
UNIVERSITY OF OKLAHOMA
GRADUATE COLLEGE

Development and Testing of a New Transport Protocol
Optimized for Multimedia Internet Transactions

A Dissertation

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

By

Seth Bradley Noble

Norman, Oklahoma
1999

UMI Number: 3528666

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

in the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed.

a note will indicate the deletion.

DikSorlütion PubliyHjng

UMI 3528666
Published by ProQuest LLC 2012. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17. United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor. Ml 48106-1346

Development and Testing of a New Transport Protocol
Optimized for Multimedia Internet Transactions

A Dissertation APPROVED FOR THE
DEPARTMENT OF COMPUTER SCIENCE

BY

M . 3 1 /1

? /l

© Copyright by Seth Bradley Noble 1999
All Rights Reserved

Patent Pending

Acknowledgments

To Grandpa, the first Dr. Noble:

Dr. Hyman Shea Noble

July 7, 1914 - November 24, 1999

I would also like to thank my wife for loving me in spite of the many hours of pacing, my

family for supporting me through my first two decades in school, my committee and the

whole School of Computer Science for giving me the freedom to discover, and finally

Dr. Frederick Thompson, Professor Emeritus of the California Institute of Technology, for

teaching me that just because something hasn’t been done doesn’t mean it can’t be done.

iv

T a b le o f C o n te n t s

I. Introduction... 1

IL Analysis of Traditional IP Transport
2.1 History of TCP..3
2.2 TCP Fundamentals..5
2.3 Violations of TCP Design Assumptions..9
2.4 Summary.. 16

III. Characteristics of An Alternative Transport...................................... 18

IV. Design of the Multimedia Transport Protocol................................... 22

V. Algorithms and Techniques... 30

VI. Programming Interface...................................... 50

VII. Testing and Simulation
7.1 Methods and Goals... 62
7.2 Comparative Throughput... 64
7.3 Third Party Effects... 68
7.4 Modeling and Simulation... 72
7.5 Analysis of Results... 77

VIII. Conclusions and Proposals...80

IX. MTP Glossary..82

X. Bibliography.. 85

Appendix A: mtp.h...88
Appendix B; mtping.c..94
Appendix C: Testing Source Code... 98
Appendix D: Empirical Test Results.. 113
Appendix E: Third Party Test Source Code... 127
Appendix F: Simulator...133

V

A b strac t

The TCP/IP protocol, which carries over 95% of data across the Internet, was first
published in 1974 at a time when packet-switching was a new technology and computer
communications were dominated by the virtual-circuit paradigm. Computer networking
has changed dramatically in the past quarter-century, but the underpinnings of TCP have
remained virtually unchanged. Many of TCP’s most significant design assumptions are no
longer valid in the modem Internet. As a result, TCP typically exhibits extremely poor
performance including congestion, underutilization of bandwidth, and server overload.
Despite these facts, and increasing evidence that TCP/IP is not suited to many of the
application protocols it supports, only incremental improvements have been widely
researched and no viable alternatives have come to prominence. This dissertation proposes
a new transport protocol, the Multimedia Transaction Protocol (MTP), which has been
created to meet the needs of modem applications operating in a modem network
environment. This new protocol has been designed to handle transaction style client-server
interactions across an unreliable, highly congested, packet-switched network.
Experimental and simulation results show that MTP provides an order of magnitude
improvement in throughput while contributing to network stability and greatly reducing
latency. This work characterizes the modem transport environment, describes the design
and implementation of MTP, and presents initial test results.

VI

I . Introduction

The TCP/IP protocol, which currently carries over 95% of data across the Internet [21],

was first published in 1974 [6] at a time when packet-switching was a new technology and

computer communications were dominated by the virtual-circuit paradigm. Several

significant design assumptions made in the 1974 protocol and subsequent revisions

through the 1981 RFC [23] now in effect, are no longer valid in the modem Internet.

Despite this fact, and increasing evidence that TCP/IP is not well suited to many of the

application protocols it supports, there has been little research focused on characterizing

and improving the Internet transport layer. There are a few alternative transport

mechanisms, most of which consist of incremental improvements to TCP and concentrate

on the issue of start-up and tear-down costs. None of these alternatives are widely

implemented. It therefore necessary to examine the fundamental design of TCP and to

create a new transport mechanism optimized for modem applications and networks.

This work begins by examining TCP, the dominant transport protocol of the Intemet. First

we review the history of TCP in order to characterize its design within the context of its

original assumptions about how and where it would be used. We then characterize modem

networking applications and the Intemet itself and compare this environment to TCP’s

assumptions. Based on the discrepancies between these two sets of characteristics, we

characterize TCP’s failure modes and begin to examine alternative transport strategies.

The central part of this work is the introduction of a new mechanism for moving data

between processes across packet-switched networks: the Multimedia Transaction Protocol,

MTP. It is designed and optimized specifically for modem applications operating across

the Intemet. Many of the lessons learned from TCP’s failure modes are applied to the

formation of a narrow set of design goals. From these goals are derived the new transport

algorithms which promise to greatly improve the performance and efficiency of data

transport for the vast majority of Intemet traffic. The implementation of these algorithms as

a software library, and the use of this library for application development is discussed in

detail.

1

Finally, the results of direct testing on MTP and TCP under a variety of conditions are

examined. Their performance is measured against varying network loss rates and path

lengths to show that MTP vastly outperforms TCP for transaction operations while

significantly reducing the effects of networic congestion. In order to best understand the

exact reasons for MTP’s performance gains, a simulation using a simplified model of each

protocol is presented. This model not only provides correlation between theoretical and

actual performance, but allows limited extrapolation into conditions which are beyond the

resources of this work.

The Multimedia Transaction Protocol represents a tremendous advance in data transport. In

nearly all circumstances it provides an order of magnitude improvement in throughput over

TCP while greatly improving the utilization of both network and server resources. The

practical effect of using MTP over TCP is to effectively increase, by a large margin, the

bandwidth capacity of existing network links and servers without requiring hardware

upgrades or significant alteration to existing applications. Moreover, MTP creates

opportunities to fully realize cutting edge technologies such as audio/video streaming, real

time data acquisition, and true telephone quality real-time communication. While more

work is needed to refine the protocol and develop commercially viable products, the

existing implementation discussed here clearly demonstrates the potential of these new

techniques to greatly improve the capabilities of existing and future computer networks.

11. Analysis of Traditional IP Transport

2.1 History of TCP

The first wide area computer network (WAN) was created in 1965 by Lawrence Roberts

and Thomas Merill connecting computers in Massachusetts and California [18]. The

connection was made using the circuit-switched public telephone network which allowed a

low quality electrical circuit to be established between the sites. This very first WAN

demonstrated both the feasibility of remote communication between computers and the

inadequacy of circuit switched technology. This confirmed Leonard Kleinrock’s 1961

proposal [17] that packet switching was a more efficient mechanism for digital

communication. The next nine years would see the creation of the ARPANET' in 1969 and

a flurry of research aimed at finding increasingly better ways for computers to exchange

data over the emerging network technology. Of particular interest was the development of

communication protocols, which proscribe methods for assuring reliable peer to peer

communication, and implementations to free applications from having to deal directly with

the communication hardware.

Beyond the problems of communicating raw data between two machines, researchers came

to recognize that there were numerous issues involved in the transportation of data across

networks. Such problems as packet size, data loss, sequencing, buffering, flow control,

latency, error checking, and the management of process to process associations were

discussed and a wide variety of solutions proposed. Solving these problems required that

data transport protocols, sets of standardized conventions for message exchange, be

devised. In 1974, Vinton Cerf and Robert Kahn published their landmark Transmission

Control Program protocol [6] which not only proposed mechanisms for coping with these

problems, but also proscribed a scheme for allowing machines to communicate across

different network architectures without requiring their applications to have knowledge of

the intervening infrastructure.

Their paper makes several assumptions which reflect the state of computer networking in
' The Advanced Research Projects Agency (ARPA) changed its name to Defense Advanced Research

Projects Agency (DARPA) in 1971, then back to ARPA in 1993, and back to DARPA in 1996 [19
footnote 4].

3

the early Seventies. As was noted by die authors, “Much of the thinking about process-to-

process communication in the packet switched networks has been influenced by the

ubiquitous [circuit-switched] telephone system.” [6 page 645]. In particular, the protocol

assumed that “processes wish to communicate in full duplex with their correspondents

using unbounded but finite length messages” [6 page 640], that message sequences can be

viewed “as if they were embedded in an infinitely long stream of bytes” [6 page 641], and

that the underlying network will be sufficiently reliable “that the HOST level retransmission

mechanism,..., will not be called upon very often in practice” [6 page 643].

In the following years a specification for the Transmission Control Program was created.

In order to promote flexibility and modularity, Intemet protocols were divided into four

layers, with the original Transmission Control Program split into the transport layer

Transmission Control Protocol (TCP) and the network layer Intemet Protocol (IP). (See

Figure 1.) By 1980 several implementations were available and TCP/IP was adopted as a

Defense Department standard. On January 1st 1983, the ARPANET transitioned to

TCP/IP from the original ARPANET Network Control Protocol. RFC? 793 [23] gives the

1981 specification of TCP/IP which is still in effect While this specification fills in many

of the details left open by the original 1974 publication, it does not modify the underlying

assumptions. The specification does leave open some implementation details regarding

buffering and timing strategies, however the overall TCP/IP paradigm used today still

reflects the assumptions inherent in the 1974 view of computer networking.

While TCP has remained essentially the same, a great deal of research and technology have

been devoted to the Application and Link layers. New Application protocols, such has

HTTP, have expanded functionality for the end-user. Link level enhancements reflect

hardware advances that are ever-increasing the rate of data movement. Even the IP layer

has been a focus of attention in recent years due to an exponential growth in the number of

Intemet nodes and the limited IP address space. The new IPv6 or IP “Next Generation”

continues to work its way through development, although the sense of urgency has

lessened as the address crisis has proven to be less imminent than originally expected. But

while IP has proven adequate even as a new version is developed, TCP has been largely

Request For Comments, a system for creating and publishing standards on the Intemet.

4

left behind. There have been a few research efforts [1,4, 25, 28] examining incremental

mechanisms for reducing connection costs, but there has been no revisitation to the

fundamental underpinnings of TCP. In the next section, we will carefully examine the

assumptions which TCP makes in its relationship to the surrounding layers.

Application
HTTP, FTP, T elne t, SMTP, NNTP

Link
E th e rn e t, PPP, FDDI, ATM, e tc .

N etwork

Transport
TCP, UDP

Figure 1 : Internet Protocols are classified by four
layers. This paper is concerned primarily with the

Transport layer which handles the exchange of data
between application processes.

2.2 TCP Fundamentals

In order to understand how TCP fits into the modem Intemet, we must carefully examine

its functional relationship to the other protocols that make up the Intemet protocol stack

(Figure 1). The top Application layer, which concerns high level data exchange between

applications, is the most familiar to typical users. Some of the common application

protocols are FTP (file transfer), Telnet (login session), SMTP (electronic mail), HTTP

(world wide web), finger (username look up), NNTP (usenet), NFS (distributed file

systems), and NTP (clock synchronization). Each of these protocols is built on top of the

Transport layer, usually either TCP or UDP (User Datagram Protocol). It is the job of the

5

A p p A p p

Figure 2: Application view of TCP. Provides a
reliable, sequenced, full-duplex data pipe. Assumes
that the data is continuous, byte addressable, and
unbounded, and that the network is fairly reliable.

Transport layer to provide a mechanism for addressing remote applications and to handle

the transport of data on behalf of those applications. Since TCP is the only common

transport protocol which provides reliable delivery, it is used for almost all Internet traffic.

The transport layer is built on top of the Network layer. The Intemet is defined by the use

of the Intemet Protocol as the mechanism for message routing between nodes. Just as the

transport layer provides an abstraction of communication between applications, IP provides

an abstraction of communication between network nodes. Below IP is the Physical, or

Link layer which provides for the actual transmission of data bits across physical hardware.

TCP was designed to provide applications with a reliable, sequenced, full-duplex delivery

of continuous, unbounded data streams over a fairly reliable network (See Figure 2.). To

that end, it assumes that two nodes each wish to transmit a continuous, unbounded, byte

addressable sequence of data to the other. Thus TCP addresses each stream using a 32-bit

Sequence Number which is meant to uniquely identify every byte which may be in transit at

any given time. As a TCP connection is established, the two nodes negotiate a starting

sequence number for each stream so as to minimize the possibility of old data being

mistakenly incorporated into the new stream. Once these sequence numbers have been

established the connection is marked as open and the applications can begin sending their

data.

At the network level, TCP breaks each stream into packets, each small enough to fit into a

single network datagram. Each packet is identified by the sequence number of its first

byte. This allows the packets to be correctly identified even if they are subdivided by

intervening routers. In the simplest case, a packet of data is transmitted from Node A to

Node B. Upon receipt, B returns a datagram containing the sequence number of the last

byte it received. When A receives this Acknowledgment (ACK), it knows that all of the

6

Node
A

7IS2

Mimei

SAM
Tzes

3457mmmmmmmm
•n«

Node
■

Figure 3: Networic View of TCP. The data stream is broken up into
packets, each addressed by the index of its first byte of payload (top
number in each box). Returning packets carry Acknowledgments: the
index numbers of the last byte correctly received (bottom number). Node
A has received up through 7852 and is about to receive 8245. Similarly,
B has received through ^ 4 5 and is about to receive 3457.

data prior to the ACK number was successfully received and that more data can be sent.

Since each ACK verifies all prior data, B may choose delay acknowledgement until further

data is received and the loss of an ACK is not critical.

In order to fully utilize whatever bandwidth may be available along the path from A to B, it

is desirable to continue transmitting data as fast as the network can deliver it, even before

the most recent packets have been acknowledged. To accomplish this “pipelining” effect,

TCP uses the notion of a “sliding window.” A window is the number of bytes which may

be “in the pipe” at any one time. If the window size is N, then Node A will send N bytes

before stopping and waiting for acknowledgements. As each datagram is received in

sequence and without error at Node B, an ACK message is returned. When A receives an

ACK number, it knows that all prior data is no longer in the network. It then slides the

window forward by transmitting data until there are again N bytes in transit. The value of

N starts small, typically around 1,000 bytes, and is increased with each ACK received until

the receiver sends a buffer overflow warning or an error occurs. In the ideal case, shown

in Figure 3, each node is transmitting data to the other at a steady rate with the ACKs from

one stream riding along with the data from the other.

Note that the rate of return of ACKs ultimately regulates the rate of transmisrion. If a

packet is, received out of order, or not received at all, it is detected by the arrival of an

unexpected sequence number. Since there is no way to acknowledge out of sequence data,

it must be discarded unless the intervening data arrives soon. Given the memory

7

Node
*

Node
*

Node
R

Node

^ 5 H ^ 5 H 4 5 B
B Ibui B: S eoB B B ca 1 - 3 4 5 7 l a s t

Nede
t

3 H 5
Node

e

« «
Blaui I : SeBMenca i-B5l2 carrtas aa BCK

» »

Blaui 2: SaBaaaca B ttaps aftar uMaBaia Is flllaB

Node
m

3B5
Node

e

Blaui 3: SaBuaaca ■ raaamas aftar tlaiaaat perlail

Figure 4: Time sequence of TCP packet
loss during steady state exchange.

limitations of twenty years ago, it was assumed that there would not be enough buffer

space to reassemble out-of-order data in any case. Typically, implementations buffer out-

of-order data in anticipation of the late arrival of the missing piece. But if a packet is lost,

then none of the data which follows can be acknowledged. This ACK starvation eventually

halts the transmitter and causes it to wait until a timeout period expires. At that point the

timer is increased exponentially (called, exponential back-off), the window size is reduced

(typically by half or to its minimum value), and a window of data is retransmitted from the

point of last acknowledgment. If no ACKs are received for several minutes, then the

connection is considered broken and the application notified of the error. This sequence is

illustrated in Figure 4.

There are several subtleties worth noting:

The loss of any packet will halt all data flow in that direction for the duration of the

8

time out period.

• The loss of a single packet requires that the entire window be retransmitted.

• The available path bandwidth cannot be detected directly. The transmitter must
increase its transmission rate until an error occurs, stalling the connection.

• Because the sender can only detect congestion by the failure of an ACK to return,
the protocol requires that it exponentially increase successive retransmission
intervals to avoid flooding a congested network. As a result, there is no way to
quickly detect when the congestion has passed.

Given the original TCP assumptions of a continuous, bidirectional flow of data and a

reliable IP network, these issues would not be significant detriments. In the next section,

we will discuss how many of these assumptions are no longer accurate in characterizing the

modem Intemet and the applications which use it. In particular, the assumptions about

reliability, data flow, and usage pattems, are inappropriate to the application level

HyperText Transmission Protocol (HTTP) which forms the backbone of the World Wide

Web and accounts for over 70% of Intemet traffic [21].

2.3 Violations of TCP Design Assumptions

The Internet, as we know it today, behaves very differently from the small and well-

connected network of 1974. Today’s Intemet consists of millions of nodes and links with

widely varying characteristics. Bandwidth commonly ranges from thousands to billions of

bits per second and latencies range from less than a millisecond to several seconds. Packet

loss, which is largely a product of router congestion, can be transient or chronic and can

vary between one hundred percent and zero in less than a second. (For the purposes of this

discussion, 100% packet loss between nodes does not necessarily imply the loss of

connectivity. It is possible that a path consisting of working links exists between two

nodes but that no packets are currently traversing the entire path due to congestion.) Of

equal significance are the pattems of data transfer, which have changed dramatically. The

early Internet connected academic and research institutions primarily for the batch

transmission of relatively large data files and for real-time remote command execution.

Today, the vast majority of traffic is generated by millions of people using the request-

response style HyperText Transport Protocol to exchange numerous small requests and

large responses with tens of thousands of servers. Thus the Intemet has changed from a

sparse, reliable transmission medium to a congested, unreliable retrieval medium. This

section will examine how TCP is affected by the characteristics of this modem Intemet.

The exponential growth in Internet usage over recent years has consistently out paced

efforts at bandwidth expansion. As a result, network congestion at all levels has become a

signiAcant problem. This congestion manifests in two areas: servers and network routers.

Server overload occurs when client requests exceed the server’s capacity, forcing it to

delay, drop, or refuse requests. Server overload is relatively rare, occurring for limited

periods on popular but underpowered sites. It is easy to detect, however the only common

means of coping is the expensive upgrade of the server and its local links. Link level

congestion results from more data being sent through a router than it is capable of

retransmitting at a given time. When a router’s buffer space begins to fill up, the router

will start dropping (or “black-holing”) an increasing percentage of packets in an effort to

force TCP streams to stall and retransmit later. Packet loss or excessive delays in

connections across the Internet typically result in TCP retransmission rates of 10 to 20

percent [9]. This clearly violates TCP’s assumption of a reliable network in which

retransmission would be rarely used.

HyperText Transfer Protocol

This violation is greatly exacerbated by the very different way in which the Intemet is now

used. The biggest consumer of Internet bandwidth is the HyperText Transport Protocol or

(HTTP). One recent observation [21] shows HTTP accounting for approximately 70% of

network volume. Since HTTP dominates network usage and in practice is implemented

exclusively on top of TCP, it will be used as the primary focus for characterizing how TCP

is used by the Application layer. HTTP belongs to a class called Transaction Protocols,

meaning that its primary mode of operation is for a client to send a data request to a server

and for the server to then send a response. The typical HTTP session consists of the

following steps (See Figure 5):

• the client initiates a TCP connection to a server,

10

Brow ser
”ü] '

Request Transmitted

I Serv e r

Brow sëïj

Brow

Request Processed

S erv e rj Ser

Response Transmitted
Figure 5: Time sequence of an HTTP transaction. A
small request is followed by server processing and
the return of a large response.

• the client sends a short request message to the server,

• the server processes the request,

• then the server sends a relatively long response message to the client.

Typically the connection is then closed, although more transactions may take place if both

the client and server support “persistent” HTTP and further transactions are pending.

The request-response format classifies transaction protocols such as HTTP as half-duplex,

meaning that data is only sent in one direction at a time. For HTTP, the request message is

generally on the order of 200 bytes long and contains action and document identification

information. The response is typically on the order of 1,000 to 10,000 bytes long and

consists of the requested data and usually a small header giving type and processing

information [1]. The response may vary from as little as a few dozen bytes for errors or

cache checking, to millions of bytes for large multimedia documents. Server response time

may very from milliseconds to minutes, depending on the current load. In summary, each

HTTP transaction consists of an unbalanced, half-duplex exchange of a finite set of bytes.

This is completely contrary to the TCP assumptions of balanced, full-duplex, and

unbounded streams

Additional complexities are introduced by both application and user level “optimizations”.

Seeking to take advantage of IP’s best effort bandwidth allocation, all modem browsers
11

Server LAN
I

Server LAN
 I

B
a
n
d
w
i
d
t
h

Figure 6: On the left, the allocation of bandwidth with each client utilizing a single
TCP connection. On the right, the advantage given to a client which uses four
parallel connections. Widespread use of this technique negates the advantage and
increases overhead for all connections.

initiate multiple connections (typically four) in parallel rather than conducting transactions

in sequence. This practice does produce relative bandwidth gains for an individual user

(see Figure 6), but at the cost of greatly reducing overall network efficiency. In addition to

significantly increasing both server and network load, parallel connections exacerbate

TCP’s start-up / tear-down overhead while defeating the efforts of connection caching

mechanisms (such as Persistent HTTP and Transaction TCP) to minimize those costs.

Parallel TCP connections also cause window synchronization in which many streams make

simultaneous, identical flow adjustments. This causes flow oscillations, greatly reducing

network efficiency [27 and 31].

At the user level, a frequent solution to a stalled HTTP stream is to abort the current

connections and either retry or move on to new requests. Since new connections start in a

fresh flow control state, the retry often results in a much faster response than waiting for

TCP’s retransmission clock to expire. But the server overhead of the old connections will

persist until a retransmission discovers the broken connection. Meanwhile, the

retransmitted data itself is wasted and contributes to further congestion. Thus an apparent

user-level performance gain comes at the cost of increasing server load and wasting

bandwidth.

Application / Network Interactions

With both the network below and the applications above TCP behaving very differently

12

Client

Client

Client

Client

Client

Client

Client

Client

Client

■H

■3

■3

■3

3
3
3
3
■3

Serner

^ mi|mCK| Q^rner

[!« ►

Serner

r
I Serner

r
I Serner

I Serner

Rgure 7: Time sequenced network view of a best case (lossless) HTTP/TCP
transaction. TCP’s windowing and delayed ACK strategies are not illustrated.

than was originally anticipated, it is not surprising that TCP performs inefficiently even

under the best conditions. But when packet loss is introduced, particularly at the high

levels often seen during peak Intemet usage, TCP’s performance becomes outright

pathological. The remainder of this section examines in detail how HTTP and TCP interact

and how they are affected by packet loss.

Figure 7 illustrates the network level exchange of data in an ideal HTTP/TCP transaction.

It begins with the connection set up followed by the transmission of the request, which

usually fits into a single datagram. The response then follows as a sequence of datagrams.

The client returns acknowledgemarts to keep the data stream flowing. Usually the client

TCP does not acknowledge every datagram and may delay sending some ACKs in the false

13

L_" 3

3 E

n j 7 „ . „

l ^ [= j > [7 „ „

CU..7I * » s sW ia H H s i4 = E = = iil |7 „ .„W1 I

3 4 me»#m##e #| ̂ *«####«# f | I
Client I Server

Rgure 8: Time sequenced network view of TCP error recovery. The entire
data stream stalls after packet 5 is lost Packets 6 through 10 are retransmitted
even though they had been successfully received. Chronic loss of just 10%
compound the problem and force more duplication of data.

expectation that the client application will wish to send more data. These practices

significantly reduce throughput. At the end of the response, the server sends a FIN

message to close the connection and waits for it to be acknowledged. Note that if this

ACKF is lost, the server must wait, usually for at least 30 seconds, before it release the

resources associated with the stream. Such resources usually ccmsist of a heavy weight

process plus kernel buffers and port space and thus are a significant burden.

While the setup and request segments may consume a significant portion the transaction

time, they represent a very small number of both bytes and packets. Since packet loss is

therefore most likely to occur during the response stream, let us consider what happens

when a response datagram is lost Rgure 8 begins with the assumption that a transfer of

response data is under way with a window size of six. In the first step, one of these

datagrams is lost, most likely dropped by an overloaded router. At this point the server is

not aware of the problem and continues to transmit datagrams until it has filled the current

14

window. The client receives these subsequent datagrams but cannot acknowledge them

because of the missing packet. After the timeout period expires at the server without any

ACKs received, the window is reduced and data retransmitted from the point of loss. Note

that in addition to the stall delay caused by the loss of packet 5, packets 6 through 10 are

unnecessarily repeated, wasting time, network, and server resources. Some client

implementations attempt to shorten the retransmission delay by repeating the last valid ACK

as out of sequence data arrives. The server TCP may then interpret duplicate ACKs as a

signal to commence early retransmission. But this combined with the duplicate data risks

flooding the network and exacerbating congestion. In either case, if we assume a chronic

loss rate of just 10% (illustrated here as every tenth packet lost), we see that a loss is

repeated at packet 8 before any new data is sent.

Flow Oscillation

After each stall, TCP doubles the timeout period and decreases the window size (usually to

half its previous value, sometimes to a preset minimum). When it resumes sending data it

increases the window size by one datagram for every ACK it receives, up to a maximum

window determined by the receiver. If the window reaches an implementation specific

threshold (e.g. 64 kB), the rate of growth is slowed to one datagram per window

acknowledged. This approach rapidly increases in the rate of data transmission until

congestion forces another loss and stall. The result of this rapid growth and sudden pull

back is a large oscillation in TCP’s rate of data flow (see Figure 9).

3o
UL.
(D
m

a

Time
Figure 9: Illustration of TCP flow oscillation

15

The actual timing of packet losses and recovery will vary depending upon the network

path, third party traffic, and the details of the particular TCP implementations involved.

But it is clear that this unstable rate of data flow results in TCP averaging a flow rate that is

significantly below the available capacity of the network path. Conventional wisdom has

held that this ^parent excess bandwidth is filled in by other TCP streams and thus helps to

assure a fair distribution of bandwidth. But that assumption originated at a time when there

were typically only a few third-party streams each with very different network paths.

Given the very large number of third-party streams and the practice of opening multiple

simultaneous HTTP connections, is highly likely that many of the streams passing through

a congested router will share similar attributes. As more recent research [32] has shown,

instead of distributing their transmissions evenly over time, parallel TCP streams become

synchronized in their flow control actions, stalling and restarting in unison. Even streams

with initially different path characteristics may become synchronized as the result of router

congestion. Because of this synchronicity, congestion may be forced prematurely as many

streams rapidly increase their windows at the same time. This would cause a momentary

overflow of router buffers and a burst of packet losses across all the streams. These losses

then would force all streams to stall and restart. The net result would be flow oscillation

along the entire network path, with routers alternately congested and under utilized. Figure

9 then becomes an illustration of flow for the entire path, not just a single stream. Thus the

entire network would enter the pathological state of being both congested and underutilized.

2.4 Summary

TCP was designed to service full-duplex, continuous, and unbounded data exchanges over

a small, well connected network with few routers, little third-party traffic, and almost no

packet loss. But HTTP/TCP transactions are brief, bursty, and asynchronous while the

modem Internet consists of path lengths spanning dozens of lossy routers servicing

thousands of competing data streams. User and application “optimizations” compound

congestion, while TCP’s own congestion control mechanisms focus the competition for

resources at repeating intervals leaving routers under utilized the rest of the time. The

client-server model focuses hundreds of transactions per minute on each server, yet TCP

places the burden of maintaining most flow-control and all error-recovery efforts at this

16

congested point. With nearly all HTTP installations using separate heavy-weight processes

for each TCP stream, the burden is substantial. Each stall extends the amount of time that

these server resources are consumed and each duplicate retransmission further erodes the

server’s bandwidth capacity. Each duplicate connection or user abort-and-retry adds still

more to the server’s load. These feedbacks cause the efficiency of both the server and the

network to decrease substantially as their loads increase. The only limiting factor in this

feedback loop of performance degradation is the patience of the end-user who may

ultimately reduce the load by giving up (see Figure 10).

TCP was not designed to service the demands of modem applications nor was it designed

to function in the environment presented by the modem Intemet. The client-server model,

high speed links, long path lengths, significant loss rates, and tremendous quantities of

third-party traffic were simply not anticipated twenty-five years ago. Thus the transport

protocol which accounts for over 95% of Intemet traffic [21] often exhibits the pathological

combination of chronic congestion and undemtilization. Clearly a new approach is needed

to provide reliable network data transport optimized for modern applications and

environments.

' / / I I I
m̂iiiintiiiiuiiuii

r IMBNDR tM
»iCTwoim wufR k- IHMM» dfWrat

VMMlNtr IMMM
It CMM»

Figure 10; The ultimate limiting factor for Intemet congestion
FOXTROT ©Bill Amend. Reprinted with pennission of UNIVERSAL PRESS SYNDICATE. All rights reserved.

17

I I I . Characteristics of An Alternative Transport

Given the properties of modern applications and networks, combined with an

understanding of the failure modes of TCP, it is possible to derive a criteria for designing a

new transport protocol which would be optimized for today’s usage requirements. The

first step is to narrow our focus to a specific class of protocols which account for over 80%

of Intemet traffic [21]. Transaction protocols, such as HTTP, FTP, and NNTP, all share

the common property of many clients seeking to retrieve moderate to large amounts of data

from relatively few servers. The properties of transaction protocols were discussed

previously (recall Figure 5). (Each protocol also allows the uploading, or transmission, of

data from the client to the server, but this accounts for a tiny fraction of use and so will be

considered separately.) Since HTTP alone accounts for 70% of Intemet volume, we will

use it as the focal point for characterization and optimization.

Transaction protocols such as HTTP make several requirements of the transport layer,

which traditionally only TCP has been able to provide:

• Reliability; Both the request and response must be delivered correctly and
completely.

• Sequencing: The transport must assure delivery of data as a contiguous, sequenced
object.

• Uniqueness: The client application must experience a one-to-one correspondence
between requests and responses.

• Scalability: Response sizes may vary from a few bytes to millions.

• Multiplexing: Data from multiple transactions must be identified and delivered
separately.

Other properties are desirable, but these form the critical core functionality that any new

protocol must support in order to provide service for HTTP and other common

transactions. But just as important as recognizing this lower bound of functionality, is the

establishment of an upper bound.

Transaction protocols in general, and HTTP in particular, exhibit behaviors which limit the

18

the requirements placed on the transport layer. Similarly, the characteristics of the network

itself suggest avenues for optimization. The most important observations are as follows;

• Requests are small, typically only about 200 bytes, rarely more than 1000 [14].

• Responses are finite. Requests will result in a fixed sized document. In most
cases, the size is known as soon as the response begins. (Multimedia streaming,
which almost always uses connectionless protocols, will be discussed separately.)

• Delivered documents will be buffered in their entirety by the client.

• Many clients concentrate on relatively few servers.

• Clients have an abundance of resources, while servers have a scarcity.

• Most requests to a given server concentrate on only a small pool of documents.

• Network packet loss is evenly distributed amongst all datagrams.

• Network latency and data loss vary proportionally to traffic and congestion.

The first few observations can be distilled into the notion of “client-pull”. In traditional

network models, it is assumed that one node wishes to send data to another, and therefore

the sender assumes the burden of assuring that the data is delivered correctly. Under the

client-pull model this role is reversed: it is assumed that one node wishes to acquire data

from another. This is a very subtle and yet extremely powerful shift in emphasis. Under

this model, it is possible to shift the burden of assuring data delivery from the server to the

client. By more closely associating the state management of each transaction with its point

of origin, a protocol can obtain much more accurate and timely information about

conditions which may affect its performance. It can then use this improved feedback to

make informed adjustments to its data flow. This also shifts a significant load away from

the over burdened servers and toward the lightly loaded clients.

Based on this client-pull model and the remaining observations about the nature of

transactions and the underlying network, we can define the following terms and

characteristics for an alternative transaction transport:

19

Data Object

A data object is any independently addressable, ordered set of bytes on a server. A data

object is assumed to be finite, contiguous, and byte addressable. Because the client intends

to use each document in its entirety, it is assumed that sufficient buffer space may be

provided by the application such that portions of a document can be assembled by the

transport independent of their arrival ordering. Data objects may be dynamically generated,

but it is assumed that most exist in their entirety prior to their request.

Request

Since requests are small, we assume that they may fit into a single network datagram. A

request message is defined as a single datagram which uniquely identifies a data object, or a

portion of a data object, which is to be sent from the server to the client. Provisions can be

made for very large requests, but such a case is considered extremely rare.

Response

Upon receipt of a request message, a server is obligated to send to the client exactly one

response. The response may consist of a single datagram consisting of an error message or

a portion of the requested data object. If the data-object is larger than a single datagram,

multiple datagrams constituting the object or a portion of it may be returned. The client is

solely responsible for keeping track of which portions of the data-object have been

requested and received.

Error Recovery

If a client fails to receive a correct response within a reasonable time frame, it may send a

repeat request for the missing data. In the case of a large data object requiring multiple

requests, the repeat requests will be made as part of an ongoing flow of data. If no

response is received for any part of the data object, then an error is returned to the

application.

Flow Control

The client exercises primary control of the data flow by regulating the size and frequency of
20

its requests. In general, the client will issue a series of requests for portions of the desired

data object using a specialized sliding window strategy. The ^rver may enforce limits on

the rate at which it is willing to send data. Adjustments due to network congestion are the

exclusive responsibility of the client. Variations in network latency and loss rates may be

used to assess network congestion.

Proportionality

Adjustments to flow control should be made preemptively whenever possible and in

proportion to the observed network conditions. Care should be taken to maintain

consistent flow and to avoid oscillations or synchronization. Distinct strategies must exist

for coping with transient versus chronic congestion.

These basic characteristics address the needs of modem transaction applications while

optimizing to ensure the best possible performance across the modern Internet. These

properties form the basis for the design of the Multimedia Transaction Protocol. MTP has

been designed from scratch to satisfy the design specification just described. By focusing

on the specific needs of the most common applications and by taking into account the

behavior and interactions of the network, servers, clients, and the end-user, this new

protocol has been optimized to provide full and efficient utilization of existing network

infrastructure in support of existing applications. In short, MTP is designed and able to

provide a substantial increase in the effective capacity of existing network and server

resources through a modular, software solution. The next section builds on the properties

discussed to describe the philosophy and design of the Multimedia Transaction Protocol.

21

IV. Design of the Multimedia Transport Protocol

The characteristics of the modem Internet and the applications which use it suggest many

specific requirements which a new transport protocol should meet. In addition to these

new requirements, there are a great many basic goals which any acceptable network

protocol must encompass. By combining the characteristics of the modem Intemet,

modem applications, and the successes and failures of TCP’s mechanisms, it has been

possible to derive a set of design goals for an optimized transaction transport protocol. The

most basic goals, such as reliability, a simple yet flexible interface, and code portability, are

strengths of TCP. Likewise, the weaknesses of TCP suggest goals such as quickly

recovering under a variety of error conditions while assessing and maintaining the highest

possible throughput. From the characteristics of modem applications and usage pattems

stem the needs for transaction style communication, minimizing server load, stabilizing

flow rates, and scalability across a very wide range of network and machine types. These

goals present numerous constraints which form a boundary around the space of possible

solutions. But some of the goals, particularly those requiring optimization to specific

applications and usage pattems, also simplify the design and suggest new solutions. To

fully understand the design and functionality of the Multimedia Transport Protocol, it is

necessary to understand each of the goals which has shaped the protocol’s philosophy and

design.

Transactions

Nearly all Intemet traffic is generated by data being requested by a client from a server. A

transaction generally begins with a client sending a request to a server. The request usually

specifies data which the client seeks to obtain from the server. Upon receipt of the request,

the server processes this specification and retums a response. The characteristics of the

response may vary, but it typically consists of a sequence of tens of kilobytes. The request

is usually no more than a few hundred bytes. From the network perspective, transactions

are half-duplex, meaning that data is only sent in one direction at a time, and asymmetric,

meaning that the vast majority of data flows in only one direction: from the server to the

client. (Recall Figure 5.) In addition, transactions usually (but not always) occur with

22

many clients seeking data from a few servers.

As the name implies, the Multimedia Transaction Protocol is designed explicitly for

handling transactions. Its form and function assume the structure just described.

Conversely, MTP is not designed to generally handle full-duplex, symmetric data

transport. While it is possible for an application to use MTP efficiently for some tasks in

that class (as in the case of IP telephony), such a use requires that the application designer

have a much greater awareness of transport level issues [31]. MTP is certainly not

intended to create a bidirectional byte pipe, as is the case for TCP.

By optimizing MTP for this specific mode of transport (which accounts for nearly all

Intemet traffic), it is much easier to achieve the remaining design goals. Throughout the

remaining discussion, the philosophy of MTP’s functionality rests firmly on the

presumption, at least at the transport level, of a small-request for a large-response format.

Reliability

Inherent in the notion of a transaction is the idea that each request will receive some form of

response. Assuring that such a response is generated, and taking measures to ensure that

the response delivered is the one desired, are core aspects of transaction reliability. Note

that this definition of reliability differs significantly from that of byte-pipe transports such

as TCP. For those transport protocols, reliability means that data transmitted by one host is

received by its peer Since that transport function ends at a different network node than it

begins, there exists the added difficulty of conveying its success or failure back to the point

of origin. Transaction protocols have no such difficulty because their transport function,

the request-response pair, both begins and ends at the same client node. Thus the client is

fully capable of evaluating the state of an ongoing transaction.

Since each transaction begins and ends at the client, MTP places the entire burden of

assuring reliability on the client side. For each request issued by the client application, the

client MTP can guarantee that it will deliver a unique and matching response. The client

MTP maintains all state information regarding the transaction and handles timeouts and

retransmissions as specified by the application. The MTP server is not required to maintain

23

any state information about individual transactions. The only responsibility of an MTP

server is to generate at most one response for each request message it receives. Once the

response has been transmitted, the server need not maintain any further information about

the transaction. Not only is the server not responsible for transport reliability, but neither

may it make any assumptions about the state of requests or responses. From the

perspective of the server application, responses may be lost and requests may be

duplicated. Only the client is assured of a one-to-one correlation between requests and

responses.

Once again, optimizing for the transaction case greatly simplifies the design of the MTP

protocol. Error recovery is handled simply by client retransmission of a request message

until a response is received or an application specified timeout is reached. The client

always knows the state of a transaction and is able to make accurate assessments of

network conditions. The server’s transport task is greatly simplified by having no

responsibilities and making no assumptions with regard to reliability. By concentrating all

of the burden for state maintenance at the client side, the algorithms required are made both

simpler and more powerful while moving the overall design closer to its next goal.

Minimal Server Load

The client-server model of networking concentrates the attention of a great number of nodes

at a few key points. Busy servers may be required to respond to thousands of clients per

minute. As a result, servers are most often stressed to the limits of their resources.

Expansion of a server’s capacity most often requires costly hardware upgrades or

additions. Clients, on the other hand, are often largely idle during network transactions,

possessing a relative abundance of processing and memory resources. It is therefore

desirable to distribute as much of the transport burden as possible away from the server and

toward its clients.

Shifting the burden of reliability and state-maintenance to the client goes a long way toward

achieving this goal. The server is not required to maintain any data, buffers, or state with

respect to an individual transaction. Contrast this to TCP in which the server must dedicate

significant amounts of memory to buffer space and state maintenance, significant CPU
24

cycles to state processing and data movement, and one of a limited space of networic ports

to each request. This burden is so significant that a separate heavy-weight process is

typically needed to efficiently cope with each TCP transaction. MTP greatly reduces the

server burden by allowing each request message to be handled as a distinct and stateless

entity. Requests for large blocks of information are broken down into sub-requests by the

client, allowing the server to rapidly respond to every request message without the need for

extensive algorithms or buffering. Because each request message can be handled

asynchronously, it is generally possible for a single process to respond to a very large

number of simultaneous requests. MTP does provide transaction and session identification

for those applications which require server side processing. However, MTP itself places

no state burden on the server.

Removing the requirement for server-side transport state information reduces not only the

transport load, but also allows for more efficient use of application level resources. By

making it efficient to handle large numbers of transactions within a single heavy-weight

process, the server is capable of implementing much more efficient caching and load

control mechanisms. MTP itself is able to maintain an awareness of server load and throttle

back aggressive clients to ensure steady and fair service. This combination of shifted

burden and greater efficiency means that a given server platform is able to handle

significantly more traffic with MTP than it could with TCP. When combined with a more

efficient use of network resources, MTP allows existing server hardware to enjoy a

substantial increase in capacity through a software only solution.

Scalability

The modem Intemet exhibits a tremendous amount of variation in its key characteristics.

Link speed varies from hundreds to billions of bytes per second, path latency ranges from

less than one to thousands of milliseconds, and nodes span a wide spectmm of memory

and processing resources. The behavior of the network is also govemed by many factors

which are not readily observed, such as the path length, router buffer capacities, and the

level of third party traffic. Perhaps of greatest importance is the fact that most, if not all, of

these characteristics may change many times during the life of a single transaction. For a

2 5

protocol to be efficient, it must be capable of quickly adapting to a changing environment.

Traditional TCP is rather inflexible and has difficulty in scaling to today’s high-speed, low

reliability networks. Without modification, linear increases in link or cpu speed often result

in only logarithmic increases in TCP performance. When TCP is modified to perform well

under one set of conditions, it may become dramatically less efficient when coping with

others. MTP’s simplified transport model, with all of the state information maintained at

the client side, allows it to gamer a much clearer picture of network conditions and thus to

adapt quickly to changing environments. For each transaction, the MTP client tracks

round-trip times, error occurrences, local buffer levels, and indicators of both client and

server load levels. Using this information, it is able to approach and maintain near optimal

data flow under a very wide range of network conditions.

Given the tremendous growth and change which is ongoing in Intemet usage, it is vital that

any transport protocol be capable of adapting to not only transient, but evolutionary

changes it its operating environment. MTP is thus designed with as few assumptions as

possible about network characteristics. Instead, an emphasis has been placed on discovery

and adaptation. This allows the protocol to be utilized not only in a wide variety of current

network scenarios, but also promises that it will remain relevant in the face of changing

technology.

Efficient Flow Control

Adapting to network conditions in order to achieve efficient and reliable transactions

requires a careful regulation of the rate of data flow. The almost exclusive cause of

network level packet loss is congestion [32,27, 12], which is the result of data arriving at a

node faster than the node is capable of processing. When a network router’s incoming

buffer overflows, subsequent datagrams will be lost. Some routers preemptively drop

datagrams before their buffers overflow, with the expectation that affected transport

protocols will then reduce their flow rates. In any case, overly aggressive flow strategies

result in high loss-rates which forces the protocol into excessive and costly error-recover

operations. For a reliable protocol, there is no advantage to trying to send data faster than

the network is capable of delivering it. It is therefore desirable to approach, but not to
26

exceed, the maximum utilization of the network path and to adjust as that capacity changes.

TCP uses a very aggressive and unstable control mechanism. It starts slowly and rapidly

increases the rate of data flow until a loss is detected, at which point it halts all data flow.

After a significant wait, it resumes data flow at a dramatically reduced rate and once again

begins increasing it. This oscillation of flow results in high loss rates and chronic under

utilization. (Recall Figure 9.) MTP implements a much more informed and conservative

flow control strategy. It begins with an initial flow calculated based upon MTP’s previous

experience. From the initial response, it estimates current conditions to make sure that

there has not been a substantial change in capacity. On subsequent iterations throughout

the transaction, MTP usually makes linear adjustments to the flow rate. Increases are

allowed only when no errors have been recently detected. If a loss is detected, a linear

flow reduction is made and a brief moratorium is placed on most further flow control

actions. In addition to observing simple packet loss, increases in the round-trip time are

used as an indication of decreasing network edacity. This allows MTP to begin throttling

back its flow rates before data is lost. Local conditions such as incoming queue lengths

and the number of outstanding transactions are also used to regulate data flow. The server

may participate in flow control by limiting the rate at which it responds to each request

message. These limitations are both enforced at the server and conununicated to the client

to allow for a coordinated regulation of server load.

The details of MTP’s flow control algorithms will be discussed in the next chapter. For

now it is sufHcient to note that MTP incorporates numerous observations to create a

measured response to both transient and chronic conditions which may affect the flow of

data. This strategy of informed conservatism allows MTP to discover and maintain near

optimal flow rates in the widest possible variety of network conditions. That in turn allows

networks which make extensive use of MTP to achieve much higher and much more stable

utilization.

Efficient Loss Recovery

Part of maintaining a steady flow of data is coping with the inevitable loss of datagrams.

While MTP takes steps to prevent packet loss, it does not assume that such loss will be a
27

rare event. Losses are detected by the failure of a request to receive a complete response

within a calculated time period. The length of the timeout is determined in part by the

observed round-trip time and thus is constantly updated to reflect current conditions. It is

vital that the timeout be sufficiently long to prevent data duplication, while minimizing the

wait before recovery can begin. MTP loss recovery consists simply of sending a request

for the missing data. Unlike TCP, only the missing data is resent. Most importantly,

while the client is waiting for lost data, other portions of the transaction can continue to

flow at a slightly reduced rate. Only under the most severe network conditions is data flow

ever completely stalled by the loss of a datagram. Not only does this maintain a higher

overall throughput for the individual transaction, but it contributes to stability along the

entire network path.

Simple and Flexible Programing Interface

One of the reasons for the tremendous popularity of TCP is its extremely simple interface.

A programmer needs only to establish a communications port and connect it to a peer to

establish a data link. After that, file-like reads and writes may be used to exchange data.

MTP strives for a similar level of simplicity while adding a great deal more flexibility.

Once the MTP library has been initialized, a transaction is begun with a single call to the

request procedure. Included in the parameters is all of the information needed to form the

request as well as information about how the response should be delivered. In the simplest

case, MTP handles all of the transport and delivery issues. Upon completion of the

transaction, a callback procedure is invoked allowing the application to handle the newly

delivered data. Much greater levels of ̂ plication control and notification are optional. On

the server side, the application registers callback procedures to receive requests. In the

simplest case, those procedures begin with a description of the incoming request and end

by passing response data back to the server side MTP. The server side application is not

required to maintain any state information about transactions or to take any action between

requests. There are, of course, facilities to allow session identification and flow regulation

for those applications which desire it.

A minimal MTP client or server application can function with just six procedure calls.

28

Most of even the more complex MTP options can be controlled by parameters embedded in

these calls. The details of MTP’s programing interface will be discussed in the Programing

Interface chapter below. The important point is that MTP has been designed to make

application development, particularly on the client side, as simple and unobtrusive as

possible.

Portability

The final goal of MTP is to be capable of easy adaptation to a wide variety of hardware and

operating system architectures. In order to be quickly ported amongst a large number of

platforms, MTP has been implemented on top of the UDP/IP protocol. In theory, MTP is

not constrained to this protocol and could be implemented on top of any packet switched

network, including raw IP datagrams. But since UDP/IP is both ubiquitous and simple,

there is no immediate benefit to implementing MTP on top of other networks. The MTP

software itself resides in a user level code library. In order to speed development and

acceptance, there is no kernel level code. While the implementation might gain some

performance benefits from kernel level integration, such marginal gains would be far

outweighed by the difficulty of maintaining numerous kernel drivers and interfaces and by

the perceived risk that would be posed to operating system stability.

Summary

The complex and changing characteristics of modem computer communications present

many challenges to the transport layer of the Intemet Protocol stack. MTP has been

designed from scratch for the purpose of meeting these challenges. By focusing on the

needs of the specific class of transport required by the vast majority of network

applications, MTP is able to utilize a simple and robust design philosophy to provide vastly

superior transport for transactions. With these ideas in mind, the next chapter, Algorithms

and Techniques, describes the MTP implementation in technical detail. The following

chapter. Programing Interfaces, documents the software development kit (SDK) for

version 2.1 of the MTP library.

29

V . Algorithms and Techniques

Many of the goals which MTP has been designed to achieve have only become

requirements within the last five years since the advent of the Intemet as a public

communications medium. Thus, while some of the protocol’s approaches to data transport

resonate with traditional network models, many of the algorithms have been newly

developed based upon more recent constraints. This chapter describes the algorithms and

techniques used to achieve the previously discussed design goals. The reader may wish to

refer to “Appendix A: mtp.h” for coding references. The following chapter examines the

implementation details from an application programing perspective. Except where noted,

all of the mechanisms described here have been implemented and tested under version 2.1

of the MTP protocol. The results of these tests, as well as that of a simplified simulation

model, are described in the “Testing and Simulation” section.

Transaction Architecture

MTP is designed to facilitate two processes exchanging data over an underlying packet

network (currently UDP/IP). Each data transaction is characterized at the application level

by the exchange of a request message for a response message. The node issuing a request

for data is the client while the node which receives the request and issues a response is the

server. A given node may act as a client for some transactions while acting as a server for

others. However, for any given transaction, there exists exactly one client and exactly one

server.

Each request specifies an action (such as data retrieval) which the server is requested to

take. The request may also describe a data object, or potion thereof, to which the action

should be applied. The request, describing the action and the data object, must fit into a

single network datagram (which current network technologies typically limit to under 8

kilobytes). If the application protocol is able to guarantee that the response will also fit into

a single network datagram, then MTP places no restrictions upon the data object and will

transparently deliver the server’s response. Multi datagram responses may be up to 2*32

bytes long and must be contiguous and byte addressable. In all cases, data objects must be

asynchronously addressable. That is, subsequent identical requests should retrieve exactly
30

the same data. The client may specify the amount of data it is requesting or it may request

all data available. (Facilities also exist for handling semi-infinite and dynamically generated

data objects, although they have not yet been extensively tested.) For multi datagram

responses, the server may restrict the amount of data that it will transmit at any one time,

thus limiting its delivery rate. If the requested data is greater than this limit, or if a portion

of the response is lost in transit, then the client MTP will issue subsequent subrequests

addressing the remaining portions of the data object until the entire request is fulfilled.

The client application specifies a delivery method for the response. Data may be delivered

to a fixed memory buffer or to an unbounded file (see illustration). (Provisions have been

made for dynamic memory buffers and pipes but these have not yet been fully

implemented.) The client may elect to receive notification of the progress of a response as

it proceeds or to be notified only once the entire response has been delivered. The only

action required from the client application after a request has been issued is that the client

call the MTP procedure that processes network events with sufficient frequency to service

the transaction.

Client & Server Roles

Depending upon the needs of the application, any process may function simultaneously as

both a client and a server. But with respect to any single transaction, a given process will

either be one or the other. It is expected that most MTP applications will have other

functions beyond supporting network communications. Thus both the client and server

sides of the MTP code are designed to have a minimal impact on the resources of the parent

application. Most importantly, MTP_Event (), which performs the bulk of the transport

operations, is modeled after the select () system call, allowing the application to watch

31

for file or socket descriptor events without resorting to polling operations. All externally

initiated protocol events (such the as receipt of a message) are processed in this procedure

via callbacks to application procedures. Programmers familiar with the X-Windows

callback and event loop mechanisms will find the MTP mechanisms similar in form and

function.

At the application level, the client has the simplest of the two roles. Every transaction is

initiated with a request and the client is guaranteed to receive exactly one response (either

the requested data or an error). Once the request is issued by calling MTP_Request (), the

client has only to repeatedly call the MTP_Event () procedure to ensure that the transaction

continues until the desired response or an error response is received. Responses are

delivered to the MTP_ResponseProc () specified by the application in its request. The

client application may view the request and the response as atomic events with a one-to-one

correspondence.

The server application may appear more complex in the sense that it may handle multiple

requests and responses per transaction and it has no guarantees ±at requests will not be

repeated or that responses will be delivered. But most of the complexity introduced by

asynchronous operation is resolved by good ^plication protocol design, which will be

discussed in the next chapter. The actual server code is very simple. It starts by registering

MTP_RequestProc () handlers for specified action codes via MTP_Action (). The server

then waits in a loop around MTP_Event () as requests are routed to the handlers. Each

handler is expected to quickly process the request it is given and then return control to MTP

so that other messages may be processed. Generzdly the last act of a request handler is to

call MTP_Response ().

At the transport level, the complexity of the roles is reversed. Since the MTP level of the

server is stateless, the server side code is extremely simple. It receives requests and routes

them to the specified handlers. When the response procedure is called, the message is

packaged into one or more datagrams and transmitted toward the client. The client side, on

the other hand, is responsible for all of the flow control and error recovery mechanisms of

the transaction. The exact status and statistics for each request must be maintained, sub-

32

requests generated, and error and flow control decisions made. It is thus the client side

transport code which makes up the bulk of MTP’s implementation.

M essages

At the network level, MTP is characterized by datagram messages exchanged between

processes. Both request and response messages are formatted identically, although some

of the fields have different meanings depending on the direction of travel. Each message

consists of a 28 byte header followed by zero or more bytes of payload. The header

contains information about the protocol versions, message size, flow control options,

message identifiers, action specification, response codes, and an address range for the

requested data object (see illustration). In general, the description of the data object is

contained in the request payload while the data itself is contained in the payloads of one or

more response messages.

If there are no network errors and the response fits into a single datagram, then a

transaction consists of exactly one request message and one response message. If either

the request or response is lost or damaged, then the identical request message will be

retransmitted. If the response is too large to fit in a single datagram, then multiple

datagrams will be sent, up to a regulated maximum. Each response header carries the

starting address corresponding to the payload’s position within the requested data object.

The header also contains flow control and session identification information specified by

Client
« □

S erver

Client

Ciier

S e rv e r

S e rv e rE
Clien t I

Client ES e rv e r

Figure 11 : Time sequenced network view of a best case (lossless) HTTP/MTP
transaction. For simplicity, it is assumed that the window size starts at 3 and
that no window adjustments are made. Compare to HTTP/TCP in Figure 7.

the server. Each response message also specifies the extent of the full response from the

given address. If various flow control restrictions prevent the entire response from being

transmitted at once, then new request messages are sent specifying the remaining portion.

These subsequent request messages are referred to as subrequests since they represent only

a portion the original request. Figure 11 shows the network view of a lossless MTP

transaction with a large response.

Transaction Identifiers

In order to associate messages with their parent transaction, MTP assigns a unique 32-bit

identifier, called the transaction ID, when a request is created by the client. It is vital to

prevent datagrams from different transactions to simultaneously exist in the network with

the same source address, destination address, and transaction ID. Thus the transaction ID

must be generated in such a way that it will not roll-over in the expected lifespan of a

datagram, especially if the current process fails and a new process begins without

knowledge of the first. The initial value for the identifier is created during the application’s

call to MTP_Init 0 by using the lrand48 () function after seeding the random number

generator with a 32-bit value consisting of the process id in the upper 16 bits, the lower 8

bits of the system clock in seconds for the middle 8 bits, and the lower 8 bits of the system

clock in milliseconds in the final 8-bits of the seed (see illustration). The starting value is

then incremented each time a new request is issued. The process must thus issue over four

billion requests before reusing an ID, making it unlikely that an ID will be reused within the

lifespan of a transaction.

The use of both time and process id elements ensure that a new process is unlikely to

choose an initial ID near tiiat of a predecessor Given the disparate elements used in

constructing the random number seed and the spectral properties of the of the lrand48 ()
random number generator, the odds of any new transaction identifiers crossing the space of

datagrams still arriving for the previous process is on the order of one in billions. This

already acceptably low probability of conflict is further reduced by the fact that the arrival

of a stale response will conflict only if its transaction ID, and server IP and port addresses

ALL coincide with those of a newly created request.

The transaction identifier is passed back to the client from MTP_Request() and may be used

to identify the response or to make changes to an ongoing transaction (such as aborting it).

The server also has access to the transaction identifier of each request message it receives.

The combination of the client IP address and port number, server IP address and port

number, and the transaction identifier of a message uniquely identifies the transaction to

which that message belongs.

Channel Identifiers

Each message also contains a 32-bit channel value which may be assigned by the server

application to classify transactions. The initial value in a request message is set by the

client. If the server changes the value, then the client MTP will use the new value in all

subsequent subrequests for the remainder of the transaction. The new value is also passed

back to the client application for possible reuse in future transactions. For example,

consider a server which caches frequently requested data objects. It is likely to be
35

expensive for the server to determine which cache slot contains the object specified by each

request payload. By returning an index for the cache slot as the channel id, the client may

reuse that ID to reduce the server’s lookup overhead. Since the channel ID would be

associated with the data object, the same channel ID could be retumed to multiple clients

across multiple transactions and would not require the server to maintain transaction

specific state information. The server would, however, need to maintain state information

about its data objects in order to manage ID and other resource allocation.

Payload Suppression

MTP allows the server to specify that the channel ID it has provided is sufficient to identify

the requested data object. Subsequent subrequest messages from the same transaction will

then be sent without their payload, relying on the channel ID value to identify the data

object being acted upon. This reduces the size of the subrequests to just the 28 byte MTP

header plus UDP/IP overhead, comparable to a TCP/IP ACK datagram. Since the channel

identifier is a 32-bit value, the server can assure that it will not reuse an identifier in such a

way as to conflict with an ongoing transaction. If the server receives a request with a

suppressed payload and an invalid channel identifier (as might happen on a very busy

server which is thrashing its cache), then it may return a channel error which will cause the

client MTP to resend the request with its full payload. Techniques for proper use of the

channel identifier with payload suppression are discussed in the “Programing Interface”

chapter.

Flow Control

One of the primary goals of MTP is to transfer data as fast as possible. That possibility is

limited by die client’s ability to accept, the server’s ability to send, and the ability of each

router in the network path to forward data. If the protocol attempts to retrieve data any

faster than the slowest of these entities, then it will cause or contribute to congestion. This

will immediately cause delivery delays and eventually lead to packet loss, which will force

invocation of time consuming error recovery. Ideally, this “best” value could be calculated

by knowing the maximum transfer rates of all of the entities in the network path and the

amount of this cz^acity utilized by third-party traffic. However, there currently does not
36

exist any practical mechanism by which such information can be directly obtained in a best

effort netwoik such as the Intemet. Hie only variable which we can directly observe

concerning the network path is the delay between the transmission of a request and the

receipt of the corresponding response, also known as the r o u n d tr ip t im e or rtt. From this

value we may infer information about network queue lengths, congestion, packet loss,

throughput, and link speed.

Ultimately, we wish to regulate the rate at which data is transmitted by the server such that

it matches the available capacity of the network path. We could attempt this by having the

client specify that the server transmit the requested data at a specified rate. However this

direct flow control would violate several of our design goals. The most obvious problem is

that it would create a server side state burden in maintaining the flow rates for each

transaction. But more importantly, maintaining that state at the server would create an

excessively long control loop. Given a drop in network capacity, the change must first be

detected by the client, then new flow constraints successfully communicated to the server,

and finally the results observed and evaluated by the client. While this mechanism might be

acceptable for congestion which is slow to evolve, it would not be capable of reacting in a

timely manner to sudden or transient congestion. Therefore, instead of directly regulating

the transmission rate of data, MTP takes advantage of the relationships between the r o u n d

tr ip tim e , congestion, the data arrival rate, and the amount of data which has been requested

(as explained in the next section).

Non contiguous Sliding Window

Each request represents a quantity of data which we expect to be delivered at some point in

the future. The total amount of data which we have requested but which has not yet been

delivered is the amount in tra n sit. For any given tra n s it value, the rate at which data will

arrive is inversely proportional to the r o u n d tr ip tim e . But the ro u n d t r ip t im e itself is a

function of congestion; greater congestion correlates with a larger r o u n d tr ip t im e . Thus if

we fix our tra n s it value, then increases in congestion will immediately result in a decrease

in flow, and vice-versa. This adjustment is intrinsic to the behavior of the network and

thus is not dependent upon a lengthy control loop to take effect. The limit on the amount of

37

data to have in tra n s it at any given time is called the w i n d o w size. As each response

message arrives, the amount of data in tra n s it is momentarily reduced. We then issue a

new request for more data, bringing tra n s it up to the w i n d o w limit and causing the address

range of the data in tra n s it to slide forward.

Thus far, this mechanism may sound similar to the TCP “sliding window” strategy.

However there are several crucial differences. The TCP window represents a specific

RANGE of data addresses. But the MTP w i n d o w applies only to a QUANTITY of data. The

MTP data in tra n s it is not required to be contiguous and may span any address ranges

within the d a ta o b je c t. As we will see below, this has tremendous advantages when

recovering from lost datagrams. Furthermore, the MTP w i n d o w applies to the amount of

data requested by the client,-NOT the amount transmitted by the server. The amount

actually transmitted may be reduced by server load restrictions or by the loss or delay of

request datagrams. Such a reduction would be an intrinsic result of network conditions and

thus would initiate flow throttling before the client has even detected the problem. Finally,

the w i n d o w value is maintained and enforced at the same location where the data is being

received: the client.

This n o n - c o n tig u o u s s l id in g w in d o w algorithm is the key to MTP’s efficient flow control

and error recovery. The intrinsic feedback created by the relationship between r t t and data

flow causes the flow to respond immediately to transient or sudden congestion. The

concentration of feedback and control at the client allows accurate assessments of network

conditions to be made and immediately translated into flow adjustments. As a result MTP

is able to minimize network congestion while maintaining a steady rate of data flow.

Figure 12 illustrates the flow control strategies of the MTP algorithm versus the TCP

algorithm as they discover the maximum sustainable rate for a given network path at each

point in time. Both increase their flows until an error occurs, and then throttle back. In the

TCP case, this results in wild swings between congestion and under-utilization. The MTP

algorithm just described takes a much more measured approach. The loss of a datagram

initially reduces the flow only by the size of that one datagram. This reduction alone may

be sufficient to relieve congestion. Once the loss is detected by timeout, the reduced flow

38

Packet Loss Maxim um
Loss Detected

MTP

ao
Urn
(0
oa

TCP

Figure 12: Schematic illustration of MTP and TCP flow oscillation. Both protocols
increase their data flow until an error occurs, although TCP increases much more
quickly. In the absence of third party traffic, both will encounter loss due to
congestion when they reach the maximum capacity of the path. Both protocols
reduce their flow after a loss: TCP drops to zero while MTP is reduced only by the
amount lost Upon loss detection (timeout), TCP resumes (depending on
implementation) at half the previous rate and continues increasing. MTP ratifies the
existing reduction and will not attempt another increase for some time. For the
purposes of this schematic, it is assumed that only one datagram is lost per
congestion and that MTP and TCP are using identical timeout values.

is confirmed by a reduction of the window size before the missing data is again requested.

Thus error recovery is seamlessly integrated into the ongoing flow control. After a

sufficient time with no further loss, MTP will again attempt to increase the flow to see if

more bandwidth has become available. Chronic congestion and loss would force continued

reductions in the MTP window. But recurrent losses due to exceeding the path capacity

result in a stable flow of data for MTP at a rate just below that which causes congestion.

The overall throughput of each protocol is proportional to the area under the curves in

Figure 12. The algorithmic differences between MTP and TCP guarantee that the area

under the MTP curve is always greater than that under the TCP curve for the same time

period. While this schematic diagram represents a simplified case, the results in Chapter

Vll of experiments conducted on the Intemet confirm that this behavior holds under real

world, mixed-traffic conditions.

Mechanisms

The initial window size for a multi datagram transaction is taken from a global value.
39

Currently this value is fixed as the lesser of half the UDP buffer size and half the per-

second throughput of the network link (if provided by the application). Future

enhancements of the protocol will change this calculation to incorporate the average

window size of recent transactions. If the request specifies a quantity of data less than the

w i n d o w size, than this value is presumed to be the amount of data in tr a n s it once the

request is sent. Otherwise the w i n d o w value is considered in tran sit. To make sure that the

server does not return more than this amount of a data, the client MTP specifies a r e s p o n s e

l im it in the message header. The server MTP will not transmit more than that amount of

data in response to this request message.

When the first response datagram is received, its size is compared to the server provided

r e s p o n s e s i z e field to determine if the request has been fulfilled by this one packet. If so,

then the data is delivered and the transaction is complete. Otherwise a s u b r e q u e s t l i s t is

created to keep track of which portions of the requested d a ta o b je c t have not yet been

received. The server also returns its own r e s p o n s e l im it value. The server’s r e s p o n s e l im it

is the maximum amount of data the server is willing to transmit per request message and

will be used as an upper bound on the extent of future subrequests. If it is less than the

client’s previous in tra n s it estimate, then we know that the server did not send as much data

as we had requested and we must revise the tra n s it number.

As each response datagram arrives, the corresponding address range is removed from the

s u b r e q u e s t l i s t and the tra n s it value is reduced. The data is placed in the delivery area

specified by the client. If the amount of data in tr a n s it is now less than the current w i n d o w

size, then a new subrequest is generated for the first address range in the s u b r e q u e s t l i s t

that is not already in tra n s it . The extent of the new subrequest is limited such that the new

tra n s it value does not exceed the w i n d o w . Ideally, this process will continue until the

s u b r e q u e s t l i s t is empty or, in the case of a dynamic data object, the server retums an error

code to indicate that no more data is available. At that time the client response handler is

called to deal with the newly assembled d a ta o b je c t. The client may also elect to receive

notification as to the progress of an ongoing transaction. If the request includes an iq jd a te

value, then the response procedure will be called each time the first contiguous portion of

arrived data grows by at least u p d a te bytes.

Window Adjustment

MTP adjusts to changes in the network path capacity by altering the w i n d o w s i z e . In order

to create stability, w in d o w s i z e adjustment is regulated by the f lo w t i m e o u t variable. This

value represents how much data must be successfully received before the w i n d o w is

eligible for either a decrease or increase. Initially f l o w t i m e o u t is zero and it is decremented

by the amount of data received in each response message and by the amount of any data

which is declared lost (as described below). The w i n d o w will be increased by the size of

one datagram whenever f lo w t i m e o u t reaches a th r e s h o ld equal to an integer value multiplied

by w i n d o w . The threshold multiplier used depends upon the condition of the transaction.

If no data loss has been detected during a transaction (no repeats have been required), then

a multiplier of one is used. Thus the w i n d o w size (the amount of data allowed in tr a n s it) is

initially incremented for every successful w i n d o w of data received. Note that this fastest

rate of MTP window growth is similar to the slowest rate of growth for TCP. If at least

one datagram has been lost, then it is presumed that we have come close to the maximum

flow of the networic path and a multiplier of two is used to cut future growth rates in half.

In order to prevent congestion, and thus possibly prevent any packet loss, MTP also

monitors the average r o u n d tr ip tim e of the last eight response messages of the transaction.

If this value exceeds five times the smallest rtt observed during the transaction, then it is

presumably because we are filling up data queues along our network path and may be

41

approaching congestion. In this case, the threshold multiplier is set to three, cutting growth

to one third its maximum rate. If the average round trip time has grown to over ten times

its minimum observed value or if it is beyond a certain maximum (currently four seconds),

then no window increases are allowed until the delay is reduced. Finally, if the minimum

observed rtt for the transaction is small (currently less than 40ms), then the window size is

not allowed to increase above the size of the incoming UDP kernel buffer. This is done to

hedge against sudden flooding of the client since low-latency paths such as LANs are likely

to be bursty. Otherwise the window is limited by the lesser of twice the datagram buffer or

twice the per-second speed of the local network link (if provided by the application).

The flowtimeout variable is also used to regulate window adjustments in resjjonse to data

loss. When a loss is detected, as is described below, the window is reduced by the size of

42

one datagram m A f lo w t im e o u t is set equal to the positive value of the new w i n d o w size.

Except for the case of an incoming buffer overflow, no further w i n d o w reductions are

permitted u n til f lo w t im e o u t is reduced to zero or less. The positive value also adds to the

delay before it is considered safe to increase w i n d o w . If the window has become very

small then a minimum f lo w t im e o u t of three times the current datagram size is used. This

brief moratorium on further adjustments prevents the protocol from over reacting to a

cluster of lost data which may have been caused by transient congestion. If the congestion

is chronic, then continued data loss will drive the w i n d o w lower until it reaches its

minimum (one datagram) or conditions allow it to rise. Figure 13 shows a network level

view of MTP data loss and recovery.

Datagram size is chosen as a function of the w i n d o w size. Specifically, the amount of

payload permitted per response datagram is regulated by w i n d o w . Whenever there are

fewer than four datagrams per w i n d o w , the size is cut in half with a minimum payload of

512 bytes. This reduction is done to decrease latency, increase the chances of each

datagram finding space in congested queues, and to improve the resolution of our flow

control statistics. Whenever there are more than sixteen datagrams per w i n d o w , the size

permitted for each payload is doubled. This increase reduces the processing overhead at all

points along the path. The maximum payload per datagram is limited to the lesser of one

quarter the incoming buffer and the amount of data the local link can deliver in one second.

(Currently an 8 kilobyte limit is enforced as well. The next protocol revision will also

43

aier S erv er

Clier

a ie i

Client

Client

Figure 13: Time sequenced network view of MTP error recovery. Initially the
window size is six times the response datagram size (allow six units of data in
transit). Thus request 11 is delayed by the failure of response 5 to arrive, but
is sent once response 6 arrives. Data flow continues during error recovery and
there is no redundant data. Once detected, the missing data is requested as part
of the reduced data flow (now with a window size of five). Compare to
HTTP/TCP in Figure 8 noting that the time steps are much smaller here.
Further errors may further reduce the flow rate. Without errors, it will grow.

regulate datagram size according to the number of outstanding transactions and recent

statistics.) Note that not every datagram will contain its maximum permitted payload since

the window limit on in transit data and server limitations may restrict the amounts requested

or sent per datagram.

In addition to the parameters of each transaction, the client MTP watches the incoming

UDP kernel buffer shared by all transactions to ensure that data is not being requested

faster than the client is enable of receiving it. Whenever the incoming UDP queue exceeds

half the buffer size, the window is reduced on the fastest transaction and all active

transactions have theirflowtimeout values reset to zero which delays their normal schedules

of flow increase. (Currently, only the window size is used to determine the fastest

transaction. A future revision will also use the rtt to determine the transaction with the

44

greatest flow.)

The server ^plication may also respond to excessive load by lowering its response

w in d o w l im i t , which reduces the maximum amount of data sent per request datagram. This

forces a slower start up for new transactions and increases the latency (thus reducing the

flow) for existing transactions. Overloading of the server will also have the inherent effect

of delaying its responses which will also increase latency and reduce flow. In case of

extreme overloading, the server may choose (or be forced) to ignore some requests. Note

that because MTP handles such loss smoothly, dropping requests at the server will its

reduce load without causing extreme delays at the client.

Data Loss and Recovery

The client MTP keeps track of exactly which address ranges of the desired response are in

tra n s it at any given time. It also maintains a notion of a re p e a t in terva l by which it judges

when a portion of data should be declared lost and its request repeated. The initial r e p e a t

in te r v a l value is currently set by the ^plication. (The next protocol revision will use a

calculated initial value unless a s in g le response transaction has been specified by the client.)

As responses are received, the repeat value is adjusted such that it remains between two to

four times the average round trip time. A minimum re p e a t interval (currently 500ms) is

enforced due to the tendency for fast links to have have very unstable latencies.

(Experiments suggest that this minimum is higher than necessary and so it may be lowered

to 400ms in the next protocol revision.)

Experiments have shown that the re p e a t in te r v a l must be at least twice the current round trip

time and greater than a certain value due to the tendency of the round trip time to increase

suddenly when additional third-party traffic is introduced into the data path. Smaller re p e a t

in te r v a ls result in the duplicate request of data which has not actually been lost. Since such

behavior would contribute to congestion at the moment when congestion is already

increasing, it is considered vital to avoid duplication.

When datagrams are lost, the tr a n s it value is not reduced by their arrival and thus the rate at

which new subrequests can be generated is diminished. Until the r e p e a t in te r v a l expires,

45

the transaction’s window size is effectively reduced by the amount of missing data. Thus

having a repeal interval value that is larger than the average round trip time causes the data

flow to be temporarily reduced in proportion to the size the burst before the loss has even

been detected by the client. Once the loss is detected by the data’s failure to arrive within

the repeat interval, it is no longer considered in transit. The window may then be set to one

datagram less than it’s previous value. In most cases, this means that the effective flow

rate will continue at the same slightly reduced level. But after a burst of loss, the new flow

rate will actually be an increase compared to what it was during the last repeat interval.

This prevents the transaction from stalling and promotes continued stability.

But having too large a repeat value delays error recovery and thus reduces the flow below

optimum levels. A large timeout may also delay completion of the transaction if data is lost

very at the end of the response. Choosing the correct repeat value is most critical during

heavy congestion when the window size may be reduced to as little as a single datagram.

In such a case, loss of a datagram represents a much larger proportion of the total flow and

a timely recovery dramatically affects the overall transaction time. The MTP transaction

normally continues until all of the requested data is received If absolutely no responses

arrive for a period of time set by the application, then the transaction is considered expired

and an error response is delivered to the application.

Summary

The various mechanisms described above all work together to provide several levels of data

flow regulation and thus maintain a rate which matches the changing capacity of the

network path. The actual rate at which data is transferred (in terms of bytes per second) is

determined by the combination of the window size set by the client and the round trip time

which is a function of congestion. Thus the first level of flow control is the variation in

latency which, for a given window size, alters the rate of data transfer in inverse proportion

to the level of congestion. When congestion becomes critical, datagrams are lost and the

second level of flow control comes into play. By preventing delivery of a response, the

network immediately reduces the load on all downstream nodes and reduces the rate of

further requests. As a third and final level of flow control, the client responds to chronic

46

data loss by steadily lowering the window, and thus the flow rate, until no more losses

occur. As loss subsides, the window may be slowly increased. But this increase is

regulated directly by changes in the round trip time. This may allow congestion to be

avoided BEFORE packet loss becomes an issue. Finally, both the client and the server may

make adjustments to the flow in response to their own load conditions.

Issues and Considerations

The design goals and techniques thus far discussed have focused on the task of creating a

protocol which performs efficient transaction transport across the Internet. But there are

other considerations which should be taken into account. Foremost is the effect the

protocol may have on network resources and third party traffic. Since MTP has been

designed to respond more quickly and proportionately to congestion problems, it is

expected that a network using MTP will exhibit much greater stability and throughput than

one using primarily TCP. Tests of this assertion are discussed in the “Testing and

Simulation” section.

More specifically, there is the concern that the higher network utilization of MTP could

result in lower performance for simultaneous TCP streams. However MTP’s is also much

more stable than TCP. It does not contribute to synchronicity and it’s presence along the

network path may be able to fill in the valleys while smoothing out the peaks of TCP’s

flow oscillations. Experiments discussed in later chapters suggest that over WANs, MTP

transactions have little impact on simultaneous TCP streams. Over LANs, where it is much

easier for a CPU to saturate the link, MTP may interfere with simultaneous TCP streams on

the same link. This is discussed more in the chapter “Third Party Effects”.

Another concern is CPU overhead. While the server side has been reduced to far less

overfiead than TCP, the MTP client is relatively heavy. It relies on numerous statistical

calculations and the code is far from the instruction optimized leanness of TCP. However

this is not considered to be a burden for two very important reasons. First, computers

today are many orders of magnitude faster than they were when most TCP implementations

were created. It is simply not necessary to worry about integer versus floating point math

or how many additions are needed per datagram. While efforts have been made to ensure
47

that the MTP implementation is as efficient as possible, minimization of CPU use is simply

not a design priority. Second, MTP has been implemented as a user level code library with

non-blocking system calls. Since it is not part of the kernel, MTP has a greater latitude in

its use of resources. The use of non-blocking system calls combined with a design

emphasis on short, discrete operations, allows the protocol library to quickly return control

to its parent application. In spite of the fact that CPU efficiency has not been a priority of

MTP, it never the less exhibits extremely low oveibead. On a Sparc 5/70 CPU, a five year

old workstation, it uses less than 1% of the CPU even while receiving network data at over

one megabyte per second on a 10 megabit ethemet link.

Perhaps the most subtle issue affecting protocol design is that of security. The fact that

MTP is meant to operate across the public Internet means that it will inevitably be subject to

denial of service, spoofing, packet sniffing, and other attacks. Because the balances

between risk, flexibility, and overhead can vary widely, most security issues have been left

to the application level. Encryption and authentication schemes, for example, are to be

developed as part of the application protocols. MTP provides mechanisms to aid their

development, such as providing session and transaction identification, and makes no

assumptions about the contents of packet payloads. Future enhancements to the protocol

will include an option for creating fully encrypted datagrams, including the MTP headers

(which would be decrypted by an application supplied procedure). Again, the details will

be left up to the application, but MTP will provide the mechanisms.

A more recent design requirement is for direct regulation of real-time data streams.

Although this topic has not been greatly addressed in this dissertation, it is worth noting

that MTP began it’s life as an IP telephony mechanism and thus contains numerous

adaptations and techniques for efficiently supporting real-time multimedia streams. But

since such traffic makes up only a tiny fraction of current network volume, description of

these techniques has been left for future work.

No doubt there are a great many other considerations which MTP’s design and

implementation should take into account. Thus the protocol and its implementation have

been designed around the core goals described above with an eye toward maximizing

48

modularity and flexibility. It is expected that while not every problem has been foreseen,

every issue can be reasonably accommodated.

49

V I . Programming Interface

This chapter documents the Software Development Kit for the Multimedia Transaction

Protocol library, version 2.1. The Kit consists of a binary code library compiled for

specific platforms, a C header file containing all of the necessary structures and function

prototypes, and basic documentation. The purpose of this section is to both document how

MTP may be used by an application programmer and to provide a greater insight into the

implementation of MTP itself. The following chapters examine the use of MTP for web

service as well as the performance, testing, and modeling of the protocol. A complete

listing of the header file, whose contents will be referred to extensively in this chapter, is

provided in Appendix A. This chuter assumes a familiarity with that code as well as the

principles discussed in the previous two chapters. Appendix B contains source code for

the program “mtping” which illustrates the use these interfaces in a simple query-response

application. It should be noted that the data structures used in the API are somewhat

abstracted from the underlying mechanisms, allowing the format of MTP messages to be

slightly altered without disturbing the applications.

Overview

Each MTP application must begin its networking by calling MTP_init (). This establishes

MTP networking on a given UDP port and sets the level of debugging output. The

procedure also requires a character string which will be used to identify the application to

other MTP clients. If it is known, the speed of the local Internet link may also be specified

using a LINK_ descriptor. (More recent revisions of the protocol are able to discover the

link speed dynamically.) This information can usually be obtained from the user at the time

the application is installed. More enlightened operating systems store the speed globally for

each link. When in doubt, a lower link speed should specified. If the application plans to

make multiple requests, then this value is not critical as MTP will quickly adapt to whatever

conditions it finds.

Int MTP_Init(uint16 port, /* Local UDP port number */
int link, /* Link speed description * /
char * idstr, /* Description of this application */
int debug /* Debuging detail level */
) :

50

Incoming data is received via callback procedures which must be registered with MTP.

Requests are handled on the basis of their action code, mtp . h lists some standard action

codes and describes their functions. By default, ACT_p in g and ACT_IDSTR are handled

internally by MTP, although the application may substitute its own procedures.

The application specifies how incoming requests are handled by calling MTP_Action ().
This procedure takes the action to be registered, the MTP_RequestProc that will be called

for this action, and a 32-bit field that will be passed unmodified to the action procedure.

MTP_Action () returns the previous procedure associated with the action (or NULL if there

was none). Response handlers are registered at the time a request is made and will be

discussed under “Client” below.

MTP_RequestProc
MTP_Action(int action. /* Action being registered */

uint32 user, /* Data to be passed to rproc */
MTP_RequestProc rproc / * Procedure to be called on

action */
) :

The actual processing of MTP messages is handled within the MTP_Event () procedure.

This procedure must be part of the main application loop and must be frequently called

upon in order to maintain MTP networking. This procedure is similar toselectO in that

it accepts file descriptor sets for tracking stream events as well as a timeout value.

MTP_Event () will retum after processing messages, when an event occurs pertaining to

one of the file descriptor sets, or after maxtime milliseconds have elapsed. If maxtime is
set to -1 then MTP_Event 0 may wait indefinitely. If maxtime is set to o, then

MTP_Event () will return immediately after handling pending traffic.

int MTP_Event(fd_set * readfds, /* Readable descriptors */
fd_set * writefds. /* Writeable descriptors */
fd_set * exceptfds, /♦ Exception descriptors */
sint32 maxtime /* Timeout in milliseconds * /
) ;

It is important to allow MTP_Event () to be active as much as possible so that network

activity can be handled in a timely manner. An application which is expecting a significant

volume of network activity should not go without calling on MTP_Event () for longer than

a few milliseconds. If MTP networking is expected to be minimal (as for simple control

functions), then longer intervals are acceptable, but still should not exceed about 5(X)

51

milliseconds. In addition to modifying the file descriptor sets, llTP_Event () returns the

number of messages processed during its call.

Upon completing its network tasks, the application should call MTP_ciose (). Currently,

this function is only needed to release process resources. But future revisions of the library

may allocate extra-process resources such as files or shared memory blocks. Therefore

MTP_Close 0 should be called prior to the process exiting to ensure that these resources are

deallocated.

int MTP_Close();

Client

The client is defined as the originator of a request and the recipient of a response. All

transactions begin with a client application calling MTP_Request () and end with the client

MTP calling an MTP_ResponseProc procedure. In most cases, the client's request

identifies a portion of a data object on a server and some action for the server to take.

Upon receipt of a request message, the server will retum one or more response datagrams.

Once the entire response has been received, and optionally at prior intervals, the

MTP_ResponseProc provided in the MTP_Request () call will be invoked.

int MTP_Request(mtp_id_t * id, /* Request identifier */
mtp_request_t request, / * Request description * /
int size, /♦ Payload size */
void * payload, /* Pointer to payload */
uint32 repeat, /* Request repeat rate */
uint32 expire, /* Request expiration time */
mtp_delivery_t delivery, / * Delivery instructions */
uint32 user,/* Data to be passed to callback */
int update, /* Update rate, in KB */
MTP_ResponseProc callback /* Proc to receive

response */
) :

The payload pointer addresses the data which should be transmitted in this request while

size indicates its extent. If there is to be no payload, then the size should be o and the

pointer set to n u l l. The request payload is limited to MTP_SIZE_REQUEST bytes (currently

1024). The repeat value provides a timeout, in milliseconds, after which the initial

request may be repeated if no response has yet been received. If no responses are received

in expire milliseconds, then the transaction will terminate with an error response. As a

5 2

special case, expire may be set to zero. MTP would then send one request message and

will not expect or accept any responses. In that case, callback would never be invoked

and may be NULL.

The destination for the request is given in the mtp_id_t structure:

typedef struct { /* Uniquely identify a transaction * /
struct in_addr peerip; /* IP address of peer - Network Order!*/
uintlG peerport: /* UDP port number - Network Order! */
uintS mtpversion: /* MTP protocol version */
uintS appversion; /* APP protocol version */
uint32 reqid; /* Request id number */

} mtp_id_t;

The peerip and peerport identify the IP address and UDP port number of the server.

The appversion specifies the revision level of the application protocol. This value is

passed to the server where it may be ignored or used to determine the context in which the

request should be interpreted. The mtpversion and reqid fields will be set by

MTP_Request().

The nature of the request itself is described in the mtp_request_t structure;

edef struct { /* Describe a request */
uint32 channel ; /* Session or object identifier */
uint32 address ; /* Address within data object */
uint32 rsize : /* Size of requested data object */

/* (usually EOF - address) */
uintS action; /* Action being requested */
uintS flag; /* Action modifiers */
uintl6 reserved ;
int single ; /* Flow control disabled flag */
int stream; /* Dynamic object flag */
int suppress ; /* Payload suppression flag */

} mtp_request_t;

The action field, optionally supplemented by the flag field, defines the purpose of the

request. Several standard actions are defined in mtp. h and these values should be used

whenever they tqiply. Application specific actions may begin at act_a p p (currently 64).

The meaning of the rest of the fields, as well as MTP’s behavior, depend upon the value of

the single flag. When set true, the application promises that the response payload will fit

into a single network datagram. This causes MTP to disable most flow control for this

transaction and to accept the first response message it receives as the entire response. IP

permits a payload size of up to approximately 63 kB, but the network path may have tighter

55

restrictions. Either the client or the server may have kernel level restrictions on the

maximum datagram size they can handle. Generally, up to 8 kB of payload is safe, but

single should really only be used for minimal (at most 1 kB) responses.

For a single request, MTP ignores the values of channel, address, rsize, and flag,
passing them without modification between the client and the server. For non-single,
also known as multi, requests, MTP requires that address be a byte offset within the

requested data object and that rsize be the number of bytes requested. Alternatively,

rsize may be set to zero to indicate that all data available from address to the end of the

data object is requested. The initial channel value may be specified by the client

application, but if the server returns a different value during its response, then this new

number will be used for the remainder of the transaction. The suppress, stream, and

reserved fields are ignored in the request call.

As response data arrives, it will be delivered to the application as specified in the

mtp_delivery_t Structure. Currently, two types of delivery are supported: fixed memory

buffer, and file. The method of delivery is given by the type, while the remaining fields

describe the destination and boundaries of the destination.

typedef struct {
uint32 type;
uint32 handle; /* File descriptor or buffer address */
uint32 offset; / * Location for msg.address = 0 */
uint32 bound; /* Maximum allowed. 0 for unlimited */

/ * on return, max sequenced size * /
} mtp_delivery_t;

Type MTP_DEL_BUFFER is used to deliver data to a fixed size memory buffer. The data will

be delivered starting at the address hand le + offset and may extend no further than

bound bytes. If more than bound bytes are explicitly requested, then an error response will

be returned. If the request is for all available data (rsize set to zero) then the response

may be truncated. The other currently supported delivery type is MTF_DEL_FILE. In this

case handle contains the file descriptor of a file opened for writing. As before, offset
and bound further specify the location and limitation of the response destination. In future

protocol revisions, support is planned for dynamically allocated buffers using a mechanism

similar to writev () iovec structures. Support is also planned for pipelines which will

54

allow responses to be delivered to specifîed sockets descriptors.

The final portion of the request call specifies how the ^plication shall be notified of

response delivery, callback is an MTP_ResponseProc procedure which will be invoked

once the transaction has completed. If update is non-zero, then the callback will also be

invoked each time the initial contiguous range of received data grows by at least update
bytes. This allows the application to keep track of the progress of a transaction and to

provide user feedback. The user field is an arbitrary 32-bit value that will be passed

unmodified to the callback.

typedef void (* MTP_ResponseProc) /* Receive response */
(mtp_id_t msg_id, /* Uniquely identify the transaction */
mtp_request_t request, /* Info from the response header */
int error, /* Error classification */
int response, /• Response code */
uint32 size, /* Total size of response */
int final, / * True if this is final */
mtp_delivery_t delivery, /* Deliver info from request */
uint32 user, /* Application defined data */
mtp_stats_t stats); /* Information about the transaction */

The response callback procedure has a similar structure to the request call. The msg_id
contains the same identification as before, but with the appversion set to that of the

server. The request structure is more extensively modified. The channel, rsize,
action, and flag fields may all have been changed by the server application. If the

request was successful and not designated as single, then rsize will have been set to the

amount of data available from address to the end of the data object. The server may set

the stream flag to indicate that this was a dynamic data object. The suppress flag

indicates that the returned channel identified the data object and allowed payload

suppression, at least during this transaction. Both flags have meaning to MTP during the

transaction. Whether or not they are significant to the client application depends upon the

design of the application protocol.

The error and response fields characterize the nature of the response. If error is zero

then the requested action was successful, response will always be non-zero and may be

set by the application server to further comment on the nature of the response. Application

specific values begin at RES_APP (currently 64). If error is non-zero, then it indicates

which portion of the network path generated an error. In that case, the value of response
55

would give the specific type of error as defined in mtp . h. Note that the error response
codes vary with the error class. Class ERR_APP refers to errors generated by the server

application. Several standard error response codes are defined in mtp . h and should be

used whenever they apply. Application specific error responses begin at e r r_a p p_a p p
(currently 64).

The final flag is set when the transaction has been completed. Depending on the size of

the response and the value of the request update field, the response procedure may be

called many times with final set to zero, but it will only be called once with final set to

one. On the final invocation, if there have been no errors, size will be set to the amount of

data which has been delivered. For update or error calls, size will only give the number

of contiguously delivered bytes starting from address. Additional data may have been

delivered, but may have “holes”. Only the first size bytes are guaranteed to be

contiguous.

For the current delivery types, the delivery structure will be identical to the request except

that bound will be set equal to size. For an MTP_DEL_FILE delivery type, it is very

important to note that during an update or after an error the size of the file may be larger

than size. The application should not attempt to read or map any data beyond size as

portions of the file may not have been allocated. The dynamically allocated delivery type,

when implemented, may change other fields as well.

The stats structure provides statistical information about the transaction, including error

recovery and flow control information. Most applications will be primarily interested in the

received and etime fields as these provide up-to-date information on the total number of

bytes delivered during the life of the transaction as given in milliseconds. Most of the

stats fields have no meaning for single responses and their values are undefined if

single is set.

Once the response procedure has been called with final set, the transaction is considered

complete and MTP will remove all state information regarding it. It is then up to the

application to do whatever it wants with the data and to deallocate any resources associated

with its delivery.
56

While a transaction is ongoing, the client may make limited changes to its request.

Currently, the only supported change is to abort the request in one of several ways.

int MTP_Abort(uint32 reqid, int action);

The reqid must be the transaction identifier of an ongoing request as returned in the id
field of an MTP_Request 0 call. The action specifies one of four mechanisms by which

the transaction may be terminated. a b o r t_f in i s h is the least drastic, allowing the

transaction to complete up to the furthest address which has already been delivered.

Depending on network conditions, the transaction may continue for several seconds. The

response procedure will then be invoked without error, assuming no further errors occur.

ABORT_STOP terminates more quickly, usually within one second, by both truncating the

request and by forcing the request to expire very soon. Data which is already in transit will

likely be accepted (so that its bandwidth is not wasted), but no further subrequests will be

sent. The response procedure will then be called as though the request had timed out.

AB0RT_EXPIRE expires the transaction immediately. During the next HTP_Event () call, the

response procedure will be invoked with a timeout error. Some data which is already in

transit may be discarded. a b o r t_d e s t r o y completely wipes out the transaction. The

response callback will not be invoked and no data will be delivered. Delivery buffers or

files provided by the application will be close to the state of their last update. Dynamically

allocated buffers will be deallocated and must not be accessed.

Server

The server is defined as the recipient of requests and the originator of responses. The

server registers MTP_RequestProc request handlers for each action code it supports, as

was discussed under “Overview”. Each handler is expected to process a single request

message per invocation and then make one call to MTP_Respond () to send its response.

The server may perform additional tasks, but it must call MTP_Event () with sufficient

frequency to service its transaction load.

typedef void (* MTP_RequestProc) / * Handle action request */
(mtp_id_t msg_id, mtp_request_t request,
int size, void ‘payload, uint32 user);

The msg_id field contains the IP and UDP port numbers of the client which issued this
57

request along with its MTP version, application version, and the id of the transaction to

which this request message belongs. The combination of the peerip, peerport, and

reqid fields unique identifies the transaction. The request field describes the nature of the

request itself. The meaning of the fields is as was described in under “Client”. If the

server is making use of the channel field for some form of session or object identification,

it should anticipate that the information may be stale and be prepared to recover gracefully.

If the suppress flag is set, then there is no payload and the server must rely on the channel

to identify the data object or session. If this can’t be done, the server should respond with

ERR_APP_CHANNEL, which will cause the client MTP to resend the request with the full

payload. Any request payload is pointed to by payload and is of length size. The user
field contains whatever data was declared in the MTP_Action () call.

Once the server has interpreted the request and prepared a response, it invokes

MTP_Respond().

int MTP_Respond(mtp_id_t id, /* Request identifier */
mtp_request_t request, /* Request description * /
int error. / * True for error */
int response, /* Response code * /
int size, /* Payload size */
void * payload /* Pointer to payload */
) ;

The id field should be identical to that passed into the response procedure except that the

server may set its own appversion. As noted in the Client section, the meaning of the

request fields depends upon whether or not this was a single request. If it was, then the

server can set any values for the channel, address, rsize, action, and flag fields. If

this is to be an error response, then the server also has a broad discretion in the values it

returns for these fields. But for normal multi responses, address must be the byte address

within the data object of the beginning of the response payload while rsize is the extent of

the entire data object starting at address. Note that rs ize is NOT the amount of data being

returned by this response, but rather the amount that COULD have been returned. MTP also

requires that the reserved field passed in the request structure be returned without

modification in the response. In general, it is easiest to call MTP_Respond () using the

same id and request data structures as were passed to the request handler, making

whatever modifications are necessary to individual fields.

58

For dynamically generated data objects, the server must notify the client of the amount of

data which the server is willing to buffer. It does so by setting the stream flag to one and

rsize to the maximum amount of data which the server will buffer. Note that unlike a

static response, the rsize value is fixed and does not depend on address. The client MTP

will assure that the range of requests outstanding during the transaction does not exceed

rsize. Thus if the server receives a request for dynamic data which is some amount

beyond its declared buffer, it is assured that an equal amount at the beginning of the buffer

has been received by the client and may be discarded. In practice, the server may wish to

buffer at least 512 bytes more data than it declares in rsize so that it will immediately have

room to slide the window forward as new requests arrive.

If there is no further data available at the time a request is received, but more is expected to

be generated in the future, then a response should be sent with no payload and rsize set to

zero. The client will then repeat its request without expiring. This state can be maintained

indefinitely so long as the server continues to send back these zero payload messages. If a

request arrives for an address beyond the end of the dynamic object, the server must

retum ERR_a p p_E0D. In this special case, rsize should be set to the TOTAL size of the

object. This lets the client know where to terminate its requests. Once the client has

received all of the responses up to EOD, it will send a final request with both address and

rsize set to -0 (all bits set to one). The server must respond with a zero length reply and

may then regard the transaction as complete.

Application Protocol Design

When creating an application which will use MTP, the designer must begin with the design

of their application level protocol. While byte-pipe protocols such as TCP allow for the

free form exchange of messages between peers, MTP is much more structured and requires

the designer to be aware of some issues hidden by TCP. Most obvious is the fact that MTP

is a transaction protocol and thus is best suited to request-response exchanges. More

specifically, MTP is structured around the notion of one process seeking to perform an

action upon a data object located at another process. The action and the data object are

described in the request and the results are returned in the response. This is a somewhat

59

broader description than the client-server model discussed previously and reflects the fact

that MTP can be used for a wide range of ̂ plications beyond simple data retrieval.

The first step to designing an MTP application is thus to decide what data objects are going

to be operated upon and how they will be identified. In the case of HTTP, the data objects

are files or CGI executable programs and they are identified by text strings. For network

telephony, the objects may be call sessions identified by the user. A networked file system

might operate directly on files, directories, and links by name or node number. A database

system might use complex queries or direct indices into data files. The designer should

also be aware of the likely distribution of their data objects. In the classic client-server

model, there will be many clients accessing a few central servers. But transactions may

also occur between peers or even in few-to-many layouts.

The next step is to decide what actions may be taken upon the data objects. The most

obvious is the retrieval of data, but there will likely be a need for many control functions as

well. Data locking and exclusion, session creation and tear down, differing query types

and formats, and other data management functions must be considered. For example, it

may be desirable to create an MTP server which manges the use of a hardware data source

(such as a video feed). Remote clients would need actions to perform various shared and

exclusionary operations on the data feed, while a local client might be used as a user

interface to send control and configuration commands. (This is referred to as a “proxy

interface” or “proxy control” in other MTP documentation.) When designing actions, it

must be decided whether the actions are intended to retrieve arbitrarily large responses, or

single datagram responses. In general, it is best to use single type transactions for control

functions since they require less overhead and allow many of the header to fields to be used

for application data. Requests for potentially large responses must be more structured.

Whenever possible, the standard action and response codes listed in mtp. h should be used.

This simply makes the code more portable and can be extremely useful in debugging.

The final design step is to determine how the server will actually process the action requests

it receives. This may be an iterative process involving revision to the nature of objects and

actions as the designers familiarize themselves with the particular issues important to an

60

MTP server. The most pressing issue is the fact that the server cannot assume that

responses will be delivered and must cope with repeated requests. Thus an action must

never perform an incremental change on a data object without providing a synchronization

mechanism. For example, if a client wishes to increment the value of a register on the

server, the server must NOT simply increment the value for each request it receives.

Repeated requests due to networic errors would then cause unintended state changes.

Instead, the client could request the current value and then submit a new updated value. If

the value was session or client specific, an exclusionary lock function could be included in

the value retrieval and change. Alternatively, the server could record the transaction id of

the increment command and take no action upon repeats but still send confirmation that the

job was done. In practice, a small amount of planning can make dealing with the

asynchronous nature of an MTP server very simple.

Another consideration unique to MTP is the limitation on the request size. If there is a need

for one process to initiate the transfer of a large quantity of data to another, it can do so

simply by implementing a reversed request. The client would set up its own request

handler and assign a channel id to the data it wishes to send. It would then issue a request

to the server instmcting the server to send its own request for the data to the client. This

simple mechanism is used by the MTP implementation of HTTP to handle POST methods.

While it may sound convoluted, it only adds one round trip time to the transaction and

gains all the speed benefits of MTP’s transaction optimizations.

Different applications may use MTP in very different ways, but the basic principles of

actions on objects should remain constant. An HTTP server, a TCP/MTP protocol

gateway, a file transfer client, and a suite of telephony applications have already been

created and demonstrate the tremendous power and flexibility conveyed by MTP. As more

applications are developed, it is expected that the interfaces above will change to

accommodate the needs of developers. Thus it should be carefully noted that this

description applies to version 2.1 of MTP and is subject to change.

61

V I I . Testing and Simulation

7.1 Methods and Goals

MTP’s design process has been closely tied to empirical testing and the iterative refinement

of its operational parameters. Many of the design choices discussed in the previous section

were made as a result of experiments comparing various other techniques and options.

With the completion of revision 2.1, it has been possible to begin systematic testing for the

purposes of validating the design choices and quantifying the performance gains over TCP.

The primary goal of this testing has been to evaluate the throughput of MTP versus TCP

under varying conditions of network congestion as measured by packet loss rates. A

simplified computational model of both MTP and TCP has been created and used to

simulate conditions that cannot be adequately tested in situ at this time. The modeling and

simulation has also been useful in the further refinement of the protocol itself and in

validating key performance assumptions. This chapter discusses the resources and

methods used to perform the comparative testing and modeling of TCP and MTP. The

following chapters discuss the results of the throughput test, observations of the impact of

MTP on third-party traffic, and the results of the modeling and simulation. Finally, the

results of the tests are analyzed and conclusions about the performance of MTP are made.

Validation of MTP as a high performance transaction protocol requires the examination of

three key performance characteristics: throughput, network overhead, and its affect on third

party traffic. Of these, throughput provides the most insight into the performance of flow

control mechanisms and is the simplest to observe. Therefore the principle goal of the

empirical testing has been to measure the rate at which large data quantities may be

transferred using both MTP and TCP. Network overhead is difficult to observe directly,

particularly over long path lengths. Therefore simulation testing has been used to obtain

estimates of how much bandwidth is wasted by protocol overhead. Any protocol which

claims high throughput rates must also be evaluated for any detrimental effects it may have

on third-party traffic. For MTP, third party effects have been measured by observing

transfer rates during multiple, mixed transactions.

62

A related performance characteristic which is important in many multimedia applications is

latency, both during initial setup and error recovery. The setup latency problems with TCP

are well known and various mechanisms (discussed in Chapter H) have been employed to

limit their effects. By it’s design, MTP’s setup overhead is non-existant and thus it’s setup

latency is an optimal one round trip. The effects of error recovery latency for TCP are

dramatic and have a severe impact on it’s throughput. As discussed in previously, MTP

makes only incremental adjustments to data flow, and thus does not have a concept of

latency in error recovery. For these reasons, latency testing is not examined here except to

note that MTP exhibts far better performance in latency critical applications than TCP.

Instead, we concentrate on throughput as the primary measure of performance.

Empirical testing has been done using the network path between the University of

Oklahoma and the California Institute of Technology. Workstations at both ends are

connected to lObaseT subnets. The path length between nodes is approximately 18 hops

with latencies varying between 80ms and 210ms. Datagram loss rates between nodes vary

between 0 and 60% but are typically around 2 to 10%. This path is taken to be

representative of the general case of Internet HTTP traffic.

Since the principal design goal of MTP is to provide optimal data transfer in spite of

network congestion, both the empirical and simulation testing have been evaluated relative

to ambient network path congestion. In the empirical case, congestion is measured by the

rate of packet loss as observed by a continuous ICMP (Internet Control Message Protocol)

fast ping performed throughout the course of the data transfer. For the simulation, a packet

loss rate is set as a parameter of the simulation run. Observations of loss rate versus

throughput have been correlated for both MTP and TCP and their comparison provides the

principal means of quantifying the relative performance of the two protocols.

The primary development platform for MTP has been a Sparc Station 5/70 running SunOS

4.1.3_U 1 which was used as the client during the testing described here. For the server

side, the code was ported to IRIX 6. Other testing has been performed under SunOS 5,

HP-UX, Linux, and OSF. In all cases, the platforms were connected via lObaseT ethemet

to an IP subnet and the code was compiled using gcc version 2.7.

63

7.2 Comparative Throughput

For the purposes of testing, each HTTP transaction is modeled as an independent data

transfer from the server node to the client node. For the MTP case, this simply consists of

a request for a fixed sized data object. For the TCP case, each transaction consists of the

establishment of a connection, the transfer of the data file, and the close of the connection.

The time required for each data transfer is measured along with the ambient loss rate. This

data is recorded in a log file and later correlated to obtain ambient loss versus throughput

statistics.

Both protocols are serviced by the same client and server applications. Appendix C

provides the source code for the server, tserve. The application asynchronously accepts

both MTP and TCP transaction requests and returns a fixed quantity of data (1 megabyte by

default). The TCP handling is non-blocking and allows up to eight simultaneous TCP

streams. MTP handling is naturally asynchronous and no limit is placed on the number of

transactions. Appendix C also contains the source code for the throughput testing client,

tel lent. This client performes a continuous series of transactions, alternating between

MTP and TCP protocols. Before each transfer begins, a fast ICMP' ping is begun to

measure ambient packet loss. (A fast ping generates a new ping message as soon as the

previous one has been returned or one second has passed.) The ping is terminated at the

end of the transaction and the results recorded along with the amount of data received, the

time elapsed, and the calculated throughput. It is assumed that ICMP packet loss rates are

at least proportional to those experienced by TCP since routers are indiscriminate when

choosing datagrams to drop. Since MTP also provides statistics for its own observed

round-trip-time and loss rates, these are also recorded. Transactions which last longer than

sixty seconds are terminated and results recorded for the data received up to that point. In

order to reduce the impact of testing on third-party users (particularly on the local networks

at either end of the path), a ten second pause occurs between MTP and TCP tests while a

sixty second pause occurs before returning to MTP.

' Internet Control Message Protocol is a specialized IP transport protocol used for this type of
diagnostic function. Ping responses are usually generated at the kernel level without application
intervention.

64

Throughput Compiled WAN protocol te*t reeulte
300

MTP Throughput —
TCP Throughput —

250

200

S 150

100

30 40 50 700 10 20 60
Loss Rate

Rgure 14a: Comparison of MTP and TCP throughput versus loss rate. Data
has been sampled for every 2 percentage points of loss and a blur applied to fill
in missing samples.

Since Internet network conditions are beyond this researcher’s control, tests were run at

various times of day for up to several hours in the hopes of recording a wide variety of

congestion conditions. The observations were collated using the t p lo t . c program shown

in Appendix C. This application collects the output of te l le n t and averages the

throughput for each observed loss rate at 0.5% sample increments. Since only cme long

network path was tested and tha-e was no ability to control the level of congestion, the data

set lacks measuremarts for all possible loss rates. Therefore tp lo t performs a smoothing

operation (roughly equivalent to a five point Gaussian blur) by averaging each point with

its nearby neighbors using the weights 1 ,2 ,4 ,2 , and 1. Figure 14a shows the aggregate

results of test trials using one megabyte data transactions between cs.ou .edu and

ugcs. cal te c h . edu. Figure 14b shows a scatter plot of the actual data points including an

exponential fit generated by Microsoft Excel version 5. Figure 14c shows the same scatter

plot using a logrithmic scale on the throughput axis. The raw results are given in Appendix

D.

65

Scatter WAN protocol test results

O)

. TCP
• MTP

— Expon. (TCP)
— Expon. (MTP)

500

400

300

|£ 200-

100 - -

706040 5010 20 300

Ambient Packet Loss (Percent)

Figtue 14b: Conqmxison of MTP and TCP thiDnglq>ut vazsus loss rate. Scatter plot vWi expoitential fit by Microsoft Excel 5.0.

Scatter WAN protocol test results (Log Scale)
1000 T

* TCP
• MTP

— Expon. (TCP)
— Expon. (MTP)

100

10 %

0.1 •

0.01 ■■

0.001
0 10 30 7020 SO40 60

Ambient Packet Loss (Percent)

Piguxe 14c: Compenson of MTP and TCP thioiighput verms loss rata. Same as 14b but vridi Josntbmic throughput scale.

The most obvious characteristic of these results is that MTP average throughput is greater

than that of TCP at all observed loss rates. Under ideal conditions of zero ambient packet

loss, MTP manages maximum throughputs as high 500 kilobytes per second while TCP is

consistently below 45 kilobytes per second. As ambient loss increases, both protocols

experience a degradation of throughput. In the case of TCP, throughput is reduced to less

than 3 kilobytes per second (the speed of a 28.8 kbaud modem) for loss rates above 8%.

MTP is able to consistently maintain at least this level of performance for losses up to 30%.

MTP’s observed throughput never drops below 1.9 kilobytes per second even up to 60%

packet loss. TCP begins to fall below this level of performance around 10% packet loss.

For all loss levels, MTP provides at least 10 times better throughput than TCP.

As can been seen from a careful examination of the data in Appendix D, there is a shortage

of data points for loss rates above 10%. Both ends of the test path are located at well

connected academic institutions with little local third-party traffic. Moreover, much of the

network path between the two sites appears to be non commercial. Ideally, we would like

to test data transfer between numerous distant network nodes across purely conunercial

paths with the servers located topologically close to high traffic networks. Because of

these limitations, it is difficult to exactly quantify MTP’s performance gains. However it is

clear that MTP does perform at least an order of magnitude better than TCP and provides

consistently better throughput during times of elevated congestion and loss.

7.3 Third Party Effects

With such tremendous performance gains, the question of third-party performance

degradation must be explored. As discussed in previous sections, an overly aggressive

protocol will flood routers and will itself experience substantial data loss in addition to

forcing losses in third-party traffic. Since MTP makes its own loss statistics available to its

parent application, we can see from the data in Appendix D (under Raw Data, column

Oloss) that MTP’s observed loss rates are comparable to the ambient rates simultaneously

observed by the ping program (column Ploss). If MTP were achieving its increased

throughput by flooding the network, it’s own loss rates would be dramatically higher than

the ambient level. However, even without flooding, it is reasonable to expect that MTP’s

68

400

360

250

200

150

100

3 5 7 8 S 10 121 2 4 6 11

MTP Court
Figure 15: MTP throughput per transaction as a function of increasing
self competition. The level of ambient traffic along the path could not
be measured, but ICMP loss was observed to be zero indicating little or
no congestion. The grey line shows the theoretical maximum
throughput per MTP transaction assuming a no third-party traffic and a
1250 KB/s maximum path capacity.

gains might come at the expense of third-party TCP traffic by forcing the TCP traffic to

throttle back prematurely.

In order to test MTP’s effect on third party traffic, a client application capable of

performing multiple simultaneous transactions was created, mclient is shown in

Appendix E. This application closely resembles t e l ten t except that it creates and

maintains a user specified number of parallel MTP and TCP transactions. The program

ouQ)uts statistics for each transaction as it completes, plus t k results of a single fast png

test. Because MTP transactions always complete before their TCP counterparts, each MTP

transaction is restarted upon completion untU all TCP transactions have completed. Tests

were run using multiple MTP and TCP transactions during periods of no detectable ambient

packet loss over the network path previously described. (The tests were conducted several

months after the throughput tests. During that time, the network path changed dightly

resulting in a slightly higher capacity.)

Hgure 15 examines MTP’s throughput behavior across the same network path when it is in

competition with itself and whatever ambient traffic was present on the WAN. This graph

69

MTP Count
0 1 2 3 4 8

0 397.1 338.0 262.1 182.1 101.3
, 1J............ 45.5 41.7 37.9 32.5 32.2 33.9

2 44.3 42.0 35.71 30.9 30.2 33.8
3 44.9 41.7 35.2 30.7 33.5 31.0
4 45.1 40.4 34.8 30.2 30.9 33.0

o
Ü
a
Ü

Figure 16: TCP throughput in KB/s during MTP traffic across a lightly
utilized WAN. The first row (in italics) shows the MTP throughput when
competing with itself.

shows the throughput per transaction as a function of the number of simultaneous

transactions. As expected, the throughput of MTP transactions diminish as the number of

transactions increases, essentially dividing the available bandwidth amongst themselves.

Note that this reduction in per-transaction throughput holds for the entire range of tested

multiplicity.

Figure 16 shows how multiple TCP transactions are affected by multiple simultaneous

MTP transactions. It should first be noted that TCP’s throughput without MTP (column 0)

does not change significantly as the number of TCP test transactions is increased, at least

up to the small number tested here. This is not entirely surprising given that even a lightly

utilized WAN path likely contains dozens if not hundreds of simultaneous TCP streams and

thus the addition of a few more is significant only in that these are crossing exactly the

same path. However it does confirm that TCP and MTP have very different notions as to

what constitutes available bandwidth. This raises the important question as to where MTP

is finding it’s extra capacity.

The remaining columns of Figure 16 show how TCP reacts to the presence of MTP. (The

base throughputs of MTP are shown in the first row in italics.) It is clear that the addition

of MTP transactions does have some detrimental effect on the throughput of TCP.

However, the effects are relatively minor at 8 simultaneous MTP connections and appear to

level off around a 30% reduction from the peak rate of 45 KB/s for a single TCP

connection. Not shown here, though implicit in the testing conditions, is that these tests

did not result in any measurable ambient packet loss. That is, while individual MTP

70

transactions were observed to experience loss as a normal part of their flow control (and it

can be inferred that TCP did as well), a simultaneous flood ping (one packet per rtt)

measured no loss.

Several conclusions can be drawn from these results. MTP’s ability to compete with itself

and TCP without causing measureable ambient loss shows that it’s flow control

mechanisms are able to prevent networic flooding and thus efficiently utilize the available

link level capacity. The reduction in TCP throughput shows that MTP’s gains come at

some expense to the bandwidth available to TCP. However the fact that the impact on TCP

is only a 30% reduction at 8 competing MTP streams shows that MTP is exhibiting good-

neighbor behavior by limiting it’s consumption of link bandwidth. Thus MTP has

achieved it’s design goal of efficiently utilizing available bandwidth and has at least partially

satisfied the goal of being a good transport neighbor.

What cannot be determined from these tests is exactly how much raw bandwidth is

available along the network path and what proportion of it is being utilized by true third-

party traffic. The zero ambient packet loss suggests that there is very little third party

traffic, but the negligible reduction in TCP throughput as new TCP streams are introduced

suggests that there may be many TCP streams. This apparent contradiction may be

explained by the inability of any individual TCP to fully utilize unused bandwidth. This

supports other observations, discussed earlier, that TCP tends to under-utilize links. It also

supports the notion that some portion of MTP’s throughput gains are coming not from

squelching TCP but from utilization of unused bandwidth. To defmitevly answer these

questions requires that testing be conducted under much more controlled circumstances. It

is hoped that as interest in MTP grows, resources for such testing will become available. If

such testing were to show that MTP were having too large an impact on existing TCP

traffic, MTP could be adjusted such that it leaves a larger window of opportunity for other

transport traffic. This could be easily accomplished by having MTP reduce it’s window

size by more than one datagram when encountering packet loss.

71

7.4 Modeling and Simulation

While the results above offer solid evidence of MTP’s performance gains, simulation of a

simplified model allows us to test the core principals of its design in a completely controlled

environment. By validating the model under empirically verifiable conditions, we can

extend the analysis to explore performance characteristics under conditions which have not

yet been tested. This chapter describes the simplified computational model used to simulate

MTP and TCP as well as the results of simulation trials under various circumstances. The

simulator source code is provided in Appendix F. The simulation model is still being tuned

and the results presented hear should be considered preliminary.

Model

In order to simplify the feedback effects between the network and protocol algorithms, the

network is modeled as a black box with a single interface. A single node may insert a

message and at some future time the network will either return another message or timeout.

In the case of MTP, the client is modeled as sending requests and receiving responses. For

TCP, the server is the modeled node and it exchanges data for acknowledgements. The

network has five characteristics:

• loss rate - The fraction of messages which will be arbitrarily lost.

• bandwidth - The maximum rate in KB/sec at which messages may be delivered.
Messages transmitted in excess of the network capacity will also be lost.

• round trip time - The minimum time between message insertion and response
receipt.

• congestion factor - The fraction of total bandwidth which is not being consumed by
third-party traffic.

• buffer padding - A measure of the effect of node buffer sizes on the data capacity
of the network.

Messages are the interaction points between the network and the modeled node. The fate of

each message is determined at the time it is created by the node. Depending on the loss

72

rate, a random number generator, and the protocol’s timeouts, the message will either

arrive back as a response/acknowledgement, timeout due to a drop, arrive after a timeout,

or it will be ignored by the protocol. The time at which this event will occur is calculated

based upon the state of the network, including the states of other messages.

The behavior of the modeled node depends on which protocol is being simulated. Both

protocols are characterized by a retransmission interval, a transaction expiration/abort timer,

an initial window size, and a fixed buffer padding, although these parameters are used

differently for each. The algorithms for the protocols have been simplified to interact with

the limited information available from the black box network. For example, kernel buffer

levels, flow control messages, routing messages, connection times, datagram sizes, and

other factors are not considered. Both protocols begin in a steady state with a set number

of messages already in transit and presumed to arrive correctly. As each preset message

completes its round trip, the protocol reacts by generating new messages and changing its

state. The state engine for the MTP simulation is derived directly from the MTP 2

implementation. The TCP code is derived from a combination of RFC 793, the BSD 4.4

source code, and the Linux 2 source code. In addition to the usual protocol behaviors, the

network applies the congestion factor a second time to TCP to simulate the effects of

synchronicity.

Execution

During the course of the simulation, events are logged in variable levels of detail and

statistics are calculated for the end report. The simulation continues for either a given

period of time or until a given number of messages have successfully transited. Ultimately,

the goal of the simulation is to produce an estimate of the relationship between the loss rate

and the throughput of the protocol. The simulation was repeated for a range of loss rates to

produce a table of values suitable for plotting loss rate versus throughput.

The simulation is executed by specifying a protocol (m for MTP or - 1 for TCP), a loss

rate (-1 with 1.0 equal to 100%), a bandwidth (- b in KB/sec), a round trip time(- r in ms),

and a congestion factor (- c described below). If set to graphing mode, the loss rate

73

parameter sets the high end of the range to be simulated. By default, a bandwidth of 1250

kilobytes per second, equivalent to a lObaseT network is used. The minimum round trip

time, congestion factor, and the buffer padding then determine characteristics of the

network path. The following examples show execution for a transferring a 1 megabyte file

across a LAN with no ambient loss:

Sim -t -1 0.0 -c 1 -r 1 -p 5120
Elapsed Time; 4.1s
Requested 5184 messages: Received 5120 Lost 0 Late 0
Efficiency: 100% Throughput: 1249.7 Utilization: 100.0%
Delay: 10/441/512 Max Window: 64
sim -m -1 0.0 -c 1 -r 1 -p 5120
Elapsed Time: 4.1s
Requested 5133 messages: Received 5120 Lost 0 Late 0
Efficiency: 100% Throughput: 1249.7 Utilization: 100.0%
Delay: 10/102/104 Max Window: 13

The results give the time of the transaction, the number of messages sent, the number

received, the number dropped due to ambient loss, and the number arriving after a timeout.

The efficiency value expresses the percentage of messages generated which successfully

transited the network. Throughput is the number of 1 kilobyte messages received per

second. Utilization divides observed throughput by the theoretical maximum for the

given ambient loss rate (which in this case is zero). The Delay values show the minimum,

average, and maximum round trip times in tenths of milliseconds. Max window is the

maximum number of 1 kilobyte messages which were in transit at any one time. In order

to isolate throughput performance, these numbers do not reflect startup or tear down costs

and the simulation is terminated with up to one full window still in transit. This eliminates

the effects of connection time and initial ramp up and is equivalent to performing empirical

measurements over long (greater than ten second) periods.

In this case, with a quiet network containing no routers, both protocols reach their

maximum window sizes before saturating the network. MTP halts its window expansion

early when the round trip time exceeds 10 times the minimum observed, which could

indicate that buffers are filling up. This significantly reduces the message latency without

reducing throughput. Given more capacity, MTP’s maximum window size is dependent

on the UDP kernel buffer sizes which may range from 48 to 248 kilobytes depending on

74

the platfonn. These results can be compared to empirical tests performed using the tserve
and tel lent programs discussed previously:

MTP vs. TCP network test
ritchie Thu May 27 12:32:01 1999
#
#MTP
#Recv Time Thput RTT Gloss
PIoss
5242880 4.8 1069.8 43 0.0
0. 0

TCP
Ploss Recv Time Thput
0.0 5242880 5 1024.00

A more interesting case involves a congested, two router path with 2ms latency, and

approximately 3% ambient loss. The simulated and actual results are shown below;

Sim -t -1 0.03 -c 5 -r 2 -p 5120
Elapsed Time: 186.1s
Requested 6460 messages: Received 5120
Efficiency: 96% Throughput: 27.5
Delay: 20/252/480 Max Window: 13
sim -m -1 0.03 -c 5 -r 2 -p 5120
Elapsed Time: 21.1s
Requested 5126 messages: Received 5120
Efficiency: 97% Throughput: 243.0
Delay: 20/225/1240 Max Window: 6
MTP vs. TCP network test
michelle Thu May 27 12:53:02 1999
#
#MTP
#Recv Time Thput RTT Oloss Ploss
Ploss
1048576 4.2 242.6 7 12.8 2.8
2.7

Lost 165 Late 0
Utilization: 11.3%

Lost 148 Late 0
Utilization: 100.2%

TCP
Recv Time Thput
1048576 57 17.96

Of course, the case we are most interested in is the wide area network path. Here we have

congested routers, a highly variable loss rate, and a much larger round trip time. Because

this path is much more volatile than the local ones, we must refer to our aggregate test

results in Appendix D, rather than relying on any one test. Note that we choose a round

trip time of 80ms because it was the minimum observed for the route.

Loss
Perc.

MTP
Rate Count

TCP
Rate Count

8 119 11 2.973 2
10 96.96 10 2. 132 7
12 96.24 10 1 .585 4

75

Sim -t -I 0.10 -c 20 -r 80 -p 1024
Elapsed Time: 576.5s
Requested 2179 messages: Received 1024 Lost 432
Efficiency: 70% Throughput: 1.8 Utilization: 3.2%
Delay: 800/1006/1120 Max Window: 5
sim -m -I 0.10 -c 20 -r 80 -p 1024
Elapsed Time: 31.3s
Requested 1030 messages: Received 1024
Efficiency: 89% Throughput: 32.7
Delay: 800/1407/8800 Max Window: 7

Late 0

Lost 114 Late 0
Utilization: 58.2%

In this case, the simulation underestimates MTP’s performance by approximately a factor

of three while coming very close to TCP’s performance. Rgure 17 shows the full results

of the simulation and may be qualitatively compared to the empirical results in Figure 14.

Both the simulation and empirical results show an exponential decay in performance as loss

increases widi MTP out performing TCP by an order of magnitude. Note that the

simulation shows a more rapid early decay for MTP when compared with the empirical

curve. This is likely due to the fact that the simulation assumes a fixed amount of available

bandwidth and does not attempt to model MTP’s effect on that bandwidth. The TCP

Percent Simulation of Protocols' UflN Performance <vl.3)
100

MTP Utilization —
TCP Utilization --

Ideal —

0.70.5 0.60.2 0.3 0.40.10

Loss Rate
Figure 17: Simulation of MTP and TCP bandwidth utilization versus
loss rate.

76

simulation curve more closely correlates to the TCP empirical curve, most likely because

the model does account for TCP’s synchronicity effect.

7.5 Analysis of Results

The empirical testing backed by the simulation models clearly demonstrates that MTP

provides superior throughput over TCP, especially during periods of high congestion and

packet loss. However quantifying the results is difficult because of the limited resources

available for testing. The empirical tests themselves have been limited to a single long

network path. While this path is believed to be representative of most such paths, the test

results show a tremendous amount of variability. This suggests several flaws in the

quantitative data. First, it is clear that packet loss alone is not an adequate measurement of

path congestion. A careful examination of the results reveals that there is a significant

amount of variation in the round trip time which does not correlate with loss rates. More

careful study is needed to understand how loss rates and round trip times relate to third-

party traffic and available bandwidth.

The most exhaustive approach would be to test MTP in a completely controlled

environment in which the third-party traffic is known and the effects upon the observable

parameters can be assessed. However, such testing would not only be extremely resource

intensive, but it would require a great deal of study to ensure that the test conditions

accurately reflect the behaviors experienced on the Internet at large. Thus the best solution

might be to deploy MTP at numerous topologically dispersed locations across the Internet.

Ideally, this would be combined with measurements of traffic flow and congestion levels at

key routers along the paths to gain an accurate understanding of exactly how MTP and TCP

respond to a wide variety of real world circumstances.

While the empirical results are insufficient to provide a precise quantitative comparison, the

fact that they can be qualitatively verified via simulation using a relatively simple network

model is very reassuring. The model was deliberately designed not to attempt simulation of

router level decision making precisely because there was no way to empirically verify the

correctness of its behavior. Instead, the model uses as its inputs only those variables

which are known or observable. The one exception is the “congestion factor,” which may
77

be inferred but cannot be observed given current resources. This measure of third-party

traffic has a significant effect on the throughput of both protocols, primarily by adding to

the round trip time which they observe (as opposed to the minimum rtt which is given as a

parameter). Variation of this parameter has a second order effect on the performance of

both protocols, which further verifies that the performance differences are intrinsic to the

algorithms and not artifacts. For example, below are otherwise identical simulation with

the congestion factor set at 10 and 1. As might be expect, it has a larger influence on TCP,

but the performance difference between the two protocols remains an order of magnitude.

S i m -m -1 0.03 -c 10 -r 80 -p 1024
Elapsed Time: 6.0s
Requested 1082 messages: Received 1024 Lost 26 Late 0
Efficiency: 97% Throughput; 171.1 Utilization: 141.2%
Delay: 800/881/896 Max Window: 16
Sim -t -1 0.03 -c 10 -r 80 -p 1024
Elapsed Time: 101.9s
Requested 1461 messages: Received 1024 Lost 75 Late 0
Efficiency; 93% Throughput: 10.0 Utilization: 8.3%
Delay: 800/811/824 Max Window: 7
sim -m -1 0.03 -c 1 -r 80 -p 1024
Elapsed Time: 5.4s
Requested 1078 messages: Received 1024 Lost 23 Late 0
Efficiency: 97% Throughput: 188.8 Utilization: 15.6%
Delay: 800/809/824 Max Window: 16
sim -t -1 0.03 -c 1 -r 80 -p 1024
Elapsed Time: 52.7s
Requested 1305 messages: Received 1024 Lost 35 Late 0
Efficiency: 96% Throughput: 19.4 Utilization: 1.6%
Delay: 800/811/840 Max Window; 16

In spite of the less than ideal test conditions, the empirical and simulation results leave no

question that MTP has achieved its design goals with respect to network performance.

Additional testing is necessary to provide a more precise quantization of this performance

gain, but it is clearly on the order of a ten times improvement for all but the most ideal

network conditions. One important question which remains unanswered is what

performance gains MTP will offer at the application level. For those deployments where

network bandwidth is the limiting factor, MTP will certainly offer a dramatic improvement.

But to assess its effects on CPU limited applications, further work must be done to develop

an HTTP/MTP server with equivalent functionality to existing HTTP/TCP servers.

78

Preliminary work in this area suggests that there are signiHcant performance advantages,

but is too early to provide a firm estimate. Likewise, MTP’s success in terms of ease-of-

use of its interface remains to be tested. It is hoped that with the distribution of an MTP

Software Development Kit, extensive feedback can be obtained regarding the interface as

well as other aspects of the protocol’s performance.

79

V I I I . Conclusions and Proposals

There is no doubt that the nature of data networks and their use has changed dramatically in

the time since TCP was envisioned. But in spite of these tremendous changes, the Internet

transport layer in general, and TCP in particular, have been almost completely overlooked

in the continuing efforts for improved Internet performance. It is evident from an

examination of both TCP’s design and its behavior that a new network paradigm is needed

to fulfill today’s networking needs. It is this author’s belief that the client-pull model,

along with the other innovations represented by the Multimedia Transport Protocol,

provides this new paradigm and that its further exploration and development are imperative

to the expansion of the Internet.

The initial testing and simulation of MTP support this belief and suggest that the gains to be

had are very substantial. Even with no ambient packet loss, TCP’s performance drops to a

small fraction of what should be the available bandwidth. MTP demonstrates the vast

underutilized potential of current network infrastructure by providing throughput an order

of magnitude grater than TCP. Most importantly, MTP has been optimized for modem

applications and usage patterns. Not only does this allow MTP to outperform TCP with

customized testing applications, but it allows these gains to be quickly realized in current

application environments.

Much more work needs to be done to develop and deploy the Multimedia Transaction

Protocol. The research done to date demonstrates its advantages and the ease with which it

may be integrated into the existing network infrastructure. But the implementation still

requires One tuning and testing under more rigorous circumstances. Additional

applications, beyond simple file transfer, must be explored to determine how MTP may

interact with and benefit a broader range of Internet functions. Some of this work has been

begun as part of a the development of MTP. A document server capable of handling both

FTP and HTTP/1.0 style transactions has been developed and tested. Given MTP’s

tremendous performance advantages over traditional applications, it has been a valuable

tool in transferring source code across the network for porting and testing. To demonstrate

80

the ease with which MTP can be incorporated underneath existing applications, a protocol

gateway has also been developed. This gateway accepts HTTP/TCP proxy connections

and translates the transactions it receives into HTTP/MTP requests which are forwarded to

any remote HTTP/MTP server. This allows a standard TCP browser to be used to view

web pages via MTP, with all of the attendant performance gains, without any modification

to the browser beyond setting its proxy preferences. MTP’s development heritage carries

with it other high performance applications. The protocol began its development life as an

IP telephone protocol. The fully functional telephoning application provides real-time, full-

duplex, telephone quality audio even under conditions of up to 50% packet loss.

In addition to further developing these ^plications, efforts must be made to integrate MTP

into existing programs. This would allow MTP to be tested in widely used applications

under much more rigorous and varied circumstances. Wide spread development and use of

MTP amongst researchers must be encouraged in order to generate a high level of interest

and feedback. Given strong, real-world evidence of its performance advantages and the

development of an easy to adopt implementation, commercial software developers will have

strong incentives utilize MTP and bring its advantages to the consumer level. It is the hope

of this researcher diat such testing and development will allow MTP become a new

standard for Internet transactions and greatly improve the way the Internet works.

81

IX. MTP Glossary

application A program, or specification for a program, which uses network
communications to perform some task.

buffer Memory in a network node used to store data while it is awaiting
transmission. See “congestion”.

client A network node or application which generates a request for data that is
stored on a server.

congestion

data object

datagram limit

dynamic

full-duplex

flow

flowtimeout

half-duplex

loss

A condition where buffers along the network path are increasing in size
due to inflow exceeding outflow.

A collection of data maintained in some form by a server which may be
requested by a client.

The largest permissible datagram size. The actual limit is the minimum
of the limits set by the client, the server, the network architecture, and
the inherent limitations of the implementation.

A data object which is generated in real-time. For example: the output
of a program. Handling of dynamic data objects was not yet fully
implemented for MTP version 2.1.

Data travels along a path in both directions simultaneously.

The rate of data traveling past a given point as measured over a time
span significantly greater than one round trip time. Units are kilobytes
per second.

Value which controls when it is permissible for MTP to adjust a
transaction’s window size. A positive value prevents any adjustment.
The value is reduced by the number of bytes received or declared lost.
If a loss is detected while this value is zero or less, the window is
reduced and flowtimeout reset to a postivie multiple of the window
value. If it reaches a negative Threshold value (indicating no loss in
some time), the window size may be raised and the value reset to zero.
See Chapter V, “Window Adjustment”.

Data travels along a path in only one direction at a time.

The failure of data which is intended for transmission by an application
to reach its destination. Typically measured as a percent of total data
transmitted.

message At the transjwrt protocol level, a message is a single network datagram
which contains an MTP header and possibly a data payload. At the
application level, a message is may be any unit of communication

82

between applications or between the application and the MTP transport
layer.

multidatagram response transaction
A type of transaction in which the response may consist of more data
than can be transmitted in a single datagram. (See also “single datagram
response transaction”.) The client MTP will regulate the flow of data to
achieve maximum throughput with minimum loss. As of MTP version
2.1, the response is limited to 2*32 bytes.

network path The sequence of nodes and links over which data travels between two
communicating nodes.

node

protocol

Any uniquely identified device capable of communicating on a network.

The specification and/or implementation of a mechanism for
communicating.

request An action taken by an application (the client) seeking to obtain data from
another application (the server).

request message
A datagram generated by the client MTP which specifies a portion of a
request transaction.

response The data returned by a server in response to a client’s request.

response message
A datagram generated by the server MTP which carries a portion of a
server’s response to a client’s request.

round trip time The amount of time required for a datagram to travel from one network
node to another and back again. For MTP it is the time between
transmission of a request and receipt of a response. If a single request
datagram results in multiple response datagrams, then the RTT is
measured for each response against the time of the original request
datagram.

router A network node which forwards data from one link to another.

sem i-infinite A data object which is unbounded. See also “stream” and “dynamic”

server A network node or application which receives requests for data and
which sends back responses.

single datagram response transaction
A type of transaction in which the application protocol guarantees that
the response will fit into a single network datagram. When this option
is specified in the request, the client MTP will ignore flow control and
accept the first valid response datagram that it receives as the entire

83

response.

static A data object whose size and composition is known and will not change
during the life of a transaction. For example: a fixed data file.

stream An MTP transaction which permits the transfer of a semi-infinite
dynamic data object or an object which exceeds 2*32 bytes. This mode
was not yet fully implement^ for MTP version 2.1.

subrequest An MTP request datagram sent to retrieve those portions of a requested
data object which are not yet in transit or have bron declared lost. At the
server side, a subrequest is indistinguishable from an initial request
message.

telephony The real-time, full-duplex exchange of telephone quality audio over a
network path.

threshold The amount of data which must be succesfully received in a transaction
before the window size is permitted to increase. See Chapter V,
“Window Adjustment”.

throughput The rate at which data is successfully received, typically measured over
the life the transaction in kilobytes per second.

transaction An exchange of network data in which a client sends a request to a
server and the server returns a response.

transit The amount of data “in transit” is the number of bytes which have been
transmitted by the server but not yet received or declared lost by the
client.

w indow size

window lim it

The maximum amount of data which the client MTP desires to be in
transit for the purposes of flow control.

The maximum amount of data that the server will transmit in response to
an individual request datagram. The actual limit is the minimum of the
values requested by the client and the server.

84

X. Bibliography

[1] Martin F. Arlitt, and Carey L. Williamson, “Internet Web Servers: Workload
Characterization and Performance Implications,” IEEE Transactions on Networking,
Vol. 5, No. 5, October 1997.

[2] Dimitri Bertsekas, Robert Gallager, "Data Networks: Second Edition", Prentice-Hall,
1992.

[3] J-C. Bolot, “End-to-end Packet Delay and Loss Behavior in the Internet”, In Proc.
ACM SIGCOMM93, pp.289-298, Sept. 1993.

[4] R. Braden, “T7TCP - TCP Extensions for Transactions” RFC 1644. July 1994.

[5] E. G. Britton, J. Tavs, and R. Boumas, “TCP/IP: The next generation,” IBM
Systems Journal, Vol. 34, No. 3, pp 452-471, 1995.

[6] V. Cerf, and R. Kahn, "A Protocol for Packet Network Intercommunication", IEEE
Transactions on Communications, Vol. COM-22, No. 5, pp 637-648, May 1974.

[7] D. Clark, V. Jacobson, J. Romkey, and H. Salwen, “An Analysis of TCP
Processing Overhead”, IEEE Communications, Vol. 27, No. 6, pp 23-29, June
1989.

[8] D. D. Clark and D. L. Tennenhouse, “Architectural considerations for a new
generation of protocols,” in SIGCOMM Symposium on Communications
Architectures and Protocols, (Philadelphia, Pennsylvania), pp. 200-208, IEEE
Computer Communications Review, Vol. 20 (4), Sept. 1990.

[9] Adrian Cockcroft, “Performance Q&A” SunWorld Online, December 1996,
<http://www.sun.com/sunworldonline/swol-12-1996/s wol-12-perf .html>. Viewed
November 1997.

[10] S. Crocker, “Host Software”, RFC 001, April 7, 1969.

[11] S.Floyd and V.Jacobson, “On traffic phase effects in packet-switched gateways”,
Intemetworking:Research and Experience, vol.3, pp. 115-156, Sept.1992.

[12] S. Floyd and K. Fall, “Promoting the Use of End-to-End Congestion Control in the
Internet”, EEEE/ACM Transactions on Networking, August 1999.

[13] George Gopen and JudithSwan, “The Science of Scientific Writing”, American
Scientist, Volume 78, pp 550-558.

[14] John Heidemann, Katia Obraczka, and Joe Touch, “Modeling the Performance of
HTTP Over Several Transport Protocols,” EEEE/ACM Transactions on Networking,
Vol. 5, No. 5, October 1997.

85

http://www.sun.com/sunworldonline/swol-12-1996/s%20wol-12-perf%20.html

[15] V. Jacobson, “Congestion avoidance and control”, Proceedings o f Symposium on
Communication Architectures and protocob, ACM SIGCOMM, August 1988.

[16] Brian Kemighan, Dennis Ritchie, "The C Programming Language: Second Edition",
Prentice-Hall, 1988.

[17] L. Kleinrock, "Information Flow in Large Communication Nets", RLE Quarterly
Progress Report, July 1961.

[18] B. Leiner, V. Cerf, D. Clark, R. Kahn, L. Kleinrock, D. Lynch, J. Postel, L.
Roberts, S. Wolff, “The Past and Future History of the INTERNET”,
Communications of the ACM, Vol. 40, No. 2, pp 102-108, February 1997.

[19] B. M.Leiner, .V. G. Cerf, D. D. Clark, R. E. Kahn, L Kleinrock, D. C. Lynch, J.
Postel, L. G. Roberts, S. W olff, “A Brief History of the Internet, version 3.1”
<http://info.isoc.org/intemet-history/>, Internet Society, Viewed November 1997.

[20] Mamoru Maekawa, Arthur Oldehoeft, Rodney Oldehoeft, "Operating Systems:
Advanced Concepts", Benjamin/Cummings, 1987.

[21] Greg Miller and Kevin Thompson, “The nature of the beast: recent traffic
measurements from an Internet backbone” Cooperative Association for Internet Data
Analysis (CAIDA). April 1998, <http://www.caida.org/Papers/Inet98/index.html>,
Viewed April 1999.

[22] J. Postel (ed.), "User Datagram Protocol" RFC 768. August 1980.

[23] J. Postel (ed.), "Transmission Control Protocol" RFC 793. September 1981.

[24] J. Postel, and J. Reynolds. “Telnet Protocol Specification”. RFC 854. May 1983.

[25] H. Nielsen, “MUX Overview” The World Wide Web Consortium. January 1999,
<http://www.w3.org/Protocols/MUX/>, Viewed April 1999.

[26] H. Neilsen and J. Gettys, “HTTP- Hypertext Transport Protocol” The World Wide
Web Consortium, March 19 1999, <http://www.w3.org/Protocols/>, Viewed April 8
1999.

[27] H. Sawashima, et al. “Characteristics of UDP Packet Loss: Effect of TCP Traffic”
1997, <http://www.niit.pref.nara.jp/~hidena-s/inet.html>. Viewed April 1999.

[28] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A Transport
Protocol for Real-Time Applications,” RFC 1889, Network Working Group ,
January 1996.

[29] Mischa Schwartz, "Telecommunication Networks: Protocols, Modeling and
Analysis", Addison-Wesley, 1987.

[30] Abraham Silberschatz and Peter Galvin, "Operating System Concepts: Fourth
Edition", Addison-Wesley, 1994.

86

http://info.isoc.org/intemet-history/
http://www.caida.org/Papers/Inet98/index.html
http://www.w3.org/Protocols/MUX/
http://www.w3.org/Protocols/
http://www.niit.pref.nara.jp/~hidena-s/inet.html

[31] Jean Walrand and Pravin Varaiya, “High-Performance Communication Networks,
Second Edition”, Morgan Kaufmann Publishers, 1999.

[32] L.Zhang and D.CIark, “Oscillating Behavior of Network Traffic: A Case Study
Simulation”, Internetworking: Research and Experience, Vol. 1,pp. 101-112,1990.

87

Appendix A: mtp.h

* *
* *
* *
* *
♦/

mtp.h - Public headers for libmtp
Version 2.1 - Multimedia Transport Protocol Seth Noble

finclude <stdio.h>
#include <sys/types.h>
♦include <sys/socket.h>
♦include <netinet/in.h>
♦include <arpa/inet.h>
♦if defined(irix)
♦include <strings.h>
♦endif
/* Storage types
* *

* * Make sure we know exactly how big everything is.
* /
typedef signed char sintS;
typedef signed short sintl6;
typedef signed long sint32;
typedef signed long long sint64;
typedef unsigned char uintS;
typedef unsigned short uintlG;
typedef unsigned long uint32;
typedef unsigned long long uint64;
extern const uintS MTP_VERSION;
♦define MTP_SIZE_REQUEST (1024) /* Largest allowable request payload
*/
♦define MTP_SIZE_RESPONSE (16*1024) /* Largest response payload per
datagram */
♦define MTP_SIZE_DEFAULT (1024)
datagram */
♦define MTP_SIZE_MINIMUM (512)
datagram */

/* Default response payload per
/* Minimum response payload per

Protocol header values
/ *
* *
* *
** These codes define the nature and action of all nwtp messages.
* /

/* Error
♦define
♦define
♦define
♦define
♦define
♦define
* /
♦define
/* Note

V

Codes - Denotes an error and where it originated */
ERR_NONE 0 /* No error */
ERR_CLIENT
ERR_NET
ERR„SERVER
ERR_APP
ERR ROUTE

0
1
2
3
4
5

/ *
/ *
/ *
/ *
/*
/ *

From Client MTP
From Network */
From Server MTP */
From Server Application */
Message delivered to the wrong system

ERR_count 6
that LOCAL, NET, and SERVER _only_ denote delivery problems.

Errors in fulfilling the request itself should always be DEVICE.
88

/* Response Codes -
♦define RES_REQUEST
♦define RES_REPLY
♦define RES_APP

Comment on the nature of a response.
0 /* This is a request */
1 /* Reply, no comment * /
64

/ * There are two classes of other responses:
* * Error - Specify the nature of an Error.
** Reply - Comment on a successful response based on Type of server.
*/

/* Error Daemon
delivered */
♦define ERR_DMN.
♦define ERR_DMN.
♦define ERR_DMN.
♦define ERR_DMN.
♦define ERR_DMN.
♦define ERR_DMN.
♦define ERR_DMN.
♦define ERR_DMN.
♦define ERR_DMN.
♦define ERR_DMN.

(ERR_CLIENT and ERR_SERVER) - Message could not be
SYS
.ACTION
DEL
RSPSZ
VERSION
NORSRC
REQSZ
PROTO
CHECK
count

2
3
4
5
6
7
8
9

10
11

/*
/♦
/*
/*
/*
/*
/*
/*
/ *

Error in system call */
Invalid Action */
Unknown delivery */
Unable to deliver due to size */
Unsupported version or feature */
Insufficient resources for request */
Request exceeds maximum size * /
Protocol violation */
Checksum failed */

J* Error
♦define
♦define
♦define
♦define
♦define
♦define
response
♦define

Net */
ERR_NET.
ERR_NET.
ERR_NET.
ERR_NET.
ERR_NET.
ERR_NET.

/
ERR_NET.

CLIENT
SERVER
UNAVAIL
DOWN
.TRANS
EXPIRE
count

2
3
4
5
6
7
8

/♦
/*
/ *
/*
/*
/*

Client address is not valid
Server address is not valid
Network is unavailable */
Network is down */
Transient network error */
Request expired without valid

*/
*/

/* Error
/*
♦define
♦define
♦define
♦define
♦define
♦define
♦define
♦define
♦define
♦define
*/
♦define
trying *
♦define
♦define
♦define
feature
♦define
♦define

APP - 2 through 63 are generic, others depend on type * /
Generic codes should be used whenever applicable

ERR_APP_ACT10N 2 /* Unknown action code */
ERR_APP_CHANNEL 3 /* Invalid channel code */
ERR_APP_FLAG 4 /* Invalid flag settings */
ERR_APP_ADDRESS 5 / * Invalid address */
ERR_APP_DATA 6 /* Invalid or corrupt payload */
ERR_APP_EOD 7 /* Address + Size larger than object */
ERR_APP_SIZE 8 / * Object too large to be delivered * /
ERR_APP_UNAVA1L 9 / * Device is unavailable - hard error */
ERR_APP_AUTH 10 / * Client lacks authorization */
ERR_APP_BUSY 11 / * Device is busy - user try again later
ERR_APP_HOLD
/
ERR_APP_TIMEOUT

12 / * Transient unavail (hold) - keep
13 / * Authorization timed out */

ERR_APP_PROXY 14 / * Required proxy action failed * /
ERR_APP_VERSION
*/
ERR_APP_count
ERR_APP_APP

15 / * Unspported application version or
16
64 /* Application dependent errors */

/* Error Route - Give Type of entity that received the request */

Response delivery types
89

•define MTP_DEL_BUFFER 0
•define MTP_DEL_ALLOC 1
•define MTP_DEL_FILE 2
•define MTP_DEL_SINGLE 3

/

/ * Actions -
*/
•define ACT.
•define ACT.
•define ACT.
string */
•define ACT.
•define ACT.
data */
•define ACT.
*/
•define ACT.
•define ACT.
•define ACT.
•define ACT.
•define ACT.
•define ACT.
•define ACT.
• define ACT.
•define ACT.

/* Fixed size memory buffer */
/* Allocate a buffer */
/♦ Place in a file */
/* Buffer a single datagram */
/ * address and rsize need not be bytes
/ * delivery is optimized for speed * /

Standard action requests for all devices and applications
PING
IDSTR
REGISTER
TERMINATE
DATA
REQAUTH
AUTHORIZE
REVOKE
HOLD
RESUME
NOTIFY
REQKEY
STAT
count
APP

0
1
2

3
4

6
7
8
9
10
11
12
13
64

/* Reply if up */
/ * Reply with description string */
/* Register as a client- data has id
/* Unregister as a client */
/* Generic request code for addressed
/* Device proxying usage authorization
/* Allow proxy use of device */
/* Remove proxy authorization */

Suspend proxy authorization */
Resume authorization * /
Notify of change in proxy state * /
Request public encryption key */
Get information about data * /

/*
/*
/*
/*
/*

/* Application dependent actions */
/* Abort actions - Different levels of aborting a
•define ABORT_FINISH 0
holes */
•define ABORT_STOP 1
extant */
•define ABORT_EXPIRE 2
•define ABORT_DESTROY 3
*/

request * /
/ * Don't extend end of object, fill in
/* Send no more subrequests, wait for
/* Immediately callback * /
/ * Abandon the request, don’t callback

/* Link Speed descriptors */
•define LINK_UNKNOWN 0 /*
•define LINK_MODEM 1 /*
•define LINK_ISDN 2 /*
•define LINK_ISDN2 3 /*
•define LINK_DSL 4 / *
•define LINK_CABLE 5 /*
•define LINK_ETHERNET 6 /*
•define LINK_FAST 7 /*
• /

* /
*/

Unknown, will use default */
14.4 to 56 Kb/s modem */
Single ISDN channel - 64 Kb/s
Dual channel ISDN - 128 Kb/s
DSL - 256 to 1024 Kb/s */
Cable - 1 to 8 Mb/s */
lObaseT ethernet 10 Mb/s */
lOObaseT. fiber, or other fast link

/ '
’•'* Message data structures
*/

typedef struct {
*/

struct in_addr
Order I*/

uintlG
Order! */

uintS

/ * Uniquely identify a transaction
peerip; /* IP address of peer - Network
peerport; /* UDP port number - Network
mtpversion; /* MTP protocol version */

90

uintS appversion ;: / * APP protocol version */
uint32 reqid; /* Request id number */

} mtp_id_f.
typedef struct { /* Describe a request */

uint32 channel ; /* Session or object identifier */
uint32 address ; /* Address within data object * /
uint32 rsize; /* Size of requested data object */

/* (usually EOF - address) */
uintS action : / * Action being requested */
uintS flag: / * Action modifiers •/
uintlG reserved ;
int single ; / * Flow control disabled flag •/
int stream: / * Dynamic object flag */
int suppress : / * Payload suppression flag */

} mtp_request_t
typedef struct {

uint32 type:
uint32 handle ; / * File descriptor or buffer address */
uint32 offset : / * Location for msg.address = 0 */
uint32 bound : / * Maximum allowed. 0 for unlimited */

/ * on return, max sequenced size * /
} mtp_delivery_ t:
typedef struct { /* Transaction statistics * /

uint32 received : /* Bytes received */
uint32 span : /* Address range of responses */
uint32 size : / * Full size of data object (if known)

*/
ulnt32
ulnt32
uint32
uint32
uint32
ulnt32
uint32
ulnt32

} mtp_stats_t:

requests ;
repeats ;
duplicates ;
avgdelay;
minwindow;
avgwindow;
maxwindow;
etlme;

/♦
/*/»
/*
/♦
/*
/*
/*

Number of request messages sent *
Number of requests repeated * /
Number of duplicates received * /
Average RTT */
Smallest window size */
Average window size */
Largest window size */
Elapsed Time */

/* Template for viewing payload by different data types */
typedef union data_s {

char str[0];
uintS bytetO];
uintlG sword[0];
uint32 lword[0];

} data_t:
/*
** Callback Functions
»/

typedef void (* MTP_RequestProc) /* Handle action request
• /

(mtp_id_t msg_id, mtp_request_t request,
int size, void *payload, uint32 user);

typedef void (* MTP_ResponseProc)
(mtp_id_t msg_id, mtp_request_t request.
uint32 size, int final, mtp_delivery_t delivery, uint32 user,
mtp_stats_t stats);

91

/ * Receive response */
int error, int response.

/ •
** Public Interfaces
/

extern struct sockaddr_in MTPname;
extern char * MTPidstr;
extern int MTPidlen;
/• MTP Initialization */
int MTP_Init(uintl6 port,
number */

int link,
description */

char * idstr,
application */

int debug
level */

) :

/* Local UDP port
/* Link speed

/ * Description of this
/ * Debuging detail

/* Generate a request */
int MTP_Request(mtp_id_t *
identifier •/
description */
size */
payload * /

rate */
time */
instructions */
callback •/
KB * /

response */

id,
request,
size.
payload,
repeat,
expire.

mtp_request_t
int
void *
uint32
uint32
mtp_delivery_t delivery,
uint32 user,
int update,
MTP_ResponseProc callback

) ;

/* Request
/* Request

/* Payload
/* Pointer to

/ * Request repeat
/* Request expiration

/* Delivery
/* Data to be passed to

/* Update rate, in
/* Proc to receive

/ * Generate a response to a request */
int MTP_Respond(mtp_id.-t id, /* Request
identifier */

mtp_request_t request, / * Request
description */

int error, /* True for
error * /

int response, /* Response
code */

int size, /* Payload
size */

void * payload /* Pointer to
payload * /

) :

/* Main processing procedure */
int MTP_Event(fd_set * readfds, /* Readable

92

descriptors */
fd_set * writefds, /* Writeable

descriptors */
fd_set * exceptfds. /* Exception

descriptors * /
sint32 maxtime /* Timeout in

milliseconds * /
) :

/* Abort an ongoing transaction */
int MTP_Abort(uint32 reqid, int action);
/• Terminate network services */
int MTP_Close();
/* Register a request action procedure */
MTP_RequestProc

MTP_Actlon(int action, / * Action being
registered * /

uint32 user, / * Data to be passed to
rproc */

MTP_RequestProc rproc /* Procedure to be called on
action •/

) ;

/* Translate an error into a text string * /
char * MTP_Error(int error, / * Error
code * /

int response /* Response
code */

) :

/* Get local host id info */
mtp_id_t MTP_Version():

/* Default procedure for ACT_PING and ACT_IDSTR */
void MTP_Ping(mtp_id_t msg_id, mtp_request_t request,

int size, void *ptr, uint32 user);
/* Simple payload checksum procedure */
uint32 MTP_Sum(char *payload, int length);
/ * Procedure to output statistics */
extern void MTP_Stats(FILE *fd, mtp_stats_t stats);

93

Appendix B: mtping.c

/*
* *
* •
* «

* *
* ♦
* «
• /

Dtplng - MTP sample application
gee mtping.c -o mtping libmtp.a
Demonstration of basic MTP interfaces. Also useful for debugging an
MTP application.

#include <stdio.h>
#include <sys/types.h>
♦include <sys/socket.h>
♦include <netdb.h>
♦include <netinet/in.h>
♦include "mtp.h"
int err.Debug,done=0:
char buffer[MTP_SIZE_RESPONSE]:
void
Response(mtp_id_t msg_id, mtp_request_t request, int error, int
response,

uint32 size, int final, mtp_delivery_t delivery, uint32 user,
mtp_stats_t stats)

/ *
* ♦
* /
{

Procedure to handle incoming responses

if (error) {
printfC'Ping failed: %s\n",MTP_Error(error,response));
printf("\tafter %lu repeatsXn",stats.repeats);

> else {
printf("Response after %lu repeats (Version %u/%u)",

stats.repeats,msg_id.ratpversion,msg_id.appversion) ;
}
if (size > 0)

printf(": %s\n",(char *)delivery.handle);
else

printf("\n”) ;
done = 1 ;

94

*/
{

void
Server(mtp_id_t msg_id. mtp_request_t request,

int size, void *ptr, uint32 user)
/ *
** Procedure to handle incoming requests
* *

** Note that we index our response data directly from its source after
** making sure we have a valid address and reseting rsize.

There is no need to make a copy of the response data.

printf("Received Message %.81x from %s.%u\n",msg_id.reqid,
inet_ntoa(msg_id.peerip),ntohs(msg_id.peerport));

printf("\tAction: %u\tFlag: %u \tChannel: %.81x\n",
request.action,request.flag,request.channel) ;

printf("\tAddress: %lu\tRsize: %lu\n",request.address,request.rsize);
printf("\tPayload %d bytesXn",size);
/* The code below is identical to MTP_Ping */
switch (request.action) {
case ACT_PING:

MTP_Respond(msg_id,request,0,RES_REPLY,0,NULL) ;
break ;

case ACT_IDSTR:
if (request.address > MTPidlen) {

MTP_Respond(msg_id,request,1,ERR_APP_ADDRESS,0,NULL);
return ;

>
if (request.rsize == 0 || MTPidlen - request.address <

request.rsize)
request.rsize = MTPidlen - request.address ;

MTP_Respond(msg_id, request, 0, RES_REPLY,
request.rsize,MTPidstr+request.address);

break;
default :

MTP_Respond(msg_id,request,1,ERR_APP_ACTION,0,NULL);
}

}

95

int
Get_Options(int argc, char **argv, char **host, int *port)
/ •
** Parse the command line * *
•* Return true if server mode
• /
{

int c,server=0;
extern char *optarg;
extern int optind/*. opterr*/;
static const char * usage =

"usage: %s [-s][-d debug_level] host portXn";
Debug = 0;
while ((c = getopt(argc.argv,"sd;")) != -1)

switch (c) {
case 's' : /* server mode */

server = 1 ;
break;

case d': /* Set debug output level */
Debug = atoi(optarg);
break;

default :
fprintf(stderr,usage,argv[0]) ;
exit(-l);

}

if (server) {
♦host = NULL;
if (optind >= argc) { fprintf(stderr,usage,argv[0]); exit(-l); }
♦port = atoi(argv[optind]);

} else {
♦host = argv[optind];
if (optind+1 >= argc) { fprintf(stderr,usage,argv[0]); exit(-l); }
♦port = atoi(argv[optind+l]);

>

return server;
> /♦ Get_Options ♦/

96

int
main(int argc, char **argv, char **envp)
{

int Port.server;
struct hostent * serverhost;
mtp_id_t id;
mtp_request_t request;
mtp_delivery_t delivery;
char ‘host;
server = Get_Options(argc,argv,fthost,&Port);
if (server) {

if (MTP_Init(Port,LINK_UNKNOWN,
"mtping - 2.0 August 1998 - Seth Noble",Debug) < 0) {

fprintf(stderr,"MTP_Init FailedXn");
exit(-l);

}
/* Comment thse out to use the default, MTP_Ping */
MTP_Action(ACT_PING, 0. Server);
MTP_Action(ACT_IDSTR, 0, Server);

} else {
serverhost = gethostbyname(host);
if (serverhost == NULL) {

fprintf(stderrInvalid server: %s\n",argv[1]);
exit(l);

}
if (MTP_Init(0,LINK_UNKNOWN,

"mtping - 2.0 August 1998 - Seth Noble",Debug) < 0) {
fprintf(stderr,"MTP_Init FailedXn");
exit(-l);

}
memcpy(&id.peerip,serverhost->h_addr_list[0],4) ;
id.peerport = htons(Port);
id.appversion =0;
request.action = ACT_IDSTR;
request.flag = 0;
request.channel = 0;
/* Change these to index a portion of the string */
request.address = 0;
request.rsize = 0;
delivery.type = MTP_DEL_SINGLE;
delivery.handle = (uint32)buffer;
delivery.offset = 0;
delivery.bound = MTP_SIZE_RESPONSE;
printf("Sending ACT_IDSTR to %s\n",serverhost->h_name);
MTP_Request(&id, request, 0, NULL, 500, 2100, delivery, 0, 0,

Response);
}

while (Idone) MTP_Event(NULL,NULL,NULL,-1);
return 0;

9 7

Appendix C: Testing Source Code

Transaction T es t Server

/ •
* *

* /
tserve.h Headers for test server

#include <limlts.h>
♦include <errno.h>
♦include <unistd.h>
♦include <time.h>
♦include <sys/time.h>
♦include <sys/socket.h>
♦include <sys/file.h>
♦include <fcntl.h>
♦include <sys/ioctl.h>
♦include <netinet/in.h>
♦include <arpa/inet.h>
♦include <sys/mman.h>
♦Include <search.h>
♦include <signal.h>
♦include <string.h>
♦ifdef sunos4
♦include "sunos4.h"
♦endif
♦define MAX_CLIENTS (8)
♦define BLOB (32*1024)

/* Unused */
/* Waiting for 'request" */
/* Writing "response” */

♦define TCP_NONE (0)
♦define TCP_READ (1)
♦define TCPJWRITE (2)
typedef struct {

int state;
int socket:
int sent;

} tcp_t;
/* Display Message */
♦define CHECK(ret, code, error) \

{ if (((ret) = (code)) < 0) { \
fprintf(stderr,"%s: %s\n",error,strerror(errno)); } }

/* Display message and exit */
♦define GUARD(ret, code, error) \

{ if (((ret) = (code)) < 0) { \
fprintf(stderr,"%s: %s\n",error,strerror(errno)) ; exit(i);} }

♦if defined(S o l a r i s) || defined(linux)
♦define bzero(ptr,len) memset((char *)(ptr),'\0’
♦endif

(l e n))

98

/ *
** tserve.c - Test server for MTP and TCP trials
* *
** Version 1.0 - February 1999 -- Seth Noble
* *

static char *id = "tserve - 1.0 February 1999 - Seth Noble";
#include <stdio.h>
#include <stdlib.h>
#include <pwd.h>
iinclude "mtp.h"
#include "tserve.h"
int err,Debug.done=0,Port,Link,Size :
char Data[BL0B]; / * Arbitrary data blob */
tcp_t Main:
tcp_t Client[MAX_CL1ENTS]:
fd_set Readfds[2],Writefds[2],Exceptfds[2];
void
MTP_Data(mtp_id_t msg_id, mtp_request_t request,

int size, void *ptr. uint32 user)
/ •
** Send data blob.
*/
{

uint32 address,rsize,run ;
address = request.address ;
rsize = request.rsize;
request.rsize = Size - address;
if (rsize 1= 0 && rsize < request rsize)

run = rsize;
else

run = request.rsize;
MTP_Respond(msg_id, request. 0, RES_REPLY, run, Data);

> /• MTP_Data •/
void
TCP_AcceptC)
/ •
** Accept an incoming TCP connection.
• /
{

struct sockaddr addr;
int i .size=sizeof(addr);
for (i=0; i<MAX_CLIENTS; i++)

if (Client[i].state == TCP_N0NE) break;
if (i =- MAX_CLIENTS) {

fprintf(stderr."Cannot support another TCP client\n");
return;

}

99

CHECK (Client[i].socket.accept(Main.socket,&addr,Ssize),"accept”) ;
CHECKCerr,fcntl(Client[i].socket,F_SETFL,0_NDELAY)."fcntl") ;
Client[i].state = TCPJWRITE:
Client[1].sent = 0;
FD_SET(Client[i].socket,SWritefds[1]);
FD_SET(Client[i].socket,&Exceptfds[1]):

} /* TCP_Accept */
void
TCP_Clean(int i)
{

CHECK(err,close(Client[i].socket),“close");
Client[i].state = TCP_NONE;
FD_CLR(Client[i].socket,ftWritefds[1]);
FD_CLR(Client[i].socket.&Exceptfdst1]):

}

void
TCP_Write(int i)
/ *
** Send data blob.
* /
{

int run,sent;
if (i < 0 II Client[i].sent >= Size) {

if (i<0) i = -i;
TCP_Clean(i) ;
return ;

}

run = Size - Client[i].sent;
if (run > BLOB) run = BLOB;
sent = write(Client[i].socket,Data.run);
if (sent < 0)

if (errno == EPIPE)
TCP_Clean(i);

else
perrorCwrite") ;

else
Client[i].sent += sent;

} /• TCP_Write */
void
Get_Options(int argc, char **argv)
/• INTERNAL
** Parse the command line
* /

{
int c ;
extern char *optarg;
extern int optind/*, opterr*/;
Debug = 0: Port = 8080; Link = LINK_ETHERNET;
while ((c = getopt(argc,argv,"vd:p:1 :")) != -1)

switch (c) {
100

case ‘d ’: /* Set debug output level */
Debug = atoi(optarg) :
break;

case 'p'; /* Set port number */
Port = atoi(optarg);
break;

case 'v': /* Display version number */
fprintf(stderr,"%s: %s\n",argv[0],id);
break ;

case '1';
Link = atoi(optarg);
break ;

default:
fprintf(stderr,
"usage: %s [-v] [-d debug_level] [-p port] [-1 link] [size]\n",

argv[0]);
}

if (optind < argc)
Size = atoi(argv[optind]);

else
Size = 1024*1024;

} /* Get_Options */
int
main(int argc, char **argv, char **envp)
{

int i ;
struct sockaddr^in name;
struct sigaction oldaction, newaction;
Get_Options(argc.argv);
if (MTP_Init(Port,Link,id,Debug) < 0) {

fprintf(stderr,"Can't init MTP\n") ;
exit(-1);

}
MTP_Action(ACT_DATA,0,MTP_Data);
bzero(&Main,sizeof(tcp_t));
bzero(Client,sizeof(tcp_t)*MAX_CLIENTS);
GUARD(Main.socket,socket(PF_INET,S0CK_STREAM,O),"TCP socket");
name.sin_family = PF_1NET;
name sin_port - Port;
name.sin_addr.s_addr = INADDR_ANY;
GUARD(err,bind(Main.socket,(struct sockaddr *)&name,sizeof(name)),

"TCP bind");
GUARD(err,listen(Main.socket,5),"listen");
FD_ZERO(SExceptfds[1]);
FD_ZERO(ftWritefds[1]);
FD_ZERO(AReadfds[1]) ;
FD_SET(Main.socket,AReadfds[1]);

#if defined(sunos4) || defined(linux)
newaction.sa_mask = 0;

#else
{ /* Bloody stupid Solaris kludge */

sigset_t nullsmask=({0,0,0,0}};
newaction sa_mask = nullsmask;

}
101

#endif
newaction.sa_handler = SIG_IGN;
newaction.sa_flags = 0;
sigaction(SIGPIPE,ftnewaction,&oldaction);

do {
Exceptfds[0] = Exceptfds[1];
Writefds[0] = Writefds[l];
Readfds[0] = Readfds[l];
MTP_EventC&Readfds[0],ftWritefds[0].&Exceptfds[0],-1)
if (FD_ISSET(Main.socket,&Readfds[0]))
TCP_AcceptQ ;

for (i=0; i<MAX_CLIENTS; i++)
if (Client[i].state == TCP_WRITE &&

FD_ISSET(Client[i].socket,&Exceptfds[0]))
TCP_Write(-i);

for (i=0; i<MAX_CLIENTS: i++)
if (Client[i].state == TCP_WRITE &&

FD_ISSET(Client[i].socket.&Writefds[0]))
TCP_Write(i);

} while (I done);
return 0;

102

T ransaction T es t Client

#lnclude <stdio.h>
♦include <stdlib.h>
♦include <sys/types.h>
♦include <sys/socket.h>
♦include <time.h>
♦include <sys/time.h>
♦include <netdb.h>
♦include <fcntl.h>
♦include <unistd.h>
♦include <errno.h>
♦include <string.h>
♦include <sys/wait.h>
♦include <signal.h>
♦include "mtp.h"
♦if defined(sunos4)
♦include <sys/stdtypes.h>
♦include "sunos4.h"
♦endif

♦define PING_SLOW 0
♦define PING_MEDIUM 1
♦define PING_FAST 2

/* Ping at 1 sec intervals */
/* Fast ping for MTP */
/* Fast ping for both */

typedef struct {
int mode ;
int output :
int pid;
double result ;

> ping_t:
typedef struct {

int size ; /* Size of transfer */
int time ; / * Milliseconds * /
int rtt; / * Observed RTT (mtp only) */
float loss : / * Observed loss (mtp only) */
float aloss: /* Ambient loss rate (ping) */
int fast ; /* True if fast ping was used * /

} stat_t;
typedef struct {

stat_t mtp;
stat_t tcp:

} datum_t;

/* Display Message */
♦define CHECK(ret, code, error) \

{ if (((ret) = (code)) < 0) { \
fprintf(stderr,"%s: %s\n",error,strerror(errno)); } }

/* Display message and exit */
♦define GUARD(ret, code, error) \

{ if (((ret) = (code)) < 0) { \
fprintf (stderr,"%s: %s\n",error,strerror(errno)); exit(l):} }

103

/*
** tcllent - Run trials of MTP vs TCP transfer rates
* ♦

* * Alternately issue MTP and TCP data requests to a given server. Run
a

simultaneous ping to measure ambient packet loss during each.
* *
*/

♦include "tclient.h"
int err,Debug,Port,Verbose,Link.Null,Going,T imeout,Count ;
char *Server;
struct hostent * Serverhost;
mtp_id_t Peer;
char buffer[MTP_SIZE_RESPONSE];
ping_t Ping;
static char *Id="mtptest - 1.0 February 1999 - Seth Noble";
void
Start_Ping()
/ *
** Spawn a ping process to keep track of ambient packet loss.
♦ *

* * Use pipe(2) to create a socket pair, then fork(2) and execl(3) to
pass
* * the pipe to sh for execution of ping.
»/
{ static char *shell=”/bin/sh";
/* static char *sping="ping -q -t 1 %s >&%d";*/

static char *fping="ping -qF %s >&%d";
char pingstr(80];
int fd[2];
GUARD(err,pipe(fd),"pipe”) ; ;
Ping.output = fd[0];
if ((Ping.pid = fork())) {

/* This is the original process */
close(fd[1]);
return;

} else {
/• This is the new child process */
sprintf(pingstr,fping,Server,fd[1]);

♦if defined(irix)
BSDsetpgrp(0,getpid());

♦elif defined(Solaris)
setpgrpO ;

♦else
setpgrp(0,getpid());

♦endif
execl(shell."sh",”-c",pingstr,NULL);

}
} /* Start_Ping */

W4

void
Stop_Ping()
/ *
** Halt the ping and collect its output
* *
*/
{

int size;
char pout[512], *ptr;

#if defined(solaris)
extern int killpg(pid_t pgrp. int sig);

#endif
CHECKCerr,killpg(Ping.pid.SIGINT)."killpg");
waitpidC-l.NULL.O);
size = read(Ping.output.pout,511);
pout(511] = '\0':
ptr = strchr(pout. ;
if (ptr == NULL) {

fprintf(stderr."Unexpected ping output %s\n",pout);
exit(-1);

}

while (*ptr != ‘ ') ptr--;
ptr++:
Ping.result = atof(ptr);
close(Ping.output);

} /* Stop Ping */
void
mtpdone(mtp_id_t msg_id, mtp_request_t request, int error, int response,

uint32 size, int final. mtp_delivery_t delivery. uint32 user.
mtp_stats_t stats)

{
if (error) {

printf("\nOET failed: %s\n".MTP_Error(error.response));
exit(-1);

}

if (final) {
G o i n g - :
printf(”%lu\t%.lf\t%,lf\t%lu\t%.lf\t".

size.stats.etime/1000.0,(size/1024.0)/(stats.etime/1000.0) ,
stats.avgdelay.
stats.repeats*100.0/(stats.requests+stats.repeats));

/* printf("Received %lu of %lu in %.lf secondsNtAvg RTT %lu\tLoss
%.lf%%\n".

stats.received, stats.size, stats.etime/1000.0.
stats.avgdelay,

stats.repeats*100.0/(stats.requests+stats.repeats));*/
}

}

105

void
Run_MTP()
{

mtp_request_t request;
■tp_delivery_t delivery;
int start, abort;
request.action = ACT_DATA;
request.flag = 0;
request.channel = 0;
request.address = 0;
request.rsize = 0;
delivery.type = MTP_DEL_FILE;
delivery.handle = Null;
delivery.offset = 0;
delivery.bound = 0;
for (Going = 0; Going < Count; Going++)

MTP_Request(ftPeer,request,0,NULL,2000,30000,delivery,0,0,mtpdone)
start = time(NULL); abort = 0;
while (Going) {

MTP_Event(NULL,NULL,NULL,- 1);
if (time(NULL) > start + Timeout && ! abort) {

MTP_Abort(Peer.reqid,ABORT.FINISH);
abort = 1 ;

}
}

} /* Run_MTP */
void
Run_TCP()
{

int s ,start,end,size ;
char buffer[8192];
struct sockaddr_in name = { PF_INET, Port, Peer.peerip };
GUARD(s,socket(PF_INET,S0CK_STREAM,0),"TCP socket");
CHECK(err,fcntl(s,F_SETFL,0),"fcntl");
GUARD(err,connect(s,&name,sizeof(name)),"connect");
start = time(NULL);
size = 0;
for (err = 1; err >0 ;) {

GUARD(err,read(s,buffer,8192),"read");
size += err;
end = time(NULL);
if (end - start > Timeout) break;

}

printf("%d\t%d\t%.2f\t",
size, end start, (double)size/(1024.0*(end-start)));

/♦ printf("TCP read %d bytes in %d secondsNn",size,end - start);*/
close (s);

> /* RunTCP */

106

void
Get_Options(int argc, char **argv)
/* INTERNAL
** Parse the command line
* /

{
int c ;
extern char *optarg;
extern int optind;/*, opterr;♦/
Debug - 0; Port = 8080; Verbose = 0; Link = LINK_ETHERNET;
Ping.mode = PING_FAST; Timeout = 60; Count = 1;
while C(c = getopt(argc,argv,"vd:p:st:1 :m:t:c:")) != -1)

switch (c) {
case d': /* Set debug output level */

Debug = atoi(optarg);
break:

case p': /* Set peer udp/tcp port number */
Port = atoi(optarg);
break ;

case v': /* Verbose mode */
Verbose = 1 ;
break;

case '1';
Link = atoi(optarg);
break ;

case 'm ■:
Ping.mode = atoi(optarg);
break;

case 't ':
Timeout = atoi(optarg);
break;

case 'c ':
Count = atoi(optarg);
break ;

default:
fprintf(stderr,”%s: %s\n",argv[0],Id);
fprintf(stderr,

"usage: %s [-v] [-d debug_level] [-p port] [-1 link]
testhostXn".argv[0]);

exit(l);
}

if (argc - optind != 1) {
fprintf(stderr.

"usage: %s [-v] [-d debug_level] [-p port] [-1 link]
testhostXn",argv[0]);

exit(-l);
}

Server = argv[optlnd];
Serverhost = gethostbyname(Server);
if (Serverhost == NULL) {

fprintf(stderr,"Invalid server: %sXn",Server);
exit(l);

}

} /* Get_Options */

107

int
main(int argc. char **argv. char **envp)
{

time_t now:
Get_Options(argc,argv);
if (MTP_Init(0,Link,Id.Debug) < 0) (

fprintf(stderr,"MTP_Init FailedXn");
exit (-1);

}
CHECK(Null,open(“/dev/null",0_WR0NLY),"/dev/null");
memcpy((char *)&Peer peerip,Serverhost >h_addr_list[0],4);
Peer peerport = Port;
Peer.appversion = 0; /*FILE_VERSION;*/
now = time(NULL);
printf("# MTP vs. TCP network testXn# %s %s#\n”.

Server,ctime(&now));
printf('#MTP\t\t\t\t\t\tTCP\n");

printf("#Recv\tTime\tThput\tRTT\t01oss\tPloss\tRecv\tTime\tThput\tPloss\
n") ;

fflush(stdout):
while (1) {

Start_Ping();
Run_MTP();
Stop_Ping();
printf("%.lf\t",Ping.result);
fflush(stdout);
sleep(lO);
Start_Ping():
Run_TCP();
Stop_Ping();
printf("%.lf\n”,Ping.result);
fflush(stdout);
sleep(60);

}

return 0;

108

Data Analyzer for T es t Client

/ *
** tplot.c - Format the output from tcllent into a plottable form * *
** We will want to plot ambient loss versus throughput for both MTP and
TCP.
» *

** First we coallate the data points by 0.5% increments. Optionally,
*"■ we then apply a gaussian blur to fill to smooth the graph and fill
in

c *

* /
* * gaps.

#include <stdio.h>
#include <string.h>
int err;
#define CHECK(ret. code, error) \

if (((ret) = (code)) < 0) {perror(error);}
#define GUARD(ret, code, error) \

if (((ret) = (code)) < 0) (perror(error); exit(1);}
fdefine SENTRY(ret, code, error, tag) \

if (((ret) = (code)) < 0) (perror(error); return(-tag);>
typedef struct {

int count;
double sample;

} perc_t;
extern double atof(char *str);
perc_t mtp[201], tcp[201];
void
get_data(FILE *fd)
/*
* * Each line contains a data point for one MTP and one TCP run
*/
{

char line[80], *thputstr, *lossstr;
int index, field;
double percent,tmp.thput;
while (fgets(line, 80, fd)) {

if (line[0] == '#' || line[0] == '=' || line[0] == \n') continue;
strtok(line , " \t");
strtok(NULL," \t");
thputstr = strtok(NULL," \t");
strtok(NULL, \t") ;
strtok(NULL," \t") ;
lossstr = strtok(NULL," \t") ;
if (!thputstr || !lossstr) continue;
percent = atof(lossstr);
index = percent * 2;
thput = atof(thputstr);
mtp[index].sample += thput;
mtp[index].count++;

109

/•printf("%.lf\t%.lf\t",percent,thput) ;*/
strtok(NULL," \t");
strtok(NULL," \t");
thputstr = strtok(NULL.” \t");
lossstr = strtok(NULL," \t\n");
if (!thputstr || !lossstr) continue;
percent = atof(lossstr):
index = percent * 2 ;
thput = atof(thputstr);
tcp[index].sample += thput;
tcp[index].count++ ;
/•printf(”%.lf\t%.lf\n".percent,thput) ;•/

}

void
Smooth(perc_t data]])
{

int index,count;
double sum;
perc_t smoothed[201];
bzero(smoothed,sizeof(perc_t)•201);
for (index=0; index < 201; index++) {

count=0;
sum=0.0;
if (index > 1 && data[index-2].count > 0) {

sum += data[index-2].sample / data]index-2].count ;
count++;

}
if (index > 0 && data[index-1].count > 0) {

sum += 2.O^data[index-1].sample / data]index-1].count ;
count+=2;

}
if (data]index].count > 0) {

sum += 4.O^data]index].sample / data]index].count ;
count+=4;

}
if (index < 200 && data]index+1].count > 0) {

sum += 2.0^data]index+l] sample / data]index+l].count ;
count+=2;

}
if (index < 199 && data]index+2].count > 0) {

sum += data]index+2].sample / data]index+2].count ;
count++;

}
if (count) {

smoothed]index] count = data]index].count ;
smoothed]index].sample = sum/count;

}
}
memcpy(data,smoothed,201•sizeof(perc_t));

110

void
Outputl(FILE *fd)
{

int index;
for (index=0; index < 201; index++) {

if (!mtp[index].count && !tcp[index].count) continue:
fprintf(fd,"%3.lf\t",(double)index/2.0);
if (mtp[index].count)

fprintf(fd."%.lf\t%d\t".
mtp[index].sample/mtp[index].count,mtp[index].count)

else
fprintf(fd,"-\t-\t") :

if (tcp[index].count)
fprintf(fd,"%.2f\t%d\n",

tcp[index].sample/tcp[index].count,
tcp[index] count);

else
fprintf(fd,"-\t-\n");

}
}

void
Qutput2(FILE »fd)
{

int index;
for (index=0; index < 201; index++) {

if (mtp[index].sample == 0.0 && tcp[index].sample == 0.0)
continue ;

fprintf(fd,"%.3g\t",(double)index/2.0);
if (mtp[index].sample >0.0)

fprintf(fd,"%.4g\t%d\t",mtp[index].sample,mtp[index].count) ;
else

fprintf(fd,"0\t0\t") ;
if (tcp[index].sample > 0.0)

fprintf(fd,.4g\t%d\n",tcp[index].sample,tcp[index].count) ;
else

fprintf(fd,"0\t0\n") ;
}

}

111

Int
main(lnt argc. char **argv, char **envp)
{

int arg:
FILE *fd:
bzero(mtp,201*sizeof(perc_t));
bzero(tcp,201*sizeof(perc_t)):
for (arg=l; arg<argc; arg++) {

if ((fd = fopen(argv[arg],”r"))) {
get_data(fd):
close(fd);

} else
fprintf(stderr,"%s: Could not open %s, skipping.\n'

argv[0],argv[arg]);
>

Outputl(stderr):
Smooth(mtp);
Smooth(tcp);
Output2(stdout):

112

Appendix D: Empirical Test Results

Smoothed Averages

Loss
Perc.

MTP
Rate Count

TCP
Rate Count

0 299.3 201 24.07 233
2 225 28 13.73 43
4 217.6 36 8.637 15
6 172 17 4.299 10
8 119 11 2.973 2
10 96.96 10 2.132 7
12 96.24 10 1.585 4
14 108.7 0 1. 145 2
16 102 3 0.99 0
18 54.6 0 0.9713 1
20 22.54 1 0.66 1
22 6.3 2 0.725 1
24 5.72 1 0.5675 0
26 5.293 1 0.5183 1
28 4.983 2 0.347 2
30 4.286 4 0.2307 3
32 3.983 0 0.1243 1
34 3.325 0 0.1421 1
36 2.3 0 0.226 0
38 2.3 0 0.374 1
40 2.3 3 0.3433 0
42 2.367 0 0.1875 0
44 2.433 0 0.1033 1
46 2.5 1 0.05667 1
48 2.5 0 0.055 0
50 2.5 0 0.03667 0
52 0 0 0.05 1
54 0 0 0.05 0
56 0 0 0.05 0
58 1 .9 0 0 0
60 1 .9 0 0 0
62 1 .9 1 0 0
64 1 .9 0 0 0
66 1 .9 0 0 0

113

Raw Averages

Loss
Perc.

MTP
Rate Count

TCP
Rate Count

0.0 398.0 201 36.22 233
2.0 122.3 28 9. 15 43
4.0 258.5 36 5.32 15
6.0 223.0 17 3.92 10
8.0 53.4 11 2.73 2
10.0 82. 1 10 2.06 7
12.0 107.2 10 1.54 4
14.0 - - 0.63 2
16.0 123.5 3 - -

18.0 - - 1.50 1
20.0 10.5 1 0. 14 1
22.0 5.0 2 0.86 1
24.0 4.8 1 - -

26.0 6. 1 1 0.58 1
28.0 5.3 2 0.39 2
30.0 3.3 4 0.20 3
32.0 - - 0.03 1
34.0 - - 0.11 1
38.0 - — 0.44 1
40.0 2.3 3 - -

44.0 - - 0.15 1
46.0 2.5 1 0.01 1
52.0 - — 0.05 1
62.0 1 .9 1 - _

114

Raw Data

#19990219
#MTP TCP
fRecv
Ploss

Time Thput RTT Oloss Ploss Recv Time Thput
1048576
11.0

17.0 60.3 112 10.6 9.3 169472 62 2.67
1048576
5.2
#MTP

13.0 78.6 120 9.7 9.0 412160
TCP

61 6.60

#Recv
Ploss

T ime Thput RTT Oloss Ploss Recv Time Thput
1048576
5.2

13.0 78.8 111 6.7 5.9 198144 61 3. 17
1048576
7.3

17.5 58.5 106 8.1 8.4 270848 61 4.34
1048576
6.2

8.5 119.9 112 8.6 12.0 273408 61 4.38
1048576
5.5

12.1 84.4 110 6.4 3.3 399360 62 6. 29
1048576
5.3

13.7 74.7 113 5.7 7.6 15360 72 0.21
1048576
5.0

10,7 95.5 116 10.9 6. 1 345088 62 5.44
1048576
3.7

4 . 1 250.6 121 5.1 3.3 463360 62 7.30
1048576
2 . 7

5.6 182.9 116 8.0 5.9 451584 61 7.23
1048576
3.5

8.6 119.7 116 7.9 5.5 411648 61 6.59
1048576
3.2

5 . 1 202.4 116 5.9 2.5 322048 61 5. 16
1048576
3.4

5.1 201.4 125 5.1 6.2 543232 63 8. 42
1048576
2.6

8. 1 126.0 123 9.3 6.0 551936 61 8.84
1048576
0.6

7.8 130.9 129 6.0 3.4 1048576 48 21.33
1048576
2 . 1

4.5 228.0 124 4.4 2.9 799232 61 12.80
1048576
1 .9

4.1 249. 1 117 4.0 0.0 723456 61 11.58
1048576
1 .0

4.9 210.0 114 6.9 2.6 883712 62 13.92
1048576
0.6

2.9 348.5 113 3.0 0.0 1048576 51 20.08
1048576
0.0

2.5 407.0 109 2.2 0.0 1048576 31 33.03
1048576
0.3

3.4 302.9 111 2.8 0.0 1048576 35 29.26
1048576
0.7

3.0 339.6 112 3.6 4.8 1048576 27 37.93
1048576
0.4

2.4 426.3 111 1.3 0.0 1048576 26 39.38
1048576
1 .8

2.6 394.8 111 1.3 5.9 1048576 43 23.81
1048576
1 .4

2.2 463.8 135 0.0 0.0 1048576 38 26.95

115

1048576
0.6

3.0 346.3 138 1.2 5.3 1048576 33 31.03
1048576
1 . 1

2.9 356.3 112 0.4 0.0 1048576 28 36.57
1048576
0.3

2.2 460.6 147 0.0 0.0 1048576 28 36.57
1048576
0.3

3.0 340.9 110 3.2 0.0 1048576 29 35.31
1048576
0.6

2.9 354. 1 116 1.6 5.0 1048576 34 30.12
1048576
1 .9

8.1 126.4 102 8.5 0.0 298496 62 4.70
1048576
1 .0

13.7 74.6 97 7.6 1.5 420352 62 6.62
1048576
0.3

8.6 119.5 95 6.4 0.0 1048576 60 17.07
1048576
1 .6

2.6 395.8 130 0.9 5.3 314368 61 5.03
1048576
1 .0

4.1 252.2 119 4.0 6.9 1048576 42 24.38
1048576
0.3

3.4 302.8 153 1.6 0.0 1048576 27 37.93
1048576
1 .4

2.9 350.4 118 2.2 0.0 1048576 46 22.26
1048576
0.8

3.0 337.8 116 1.6 0.0 1048576 37 27.68
1048576
0.0

2.9 352. 1 111 2.8 0.0 1048576 28 36.57
1048576
0.3

2.6 390.7 118 0.8 6.2 1048576 31 33.03
1048576
0.0

2.3 437.0 128 0.4 0.0 1048576 30 34 . 13
1048576
0.9

2.4 421.9 131 0.9 0.0 1048576 37 27.68
1048576
1 .2

5.7 178.8 120 9.4 10.0 1048576 45 22.76
1048576
2.5

2.8 364.4 136 5.9 5.6 852992 61 13.66
1048576
2.5

5.3 194.4 127 7.6 12.0 514560 61 8.24
1048576
0.3

4.4 234.6 128 7.7 3.4 1048576 29 35.31
1048576
0.3

3.2 323.3 163 4.0 0.0 1048576 27 37.93
1048576
0.3

2.6 398.1 117 1.6 0.0 1048576 29 35.31
1048576
0.9

2.3 454.1 124 0.0 0.0 1048576 43 23.81
1048576
0.6

2.4 432.8 116 0.9 0.0 1048576 46 22.26
1048576
1 . 1
1048576
0.9

3.0 337.7 114 3.2 4.3 1048576 36 28.44
2.5 409. 1 144 0.0 0.0 1048576 31 33.03

1048576
0.0

2.3 436.9 147 0.9 0.0 1048576 26 39.38
1048576
0.4

2.5 406.0 131 1.3 0.0 1048576 25 40.96
1048576
0.3

2.3 452.7 139 0.5 0.0 1048576 31 33.03

116

1048576
0.3

2.2 459.6 129 0.0 0.0 1048576 27 37.93
1048576
1 . 2

5.5 184.9 118 8.0 11.0 1048576 47 21 .79
1048576
0.3

2.9 348.1 120 2.4 0.0 1048576 36 28.44
1048576
0.3

3.0 342.8 131 2.6 0.0 1048576 33 31.03
1048576
0.6

3.9 261.8 115 7.0 10.0 1048576 37 27.68
1048576
2.4

3.8 271.0 131 5.5 3.7 1026048 61 16.43
1048576
0.5

3.5 292.9 117 4.7 0.0 1048576 43 23.81
1048576
2.3

4.7 218.2 130 6.6 17.0 1048576 48 21 .33
1048576
2.2

6.2 163.9 113 9.8 2.0 859136 61 13.75
1048576
0.5

3.1 327.6 126 5.3 5.0 1048576 42 24.38
1048576
0.3

2.6 391.6 128 2.6 5.6 1048576 31 33.03
1048576
0.3

4.3 239.5 121 10.4 8.7 1048576 34 30.12
1048576
0.0

3.0 344.0 128 1.8 0.0 1048576 29 35.31
1048576
2.2

3.2 317. 1 125 6.6 12.0 925696 61 14 .82
1048576
0.3

3.3 308. 1 129 1.2 0.0 1048576 35 29.26
1048576
0.3

3.0 344. 1 126 3.8 0.0 1048576 34 30.12
1048576
0.0

3.2 321.1 123 6.2 0.0 1048576 26 39.38
1048576
0.0

3.5 292.2 122 4.4 4.2 1048576 27 37.93
1048576
0.0

3.4 297.7 124 6.2 4.2 1048576 32 32 .00
1048576
0.0

3.6 284.3 120 3.2 3.6 1048576 28 36.57
1048576
0.0

2.8 371.7 146 2.1 0.0 1048576 29 35.31
1048576
0.0

2.3 451 . 1 147 0.0 0.0 1048576 29 35.31
1048576
0.0

2.8 364.4 121 0.8 0.0 1048576 34 30.12
1048576
0.6

3.0 342.4 119 1.6 5.0 1048576 31 33.03
1048576
1.5

2.2 473.6 137 0.0 0.0 1048576 36 28.44
1048576
0.9

2.9 350.9 114 4.0 0.0 1048576 34 30.12
1048576
0.2

2.2 469. 1 125 0.0 0.0 1048576 40 25.60
1048576
0.3

2.1 478.3 121 0.0 0.0 1048576 28 36.57
1048576
0.3

2.3 453.7 128 0.0 0.0 1048576 31 33.03
1048576
0.0

3.2 320.4 121 2.9 4.5 1048576 28 36.57

1048576
0.3

2.7 381 . 1 127 0.8 0.0 1048576 29 35.31
1048576
0.0

2.3 445.4 117 0.4 0.0 1048576 28 36.57
1048576
0.0

2.9 353.8 127 3.1 0.0 1048576 28 36.57
1048576
0.6

3.2 319.8 122 2.4 0.0 1048576 33 31 .03
1048576
0.0

2.9 357.0 130 1.8 0.0 1048576 26 39.38
1048576
0.7

2.5 405.2 115 4.3 0.0 1048576 28 36.57
1048576
0.3

2.8 370.7 117 3.7 0.0 1048576 33 31 .03
1048576
0.0

2.2 472.3 127 0.0 0.0 1048576 32 32.00
1048576
0.0

3.0 345.5 109 7.8 4.5 1048576 24 42.67
1048576
0.0

2.2 461.9 125 0.0 0.0 1048576 25 40.96
1048576
0.0

2.8 371.8 112 3.6 5.6 1048576 27 37.93
1048576
0.3

2.6 393.4 129 1.3 0.0 1048576 29 35.31
1048576
0.3

2.9 355.4 118 4.2 0.0 1048576 29 35.31
1048576
0.2

3.3 307.0 120 4.4 4.5 1048576 40 25.60
1048576
0.2

3.0 336.3 112 5.2 4.8 1048576 39 26.26
1048576
0.6

3.0 340.8 109 3.2 0.0 1048576 53 19.32
1048576
0.4

2.9 356.7 109 3.6 4.8 1048576 48 21 .33
1048576
0.7

2.3 448. 1 119 0.0 0.0 1048576 41 24.98
1048576
0.9

2.6 386.4 146 4.2 5.9 1048576 33 31.03
1048576
0.7

2.8 367.4 115 2.0 0.0 1048576 31 33.03
1048576
1 .3

3.8 268. 1 110 6.6 3.7 1048576 41 24.98
1048576
0.6

3.5 293.5 109 6.6 12.0 1048576 32 32.00
1048576
0.0

2.8 361.2 124 3.0 0.0 1048576 25 40.96

MTP vs. TCP network test
claustro.ugcs.caltech.edu Mon Feb 22 10:13:15 1999
#
#MTP TCP
#Recv Time Thput RTT Oloss Ploss Recv
Ploss
136704 61.2 2.2 111 40.7 40.0 17408
30.0
MTP vs. TCP network test
claustro.ugcs.caltech.edu Mon Feb 22 11:14:58 1999
#
#MTP TCP

118

Time
107

Thput
0. 16

#Recv
Ploss

Time Thput RTT Oloss Ploss Recv Time Thput
714240
3.6

61.1 11.4 183 9.2 16.0 93184 61 1.49
1048576
5.0

39.0 26.3 138 7.5 7.9 343552 61 5. 50
1048576
4.6

34.3 29.9 192 9.8 8.5 356352 61 5.70
1048576
2.7

9.1 112.5 183 10.4 2.3 248832 61 3.98
1048576
6.6

15.5 65.9 209 7.5 4.3 205312 61 3.29
1048576
4.0

8.6 119.3 128 10.4 1 .9 384512 62 6.06
1048576
2.7

9.5 108.2 189 8.4 1 .9 558592 61 8.94
1048576
4.5

7.3 140.9 148 10.0 16.0 514048 61 8.23
1048576
3.7

6.0 169.9 128 9.0 2.4 460800 61 7.38
1048576
2 . 1

7.8 131.5 145 8.7 3.6 798720 61 12.79
1048576
4 . 1

5. 1 201.7 126 4.7 6.9 566784 64 8.65
1048576
3 . 9

6.9 149.2 172 10. 1 5.7 632832 62 9.97
1048576
3. 1

8.2 125.0 119 8.3 1 .8 550400 61 8.81
1048576
3 . 2

5.9 172.9 143 10.1 5.9 532480 61 8.52
1048576
3.8

14.8 69.4 123 5.5 3.9 481792 61 7.71
1048576
3 . 5

13.5 75.6 148 7.3 1 . 1 505344 62 7.96
1048576
2.4

7.9 128.9 154 7.7 5. 1 473600 61 7.58
1048576
3 . 5

13.5 75.6 176 9.5 4.9 331264 61 5.30
1048576
3.9

39.2 26.1 200 5.9 2.6 205824 61 3.30
1048576
6.4

14.6 70.3 184 9.4 7.4 299520 61 4.80
1048576
6 . 2

23.7 43.2 170 6.4 4.4 291328 63 4.52
1048576
5.6

20.9 49.1 181 8. 1 10.0 281600 61 4.51
733696
6.6

61.5 11.6 192 12.8 10.0 214016 109 1.92
1048576
6.4

32.1 31.9 180 6.9 8.6 378368 61 6.06
1048576
6.6

31.4 32.6 189 8.9 8.2 170496 71 2.35
1048576
7 . 5

11.6 88.5 141 9.3 11.0 236032 61 3.78
1048576
4.0

11.4 89.4 191 10.7 12.0 296960 63 4.60
1048576
3.8

13.0 78.6 209 10. 1 7.4 425472 61 6.81
1048576
5 . 2

12.3 83.2 156 7.9 5.2 280576 61 4.49

119

1048576 16.6 61.6 176 9.6 7.2 383488 61 6. 14
4.6
1048576 48.8 21.0 203 6.4 4.8 236544 61 3.79
6.2
MTP vs. TCP network test
claustro.ugcs.caltech.edu
#
#MTP
#Recv Time Thput RTT

Mon Feb 22

Oloss

14:13:

Ploss

09 1999
TCP
Recv Time Thput

Ploss
118784 60.3 1.9 123 44.6 62.0 3072 66 0.05
52.0
417792 60.6 6.7 209 14.4 9.7 84480 61 1.35
12.0
434688 60.9 7.0 203 14.8 12.0 94720 61 1.52
12.0
573440 61.0 9.2 202 13.2 11.0 136192 61 2. 18
10.0
231936 61.4 3.7 139 29.2 40.0 512 97 0.01
47.0
MTP vs. TCP network test
claustro.ugcs.caltech.edu
#
#MTP
#Recv Time Thput RTT
Ploss
62464 62.3 1.0 127
38.0
MTP vs. TCP network test
claustro.ugcs.caltech.edu
#

Mon Feb 22 15:21: 15 1999
TCP

Oloss Ploss Recv
40.6 40.0 27648

Mon Feb 22 15:24:30 1999

Time
61

Thput
0.44

#MTP TCP
#Recv
Ploss

Time Thput RTT Oloss Ploss Recv Time Thput
204288
35.0

61.4 3.3 127 29.9 30.0 10752 96 0. 11
194560
28.0

60.9 3. 1 126 37.8 31 .0 5632 93 0.06
300544
30.0

60.8 4.8 128 23.7 24.0 26624 66 0.39
287232
28.0

60.5 4.6 139 24.1 29.0 46592 64 0.71
172032
33.0

60.8 2.8 128 35.2 30.0 2560 96 0.03
153600
11.0

60.9 2.5 132 36.1 46.0 93184 61 1 .49
810496
14.0

60.7 13.0 203 11.2 12.0 114688 91 1 . 23
709632
26.0

60.2 11.5 145 11.8 12.0 36352 61 0.58
378368
21.0

60.7 6. 1 128 23.3 26.0 23552 164 0. 14
340992
19.0

61.6 5.4 119 24.1 23.0 93696 61 1 .50
374272
44.0

61.0 6.0 133 22.6 28.0 14848 95 0. 15
256000
14.0

60.4 4.1 141 29. 1 30.0 3072 95 0.03
650240
22.0

60.7 10.5 126 14.0 20.0 57856 66 0.86

120

665600
13.0

60.6 10.7 164 11.8 8.8 78336 62 1.23
1016832
11.0

60.8 16.3 113 11.6 10.0 119808 61 1 .92
1048576
12.0

45.2 22.7 123 8. 1 9.6 130560 62 2.06
666624
11.0

60.5 10.8 113 . 12.3 11.0 168448 62 2.65
1026560
9.6

60.8 16.5 118 10.4 9.7 157696 61 2.52
1048576
11 .0

21.6 47.3 115 11.7 6.1 128000 63 1 .98
973312
9.9

60.5 15.7 110 11.0 12.0 183296 61 2.93
657408
10.0

60.9 10.5 120 10.9 13.0 96768 62 1 . 52
630272 61.9 10.0 137
30.0

MTP vs. TCP network test
mono.ugcs.caltech.edu Thu
#
#MTP

12. 1

Mar 4 10;

10.0

53:53

4096

1999
TCP

95 0.04

#Recv
Ploss

Time Thput RTT Oloss Ploss Recv Time Thput
1048576
0.0

2. 1 479.4 128 0.0 0.0 1048576 26 39.38
1048576
0.0

2.2 461.5 137 0.0 0.0 1048576 24 42 . 67
1048576
0.0

2.3 449.3 112 0.9 0.0 1048576 26 39.38
1048576
0.0

2.2 455.7 101 0.0 0.0 1048576 23 44 . 52
1048576
0.0

2.4 432.4 142 0.0 0.0 1048576 24 42.67
1048576
0.8

2.2 458.6 141 0.0 0.0 1048576 36 28.44
1048576
0.0

2.4 435.4 155 0.0 0.0 1048576 23 44 .52
1048576
0.0

2.2 464.2 129 0.0 0.0 1048576 24 42.67
1048576
0.0

2.1 481.0 118 0.0 0.0 1048576 24 42.67
1048576
0.4

2.2 462.5 124 0.9 0.0 1048576 23 44 . 52
1048576
0.0

2.4 427.0 150 0.0 0.0 1048576 25 40.96
1048576
0.0

2.6 392.8 111 0.4 0.0 1048576 23 44.52
1048576
0.0

2.7 380. 1 118 0.4 0.0 1048576 24 42.67
1048576
0.4

2.4 425.4 210 0.0 0.0 1048576 24 42.67
1048576
0.0

2.1 486.7 119 0.0 0.0 1048576 25 40.96
1048576
0.0

2.3 449. 1 170 0.0 0.0 1048576 24 42.67
1048576
0.0

2.1 490.2 139 0.0 0.0 1048576 23 44.52

121

1048576 2.2 471.5 122 0.0 0.0 1048576 23 44.52
0.0
1048576 2.2 457.6 189 0.0 0.0 1048576 23 44.52
0.0
1048576 2.1 485.5 120 0.0 0.0 1048576 24 42.67
0.0
1048576 2.1 496.6 115 0.0 0.0 1048576 23 44.52
0.0
1048576 2.1 483.0 146 0.0 0.0 1048576 23 44.52
0.0
1048576 2.2 455.9 148 0.0 0.0 1048576 23 44.52
0.0
1048576 2. 1 486.7 127 0.0 0.0 1048576 24 42.67
0.0
1048576 2.8 370. 1 135 0.4 0.0 1048576 23 44.52
0.0
1048576 2.3 446.8 111 0.0 0.0 1048576 23 44.52
0.0
MTP vs. TCP network test
mono.ugcs.caltech.edu Thu
#
#MTP
#Recv Time Thput RTT

Mar 4 12:

Oloss

57:50

Ploss

1999
TCP
Recv Time Thput

Ploss
1048576 2.3 447.4 146 0.0 0.0 1048576 29 35 . 31
0.3
1048576 2.4 430.8 172 0.0 0.0 1048576 27 37.93
0.3
1048576 2.1 482. 1 121 0.0 0.0 1048576 24 42.67
0.0
1048576 2.1 476.3 119 0.0 0.0 1048576 24 42.67
0.0
1048576 2.3 438.2 166 0.0 0.0 1048576 23 44 .52
0.4
1048576 2.2 459.0 155 0.0 0.0 1048576 23 44.52
0.0
1048576 2.2 471.2 138 0.0 0.0 1048576 24 42.67
0.0
1048576 2.9 355.8 118 0.9 5.3 1048576 30 34. 13
0.3
1048576 2.3 441.4 126 0.0 0.0 1048576 31 33.03
1 .6
1048576 3.4 298.6 171 3.5 3.8 1048576 34 30.12
1 .5
1048576 2.2 462. 1 165 0.0 0.0 1048576 33 31.03
2.0
1048576 2.9 348. 1 188 0.0 0.0 1048576 36 28.44
0.9
1048576 2.4 428. 1 134 0.0 0.0 1048576 24 42.67
0.0
1048576 2.6 396.4 147 0.0 0.0 1048576 26 39.38
0.4
1048576 2.5 417.8 180 0.0 0.0 1048576 24 42.67
0.0
1048576 2. 1 483.2 130 0.0 0.0 1048576 24 42.67
0.0
1048576 2.1 484.2 126 0.0 0.0 1048576 24 42.67
0.0
1048576 2.3 446.2 126 0.0 0.0 1048576 24 42.67

122

1048576
0.0

2.4 427.2 170 0.0 0.0 1048576 24 42.67
1048576
0.0

2.2 459.2 133 0.0 0.0 1048576 23 44.52
1048576
0.7

2.6 388.2 121 0.4 0.0 1048576 26 39.38
1048576
0.0

2.0 502.7 121 0.0 0.0 1048576 23 44.52
1048576
0.0

2.2 469.5 201 0.0 0.0 1048576 23 44.52
1048576
0.0

2.2 457. 1 109 0.0 0.0 1048576 23 44.52
1048576
0.0

2.5 401.9 126 0.9 0.0 1048576 25 40.96
1048576
0.0

2.7 380.0 152 0.4 0.0 1048576 23 44 . 52
1048576
0.0

2.5 412.9 132 0.8 0.0 1048576 25 40.96
1048576
0.0

2.3 448.3 123 0.0 0.0 1048576 23 44.52
1048576
0.0

2.3 445.6 198 0.0 0.0 1048576 23 44.52
1048576
0.0

2.4 425.4 116 0.4 0.0 1048576 24 42.67
1048576
0.0

2.2 460.2 128 0.0 0.0 1048576 24 42.67
1048576
0.6

2.2 464.0 120 0.0 0.0 1048576 31 33.03
1048576
0.3

2.4 424.2 154 0.0 0.0 1048576 33 31.03
1048576
1 . 1
1048576
0 . 4

2.9 357.4 164 0.0 6.2 1048576 28 36.57
2.9 347,5 174 1.2 0.0 1048576 26 39.38

1048576
0.4

2.5 413.7 132 0.4 0.0 1048576 23 44.52
1048576
0.3

2.1 481 .4 159 0.0 0.0 1048576 28 36.57
1048576
0.3

2.1 493.3 110 0.0 0.0 1048576 29 35.31
1048576
0.5

2.3 443.9 140 0.0 0.0 1048576 36 28.44
1048576
0.0

2.2 468.2 166 0.0 0.0 1048576 24 42.67
1048576
0.0

2.8 363.8 96 1.2 0.0 1048576 24 42.67
1048576
0.0

2.1 484.8 113 0.0 0.0 1048576 23 44.52
1048576
0.0

2.2 470.6 120 0.0 0.0 1048576 24 42.67
1048576
0.0

2.3 438.5 179 0.0 0.0 1048576 23 44.52
1048576
0.0

2.2 472.3 122 0.0 0.0 1048576 23 44.52
1048576
0.0

2. 1 486.9 119 0.0 0.0 1048576 24 42.67
1048576
0.0

2.7 381.8 114 0.8 5.3 1048576 23 44.52
1048576
0.0

2.7 379.0 254 0.0 0.0 1048576 25 40.96

1048576
0.0

2.1 476.7 139 0.0 0.0 1048576 24 42.67
1048576
0.0

2.5 415.8 168 0.4 0.0 1048576 25 40.96
1048576
0.4

2.3 438.2 124 0.0 0.0 1048576 26 39.38
1048576
0.0

2.3 442.1 120 0.9 0.0 1048576 25 40.96
1048576
0.4

2.2 470.8 125 0.5 0.0 1048576 24 42.67
1048576
0.8

3.3 311.4 164 1.2 0.0 1048576 25 40.96
1048576
0.0

2.4 429.5 133 0.0 0.0 1048576 25 40.96
1048576
0.0

2.7 373.9 115 0.4 0.0 1048576 26 39.38
1048576
0.0

2.2 455.7 134 0.0 0.0 1048576 24 42.67
1048576
0.4

2.2 461.7 147 0.0 0.0 1048576 25 40.96
1048576
0.0

2.5 410.9 113 0.8 0.0 1048576 26 39.38
1048576
0.0

2.3 452.7 163 0.0 0.0 1048576 24 42.67
1048576
0 . 8

2.4 423. 1 188 0.0 0.0 1048576 25 40.96
1048576
0.0

2.3 454.3 111 0,0 0.0 1048576 25 40.96
1048576
0.0

2.4 426.7 164 0.0 0.0 1048576 25 40.96
1048576
0.0

2.2 465.7 135 0.0 0.0 1048576 25 40.96
1048576
0.0

2. 1 485. 1 123 0.0 7.7 1048576 23 44 . 52
1048576
0.0

2.2 471.2 134 0.0 0.0 1048576 26 39.38
1048576
0.0

2.3 445.6 149 0.0 0.0 1048576 24 42.67
1048576
0.4

2.2 469.7 132 0.0 0.0 1048576 25 40.96
1048576
0.0

2.3 439. 1 184 0.0 0.0 1048576 23 44 . 52
1048576
0.0

2.6 391.7 111 0.8 0.0 1048576 25 40.96
1048576
0.0

2.4 419.2 132 0.0 0.0 1048576 25 40.96
1048576
0.0

2.3 446.8 142 0.0 0.0 1048576 23 44.52
1048576
0.0

2.2 459.6 128 0.0 0.0 1048576 25 40.96
1048576
0.0

2.3 437.2 135 0.4 7.1 1048576 23 44.52
1048576
0.0

2.2 458.2 125 0.9 0.0 1048576 23 44 . 52
1048576
0.4

2.3 438.2 133 0.0 0.0 1048576 24 42.67
1048576
0.4

2.2 473.9 114 0.0 0.0 1048576 24 42.67
1048576
0.0

2.1 484.2 120 0.0 0.0 1048576 23 44.52

124

1048576
0.0

3.0 345. 1 116 3.6 0.0 1048576 25 40.96
1048576
0.4

2.5 416.4 127 0.4 0.0 1048576 25 40.96
1048576
0.4

2.7 375.8 110 0.8 0.0 1048576 24 42.67
1048576
0.4

2.2 472. 1 128 0.0 0.0 1048576 24 42.67
1048576
0.0

2.6 397.5 106 0.4 5.9 1048576 25 40.96
1048576
0.0

2.2 464.8 120 0.4 6.2 1048576 26 39.38
1048576
0.0

2.2 467.4 120 0.0 0.0 1048576 24 42.67
1048576
0.4

2.4 429.7 120 0.4 0.0 1048576 25 40.96
1048576
0.0

2.3 449.9 123 0.0 0.0 1048576 24 42.67
1048576
0.0

2.2 473.0 115 0.4 0.0 1048576 23 44 . 52
1048576
0.0

3.3 306.3 128 0.9 0.0 1048576 23 44.52
1048576
0.0

2.3 437.4 146 0.0 0.0 1048576 23 44 . 52
1048576
0.4

2.2 465.5 127 0.0 0.0 1048576 23 44 . 52
1048576
0.4

2.6 393.4 130 0.4 0.0 1048576 24 42.67
1048576
0.0

2.3 439.5 113 0.0 0.0 1048576 24 42.67
1048576
0.8

2.7 374.8 121 0.9 0.0 1048576 25 40.96
1048576
0.4

2.3 452.9 157 0.0 0.0 1048576 27 37.93
1048576
0 . 0

2.5 411.1 138 0.0 0.0 1048576 24 42.67
1048576
0.4

2.4 423.5 146 1.3 0.0 1048576 26 39.38
1048576
0.0

2.4 425.2 141 0.0 0.0 1048576 25 40.96
1048576
1 . 7

10.7 95.9 114 1 . 1 0.8 1048576 33 31 .03
1048576
2.0

2.5 402.2 116 0.4 0.0 1048576 38 26.95
1048576
1 .4

2.5 415.8 143 0.0 0.0 1048576 36 28.44
1048576
1 .0

2.4 429.2 115 0.0 0.0 1048576 30 34. 13
1048576
0.3

2.4 427.7 194 0.0 0.0 1048576 32 32.00
1048576
0.3

2.4 427.7 120 1.3 0.0 1048576 27 37.93
1048576
0.0

2.5 406.3 106 0.4 0.0 1048576 28 36.57
1048576
0.3

2.1 486.2 119 0.4 0.0 1048576 27 37.93
1048576
0.8

2.3 454.3 173 0.0 0.0 1048576 35 29.26
1048576
0.8

2.4 431.0 126 0.0 0.0 1048576 24 42.67

125

1048576
0.3

2.8 370.2 114 2.6 5.6 1048576 31 33.03
1048576
0.0

2.4 433.5 127 0.0 0.0 1048576 23 44.52
1048576
0.0

2.3 448.7 158 0.0 0.0 1048576 23 44.52
1048576
0.8

2.3 453.3 106 0.4 0.0 1048576 25 40.96
1048576
0.4

2.4 420.0 121 0.8 6.7 1048576 23 44.52
1048576
0.0

2.1 477.8 157 0.0 0.0 1048576 29 35.31
1048576
0.7

2.2 466.5 147 0.0 0.0 1048576 27 37.93
1048576
0.7

3.0 339.7 120 0.8 0.0 1048576 27 37.93
1048576
0.3

2.3 436. 1 124 0.0 0.0 1048576 31 33.03

126

Appendix E: mclient

mclient.h

#include <stdio.h>
#include <stdlib.h>
flnclude <sys/types.h>
♦include <sys/socket.h>
♦include <time.h>
♦include <sys/time.h>
♦include <netdb.h>
♦include <fcntl.h>
♦include <unistd.h>
♦include <errno.h>
♦include <string.h>
♦include <sys/wait.h>
♦include <signal.h>
♦include "mtp.h"
♦ i f d e f i n e d (S o l a r i s)
♦ i n c l u d e < s y s / f i l e . h >
♦ e n d i f
♦if defined(sunos4)
♦include <sys/stdtypes.h>
♦include "sunos4.h"
♦ e n d i f

typedef struct {
int output ;
int pid;
double result;

} ping_t;
typedef struct {

int size;
int time;
int rtt;
float loss;
float aloss;
int fast;

} stat_t;

/*
/ *
/ *
/ *
/ *
/*

Size of transfer */
Milliseconds */
Observed RTT (mtp only) */
Observed loss (mtp only) */
Ambient loss rate (ping) */
True if fast ping was used */

typedef struct {
stat_t mtp;
stat_t tcp;

> datum_t;

/* Display Message */
♦define CHECK(ret, code, error) \

{ if (((ret) = (code)) < 0) { \
fprintf(stderr,”%s: %s\n",error.strerror(errno)); } }

/* Display message and exit */
♦define GUARD(ret, code, error) \

{ if (((ret) = (code)) < 0) { \
fprintf(stderr,"%s: %s\n",error,strerror(errno)); exit(l);} }

127

m clien t .c

/ *
** mclient - Test MTP and TCP performance under multiple loads.
» #

** User specifies number of MTP and TCP transactions to Initiate.
** Statistics are gathered for each.
» $

»/

#lnclude "mclient.h"
Int err,Debug,Port,Verbose,Link.Null.Going.Timeout.Mcount,Tcount.Noplng;
Int Start;
Int TCP[16],TCPcount=0;
Int Size[16]:
char ‘Server;
struct hostent * Serverhost;
mtp_ld_t Peer;
char buffer[MTP_SIZE_RESPONSE];
plng_t Ping;
fd_set Readfds[2],Wrltefds[2].Exceptfds[2];
static char *Id="mcllent - 1.0 March 1999 - Seth Noble";
void
Start_Plng()
/*
“ Spawn a ping process to keep track of ambient packet loss.
» *

“ Use pipe(2) to create a socket pair, then fork(2) and execl(3) to
pass
“ the pipe to sh for execution of ping.
*/
{

static char *shell="/bln/sh";
/* static char ‘splng="plng -q -t 1 %s >&%d";*/

static char *fplng="plng -qF %s >&%d";
char plngstr[80];
Int fd[2];
GUARD(err.pipe(fd)."pipe"); ;
Ping.output = fd[0];
If ((Ping.p i d = f o r k ())) {

/* This is the original process */
close(fd[lj):
return;

> else {
/• This is the new child process */
sprlntf(plngstr,fplng.Server.fd[1]);

tifdef Irlx
BSDsetpgrp(0.getpld());

e l l f d e f i n e d (S o l a r i s)

setpgrpO :
#else

setpgrp(O.getpldO) ;
#endlf

128

execl(shell."sh"."-c".plngstr,NULL);
}

} /* Start_Ping */
void
Stop_Ping()
/ *
** Halt the ping and collect its output * *
• /
{

int size;
char pout[512], *ptr;

#if defined(Solaris)
extern int killpg(pid_t pgrp, int sig);

#endif
CHECK(err,killpg(Ping.pid.SIGINT)."killpg");
waitpid(-l.NULL.O);
size = read(Ping.output.pout,511):
pout[511] = '\0';
ptr = strchr(pout,'%');
if (ptr == NULL) {

fprintf(stderr,"Unexpected ping output %s\n",pout);
exit (-1) :

>

while (*ptr != ' ') ptr--;
ptr++;
Ping result = atof(ptr);
close(Ping.output);

} /* Stop Ping */
void
mtpdone(mtp_id_t msg_id, mtp_request_t request, int error, int response.

uint32 size, int final. mtp_delivery_t delivery. uint32 user.
mtp_stats_t stats)

{
if (error) {

printf("\nGET failed: %s\n",MTP_Error(error,response));
exit(-l);

>

if (final) {
printf("MTP: %lu\t%.lf\t%.lf\t%lu\t%.lf\t%lu/%lu/%lu\n".

size.stats.etime/1000.0.(size/1024.0)/(stats.etime/1000.0) ,
stats.avgdelay.
stats.repeats *100.0/(stats.requests+stats.repeats).
stats.ainwindow.stats.avgwindow.stats.maxwindow);

Mcount--;
}

void
Start_MTP()
{

mtp_request_t request;
129

mtp_delivery_t delivery;
request.action = ACT_DATA;
request.flag = 0;
request.channel = 0;
request.address = 0;
request.rsize = 0;
delivery.type = MTP_DEL_FILE;
delivery.handle = Null;
delivery.offset = 0;
delivery.bound = 0;
MTP_Request(&Peer,request,0,NULL.2000,30000,delivery ,0.0,mtpdone);

} /* Start_MTP */
void
Start_TCP()
{

struct sockaddr_in name = { PF_INET, Port, Peer.peerip >;
GUARD(TCP[TCPcount],socket(PF_1NET,S0CK_STREAM,0) , "TCP socket") ;
CHECK(err.fcntl(TCP[TCPcount],F_SETFL,FNDELAY),"fcntl"):
err ■= connect (TCP [TCPcount] , ftname, sizeof (name)) ;
if (err && errno != EINPROGRESS) (

perror("connect");
abortO ;

}

FD_SET(TCP[TCPcount],AReadfds[1]);
Size[TCPcount] = 0;
TCPcount++;

}

void
Stop_TCP(int t)
{

int end ;
end = time(NULL);
printf("TCP: %d\t%d\t%.Zf\n",

Size[t], end Start, (double)Size[t]/(1024.0*(end-Start))) ;
/• printf("TCP read %d bytes in %d secondsXn",size,end - start);*/

FD_CLR(TCP[t].&Readfds[l]);
Tcount--;
close (TCP[t]);

} /* Run_TCP */
void
Get_0ptions(int argc, char **argv)
/* INTERNAL
** Parse the command line
* /
{

int c ;
extern char *optarg;

130

extern int optind;/*, opterr;*/
Debug = 0: Port = 8080: Verbose = 0; Link = LINK.ETHERNET;
Timeout = 60 : Mcount = 1; Tcount = 1; Noplng = 0;
while ((c = getopt(argc,argv."vd:p:t: 1 :m:q")) != -1)

switch (c) {
case d": /* Set debug output level */

Debug = atoi(optarg):
break:

case p': /* Set peer udp/tcp port number */
Port = atoi(optarg):
break :

case 'v': / * Verbose mode */
Verbose = 1 :
break:

case '1':
Link = atoi(optarg):
break:

case 'm':
Mcount = atoi(optarg):
break :

case ’t ’:
Tcount = atoi(optarg):
break :

case 'q ':
Noping = 1 :
break :

default;
fprintf(stderr,"%s: %s\n",argv[0],Id):
fprintf(stderr,

"usage: %s [-v] [-d debug_level] [-p port] [-1 link]
testhost\n“,argv[0]):

exit(l):
>

if (argc - optind != 1) {
fprintf(stderr,

"usage: %s [-v] [-d debug_level] [-p port] [-1 link]
testhostXn",argv[0]):

exit(-l):
}

Server = argv[optind]:
Serverhost = gethostbyname(Server):
if (Serverhost == NULL) {

fprintf(stderr,"Invalid server: %s\n",Server):
exit(l):

>

} /* Get_Options */
Int
main(int argc, char **argv, char **envp)
{

int m,t:
char buffer[8192] :
time_t now:
Get_Options(argc,argv):

131

FD_ZERO C&Exceptfds[1]) ;
FD_ZERO(&Writefds[1]):
FD_ZERO(ftReadfds(1]):
if (MTP_Init(0,Link.Id,Debug) < 0) {

fprintf (stderr,"MTP_Init Failed\n");
exit(-l):

}
CHECK (Null, open (Vdev/null" .0_WR0NLY) . "/dev/null”) ;
memcpy((char *)&Peer peerip.Serverhost >h_addr_list[0].4)
Peer peerport = Port;
Peer.appversion = 0; /*F1LE_VERS10N;*/
now = time(NULL);
printf("# MTP vs. TCP multiplicity test\n# %s %s#\n".

Server.ctime(&now));
fflush(stdout);
m = Mcount; t = Tcount;
Start = time(NULL);
if (!Noping)

Start_Ping();
while (m I I t) {

if (m) {
Start_MTP();
m - ;

}
if (t) {

Start_TCP();
t - - :

}
}

while (Mcount || Tcount) {
Exceptfds[0] = Exceptfds[1];
Writefds[0] = Writefds[l];
Readfds[0] = Readfds[l];
MTP_Event(&Readfds[0].ftWritefds[0].&Exceptfds[0].-1);
for (t = 0; t<TCPcount; t++)

if (FD_lSSET(TCP[t].&Readfds[0])) {
GUARD(err.read(TCP[t].buffer.8192)."read");
if (err == 0) Stop_TCP(t);
else Size[t] += err;

}
}

if (1 Noping) {
Stop_Ping();
printf("PING: % . lf\n".Ping.result);

>

return 0;

132

Appendix F: Simulator

sim.h

/*
** sim.h
simulation
* *
* /

Datastructures and headers for a simple TCP vs. MTP

#include <stdio.h>
#include <sys/types.h>
♦include <time.h>
♦include <sys/time.h>
♦include <limits.h>
♦include "sunos4.h”
♦define MODE_NONE 0
♦define MODE_MTP 1
♦define MODE_TCP 2
♦define STATE_NONE 0 /♦ Unused slot */
♦define STATE_SENT 1 /* Request or datagram has been sent */
♦define EVENT_NONE 0 /* Non-event */
♦define EVENT_ARRIVE 1 /♦ Message arrives correctly */
♦define
* /

EVENT_TIMEOUT 2 /* Message times-out after being dropped
♦define EVENT_LATE 3 /* Message times-out before arriving */
♦define EVENT_IGNORE 4 / * Message arrives but is ignored */
♦define TICKS 10000 / * Number of clock ticks per second */
♦define KBYTES 1 / * Number of kilobytes per message */
♦define DEFAULT_BW 1000 / * Default bandwidth in KB/s */
♦define DEFAULT_CONG 1 / * Default to no third-party traffic */
♦define DEFAULT_RTT 0.01 / * Default round trip time in seconds */
♦define INIT_WINDOW 4 / * Initial window size */
♦define BUFFER 8 / * Network buffer adjustment */
♦define MAX_LOSS 0.7 /* Max loss in graph mode */
♦define MAXMSG 128
♦define MAXWINDOW 96
typedef struct {

int state ; / * State of this subrequest */
int id; /* id number */
int ctime; /* Time this was created */
int sendtime; /♦ Time this was last sent */
int expect ; /* Time this message should arrive */
int event; /• Next expected event */
int eventtime ; /» Time event will occur */

} slot_t;
typedef struct {

double
int
int
int

lossrate;
bw;
rtt;
cong;

/*
/*
/»
/*

Packet loss factor */
Message delivery rate
Round trip time */
Congestion factor * /

133

int period ; /*
int maxload ; /*
int transit; /*
int load ; /*
int drop; / *
int lastarrive; / *

int f irstsend; / *
int window; / *
int total : / *
int received ; / *
int lost: / *
int maxwindow;
int late ; / *
int mindelay; / *
int maxdelay: / *
int totdelay; / *

} stat_t;

V
Number of pending arrivals */
Number of messages sent in past rtt/2
Number of pending timeouts */
Expected time of most future message
Earliest transiting send time */
Maximum messages in transit */
Total number of messages sent * /
Total received */
Total lost */
Messages arriving late */
Shortest receive time */
Longest receive time */
Total of receive times */

#define dprintf(level,format,args...) \
if (Debug >= (level)) printf(format , ## args)

extern slot_t
extern stat_t
extern int

Msg[MAXMSG]:
Stat:
Debug, CurrT, Mode, Graph, Flow;

extern int Find_Blank();

134

sim.c

/*
* *
* *
* /

sim.c - Simple simulation of TCP vs. MTP responses to data loss

finclude "sim.h"
#include "tcp.h"
finclude "mtp.h"
static char *id = "sim - 1.3 February 1998 - Seth Noble";
/*
** 1.3 - Add congestion parameter.
** Assume RTT parameter is minimum, not observed, RTT.
** Support TCP synchronicity.
* *

** 1.2 ' Calculate load based on transit.
** TCP employs exponential backoff.
** Increase time resolution to 1/10,000 of a second.

Employ network buffer.
TCP uses fast/slow start algorithm.

$ *
* *
* *
** 1.1 - Loss rate increases with transit.

TCP adjust window on every other ACK♦ *
* *

** 1.0 - Core error correction and flow control for TCP & MTP
** Fixed transmission rate and loss rates for network.
* /

slot_t Msg[MAXMSG];
stat_t Stat;
int Debug, CurrT, Mode, Graph, Flow, Packet;

int err;
fdefine CHECK(ret, code, error) \

if (((ret) - (code)) < 0) {perror(error);}
fdefine GUARD(ret, code, error) \

if (((ret) = (code)) < 0) {perror(error); exit(1);>
fdefine SENTRY(ret, code, error, tag) \

if (((ret) = (code)) < 0) {perror(error); return(-tag);}
int
Find_Blank()
{

int i :
for (i= MAXMSG-1; i>=0; i--)

if (Msg[i].state == STATE_NONE) return i;
return -1 ;

}

135

void
Inlt_Statl()
{

bzero(iStat,sizeof(stat_t));
Stat.bw = DEFAULT_BW / KBYTES:
Stat.cong = DEFAULT_CONG;
Stat.rtt = DEFAULT_RTT • TICKS;
Stat.lossrate = 0.0;
Stat.mindelay = INT_MAX;
Stat.window = INIT_WINDOW;

}

void
Init_Stat2()
{

/* First we have the standard bandwidth product */
Stat.maxload = Stat.bw • Stat.rtt / (Stat.cong * TICKS)
/* Now we add a buffering factor */

/* Stat.maxload += BUFFER;
if (IStat.maxload) Stat.maxload = 1;*/
if (Stat.maxload < BUFFER) Stat.maxload = BUFFER;

}
Stat.period = (Stat.cong*TlCKS)/Stat.bw;

void
Report 0
{

int transmitted = Stat.received+Stat.lost ;
/* double max = ((1.0 - Stat.lossrate) * CurrT *
Stat.window)/Stat.rtt;*/
/ * double max = (1.0 - Stat.lossrate) * transmitted;*/

double max = (((double)Stat.bw * CurrT)/(Stat.cong*TlCKS)) * (1.0-
Stat.lossra
te) ;

printf("Elapsed Time: %0.lfs\n",(double)CurrT/TlCKS);
printf("Requested %d messages :\tReceived %d\tLost %d\tLate %d\n",

Stat.total,Stat.received,Stat.lost,Stat.late);
if (transmitted > 0 && max > 0)
printf("Efficiency: %3d%%\tThroughput: %.IfXtUtilization:

%.lf%%\n".
lOO’Stat.received/(transmitted),
(100.0 * TICKS *Stat.received)/((double)CurrT*Stat.bw) ,
OOO.0*Stat. received)/max) ;

if (Stat.received > 0)
printf("Delay: %d/%d/%d\tHax Window; %d\n",

Stat.mindelay,Stat.totdelay/Stat.received,Stat.maxdelay,
Stat.maxwindow);

}

136

void
PlotO
{

int transmitted = Stat.received+Stat.lost ;
double max = (((double)Stat.bw * CurrT)/(Stat.cong*TICKS)) * (1.0-

Stat.lossra
te) :

if (transmitted == 0 j | max == 0) {
fprintf(stderr,"Cannot compute statistics: Transmitted %d. Max

%.Of\n",
transmitted, max);

return;
}

printf("%.2f\t%.2f\t%.2f\t%.2f\n".
Stat.lossrate,(100.0*Stat.received)/transmitted,
(TICKS * 100.0*Stat.received)/((double)CurrT*Stat.bw),
(100.0*Stat.received)/max);

}

int
Get_Options(int argc, char **argv)
/ *
** Parse the command line
*/
{

int c.EndT;
char *usage = "usage:\n %s [-vgp] [-m | -t] [-d debug] [-1 loss

rate] [-b ba
ndwidth] runlength\n":

extern char ‘optarg;
extern int optind/*, opterr*/;
Debug = 0; Mode = MODE_MTP; Graph = 0; Flow = 1; Packet = 0;
while ((c = getopt(argc,argv,”hd:vmtl:w:b:r :c :gp")) != -1)

switch (c) {
case 'm ':

Mode = MODE_MTP;
break;

case 't ’:
Mode = MODE_TCP;
break;

case d': /* Set debug output level */
Debug = atoi(optarg);
break;

case '1 ' :
Stat.lossrate = atof(optarg);
break ;

case b': /* Maximum Bandwidth */
Stat.bw = atoi(optarg) / KBYTES;
break ;

case 'r': /* Minimum Round Trip Time in ms */
Stat.rtt = atoi(optarg) * TICKS/1000;
break ;

case 'c ': /* Congestion Factor */
Stat cong = atoi(optarg);
break ;

case ’w': /* Disable flow control */
137

Stat.window = atoi(optarg);
Flow = 0;
break ;

case 'g ■:
Graph = 1 ;
break;

case p':
Packet = 1 :
break;

case ’v ‘: /* Display version number */
fprintf(stderr,"%s: %s\n",argv[0].id);
break;

case 'h ':
fprintf(stderr."%s: %s\n",argv[0].id);
fprintf(stderr,usage,argv[0]);
exit(O);

default:
fprintf(stderr,usage,argv[0]);
exit(-l);

}

if (optind < argc)
EndT = atoi(argv[optind]);

else {
fprintf(stderr,

"usage; %s [-v] [-d debug_level] runtimeXn",argv[0]) ;
exit(-1);

}

return EndT;
} /* Get_Options */
int
main(int argc, char **argv, char **envp)
{

int EndT, NextT;
double elow, ehi, einc, rate;
stat_t Template;
srand48(time(NULL));
Init_Statl0 ;
EndT = Get_Options(argc,argv);
Init_Stat2();
Template = Stat;
if (Graph) {

elow = 0.0; ehi = MAX_LOSS; einc = Stat.lossrate;
setlinebuf(stdout);

}
else { elow = Stat.lossrate; ehi = Stat.lossrate+0.5 ; einc = 1.0; }
if (Packet) {

dprintf(2,"Simulation %d messagesXn",EndT);
} else {

dprintf(2,"Simulation %ds\n",EndT);
EndT *= TICKS;

>

for (rate = elow; rate < ehi; rate += einc) {
138

Stat.lossrate = rate;
bzero(Msg,sizeof(slot_t)*MAXMSG);
switch (Mode) {
case MODE_MTP:

NextT = Init_MTP():
break ;

case MODE_TCP:
NextT = Init_TCP();
break;

default:
abort 0 ;

}
for (CurrT = NextT;

Packet?(Stat.received<EndT):(CurrT < EndT);
CurrT = NextT) {

dprintf(4."==== Time: %d ===\n”, CurrT);
switch (Mode) {
case MODE_MTP:

NextT = Process_MTP();
break ;

case MODE_TCP:
NextT = Process_TCP();
break ;

>
if (Stat.window > Stat.maxwindow) Stat.maxwindow = Stat.window;

}

if (CurrT == INT_MAX) abort ();
if (Graph) {

PlotO ;
Stat = Template;

} else Report 0 ;
>

return 0;

139

mtp.h

typedef struct {
int repeat; /* Repeat interval */
int expire; /* Transaction expiration interval */
int flowtimeout; /♦ MTP flowtiaeout variable •/

} mtp_t;

mtp.c

extern int Init_MTP();
extern int Process_MTP() ;
finclude "sim.h"
finclude "mtp.h"
static mtp_t Mtp;
static int lr/*,rbw*/;
int
Init_MTP()
/ *
* * Initialize the MTP simulator to a steady state.
* *
** Space out arrival rate in proportion to bw; Send/arrive every 1/bw
seconds
« *

» *
*/
{

NOTE: MTP's actual repeat timer is based upon observed RTT

int i ;
Stat.transit = Stat.window;
Mtp.repeat = 4*(Stat.rtt+Stat.period);
if (Mtp.repeat < 500) Mtp.repeat = 500;
Mtp.expire = 30*TICKS;
Mtp.flowtimeout = 0;
Stat total = Stat.transit ;
for (i=0; i < Stat.transit ; i++) {

Msg[i].state = STATE_SENT;
Msgii].id = i;
Msg[i].ctime = i*Stat.period;
Msgii].sendtime = Msg[i].ctime
Msg[ij.event = EVENT_ARRIVE;
Msgii].eventtime = Msg[i].ctime + Stat.rtt;
dprintf(3 Init %d: Sent %d. Arrives %d\n",

i,Msg[i].sendtime, Msg[i].eventtime)
>
Stat.lastarrive = Msg(i-1].eventtime ;
Ir = Stat.lossrate*INT_MAX;

/* rbw = TICKS/Stat.bw;*/
/*printf("BW; %d\trbw: %d\n”,Stat.bw,rbw);*/

return Msg[0].eventtime ;
} /* Init_MTP */

140

static inline void
Calc_Load()
/ •
•* Calculate the immediate network load by counting the number of
messages

which were sent more than rtt/2 ago but less than rtt.* *
* *
♦ * Note that MTP requests are sent at their sendtime while the message
•* itself is sent rtt/2 later. The message is received after rtt.
* /
{

int i, cutoffl=CurrT-Stat.rtt/2,cutoff2=CurrT-Stat.rtt:
Stat.load = 0;
for (i=0; i< MAXMSG; i++)

if (Msg[i].state > STATE_NONE &&
Msg[i].sendtime >= cutoff2 &&
Msg[i].sendtime < cutoff! &&
Msg[i].event != EVENT_TIMEOUT)

Stat.load++;
»/

Stat.load = Stat transit/2;
if (Stat.load >= Stat.maxload && Debug >= 2)

printf("MAXLOAD\n");
} /* Calc_Load •/
static inline void
Decide_Message(int i)
/*
* * Decide whether or not a message will be delivered
*/
{

int currbw;
int dropit,earlyslot;
if (Debug >= 3) {

if (Stat.lastarrive > CurrT)
currbw = TICKS * Stat.transit / (Stat.lastarrive - CurrT);

else {
/* This can happen even if transit is 1, provided this message

has expired at the same the one in transit will arrive */
if (Stat.transit > 1 ||

(Stat transit == 1 && Msg[i],event != EVENT_T1ME0UT)) {
fprintf(stderr,"Bad arrival timesXn");
abort 0 ;

}
currbw = 0;

}
printf("\tTransit %d / (Last %d - %d) = Current BW %d\n" ,

Stat.transit,Stat.lastarrive,CurrT,currbw);
}

Msg[i].expect = Msg[i].sendtime + Stat.rtt;
earlyslot = Stat.lastarrive + Stat.period;
if (Msgii].expect < earlyslot) Msg[i].expect = earlyslot;
dropit = (Stat.load >= Stat.maxload || lrand48() < Ir);

141

/ *
printf ("Load %d\tMaxload %d\tDrop?
%d\n",Stat.load,Stat.maxload,dropit);
printf ("Send %d\tRTT %d\tRepeat
%d\n",Msg[i].sendtime.Stat.rtt,Mtp.repeat);
*/

if (dropit II Msg[i].expect > Hsg[i].sendtime + Mtp.repeat) {
Msg[i].event = EVENT_TIMEOUT;
Msg[i].eventtime = Msg[i].sendtime + Mtp.repeat;

} else {
Msg[i].event = EVENT_ARRIVE:
Msgîi].eventtime = Msg[i].expect ;

>

if (dropit) Stat.drop++;
else {

/* We only count this message against available bandwidth if
it is going to arrive. */

Stat.transit++;
}
/* But we leave a hole even if it is dropped * /
if (Msg[i].expect > Stat.lastarrive) Stat.lastarrive = Msg[i].expect:

} /* Decide_Message */
static void
New_Message(int i)
/*
** Generate a new message and determine its fate
* /
{

Msg[i].state = STATE_SENT;
Msg[i]. id = Stat.total;
Msg[i].ctime = CurrT;
Msg[i].sendtime = Msg[i].ctime;
Decide_Message(i);
Stat.total++;
dprintf(2 4d: Requested %.3d (will %s at %d)\n“.

CurrT,Msg[i] id,(Msg[1].event==EVENT_TIMEOUT)?"timeout":"arrive",
Msg[i].eventtime);

} / * New_Message */
int
ProcessJMTP()
/*

Update the state of MTP messages* *
*/
{

int i, next = INT_MAX, delay, new;
/ * Calc_Load0 ;*/
Stat.load = Stat transit/2;
if (Stat.load >= Stat.maxload ft& Debug >= 2)

printf("MAXLOAD %d %d\n",Stat.load,Stat maxload);
for (i=0; 1 < MAXMSG; i++) {

if (Msg[i].state > STATE_NONE) {
if (Msg(i].eventtime < Msg[i].sendtime) {

fprintf(stderr,"Bad Event/Send times\t%d %d\n'
142

raise\n")

Msg[l].eventtime. Msg[i].sendtime):
abort 0 ;

}
if (Msg[i].eventtime <= CurrT) {

switch (Msg[i].event) {
case EVENT_ARRIVE;

Stat.received++;
Stat.transit-- ;
delay = CurrT - Msg[i].ctime;
if (delay < Stat.mindelay) Stat.mindelay = delay;
if (delay > Stat.maxdelay) Stat.maxdelay = delay;
Stat.totdelay += delay;
dprintf(2 4d: Received %.3d after %d\n".

CurrT,Msg[i].id,delay);
if (Flow) {

Mtp.flowtimeout-- ;
if (Mtp.flowtimeout < -2*Stat.window &&

Stat.window < MAXWINDOW) {
Stat.window++;
dprintf(1,"Raise_Flow %d\n",Stat.window);
if (Stat.window <= Stat.transit+Stat.drop)

fprintf(stderr,"Still over window after

Msg[new].eventtime;

}
}

abort 0 ;
}
new = Find_Blank();
if (new < 0) {

fprintf(stderr,"Message Table Full!\n");
abort 0 ;

}
New_Message(new);
if (Msg[new].eventtime < next) next =
Mtp.flowtimeout = 0;

if (Stat.transit+Stat.drop <= Stat.window) {
New_Message(i);

} else {
Msg[i].state = STATE_NONE;
Msg[i].eventtime = INT_MAX;

}
break;

case EVENT_TIMEOUT:
Stat.lost++:
Stat.drop-- ;
dprintf(1,"%.4d: Lost %.3d\n",CurrT,Msg[i].id)
if (Msg[i].expect > CurrT) {

/* This message is still in transit */
new = Find_Blank();
if (new < 0) {

fprintf(stderr,"Message Table Full!\n“);
abort 0 ;

}
Msg[new] = Msg[i];
Msg[new].event = EVENT_LATE;
Msg[new].eventtime = Msg[new].expect;

}
143

if (Flow) {
Mtp.flowtimeout-- ;
if (Mtp.flowtimeout < 0 && Stat.window >1) {

Stat.window--;
dprintf(1,"Lower_Flow %d (%d)\n",

Stat.window,Stat.transit);
}
if (Stat.window > 3)

Mtp.flowtimeout = Stat.window;
else

Mtp.flowtimeout = 3;
}

Msg[i].sendtime = CurrT;
Decide_Message(i);
break;

case EVENT_LATE:
Stat.transit-- ;
Stat.late++;
dprintf(1,"%.4d: Late %.3d\n",CurrT,Msg[i].id);
Msg[i].state = STATE_NONE;
break;

default :
fprintf(stderr,"Double Crap!\n”) :
abort 0 :

} /* switch */
> /• if */
if (Msg[i].state > STATE_NONE &&

Msg[i].eventtime < next) next = Msg[i].eventtime ;
} /• if */

} /* for */
return next;

} /* Process_MTP */

144

tcp.h

typedef struct {

int
int
int

/

}

int
int
int

tcp_t;

repeat;
expire:
dropcount;
f lowtimeout;
backoff;
ssthresh;

extern int Init_TCP();
extern int Process_TCP();

/* Repeat interval */
/* Transaction expiration interval */
/• Count of datagrams that will be lost

/ * Seconds to wait for retransmission */
/* Slow start threshold * /

tcp.c

♦include "sim.h"
♦include "tcp.h"
static tcp_t Tcp;
static int lr/*,rbw*/;
♦define TCPTV_MIN (1)
♦define TCPTV_REXMTMAX (64)
♦define WINDOW_MIN (1)

/* Minimum repeat interval * /
/ * Maximum repeat interval */
/* Minimum window size */

int
Init_TCP()
/ *
* * Initialize the MTP simulator to a steady state.
* /
{

int i ;
Stat.transit = Stat.window;
Tcp.repeat = TCPTV_MIN*T1CKS;
Tcp.expire = 3*60*TICKS;
Tcp.dropcount = 0;
Tcp.backoff = 1;
Tcp.ssthresh = 2;
Stat.total = Stat.transit ;
/• SYNCRHONICITY EFFECT */
Stat.maxload /= Stat cong;
if (Stat.maxload < 1) Stat maxload = 1;
for (i=0; i < Stat.transit ; i++) {

Msg[i].state = STATE_SENT;
Msg[i].id = i;
Hsgiij.ctime = i*Stat.period ;
Msg[i].sendtime = Msg[i].ctime;
Msg[i].event = EVENT_ARRIVE;
Msg[ij.eventtime = Msg[i].ctime + Stat.rtt;
dprintf(3 Init %d: Sent %d, Arrives %d\n",

145

l,Usg[i].sendtime, Msg[i].eventtime);
}
Stat.lastarrive = Msg[i-1].eventtime ;
Ir = Stat.lossrate*INT_MAX;

/* rbw = TICKS/Stat.bw;*/
return Msg[0].eventtime ;

} /* Init_TCP */
static inline void
Calc_Load()
/ *

Calculate the immediate network load by counting the number of
messages
** which were sent in the past rtt/2.
* *

** Note that TCP messages are sent at their sendtime arrive rtt/2
later.
** The ACK is received after rtt.
* *

* /
{
/*

int i, avgrtt, cutoff;
if (Stat.lastarrive > CurrT) {

avgrtt = (Stat.lastarrive - CurrT)/2;
cutoff=CurrT-avgrtt/2;

} else
cutoff = CurrT -Stat.rtt/2;

Stat.load = 0;
for (i=0; i< MAXMSG; i++)

if (Msg[i].state > STATE_NONE &&
Msg[i].sendtime >= cutoff &&
Msg[i].event != EVENT_TIMEOUT)

Stat.load++;
* /

Stat.load = Stat.transit/2 ;
/*printf("LOAD %d\n".Stat.load); */

if (Stat.load >= Stat.maxload && Debug >= 2)
printf("MAXLOAD\n");

} /* Calc_Load */
static inline void
Decide_Message(int i)
/*
** Decide whether or not a message will be delivered
* /

{
int currbw;
int dropit,earlyslot;
if (Debug >= 3) {

if (Stat.lastarrive > CurrT)
currbw = TICKS * Stat.transit / (Stat.lastarrive - CurrT);

else {
/* This can happen even if transit is 1, provided this message

has expired at the same the one in transit will arrive */
if (Stat.transit > 1 ||

146

}

(Stat.transit == 1 ft& Msg[i].event != EVENT_TIMEOUT)) {
fprintf(stderr."Bad arrival timesXn”) ;
abort 0 :

}
currbw = 0:

}
printf("\tXransit %d / (Last %d - %d) = Current BW %d\n",

Stat.transit,Stat.lastarrive,CurrT.currbw);

Msg[i].expect = Msg[i].sendtime + Stat.rtt;
earlyslot = Stat.lastarrive + Stat.period;
if (Msg[1].expect < earlyslot) Msg[i].expect = earlyslot;
dropit = (Stat.load >= Stat.maxload || lrand48() < Ir);
if (dropit II Msg[i].expect > Msg[1].sendtime + Tcp.repeat) {

/* Message cannot be delivered in time */
Msg[i].event = EVENT_TIMEOUT;
Msg[i].eventtime = Msg[1].sendtime + Tcp.repeat;

} else {
/ * Message may be delivered on time */
Msg[i].event = EVENT_ARRIVE;
Msg[i].eventtime = Msg[i].expect;

>

if (Tcp.dropcount) {
/ * This message is part of a window that will not be acknowledged
if (dropit) {

/* This is a non-event. The message will never arrive and the
receiver will never notice. */

Msg[i] state = STATE_NONE;
Msg[i].event = EVENT_NONE;
Msg[i].eventtime = INT_MAX;

} else {
/* The message will arrive (consuming bandwidth) but be ignored

}

Msg[i].event = EVENT_IGNORE;
Msg[i].eventtime = Msg[i].expect ;

Tcp .dropcount - ;*/
} else if (dropit || Msg[i].expect > Msg[i].sendtime + Tcp.repeat) {

/* Timeout will cause loss of the rest of the window */
Tcp dropcount = 1; /*Stat.window-1 ;*/
/* Note that it is possible for a late ACK to arrive in the

middle of transmitting a redundant window. It's not clear
what the typical TCP behavior would be, but it is very
unlikely to happen, so we ignore it. */

}

if (Msg[i].state == STATE_NONE) return;
if (dropit) Stat.drop++;
else {

/* We only count this message against available bandwidth if
it is going to arrive. ♦/

Stat.transit++;
}
/ * But we leave a hole even if it is dropped */

147

if (Msg[i].expect > Stat.lastarrive) Stat lastarrive
Msg[i].expect;
} /* Decide_Message */

148

static void
New_Message(int i)
/ *
** Generate a new message and determine its fate
*/
{

char ’event:
Msg[i],state = STATE_SENT;
Msgiij.id = Stat.total;
Msg[i].ctime » CurrT;
Msg[i].sendtime = Hsg[i].ctime;
Decide_Message(i):
Stat.total++;
if (Debug >» 2) {

switch (Msg[i].event) {
case EVENT_NDNE:

event = "never arrive";
break;

case EVENT_ARRIVE;
event = "arrive”;
break;

case EVENT_TIMEOUT:
event « "timeout";
break;

case EVENT_LATE:
event = "arrive late";
break;

case EVENT_IGNORE;
event = "be ignored";
break;

default :
event = "UNKNOWN EVENT!I!I! " ;

}
printf("%.4d: Sending %.3d (will %s at %d)\t[dc %d]\n",

CurrT,Msg[i].id,event,Msg[i].eventtime,Tcp.dropcount)
}

} /• New_Message */
int
Process_TCP()
{

int i, J, next = INT_MAX, delay, new, growthresh;
/* Calc_Load();*/
Stat .load = Stat.transit/2 ;
if (Stat.load >= Stat.maxload && Debug >= 2)

printf("MAXLOAD %d %d\n",Stat.load,Stat.maxload);
for (i=0; i < MAXMSG; i++) {

if (Msg[i].state > STATE_NONE) {
if (Msg[i].eventtime < Msg[i].sendtime) {

fprintf(stderr,"Bad Event/Send times\t%d %d\n",
Msg[i].eventtime, Msg[i].sendtime);

abort 0 ;
}
if (Msg(i].eventtime == INT_MAX) {

fprintf(stderr,"Bad send time\n");
abort 0 ;

}
149

if (Msg[i].eventtime <= CurrT) {
switch (Msg[i].event) {
case EVENT_ARRIVE:

/* This data was accepted and acknowledged */
Stat.received++;
Stat transit - ;
delay = CurrT - Msg[i].ctime;
if (delay < Stat.mindelay) Stat.mindelay = delay;
if (delay > Stat.maxdelay) Stat.maxdelay = delay;
Stat.totdelay += delay;
dprintf(2,"%.4d: Received ACK %.3d after %d\n".

CurrT.Msg[i] id.delay);
if (Flow) {

Tcp.flowtimeout-- ;
if (Tcp.backoff >1) {

Tcp.backoff = 1 ;
Tcp.repeat = TCPTV_MIN*TICKS;

>

/* It appears that the typical slow start threshold is
set equal to the minimum window size, meaning that
the exponential growth will never happen. */

if (Stat.window > Tcp.ssthresh)
growthresh = -Stat.window ;

else
growthresh = -1;

if (Tcp.flowtimeout <= growthresh &&
Stat.window < MAXWINDOW) {
Stat.window++;
dprintf(1."Raise_Flow %d\n".Stat.window);
new = Find_Blank();
if (new < 0) {

fprintf(stderr."Message Table Full!\n");
abort 0 ;

}
New_Message(new);
if (Msg[new].eventtime < next) next =

Msg[new].eventtime;
Tcp.flowtimeout = 0;

}
}

/ * Send the next datagram */
if (Stat.transit+Stat.drop <= Stat.window) {

New_Message(i);
} else {

Msg[i].state = STATE_NONE;
Msg[i].eventtime = INT_MAX;

}
break;

case EVENT_TIMEOUT:
Stat.lost++;
dprintf(1."%.4d: Lost %.3d\n".CurrT.Msg[i].id);
if (Msg[i].expect > CurrT) {

/• This message is still in transit */
Msg[i].event = EVENT_LATE;
Msg[i].eventtime = Msg[i].expect ;

> else {
/* The message is simply gone ♦/

150

Msg[i].State = STATE_NONE:
Msgïl].eventtime = INT_MAX;
Stat.drop-- ;

}

if (Flow /*&& !Tcp.dropcount*/) {
Tcp.ssthresh = Stat.window/2;
if (Tcp.ssthresh < 2) Tcp.ssthresh == 2:
Stat.window = WINDOW_MIN;
if (Tcp.repeat < TCPTV_REXMTMAX * TICKS) {

Tcp.backoff = Tcp. backoff«l ;
Tcp.repeat = Tcp.backoff * TICKS;

}

dprintf(1,"Lower_FIow %d (%d+%d) < %d\n" ,
Stat.window,Stat.transit,Stat.drop,Tcp.ssthresh):

T cp.flowtimeout = 0 ;
}
Tcp.dropcount = 0;

IGNORE •/
/* Now we have to resend the entire window */
/* The repeated messages should have been marked for
for (j=0; J < Stat.window: J++) {

new = Find_BIank();
if (new < 0) {

fprintf(stderr,"Message Table FuII!\n");
abort 0 :

}
New_Message(new);
if (Msg[new].eventtime < next) next =

Msg[new] eventtime;
}
break ;

case EVENT_LATE:
Stat.transit-- ;
Stat.Iate++;
dprintf(1."%.4d: Late %.3d\n",CurrT,Msg[i].id);
Msg[i].state = STATE_NONE;
break;

case EVENT_IGNORE:
Stat.transit-- ;
dprintf(l."%.4d: Ignored %.3d\n".CurrT,Msg[i].id)
Msg[i].state = STATE_NGNE:
break;

default;
fprintf(stderr,"Double Crap!\n");
abort0 ;

} /* switch */
} /* if */
if (Msg[i].state > STATE_NONE &&

Msg[i].eventtime < next) next = Msg[i].eventtime;
> /* if */

} /* for */
return next;

} /* Process_TCF */

151

