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CHAPTER I 

INTRODUCTION 

The grid file and the k-d-B-tree are two dynamic multikey access 

techniques developed in recent years. Separate studies have been 

reported on these structures from the point of view of examining their 

efficacy in generating, accessing, and maintaining data files. The 

conditions under which these two structures have been examined, as well 

as the methodologies used in these examinations are different for the 

two structures. Consequently, conclusions regarding their relative 

performance and suitability to specific applications can not be derived 

easily from the results of published studies. Therefore it is necessary 

to investigate the performance of the two file structures on a number of 

essential features using the same general criteria. 

The objectives of the studies reported in this thesis are to 

establish performance evaluation criteria for comparing the two 

structures, and to apply these criteria to both structures to obtain 

specific information on their efficiency and other relevant 

characteristics. 

An analytical approach has been followed in this study in order to 

derive general formulas that can be used to estimate the relative 

performance of the two structures. Some numerical results have also 

been presented to illustrate the usage of these formulas as well as to 

obtain some indications for relative performance. At the beginning of 

1 
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this research we considered comparing the results of simulations or 

simplified impementations based on a hypothetical database. It is 

believed that the analytical approach is more suitable for the purposes 

of this study due to a number of reasons: programming details could 

affect the comparisons, many runs are needed for a statistically 

meaningful result in a simulation, and the properties of the 

hypothetical database may not be typical for a real application. 

2 

Chapter II is a general review of literature on multikey access 

techniques. Chapter III contains a brief description of the grid file 

and k-d-B-tree structures. A set of criteria for comparing their 

performance is developed in this chapter. The chapter concludes by 

giving the parameters and relationships for both structures. 

Chapters IV, V, and VI contain the analyses and discussions of the 

three basic aspects of performance: query efficiency, insertion 

performance, and memory utilization. Chapter VII summarizes the 

findings of these studies. 



CHAPTER II 

REVIEW OF LITERATURE 

In recent years, the increasing usage of databases and integrated 

information systems has encouraged the development of file structures 

specifically suited to accessing records by combinations of attribute 

values. The method of using several attributes for accessing records is 

called multikey access, and records specified with several keys are 

called multidimensional data. The early development of file structures 

that provide multikey access to records are extensions of file 

structures originally designed for single-key access. Most balanced 

structures for single-key data rely on a total ordering of the set of 

key values. Since natural total orders of multidimensional data do not 

exist, the design of balanced data structures for multidimensional data 

is significantly more difficult. 

Inverted files were among the earliest of file structures designed 

for multikey access [l]. Since they have been used in most applications 

they have been accepted as a standard to evaluate alternative 

approaches. Inverted files are well suited for accessing records on the 

basis of Boolean conditions on the attributes, but they exhibit some 

drawbacks. First, retrieval of the inverted lists may require an 

excessive number of disk accesses. Second, the overhead required for 

insertions and deletions can become prohibitive in terms of space and 

time. Finally, in environments where several keys are equally 

3 



significant, a file structure that treats all significant keys 

symmetrically is appealing. 
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In the remainder of this section we briefly describe a variety of 

multikey file structures, each designed to perform better than an 

inverted file in at least some circumstances. Many of the approaches are 

generalizations of well-known single-Key file structures. 

Several generalizations of inverted files have been proposed. Lum 

[2] describes "combined indices", in which several attributes are 

concatenated in various orders and then treated as a single, aggregate 

key. If more than three attributes are combined, both the storage space 

and update time become excessive. By combining them in groups of three, 

however, the number of disk accesses to retrieve inverted lists can be 

reduced substantially, at the cost of some increased complexity [3]. 

Vallarino [4] describes another generalization of inverted lists called 

"compressed bitmaps". Bit-encoded inverted lists are the basis of this 

structure. They form a large sparse bit array, which is then 

represented in highly compressed form and used to locate records 

specified by a selection condition. Another organization that exploits 

compression in providing multikey access is the "transposed file" 

organization [51]. In this organization, vectors consisting of the 

values of a particular attribute for all records are stored in a highly 

compressed form. Thus, the retrievals and updates that refer to only a 

few attributes do not involve memory transfers of irrelevant attributes. 

This approach is most effective when the majority of operations deal 

with a significant portion of the records (i.e., one to three percent) 

and selection conditions involve only a few attributes. 
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Rothnie and Lozano [6] describe a generalization of hashing in 

which a bucket address for a record is formed by concatenating the 

results of hash functions, each of which is applied to the value of one 

key. A critical design decision in setting up such a "multikey hash 

file" is the determination of the number of the bits to be allocated to 

represent the hashed value of each attribute. The more attribute values 

specified, the smaller the number of buckets that need to be accessed in 

order to obtain the required records [7]. Because it is difficult to 

specify a combination of hash functions that lead to a uniform occupancy 

of buckets, it is necessary to tolerate either a low bucket occupancy, 

or a high likelihood that buckets overflow (more than one storage block 

is needed to hold the records corresponding to a single bucket). Also, 

like most hashing schemes, multikey hashing is inappropriate when the 

selection condition involves ranges of values rather than specific 

values. 

Various generalizations of tree structured indices permit multikey 

access to files. Quad trees are a two-attribute generalization of 

binary search trees [8]. The straightforward generalization to k 

dimensions is impractical because the tree nodes become large and 

contain many nil pointers. These problems are avoided in k-d-trees (9, 

10], which can be thought of as k-dimensional generalization of binary 

search trees. Each level of the tree is associated with a different key 

in turn. K-d-trees are efficient for large and very large databases. 

Similarly, binary TRIEs can be generalized to support multikey 

access [l]. This is achieved by representing each attribute value as a 

bit string and interleaving these strings. The result is then used as 

the key in a standard binary TRIE. 
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The "multiple-attribute tree" database organization orders the 

records lexicographically on the key fields, with the more significant 

attributes placed toward the higher end of the sorting field [11]. Then 

the key fields are separated from the records and organized into a 

doubly-chained tree. The tree can then be used to locate all relevant 

records for a given query. If both the number of records and the number 

of attributes are large, several disk accesses may be required to locate 

records satisfying specified constraints on key values. 

Casey describes a complex tree-based multikey access structure in 

which records are grouped according to the frequency in which they are 

retrieved together [12]. "Superimposed coding" is used in each node to 

characterize the records below the node in the tree. Probably because 

of its complexity, this organization has not been widely used in 

practice. The importance of this structure is due to the fact that, 

more than with any other multikey file structure, the selection 

conditions used in accessing the file influence the its organization. 

A "Quintary tree" is a file structure intended to provide faster 

access then other tree-based multikey file structures, at the cost of 

requiring more space [13]. Quintary trees consist of k levels, 

corresponding to the k attributes in decreasing order of importance. 

Each level resembles a binary tree branching on the values of the 

corresponding attribute. 

Robinson [14] describes "k-d-B-trees" which combine properties of 

both B-trees and k-d-trees. It is a balanced multiway tree and each 

level of the tree corresponds to a different attribute. Internal nodes 

reflect the partitioning of the search space into nonoverlapping 

regions. Performance of k-d-B-trees on partially specified queries is 



explained in [15]. Similar to k-d-B-trees, "multidimensional B-trees" 

and other related approaches are explained in [16, 17]. 
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Along with k-d-B-tree, other multikey organizations have been 

proposed recently that are also based on the idea of partitioning 

k-dimensional space and then storing the records corresponding to each 

cell of the partition in a single block of secondary storage. One such 

organization is the "multidimensional directory" suggested by Liou and 

Yao [18]. Attributes are ordered by priority, and higher priorities are 

associated with the attributes that appear more often in the queries. A 

multidimensional directory, which contains one entry per secondary 

storage block, is used for retrieval of records. 

The "grid file" is also based on the idea of partitioning the 

search space by treating all dimensions symmetrically [19]. A dynamic 

grid directory is utilized to locate the records on the secondary 

storage blocks. This file system adapts gracefully to its contents 

under insertions and deletions, and thus achieves an upper bound of two 

disk accesses for single record retrieval; it also handles range queries 

efficiently. 

Multipaging, dynamic multipaging and interpolation based index 

maintenance are some other recent multikey access schemes mentioned in 

[19] that utilize grid partitions of search space in ways similar to 

grid files [20, 21, 22]. 



CHAPTER III 

DESCRIPTION OF GRID FILE AND K-D-B-TREE STRUCTURES 

Introduction 

Searching techniques for multikey access can usually be divided 

into the following two categories: 

a. techniques that organize the specific set of data to be stored 

and, 

b. techniques that organize the search space to which the data 

belongs. 

Comparative search techniques, such as different tree structures 

fall into the first category. In these structures, the boundaries 

between different regions of the search space are determined by values 

of data that are to be stored. On the other hand, address computation 

techniques, such as hash files fall into the second category. K-d-B

tree and grid file are two good examples of these two categories 

respectively. Both structures partition the search space into 

subspaces, down to the record level on the secondary storage. But, the 

way they do this partitioning is different and much can be learned by 

comparing these two structures. 

Grid File 

The grid file is based on the use of "rectangular" partitions that 

divide the search space into regions. Each region has the shape of a 
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rectangle in a two-dimensional space and the shape of a box in a three

dimensional space. In a k-dimensional space these regions may be 

visualized as k-dimensional rectangles. Each region boundary cuts the 

entire search space into two. The grid file assumes that the attributes 

are independent so that the partitions are fully utilized. Partitioning 

of the record space is done by imposing a number of intervals on each 

dimension. The intersection of these intervals divides the record space 

into blocks, called "grid blocks." All records in one grid block are 

stored in the same bucket, but it is possible for several grid blocks to 

share the same bucket, as long as the union of these grid blocks forms a 

region in the record space. The regions of buckets are pairwise 

disjoint, together they span the entire space of records (Figure 1). 

Search Space 

Grid Partition 

Grid Block 

••• 
Buckets 

Figure 1. Assignment of Grid Blocks to Buckets 
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The dynamic correspondence between the grid blocks in the record 

space and data buckets is provided by a "grid directory." The grid 

directory consists of two parts: 

a. k one-dimensional arrays called linear scales, and 

b. one k-dimensional array called the grid array. 

Each linear scale defines the partitioning of each dimension and is 

divided into a certain number of intervals. Linear scales are used as 

indexes to the grid array. Elements of the grid array are the pointers 

to the data buckets and are in one-to-one correspondence with the grid 

blocks of the partition. To access a record, first the linear scales 

are searched to find the related intervals for the key values. These 

intervals are used to locate the grid block in the grid directory. That 

grid block contains the address of the bucket where the record is 

stored. An example of a search for a record by using a grid directory 

is shown in Figure 2. 

Search Values (X, 90) ! 20 j 4o I so I l100 I 80 Li near Sea I e 2 

1 2 3 4 5 
Linear scale 1 t 

F 1 

K 2 Bucket 

Ix, go I 
p 3 

z 

Figure 2. A Search for a Record by Using a Grid directory. 

( 
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The grid file is designed to handle efficiently a collection of 

records with a modest number of search attributes (k<lO) whose domains 

are large and linearly ordered (19]. If we define a bucket as a storage 

unit that contains records, research indicates that grid file gives the 

best performance when the bucket capacity (c) is between 10 and 1000 

records (19]. 

K-d-B-tree 

A k-d-B-tree is a balanced multiway search tree with fixed sized 

nodes. K-d-B-trees partition the search space in a manner similar to k-

d-trees: the search space is divided into subspaces based on a 

comparison with some element of a single domain (Figure 3). 

. 
•• .. 

"Root 

.· . . 

Figure 3. Space Partitioning of a K-d-B-tree 

Search space 

Record 
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A k-d-B-tree has the following properties [14]. Different levels 

of the tree correspond to different keys. The root of the tree 

represents the partitioning of the entire k-dimensional search space 

with respect to the first key. As in a B-tree, a k-d-B-tree consists of 

a root and a collection of nodes. Each node in a k-d-B-tree, including 

the root node, contains key values that define the regions on which the 

next level of the tree is based, and the pointers for each region that 

point to the nodes of the next level. The leaf nodes have the same 

structure, but instead of node-pointers, there are bucket addresses. 

The path length from the root node to a leaf node is the same for all 

leaves. The regions defined in every node are disjoint and their union 

is also a region. 

An example of a search for a record by using a k-d-B-tree is shown 

in Figure 4. 

Performance Evaluation Criteria 

In this section we discuss possible criteria for comparing the 

relative performance of the grid file and k-d-B-tree in queries, 

insertions, and memory utilization. 

Cost of a Search 

To compare the cost of a search in a grid file accessed database 

and in a k-d-B-tree accessed database, a common measure has to be 

defined. The basic unit of measure used in this study is the number of 

block accesses required to respond to a given query. The types of 

operations that involve block accesses for a grid file are retrieval of 

linear scales, retrieval of the grid array, and retrieval of buckets. 



Search Values (X, 90) 

Root 

Keyl I A . 

Key2 30 70 30 60 . 30 so I 

•If < I ' , ~ <I '~ ·~ '~ 

B 20 c so A 90 M 30 K 60 J 80 T 30 s 40 Ix 901 

Buckets 
F 10 D 70 G 80 N 10 L 40 a 90 w 20 u so y 60 

H 30 E 60 p 2S 0 so z 10 v 45 

I 60 A 20 

Figure 4. A Search for a Record by Using a K-d-B-tree (k=2, m=3, c=4, N=26) 
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For a k-d-B-tree the type of operations that involve block accesses are 

retrieval of nodes and retrieval of buckets. There are different types 

of queries. Each type of query search for a grid file can be compared 

to the same type of query search using a k-d-B-tree. 

Once the expected counts of the block accesses are found, then the 

cost of each type of search can be computed relative to the costs of the 

other types of searches. 

Cost of an Insertion 

When a new record is inserted into the database it is necessary to 

determine whether the bucket in which it belongs has available space. 

If the bucket has enough room then the new record is inserted without 

any complication. But if the bucket is already full, it causes overflow 

and splitting becomes necessary. Even though splitting is assumed to 

occur rarely, when measuring cost it needs to be considered. 

To calculate the average cost of an insertion, we may utilize the 

following probability formula: 

where 

E(insertion) ~Cl P(x) + C2 (1 - P(x)) 

E(insertion) is the expected cost of an insertion, 

Cl is the cost of an insertion wi'th splitting, 

C2 is the cost of an insertion without splitting. 

(3.1) 

P(x) represents the probability of an occurrence of a splitting 

case, and 1 - P(x) the probability that splitting will not occur. 

Since splitting is rare we may expect to have a small probability 

value for P(x). Cl and C2 can be considered as the maximum and the 

minimum costs for the insertion respectively. 
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Memory Utilization 

Memory utilization can be studied in two parts: bucket occupancy 

and the memory required by the grid file and the k-d-B-tree structures 

themselves. 

The bucket occupancy ratio is a good measure of the memory 

utilization efficiency of an access mechanism. Alternatively, one may 

consider the number of buckets required to hold the records of a given 

database. 

In a grid file the amount of memory required for the structure 

itself may be calculated by considering the sizes of the linear scales 

and the grid array. In the k-d-B-tree case this involves the amount of 

memory required to hold the information that is contained in nodes; 

pointers and key values. 

Basic Parameters and Relationships 

We will first define a consistent set of parameters governing the 

basic features of the grid file and k-d-B-tree, and then study their 

inter-relationships. These relationships will be needed in comparison 

studies that will follow. 

In the formulations it will be assumed that the key fields 

(attributes) are not correlated. 

Common Parameters and Relationships 

Parameters common to both the grid file and k-d-B-tree are 

N total number of records in the database, 

b number of buckets, 



c =bucket capacity (in terms of records), 

e = average bucket occupancy ratio, 

k number of keys (dimension). 
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The total number of records can be calculated in the same way for 

both structures, namely 

N = b c e (3.2) 

Relationships for Grid File 

In the grid file structure there is a linear scale associated with 

the domain of each key. The number of the linear scales is the same as 

the number of keys, that is k. If there are ni intervals in the linear 

scale for key number i, then the total number of grid blocks in grid 

array G may be expressed as: 

(3.3) 

or 

k 

G =TI ni (3.4) 

i=l 

To obtain a working equation for an approximate analysis we may 

consider the special case where all linear scales have been divided into 

the same number of intervals, n. This simplifies Eq. (1.3) as: 

(3.5) 

In grid file storage organization it is common to assign more than 

one grid block to each bucket. If r denotes the number of grid blocks 

per bucket, then, by definition, 

r = G I b (3.6) 



or, on substitution of Eq. (3.5), 

r = nk / b 

A typical average value for r seems to be 2 in [19]. 

Solving b from Eq. (3.7) and substituting in Eq. (3.2) yields: 
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(3. 7) 

N = nk c eg / r (3. 8) 

In the formula above, the eg is the bucket occupancy ratio for the grid 

file. 

Relationships for K-d-B-tree 

In a k-d-B-tree it is not necessary that all nodes be of the same 

order. Node order can vary from one level to another, and even within a 

level. In this study node order, m, is assumed to be the same for the 

internal nodes throughout the whole tree to be able to generalize the 

relationships. The height of the tree is represented by h. Height of 

the tree is the path length from the root to the leaf level. Leaf nodes 

contain bucket pointers. To calculate the maximum number of buckets 

required we need to know the number of pointers at the leaf level. The 

following formula gives the maximum number of buckets in terms of the 

tree height h and order m. 

b = mh (3.9) 

To distinguish it from the grid file storage efficiency, the 

efficiency for the k-d-B-tree is denoted by ek. The number of records 

can be expressed in the following formula: 

N mh c ek ( 3 . 10) 

The formula above includes almost all important parameters. The 

dimension, k, does not appear in the formula explicitly. Actually the 

dimension is a major factor affecting tree height, h. From the 
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definition of the k-d-B-tree, we can easily say that the minimwn value 

for the height is the nwnber of the keys used, which is k. We can not 

know the usage frequency of each key, but if we assume the frequency is 

the same for all of the keys and denote it as f, then we get the 

following relationship: 

h = f k (3.11) 

When the frequency is the same for all the keys, then it has to be 

an integer. If all the keys are used only once in the partitioning of 

the tree then f is 1. At this point we define the concept of "cycle" 

which is very similar to the usage frequency. If the dimension of the 

tree is two, then keyl and key2 are used in sequence in the partitioning 

of the tree. If the keys are used more than once then the same sequence 

of the keys (keyl, key2) continues and each sequence is called a cycle. 

Since frequency is assumed to be the same for all the keys, then 

frequency is equal to the number of cycles in the tree. So, those two 

terms can be used interchangeably. In this study the range value for 

frequency and cycle is assumed to be between 1 and 4. 



CHAPTER IV 

QUERY PERFORMANCE 

Classification of Queries 

A file is a collection of records and a record can be considered to 

be a collection of key values and any additional information about the 

item in the record. Multikey access allows the records in a file to be 

referenced by using any possible subset of the key fields. 

The databases suited to a multikey access structure are grouped in 

two categories. The first group includes records whose keys 

(attributes) are many but their domains are small. This group is not 

very typical. The second and more typical group includes records 

characterized by a small number of keys (less than 10), but the domain 

of each key is large and linearly ordered. The second case will be 

considered in this study. 

For the second case we can specify ranges by expressions of the 

form li <= keyi <- ui where li and ui are the lower and upper bounds 

of the domain, respectively, for the key keyi. When li becomes the 

smallest and ui becomes the largest values of the domain i, then the 

range becomes a "full range" covering the entire domain. Similarly, if 

li becomes equal to ui, then the range becomes a "point". 

Queries can be classified into three groups by the range of the key 

values according to the above definitions. 

19 
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a. Point query: the requested value of key field is a single value 

in the domain of that key field. 

b. Range query: a valid range inside the domain of the key 

specified for that requested key. 

c. Full range query: values spanning the whole domain of that key 

is requested. This can be considered as a "don't care" case. 

In a multidimensional search space, a record consists of many keys. 

For retrieval of one or more records, either all of the keys or a subset 

of them are specified. If the total number of keys is k, denote by ks 

the number of specified keys. Therefore another classification of 

queries can be done according to the number of keys used in a query. 

a. Partially specified query: some keys (ks<k) are specified. 

b. Fully specified query: all keys (k) are specified. 

As a result of these two independent classifications, there are, in 

general, six combinations as shown in Table I. 

TABLE I 

CLASSIFICATION OF QUERY TYPES 

Point Range Full Range 

Fully FP FR FF 
Specified 

Partially pp PR PF 
Specified 

These query types have been labeled by two-letter symbolic names 

for use in the discussions that follow. The first letter indicates 
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whether the query is Partially (P) or Fully (F) specified. The second 

letter indicates the range covered; P for Point, R for general range, 

and F for full range. 

To see how these different types of queries work, a small sample 

database can be used. This database has information about some high 

school students. Key fields are last name, year of birth and GPA. 

Records may have more information beside key fields. Let us assume the 

following records are stored in this database. An example of each query 

type is given below. 

Rec No. Last Name Year of Birth GPA Other Info. 

1 Anderson 1969 2.45 
2 Jones 1970 3.32 
3 Marble 1971 3.87 
4 Smith 1964 2.85 
5 Taylor 1968 3.20 
6 Wilson 1972 3.75 
7 Watson 1973 2.48 

FP Type Query 

Query: Find the record for the student whose last name is Smith, born 

in 1964 with GPA 2.85. 

Result: Record no. 4. 

PP Type Query 

Query: Find the information about the student whose last name is Wilson 

and born in 1972. 

Result: Record no. 6. 

FR Type Query 

Query: Find the student records with last names between M .. and T .. , 

born between 1965 and 1975, and have GPAs between 2.50 and 3.50. 



Result: Records 3,4 and 5. 

PR Type Query 

Query: Find the student records with last names starting with W and 

born between 1970 and 1975. 

Result: Records 6 and 7. 

FF Type Query 

Query: Find the student records with last names between A .. and Z ... 

and born between 1960 and 1980 and with GPA between 1.00 and 4.00. 

Result: Records 1, 2, 3, 4, 5, 6, and 7. 

PF Type Query 

Query: Find the records for the students born between 1960 and 1980. 

Result: Records 1, 2, 3, 4, 5, 6, and 7. 

Query Performance of Grid File 
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In the grid file structure, the retrieval of records involves three 

different types of block accesses for all types of the queries: linear 

scales, grid blocks, buckets. 

According to the nature of each query type the number of block 

accesses involved in each step is expected to be different for the cases 

above. To calculate the cost of each query, the cost associated with 

each type of block access needs to be considered. The following 

notation will be used to indicate the different costs involved in the 

grid file structure: 

C1 cost of a linear scale access, 

Cg cost of a grid block access, 

Cb cost of a bucket access. 



Then the cost of a query can be computed as 

Eg(query) = C1 a1 + Cg ag + Cb ab 
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(4.1) 

where a1, ag, and ab denote the number of linear scales, grid blocks, 

and buckets accessed, respectively. 

To obtain the expected cost of each query type, each case needs to 

be examined separately to obtain the probable number of accesses. 

In range type queries (FR and PR), it is necessary to estimate the 

number of intervals that will be covered by a "typicai" range query 

specification. If a linear scale has been divided into n intervals, 

then the number of covered intervals will range from 1 through n. The 

expected value of these covered intervals is called na in the following. 

Naturally na is related to n. This relationship is derived 

probabilistically and explained in Appendix A. It has also been 

evaluated numerically, and the following curve fit has been derived for 

use in the block access count formulas, 

FP Case 

0.80 n0.7l, n < 9 

0.57 n0.87, n >= 9 

(4.2) 

(4.3) 

Since all linear scales are searched in this type of query, the 

number of linear scales accessed is k. FP type of query specifies point 

values for all keys which defines at most one unique record in the data 

base. Thus in this case only one grid block and one bucket need to be 

accessed: 

k 

1 

1 

(4.4) 

(4.5) 

(4.6) 
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PP Case 

In this case ks keys are specified, therefore the same number of 

linear scales will be accessed: 

(4. 7) 

The number of grid blocks to be accessed in this case is determined by 

the "don't care" keys, because there will be one linear scale interval 

for each of the specified keys while the entire domain of a "don't care" 

key has to be searched. Thus, 

The number of buckets to be accessed is equal to the number of grid 

blocks divided by r, the number of grid blocks per bucket: 

(4.9) 

FR Case 

Since all keys are specified in this case, all linear scales are 

searched: 

(4.10) 

For range queries it is assumed that a range covers na intervals on each 

linear scale. So the number of grid blocks to be accessed is: 

a =nk (4.11) g a 

The number of buckets to be accessed is equal to the number of grid 

blocks divided by the number of grid blocks per bucket, r: 

% = nak I r 

PR Case 

(4.12) 

In this case ks keys are specified, therefore the same number of 

linear scales will be accessed: 
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(4.13) 

For specified keys only na intervals (out of n intervals) in the related 

linear scale will be accessed. But for the unspecified (k-ks) keys, all 

the intervals in the corresponding linear scale will have to be 

considered. So the nwnber of grid blocks to be accessed is determined 

by: 

(4.14) 

The nwnber of buckets to be accessed is equal to the nwnber of grid 

blocks divided by r: 

(4.15) 

FF Case 

In this case all keys are used and their entire domains are 

covered. This simply means that the entire database will be retrieved. 

So the nwnber of linear scales will be k: 

(4.16) 

Also nwnber of grid blocks and number of buckets will be equal to their 

maximwn nwnbers: 

PF Case 

(4.17) 

(4.18) 

In this case some keys are specified. So only these linear scales 

are accessed: 

a 1 = ks ( 4 . 19) 

Specified keys cover their full domains. Since unspecified keys are 

considered "don't care" keys they also cover their full domains. Then 



the situation becomes the same as in FF case. Thus, 

nk 

nk I r 

Query Performance of k-d-B-tree 
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(4.20) 

(4.21) 

In the k-d-B-Tree, the retrieval of records involves accesses of 

the nodes and the buckets. 

In order to compare the k-d-B-tree with the grid file it will be 

assumed that: (1) a node in k-d-B-tree corresponds roughly to one linear 

scale or one grid block of a grid file, (2) buckets have the same size 

in both, and (3) the cost of accessing one bucket is the same in both 

cases. Here, the number of node and bucket accesses involved for each 

of the cases above shall be calculated. These counts will be used in 

the numerical comparisons. 

To calculate the cost of a query, the costs associated with a node 

and a bucket access need to be considered. The following notation will 

be used to indicate the different costs involved in the k-d-B-tree 

structure: 

Cn cost of a node access, 

Cb cost of a bucket access. 

The expected cost of a query (of any type) can then be expressed as 

(4.22) 

To obtain the expected cost of each query type, the number of node 

and bucket accesses are needed. This is done in the following for each 

query type. The root node is always accessed in each query, therefore, 

it will be included in the counts for the number of node accesses. In 



the following, the "l" at the beginning of each node count expression 

corresponds to the root node. 
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In range type queries (FR and PR), we need to estimate the number 

of pointers that will be accessed by a "typical" query specification. 

If there are m pointers in a node, then any given query may require the 

use of 1, 2, ... ' or m pointers at that node. The expected value of 

this is called ma in the following. The relationship between m and ma 

is the same as that between n and na that has been derived earlier for 

the grid file (see Appendix A). Thus, 

ma 0.80 m0.71, m < 9 (4.23) 

0.57 m0. 87, m >= 9 (4.24) 

FP Case 

In a fully specified point query there is only one unique record 

searched. Therefore only one bucket will be accessed: 

% = 1 (4.25) 

Also, there will be a single path to be followed, starting from the root 

node down to the bucket that contains the record; thus, the number of 

nodes that will be encountered in this search will be equal to the 

height of the tree, h, which is equal to fk. In the following formula 

the first term stands for the root node and second term represents the 

other nodes. 

an = 1 + (fk-1) fk (4.26) 

PP Case 

In this case some keys are specified by their point values. The 

number of nodes to be accessed is determined by the "don't care" keys. 
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For those keys all pointers in the related nodes are used to go to the 

next level in the tree. In the following formula the first term stands 

for the root node, the second term is the sum of the nodes accessed in 

the first cycle and third term is the number of the nodes accessed from 

the second to fth cycle in the tree. 

k-1 f-1 k 

(4.27) 

i=l j=l i=l 

In order to calculate the number of buckets to be accessed, only the 

"don't care" keys have to be considered in the first cycle. In the 

other cycles all keys are considered: 

ab = m<k-ks) m<f-l)k 

FR Case 

(4.28) 

All keys are involved in this case. It is assumed that a range 

query covers ma pointers of each node. This situation is only valid for 

the first cycle since it defines the initial partitioning of the search 

space. Other cycles refine the partitions of the first cycle therefore 

all pointers in the nodes will be accessed for those cycles. In the 

following formula the root node, nodes of first cycle and the nodes of 

other cycles are represented by the first, second and last terms 

respectively. 

k-1 f-1 k 

(4.29) 

i=l j=l i=l 

The number of buckets to be accessed will be: 

(4.30) 
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PR Case 

Similar to FR case, the number of pointers accessed in a node is ma 

for the specified keys and m for the "don't care" keys. Root node, 

nodes of first cycle and nodes of other cycles are represented by the 

first, second and last terms of the following formula respectively. 

k-1 f-1 k 

~ 1 + L m i(ks/k) a 
mi(l-ks/k) + m k a 2= 2= m(jk-i) (4.31) 

i=l j=l i=l 

The number of buckets to be accessed is: 

ab = maks m<k-ks) m<f-l)k (4.32) 

FF Case 

Since all keys are specified and their full ranges are covered, 

this case means that the entire database will be retrieved. The number 

of nodes to be accessed is equal to the total number of the nodes in the 

whole tree: 

fk-1 

1 + L mi 

i=l 

(4.33) 

Similarly the number of buckets to be accessed is equal to the maximum 

number of buckets that the structure can use: 

(4.34) 

PF Case 

For specified keys, since the full range is requested, all the 

pointers of the related nodes are used. For unspecified keys, full 

ranges are covered by definition. Consequently, this case becomes the 
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same as PP case where the nwnber of nodes and nwnber of buckets are 

given by: 

fk-1 

an = 1 + ~ mi 

i=l 

(mfk_l) / (m-1) (4.35) 

m(fk) (4.36) 

Comparisons 

In order to investigate the comparative query performance of the 

grid file and the k-d-B-tree a nwnber of hypothetical situations have 

been considered. For the purpose of this investigation block access 

counts have been computed for fully specified point and range queries. 

Table II shows the results for Point queries for N=lOOOOO, and 

c=lOO. For point queries, the nwnber of buckets accessed in both 

structures is naturally 1.0, but the nwnber of block accesses varies. 

In the grid file, the number of blocks (linear scales plus grid blocks) 

accessed is simply one more than the nwnber of keys. In the case of k

d-B-tree, this count is about the same for f=l, but increases with the 

number of cycles used. Therefore the grid file can be considered faster 

for point queries. 

Table III and Table IV give the results for the range queries. The 

effects of database size, N, and dimension, k, can be observed from the 

results in Table III. These results have also been plotted in Figures 5 

through 9. It is noticed that there is an increased influence of k for 

larger N. All access counts, except the node accesses in k-d-B-tree, 

decrease with k. It is interesting to note that the block accesses in 

grid file decrease with k while node access count increases with k for 
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f=l. Based on these results, it is concluded that k-d-B-tree structures 

allow a faster access than grid file for small k cases while the 

opposite is true for larger k. The value of k where the changeover 

occurs changes with the database size; for the range covered, it is 

approximately 8. 

Comparison of the bucket access counts indicates a decrease with k 

for both structures. For the entire N and k ranges covered in these 

exercises, grid file performs better than a one-cycle k-d-B-tree, with 

about 20% to 40% fewer access counts. It is desirable to repeat the 

comparison with multi-cycle k-d-B-trees. This is done next. 

In Table IV, and Figures 10 and 11, the effect of the number of 

cycles, f, and dimension, k, for a file size, N=l00,000 can be observed. 

In a k-d-B-tree structure f may be larger than 1, but how much larger 

depends on the policy decisions made in a particular implementation. 

Therefore an f range of 1-4 has been considered. It is clearly observed 

that the advantages of k-d-B-tree tend to disappear very fast with 

increased number of cycles. It is interesting to see the variation with 

number of cycles is steeper in the node access counts and slower in 

bucket access counts. One might conclude, therefore, that it is 

advantageous for the range query performance of a k-d-B-tree to make 

such policy decisions that will lead to smaller number of cycles. 

In Table IV the effect of file size is investigated. The results 

plotted in Figures 12 and 13 show the effects of dimension and the way 

file size, N, influences these effects. Again, the number of blocks 

accessed in the grid file case decreases with k while the corresponding 

number, the number of node accesses, in a k-d-B-tree increases with k. 

The general nature of these variations is not affected by the file size, 
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but it is clear that the rate of decrease with k becomes sharper as N 

increases. In the case of k-d-B-tree, however, the rate of change of 

the access counts does not seem to be affected appreciably with the file 

size. 

Figures 14 through 16 show the trends of the two structures in FR 

type queries as the file size increases over wide ranges. It is 

observed that the performance of the two are roughly parallel in terms 

of block accesses (when the linear scale plus grid blocks in grid file 

case, and node accesses in k-d-B-tree case are compared). For the 

conditions assumed in theses exercises, grid file is clearly the 

"winner." In terms of bucket accesses, k-d-B-tree seems to be more 

economical at low dimensions, but the difference decreases at higher 

dimensions; the two are the same at about k=8. Another interesting 

observation that can be made in these figures is that the rate of 

increase of node accesses with N in k-d-B-tree is very slow (about 1/2 

of grid file). This is a factor that would make k-d-B-tree more 

economical for very large databases. For f>l we have seen earlier that 

k-d-B-tree access counts increase significantly with f, and therefore 

these advantages may disappear in a realistic implementation. 

These conclusions on the comparative performance of the two files 

have been included to exemplify the usage of the general formulas 

presented in this chapter. The actual performances may depend on the 

parameters not considered in this evaluation. 

Table V gives the summary of the formulas that are derived to 

calculate the block accesses for all query types. 
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TABLE II 

COMPARISON OF BLOCK ACCESSES: FP QUERIES 
(N= 100000, c= 100) 

nodes-GF nodes-KDB buckets-GP 
3 2 1 
4 3 1 
5 4 1 
6 5 1 
7 6 1 
8 7 1 
9 8 1 

10 9 1 
11 10 1 

nodes-GF nodes-KDB buckets-GF 
3 4 1 
4 6 1 
5 8 1 
6 10 1 
7 12 1 
8 14 1 
9 16 1 

10 18 1 
11 20 1 

nodes-GF nodes-KDB buckets-GF 
3 6 1 
4 9 1 
5 12 1 
6 15 1 
7 18 1 
8 21 1 
9 24 1 

10 27 1 
11 30 1 

nodes-GF nodes-KDB buckets-GF 
3 8 1 
4 12 1 
5 16 1 
6 20 1 
7 24 1 
8 28 1 
9 32 1 

10 36 1 
11 40 1 
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buckets-KDB 
1 
1 
1 
1 
1 
1 
1 
1 
1 

buckets-KDB 
1 
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1 
1 
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1 

buckets-KDB 
1 
1 
1 
1 
1 
1 
1 
1 
1 

buckets-KDB 
1 
1 
1 
1 
1 
1 
1 
1 
1 
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TABLE III 

COMPARISON OF BLOCK ACCESSES: FR QUERIES 
(N= 100000, c= 100) 

nodes-GF nodes-KDB buckets-GF 
331. 92 15.37 164.96 
191.06 29.91 94.03 
120.43 39.50 58.22 

98.15 48.32 46.57 
80.52 53.88 37.26 
66.61 56.84 29.81 
55.69 57.81 23.85 
47.15 57.34 19.08 
40.52 55.87 15.26 

nodes-GF nodes-KDB buckets-GF 
331. 92 69.83 164.96 
191. 06 122.83 94.03 
120.43 157.29 58.22 
98.15 175.25 46.57 
80.52 180.90 37.26 
66.61 178.03 29.81 
55.69 169.65 23.85 
47.15 157.99 19.08 
40.52 144.65 15.26 

nodes-GF nodes-KDB buckets-GF 
331. 92 214.52 164.96 
191.06 327.55 94.03 
120.43 392.40 58.22 

98.15 420.29 46.57 
80.52 422.36 37.26 
66.61 407.44 29.81 
55.69 382.06 23.85 
47.15 350.93 19.08 
40.52 317.32 15.26 

nodes-GF nodes-KDB buckets-GF 
331. 92 408.74 164.96 
191. 06 584.00 94.03 
120.43 677. 99 58.22 

98.15 712.92 46.57 
80.52 707.69 37.26 
66.61 676.61 29.81 
55.69 630.07 23.85 
47.15 575.44 19.08 
40.52 517.76 15.26 
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buckets-KDB 
206.42 
117.66 
79.41 
63.53 
50.82 
40.66 
32.53 
26.02 
20.82 

buckets-KDB 
363.80 
291.04 
232.83 
186.26 
149.01 
119.21 

95.37 
76.29 
61.04 

buckets-KDB 
520.70 
416.56 
333.24 
266.60 
213. 28 
170.62 
136.50 
109.20 

87.36 

buckets-KDB 
622.94 
498.35 
398.68 
318.94 
255.16 
204.12 
163.30 
130. 64 
104.51 



N= 10000 

N= 30000 

N= 100000 

N= 300000 

TABLE IV 

COMPARISON OF BLOCK ACCESSES: FR QUERIES 
(f= 1, c= 100) 

keys nodes-GF nodes-KDB buckets-GF buckets-KDB 
2 46.51 6.28 22.25 27.85 
3 31.38 10.89 14.19 19.35 
4 26.70 14. 72 11.35 15.48 
5 23.16 17.41 9.08 12.39 
6 20.53 19.14 7.26 9.91 
7 18.62 20.13 5.81 7.93 
8 17.30 20.57 4.65 6.34 
9 16.44 20.60 3. 72 5.07 

10 15.95 20.34 2.98 4.06 

keys nodes-GF nodes-KDB buckets-GF buckets-KDB 
2 117.75 9.51 57.87 72.42 
3 68.98 16.61 32.99 42.22 
4 53.53 23.23 24.76 33.78 
5 44.62 27.88 19.81 27.02 
6 37.70 30.82 15.85 21. 62 
7 32.36 32.42 12.68 17.29 
8 28.29 33.02 10.14 13.84 
9 25.23 32.88 8.11 11.07 

10 22.98 32.23 6.49 8.85 

keys nodes-GF nodes-KDB buckets-GF buckets-KDB 
2 331. 92 15.37 164.96 206.42 
3 191.06 29.91 94.03 117.66 
4 120.43 39.50 58.22 79.41 
5 98.15 48.32 46.57 63.53 
6 80.52 53.88 37.26 50.82 
7 66.61 56.84 29.81 40.66 
8 55.69 57.81 23.85 32.53 
9 47.15 57.34 19.08 26.02 

10 40.52 55.87 15.26 20.82 

keys nodes-GF nodes-KDB buckets-GF buckets-KDB 
2 860.04 24.17 429.02 536.85 
3 492.08 53.15 244.54 306.01 
4 282.78 65.54 139. 39 173.23 
5 208.20 81.83 101.60 138. 59 
6 168.56 92.19 81.28 110.87 
7 137 .05 97.67 65.02 88.69 
8 112.04 99.42 52.02 70.96 
9 92.23 98.46 41.61 56.76 

10 76.58 95.59 33.29 45.41 
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TABLE V 

SUMMARY OF BLOCK ACCESS FORMULAS FOR QUERIES 

FP Case: 

PP Case: 

FR Case: 

PR Case: 

FF Case: 

PF Case: 

Grid File 

a1 - ks 

a - n<k-ks) g 

ab - n<k-ks) / r 

a1 - k 

a - n k g a 

% - nak / r 

a1 - ks 

ag = naks n<k-ks) 

ab = naks n<k-ks) / r 

a1 - ks 

a nk g -

% = nk I r 
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FP Case: 

PP Case: 

FR Case: 

PR Case: 

FF Case: 

PF Case: 

TABLE V (Continued) 

K-d-B-tree 

% = 1 

k-1 f-1 k 
an = 1 + ~ mi(l-ks/k) + ~ ~ m(jk-i) 

i=l 

k-1 
a = n 1 + ~ m i a 

i=l 

ab - mak m<f-l)k 

k-1 
~ m i(ks/k) a 

i=l 

fk-1 
~ = 1 + ~ mi 

i=l 

fk-1 

+ mk a 

j=l i=l 

f-1 
~ 

j=l 

k 
~ m(jk-i) 

i=l 

f-1 
+ m k ~ a 

j=l 

(mfk_l) / (m-1) 

an = 1 + ~ mi = (mfk-1) / (m-1) 
i=l 

k 
~ m(jk-i) 

i=l 

49 



CHAPTER V 

INSERTION PERFORMANCE 

Introduction 

Insertion is an important issue affecting the performance of any 

multikey access mechanism. Since their nature is different, the grid 

file and the k-d-B-tree act differently with respect to insertions. In 

this chapter our attention shall focus on the relative performance of 

the two structures from this point of view. 

In general, insertion includes three steps. The first step needed 

is to find the right location to store the new record. Since the new 

record is completely specified (all keys have some values), a point 

query search will give the right bucket address for the new record. The 

second step involves checking the space availability in the bucket to 

decide about whether or not a split is needed. If there is enough room 

in the bucket, then the record is simply added to that bucket. If the 

bucket is full, then that bucket has to be split in two. This will also 

cause some reorganization in the structure. This process will be called 

"splitting" in the following. The final step in the insertion process 

is actually storing the new record in the bucket it belongs to, which 

means an actual disk write. 

The cost associated with each step can be different for two cases 

of insertions, insertions involving splitting and insertions without 

splitting. The cost of the first step is the cost of a point query that 

so 
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is calculated in Chapter III and is same for both cases. The cost of 

the final step is the cost of an actual disk write operation that 

depends on hardware but is also the same for both cases. In any case 

the new record needs to be correctly located and stored. The difference 

comes from the second step that checks whether or not splitting is 

required. If splitting is not required then the cost of the second step 

is zero. If splitting is necessary then the cost of the insertion can 

be considerable. Therefore this requires further examination. 

Splitting involves a division of the full bucket that is the target 

of the new insertion. But it also creates an overhead related with the 

access mechanism itself. After each bucket split, both grid file and k

d-B-tree structures need to be reorganized. The cost of this 

reorganization overhead should be considered in estimating the average 

cost of an insertion. 

Measuring the Cost of an Insertion 

To measure the cost of an insertion, the following probability 

formula that has been introduced in Chapter III will be used. 

E(insertion) = Cl P(x) + C2 (1 - P(x)) (5.1) 

where E(insertion) is the expected cost of an insertion, Cl is the cost 

of an insertion with splitting, and C2 is the cost of an insertion 

without splitting. P(x) represents the probability of occurrence of 

splitting at an insertion, and 1 - P(x) the probability that splitting 

will not occur. 

Since splitting is rare we may expect to have a small probability 

value for P(x). On the other hand, splitting is a long operation of 

reorganization of the entire structure, therefore the cost of insertion 



with splitting, Cl, should be expected to be much larger than that 

without splitting, C2. Cl and C2 can be considered as the maximum and 

the minimum costs for the insertion respectively. Each of these 

elements will be examined in the following. 

Probability of Splitting 
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We know that we have to do a splitting in both grid files and k-d

B-trees when a bucket is full and a new record to be inserted falls into 

that bucket. The important question here is what the probability, P(x), 

of this happening is, since the expected cost depends on this 

probability. Now we need to quantify P(x). 

As the following analysis will indicate, the occurrence of 

splitting closely interacts with the bucket occupancy ratio that the 

structure maintains. In grid file and k-d-B-tree structures there is a 

set of buckets (b). When the file matures, a certain occupancy ratio is 

maintained. Afterwards, insertions will, from time to time, cause 

splitting. In a matured file the splitting will come at a certain 

period in a probabilistic sense. This period can be measured in terms 

of average number of records that can be inserted without necessitating 

a split and can be called "return period of splitting (TR)". 

The return period, if it can be calculated, is related to the 

probability of splitting. For example, if TR= 10, that is, a splitting 

occurs every tenth insertion on the average, then the probability that 

splitting will occur, P(x), in any one insertion is 0.1, thus, 

P(x) = 1 /TR (5.2) 

Therefore we need to evaluate T first. In order to find T, 

consider a hypothetical set of ten (b-10) buckets each of which can hold 
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a one hundred (c=30) records. Since we assume that the database is 

uniform, the probability that a new record will "hit" a given bucket is 

0.1 in this case. Now if we assume a key value range of 0 to l, then 

the first bucket will take records in the range (0, 0.1), the next 

between 0.1 and 0.2 and so on, until bucket number 10 which will take 

records in the range (0.9, 1). The total available capacity will be 

bc=300, and at maturity there will be bce=300e records where e is the 

average occupancy ratio. To study how the buckets are filled, we can 

generate uniformly distributed random numbers, between 0 and 1, and 

"put" each record into its bucket according to the value of the random 

number, and continue this until one bucket overflows. This way we will 

see both the average occupancy ratio, e, and its distribution over the 

buckets at the moment splitting occurs. 

When this numeric experiment was done, and repeated 100 times for 

accuracy, the results plotted in Figure 17 were obtained. It is seen 

that the average bucket occupancy ratio is e = 0.77, and its standard 

deviation is sigma~ 0.064. 

The most significant result of this numeric experiment is that the 

occupancy ratio value obtained is the highest value that can be obtained 

under the conditions assumed, and splitting occurs when this ratio is 

reached. The relationship of eat splitting, e_split (i.e., e=e_split) 

to the return period of splitting is established next. 

An important point should be clarified at this point. Although we 

referred to the random numbers generated in the numerical experiments as 

"key values", as if we are considering a one dimensional structure, this 

is not necessarily so. Because, irrespective of the number of keys, and 

no matter which access mechanism is utilized, when we come to the bucket 
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level there is only one array of buckets. What we assume is that the 

file structure is capable of distributing the records "correctly" to the 

buckets, such that the probability of hitting any given bucket is always 

l/b. Therefore the results are equally valid for any file structure. 

These distribution experiments show that, for b=lO and c=30, on the 

average, a splitting is encountered when a bucket occupancy of .77 is 

reached (e_split). Suppose a database maintains a .70 mean occupancy 

ratio (eO). Then we are free to add .07bc records without having a 

splitting. We call this value the "mean free capacity". In general the 

mean free capacity is 

TR = ( e_split - eO ) b c (5.3) 

The mean free capacity is the number of records that can be inserted 

until splitting occurs. If we assume that the system returns back to 

the mean occupancy ratio after splitting, then obviously the return 

period of splitting is equal to the mean free capacity. Since the 

occupancy ratio will probably fluctuate around the mean value, eO, TR 

may be taken as an estimate of' the return period. Therefore, the 

probability of splitting upon an insertion can be expressed as 

P(x) = 1 / [ (e_split - eO) b c ] (5.4) 

As an example of the usage of these results, consider the mean 

occupancy ratios in implementations of the grid file [19] and the k-d-B

tree [14] which report that they maintained mean occupancy ratios of 0.6 

and 0.7, respectively. Using the same values given in the distribution 

experiments (b-10, c=30, e_split~0.77) the return period of splitting 

can be calculated (Equation 5.3). As a result of these calculations, 

the return period of splitting is 21 and 51 records for grid file and k

d-B-tree respectively. That means, on the average, splitting occurs 



after every 21 records in grid file whereas it only occurs after every 

51 records in k-d-B-tree. For this specific case, splitting is almost 

2.5 times more frequent in the grid file structure than in the k-d-B

tree structure. 
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Since the result found above is very useful, we have repeated the 

numerical experiments for a wide range of parameters. The details of 

these experiments are given in Appendix B. Figure 18 shows the summary 

of the results. It is interesting to see the dependence of e_split on 

the number and size of the buckets. As the number of buckets increase 

e_split decreases, and as the bucket capacity increases e_split 

increases. 

Important practical conclusions can be derived from these results. 

A smaller e_split means that there will be frequent splittings resulting 

in a large free capacity. The actual splitting period will depend on 

the mean occupancy ratio maintained by the file structure. If this 

ratio is kept high then, in general, splitting will occur more 

frequently. Also, if suitably large bucket capacity is not used, it 

will not be possible to maintain a high occupancy ratio. It is also 

clear that a high value of e_split is desirable from the point of view 

of minimizing splitting. Numerical results indicate that, if this is a 

critical issue, one has to use a relatively small number of larger 

capacity buckets to increase e_split and thereby improve insertion 

performance. 

Cost of Splitting 

To complete the cost analysis, we need to determine the cost of 

splitting, Cl. There are many factors and situations to consider in 
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both the grid file and k-d-B-tree in order to estimate this cost. We 

will now examine the splitting process in both structures. 
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For the grid file there can be two situations. The records in the 

full bucket can belong to several grid blocks in the grid directory. 

When the new bucket is created, the bucket addresses in the 

corresponding grid blocks need to be updated to reflect the change. 

This situation does not affect the grid directory size, it only requires 

an update. But, if the records in the full bucket belong to a single 

grid block in the grid directory then the situation becomes more 

complex. The grid directory needs to be reorganized to hold the newly 

created bucket address. This reorganization cause the splitting of some 

grid blocks, changing the grid directory size. Depending on policy 

decisions, this size change can as much as double the grid directory 

size. Different splitting policies result in different refinements of 

the grid partitions. Choice of dimension and location (the point at 

which the linear scale is partitioned) is important. 

The simplest splitting policies choose the dimension according to a 

fixed schedule, perhaps cyclically. A splitting policy may favor keys 

by splitting the corresponding dimension(s) more often than others. 

This has the effect of increasing the precision of answers to partially 

specified queries in which the favored key(s) is specified, but others 

are not. For simplicity, the location of a split may be chosen as the 

midpoint of the related interval for the simplicity. But according to 

studies [19], little is changed if the splitting point is chosen from a 

set of values that are convenient for a given application. 

For the k-d-B-tree there are also two cases similar to the ones in 

the grid file. If the leaf node partitioning related with the full 
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bucket have enough room available, then the newly created bucket can 

only cause the update of that leaf node. But if the leaf node is too 

full to accommodate the newly created bucket then a change in the 

partitioning is needed. The important point here is that a number of 

levels are involved in the reorganization. Sometimes reorganization is 

only needed in a subtree, leading to less overhead. On the other hand, 

if a new level is needed in the tree, then the whole tree needs to be 

reorganized. Even though this situation is less likely to occur than the 

other case, it has more overhead involved. 

Regardless of their cause the reorganizations require some policy 

decisions. Choosing the domain and the splitting point in the node (for 

the related partition) are important aspects and the methods used are 

analogous to grid file methods. For instance one way of choosing 

domains is to do so cyclically. Similarly this cyclic method may be 

modified if something is known about queries. It is desirable to favor 

some domains if they are expected to be referred to more often. Also 

given the splitting domain, the splitting point should be chosen so as 

to have approximately the balanced number of records in the partitions 

throughout the whole tree. The midpoint or median value can be among 

the choices. In some cases, as with duplicate records, special care may 

be needed. Overall, the reorganization of the tree affects the size of 

the tree. In the worst case, the tree size can double. 

From these considerations it becomes evident that the splitting 

process is a complex one, and its cost can not be expressed in a simple 

form because of the large number of different situations and possible 

policy decisions that are made in any implementation. This aspect has 

been left for future studies. 



Insertion Performance: Results 

In this chapter an attempt has been made to quantify the cost of 

insertions for comparing the two structures. The results may be 

summarized as follows. 

a. The cost of an insertion can be computed on a statistical 

basis, since a splitting operation will be encountered on some 

insertions while others will only cost as much as a point query. 
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b. The expected cost can be expressed as a weighted average of the 

cost of a splitting operation and the cost of a point query, the weights 

being the probability of splitting per insertion, P(x), and 1 - P(x), 

respectively. 

c. A splitting operation may cost a different amount each time it 

occurs, but the cost is, in general, much higher than that of an 

insertion without splitting. This is true for both structures. 

Although not quantified, it appears reasonable to expect a comparable 

cost of splitting in the two structures. 

d. The probability of splitting per insertion is the inverse of 

the return period of splitting, measured as the number of records that 

can be inserted without causing a splitting. The return period depends 

on the mean bucket occupancy ratio maintained by a file structure, eO, 

and the occupancy ratio at splitting, e_split (which is a function of b 

and c). 

From this discussion it follows that a comparison of the two 

structures may be made, roughly, based on the return period of splitting 

alone. For the same database size, if the two file structures use the 

same bucket capacity then there will be about the same number of 

buckets. So e_split will be approximately the same. Then the main 



factor that governs the return period is the mean occupancy ratios 

maintained. Under these conditions the structure that maintains a 

higher bucket occupancy ratio will create more frequent splittings; 

therefore its insertion performance will be inferior. 

Another conclusion that may be derived from the studies of this 

chapter is that if insertion performance is an important issue in a 

given implementation, then one has to develop the structure, with 

suitable policy decisions, to maintain a compatible bucket occupancy 

ratio. The numerical results presented here may be used as a guide. 
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CHAPTER VI 

MEMORY UTILIZATION 

Introduction 

To study the memory utilization of grid file and k-d-B-tree, we 

need to investigate two separate aspects of memory usage: 

a. how efficiently the buckets are utilized by two structures; 

b. the storage required by the access mechanism, i.e., how much 

storage is needed by the grid file and k-d-B-tree structures themselves. 

These two aspects of memory usage will be disscussed in the 

following. 

Bucket Utilization 

In simulation studies and actual implementations it has been 

reported that bucket occupancy ratios of 0.70 in the grid file case, and 

0.60 in the k-d-B-tree case can be maintained [14, 19]. Improving these 

occupancy ratios may be possible for both access mechanisms because of 

the flexibility in the policy decisions that can be made. In general, 

it is desirable to obtain a high occupancy ratio for efficient 

utilization of memory resources. However, the bucket occupancy ratio is 

closely related to the frequency of splitting as discussed in Chapter 5. 

Briefly, if the bucket occupancy ratio is kept large, then splitting is 

more frequent. Clearly, frequent splittings degrade the insertion 
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performance. Therefore one has to consider this interaction between the 

two in the design of access mechanisms for a specific application. If 

efficient memory utilization is more important, then one has to 

sacrifice from insertion speed, or vice versa. We have supplied some 

data that may be useful in this regard. 

For both structures the buckets that hold the actual database 

records are expected to be kept in the secondary memory. To gain some 

idea about this memory requirement we may calculate the number of 

buckets needed in both grid file and k-d-B-tree, using the general 

relationships derived in Chapter 3. Table VI gives the results obtained 

in this manner; it shows the number of buckets needed for different 

database sizes and for different bucket capacities. Bucket occupancy 

ratios of 0.70 and 0.60 are used in the calculations for grid file and 

k-d-B-tree respectively. Table VI shows that the number of buckets 

increases when the database size increases. It is natural to expect 

that more buckets are needed for larger database if the same bucket 

capacity is used. Since the k-d-B-tree has a smaller average bucket 

occupancy ratio, more buckets (17%) are required to accommodate the same 

database. When the bucket capacity is increased, the number of buckets 

decreases for both structures. 

Size of Access Mechanism 

To compare the memory requirements of the two access mechanisms, we 

need to calculate the total number of bytes requires to store the grid 

file and k-d-B-tree structures. 



N = 1000 

grid file 
k-d-B-tree 

N = 10000 

grid file 
k-d-B-tree 

N = 50000 

grid file 
k-d-B-tree 

N = 100000 

grid file 
k-d-B-tree 

N = 500000 

grid file 
k-d-B-tree 

N = 1000000 

grid file 
k-d-B-tree 

TABLE VI 

NUMBER OF BUCKETS 

c=lO 

143 
167 

c=lO 

1429 
1667 

c=lO 

7143 
8333 

c=lO 

14286 
16667 

c=lO 

71429 
83333 

c=lO 

142857 
166667 

c=30 

48 
56 

c=30 

476 
556 

c=30 

2381 
2778 

c-30 

4762 
5556 

c=30 

23810 
27778 

c=30 

47619 
55556 

c=lOO 

14 
17 

c=lOO 

143 
167 

c=lOO 

714 
833 

c-100 

1429 
1667 

c=lOO 

7143 
8333 

c=lOO 

14286 
16667 

c=300 

5 
6 

c=300 

48 
56 

c=300 

238 
278 

c=300 

476 
556 

c=300 

2381 
2778 

c=300 

4762 
5556 

c=lOOO 

1 
2 
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c=lOOO 

14 
17 

c=lOOO 

71 
83 

c=lOOO 

143 
167 

c=lOOO 

714 
833 

c=lOOO 

1429 
1667 
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Grid file structure consists of linear scales and the grid 

directory. Linear scales are one-dimensional arrays containing the key 

values separating the intervals. Let us denote the number of bytes 

needed to store one key value by v. This size naturally will depend on 

the application. 

The size of the grid directory is the dominating memory overhead of 

the grid file structure. The grid directory consists of the grid 

blocks, and each grid block contains a bucket address (or a pointer). 

Let us denote the number of bytes needed to hold one such pointer by p. 

The number of grid blocks in the grid directory is given by nk as 

derived in Chapter 3. 

Since each linear array is associated with a different key, the 

number of keys gives the total number of the linear scales needed. Each 

linear scale contains n key values, and the grid array contains nk 

entries. Thus the total size of the grid file access mechanism, sg, may 

be calculated as follows. 

(6.1) 

The memory requirement of the k-d-B-tree is the number of bytes to 

store the information at the nodes at each level. This size can be 

calculated as follows. There are m-1 key values (each of which occupies 

v bytes) and m pointers (of p bytes each) in each node. The memory 

requirement, or "size" of k-d-B-tree is then 

sk - nodes [(m-1) v +mp] 

where nodes is the total number of nodes in the tree; 

h-1 

nodes = 1 + ~ mi = (mh-1) / (m-1) 

i=l 

(6.2) 

(6.3) 



The number of bytes needed to store key values, v, and that of 

pointers, p, have to be known to be able to evaluate these formulas 

numerically. However, to compare the memory requirements of the two 

structures in this study we will simplify these formulas by assuming 

that the two parameters, v and p, are approximately equal, say 
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v=p=mu (6.4) 

This way it is possible to do a comparative evaluation in terms of a 

common "memory unit" mu. 

Having established the memory sizes in this manner, we can easily 

compute the access mechanism sizes for various database sizes and 

characteristics. The results of these calculations are given in Tables 

VII and VIII in terms of memory units. 

Comparison 

In Table VII the effect of dimension, k, and database size on 

access mechanism size in terms of "memory units" defined above, is 

investigated. Table VII also includes the effect of the number of 

cycles, f, for k-d-B-tree. The bucket capacity, c, is kept constant 

while other parameters vary in these calculations. 

From the results in Table VII we observe how access mechanism size 

increases with increasing database size for both structures. The rate 

of increase is almost the same as the rate of increase in database 

sizes. An interesting observation that can be made is that the grid 

file size slightly fluctuates around a constant value with increasing k 

for a given database size. This shows a dynamic capacity of grid file 

which seems to absorb the potential increase in overhead as dimension 

increases. But in the case of k-d-B-tree, the memory requirement for 
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the tree increases with increasing dimension. It also increases with 

number of cycles, f. But the rate of increase with increasing f is not 

substantial. 

In practically all the cases considered in constructing Table VII, 

the grid file access mechanism has a smaller memory requirement than k

d-B- tree. Grid file size is almost always smaller than the size of a 

one-cycle k-d-B-tree. The difference becomes even more significant with 

the increasing cycles. 

In addition to more efficient memory utilization to store the 

structure, the stable size of grid file makes it a more desirable choice 

for high dimensions since the k-d-B-tree size increases considerably for 

large dimensions. For example, a four-cycle k-d-B-tree typically 

requires about four times the memory that a grid file occupies for k=lO. 

In the preceding comparative study a constant bucket capacity, 

c=lOO, was used. This could have an effect on the results. In fairness 

to k-d-B-tree we need to look at the structure sizes for other c values. 

We repeated the same size calculations for c values between 10 and 1000, 

and obtained the results given in Table VIII. As should be expected, 

the structure sizes decrease as c increases. Other than this, our 

conclusions do not change; similar observations can be made in Table 

VIII for all c values. The results may be summarized as follows: 

1. The structure size in grid file does not change appreciably 

with dimension. The size of a comparable k-d-B-tree, on the other hand, 

increases with dimension. 

2. The size of a k-d-B-tree also increases with increasing number 

of cycles. 
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3. In almost all of the cases considered a grid file requires less 

memory than even a one-cycle k-d-B-tree. 

Therefore, we conclude that the grid file is more efficient in its 

memory utilization. 



N = 1000 

k grid file 

2 39.26 
3 37.74 
4 37.82 
5 38.35 
6 39.06 
7 39.87 
8 40.74 
9 41.63 

10 42.55 

N = 10000 

k grid file 

2 319.52 
3 305.47 
4 302.16 
5 301. 21 
6 301.11 
7 301.42 
8 301.94 
9 302.58 

10 303.32 

N ~ 50000 

k grid file 

2 1504.16 
3 1462.36 
4 1453.16 
5 1449.95 
6 1448. 71 
7 1448.33 
8 1448.41 
9 1448. 74 

10 1449.25 

TABLE VII 

COMPARISON OF ACCESS MECHANISM SIZES 
(c= 100) 

k-d-B-tree 
f=l f=2 f=3 

36.42 46.69 57.52 
41.41 57.52 74.02 
46.69 68.51 90.63 
52.07 79.55 107.27 
57.52 90.63 123.94 
63.00 101.72 140.61 
68.51 112.83 157.30 
74.02 123.94 173.99 
79.55 135.05 190.68 

k-d-B-tree 
f-1 f=2 f=3 

345.24 395.22 454.42 
.368 .12 • 454.42 547.74 
395.22 516.33 642.95 
424.30 579.35 738.93 
454.42 642.95 835.30 
485.18 706.88 931. 88 
516.33 771. 02 1028.61 
547.74 835.30 1125.43 
579.35 899.67 1222.32 

k-d·B-tree 
f=l f=2 f~3 

1694.53 1855.01 2067.22 
1763.63 2067.22 2413.69 
1855.01 2296.21 2772. 28 
1957.90 2532.39 3135.88 
2067.22 2772. 28 3502.02 
2180.45 3014.32 3869.62 
2296. 21 3257.72 4238.13 
2413.69 3502.02 4607.26 
2532.39 3746.96 4976.82 
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f=4 
68.51 
90.63 

112.83 
135.05 
157.30 
179.55 
201.81 
224.07 
246.33 

f=4 
516.33 
642.95 
771.02 
899.67 

1028.61 
1157. 72 
1286.93 
1416.22 
1545.55 

f=4 
2296.21 
2772. 28 
3257.72 
3746.96 
4238.13 
4730.39 
5223.35 
5716. 77 
6210.53 
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TABLE VII (Continued) 

N = 100000 

k grid file k-d-B-tree 
f=l f=2 f=3 f=4 

2 2964.05 3373.16 3640.40 4013.06 4421.62 
3 2899.71 3484.76 4013 .06 4632.38 5278.09 
4 2886.39 3640.40 4421. 62 5278.09 6155.05 
5 2881.70 3819.90 4845.81 5934. 77 7040.39 
6 2879.74 4013 .06 5278.09 6597.03 7929.96 
7 2878.96 4214.61 5715.08 7262.48 8821.98 
8 2878.77 4421. 62 6155.05 7929.96 9715.50 
9 2878.93 4632.38 6597.03 8598.81 10610.03 

10 2879.31 4845.81 7040.39 9268.58 11505.30 

N = 1000000 

k grid file k-d-B-tree 
f=l f=2 f=3 f=4 

2 28909.48 33461.44 34939.65 37442.20 40360.92 
3 28663.15 34010.37 37442.20 41899.55 46683.90 
4 28623.43 34939.65 40360.92 46683.90 53267.08 
5 28610.35 36114.40 43471.49 51607.91 59958.30 
6 28604.62 37442.20 46683.90 56603.59 66704.38 
7 28601. 75 38868.50 49956.39 61640.82 73482.10 
8 28600.28 40360.92 53267.08 66704.38 80279.54 
9 28599.58 41899.55 56603.59 71785.42 87090.31 

10 28599.34 43471.49 59958.30 76878.98 93910.56 

N = 1E+07 

k grid file k-d-B-tree 
f=l f=2 f=3 f=4 

2 286783.44 333740.38 342009.31 359298.28 381017.88 
3 285911.94 336415.75 359298.28 392776.12 430023.41 
4 285806.78 342009.31 381017.88 430023.41 482120.47 
5 285776.22 349872.47 404922.25 468934.47 535525.12 
6 285763.12 359298.28 430023.41 508712.09 589600.12 
7 285756.72 369788.06 455841. 94 548995.94 644061. 75 
8 285752.94 381017.88 482120.47 589600.12 698768.38 
9 285750.72 392776.12 508712.09 630420.12 753638.19 

10 285749.44 404922.25 535525.12 671391.00 808622.00 



c = 10 

k 

2 
3 
4 
5 
6 
7 
8 
9 

10 

c - 30 

k 

2 
3 
4 
5 
6 
7 
8 
9 

10 

c = so 

k 

2 
3 
4 
5 
6 
7 
8 
9 

10 

grid file 

28909.48 
28663.15 
28623.43 
28610.35 
28604.62 
28601.75 
28600.28 
28599.58 
28599.34 

TABLE VIII 

COMPARISON OF ACCESS MECHANISM SIZES 
(N= 100000) 

k-d-B-tree 
f - 1 f - 2 f - 3 

33461.44 34939.65 37442.20 
34010.37 37442.20 41899.55 
34939.65 40360.92 46683.90 
36114.40 43471.49 51607.91 
37442.20 46683.90 56603.59 
38868.50 49956.39 61640.82 
40360.92 53267.08 66704.38 
41899.55 56603.59 71785.42 
43471.49 59958.30 76878.98 

grid file k-d-B-tree 
f - 1 f = 2 f = 3 

9718. 99 11184.65 11836. 77 12840.35 
9587.41 11441. 51 12840.35 14566.36 
9563.33 11836. 77 13974.85 16391.88 
9555.06 12314.07 15168.00 18259.30 
9551.44 12840.35 16391. 88 20148.11 
9549.73 13397.41 17633.78 22049.32 
9548.96 13974.85 18887.10 23958.35 
9548.72 14566.36 20148.11 25872.52 
9548.81 15168.00 21414.55 27790.38 

grid file k-d-B-tree 
f = 1 f = 2 f = 3 

5865.47 6723.40 7169.69 7827.80 
5767.92 ·6903. 75 7827.80 8942.71 
5749.06 7169.69 8561. 80 10114.46 
5742.50 7484.44 9329.37 11310.00 
5739.66 7827.80 10114.46 12517.70 
5738.37 8188.95 10909.77 13732.39 
5737.88 8561. 80 11711.56 14951.49 
5737.82 8942.71 12517.70 16173.52 
5738.04 9329.37 13326.92 17397.62 
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f = 4 
40360.92 
46683.90 
53267.08 
59958.30 
66704.38 
73482.10 
80279.54 
87090.31 
93910.56 

f = 4 
13974.85 
16391.88 
18887.10 
21414.55 
23958.35 
26511.48 
29070.48 
31633.38 
34199.15 

f = 4 
8561. 80 

· 10114.46 
11711. 56 
13326. 92 
14951.49 
16581. 36 
18214.54 
19850.04 
21486.98 
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TABLE VIII (Continued) 

c = 100 

k grid file k-d-B-tree 
f = 1 f = 2 f = 3 f = 4 

2 2964.05 3373.16 3640.40 4013. 06 4421. 62 
3 2899.71 3484.76 4013.06 4632.38 5278.09 
4 2886.39 3640.40 4421. 62 5278.09 6155.05 
5 2881.70 3819.90 4845.81 5934.77 7040.39 
6 2879.74 4013 .06 5278.09 6597.03 7929.96 
7 2878.96 4214.61 5715.08 7262 .48 8821.98 
8 2878.77 4421. 62 6155.05 7929.96 9715.50 
9 2878.93 4632.38 6597.03 8598.81 10610.03 

10 2879.31 4845.81 7040.39 9268.58 11505.30 

c = 500 

k grid file k-d-B-tree 
f = 1 f = 2 f = 3 f = 4 

2 619.24 683.92 766.21 868.16 976.10 
3 596.32 720. 68 868.16 1031.13 1198.36 
4 590.99 766.21 976.10 1198.36 1423.87 
5 589.23 816.02 1086.59 1367. 33 1650.71 
6 588.71 868.16 1198.36 1537.18 1878.20 
7 588.76 921. 68 1310. 88 1707.53 2106.09 
8 589.12 976.10 1423.87 1878.20 2334.20 
9 589.65 1031.13 1537.18 2049.09 2562.48 

10 590.30 1086.59 1650.71 2220.12 2790.87 

c = 1000 

k grid file k-d-B-tree 
f = 1 f = 2 'f = 3 f = 4 

2 319.52 345.24 395.22 454.42 516.33 
3 305.47 368.12 454.42 547.74 642.95 
4 302.16 395.22 516.33 642.95 771. 02 
5 301. 21 424.30 579.35 738.93 899.67 
6 301.11 454.42 642.95 835.30 1028.61 
7 301.42 485.18 706.88 931. 88 1157.72 
8 301.94 516.33 771.02 1028.61 1286.93 
9 302.58 547.74 835.30 1125.43 1416.22 

10 303.32 579.35 899.67 1222.32 1545.55 



CHAPTER VII 

CONCLUSIONS 

Summary and Conclusions 

The grid file and k-d-B-tree structures have been compared 

analytically to assess their relative efficiency in accessing and 

inserting records, and memory utilization. The results may be 

summarized as follows. 

First a number of useful relationships have been derived for both 

structures. These relate various quantities such as the number of 

buckets, bucket size, database size, bucket occupancy ratio, and 

dimension. These may be used, for example, to estimate the average 

number of intervals in one linear scale of a grid file, n, and the 

order, m, in a comparable k-d-B-tree. Such calculations were necessary 

in the course of this study so that fair comparisons could be done. 

However, these formulas can also be used for other purposes. 

Types of queries possible in a multi-dimensional database have been 

classified. The average number of block assesses required in a query is 

taken as the measure of performance, and analytical expressions have 

been developed to estimate the number of block accesses for each type of 

query. Using these expressions some parametric, but hypothetical 

situations have been considered to obtain estimates in order to compare 

the two file structures. 
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From the point of view of query performance, it was found that, in 

general, grid files access records "faster," as measured by the number 

of block accesses necessary to reach the desired records. One exception 

to this is a one-cycle k-d-B-tree, which seems slightly more efficient 

for small (k<8) dimensions in the case of range queries, but its 

performance slows down rapidly with increased nwnber of cycles. 

In both structures, but considerably more so in the grid file, the 

nwnber of block accesses decreases as the dimension increases. This 

should be expected because these structures have been designed as 

multikey access mechanisms. Further, this rate of decrease with k 

increases with database size, N. That is, the query efficiency of the 

structures tend to increase with larger databases. 

Next the cost of an insertion was considered for comparing the two 

structures. It has been found that this cost can be computed on a 

statistical basis, since a splitting operation will be encountered on 

some insertions while others will only cost as much as a point query. 

The expected cost can be expressed as a weighted average of the cost of 

a splitting operation and the cost of a point query. However, because a 

splitting operation is much costlier than a query, the average return 

period of splitting may be taken as a measure of comparison. 

It was found that the return period depends on the mean bucket 

occupancy ratio maintained by a file structure, eO, and the occ~pancy 

ratio at splitting, e_split, which in turn is a function of b and c. 

This functional reiationship has been determined. This analysis 

indicates that the structure that maintains a higher bucket occupancy 

ratio (grid file) will create more frequent splittings; therefore its 

insertion performance will be inferior. 
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For comparing the relative efficiency of grid file and k-d-B-tree, 

two aspects of memory utilization have been isolated for comparing the 

two structures: (1) bucket utilization, and (2) size of access 

mechanism. Bucket utilization has not been evaluated analytically in 

this study. The data available from the literature suggests that the 

difference between the two structures in the usage of buckets are not 

large, with k-d-B-tree requiring approximately 17% more buckets for the 

same database as compared to grid file. 

A measure is proposed to compare the memory requirement of the 

structure itself (i.e., the access mechanism). This may be called the 

structure size in "memory units" (One memory unit is defined as a group 

of bytes required to hold a pointer or a key value). It was found that 

the structure size in a grid file does not change appreciably with 

dimension. On the other hand, the size of a comparable k-d-B-tree 

increases with dimension and also with increasing number of cycles. In 

almost all of the cases considered grid file requires less memory than 

even a one-cycle k-d-B-tree. 

Therefore it is concluded that the grid file is more efficient in 

its memory utilization. 

Suggestions for Future Work 

Further analysis of insertion performance may be necessary to 

determine a more accurate estimation of the cost of an insertion. For 

this purpo&e the cost of a splitting has to be calculated in both 

structures. Deletion performance can be studied in a similar fashion 

for both structures. It appears that an implementation of k-d-B-tree 

may be quite complex in building and reorganizing the structure due to a 



number of different policy decisions that can be made. Therefore, 

implementations of both structures especially k-d-B-tree may be useful 

to study these aspects. Applications with real databases will be 

helpful to see how the results of the analytical approach apply to a 

real situation. 
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APPENDIX A 

NUMBER OF ACCESSED INTERVALS IN A RANGE QUERY 

The derivation of Equations 4.2 and 4.3, giving the expected number 

of accessed intervals in a range query, is presented here. The 

relationship will be derived with reference to grid file, but, as 

explained in the main text, it is equally valid in k-d-B-tree when n's 

are replaced by m's in the equations. 

The problem may be studied as follows: 

There are n equal subdivisions in a linear scale, defined by (n-1) 

delimeters di. A range query is considered. It is assumed that the 

query range can have any length, from zero to the entire range of the 

linear scale. The question we pose here is "what is the expected number 

of intervals covered by an arbitrary range query?" 

To calculate the expected number of intervals covered by a random 

range query, we consider the number of different possible situations: a 

query range can be smaller than the width of one interval, it can be 

larger than one interval, but less than two intervals, etc. These 

situations can be studied on the example in Figure 19 where seven 

intervals are taken. We see that the query range can have a length of 

one through n-1 intervals. Furthermore, each of such ranges can be 

situated at a different location with respect to the linear scale. 

Counting all the possible situations in this example, we find 48. We 

call this sum S. It may be noted that a point query is included in the 

80 



81 

case where the length of the query range is less than one interval, and 

a full range query is included in the last case (length>6). 

If we assume that each of the possible situations are equally 

likely, then the probability of one is l/S. In Figure 19 the number of 

intervals covered in each of these S situations, determined by 

inspection, is also shown. At the bottom of the figure, the number of 

one, two, ... , seven intervals covered is totalled. For example, seven 

of the 48 cases will cover one interval, 12 will cover 2 intervals, etc. 

Thus, the probability of covering one interval is P(l)=7/48, that of two 

intervals is P(2)=12/48, etc. Then it is a straightforward calculation 

to determine the expected number of intervals covered: 

E(i) = (1) P(l) + (2) P(2) + ... + (7) P(7) 

or, in general, 

where 

and 

n 

E(i) = ~ i P(i) 

i=l 

P(i) 

n/S, 

2(n-i+l)/S, 

l/S, 

n-1 

i=l 

i=2,3,4, ... ,n-1 

i=n 

s 1 + 2 ~ (n-i+l) + n = n2 + 6n - 9 

i=2 

(A.1) 

(A.2) 

(A.3) 

(A.4) 

Since the expected number of covered intervals, E(i), is used in further 

derivations in the main text, we call it na, short for "number of 

accessed intervals." Evaluating Eqs. (A.l) through (A.4) for n=3-30, 



the relationship shown in Figure 20 is obtained. For use in the 

calculations, as in Chapter 4, it is desirable to have a simple 

expression for this relationship. Therefore the log-log linear 

relationship, 

n = a nb a 

82 

(A. 5) 

has been fit, where b is the slope of the line and a is the value of the 

function at n=l. For accurate fitting, it has been found necessary to 

divide the n range in two at n=9. Thus, 

0. 80 no. 71 n < 9 
' (4.2) 

0.57 n0. 87, n >= 9 (4.3) 
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Figure 19. Number of Intervals Spanned in a Range Query (n=7) 
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APPENDIX B 

BUCKET OCCUPANCY AT SPLITTING 

We consider a hypothetical set of b buckets, each of which can hold 

c records, and consider records being inserted. This will be simulated 

by generating random numbers. Since we assume that the database is 

uniform, the probability of a new record to "hit" a given bucket is l/b. 

Now if we assume a key value range of 0 to 1, then the first bucket will 

take records in the range (0, l/b), the next between (l/b, 2/b), and so 

on, until bucket number b which will take records in the range ((b-1)/b, 

1). The total available capacity will be "be", and at maturity there 

will be 

N - b c e (B .1) 

records where e is the average occupancy ratio. 

To study how the buckets are filled, we generate uniformly 

distributed random numbers between 0 and l, "put" each record in its 

bucket according to the value of the random number, and continue this 

until one bucket overflows. This way we will see both the average 

occupancy ratio, e, and its distribution over the buckets at the moment 

splitting occurs. This value of e is called e_split in Chapter 5. 

A "b" range of 3 to 300, and a "c" range of 3 to 100 have been 

chosen. It was found that the scatter of the results were larger for 

smaller combinations of b and c, but much less for larger values. On 

the other hand, computation time was greater for the large b and c. 
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Therefore the number of repetitions for each case varied. To obtain 

reliable results using reasonable numbers of repetitions the running 

average was printed at the end of each trial for a given case, and as 

this running average stopped fluctuating the test was stopped. At least 

three, but in general four decimal digits were obtained accurately for 

each case. The results are presented in Table IX. 

TABLE IX 

RESULTS OF NUMERIC EXPERIMENTS 

number of bucket capacity number of e_split 
buckets (b) (c) trials mean st. dev. 

3 3 200 .690 .176 
3 10 100 .804 .118 
3 30 100 .867 .077 
3 100 100 .917 .044 

10 3 100 .4S3 .147 
10 10 100 .618 .098 
10 30 100 .769 .064 
10 100 so .848 .04S 
10 1000 10 .960 .OlS 
30 3 200 .330 .112 
30 10 100 .S33 .08S 
30 30 7S . 724 .OS6 
30 100 20 .809 .038 

100 3 so .2S2 .09S 
100 10 so .448 .067 
100 100 so .782 .028 
100 1000 10 .92S .012 



APPENDIX C 

INSERTIONS WITH SPLITTING 

The dynamic behavior of the grid file and the k-d-B-tree is best 

explained by tracing an example: that is, building up the structures 

under repeated insertions. In order to simplify the description, the 

following small two-dimensional database is used for both structures: 

Rec No. 

Name 
Age 

1 2 

L K 
20 10 

3 

T 
80 

4 

T 
40 

5 

I 
90 

6 

G 
45 

7 

N 
45 

8 

D 
70 

9 

K 
30 

10 

T 
20 

Figures 21 and 22 show the grid file and the k-d-B-tree during the 

insertions respectively. Bucket capacity (c) is assumed to be 3 in both 

cases. 

In Figure 21, instead of showing the grid directory, whose elements 

are in one-to-one correspondence with the grid blocks, we draw the 

bucket pointers as originating directly from the g7id blocks. Each 

"dot" in the search space represents a record. 

Initially, a single bucket (bucket 1) is assigned to the entire 

record space. First three records are inserted without causing any 

problem (Part A). When record 4 comes, it causes bucket overflow, the 

record space is split, a new bucket (bucket 2) is made available. 

Midpoint value is chosen as the splitting point. Those records that lie 
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in one half of the space are moved from the old bucket to the new one. 

When bucket 1 overflows (because of record 6) again, its grid block is 

split according to some splitting policy: we assume the simplest 

splitting policy of alternating directions. After splitting, records of 

bucket 1 which lie on the lower left grid block of the search space are 

moved to a new bucket (bucket 3). Notice that, as bucket 2 did not 

overflow, it is left alone; its region now consists of two grid blocks 

(Part B). After the record 8 is inserted, record 9 causes an overflow 

at bucket 3. This triggers a further refinement of the grid partition 

and splitting bucket 3 into buckets 3 and 4. Record 10 is inserted 

without any problem (Part D). 

In k-d-B-tree case (Figure 22), node order (m) is assumed to be 3 

and the organization of the tree is based on the key "Age" at the 

beginning level. 

The first three records are inserted without causing any problem 

(Part A). When record 4 comes, it causes bucket overflow. Simply, 

splitting the bucket and reorganizing the node solves the problem (Part 

B). After records 5 and 6 are inserted in the newly created bucket, 

this time record 7 causes bucket overflow. Part C shows the situation 

after the bucket splitting. After record 8 is inserted, record 9 causes 

overflow in the first bucket. Bucket splitting becomes necessary. 

Since the root node is also full, a new level needs to be introduced, 

requiring the complete reorganization of the tree. New level of the 

tree is partitioned by using the key "Name". Part D shows the tree 

after splitting and reorganization. Also record 10 is inserted without 

any complication. In this example, splitting point is chosen as the 

median of the key values. 



A 

z 

·~ 

0 

Search Space 

• 
• 

100 

• 
• 

• • 

-----• I 

• I • 
• 1 I • 
-1-~ - -
• • 
• I • j • 

Buckects 

1 
I . I l .· 

(A) 

1 2 

. . 0 
---------

( B) 

( c) 

3 4 

(D) 

Figure 21. Insertions with Splitting (Grid File) 
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Figure 22. Insertions with Splitting (K-d-B-tree) 
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APPENDIX D 

TABLE OF SYMBOLS 

The following table gives the summary of all the symbols used 

throughout the thesis in an alphabetical order. 

Symbol 

b 

c 

Cl 

C2 

Cb 

Cg 

C1 

en 

cycle 

TABLE X 

TABLE OF SYMBOLS 

Description 

Number of buckets accessed 

Number of grid blocks accessed in grid file 

Number of linear scales accessed in grid 

Number of nodes accessed in k-d-B-tree 

Number of buckets 

Bucket capacity (in terms of records) 

Cost of an insertion with splitting 

Cost of an insertion without splitting 

Cost of a bucket access 

file 

Cost of a grid block access in grid file 

Cost of a linear scale access in grid file 

Cost of a node access in k-d-B-tree 

Frequency of all the keys used in k-d-B-tree 
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Symbol 

e 

eg 

ek 

eO 

e_split 

Eg(query) 

E(i) 

E(insertion) 

Ek(query) 

f 

FF 

FP 

FR 

G 

h 

k 

m 

TABLE X (Continued) 

Description 

Nwnber of delimeters in a linear scale for key i 

Average bucket occupancy ratio 
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Average bucket occupancy ratio in grid file (0.70) 

Average bucket occupancy ratio in k-d-B-tree (0.60) 

Mean bucket occupancy ratio 

Average bucket occupancy ratio at the splitting 

Expected cost of a query for grid file 

Expected nwnber of intervals in a linear scale or in 

a node for a range query 

Expected cost of an insertion 

Expected cost of a query for k-d-B-tree 

Usage frequency of the keys in k-d-B-tree 

Fully specified Full range query 

Fully specified Point query 

Fully specified Range query 

Grid array size (in terms of grid blocks) 

Tree height (of k-d-B-tree) 

Dimension (nwnber of keys used) 

Number of keys specified in a range query 

Key value for dimension i 

Lower bound of the domain for the key i 

Node order in k-d-B-tree 



Symbol 

mu 

n 

ni 

nodes 

N 

r 

p 

PF 

pp 

PR 

p ( :i,) 

P(x) 

1-P(x) 

s 
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TABLE X (Continued) 

Description 

Number of pointers covered in a node for a range 

query in k-d-B-tree 

Memory unit (in terms of bytes) 

Number of intervals in a linear scale in grid file 

Number of intervals covered in a linear scale for a 

range query in grid file 

Number of intervals in linear scale i in grid file 

Number of nodes in k-d-B-tree 

Database size (total number of records) 

Number of grid blocks per bucket 

Number of bytes needed to store a pointer value 

Partially specified Full range query 

Partially specified Point query 

Partially specified Range query 

Probability of covering i intervals in a linear 

scale or in a node for a range query 

Probability of an occurrence of splitting case 

Probability of non-occurrence of splitting case 

Sum of intervals covered in a linear scale for a 

range query 

Size of grid file access mechanism 

Size.of k-d-B-tree access mechanism 

Standar"d deviation for e_split 



Symbol 

TABLE X (Continued) 

Description 

Return period of splitting 

Upper bound of the domain for the key i 

Number of bytes needed to store a key value 
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