
AN ANALYTICAL COMPARISON OF GRID FILE

AND K-D-B-TREE STRUCTURES

By

HATICE NILUFER ANLAR SARITEPE
II

Bachelor of Science in Electrical Engineering

Bogazici University

Istanbul, Turkey

1981

Submitted to the Faculty of the Graduate College
of the Oklahoma State University

in partial fulfillment of the requirements
for the Degree of
MASTER OF SCIENCE

December, 1987

fu~~
lCi ~1 D
'S :i t.\-S" 0-

U!i?· :t

AN ANALYTICAL COMPARISON OF GRID FILE

AND K-D-B-TREE STRUCTURES

Thesis Approved:

~esis Adviser

,zO,/J!!d~

Dean of the Graduate College

ii

1291049

ACKNOWLEDGMENTS

I would like to express my deepest appreciation and respect to my

major adviser, Dr. Michael J. Folk, for his patient guidance, concern

and invaluable help in completing this thesis. I also thank Dr. Donald

D. Fisher and Dr. George E. Hedrick for serving on my committee and for

their encouragement during the course of my studies.

I am deeply indebted to Dr. Mete Oner for his help in the problems

related to statistics and a careful reading of the thesis.

I owe my special thanks to my parents Nakip and Nuran Anlar, my

sister Nilgun, for their love and moral support. Most of all I thank my

husband Selcuk for his love, understanding and constant support.

iii

TABLE OF CONTENTS

Chapter

I. INTRODUCTION

II. REVIEW OF LITERATURE

III. DESCRIPTION OF GRID FILE AND K-D-B-TREE STRUCTURES

Introduction.
Grid File .
K-d-B-tree.
Performance Evaluation Criteria

Cost of a Search. . .
Cost of an Insertion
Memory Utilization.

Basic Parameters and Relationships.
Common Parameters and Relationships
Relationships for Grid File .
Relationships for K-d-B-tree.

IV. QUERY PERFORMANCE ..

Classification of Queries
Query Performance of Grid File.

FP Case
PP Case
FR Case
PR Case
FF Case
PF Case

Query Performance of K-d-B-tree
FP Case
PP Case
FR Case
PR Case
FF Case
PF Case

Comparisons

V. INSERTION PERFORMANCE.

Introduction.
Measuring the Cost of an Insertion.

iv

Page

1

3

8

8
9

11
12
12
14
15
15
15
16
17

19

19
22
23
24
24
24
25
25
26
27
25
28
29
29
29
30

50

50
51

Chapter

Probability of Splitting ...
Cost of Splitting

Insertion Performance: Results.

Page

52
56
60

VI. MEMORY UTILIZATION 62

Introduction.
Bucket Utilization.
Size of Access Mechanism.

Comparison.

VII. CONCLUSIONS.

62
62
63
66

73

Summary and Conclusions 73
Suggestions for Future Work 75

BIBLIOGRAPHY. 77

APPENDIXES. . 79

APPENDIX A - NUMBER OF ACCESSED INTERVALS IN A RANGE QUERY 80

APPENDIX B - BUCKET OCCUPANCY AT SPLITTING 85

APPENDIX C - INSERTIONS WITH SPLITTING 87

APPENDIX D - TABLE OF SYMBOLS. 91

v

Table

I.

II.

III.

IV.

LIST OF TABLES

Classification of Query Types

Comparison of Block Accesses: FP Queries
(N=lOOOOO, c=lOO)

Comparison of Block Accesses: FR Queries
(N=lOOOOO, c=lOO)

Comparison of Block Accesses: FR Queries
(f=l, c=lOO).

Page

20

33

34

35

V. Summary of Block Access Formulas for Queries 48

VI.

VII.

Number of Buckets . . .

Comparison of Access Mechanism Sizes
(c=lOO)

VIII. Comparison of Access Mechanism Sizes
(N=lOOOOO).

IX. Results of Numeric Experiments.

X. Table of Symbols

vi

64

69

71

86

91

LIST OF FIGURES

Figure Page

1. A Convex Assignment of Grid Blocks to Buckets .. 9

2. A Search for a Record by Using a Grid Directory. 10

3. Space Partitioning of a K-d-B-tree 11

4. A Search for a Record by Using a K-d-B-tree
(k=2, m=3, c=4, N=26) 13

5. Comparison of Block Accesses: FR Case (Database Size 10000). 36

6. Comparison of Block Accesses: FR Case (Database Size 30000). 37

7. Comparison of Block Accesses: FR Case (Database Size 100000) 38

8. Comparison of Block Accesses: FR Case (Database Size 300000) 39

9. Comparison of Block Accesses: FR Case (Database Size 1000000). 40

10. Effect of Cycles on K-d-B-tree Bucket Accesses
(Database Size 100000) 41

11. Effect of Cycles on K-d-B-tree Node Accesses
(Database Size 100000) 42

12. Effect of Dimension on Grid File Node Accesses 43

13. Effect of Dimension on K-d-B-tree Node Accesses. 44

14. Comparison of Block Accesses: FR Case (Dimension 2). 45

15. Comparison of Block Accesses: FR Case (Dimension 4). 46

16. Comparison of Block Accesses: FR Case (Dimension 8) . 47

17. Distribution of Bucket Occupancy Ratio at Splitting. 54

18. Bucket Occupancy Ratio at Splitting. 57

19. Number of Intervals Spanned in a Range Query (n=7) 83

20. Expected Number of Intervals in a Range Query ... 84

vii

Figure

21. Insertions with Splitting (Grid File).

22. Insertions with Splitting (K-d-B-tree)

viii

Page

89

90

CHAPTER I

INTRODUCTION

The grid file and the k-d-B-tree are two dynamic multikey access

techniques developed in recent years. Separate studies have been

reported on these structures from the point of view of examining their

efficacy in generating, accessing, and maintaining data files. The

conditions under which these two structures have been examined, as well

as the methodologies used in these examinations are different for the

two structures. Consequently, conclusions regarding their relative

performance and suitability to specific applications can not be derived

easily from the results of published studies. Therefore it is necessary

to investigate the performance of the two file structures on a number of

essential features using the same general criteria.

The objectives of the studies reported in this thesis are to

establish performance evaluation criteria for comparing the two

structures, and to apply these criteria to both structures to obtain

specific information on their efficiency and other relevant

characteristics.

An analytical approach has been followed in this study in order to

derive general formulas that can be used to estimate the relative

performance of the two structures. Some numerical results have also

been presented to illustrate the usage of these formulas as well as to

obtain some indications for relative performance. At the beginning of

1

J

this research we considered comparing the results of simulations or

simplified impementations based on a hypothetical database. It is

believed that the analytical approach is more suitable for the purposes

of this study due to a number of reasons: programming details could

affect the comparisons, many runs are needed for a statistically

meaningful result in a simulation, and the properties of the

hypothetical database may not be typical for a real application.

2

Chapter II is a general review of literature on multikey access

techniques. Chapter III contains a brief description of the grid file

and k-d-B-tree structures. A set of criteria for comparing their

performance is developed in this chapter. The chapter concludes by

giving the parameters and relationships for both structures.

Chapters IV, V, and VI contain the analyses and discussions of the

three basic aspects of performance: query efficiency, insertion

performance, and memory utilization. Chapter VII summarizes the

findings of these studies.

CHAPTER II

REVIEW OF LITERATURE

In recent years, the increasing usage of databases and integrated

information systems has encouraged the development of file structures

specifically suited to accessing records by combinations of attribute

values. The method of using several attributes for accessing records is

called multikey access, and records specified with several keys are

called multidimensional data. The early development of file structures

that provide multikey access to records are extensions of file

structures originally designed for single-key access. Most balanced

structures for single-key data rely on a total ordering of the set of

key values. Since natural total orders of multidimensional data do not

exist, the design of balanced data structures for multidimensional data

is significantly more difficult.

Inverted files were among the earliest of file structures designed

for multikey access [l]. Since they have been used in most applications

they have been accepted as a standard to evaluate alternative

approaches. Inverted files are well suited for accessing records on the

basis of Boolean conditions on the attributes, but they exhibit some

drawbacks. First, retrieval of the inverted lists may require an

excessive number of disk accesses. Second, the overhead required for

insertions and deletions can become prohibitive in terms of space and

time. Finally, in environments where several keys are equally

3

significant, a file structure that treats all significant keys

symmetrically is appealing.

4

In the remainder of this section we briefly describe a variety of

multikey file structures, each designed to perform better than an

inverted file in at least some circumstances. Many of the approaches are

generalizations of well-known single-Key file structures.

Several generalizations of inverted files have been proposed. Lum

[2] describes "combined indices", in which several attributes are

concatenated in various orders and then treated as a single, aggregate

key. If more than three attributes are combined, both the storage space

and update time become excessive. By combining them in groups of three,

however, the number of disk accesses to retrieve inverted lists can be

reduced substantially, at the cost of some increased complexity [3].

Vallarino [4] describes another generalization of inverted lists called

"compressed bitmaps". Bit-encoded inverted lists are the basis of this

structure. They form a large sparse bit array, which is then

represented in highly compressed form and used to locate records

specified by a selection condition. Another organization that exploits

compression in providing multikey access is the "transposed file"

organization [51]. In this organization, vectors consisting of the

values of a particular attribute for all records are stored in a highly

compressed form. Thus, the retrievals and updates that refer to only a

few attributes do not involve memory transfers of irrelevant attributes.

This approach is most effective when the majority of operations deal

with a significant portion of the records (i.e., one to three percent)

and selection conditions involve only a few attributes.

5

Rothnie and Lozano [6] describe a generalization of hashing in

which a bucket address for a record is formed by concatenating the

results of hash functions, each of which is applied to the value of one

key. A critical design decision in setting up such a "multikey hash

file" is the determination of the number of the bits to be allocated to

represent the hashed value of each attribute. The more attribute values

specified, the smaller the number of buckets that need to be accessed in

order to obtain the required records [7]. Because it is difficult to

specify a combination of hash functions that lead to a uniform occupancy

of buckets, it is necessary to tolerate either a low bucket occupancy,

or a high likelihood that buckets overflow (more than one storage block

is needed to hold the records corresponding to a single bucket). Also,

like most hashing schemes, multikey hashing is inappropriate when the

selection condition involves ranges of values rather than specific

values.

Various generalizations of tree structured indices permit multikey

access to files. Quad trees are a two-attribute generalization of

binary search trees [8]. The straightforward generalization to k

dimensions is impractical because the tree nodes become large and

contain many nil pointers. These problems are avoided in k-d-trees (9,

10], which can be thought of as k-dimensional generalization of binary

search trees. Each level of the tree is associated with a different key

in turn. K-d-trees are efficient for large and very large databases.

Similarly, binary TRIEs can be generalized to support multikey

access [l]. This is achieved by representing each attribute value as a

bit string and interleaving these strings. The result is then used as

the key in a standard binary TRIE.

6

The "multiple-attribute tree" database organization orders the

records lexicographically on the key fields, with the more significant

attributes placed toward the higher end of the sorting field [11]. Then

the key fields are separated from the records and organized into a

doubly-chained tree. The tree can then be used to locate all relevant

records for a given query. If both the number of records and the number

of attributes are large, several disk accesses may be required to locate

records satisfying specified constraints on key values.

Casey describes a complex tree-based multikey access structure in

which records are grouped according to the frequency in which they are

retrieved together [12]. "Superimposed coding" is used in each node to

characterize the records below the node in the tree. Probably because

of its complexity, this organization has not been widely used in

practice. The importance of this structure is due to the fact that,

more than with any other multikey file structure, the selection

conditions used in accessing the file influence the its organization.

A "Quintary tree" is a file structure intended to provide faster

access then other tree-based multikey file structures, at the cost of

requiring more space [13]. Quintary trees consist of k levels,

corresponding to the k attributes in decreasing order of importance.

Each level resembles a binary tree branching on the values of the

corresponding attribute.

Robinson [14] describes "k-d-B-trees" which combine properties of

both B-trees and k-d-trees. It is a balanced multiway tree and each

level of the tree corresponds to a different attribute. Internal nodes

reflect the partitioning of the search space into nonoverlapping

regions. Performance of k-d-B-trees on partially specified queries is

explained in [15]. Similar to k-d-B-trees, "multidimensional B-trees"

and other related approaches are explained in [16, 17].

7

Along with k-d-B-tree, other multikey organizations have been

proposed recently that are also based on the idea of partitioning

k-dimensional space and then storing the records corresponding to each

cell of the partition in a single block of secondary storage. One such

organization is the "multidimensional directory" suggested by Liou and

Yao [18]. Attributes are ordered by priority, and higher priorities are

associated with the attributes that appear more often in the queries. A

multidimensional directory, which contains one entry per secondary

storage block, is used for retrieval of records.

The "grid file" is also based on the idea of partitioning the

search space by treating all dimensions symmetrically [19]. A dynamic

grid directory is utilized to locate the records on the secondary

storage blocks. This file system adapts gracefully to its contents

under insertions and deletions, and thus achieves an upper bound of two

disk accesses for single record retrieval; it also handles range queries

efficiently.

Multipaging, dynamic multipaging and interpolation based index

maintenance are some other recent multikey access schemes mentioned in

[19] that utilize grid partitions of search space in ways similar to

grid files [20, 21, 22].

CHAPTER III

DESCRIPTION OF GRID FILE AND K-D-B-TREE STRUCTURES

Introduction

Searching techniques for multikey access can usually be divided

into the following two categories:

a. techniques that organize the specific set of data to be stored

and,

b. techniques that organize the search space to which the data

belongs.

Comparative search techniques, such as different tree structures

fall into the first category. In these structures, the boundaries

between different regions of the search space are determined by values

of data that are to be stored. On the other hand, address computation

techniques, such as hash files fall into the second category. K-d-B

tree and grid file are two good examples of these two categories

respectively. Both structures partition the search space into

subspaces, down to the record level on the secondary storage. But, the

way they do this partitioning is different and much can be learned by

comparing these two structures.

Grid File

The grid file is based on the use of "rectangular" partitions that

divide the search space into regions. Each region has the shape of a

8

9

rectangle in a two-dimensional space and the shape of a box in a three

dimensional space. In a k-dimensional space these regions may be

visualized as k-dimensional rectangles. Each region boundary cuts the

entire search space into two. The grid file assumes that the attributes

are independent so that the partitions are fully utilized. Partitioning

of the record space is done by imposing a number of intervals on each

dimension. The intersection of these intervals divides the record space

into blocks, called "grid blocks." All records in one grid block are

stored in the same bucket, but it is possible for several grid blocks to

share the same bucket, as long as the union of these grid blocks forms a

region in the record space. The regions of buckets are pairwise

disjoint, together they span the entire space of records (Figure 1).

Search Space

Grid Partition

Grid Block

•••
Buckets

Figure 1. Assignment of Grid Blocks to Buckets

10

The dynamic correspondence between the grid blocks in the record

space and data buckets is provided by a "grid directory." The grid

directory consists of two parts:

a. k one-dimensional arrays called linear scales, and

b. one k-dimensional array called the grid array.

Each linear scale defines the partitioning of each dimension and is

divided into a certain number of intervals. Linear scales are used as

indexes to the grid array. Elements of the grid array are the pointers

to the data buckets and are in one-to-one correspondence with the grid

blocks of the partition. To access a record, first the linear scales

are searched to find the related intervals for the key values. These

intervals are used to locate the grid block in the grid directory. That

grid block contains the address of the bucket where the record is

stored. An example of a search for a record by using a grid directory

is shown in Figure 2.

Search Values (X, 90) ! 20 j 4o I so I l100 I 80 Li near Sea I e 2

1 2 3 4 5
Linear scale 1 t

F 1

K 2 Bucket

Ix, go I
p 3

z

Figure 2. A Search for a Record by Using a Grid directory.

(

11

The grid file is designed to handle efficiently a collection of

records with a modest number of search attributes (k<lO) whose domains

are large and linearly ordered (19]. If we define a bucket as a storage

unit that contains records, research indicates that grid file gives the

best performance when the bucket capacity (c) is between 10 and 1000

records (19].

K-d-B-tree

A k-d-B-tree is a balanced multiway search tree with fixed sized

nodes. K-d-B-trees partition the search space in a manner similar to k-

d-trees: the search space is divided into subspaces based on a

comparison with some element of a single domain (Figure 3).

.
•• ..

"Root

.· . .

Figure 3. Space Partitioning of a K-d-B-tree

Search space

Record

12

A k-d-B-tree has the following properties [14]. Different levels

of the tree correspond to different keys. The root of the tree

represents the partitioning of the entire k-dimensional search space

with respect to the first key. As in a B-tree, a k-d-B-tree consists of

a root and a collection of nodes. Each node in a k-d-B-tree, including

the root node, contains key values that define the regions on which the

next level of the tree is based, and the pointers for each region that

point to the nodes of the next level. The leaf nodes have the same

structure, but instead of node-pointers, there are bucket addresses.

The path length from the root node to a leaf node is the same for all

leaves. The regions defined in every node are disjoint and their union

is also a region.

An example of a search for a record by using a k-d-B-tree is shown

in Figure 4.

Performance Evaluation Criteria

In this section we discuss possible criteria for comparing the

relative performance of the grid file and k-d-B-tree in queries,

insertions, and memory utilization.

Cost of a Search

To compare the cost of a search in a grid file accessed database

and in a k-d-B-tree accessed database, a common measure has to be

defined. The basic unit of measure used in this study is the number of

block accesses required to respond to a given query. The types of

operations that involve block accesses for a grid file are retrieval of

linear scales, retrieval of the grid array, and retrieval of buckets.

Search Values (X, 90)

Root

Keyl I A .

Key2 30 70 30 60 . 30 so I

•If < I ' , ~ <I '~ ·~ '~

B 20 c so A 90 M 30 K 60 J 80 T 30 s 40 Ix 901

Buckets
F 10 D 70 G 80 N 10 L 40 a 90 w 20 u so y 60

H 30 E 60 p 2S 0 so z 10 v 45

I 60 A 20

Figure 4. A Search for a Record by Using a K-d-B-tree (k=2, m=3, c=4, N=26)

14

For a k-d-B-tree the type of operations that involve block accesses are

retrieval of nodes and retrieval of buckets. There are different types

of queries. Each type of query search for a grid file can be compared

to the same type of query search using a k-d-B-tree.

Once the expected counts of the block accesses are found, then the

cost of each type of search can be computed relative to the costs of the

other types of searches.

Cost of an Insertion

When a new record is inserted into the database it is necessary to

determine whether the bucket in which it belongs has available space.

If the bucket has enough room then the new record is inserted without

any complication. But if the bucket is already full, it causes overflow

and splitting becomes necessary. Even though splitting is assumed to

occur rarely, when measuring cost it needs to be considered.

To calculate the average cost of an insertion, we may utilize the

following probability formula:

where

E(insertion) ~Cl P(x) + C2 (1 - P(x))

E(insertion) is the expected cost of an insertion,

Cl is the cost of an insertion wi'th splitting,

C2 is the cost of an insertion without splitting.

(3.1)

P(x) represents the probability of an occurrence of a splitting

case, and 1 - P(x) the probability that splitting will not occur.

Since splitting is rare we may expect to have a small probability

value for P(x). Cl and C2 can be considered as the maximum and the

minimum costs for the insertion respectively.

15

Memory Utilization

Memory utilization can be studied in two parts: bucket occupancy

and the memory required by the grid file and the k-d-B-tree structures

themselves.

The bucket occupancy ratio is a good measure of the memory

utilization efficiency of an access mechanism. Alternatively, one may

consider the number of buckets required to hold the records of a given

database.

In a grid file the amount of memory required for the structure

itself may be calculated by considering the sizes of the linear scales

and the grid array. In the k-d-B-tree case this involves the amount of

memory required to hold the information that is contained in nodes;

pointers and key values.

Basic Parameters and Relationships

We will first define a consistent set of parameters governing the

basic features of the grid file and k-d-B-tree, and then study their

inter-relationships. These relationships will be needed in comparison

studies that will follow.

In the formulations it will be assumed that the key fields

(attributes) are not correlated.

Common Parameters and Relationships

Parameters common to both the grid file and k-d-B-tree are

N total number of records in the database,

b number of buckets,

c =bucket capacity (in terms of records),

e = average bucket occupancy ratio,

k number of keys (dimension).

16

The total number of records can be calculated in the same way for

both structures, namely

N = b c e (3.2)

Relationships for Grid File

In the grid file structure there is a linear scale associated with

the domain of each key. The number of the linear scales is the same as

the number of keys, that is k. If there are ni intervals in the linear

scale for key number i, then the total number of grid blocks in grid

array G may be expressed as:

(3.3)

or

k

G =TI ni (3.4)

i=l

To obtain a working equation for an approximate analysis we may

consider the special case where all linear scales have been divided into

the same number of intervals, n. This simplifies Eq. (1.3) as:

(3.5)

In grid file storage organization it is common to assign more than

one grid block to each bucket. If r denotes the number of grid blocks

per bucket, then, by definition,

r = G I b (3.6)

or, on substitution of Eq. (3.5),

r = nk / b

A typical average value for r seems to be 2 in [19].

Solving b from Eq. (3.7) and substituting in Eq. (3.2) yields:

17

(3. 7)

N = nk c eg / r (3. 8)

In the formula above, the eg is the bucket occupancy ratio for the grid

file.

Relationships for K-d-B-tree

In a k-d-B-tree it is not necessary that all nodes be of the same

order. Node order can vary from one level to another, and even within a

level. In this study node order, m, is assumed to be the same for the

internal nodes throughout the whole tree to be able to generalize the

relationships. The height of the tree is represented by h. Height of

the tree is the path length from the root to the leaf level. Leaf nodes

contain bucket pointers. To calculate the maximum number of buckets

required we need to know the number of pointers at the leaf level. The

following formula gives the maximum number of buckets in terms of the

tree height h and order m.

b = mh (3.9)

To distinguish it from the grid file storage efficiency, the

efficiency for the k-d-B-tree is denoted by ek. The number of records

can be expressed in the following formula:

N mh c ek (3 . 10)

The formula above includes almost all important parameters. The

dimension, k, does not appear in the formula explicitly. Actually the

dimension is a major factor affecting tree height, h. From the

18

definition of the k-d-B-tree, we can easily say that the minimwn value

for the height is the nwnber of the keys used, which is k. We can not

know the usage frequency of each key, but if we assume the frequency is

the same for all of the keys and denote it as f, then we get the

following relationship:

h = f k (3.11)

When the frequency is the same for all the keys, then it has to be

an integer. If all the keys are used only once in the partitioning of

the tree then f is 1. At this point we define the concept of "cycle"

which is very similar to the usage frequency. If the dimension of the

tree is two, then keyl and key2 are used in sequence in the partitioning

of the tree. If the keys are used more than once then the same sequence

of the keys (keyl, key2) continues and each sequence is called a cycle.

Since frequency is assumed to be the same for all the keys, then

frequency is equal to the number of cycles in the tree. So, those two

terms can be used interchangeably. In this study the range value for

frequency and cycle is assumed to be between 1 and 4.

CHAPTER IV

QUERY PERFORMANCE

Classification of Queries

A file is a collection of records and a record can be considered to

be a collection of key values and any additional information about the

item in the record. Multikey access allows the records in a file to be

referenced by using any possible subset of the key fields.

The databases suited to a multikey access structure are grouped in

two categories. The first group includes records whose keys

(attributes) are many but their domains are small. This group is not

very typical. The second and more typical group includes records

characterized by a small number of keys (less than 10), but the domain

of each key is large and linearly ordered. The second case will be

considered in this study.

For the second case we can specify ranges by expressions of the

form li <= keyi <- ui where li and ui are the lower and upper bounds

of the domain, respectively, for the key keyi. When li becomes the

smallest and ui becomes the largest values of the domain i, then the

range becomes a "full range" covering the entire domain. Similarly, if

li becomes equal to ui, then the range becomes a "point".

Queries can be classified into three groups by the range of the key

values according to the above definitions.

19

20

a. Point query: the requested value of key field is a single value

in the domain of that key field.

b. Range query: a valid range inside the domain of the key

specified for that requested key.

c. Full range query: values spanning the whole domain of that key

is requested. This can be considered as a "don't care" case.

In a multidimensional search space, a record consists of many keys.

For retrieval of one or more records, either all of the keys or a subset

of them are specified. If the total number of keys is k, denote by ks

the number of specified keys. Therefore another classification of

queries can be done according to the number of keys used in a query.

a. Partially specified query: some keys (ks<k) are specified.

b. Fully specified query: all keys (k) are specified.

As a result of these two independent classifications, there are, in

general, six combinations as shown in Table I.

TABLE I

CLASSIFICATION OF QUERY TYPES

Point Range Full Range

Fully FP FR FF
Specified

Partially pp PR PF
Specified

These query types have been labeled by two-letter symbolic names

for use in the discussions that follow. The first letter indicates

21

whether the query is Partially (P) or Fully (F) specified. The second

letter indicates the range covered; P for Point, R for general range,

and F for full range.

To see how these different types of queries work, a small sample

database can be used. This database has information about some high

school students. Key fields are last name, year of birth and GPA.

Records may have more information beside key fields. Let us assume the

following records are stored in this database. An example of each query

type is given below.

Rec No. Last Name Year of Birth GPA Other Info.

1 Anderson 1969 2.45
2 Jones 1970 3.32
3 Marble 1971 3.87
4 Smith 1964 2.85
5 Taylor 1968 3.20
6 Wilson 1972 3.75
7 Watson 1973 2.48

FP Type Query

Query: Find the record for the student whose last name is Smith, born

in 1964 with GPA 2.85.

Result: Record no. 4.

PP Type Query

Query: Find the information about the student whose last name is Wilson

and born in 1972.

Result: Record no. 6.

FR Type Query

Query: Find the student records with last names between M .. and T .. ,

born between 1965 and 1975, and have GPAs between 2.50 and 3.50.

Result: Records 3,4 and 5.

PR Type Query

Query: Find the student records with last names starting with W and

born between 1970 and 1975.

Result: Records 6 and 7.

FF Type Query

Query: Find the student records with last names between A .. and Z ...

and born between 1960 and 1980 and with GPA between 1.00 and 4.00.

Result: Records 1, 2, 3, 4, 5, 6, and 7.

PF Type Query

Query: Find the records for the students born between 1960 and 1980.

Result: Records 1, 2, 3, 4, 5, 6, and 7.

Query Performance of Grid File

22

In the grid file structure, the retrieval of records involves three

different types of block accesses for all types of the queries: linear

scales, grid blocks, buckets.

According to the nature of each query type the number of block

accesses involved in each step is expected to be different for the cases

above. To calculate the cost of each query, the cost associated with

each type of block access needs to be considered. The following

notation will be used to indicate the different costs involved in the

grid file structure:

C1 cost of a linear scale access,

Cg cost of a grid block access,

Cb cost of a bucket access.

Then the cost of a query can be computed as

Eg(query) = C1 a1 + Cg ag + Cb ab

23

(4.1)

where a1, ag, and ab denote the number of linear scales, grid blocks,

and buckets accessed, respectively.

To obtain the expected cost of each query type, each case needs to

be examined separately to obtain the probable number of accesses.

In range type queries (FR and PR), it is necessary to estimate the

number of intervals that will be covered by a "typicai" range query

specification. If a linear scale has been divided into n intervals,

then the number of covered intervals will range from 1 through n. The

expected value of these covered intervals is called na in the following.

Naturally na is related to n. This relationship is derived

probabilistically and explained in Appendix A. It has also been

evaluated numerically, and the following curve fit has been derived for

use in the block access count formulas,

FP Case

0.80 n0.7l, n < 9

0.57 n0.87, n >= 9

(4.2)

(4.3)

Since all linear scales are searched in this type of query, the

number of linear scales accessed is k. FP type of query specifies point

values for all keys which defines at most one unique record in the data

base. Thus in this case only one grid block and one bucket need to be

accessed:

k

1

1

(4.4)

(4.5)

(4.6)

24

PP Case

In this case ks keys are specified, therefore the same number of

linear scales will be accessed:

(4. 7)

The number of grid blocks to be accessed in this case is determined by

the "don't care" keys, because there will be one linear scale interval

for each of the specified keys while the entire domain of a "don't care"

key has to be searched. Thus,

The number of buckets to be accessed is equal to the number of grid

blocks divided by r, the number of grid blocks per bucket:

(4.9)

FR Case

Since all keys are specified in this case, all linear scales are

searched:

(4.10)

For range queries it is assumed that a range covers na intervals on each

linear scale. So the number of grid blocks to be accessed is:

a =nk (4.11) g a

The number of buckets to be accessed is equal to the number of grid

blocks divided by the number of grid blocks per bucket, r:

% = nak I r

PR Case

(4.12)

In this case ks keys are specified, therefore the same number of

linear scales will be accessed:

25

(4.13)

For specified keys only na intervals (out of n intervals) in the related

linear scale will be accessed. But for the unspecified (k-ks) keys, all

the intervals in the corresponding linear scale will have to be

considered. So the nwnber of grid blocks to be accessed is determined

by:

(4.14)

The nwnber of buckets to be accessed is equal to the nwnber of grid

blocks divided by r:

(4.15)

FF Case

In this case all keys are used and their entire domains are

covered. This simply means that the entire database will be retrieved.

So the nwnber of linear scales will be k:

(4.16)

Also nwnber of grid blocks and number of buckets will be equal to their

maximwn nwnbers:

PF Case

(4.17)

(4.18)

In this case some keys are specified. So only these linear scales

are accessed:

a 1 = ks (4 . 19)

Specified keys cover their full domains. Since unspecified keys are

considered "don't care" keys they also cover their full domains. Then

the situation becomes the same as in FF case. Thus,

nk

nk I r

Query Performance of k-d-B-tree

26

(4.20)

(4.21)

In the k-d-B-Tree, the retrieval of records involves accesses of

the nodes and the buckets.

In order to compare the k-d-B-tree with the grid file it will be

assumed that: (1) a node in k-d-B-tree corresponds roughly to one linear

scale or one grid block of a grid file, (2) buckets have the same size

in both, and (3) the cost of accessing one bucket is the same in both

cases. Here, the number of node and bucket accesses involved for each

of the cases above shall be calculated. These counts will be used in

the numerical comparisons.

To calculate the cost of a query, the costs associated with a node

and a bucket access need to be considered. The following notation will

be used to indicate the different costs involved in the k-d-B-tree

structure:

Cn cost of a node access,

Cb cost of a bucket access.

The expected cost of a query (of any type) can then be expressed as

(4.22)

To obtain the expected cost of each query type, the number of node

and bucket accesses are needed. This is done in the following for each

query type. The root node is always accessed in each query, therefore,

it will be included in the counts for the number of node accesses. In

the following, the "l" at the beginning of each node count expression

corresponds to the root node.

27

In range type queries (FR and PR), we need to estimate the number

of pointers that will be accessed by a "typical" query specification.

If there are m pointers in a node, then any given query may require the

use of 1, 2, ... ' or m pointers at that node. The expected value of

this is called ma in the following. The relationship between m and ma

is the same as that between n and na that has been derived earlier for

the grid file (see Appendix A). Thus,

ma 0.80 m0.71, m < 9 (4.23)

0.57 m0. 87, m >= 9 (4.24)

FP Case

In a fully specified point query there is only one unique record

searched. Therefore only one bucket will be accessed:

% = 1 (4.25)

Also, there will be a single path to be followed, starting from the root

node down to the bucket that contains the record; thus, the number of

nodes that will be encountered in this search will be equal to the

height of the tree, h, which is equal to fk. In the following formula

the first term stands for the root node and second term represents the

other nodes.

an = 1 + (fk-1) fk (4.26)

PP Case

In this case some keys are specified by their point values. The

number of nodes to be accessed is determined by the "don't care" keys.

28

For those keys all pointers in the related nodes are used to go to the

next level in the tree. In the following formula the first term stands

for the root node, the second term is the sum of the nodes accessed in

the first cycle and third term is the number of the nodes accessed from

the second to fth cycle in the tree.

k-1 f-1 k

(4.27)

i=l j=l i=l

In order to calculate the number of buckets to be accessed, only the

"don't care" keys have to be considered in the first cycle. In the

other cycles all keys are considered:

ab = m<k-ks) m<f-l)k

FR Case

(4.28)

All keys are involved in this case. It is assumed that a range

query covers ma pointers of each node. This situation is only valid for

the first cycle since it defines the initial partitioning of the search

space. Other cycles refine the partitions of the first cycle therefore

all pointers in the nodes will be accessed for those cycles. In the

following formula the root node, nodes of first cycle and the nodes of

other cycles are represented by the first, second and last terms

respectively.

k-1 f-1 k

(4.29)

i=l j=l i=l

The number of buckets to be accessed will be:

(4.30)

29

PR Case

Similar to FR case, the number of pointers accessed in a node is ma

for the specified keys and m for the "don't care" keys. Root node,

nodes of first cycle and nodes of other cycles are represented by the

first, second and last terms of the following formula respectively.

k-1 f-1 k

~ 1 + L m i(ks/k) a
mi(l-ks/k) + m k a 2= 2= m(jk-i) (4.31)

i=l j=l i=l

The number of buckets to be accessed is:

ab = maks m<k-ks) m<f-l)k (4.32)

FF Case

Since all keys are specified and their full ranges are covered,

this case means that the entire database will be retrieved. The number

of nodes to be accessed is equal to the total number of the nodes in the

whole tree:

fk-1

1 + L mi

i=l

(4.33)

Similarly the number of buckets to be accessed is equal to the maximum

number of buckets that the structure can use:

(4.34)

PF Case

For specified keys, since the full range is requested, all the

pointers of the related nodes are used. For unspecified keys, full

ranges are covered by definition. Consequently, this case becomes the

30

same as PP case where the nwnber of nodes and nwnber of buckets are

given by:

fk-1

an = 1 + ~ mi

i=l

(mfk_l) / (m-1) (4.35)

m(fk) (4.36)

Comparisons

In order to investigate the comparative query performance of the

grid file and the k-d-B-tree a nwnber of hypothetical situations have

been considered. For the purpose of this investigation block access

counts have been computed for fully specified point and range queries.

Table II shows the results for Point queries for N=lOOOOO, and

c=lOO. For point queries, the nwnber of buckets accessed in both

structures is naturally 1.0, but the nwnber of block accesses varies.

In the grid file, the number of blocks (linear scales plus grid blocks)

accessed is simply one more than the nwnber of keys. In the case of k

d-B-tree, this count is about the same for f=l, but increases with the

number of cycles used. Therefore the grid file can be considered faster

for point queries.

Table III and Table IV give the results for the range queries. The

effects of database size, N, and dimension, k, can be observed from the

results in Table III. These results have also been plotted in Figures 5

through 9. It is noticed that there is an increased influence of k for

larger N. All access counts, except the node accesses in k-d-B-tree,

decrease with k. It is interesting to note that the block accesses in

grid file decrease with k while node access count increases with k for

31

f=l. Based on these results, it is concluded that k-d-B-tree structures

allow a faster access than grid file for small k cases while the

opposite is true for larger k. The value of k where the changeover

occurs changes with the database size; for the range covered, it is

approximately 8.

Comparison of the bucket access counts indicates a decrease with k

for both structures. For the entire N and k ranges covered in these

exercises, grid file performs better than a one-cycle k-d-B-tree, with

about 20% to 40% fewer access counts. It is desirable to repeat the

comparison with multi-cycle k-d-B-trees. This is done next.

In Table IV, and Figures 10 and 11, the effect of the number of

cycles, f, and dimension, k, for a file size, N=l00,000 can be observed.

In a k-d-B-tree structure f may be larger than 1, but how much larger

depends on the policy decisions made in a particular implementation.

Therefore an f range of 1-4 has been considered. It is clearly observed

that the advantages of k-d-B-tree tend to disappear very fast with

increased number of cycles. It is interesting to see the variation with

number of cycles is steeper in the node access counts and slower in

bucket access counts. One might conclude, therefore, that it is

advantageous for the range query performance of a k-d-B-tree to make

such policy decisions that will lead to smaller number of cycles.

In Table IV the effect of file size is investigated. The results

plotted in Figures 12 and 13 show the effects of dimension and the way

file size, N, influences these effects. Again, the number of blocks

accessed in the grid file case decreases with k while the corresponding

number, the number of node accesses, in a k-d-B-tree increases with k.

The general nature of these variations is not affected by the file size,

32

but it is clear that the rate of decrease with k becomes sharper as N

increases. In the case of k-d-B-tree, however, the rate of change of

the access counts does not seem to be affected appreciably with the file

size.

Figures 14 through 16 show the trends of the two structures in FR

type queries as the file size increases over wide ranges. It is

observed that the performance of the two are roughly parallel in terms

of block accesses (when the linear scale plus grid blocks in grid file

case, and node accesses in k-d-B-tree case are compared). For the

conditions assumed in theses exercises, grid file is clearly the

"winner." In terms of bucket accesses, k-d-B-tree seems to be more

economical at low dimensions, but the difference decreases at higher

dimensions; the two are the same at about k=8. Another interesting

observation that can be made in these figures is that the rate of

increase of node accesses with N in k-d-B-tree is very slow (about 1/2

of grid file). This is a factor that would make k-d-B-tree more

economical for very large databases. For f>l we have seen earlier that

k-d-B-tree access counts increase significantly with f, and therefore

these advantages may disappear in a realistic implementation.

These conclusions on the comparative performance of the two files

have been included to exemplify the usage of the general formulas

presented in this chapter. The actual performances may depend on the

parameters not considered in this evaluation.

Table V gives the summary of the formulas that are derived to

calculate the block accesses for all query types.

f= 1
keys

2
3
4
5
6
7
8
9

10
f= 2

keys
2
3
4
5
6
7
8
9

10
f= 3

keys
2
3
4
5
6
7
8
9

10
f= 4

keys
2
3
4
5
6
7
8
9

10

TABLE II

COMPARISON OF BLOCK ACCESSES: FP QUERIES
(N= 100000, c= 100)

nodes-GF nodes-KDB buckets-GP
3 2 1
4 3 1
5 4 1
6 5 1
7 6 1
8 7 1
9 8 1

10 9 1
11 10 1

nodes-GF nodes-KDB buckets-GF
3 4 1
4 6 1
5 8 1
6 10 1
7 12 1
8 14 1
9 16 1

10 18 1
11 20 1

nodes-GF nodes-KDB buckets-GF
3 6 1
4 9 1
5 12 1
6 15 1
7 18 1
8 21 1
9 24 1

10 27 1
11 30 1

nodes-GF nodes-KDB buckets-GF
3 8 1
4 12 1
5 16 1
6 20 1
7 24 1
8 28 1
9 32 1

10 36 1
11 40 1

33

buckets-KDB
1
1
1
1
1
1
1
1
1

buckets-KDB
1
1
1
1
1
1
1
1
1

buckets-KDB
1
1
1
1
1
1
1
1
1

buckets-KDB
1
1
1
1
1
1
1
1
1

f= 1
keys

2
3
4
5
6
7
8
9

10
f= 2

keys
2
3
4
5
6
7
8
9

10
f= 3

keys
2
3
4
5
6
7
8
9

10
f= 4

keys
2
3
4
5
6
7
8
9

10

TABLE III

COMPARISON OF BLOCK ACCESSES: FR QUERIES
(N= 100000, c= 100)

nodes-GF nodes-KDB buckets-GF
331. 92 15.37 164.96
191.06 29.91 94.03
120.43 39.50 58.22

98.15 48.32 46.57
80.52 53.88 37.26
66.61 56.84 29.81
55.69 57.81 23.85
47.15 57.34 19.08
40.52 55.87 15.26

nodes-GF nodes-KDB buckets-GF
331. 92 69.83 164.96
191. 06 122.83 94.03
120.43 157.29 58.22
98.15 175.25 46.57
80.52 180.90 37.26
66.61 178.03 29.81
55.69 169.65 23.85
47.15 157.99 19.08
40.52 144.65 15.26

nodes-GF nodes-KDB buckets-GF
331. 92 214.52 164.96
191.06 327.55 94.03
120.43 392.40 58.22

98.15 420.29 46.57
80.52 422.36 37.26
66.61 407.44 29.81
55.69 382.06 23.85
47.15 350.93 19.08
40.52 317.32 15.26

nodes-GF nodes-KDB buckets-GF
331. 92 408.74 164.96
191. 06 584.00 94.03
120.43 677. 99 58.22

98.15 712.92 46.57
80.52 707.69 37.26
66.61 676.61 29.81
55.69 630.07 23.85
47.15 575.44 19.08
40.52 517.76 15.26

34

buckets-KDB
206.42
117.66
79.41
63.53
50.82
40.66
32.53
26.02
20.82

buckets-KDB
363.80
291.04
232.83
186.26
149.01
119.21

95.37
76.29
61.04

buckets-KDB
520.70
416.56
333.24
266.60
213. 28
170.62
136.50
109.20

87.36

buckets-KDB
622.94
498.35
398.68
318.94
255.16
204.12
163.30
130. 64
104.51

N= 10000

N= 30000

N= 100000

N= 300000

TABLE IV

COMPARISON OF BLOCK ACCESSES: FR QUERIES
(f= 1, c= 100)

keys nodes-GF nodes-KDB buckets-GF buckets-KDB
2 46.51 6.28 22.25 27.85
3 31.38 10.89 14.19 19.35
4 26.70 14. 72 11.35 15.48
5 23.16 17.41 9.08 12.39
6 20.53 19.14 7.26 9.91
7 18.62 20.13 5.81 7.93
8 17.30 20.57 4.65 6.34
9 16.44 20.60 3. 72 5.07

10 15.95 20.34 2.98 4.06

keys nodes-GF nodes-KDB buckets-GF buckets-KDB
2 117.75 9.51 57.87 72.42
3 68.98 16.61 32.99 42.22
4 53.53 23.23 24.76 33.78
5 44.62 27.88 19.81 27.02
6 37.70 30.82 15.85 21. 62
7 32.36 32.42 12.68 17.29
8 28.29 33.02 10.14 13.84
9 25.23 32.88 8.11 11.07

10 22.98 32.23 6.49 8.85

keys nodes-GF nodes-KDB buckets-GF buckets-KDB
2 331. 92 15.37 164.96 206.42
3 191.06 29.91 94.03 117.66
4 120.43 39.50 58.22 79.41
5 98.15 48.32 46.57 63.53
6 80.52 53.88 37.26 50.82
7 66.61 56.84 29.81 40.66
8 55.69 57.81 23.85 32.53
9 47.15 57.34 19.08 26.02

10 40.52 55.87 15.26 20.82

keys nodes-GF nodes-KDB buckets-GF buckets-KDB
2 860.04 24.17 429.02 536.85
3 492.08 53.15 244.54 306.01
4 282.78 65.54 139. 39 173.23
5 208.20 81.83 101.60 138. 59
6 168.56 92.19 81.28 110.87
7 137 .05 97.67 65.02 88.69
8 112.04 99.42 52.02 70.96
9 92.23 98.46 41.61 56.76

10 76.58 95.59 33.29 45.41

35

"O
Q)
(/)
(/)
Q)
u
u
<(

(/)

+I

60.0

50.0

40.0

N= 10000

----... -----

\

36

c= 100

nodes-GF
nodes-KOS
buckets-GF --
buckets-KOS

i
I
I
I

i 30.0 1-----~~-~---+------------t---------+---------;

j ~\ '~
I\\ \, ,.._ ·- ---------------

-

O.OL------'L------L-------.1.-•------~------"''-------1..-----~''----.....£
2 4 6 8 10

Dimension

Figure 5. Comparison of Block Accesses: FR Case
(Database Size 10000)

"O
Q)
(J)
(J)
Q)
(.)
(.)

<
(J)

+>

N= 30000 e= 100

nodes-GF
------- nodes-KOS
---- buckets-GF
--- buckets-KOS

37

~80.01--~~~~~~+-~~~~~~+-~~~~~~-r-~~~~~~~
;:,
co
"O
c
lll

(J)
Q)

"O
0 z

-------------- ------- ---------
o.~L-~---'-----4..1..---~.1..----s~---~-L.---~a~-~~~--___.10

Dimension

Figure 6. Comparison of Block Accesses: FR Case
(Database Size 30000)

"O
(I)
(/)
(/)

(I)
0
0
<(

(/)
.µ
(I)

N= 100000 c= 1 00

---- nodes-GF
------- nodes-KOS
---- buckets-GF
--- buckets-KOS

38

t2oo.o~--'*----+--------r---------+-------~
:::J

CD

"C c
(0

(/)
(I)
"O

~

----- ---------·
~----

----- ------------
Q,QL-~.......JL.-~---1~~-i.~~--'"~~-J..~~_._~~---~~-

2 4 6 8 10

Figure 7. Comparison of Block Accesses: FR Case
(Database Size 100000)

Dimension

"O
Q)
Cl'l
(/)
Q)
u
u
<(

Cl'l
.µ
Q)

N= 300000 c= 1 00

-~~~ nodes-GF
------- nodes-KOS
---- buckets-GF
--- buckets-KOS

39

~soo.o~~~+-~~-+-~~~~~-4~~~~~~+-~--~~~-t
:J

CD

"O
c
ltJ

(/)
Q)

-g
z

\
\ \
\ \
\ \
\ \ ', \

----------_. ---
-~.::.:--r--
-- --1--___ --------- ------

o.~L----L-----4.1...----1-----s.1------L---~-a~----'-----'10

Dimension

Figure 8. Comparison of Block Accesses: FR Case
(Database Size 300000)

40

1 000000 c= 1 00

---- nodes-GF
nodes-KDB
buckets-GF
buckets-KOS

2000.Ql--4-----------------------"------------+-------~--1

1J
Q)
Ill
(I)

~ 500.0
u
<(

Ill
.µ
aJ

..::ii::
u
::;)
co
1J
c:
co
Ill -8 000.0
0 :z

\
\
\

\ \
\ \

----..------ --.... -.... -----

Figure 9. Comparison of Block Accesses: FR Case
(Database Size 1000000)

Dimension

1000.0

I
l

I f =
I i- c=lOO

1.0 I ------- 2.0

I ---- 3.0
800.0

..,_. ____
4.0 !

--- 5.0

Figure 10. Effect of Cycles on k-d-B-tree Node Accesses
(Database Size 100000)

41

I

"O
(!)
fl)
fl)
(!)
u

1600.0

1200.0

-

-

f =
1.0

------- 2.0
---- 3.0
--- 4.0
--- 5.0

//

42

c=lOO

----r-----..--
---...""'

'~

~ 800.0
// ~-

I "-.............._
fl)
(!)

"O
0 z

400.0

0.0
2

I /""'
- //

/
/

//

// .,.. ..
//

I/
//

i-

----------... ..- ----
I

4

I

6

....... ---------... -- ------......

------- ----------
----------- -------------

t I

8 10

Dimension

Figure 11. Effect of Cycles on k-d-B-tree Bucket Accesses
(Database Size 100000)

"'O
Q)
If)
If)
Q)
0
0
<(

(/)
Q)

"'O
0 z

, o-+

103

102

101

2.

N=
, 0000.0

------- 30000.0
---- 100000.0
--- 300000.0
--- 1000000.0

""' "'"'
" ", " '-,

" ' ', ,,
......_......_ ',

' ' -..
' -.. ',

' -... -------

4 6

43

...........................
-........

-................._
...................... -.... ... -............._ -- -...........

----............
..............._ ·- ---......_ ---------....... __ -- ---.. --

B 10
Dimension

Figure 12. Effect of Dimension on Grid File Node Accesses

-0
Q)
Ill
Ill
Q)
u
0
<(

(/)
Q)
-a
0 z

N=
, 0000.0

------- 30000.0
---- , 00000.0
--- 300000.0
--- , 000000.0

~
,.,,----

........

--.... --

44

-------- -------

--------- --------

Dimension

Figure 13. Effect of Dimension on k-d-B-tree Node Accesses

k= 2

nodes-GF
nodes-KDB
buckets-GF
buckets-KDB

1 a-+
Database Size

Figure 14. Comparison of Block Accesses: FR Case (Dimension 2)

45

"O
Q)
U'l
U'l
Q)
0
0
<(

U'l,

k= 4

---- nodes-GF
------- nodes-KOS
---- buckets-GF
--- bockets-KDB

t 102
::I co
"O c
(tJ

U'l
Q)
"O
0 z

10 .. 108

Database Size

Figure 15. Comparison of Block Accesses: FR Case (Dimension 4)

46

"O
Q)
(/)
(f)
Q)
u
u
<
(f)

.j.)
Q)

g 102

a:i

"O
c
co
(f)
Q)

"O
0 z

k= 8

nodes-GF
------- nodes-KOS
---- buckets-GF
--- buckets-t<DB

47

Database Size

Figure 16. Comparison of Block Accesses: FR Case (Dimension 8)

TABLE V

SUMMARY OF BLOCK ACCESS FORMULAS FOR QUERIES

FP Case:

PP Case:

FR Case:

PR Case:

FF Case:

PF Case:

Grid File

a1 - ks

a - n<k-ks) g

ab - n<k-ks) / r

a1 - k

a - n k g a

% - nak / r

a1 - ks

ag = naks n<k-ks)

ab = naks n<k-ks) / r

a1 - ks

a nk g -

% = nk I r

48

FP Case:

PP Case:

FR Case:

PR Case:

FF Case:

PF Case:

TABLE V (Continued)

K-d-B-tree

% = 1

k-1 f-1 k
an = 1 + ~ mi(l-ks/k) + ~ ~ m(jk-i)

i=l

k-1
a = n 1 + ~ m i a

i=l

ab - mak m<f-l)k

k-1
~ m i(ks/k) a

i=l

fk-1
~ = 1 + ~ mi

i=l

fk-1

+ mk a

j=l i=l

f-1
~

j=l

k
~ m(jk-i)

i=l

f-1
+ m k ~ a

j=l

(mfk_l) / (m-1)

an = 1 + ~ mi = (mfk-1) / (m-1)
i=l

k
~ m(jk-i)

i=l

49

CHAPTER V

INSERTION PERFORMANCE

Introduction

Insertion is an important issue affecting the performance of any

multikey access mechanism. Since their nature is different, the grid

file and the k-d-B-tree act differently with respect to insertions. In

this chapter our attention shall focus on the relative performance of

the two structures from this point of view.

In general, insertion includes three steps. The first step needed

is to find the right location to store the new record. Since the new

record is completely specified (all keys have some values), a point

query search will give the right bucket address for the new record. The

second step involves checking the space availability in the bucket to

decide about whether or not a split is needed. If there is enough room

in the bucket, then the record is simply added to that bucket. If the

bucket is full, then that bucket has to be split in two. This will also

cause some reorganization in the structure. This process will be called

"splitting" in the following. The final step in the insertion process

is actually storing the new record in the bucket it belongs to, which

means an actual disk write.

The cost associated with each step can be different for two cases

of insertions, insertions involving splitting and insertions without

splitting. The cost of the first step is the cost of a point query that

so

51

is calculated in Chapter III and is same for both cases. The cost of

the final step is the cost of an actual disk write operation that

depends on hardware but is also the same for both cases. In any case

the new record needs to be correctly located and stored. The difference

comes from the second step that checks whether or not splitting is

required. If splitting is not required then the cost of the second step

is zero. If splitting is necessary then the cost of the insertion can

be considerable. Therefore this requires further examination.

Splitting involves a division of the full bucket that is the target

of the new insertion. But it also creates an overhead related with the

access mechanism itself. After each bucket split, both grid file and k

d-B-tree structures need to be reorganized. The cost of this

reorganization overhead should be considered in estimating the average

cost of an insertion.

Measuring the Cost of an Insertion

To measure the cost of an insertion, the following probability

formula that has been introduced in Chapter III will be used.

E(insertion) = Cl P(x) + C2 (1 - P(x)) (5.1)

where E(insertion) is the expected cost of an insertion, Cl is the cost

of an insertion with splitting, and C2 is the cost of an insertion

without splitting. P(x) represents the probability of occurrence of

splitting at an insertion, and 1 - P(x) the probability that splitting

will not occur.

Since splitting is rare we may expect to have a small probability

value for P(x). On the other hand, splitting is a long operation of

reorganization of the entire structure, therefore the cost of insertion

with splitting, Cl, should be expected to be much larger than that

without splitting, C2. Cl and C2 can be considered as the maximum and

the minimum costs for the insertion respectively. Each of these

elements will be examined in the following.

Probability of Splitting

52

We know that we have to do a splitting in both grid files and k-d

B-trees when a bucket is full and a new record to be inserted falls into

that bucket. The important question here is what the probability, P(x),

of this happening is, since the expected cost depends on this

probability. Now we need to quantify P(x).

As the following analysis will indicate, the occurrence of

splitting closely interacts with the bucket occupancy ratio that the

structure maintains. In grid file and k-d-B-tree structures there is a

set of buckets (b). When the file matures, a certain occupancy ratio is

maintained. Afterwards, insertions will, from time to time, cause

splitting. In a matured file the splitting will come at a certain

period in a probabilistic sense. This period can be measured in terms

of average number of records that can be inserted without necessitating

a split and can be called "return period of splitting (TR)".

The return period, if it can be calculated, is related to the

probability of splitting. For example, if TR= 10, that is, a splitting

occurs every tenth insertion on the average, then the probability that

splitting will occur, P(x), in any one insertion is 0.1, thus,

P(x) = 1 /TR (5.2)

Therefore we need to evaluate T first. In order to find T,

consider a hypothetical set of ten (b-10) buckets each of which can hold

53

a one hundred (c=30) records. Since we assume that the database is

uniform, the probability that a new record will "hit" a given bucket is

0.1 in this case. Now if we assume a key value range of 0 to l, then

the first bucket will take records in the range (0, 0.1), the next

between 0.1 and 0.2 and so on, until bucket number 10 which will take

records in the range (0.9, 1). The total available capacity will be

bc=300, and at maturity there will be bce=300e records where e is the

average occupancy ratio. To study how the buckets are filled, we can

generate uniformly distributed random numbers, between 0 and 1, and

"put" each record into its bucket according to the value of the random

number, and continue this until one bucket overflows. This way we will

see both the average occupancy ratio, e, and its distribution over the

buckets at the moment splitting occurs.

When this numeric experiment was done, and repeated 100 times for

accuracy, the results plotted in Figure 17 were obtained. It is seen

that the average bucket occupancy ratio is e = 0.77, and its standard

deviation is sigma~ 0.064.

The most significant result of this numeric experiment is that the

occupancy ratio value obtained is the highest value that can be obtained

under the conditions assumed, and splitting occurs when this ratio is

reached. The relationship of eat splitting, e_split (i.e., e=e_split)

to the return period of splitting is established next.

An important point should be clarified at this point. Although we

referred to the random numbers generated in the numerical experiments as

"key values", as if we are considering a one dimensional structure, this

is not necessarily so. Because, irrespective of the number of keys, and

no matter which access mechanism is utilized, when we come to the bucket

OJ
c
0 ·-~
~
Q)
OJ
.0
0
....
0
L.
CD
.Q
E
:I
z

50.0

,_

40.0

-

30.0

-

20.0

-

10.0

-

o.o
.4

I

b = 10

c = 30

~

/ ~
~

7

I
_/ \

~ ~ I . I

.5 .6 .7 .8 .9 1.0

e_spl it

Figure 17. Distribution of Bucket Occupancy Ratio at Splitting

55

level there is only one array of buckets. What we assume is that the

file structure is capable of distributing the records "correctly" to the

buckets, such that the probability of hitting any given bucket is always

l/b. Therefore the results are equally valid for any file structure.

These distribution experiments show that, for b=lO and c=30, on the

average, a splitting is encountered when a bucket occupancy of .77 is

reached (e_split). Suppose a database maintains a .70 mean occupancy

ratio (eO). Then we are free to add .07bc records without having a

splitting. We call this value the "mean free capacity". In general the

mean free capacity is

TR = (e_split - eO) b c (5.3)

The mean free capacity is the number of records that can be inserted

until splitting occurs. If we assume that the system returns back to

the mean occupancy ratio after splitting, then obviously the return

period of splitting is equal to the mean free capacity. Since the

occupancy ratio will probably fluctuate around the mean value, eO, TR

may be taken as an estimate of' the return period. Therefore, the

probability of splitting upon an insertion can be expressed as

P(x) = 1 / [(e_split - eO) b c] (5.4)

As an example of the usage of these results, consider the mean

occupancy ratios in implementations of the grid file [19] and the k-d-B

tree [14] which report that they maintained mean occupancy ratios of 0.6

and 0.7, respectively. Using the same values given in the distribution

experiments (b-10, c=30, e_split~0.77) the return period of splitting

can be calculated (Equation 5.3). As a result of these calculations,

the return period of splitting is 21 and 51 records for grid file and k

d-B-tree respectively. That means, on the average, splitting occurs

after every 21 records in grid file whereas it only occurs after every

51 records in k-d-B-tree. For this specific case, splitting is almost

2.5 times more frequent in the grid file structure than in the k-d-B

tree structure.

56

Since the result found above is very useful, we have repeated the

numerical experiments for a wide range of parameters. The details of

these experiments are given in Appendix B. Figure 18 shows the summary

of the results. It is interesting to see the dependence of e_split on

the number and size of the buckets. As the number of buckets increase

e_split decreases, and as the bucket capacity increases e_split

increases.

Important practical conclusions can be derived from these results.

A smaller e_split means that there will be frequent splittings resulting

in a large free capacity. The actual splitting period will depend on

the mean occupancy ratio maintained by the file structure. If this

ratio is kept high then, in general, splitting will occur more

frequently. Also, if suitably large bucket capacity is not used, it

will not be possible to maintain a high occupancy ratio. It is also

clear that a high value of e_split is desirable from the point of view

of minimizing splitting. Numerical results indicate that, if this is a

critical issue, one has to use a relatively small number of larger

capacity buckets to increase e_split and thereby improve insertion

performance.

Cost of Splitting

To complete the cost analysis, we need to determine the cost of

splitting, Cl. There are many factors and situations to consider in

57

1.0

e_spl it

.9

.a

.7

.6

.s

.4

.3
3 10 30 100 300

Number of Buckets

Figure 18. Bucket Occupancy Ratio at Splitting

both the grid file and k-d-B-tree in order to estimate this cost. We

will now examine the splitting process in both structures.

58

For the grid file there can be two situations. The records in the

full bucket can belong to several grid blocks in the grid directory.

When the new bucket is created, the bucket addresses in the

corresponding grid blocks need to be updated to reflect the change.

This situation does not affect the grid directory size, it only requires

an update. But, if the records in the full bucket belong to a single

grid block in the grid directory then the situation becomes more

complex. The grid directory needs to be reorganized to hold the newly

created bucket address. This reorganization cause the splitting of some

grid blocks, changing the grid directory size. Depending on policy

decisions, this size change can as much as double the grid directory

size. Different splitting policies result in different refinements of

the grid partitions. Choice of dimension and location (the point at

which the linear scale is partitioned) is important.

The simplest splitting policies choose the dimension according to a

fixed schedule, perhaps cyclically. A splitting policy may favor keys

by splitting the corresponding dimension(s) more often than others.

This has the effect of increasing the precision of answers to partially

specified queries in which the favored key(s) is specified, but others

are not. For simplicity, the location of a split may be chosen as the

midpoint of the related interval for the simplicity. But according to

studies [19], little is changed if the splitting point is chosen from a

set of values that are convenient for a given application.

For the k-d-B-tree there are also two cases similar to the ones in

the grid file. If the leaf node partitioning related with the full

59

bucket have enough room available, then the newly created bucket can

only cause the update of that leaf node. But if the leaf node is too

full to accommodate the newly created bucket then a change in the

partitioning is needed. The important point here is that a number of

levels are involved in the reorganization. Sometimes reorganization is

only needed in a subtree, leading to less overhead. On the other hand,

if a new level is needed in the tree, then the whole tree needs to be

reorganized. Even though this situation is less likely to occur than the

other case, it has more overhead involved.

Regardless of their cause the reorganizations require some policy

decisions. Choosing the domain and the splitting point in the node (for

the related partition) are important aspects and the methods used are

analogous to grid file methods. For instance one way of choosing

domains is to do so cyclically. Similarly this cyclic method may be

modified if something is known about queries. It is desirable to favor

some domains if they are expected to be referred to more often. Also

given the splitting domain, the splitting point should be chosen so as

to have approximately the balanced number of records in the partitions

throughout the whole tree. The midpoint or median value can be among

the choices. In some cases, as with duplicate records, special care may

be needed. Overall, the reorganization of the tree affects the size of

the tree. In the worst case, the tree size can double.

From these considerations it becomes evident that the splitting

process is a complex one, and its cost can not be expressed in a simple

form because of the large number of different situations and possible

policy decisions that are made in any implementation. This aspect has

been left for future studies.

Insertion Performance: Results

In this chapter an attempt has been made to quantify the cost of

insertions for comparing the two structures. The results may be

summarized as follows.

a. The cost of an insertion can be computed on a statistical

basis, since a splitting operation will be encountered on some

insertions while others will only cost as much as a point query.

60

b. The expected cost can be expressed as a weighted average of the

cost of a splitting operation and the cost of a point query, the weights

being the probability of splitting per insertion, P(x), and 1 - P(x),

respectively.

c. A splitting operation may cost a different amount each time it

occurs, but the cost is, in general, much higher than that of an

insertion without splitting. This is true for both structures.

Although not quantified, it appears reasonable to expect a comparable

cost of splitting in the two structures.

d. The probability of splitting per insertion is the inverse of

the return period of splitting, measured as the number of records that

can be inserted without causing a splitting. The return period depends

on the mean bucket occupancy ratio maintained by a file structure, eO,

and the occupancy ratio at splitting, e_split (which is a function of b

and c).

From this discussion it follows that a comparison of the two

structures may be made, roughly, based on the return period of splitting

alone. For the same database size, if the two file structures use the

same bucket capacity then there will be about the same number of

buckets. So e_split will be approximately the same. Then the main

factor that governs the return period is the mean occupancy ratios

maintained. Under these conditions the structure that maintains a

higher bucket occupancy ratio will create more frequent splittings;

therefore its insertion performance will be inferior.

Another conclusion that may be derived from the studies of this

chapter is that if insertion performance is an important issue in a

given implementation, then one has to develop the structure, with

suitable policy decisions, to maintain a compatible bucket occupancy

ratio. The numerical results presented here may be used as a guide.

61

CHAPTER VI

MEMORY UTILIZATION

Introduction

To study the memory utilization of grid file and k-d-B-tree, we

need to investigate two separate aspects of memory usage:

a. how efficiently the buckets are utilized by two structures;

b. the storage required by the access mechanism, i.e., how much

storage is needed by the grid file and k-d-B-tree structures themselves.

These two aspects of memory usage will be disscussed in the

following.

Bucket Utilization

In simulation studies and actual implementations it has been

reported that bucket occupancy ratios of 0.70 in the grid file case, and

0.60 in the k-d-B-tree case can be maintained [14, 19]. Improving these

occupancy ratios may be possible for both access mechanisms because of

the flexibility in the policy decisions that can be made. In general,

it is desirable to obtain a high occupancy ratio for efficient

utilization of memory resources. However, the bucket occupancy ratio is

closely related to the frequency of splitting as discussed in Chapter 5.

Briefly, if the bucket occupancy ratio is kept large, then splitting is

more frequent. Clearly, frequent splittings degrade the insertion

62

63

performance. Therefore one has to consider this interaction between the

two in the design of access mechanisms for a specific application. If

efficient memory utilization is more important, then one has to

sacrifice from insertion speed, or vice versa. We have supplied some

data that may be useful in this regard.

For both structures the buckets that hold the actual database

records are expected to be kept in the secondary memory. To gain some

idea about this memory requirement we may calculate the number of

buckets needed in both grid file and k-d-B-tree, using the general

relationships derived in Chapter 3. Table VI gives the results obtained

in this manner; it shows the number of buckets needed for different

database sizes and for different bucket capacities. Bucket occupancy

ratios of 0.70 and 0.60 are used in the calculations for grid file and

k-d-B-tree respectively. Table VI shows that the number of buckets

increases when the database size increases. It is natural to expect

that more buckets are needed for larger database if the same bucket

capacity is used. Since the k-d-B-tree has a smaller average bucket

occupancy ratio, more buckets (17%) are required to accommodate the same

database. When the bucket capacity is increased, the number of buckets

decreases for both structures.

Size of Access Mechanism

To compare the memory requirements of the two access mechanisms, we

need to calculate the total number of bytes requires to store the grid

file and k-d-B-tree structures.

N = 1000

grid file
k-d-B-tree

N = 10000

grid file
k-d-B-tree

N = 50000

grid file
k-d-B-tree

N = 100000

grid file
k-d-B-tree

N = 500000

grid file
k-d-B-tree

N = 1000000

grid file
k-d-B-tree

TABLE VI

NUMBER OF BUCKETS

c=lO

143
167

c=lO

1429
1667

c=lO

7143
8333

c=lO

14286
16667

c=lO

71429
83333

c=lO

142857
166667

c=30

48
56

c=30

476
556

c=30

2381
2778

c-30

4762
5556

c=30

23810
27778

c=30

47619
55556

c=lOO

14
17

c=lOO

143
167

c=lOO

714
833

c-100

1429
1667

c=lOO

7143
8333

c=lOO

14286
16667

c=300

5
6

c=300

48
56

c=300

238
278

c=300

476
556

c=300

2381
2778

c=300

4762
5556

c=lOOO

1
2

64

c=lOOO

14
17

c=lOOO

71
83

c=lOOO

143
167

c=lOOO

714
833

c=lOOO

1429
1667

65

Grid file structure consists of linear scales and the grid

directory. Linear scales are one-dimensional arrays containing the key

values separating the intervals. Let us denote the number of bytes

needed to store one key value by v. This size naturally will depend on

the application.

The size of the grid directory is the dominating memory overhead of

the grid file structure. The grid directory consists of the grid

blocks, and each grid block contains a bucket address (or a pointer).

Let us denote the number of bytes needed to hold one such pointer by p.

The number of grid blocks in the grid directory is given by nk as

derived in Chapter 3.

Since each linear array is associated with a different key, the

number of keys gives the total number of the linear scales needed. Each

linear scale contains n key values, and the grid array contains nk

entries. Thus the total size of the grid file access mechanism, sg, may

be calculated as follows.

(6.1)

The memory requirement of the k-d-B-tree is the number of bytes to

store the information at the nodes at each level. This size can be

calculated as follows. There are m-1 key values (each of which occupies

v bytes) and m pointers (of p bytes each) in each node. The memory

requirement, or "size" of k-d-B-tree is then

sk - nodes [(m-1) v +mp]

where nodes is the total number of nodes in the tree;

h-1

nodes = 1 + ~ mi = (mh-1) / (m-1)

i=l

(6.2)

(6.3)

The number of bytes needed to store key values, v, and that of

pointers, p, have to be known to be able to evaluate these formulas

numerically. However, to compare the memory requirements of the two

structures in this study we will simplify these formulas by assuming

that the two parameters, v and p, are approximately equal, say

66

v=p=mu (6.4)

This way it is possible to do a comparative evaluation in terms of a

common "memory unit" mu.

Having established the memory sizes in this manner, we can easily

compute the access mechanism sizes for various database sizes and

characteristics. The results of these calculations are given in Tables

VII and VIII in terms of memory units.

Comparison

In Table VII the effect of dimension, k, and database size on

access mechanism size in terms of "memory units" defined above, is

investigated. Table VII also includes the effect of the number of

cycles, f, for k-d-B-tree. The bucket capacity, c, is kept constant

while other parameters vary in these calculations.

From the results in Table VII we observe how access mechanism size

increases with increasing database size for both structures. The rate

of increase is almost the same as the rate of increase in database

sizes. An interesting observation that can be made is that the grid

file size slightly fluctuates around a constant value with increasing k

for a given database size. This shows a dynamic capacity of grid file

which seems to absorb the potential increase in overhead as dimension

increases. But in the case of k-d-B-tree, the memory requirement for

67

the tree increases with increasing dimension. It also increases with

number of cycles, f. But the rate of increase with increasing f is not

substantial.

In practically all the cases considered in constructing Table VII,

the grid file access mechanism has a smaller memory requirement than k

d-B- tree. Grid file size is almost always smaller than the size of a

one-cycle k-d-B-tree. The difference becomes even more significant with

the increasing cycles.

In addition to more efficient memory utilization to store the

structure, the stable size of grid file makes it a more desirable choice

for high dimensions since the k-d-B-tree size increases considerably for

large dimensions. For example, a four-cycle k-d-B-tree typically

requires about four times the memory that a grid file occupies for k=lO.

In the preceding comparative study a constant bucket capacity,

c=lOO, was used. This could have an effect on the results. In fairness

to k-d-B-tree we need to look at the structure sizes for other c values.

We repeated the same size calculations for c values between 10 and 1000,

and obtained the results given in Table VIII. As should be expected,

the structure sizes decrease as c increases. Other than this, our

conclusions do not change; similar observations can be made in Table

VIII for all c values. The results may be summarized as follows:

1. The structure size in grid file does not change appreciably

with dimension. The size of a comparable k-d-B-tree, on the other hand,

increases with dimension.

2. The size of a k-d-B-tree also increases with increasing number

of cycles.

68

3. In almost all of the cases considered a grid file requires less

memory than even a one-cycle k-d-B-tree.

Therefore, we conclude that the grid file is more efficient in its

memory utilization.

N = 1000

k grid file

2 39.26
3 37.74
4 37.82
5 38.35
6 39.06
7 39.87
8 40.74
9 41.63

10 42.55

N = 10000

k grid file

2 319.52
3 305.47
4 302.16
5 301. 21
6 301.11
7 301.42
8 301.94
9 302.58

10 303.32

N ~ 50000

k grid file

2 1504.16
3 1462.36
4 1453.16
5 1449.95
6 1448. 71
7 1448.33
8 1448.41
9 1448. 74

10 1449.25

TABLE VII

COMPARISON OF ACCESS MECHANISM SIZES
(c= 100)

k-d-B-tree
f=l f=2 f=3

36.42 46.69 57.52
41.41 57.52 74.02
46.69 68.51 90.63
52.07 79.55 107.27
57.52 90.63 123.94
63.00 101.72 140.61
68.51 112.83 157.30
74.02 123.94 173.99
79.55 135.05 190.68

k-d-B-tree
f-1 f=2 f=3

345.24 395.22 454.42
.368 .12 • 454.42 547.74
395.22 516.33 642.95
424.30 579.35 738.93
454.42 642.95 835.30
485.18 706.88 931. 88
516.33 771. 02 1028.61
547.74 835.30 1125.43
579.35 899.67 1222.32

k-d·B-tree
f=l f=2 f~3

1694.53 1855.01 2067.22
1763.63 2067.22 2413.69
1855.01 2296.21 2772. 28
1957.90 2532.39 3135.88
2067.22 2772. 28 3502.02
2180.45 3014.32 3869.62
2296. 21 3257.72 4238.13
2413.69 3502.02 4607.26
2532.39 3746.96 4976.82

69

f=4
68.51
90.63

112.83
135.05
157.30
179.55
201.81
224.07
246.33

f=4
516.33
642.95
771.02
899.67

1028.61
1157. 72
1286.93
1416.22
1545.55

f=4
2296.21
2772. 28
3257.72
3746.96
4238.13
4730.39
5223.35
5716. 77
6210.53

70

TABLE VII (Continued)

N = 100000

k grid file k-d-B-tree
f=l f=2 f=3 f=4

2 2964.05 3373.16 3640.40 4013.06 4421.62
3 2899.71 3484.76 4013 .06 4632.38 5278.09
4 2886.39 3640.40 4421. 62 5278.09 6155.05
5 2881.70 3819.90 4845.81 5934. 77 7040.39
6 2879.74 4013 .06 5278.09 6597.03 7929.96
7 2878.96 4214.61 5715.08 7262.48 8821.98
8 2878.77 4421. 62 6155.05 7929.96 9715.50
9 2878.93 4632.38 6597.03 8598.81 10610.03

10 2879.31 4845.81 7040.39 9268.58 11505.30

N = 1000000

k grid file k-d-B-tree
f=l f=2 f=3 f=4

2 28909.48 33461.44 34939.65 37442.20 40360.92
3 28663.15 34010.37 37442.20 41899.55 46683.90
4 28623.43 34939.65 40360.92 46683.90 53267.08
5 28610.35 36114.40 43471.49 51607.91 59958.30
6 28604.62 37442.20 46683.90 56603.59 66704.38
7 28601. 75 38868.50 49956.39 61640.82 73482.10
8 28600.28 40360.92 53267.08 66704.38 80279.54
9 28599.58 41899.55 56603.59 71785.42 87090.31

10 28599.34 43471.49 59958.30 76878.98 93910.56

N = 1E+07

k grid file k-d-B-tree
f=l f=2 f=3 f=4

2 286783.44 333740.38 342009.31 359298.28 381017.88
3 285911.94 336415.75 359298.28 392776.12 430023.41
4 285806.78 342009.31 381017.88 430023.41 482120.47
5 285776.22 349872.47 404922.25 468934.47 535525.12
6 285763.12 359298.28 430023.41 508712.09 589600.12
7 285756.72 369788.06 455841. 94 548995.94 644061. 75
8 285752.94 381017.88 482120.47 589600.12 698768.38
9 285750.72 392776.12 508712.09 630420.12 753638.19

10 285749.44 404922.25 535525.12 671391.00 808622.00

c = 10

k

2
3
4
5
6
7
8
9

10

c - 30

k

2
3
4
5
6
7
8
9

10

c = so

k

2
3
4
5
6
7
8
9

10

grid file

28909.48
28663.15
28623.43
28610.35
28604.62
28601.75
28600.28
28599.58
28599.34

TABLE VIII

COMPARISON OF ACCESS MECHANISM SIZES
(N= 100000)

k-d-B-tree
f - 1 f - 2 f - 3

33461.44 34939.65 37442.20
34010.37 37442.20 41899.55
34939.65 40360.92 46683.90
36114.40 43471.49 51607.91
37442.20 46683.90 56603.59
38868.50 49956.39 61640.82
40360.92 53267.08 66704.38
41899.55 56603.59 71785.42
43471.49 59958.30 76878.98

grid file k-d-B-tree
f - 1 f = 2 f = 3

9718. 99 11184.65 11836. 77 12840.35
9587.41 11441. 51 12840.35 14566.36
9563.33 11836. 77 13974.85 16391.88
9555.06 12314.07 15168.00 18259.30
9551.44 12840.35 16391. 88 20148.11
9549.73 13397.41 17633.78 22049.32
9548.96 13974.85 18887.10 23958.35
9548.72 14566.36 20148.11 25872.52
9548.81 15168.00 21414.55 27790.38

grid file k-d-B-tree
f = 1 f = 2 f = 3

5865.47 6723.40 7169.69 7827.80
5767.92 ·6903. 75 7827.80 8942.71
5749.06 7169.69 8561. 80 10114.46
5742.50 7484.44 9329.37 11310.00
5739.66 7827.80 10114.46 12517.70
5738.37 8188.95 10909.77 13732.39
5737.88 8561. 80 11711.56 14951.49
5737.82 8942.71 12517.70 16173.52
5738.04 9329.37 13326.92 17397.62

71

f = 4
40360.92
46683.90
53267.08
59958.30
66704.38
73482.10
80279.54
87090.31
93910.56

f = 4
13974.85
16391.88
18887.10
21414.55
23958.35
26511.48
29070.48
31633.38
34199.15

f = 4
8561. 80

· 10114.46
11711. 56
13326. 92
14951.49
16581. 36
18214.54
19850.04
21486.98

72

TABLE VIII (Continued)

c = 100

k grid file k-d-B-tree
f = 1 f = 2 f = 3 f = 4

2 2964.05 3373.16 3640.40 4013. 06 4421. 62
3 2899.71 3484.76 4013.06 4632.38 5278.09
4 2886.39 3640.40 4421. 62 5278.09 6155.05
5 2881.70 3819.90 4845.81 5934.77 7040.39
6 2879.74 4013 .06 5278.09 6597.03 7929.96
7 2878.96 4214.61 5715.08 7262 .48 8821.98
8 2878.77 4421. 62 6155.05 7929.96 9715.50
9 2878.93 4632.38 6597.03 8598.81 10610.03

10 2879.31 4845.81 7040.39 9268.58 11505.30

c = 500

k grid file k-d-B-tree
f = 1 f = 2 f = 3 f = 4

2 619.24 683.92 766.21 868.16 976.10
3 596.32 720. 68 868.16 1031.13 1198.36
4 590.99 766.21 976.10 1198.36 1423.87
5 589.23 816.02 1086.59 1367. 33 1650.71
6 588.71 868.16 1198.36 1537.18 1878.20
7 588.76 921. 68 1310. 88 1707.53 2106.09
8 589.12 976.10 1423.87 1878.20 2334.20
9 589.65 1031.13 1537.18 2049.09 2562.48

10 590.30 1086.59 1650.71 2220.12 2790.87

c = 1000

k grid file k-d-B-tree
f = 1 f = 2 'f = 3 f = 4

2 319.52 345.24 395.22 454.42 516.33
3 305.47 368.12 454.42 547.74 642.95
4 302.16 395.22 516.33 642.95 771. 02
5 301. 21 424.30 579.35 738.93 899.67
6 301.11 454.42 642.95 835.30 1028.61
7 301.42 485.18 706.88 931. 88 1157.72
8 301.94 516.33 771.02 1028.61 1286.93
9 302.58 547.74 835.30 1125.43 1416.22

10 303.32 579.35 899.67 1222.32 1545.55

CHAPTER VII

CONCLUSIONS

Summary and Conclusions

The grid file and k-d-B-tree structures have been compared

analytically to assess their relative efficiency in accessing and

inserting records, and memory utilization. The results may be

summarized as follows.

First a number of useful relationships have been derived for both

structures. These relate various quantities such as the number of

buckets, bucket size, database size, bucket occupancy ratio, and

dimension. These may be used, for example, to estimate the average

number of intervals in one linear scale of a grid file, n, and the

order, m, in a comparable k-d-B-tree. Such calculations were necessary

in the course of this study so that fair comparisons could be done.

However, these formulas can also be used for other purposes.

Types of queries possible in a multi-dimensional database have been

classified. The average number of block assesses required in a query is

taken as the measure of performance, and analytical expressions have

been developed to estimate the number of block accesses for each type of

query. Using these expressions some parametric, but hypothetical

situations have been considered to obtain estimates in order to compare

the two file structures.

73

74

From the point of view of query performance, it was found that, in

general, grid files access records "faster," as measured by the number

of block accesses necessary to reach the desired records. One exception

to this is a one-cycle k-d-B-tree, which seems slightly more efficient

for small (k<8) dimensions in the case of range queries, but its

performance slows down rapidly with increased nwnber of cycles.

In both structures, but considerably more so in the grid file, the

nwnber of block accesses decreases as the dimension increases. This

should be expected because these structures have been designed as

multikey access mechanisms. Further, this rate of decrease with k

increases with database size, N. That is, the query efficiency of the

structures tend to increase with larger databases.

Next the cost of an insertion was considered for comparing the two

structures. It has been found that this cost can be computed on a

statistical basis, since a splitting operation will be encountered on

some insertions while others will only cost as much as a point query.

The expected cost can be expressed as a weighted average of the cost of

a splitting operation and the cost of a point query. However, because a

splitting operation is much costlier than a query, the average return

period of splitting may be taken as a measure of comparison.

It was found that the return period depends on the mean bucket

occupancy ratio maintained by a file structure, eO, and the occ~pancy

ratio at splitting, e_split, which in turn is a function of b and c.

This functional reiationship has been determined. This analysis

indicates that the structure that maintains a higher bucket occupancy

ratio (grid file) will create more frequent splittings; therefore its

insertion performance will be inferior.

75

For comparing the relative efficiency of grid file and k-d-B-tree,

two aspects of memory utilization have been isolated for comparing the

two structures: (1) bucket utilization, and (2) size of access

mechanism. Bucket utilization has not been evaluated analytically in

this study. The data available from the literature suggests that the

difference between the two structures in the usage of buckets are not

large, with k-d-B-tree requiring approximately 17% more buckets for the

same database as compared to grid file.

A measure is proposed to compare the memory requirement of the

structure itself (i.e., the access mechanism). This may be called the

structure size in "memory units" (One memory unit is defined as a group

of bytes required to hold a pointer or a key value). It was found that

the structure size in a grid file does not change appreciably with

dimension. On the other hand, the size of a comparable k-d-B-tree

increases with dimension and also with increasing number of cycles. In

almost all of the cases considered grid file requires less memory than

even a one-cycle k-d-B-tree.

Therefore it is concluded that the grid file is more efficient in

its memory utilization.

Suggestions for Future Work

Further analysis of insertion performance may be necessary to

determine a more accurate estimation of the cost of an insertion. For

this purpo&e the cost of a splitting has to be calculated in both

structures. Deletion performance can be studied in a similar fashion

for both structures. It appears that an implementation of k-d-B-tree

may be quite complex in building and reorganizing the structure due to a

number of different policy decisions that can be made. Therefore,

implementations of both structures especially k-d-B-tree may be useful

to study these aspects. Applications with real databases will be

helpful to see how the results of the analytical approach apply to a

real situation.

76

BIBLIOGRAPHY

1. Knuth, D. E. The Art of Computer Programming. Vol. 3, Sorting and
Searching. Addison-Wesley, Reading, Mass., 1973, 481-492,
471-479.

2. Lum, V. Y. "Multiattribute Retrieval with Combined Indices."
Communications of the ACM 13, 11 (1970), 660-665.

3. Mullin, J. K. "Retrieval Update Speed Trade-offs Using Combined
Indices." Communications of the ACM 14, 12 (1971), 775-778.

4. Vallarino, 0. "On the Use of Bit Maps for Multiple Key Retrieval."
ACM SIGPLAN Notices 11 (March 1976), 108-114.

5. Batory, D. S. "On Searching Transposed Files." ACM Transactions
~Database Systems 4, 4 (1979), 531-544.

6. Rothnie, J. B. , Lazano, T. "Attribute-Based File Organization in a
Paged Environment." Communications of the ACM 17, 2 (1974),
63-69.

7. Gopalakrishna, V. , Madhavan, C. E. Veni. "Performance Evaluation
of Attribute-Based Tree Organization." ACM Transactions on
Database Systems 6, 1(March1980), 69-87.

8 . Finke 1, R. A. , Bentley, J . L. "Quad Trees : A Data S true ture for
Retrieval on Composite Keys." Acta Informatica 4, 1 (1974),
1-9.

9. Bentley, Jon L. "Multidimensional Search Trees Used for
Associative Searching." Communications of the ACM 18, 9
(1975), 509-517.

10. Bentley, Jon L. "Multidimensional Search Trees in Database
Applications." IEEE Transactions on Software Engineering SE-
5, 4 (1979), 333-340.

11. Kashyap, R. L., Subas, S. K. C., Yao, S. Bing. "Analysis of the
Multiple-Attribute-Tree Data- Base Organization." IEEE
Transactions on Software Engineering SE-3, 6 (1977), 451-466.

12. Casey, R. G. "Design of Tree Structures for Efficient Querying."
Communications of the ACM 16, 9 (1973), 549-556.

77

13. Lee, D. T., Wong, C. K. "Quintary Trees: A File Structure for
Multidimensional Database Systems." ACM Transactions on
Database Systems 5, 3 (1980), 339-353.

14. Robinson, Jon L. "The K-D-B-Tree: A Search Structure for Large
Multidimensional Dynamic Indexes." Proc. ACM SIGMOD, Ann
Arbor (April 1981), 10-18.

78

15. Sharma, K. D., Rani Rekna. "Choosing Optimal Branching Factors for
K-D-B-Trees." Informati~n Systems 10, 1 (1985), 127-134.

16. Ouksel Mohamed, Scheurmann.
of Dynamic Behavior."

"Multidimensional B-Trees : Analysis
BIT 21 (1981), 401-418.

17. Vaisnavi, V. K., Kriegel, H. P., Wood, D. "Optimum Multiway Search
Trees." Acta Informatica 14, (1980), 119-133.

18. Liou, J. H., Yao, S. B. "Multidimensional Clustering for Database
Organizations." Information Systems 2 (1977), 187-198.

19.

20.

Nievergelt, J., Hinterberg, H., Sevcik, K.
Adaptable, Symmetric File Structure."
Database Systems 9, 1 (1984), 38-71.

C. "The Grid File: An
ACM Transactions on

Merrett, T. H.
Querying."

"Multidimensional Paging for Efficient Database
Proc. ICMOD (Milano, Italy, June 1978), 227-289.

21. Merrett, T. H., Otoo, E. J. "Dynamic Multipaging: A Storage
Structure for Large Shared Data Banks." Rep. SOCS-81-26,
McGill Univ., 1981.

22. Burkhard, W. A. "Interpolation Based Index Maintenance." Proc.
ACM~ Principles of Database Systems (1983), 76-89.

I

APPENDIXES

79

APPENDIX A

NUMBER OF ACCESSED INTERVALS IN A RANGE QUERY

The derivation of Equations 4.2 and 4.3, giving the expected number

of accessed intervals in a range query, is presented here. The

relationship will be derived with reference to grid file, but, as

explained in the main text, it is equally valid in k-d-B-tree when n's

are replaced by m's in the equations.

The problem may be studied as follows:

There are n equal subdivisions in a linear scale, defined by (n-1)

delimeters di. A range query is considered. It is assumed that the

query range can have any length, from zero to the entire range of the

linear scale. The question we pose here is "what is the expected number

of intervals covered by an arbitrary range query?"

To calculate the expected number of intervals covered by a random

range query, we consider the number of different possible situations: a

query range can be smaller than the width of one interval, it can be

larger than one interval, but less than two intervals, etc. These

situations can be studied on the example in Figure 19 where seven

intervals are taken. We see that the query range can have a length of

one through n-1 intervals. Furthermore, each of such ranges can be

situated at a different location with respect to the linear scale.

Counting all the possible situations in this example, we find 48. We

call this sum S. It may be noted that a point query is included in the

80

81

case where the length of the query range is less than one interval, and

a full range query is included in the last case (length>6).

If we assume that each of the possible situations are equally

likely, then the probability of one is l/S. In Figure 19 the number of

intervals covered in each of these S situations, determined by

inspection, is also shown. At the bottom of the figure, the number of

one, two, ... , seven intervals covered is totalled. For example, seven

of the 48 cases will cover one interval, 12 will cover 2 intervals, etc.

Thus, the probability of covering one interval is P(l)=7/48, that of two

intervals is P(2)=12/48, etc. Then it is a straightforward calculation

to determine the expected number of intervals covered:

E(i) = (1) P(l) + (2) P(2) + ... + (7) P(7)

or, in general,

where

and

n

E(i) = ~ i P(i)

i=l

P(i)

n/S,

2(n-i+l)/S,

l/S,

n-1

i=l

i=2,3,4, ... ,n-1

i=n

s 1 + 2 ~ (n-i+l) + n = n2 + 6n - 9

i=2

(A.1)

(A.2)

(A.3)

(A.4)

Since the expected number of covered intervals, E(i), is used in further

derivations in the main text, we call it na, short for "number of

accessed intervals." Evaluating Eqs. (A.l) through (A.4) for n=3-30,

the relationship shown in Figure 20 is obtained. For use in the

calculations, as in Chapter 4, it is desirable to have a simple

expression for this relationship. Therefore the log-log linear

relationship,

n = a nb a

82

(A. 5)

has been fit, where b is the slope of the line and a is the value of the

function at n=l. For accurate fitting, it has been found necessary to

divide the n range in two at n=9. Thus,

0. 80 no. 71 n < 9
' (4.2)

0.57 n0. 87, n >= 9 (4.3)

range 4' l

I i 2 3 4 5

range <2

range <3

range<4

I
range-<"5

I

range~6
"""=
I

51.Ull

Probability

6 7

1

Intervals Spanned

l 2 3 4 5 6 7

7 6

6 5

5 4

4 3

3 2

2 1

7 12 10 8 6 4 l

7 12 10 8 6 4 1
48 48 481'8 48 48 48

Figure 19. Number of Intervals Spanned in a Range Query (n=7)

83

na

10

1.5

1.0

.a

/
.6 /

/
/

/
/

/

I

/
/

/
II

/
/

/
/

/
/

/

/

~
/

Slope
Intercept

Part I

0.71
0.80

figure 20. Expected Number of Intervals In a Range Query

Part II

0.87
0.57

n

00
+'

APPENDIX B

BUCKET OCCUPANCY AT SPLITTING

We consider a hypothetical set of b buckets, each of which can hold

c records, and consider records being inserted. This will be simulated

by generating random numbers. Since we assume that the database is

uniform, the probability of a new record to "hit" a given bucket is l/b.

Now if we assume a key value range of 0 to 1, then the first bucket will

take records in the range (0, l/b), the next between (l/b, 2/b), and so

on, until bucket number b which will take records in the range ((b-1)/b,

1). The total available capacity will be "be", and at maturity there

will be

N - b c e (B .1)

records where e is the average occupancy ratio.

To study how the buckets are filled, we generate uniformly

distributed random numbers between 0 and l, "put" each record in its

bucket according to the value of the random number, and continue this

until one bucket overflows. This way we will see both the average

occupancy ratio, e, and its distribution over the buckets at the moment

splitting occurs. This value of e is called e_split in Chapter 5.

A "b" range of 3 to 300, and a "c" range of 3 to 100 have been

chosen. It was found that the scatter of the results were larger for

smaller combinations of b and c, but much less for larger values. On

the other hand, computation time was greater for the large b and c.

85

86

Therefore the number of repetitions for each case varied. To obtain

reliable results using reasonable numbers of repetitions the running

average was printed at the end of each trial for a given case, and as

this running average stopped fluctuating the test was stopped. At least

three, but in general four decimal digits were obtained accurately for

each case. The results are presented in Table IX.

TABLE IX

RESULTS OF NUMERIC EXPERIMENTS

number of bucket capacity number of e_split
buckets (b) (c) trials mean st. dev.

3 3 200 .690 .176
3 10 100 .804 .118
3 30 100 .867 .077
3 100 100 .917 .044

10 3 100 .4S3 .147
10 10 100 .618 .098
10 30 100 .769 .064
10 100 so .848 .04S
10 1000 10 .960 .OlS
30 3 200 .330 .112
30 10 100 .S33 .08S
30 30 7S . 724 .OS6
30 100 20 .809 .038

100 3 so .2S2 .09S
100 10 so .448 .067
100 100 so .782 .028
100 1000 10 .92S .012

APPENDIX C

INSERTIONS WITH SPLITTING

The dynamic behavior of the grid file and the k-d-B-tree is best

explained by tracing an example: that is, building up the structures

under repeated insertions. In order to simplify the description, the

following small two-dimensional database is used for both structures:

Rec No.

Name
Age

1 2

L K
20 10

3

T
80

4

T
40

5

I
90

6

G
45

7

N
45

8

D
70

9

K
30

10

T
20

Figures 21 and 22 show the grid file and the k-d-B-tree during the

insertions respectively. Bucket capacity (c) is assumed to be 3 in both

cases.

In Figure 21, instead of showing the grid directory, whose elements

are in one-to-one correspondence with the grid blocks, we draw the

bucket pointers as originating directly from the g7id blocks. Each

"dot" in the search space represents a record.

Initially, a single bucket (bucket 1) is assigned to the entire

record space. First three records are inserted without causing any

problem (Part A). When record 4 comes, it causes bucket overflow, the

record space is split, a new bucket (bucket 2) is made available.

Midpoint value is chosen as the splitting point. Those records that lie

87

88

in one half of the space are moved from the old bucket to the new one.

When bucket 1 overflows (because of record 6) again, its grid block is

split according to some splitting policy: we assume the simplest

splitting policy of alternating directions. After splitting, records of

bucket 1 which lie on the lower left grid block of the search space are

moved to a new bucket (bucket 3). Notice that, as bucket 2 did not

overflow, it is left alone; its region now consists of two grid blocks

(Part B). After the record 8 is inserted, record 9 causes an overflow

at bucket 3. This triggers a further refinement of the grid partition

and splitting bucket 3 into buckets 3 and 4. Record 10 is inserted

without any problem (Part D).

In k-d-B-tree case (Figure 22), node order (m) is assumed to be 3

and the organization of the tree is based on the key "Age" at the

beginning level.

The first three records are inserted without causing any problem

(Part A). When record 4 comes, it causes bucket overflow. Simply,

splitting the bucket and reorganizing the node solves the problem (Part

B). After records 5 and 6 are inserted in the newly created bucket,

this time record 7 causes bucket overflow. Part C shows the situation

after the bucket splitting. After record 8 is inserted, record 9 causes

overflow in the first bucket. Bucket splitting becomes necessary.

Since the root node is also full, a new level needs to be introduced,

requiring the complete reorganization of the tree. New level of the

tree is partitioned by using the key "Name". Part D shows the tree

after splitting and reorganization. Also record 10 is inserted without

any complication. In this example, splitting point is chosen as the

median of the key values.

A

z

·~

0

Search Space

•
•

100

•
•

• •

-----• I

• I •
• 1 I •
-1-~ - -
• •
• I • j •

Buckects

1
I . I l .·

(A)

1 2

. . 0

(B)

(c)

3 4

(D)

Figure 21. Insertions with Splitting (Grid File)

89

L 20
K 10
T 80

(A)

K 10 T 80
L 20
T 40

(B)

Figure 22. Insertions with Splitting (K-d-B-tree)

90

APPENDIX D

TABLE OF SYMBOLS

The following table gives the summary of all the symbols used

throughout the thesis in an alphabetical order.

Symbol

b

c

Cl

C2

Cb

Cg

C1

en

cycle

TABLE X

TABLE OF SYMBOLS

Description

Number of buckets accessed

Number of grid blocks accessed in grid file

Number of linear scales accessed in grid

Number of nodes accessed in k-d-B-tree

Number of buckets

Bucket capacity (in terms of records)

Cost of an insertion with splitting

Cost of an insertion without splitting

Cost of a bucket access

file

Cost of a grid block access in grid file

Cost of a linear scale access in grid file

Cost of a node access in k-d-B-tree

Frequency of all the keys used in k-d-B-tree

91

Symbol

e

eg

ek

eO

e_split

Eg(query)

E(i)

E(insertion)

Ek(query)

f

FF

FP

FR

G

h

k

m

TABLE X (Continued)

Description

Nwnber of delimeters in a linear scale for key i

Average bucket occupancy ratio

92

Average bucket occupancy ratio in grid file (0.70)

Average bucket occupancy ratio in k-d-B-tree (0.60)

Mean bucket occupancy ratio

Average bucket occupancy ratio at the splitting

Expected cost of a query for grid file

Expected nwnber of intervals in a linear scale or in

a node for a range query

Expected cost of an insertion

Expected cost of a query for k-d-B-tree

Usage frequency of the keys in k-d-B-tree

Fully specified Full range query

Fully specified Point query

Fully specified Range query

Grid array size (in terms of grid blocks)

Tree height (of k-d-B-tree)

Dimension (nwnber of keys used)

Number of keys specified in a range query

Key value for dimension i

Lower bound of the domain for the key i

Node order in k-d-B-tree

Symbol

mu

n

ni

nodes

N

r

p

PF

pp

PR

p (:i,)

P(x)

1-P(x)

s

93

TABLE X (Continued)

Description

Number of pointers covered in a node for a range

query in k-d-B-tree

Memory unit (in terms of bytes)

Number of intervals in a linear scale in grid file

Number of intervals covered in a linear scale for a

range query in grid file

Number of intervals in linear scale i in grid file

Number of nodes in k-d-B-tree

Database size (total number of records)

Number of grid blocks per bucket

Number of bytes needed to store a pointer value

Partially specified Full range query

Partially specified Point query

Partially specified Range query

Probability of covering i intervals in a linear

scale or in a node for a range query

Probability of an occurrence of splitting case

Probability of non-occurrence of splitting case

Sum of intervals covered in a linear scale for a

range query

Size of grid file access mechanism

Size.of k-d-B-tree access mechanism

Standar"d deviation for e_split

Symbol

TABLE X (Continued)

Description

Return period of splitting

Upper bound of the domain for the key i

Number of bytes needed to store a key value

94

VITA

Hatice Nilufer Anlar Saritepe

Candidate for the Degree of

Master of Science

Thesis: AN ANALYTICAL COMPARISON OF GRID FILE AND K-D-B-TREE STRUCTURES

Major Field: Computing and Information Science

Biographical:

Personal Data: Born in Istanbul, Turkey, October 23, 1958, the
daughter of Nakip and Nuran Anlar.

Education: Graduated from Bakirkoy High School, Istanbul, Turkey,
in May, 1976; received Bachelor of Science degree in
Electrical Engineering from Bogazici University in July, 1981;
completed the requirements for the Master of Science degree at
Oklahoma State University in December, 1987.

Professional Experience: Programmer, Agricultural Economics
Department, Oklahoma State University, April, 1985 to May,
1987; Programmer, Occupational and Adult Education Department,
Oklahoma State University, May, 1987 to October, 1987;
Research Assistant, Computing and Information Sciences
Department, Oklahoma State University, October, 1987 to
December, 1987.

