR, psi 

P = maximum observed load, lb 

L = span length of the specimen from support to support, in. 

b = width of the specimen at location of failure, in. 

d = depth of specimen at location of failure, in. 

 

𝑓𝑟 = 7.5√𝑓′𝑐     (2) 

where 

fr  = flexural tension strength, psi 

f’c = compressive strength of NSC, psi 

 

Tables 13-16 contain the results for each individual specimen with 

relation to its interface configuration and surface preparation. For each 

specimen, WB indicated wire brushed, SB indicates sand blasted, and EA 

indicates exposed aggregate. Almost all specimens failed in the base concrete. 

The three specimens that failed at the interface were all 90 degree wire brushed 

specimens. The 90 degree specimens had 5 wire brushed specimens and 3 

sand blasted specimens, contrary to the original casting plan seen in Table 5. 

Figure 32 shows the two different failure types.  
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Figure 32. Interface failure (left) and base concrete failure (right) 
 

Table 13. 90 Degree Composite MOR Specimen Results 

90 Degree 
Specimens 

Failure Type 
Peak 

Load (lb) 
Flexural 

Stress (psi) 

Average 
Flexural 

Stress (psi) 

Std. 
Deviation 

(psi) 

1-WB-90 Base Concrete 8020 645 

584 86.3 

2-WB-90 Base Concrete 8335 685 

3-WB-90 Interface 7795 625 

4-WB-90 Interface 5630 460 

5-WB-90 Interface 6220 505 

6-SB-90 Base Concrete 7345 580 

563 20.1 7-SB-90 Base Concrete 6705 535 

8-SB-90 Base Concrete 7245 575 

9-EA-90 Base Concrete 8510 675 

645 24.5 10-EA-90 Base Concrete 7935 615 

11-EA-90 Base Concrete 8320 645 
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Table 14. 60 Degree Composite MOR Specimen Results 

60 Degree 
Specimens 

Failure Type 
Peak 

Load (lb) 
Flexural 

Stress (psi) 

Average 
Flexural 

Stress (psi) 

Std. 
Deviation 

(psi) 

1-WB-60 Base Concrete 7345 590 

579 34.3 
2-WB-60 Base Concrete 7725 620 

3-WB-60 Base Concrete 6505 525 

4-WB-60 Base Concrete 7085 580 

5-SB-60 Base Concrete 7415 600 

596 18.8 
6-SB-60 Base Concrete 7525 615 

7-SB-60 Base Concrete 7400 605 

8-SB-60 Base Concrete 7080 565 

9-EA-60 Base Concrete 6100 505 

572 51.4 10-EA-60 Base Concrete 8535 630 

11-EA-60 Base Concrete 7115 580 

 

Table 15. 45 Degree Composite MOR Specimen Results 

45 Degree 
Specimens 

Failure Type 
Peak 

Load (lb) 
Flexural 

Stress (psi) 

Average 
Flexural 

Stress (psi) 

Std. 
Deviation 

(psi) 

1-WB-45 Base Concrete 6865 545 

528 30.1 
2-WB-45 Base Concrete 5880 480 

3-WB-45 Base Concrete 6810 560 

4-WB-45 Base Concrete 6485 525 

5-SB-45 Base Concrete 6905 560 

569 37.8 
6-SB-45 Base Concrete 7645 620 

7-SB-45 Base Concrete 6330 515 

8-SB-45 Base Concrete 7070 580 

9-EA-45 Base Concrete 9540 735 

510 290.4 10-EA-45 Base Concrete 9230 695 

11-EA-45 Base Concrete 1300 100 
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Table 16. Shear Key Composite MOR Specimen Results 

Shear Key 
Specimens 

Failure Type 
Peak 

Load (lb) 
Flexural 

Stress (psi) 

Average 
Flexural 

Stress (psi) 

Std. 
Deviation 

(psi) 

1-EA-SK Base Concrete 10,810 850 

745 118.1 2-EA-SK Base Concrete 10,855 805 

3-EA-SK Base Concrete 7250 580 

 

Figures 33 and 34 depict comparisons of the average flexural stress for 

each type of composite MOR. Because the concrete for each group of 

composite specimens had a specific compressive strength value, Figures 35 

and 36 depict comparisons of the average flexural stress coefficient, which is a 

normalized value in relation to the square root of the compressive strength 

measured for the NSC of each group in order to achieve a more representative 

comparison. 

Within this data set, there was one specimen (11-EA-45) that had an 

unusually low maximum flexural stress of 100 psi. This lowers the average 

performance of the 45 degree exposed aggregate specimens, which may mask 

actual performance. In addition, one 60 degree exposed aggregate specimen 

(10-EA-60) in this data set had a UHPC portion that extended across the 

bottom portion of the specimen, which could have strengthened the NSC 

portion and produced a higher flexural stress of 630 psi. Figure 34 depicts 

comparisons of the average maximum flexural stress for each type of specimen 

with these two unusual data points removed. 
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Figure 33. Average Maximum Flexural Stress vs. Interface Configuration 
including all values  

 

Figure 34. Average Maximum Flexural Stress vs. Interface Configuration 
with adjusted values  
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As seen in Figure 34, removing these two unusual data points does not 

greatly affect comparisons within the data set as a whole. The specimens with 

the exposed aggregate surface preparation performed better than specimens 

with other surface preparations, with the exception of the 45 degree specimens. 

The average values for all specimens reached a higher flexural stress at failure 

than the flexural stress calculated for a monolithic NSC specimen, indicating 

that all surface configurations provided a bond strength that was higher than the 

strength of the base concrete. The wire brushed and sand blasted specimens 

did not reveal that one surface preparation was superior to the other in 

increasing overall flexural capacity. However, all of the specimens that failed at 

the interface were wire brushed. None of the 90 degree sand blasted 

specimens failed at the interface, while 60% of the 90 degree wire brushed 

specimens failed at the interface. 

In Equation 2, the normalized flexural stress coefficient is 7.5, which is 

based on a large quantity of experimental results. Figure 35 depicts the 

normalized flexural stress coefficients for all the values (including the two 

unusual values previously mentioned) based on the MOR measured for the 

specimens and the compressive strength of the NSC portion. The MOR 

calculated from the measured results was divided by the square root of the 

compressive strength in order to obtain the normalized values. When 

comparing the normalized results, it appears that the 60 degree specimens had 

higher average flexural stress coefficients than the other interface 

configurations indicating slightly better performance.  
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Figure 35. Flexural Stress Coefficient vs. Interface Configuration including 
all values  
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respectively were 8.5, 9.3, 8.8, and 9.2, respectively. This considered, it can be 

said that the 60 degree specimens generally performed the best. 

 

Figure 36. Flexural Stress Coefficient vs. Interface Configuration with 
adjusted values  
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 Figures 37-41 show the results of testing (parts 1 and 2) for slab 1. 
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4.4.1 Slab 1 Static Test Results 

The maximum load reached by slab 1 before proceeding to part 2 of 

testing was approximately 21.3 kips. Because of the loading limitations of the 

MTS system, the test was stopped at this point. The first cracks were observed 

in the base concrete during part 1 of the test at a load of approximately 14 kips. 

This cracking load was determined at the time that the first crack became 

visible to the naked eye. Further analysis suggests the first crack may have 

occurred before the load reached 14 kips. Figure 37 depicts the load vs. 

deflection curve for slab 1 part 1. This curve shows that initial cracking occurred 

at approximately 10.9 kips, rather than the visually determined 14 kips. This 

was determined by locating the point in the load vs. deflection curve where the 

deflection experienced an increase, but load did not. At this point, the slope of 

the remaining portion of the curve became less steep. The load corresponding 

to the calculated cracking moment for a monolithic NSC slab with the same 

reinforcement and dimensions was originally calculated to be 13.9 kips, but 

after further evaluation, it was estimated to be 11.7 kips (calculations in 

Appendix C). This calculation was performed using the measured value for the 

compressive strength of the NSC portion of the slabs and the span of the 

specimen setup. The graphically determined cracking load of 10.9 kips is less 

than the expected 11.7 kips. This could potentially be attributed to variability in 

concrete tensile strength or the method of graphically determining this value. 

Upon unloading the specimen, the magnitude of total deflection decreased back 

down to a residual deflection of approximately 0.07 in. 
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Figure 37. Load vs. Deflection curve for slab 1, part 1 
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Figure 38. Load vs. Strain curve for slab 1, part 1 
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load, and concrete crushing was observed at the top compression fiber. Before 

loading began for part 2, the residual deflection seen in the slab was 0.07 in. 

After unloading the specimen, the total deflection observed while under load 

decreased in magnitude from a maximum of 2.02 in. to a residual deflection of 

approximately 1.58 in. This indicated significant plastic deformation of the 

specimen. Figure 40 depicts a comparison for slab 1 of the part 1 and part 2 

load vs. deflection curves without the residual deflection that occurred after part 

1 taken into account. This is to compare the slopes of each curve for loads up 

to 25 kips. As seen in Figure 40, the slope decreases for the second part of 

testing, which is to be expected of a slab that has been cracked. 

 

Figure 39. Load vs. Deflection curve for slab 1, part 2 
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Figure 40. Load vs. Deflection curves for slab 1, parts 1 and 2 

At failure, there were no observed cracks within the UHPC joint itself. 

The major crack at failure occurred in the base concrete directly below the load 

point, at approximately 5 inches away from the interface between the UHPC 

and the NSC (directly beneath the load point). There was also minor separation 

at the interface closest to the load point. Some of the cracks can be seen in 

Figures 41-43. These cracks followed a logical progression moving outward 

from the load point as load increased. 
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Figure 41. Major cracking underneath load point for slab 1 

 

Figure 42. Cracks formed underneath load on north side of slab 1 

first crack 
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Figure 43. Cracks formed underneath load on south side of slab 1 and 
concrete crushing at the top compression fiber 

4.4.2 Slab 2 Static Test Results 

As seen in Figure 44, the maximum load reached by slab 2 before 

proceeding to part 2 of testing was approximately 22 kips. The first cracks were 

observed during part 1 of the test similarly to the test for slab 1. The first visually 

observed cracking occurred in the base concrete directly beneath the load point 

at a load of approximately 14 kips. This cracking load was determined at the 

time that the first crack became visible to the naked eye. Further analysis 

suggests the first crack may have occurred before the load reached 14 kips. 

Figure 44 depicts the load vs. deflection curve for slab 2 part 1. This curve 

shows that initial cracking occurred at approximately 13.1 kips, rather than the 
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visually determined 14 kips. This was determined by locating the point in the 

load vs. deflection curve where the deflection experienced an increase, but load 

did not. At this point, the slope of the curve became less steep. The calculated 

cracking load for a monolithic NSC slab with the same reinforcement and 

dimensions was estimated to be 11.7 kips. Upon unloading the specimen, the 

magnitude of total deflection decreased from the maximum observed back 

down to a residual deflection of approximately 0.067 in. Figure 45 depicts the 

load vs. strain curve for the first portion of loading for slab 2. Again, while strain 

gages 1 and 3 are not generally useful, strain gage 2 confirms that initial 

cracking of the specimen likely occurred at a load of around 13.1 kips, rather 

than the visually determined 14 kips. 

 

Figure 44. Load vs. Deflection curve for slab 2, part 1 
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Figure 45. Load v. Strain curve for slab 2, part 1 

The ultimate load reached for slab 2 was 37.2 kips. The calculated failure 
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was estimated to be 23.5 kips. Similarly to slab 1, the actual failure load of the 

specimen exceeded estimations by 58%. Failure was determined at the point 

when the specimen exhibited yielding behavior, was unable to sustain any 

increasing load, and exhibited concrete crushing at the top compression fiber. 

Figure 46 shows the load vs. deflection relationship for slab 2 part 2. 
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 Figure 47 depicts a comparison for slab 2 of the part 1 and part 2 load 

vs. deflection curves without the residual deflection that occurred after part 1 

taken into account. This is to compare the slopes of each curve for loads up to 

25 kips. As seen in Figure 47, the slope decreases slightly for the second part 

of testing, which is to be expected of a slab that has been cracked. 

 

 

Figure 46. Load vs. Deflection curve for slab 2, part 2 
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Figure 47. Load vs. Deflection curve for slab 2, parts 1 and 2 

At failure, there were no observed cracks within the UHPC joint itself. 

The major crack at failure occurred in the base concrete near the load point, at 

approximately 6 in. away from the interface between the UHPC and the NSC (1 

in. east of the load point). There was also minor separation at the interface 

closest to the load point. This separation at the interface was only visible during 

loading and could not be seen once the load was removed from the slab. Some 

of the cracks can be seen in Figures 48-50. 
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Figure 48. Major cracking underneath load point for slab 2 
 

 

Figure 49. Cracking underneath load on north side of slab 2 and crushing 
of concrete near load point 

first crack 
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Figure 50. Cracking underneath load on south side of slab 2 and crushing 
of concrete near load point 

4.4.3 Slab 3 Cyclic and Static Test Results 

 Slab 3 was cyclically tested under fatigue loading. The initial planned test 

program was to induce a load with a magnitude of 90% of the expected 

cracking load for the specimen. The visually observed load corresponding to the 

cracking moment for slab 1 and 2 was approximately 14 kips, 90% of which was 

approximately 12.5 kips. Using the MTS system, the test was started by 

applying the 1 Hz cyclic load to the slab in increasing increments up to the 12.5 

kip target. Prior to the reaching the predicted cracking load of 14 kips, initial 

cracking occurred due to the 12.5 kip load, so the load was decreased 

accordingly to prevent premature fatigue failure of the specimen. The specimen 

first crack 
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was cyclically loaded to 9 kips (67% of the estimated cracking load) for the 

remainder of the first 3 million cycles. Figure 51 depicts the typical cyclic 

loading over a time period of 10 seconds. Figures 52-71 depict the load vs. 

deflection curves (for the loading portion of a single cycle) during the first 3 

million cycles, analyzed every other day for the duration of initial cycling. All 

cycles shown are from a period within the first 5,000 cycles on a given day 

(there were approximately 86,000 cycles per day). The unloading portion of the 

curves are not shown, but were similar to the loading portion. These curves do 

not start at zero due to the 500 lb preload that was applied prior to starting the 

cyclic load. The deflections shown in these curves were adjusted to subtract out 

deflections of the support. A linear trend line was considered for each load cycle 

examined, since the slab was expected to have a linear response at the applied 

load level. The slope of the equation shown is a measure of the stiffness of the 

slab, which generally decreased throughout the first 3 million cycles. This could 

be due to the fact that the slab was cracked prematurely during the initial 

application of the cyclic load. Figure 72 shows multiple cycles from different 

days for comparison. Even though a gradual decay of stiffness was observed 

over time, the curves shown in Figure 72 are still nearly on top of one another. 
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Figure 51. Typical cyclic loading over a short period of time 
 

 

Figure 52. Load vs. Deflection for slab 3, measured from a single load 
cycle selected from day 1 
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Figure 53. Load vs. Deflection for slab 3, measured from a single load 
cycle selected from day 3 

 

Figure 54. Load vs. Deflection for slab 3, measured from a single load 
cycle selected from day 5 
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Figure 55. Load vs. Deflection for slab 3, measured from a single load 
cycle selected from day 7 

 

Figure 56. Load vs. Deflection for slab 3, measured from a single load 
cycle selected from day 9 
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Figure 57. Load vs. Deflection for slab 3, measured from a single load 
cycle selected from day 11 

 

Figure 58. Load vs. Deflection for slab 3, measured from a single load 
cycle selected from day 13 

y = 151789x - 65.762

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

L
o
a
d
 (

lb
)

Deflection (in.)

y = 149455x - 47.345

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

L
o
a
d
 (

lb
)

Deflection (in.)



83 

 

Figure 59. Load vs. Deflection for slab 3, measured from a single load 
cycle selected from day 15 

 

Figure 60. Load vs. Deflection for slab 3, measured from a single load 
cycle selected from day 17 
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Figure 61. Load vs. Deflection for slab 3, measured from a single load 
cycle selected from day 19 

 

Figure 62. Load vs. Deflection for slab 3, measured from a single load 
cycle selected from day 21 

y = 149587x - 144.64

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

L
o
a
d
 (

lb
)

Deflection (in.)

y = 150550x - 115.96

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

L
o
a
d
 (

lb
)

Deflection (in.)



85 

 

Figure 63. Load vs. Deflection for slab 3, measured from a single load 
cycle selected from day 23 

 

Figure 64. Load vs. Deflection for slab 3, measured from a single load 
cycle selected from day 25 
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Figure 65. Load vs. Deflection for slab 3, measured from a single load 
cycle selected from day 27 

 

Figure 66. Load vs. Deflection for slab 3, measured from a single load 
cycle selected from day 29 
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Figure 67. Load vs. Deflection for slab 3, measured from a single load 
cycle selected from day 31 

 

Figure 68. Load vs. Deflection for slab 3, measured from a single load 
cycle selected from day 33 
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Figure 69. Load vs. Deflection for slab 3, measured from a single load 
cycle selected from day 35 

 

Figure 70. Load vs. Deflection for slab 3, measured from a single load 
cycle selected from day 37 
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Figure 71. Load vs. Deflection for slab 3, measured from a single load 
cycle selected from day 39 

 

Figure 72. Comparison of load vs. deflection curves for multiple days 
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After the specimen had been subjected to 3 million load cycles, the load 

was increased to 14.6 kips (5% more than the expected cracking load) applied 

cyclically at 1 Hz. The test program called for the specimen to be loaded at this 

rate and magnitude for 2 million more cycles, or until failure. Figures 73 and 74 

depict the load vs. deflection curves (for the loading portion of a selected cycle) 

during this second portion of testing. A linear trend line is also included in these 

figures showing the approximate slope of the loading curve. 

 

 

Figure 73. Load vs. Deflection for slab 3, measured from a single load 
cycle selected from day 40 
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Figure 74. Load vs. Deflection for slab 3, measured from a single load 
cycle selected from day 41 
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south side after the conclusion of fatigue loading is shown in Figure 77. Figure 

78 shows the path of the crack from the base concrete to the interface. 

 

Figure 75. Side view of marked cracks on slab after fatigue loading 

 

Figure 76. Crack at interface on north side of slab after fatigue loading 
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Figure 77. Crack in base concrete on south side after fatigue loading 

 

Figure 78. Path of crack underneath slab from base concrete to interface 
 

Point where crack 
joins interface 
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Figure 79 shows a comparison of the measured stiffness of the slab at 

the time intervals represented in Figures 52-74. There is a generally steady 

decrease of 3.6% in the observed stiffness of the slab from day 1 to 39, and a 

steep decrease of 11.3% between days 39 and 41 when the load was 

increased and the slab began to fail. Figure 80 shows the residual deflections 

taken at the end of each day with a final residual deflection of 0.38 in. Due to 

program malfunction, the first 4 days of testing are not included in this graph. 

These deflections go hand in hand with the stiffness values shown in Figure 79. 

 

 

Figure 79. Slab stiffness over loading period 

0 1,000,000 2,000,000 3,000,000

125

130

135

140

145

150

155

160

0 10 20 30 40

Number of Cycles

S
ti
ff
n
e
s
s
 (

k
ip

s
/i
n
.)

Time (days)



95 

 

Figure 80. Residual deflections over the course of fatigue testing 
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Figure 81. Load vs. Deflection for slab 3 static loading 
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Figures 82-85. There was also crushing of the concrete on the top of the slab 

adjacent to the load point, as seen in Figure 86.  

 

Figure 82. Crack at interface on north side of slab after final static loading 
and crushing of the top compression fiber in the base concrete 

 

Figure 83. Crack at interface on north side of slab from underneath 

Fractured rebar 
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Figure 84. Crack in base concrete on south side and crushing of the top 
compression fiber after final static loading 

 

Figure 85. Crack in base concrete on south side from underneath 
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Figure 86. Crushing of concrete on top of slab after final static loading 
 

4.4.4 Comparison of Slabs 1, 2, and 3 

 There are a few key items to be taken from these results. Slab 1 and 2 

had much higher ultimate flexural capacities than expected. This could be 

attributed to the higher tensile and compressive strength of the UHPC which 

may have caused stress redistribution away from the load point, increasing the 

strength of the specimens as a whole. It is also possible that the UHPC joint 

caused the specimens to be slightly stiffer than monolithic NSC slab specimens 

with the same dimensions and reinforcement. This was not the case for slab 3, 

which failed prematurely due to fatigue of the steel and damage to the 

specimen over time. Figure 87 depicts the load vs. deflection curves for all 3 
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slabs for the initial portion of loading. Slabs 1 and 2 had very similar slopes, 

which is to be expected. Slab 3 had a slope that was less steep than the other 

two slabs. This is due to the premature cracking of the specimen before 

decreasing the magnitude of the cyclic load. Figure 88 depicts the load vs. 

deflection curves for all the slabs during ultimate static loading to failure. Slabs 

1 and 2 both reached an ultimate flexural strength of more than 36 kips. Slab 2 

had a higher residual deflection than slab 1, indicating either that it may not 

have been as stiff, or was loaded further past yielding. Slab 3 had a much lower 

stiffness due to the prior fatigue loading and damage to the specimen.  

 

Figure 87. Load vs. Deflection curve for initial portion of loading for all 3 
slabs 
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Figure 88. Load vs. Deflection curve for static testing for all 3 slabs 
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5.0 Findings, Conclusions & Recommendations 

 The study described in this thesis included multiple tests to obtain more 

information about the bond strength of UHPC to NSC and assess its feasibility 

as a repair material for bridge joints. MOR tests were performed on composite 

specimens, and both static and cyclic flexural testing was performed on 

medium-scale slab joints.  

5.1 Findings and Conclusions 

Based on the results of the testing described in this thesis, several conclusions 

were made.  

 In order to reach an acceptable strength in a limited amount of 

time, heat curing was required for the specific UHPC formulation 

tested. 

 Slant shear tests revealed that the bond strength of the NSC to 

UHPC specimens examined was comparable to the bond 

strengths of other UHPC/NSC specimens found in the literature; 

however, the small number of specimens in this study does not 

allow generalized conclusions about a correlation between slant 

shear bond strength and flexural strength. 

 The MOR tests revealed that, for most composite specimens, the 

interface between the UHPC and NSC performed similarly, and 

failed in the base concrete. Based on normalized results, the 

exposed aggregate surface preparation performed the best and 

sustained the highest stresses for most interface configurations. 
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This surface preparation would likely perform best in the field 

when implementation is feasible.  

 When comparing the normalized flexural stress coefficients from 

the composite specimens, the 60 degree interface specimens 

reached a higher flexural stress as a whole. For these specimens, 

the wire-brushed and sand-blasted surfaces performed better than 

the exposed aggregate surfaces. When implementing 

replacement UHPC joints in the field, it may be most beneficial to 

use a 60° cut angle when removing the current joint. Utilizing a 

typical roughness (resulting from removing the current joint with 

saw cuts) could potentially produce comparable flexural strengths 

to the values found in this study. 

 All of the flexural strengths observed during testing of the 

composite specimens were at least as large as the calculated 

flexural strengths for a monolithic NSC specimen. Approximately 

91.7% of the composite specimens fractured within the base 

concrete, indicating that the bond between the two materials was 

at least as strong as the base concrete, and the interface between 

the two materials did not weaken the specimen (in terms of 

maximum flexural stress). 

 Based on the results from the first two medium-scale slab 

specimens, the overall measured flexural load capacity of the 

specimens (approximately 37 kips) far exceeded the calculated 
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flexural load capacity of a monolithic NSC slab with the same 

dimensions and reinforcement (23.5 kips). This may be an 

indication that the UHPC joints in this study may have provided 

additional flexural strength to the specimens by resisting cracking 

and redirecting stresses away from the load point. 

 The measured cracking load for slab 1 (10.9 kips) was slightly 

less than the calculated cracking load for a monolithic NSC slab 

with the same dimensions and reinforcement (11.7 kips). The 

cracking loads for slabs 2 and 3 (13.1 and 12.5 kips respectively) 

were at least as high as the calculated cracking load (11.7 kips). 

All initial cracks occurred in the base concrete. 

 The flexural stiffness measured for slab 3 steadily decreased 

throughout the course of fatigue loading, and sharply decreased 

when the magnitude of the load was increased. It is not clear 

whether initial cracking at 12.5 kips accelerated the rate of 

decrease for the slab stiffness. 

 Testing of slab 3 under fatigue loading revealed an increase in 

residual deflection over time, which tracks with the reduced 

stiffness over time. This specimen, after initial cracking, was more 

susceptible to decreased stiffness and flexural capacity under 

fatigue loading. 

 The results for static loading of slab 3 revealed a flexural strength 

(17.7 kips) that was less than the calculated flexural strength for a 
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monolithic NSC slab with the same dimensions and reinforcement 

(23.5 kips). While this value is not extremely far in magnitude from 

the expected flexural capacity, it is more than 50% less than the 

flexural capacities exhibited by slabs 1 and 2. 

 All slabs experienced some degree of separation at the interface 

between the UHPC and the NSC closest to the load point, 

indicating that this location may be a weak point for these 

specimens. Although the specimens experienced interface 

separation, for slabs 1 and 2 the main cause of failure was 

cracking and crushing in the base concrete at the load point. Slab 

3 likely failed due to a combination of interface failure, rebar 

fracture and fatigue, and base concrete cracking and crushing at 

the load point. 

5.2 Recommendations and Future Work 

 Based on the results of this research and the processes involved, the 

following recommendations are made for similar research and potential future 

projects relating to this subject. 

 Because the external strain gages performed poorly and did not 

consistently give a clear picture of the strain behavior of the slab 

specimens, it is recommended that future studies of this type 

should include internal strain gages placed on the rebar in order to 

obtain more useful information.  
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 The magnitude of the load for cyclic testing should be based on 

the calculated cracking load for a monolithic NSC specimen or the 

graphically determined cracking load of previous specimens—

basing this value on the visually observed values of previous 

specimens can be more variable and less accurate. This practice 

may prevent premature cracking in fatigue loading specimens. 

Similar studies should be performed to replicate the test program 

of slab 3, taking care to prevent any cracking prior to fatigue 

loading in order to determine the true effect of fatigue loading on 

the stiffness and flexural capacity of an uncracked section. 

 Studies should be performed to assess bond strength and 

performance of both UHPC repair joints and composite MOR 

joints for specimens with a dampened surface to determine the 

effects of moisture on the bond. 

 The results of this research indicate that UHPC is a promising 

repair material for bridge joints; in any case, more research should 

be conducted to determine the best practices for heat curing in the 

field (where heat lamps may not be feasible) and the behavior of a 

replacement UHPC joint in a fully operational bridge deck system. 

 Because Ductal® is a relatively expensive material, more 

research should be conducted for less expensive types of UHPC 

and their performance in the same testing scenarios outlined in 

this study.  
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Appendix A: Tables 

Table 17. Compressive Strength Results for all Cylinders 

Name 
12 Hour 

(psi) 

1-Day 

(psi) 

3-Day 

(psi) 

7-Day 

(psi) 

28-Day 

(psi) 

Test Day 

(psi) 

Trial Batch – 

Mix Design 1 

N/A 4125 N/A 6590 7890 N/A 

N/A - N/A 6300 8020 N/A 

N/A - N/A 6995 8160 N/A 

Trial Batch – 

Mix Design 2 

N/A 2080 N/A 3390 3510 N/A 

N/A 2175 N/A 3415 3795 N/A 

N/A 2215 N/A 3455 3795 N/A 

Trial Batch – 

Mix Design 3 

N/A 3525 N/A - 6840 N/A 

N/A 3490 N/A - 7115 N/A 

N/A 3445 N/A - 6740 N/A 

Trial Batch – 

Mix Design 4 

N/A 2190 N/A 3670 4660 N/A 

N/A 2065 N/A 3935 4100 N/A 

N/A 2310 N/A 3825 4310 N/A 

Batch N1 

N/A 2430 3780 N/A 4990 N/A 

N/A 2345 - N/A 4985 N/A 

N/A 2280 - N/A - N/A 

Batch N2 

N/A 1755 N/A N/A 3585 N/A 

N/A 1710 N/A N/A 3465 N/A 

N/A 1715 N/A N/A 3600 N/A 

Batch N3 

N/A 2395 N/A N/A 4500 N/A 

N/A 2335 N/A N/A 4815 N/A 

N/A 2445 N/A N/A 4645 N/A 

Batch N4 

N/A 3080 N/A N/A 5610 N/A 

N/A 2745 N/A N/A 6120 N/A 

N/A 3055 N/A N/A 5810 N/A 

Batch U1 

N/A N/A 11,910 N/A 21,080 21,080 

N/A N/A 10,660 N/A 22,165 22,165 

N/A N/A 12,280 N/A 21,975 21,975 

Batch U2 

N/A N/A 9200 N/A 21,255 21,255 

N/A N/A 12,620 N/A 22,870 22,870 

N/A N/A 13,130 N/A 21,995 21,995 
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Table 17. Compressive Strength Results for all Cylinders, Continued 

Name 
12 Hour 

(psi) 

1-Day 

(psi) 

3-Day 

(psi) 

7-Day 

(psi) 

28-Day 

(psi) 

Test Day 

(psi) 

Batch U3 

N/A N/A 12,710 N/A 22,080 22,080 

N/A N/A 11,980 N/A 21,340 21,340 

N/A N/A 12,380 N/A 21,640 21,640 

Batch U4 

N/A N/A 12,910 N/A 22,180 22,180 

N/A N/A 12,115 N/A 20,985 20,985 

N/A N/A 12,770 N/A 21,735 21,735 

Medium-scale 

slab NSC 

N/A 3065 N/A 4950 5460 N/A 

N/A 3080 N/A 4455 6150 N/A 

N/A 3105 N/A 4965 6320 N/A 

Slab Joint 1 

UHPC 

22,640 N/A N/A N/A 22,185 23,355 

20,690 N/A N/A N/A 23,505 22,000 

20,955 N/A N/A N/A 22,923 - 

Slab Joint 2 

UHPC 

15,700 N/A N/A N/A 19,185 26,410 

18,030 N/A N/A N/A 25,065 22,895 

15,445 N/A N/A N/A 17,125 23,764 

Slab Joint 3 

UHPC 

17,645 N/A N/A N/A 24,440 21,945 

17,090 N/A N/A N/A 18,045 24,520 

17,200 N/A N/A N/A 19,280 22,520 

 

Table 18. NSC Fresh Concrete Properties 

 
Batch 

Temperature 
(°F) 

Air Content 
(%) 

Slump 
(in.) 

Unit Weight 
(lb/ft3) 

N1 67.6 8.00 4.25 142.2 

N2 68.5 7.00 5.25 133.9 

N3 70.9 7.00 5.25 142.0 

N4 67.0 6.60 3.00 145.9 

Slab NSC 85.1 1.80 2.25 - 
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Appendix B: Additional Photos of Specimens and Test Setup 

 

Figure 89. Wooden MOR form inserts coated with sugar for exposed 
aggregate specimens 

 

Figure 90. NSC cylinders after grinding prior to compressive strength 
testing 
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Figure 91. Steel fibers being added to UHPC mixture 

 

Figure 92. Top surface of UHPC cylinder after grinding prior to 
compressive strength testing 
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Figure 93. UHPC cylinders prior to grinding 

 

Figure 94. Composite MOR specimen prior to testing 
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Figure 95. Slab panels during finishing process 

 

Figure 96. Slab panels with exposed rebar prior to casting of the UHPC 
joint 
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Figure 97. Heat lamp and medium-scale slab with UHPC joint during heat 
curing process 

 

Figure 98. Strain gages on south side of slab prior to testing 
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Figure 99. LVDT on underside of slab prior to testing 

 

Figure 100. Wire potentiometer attached to underside of slab prior to 
testing 
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Figure 101. Hydraulic cylinder and load cell prior to attachment to hand 
pump; used for part 2 of static testing 

 

  



119 

Appendix C: Calculations 

Cracking Moment and Corresponding Load for Slabs 

𝑀𝑐𝑟 =
𝑓𝑟𝐼𝑠

𝑦𝑡
 

Where  

𝑓𝑟 = 7.5√𝑓′𝑐 = 7.5√5500 𝑝𝑠𝑖 = 556.2 𝑝𝑠𝑖 

𝐼𝑠 =  
𝑏ℎ3

12
=

(48 𝑖𝑛. )(8 𝑖𝑛. )3

12
= 2,048 𝑖𝑛.4 

𝑦𝑡 = 4 𝑖𝑛. 

So, 

𝑀𝑐𝑟 =
𝑓𝑟𝐼𝑠

𝑦𝑡
=

(556.2 𝑝𝑠𝑖)(2,048 𝑖𝑛.4 )

4 𝑖𝑛.
= 284,774 𝑙𝑏 ∙ 𝑖𝑛. = 23.73 𝑘𝑖𝑝 ∙ 𝑓𝑡 

To find the corresponding point load for a non-symmetric simple span of length 

L = A + B: 

𝑃 =
𝑀𝐿

𝐴𝐵
=  

(23.73 𝑘𝑖𝑝 ∙ 𝑓𝑡)(8.5 𝑓𝑡)

(5.167 𝑓𝑡)(3.333 𝑓𝑡)
= 11.7 𝑘𝑖𝑝𝑠 

Note that 

𝑀𝑐𝑟 = cracking moment, lb-in. 

𝑓𝑟 = modulus of rupture of concrete, psi 

𝐼𝑠 = moment of inertia of gross section of slab about centroidal axis, in.4 

𝑏 = width of compression face of member, in. 

ℎ = overall depth of member, in. 

𝑦𝑡 = distance from the centroid of the cross section to the tension face, in. 

𝑓′
𝑐
 = compressive strength of concrete, psi  



120 

Flexural Capacity and Corresponding Load for Slabs 

Assuming both layers of steel are in tension during loading, 

𝑀𝑛 =  𝐴𝑠1𝑓𝑦 (𝑑1 −
𝑐

2
 ) + 𝐴𝑠2𝑓𝑦 (𝑑2 −

𝑐

2
 )  

Where 

𝐴𝑠1 = 𝐴𝑠2 = 4(0.31 𝑖𝑛.2 ) =  1.24 𝑖𝑛.2 

𝑓𝑦 = 60 𝑘𝑠𝑖 

𝑑1 = 6.063 𝑖𝑛. 

𝑑2 = 2.44 𝑖𝑛. 

𝑎 =
2𝐴𝑠𝑓𝑦

0.85𝑓′
𝑐
𝑏

=  
2(1.24 𝑖𝑛.2 )(60 𝑘𝑠𝑖)

0.85(5.5 𝑘𝑠𝑖)(48 𝑖𝑛. )
= 0.66 𝑖𝑛.  

𝑐 =  
𝑎

𝛽1
=

0.66 𝑖𝑛.

0.80
= 0.825 𝑖𝑛. 

Checking the assumption that the steel yields: 

𝜀𝑠1 =
0.003

𝑐
(𝑑1 − 𝑐) =  

0.003

0.825
(6.063 − 0.825) = 0.019 > 0.00205 

𝜀𝑠2 =
0.003

𝑐
(𝑑2 − 𝑐) =  

0.003

0.825
(2.44 − 0.825) = 0.006 > 0.00205  

So,  

𝑀𝑛 = (1.24 𝑖𝑛.2 )(60 𝑘𝑠𝑖) [(6.063 𝑖𝑛. −
0.825 𝑖𝑛.

2
 ) + (2.44 𝑖𝑛. −

0.825 𝑖𝑛.

2
 )]

= 571.2 𝑘𝑖𝑝 ∙ 𝑖𝑛. = 47.6 𝑘𝑖𝑝 ∙ 𝑓𝑡 

To find the corresponding point load for a non-symmetric simple span of length 

L = A + B: 

𝑃 =
𝑀𝐿

𝐴𝐵
=  

(47.6 𝑘𝑖𝑝 ∙ 𝑓𝑡)(8.5 𝑓𝑡)

(5.167 𝑓𝑡)(3.333 𝑓𝑡)
= 23.5 𝑘𝑖𝑝𝑠 
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Note that 

𝑀𝑛 = nominal flexural strength at section, lb-in. 

𝐴𝑠1 = area of the bottom layer of longitudinal tension reinforcement, in.2 

𝐴𝑠2 = area of the top layer of longitudinal tension reinforcement, in.2 

𝑓𝑦 = specified yield strength of reinforcement, ksi 

𝑑1 = distance from extreme compression fiber to centroid of bottom layer of 

longitudinal tension reinforcement, in. 

𝑑2 = distance from extreme compression fiber to centroid of top layer of 

longitudinal tension reinforcement, in. 

𝑎 = depth of equivalent rectangular stress block, in. 

𝑐 = distance from extreme compression fiber to neutral axis, in. 

𝜀𝑠1 = value of net tensile strain in the bottom layer of longitudinal tension 

reinforcement, in./in. 

𝜀𝑠2 = value of net tensile strain in the top layer of longitudinal tension 

reinforcement, in./in. 
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Fatigue Stress in Steel for Slab 3 

𝑓𝑠 = 𝑛
𝑀𝑦

𝐼𝑐𝑟
 

𝜌1 =
𝐴𝑠

𝑏𝑑
=

4(0.31 𝑖𝑛.2 )

48 𝑖𝑛. (6.063 𝑖𝑛. )
= 0.0043 

𝜌2 =
𝐴𝑠

𝑏𝑑
=

8(0.31 𝑖𝑛.2 )

48 𝑖𝑛. (4.25 𝑖𝑛. )
= 0.0122 

𝑛 =  
𝐸𝑠

𝐸𝑐
=

29,000 𝑘𝑠𝑖

4227 𝑘𝑠𝑖
= 6.86 

𝑘1 = √2𝜌𝑛 + (𝜌𝑛)2 − 𝜌𝑛 = √2(. 0043)(6.86) + (. 0043 ∗ 6.86)2 − (.0043 ∗ 6.86)

= 0.212 

𝑘2 = √2𝜌𝑛 + (𝜌𝑛)2 − 𝜌𝑛 = √2(. 0122)(6.86) + (. 0122 ∗ 6.86)2 − (.0122 ∗ 6.86)

= 0.333 

𝑘2𝑑 = (0.333)(4.25 𝑖𝑛. ) = 1.42 𝑖𝑛. 

𝐴𝑠𝑡𝑟 = 𝐴𝑠𝑛 = 4(0.31𝑖𝑛.2 )(6.86) = 8.51 𝑖𝑛.2 

𝐼𝑐𝑟 =  
1

12
(48 𝑖𝑛. )(1.42 𝑖𝑛. )3 + 48 𝑖𝑛. (1.42 𝑖𝑛. ) (

1.42 𝑖𝑛.

2
)

2

+ 8.51 𝑖𝑛.2 (6.063 𝑖𝑛. −1.42 𝑖𝑛. )2 + 8.51 𝑖𝑛. (2.44 𝑖𝑛. −1.42 𝑖𝑛. )2

= 238.113 𝑖𝑛.4 

𝑀 =  
𝑃𝑎𝑏

𝐿
=  

14.6 𝑘𝑖𝑝𝑠(5.167 𝑓𝑡)(3.333 𝑓𝑡)

8.5 𝑓𝑡
= 29.58 𝑘𝑖𝑝 ∙ 𝑓𝑡 = 354.97 𝑘𝑖𝑝 ∙ 𝑖𝑛. 

𝑦 = 6.063 𝑖𝑛. −1.42 𝑖𝑛. = 4.643 𝑖𝑛. 

𝑓𝑠 = (6.86)
(354.97 𝑘𝑖𝑝 ∙ 𝑖𝑛. )(4.643 𝑖𝑛. )

238.113 𝑖𝑛.4
= 47.5 𝑘𝑠𝑖 
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Note that 

𝑀 = applied moment, lb-in. 

𝐴𝑠 = area of longitudinal tension reinforcement, in.2 

𝐴𝑠𝑡𝑟 = transformed area of longitudinal tension reinforcement, in.2 

𝜌1 = reinforcement ratio for bottom layer of steel 

𝜌1 = reinforcement ratio for top layer of steel 

𝑓𝑠 = stress in steel reinforcement under load, ksi 

𝐼𝑐𝑟 = cracked moment of inertia, in.4 

𝑛 = ratio of steel modulus of elasticity to concrete modulus of elasticity 

𝑑 = effective depth to centroid of longitudinal tension reinforcement, in. 

𝑘𝑑 = depth from top of section to cracked neutral axis, in. 

 

 

 

 

  

 


