
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

OPTIMIZATION OF PARAMETERS FOR

BINARY GENETIC ALGORITHMS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

By

PEDRO A. DIAZ-GOMEZ
Norman, Oklahoma

2007

UMI Number: 3291938

3291938
2008

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

 by ProQuest Information and Learning Company.

OPTIMIZATION OF PARAMETERS FOR
BINARY GENETIC ALGORITHMS

A DISSERTATION APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

By

Dr. Dean F. Hougen, Chair

Dr. John K. Antonio

Dr. Amy McGovern

Dr. Andrew H. Fagg

Dr. Monte P. Tull

c© Copyright by PEDRO A. DIAZ-GOMEZ 2007
All Rights Reserved.

Dedication

This dissertation is dedicated to the memory of my parents; to my wife Emiliana, my sons

and daughters Pedro Arturo, Ana Maria Carolina and David; to all my family, specially

Amelio, Purita and Fanny Esperanza, my parents in law, my brothers in law; Dr. Dean F.

Hougen, Dr. John K. Antonio, Dr. Millie Audas, Emily Smith, Yoana Walschap and my

Professors at The University of Oklahoma.

Acknowledgments

I would like to thank Dr. Dean Hougen, for his teaching, support and patience; Dr. John

Antonio, Dr. Amy McGovern, Dr. Andrew Fagg, Dr. Monte Tull, and Dr. Linda DeBrun-

ner for being part of my committee; Dr. Sudarshan Dhall, Dr. Henry Neeman, Dr. Sesh

Commuri, and all my professors at OU, from whom I learned not only in the classroom,

but with example, the way to do science and be better. Thanks a lot.

iv

Contents

Acknowledgments iv

List of Tables viii

List of Figures xii

Abstract xxiii

1 Introduction 1
1.1 The Problem: Improving the Performance of Genetic Algorithms 2
1.2 The Problem in Detail: Optimization of Parameters for Genetic Algorithms 3

2 Foundations of Genetic Algorithms 8
2.1 The Schema Theorem . 10
2.2 Selection Mechanism . 12
2.3 Genetic Operators . 13

2.3.1 Crossover . 14
2.3.2 Mutation . 17

3 State of Research of the Intrusion Detection Problem 19
3.1 The Intrusion Detection Problem . 19
3.2 A Genetic Algorithm Approach to Misuse Detection 21
3.3 Fitness Functions for Misuse Detection 22

3.3.1 Analysis of GASSATA’S Fitness Function 24
3.3.2 An Improved Fitness Function 27

4 State of Research on the Snake-in-the-Box Problem 30
4.1 The Snake-in-the-Box Problem . 30
4.2 A Genetic Algorithm Approach to Hunting Snakes 33

5 Theoretical Results 36
5.0.1 Possible Factors that Influence the Initial Population 36
5.0.2 Metrics to Evaluate Diversity . 38

v

5.0.2.1 Grefenstette Bias . 39
5.0.2.2 Gene-Level Entropy 40
5.0.2.3 Chromosome-Level Hamming Distance 41
5.0.2.4 Chromosome-Level Neighborhood Metric 41
5.0.2.5 Population-Level Center of Mass 42

5.0.3 Analysis of Metrics . 44
5.0.4 Conclusions . 45

5.1 Parameter Tuning in Fitness Functions 46
5.1.1 A Dynamic Fitness Function . 47
5.1.2 Additional Contributions . 48

5.1.2.1 Abnormal and Abnormal Exclusive 49
5.1.2.2 Pseudo Intrusions ς 49

5.1.3 Fitness Functions for Hunting Snakes 50
5.1.3.1 A Normalized Fitness Function 50
5.1.3.2 A Length-Differential Fitness Function 54
5.1.3.3 A Single-Length-Dependent Fitness Function 56
5.1.3.4 A Quadratic Fitness Function 57
5.1.3.5 A Linear Fitness Function that Takes into Account Lazy

Points . 57
5.1.3.6 A Linear Fitness Function that Takes into Account Lazy

and Isolated Points . 59
5.1.3.7 A Rational Fitness Function 60

5.1.4 Additional Contributions . 61
5.1.4.1 Mathematical Conjectures on the Snake-In-The-Box Prob-

lem . 61
5.1.4.2 Snakes’ Fitness Evaluation 64
5.1.4.3 Open Questions . 66

5.1.5 Conclusions . 67
5.2 Crossover Rate vs. Mutation Rate . 68

5.2.1 The Schema Theorem Trade-Off 70
5.2.2 Conclusions . 73

6 Exploratory Study 74
6.1 Initial Population . 74

6.1.1 Error-Detecting Codes . 75
6.1.2 The One-Max Function . 77
6.1.3 Conclusions . 78

6.2 Parameter Tuning in Fitness Functions 79
6.2.1 Avoiding False Negatives . 81
6.2.2 Additional Contributions . 84

6.2.2.1 Enlarging the Number of Intrusions 84
6.2.2.2 Two Different Approaches to Misuse Detection 85

vi

6.2.3 Fitness Functions to Hunt Snakes in Hypercubes 93
6.2.4 Additional Contributions . 105

6.2.4.1 Snakes’ Fitness Evaluation 105
6.2.5 Conclusions . 106

6.3 Crossover Rate vs. Mutation Rate . 108
6.3.1 The One-Max Function . 108
6.3.2 One-Max Variant . 110
6.3.3 Open Paths in 8-Dimensional Hypercubes 112
6.3.4 Selection Pressure . 114
6.3.5 Additional Contributions . 117
6.3.6 Conclusions . 126

7 Hypotheses, Experiments, and Results 133
7.1 Diversity & Performance . 134

7.1.1 Results for Specific Hypothesis 1.1 137
7.1.2 Results for Specific Hypothesis 1.2 149
7.1.3 Results for Specific Hypothesis 1.3 149
7.1.4 Results for Specific Hypothesis 1.4 161
7.1.5 Results for Specific Hypothesis 1.5 161
7.1.6 Results for Specific Hypothesis 1.6 180
7.1.7 Results for Specific Hypothesis 1.7 181
7.1.8 Results for Specific Hypothesis 1.8 200

7.2 Internal vs. External Parameters . 201
7.2.1 Results for Specific Hypothesis 2 204

7.3 The Selection Pressure and Crossover and Mutation Probabilities Rela-
tionship . 208
7.3.1 Results for Specific Hypothesis 3.1 211
7.3.2 Results for Specific Hypothesis 3.2 216

8 Discussion 228
8.1 Hypothesis 1: Diversity in the Initial Population and Performance of GAs 229
8.2 Hypothesis 2: Joining Objective(s) and Constraint(s) in Fitness Functions 231
8.3 Hypothesis 3: Interrelation Between pc, pm and Sp 233

9 Conclusions 237
9.1 Diversity in Initial Population and GA Performance 238
9.2 Internal vs. External Parameters . 239
9.3 The Selection Pressure and Crossover and Mutation Relationship 241

Reference List 242

vii

List of Tables

2.1 Initial set B(0) of 10 chromosomes and some schema. 15
2.2 Set B(1) of chromosomes after crossing over some pairs of chromosomes

from set B(0). Two new schema S4 and S5 have emerged. 15

3.1 User 2051 at 11:00 am; α = N2
e /2; β = 1; 500, 000 generations; 11 runs. 25

3.2 Test with different input files; α = N2
e /2; β = 1; 500, 000 generations;

10 runs. 27
3.3 Robustness of the GA in doing misuse detection. Averaged over 10 runs. . 28

4.1 Lengths of longest known snakes. Casella and Potter (2004). 32
4.2 Comparison of three fitness functions to hunt snakes reported by Bitter-

man (2004). 8-dimensional hypercube. 34
4.3 Comparison of selection mechanisms to hunt snakes reported by Bitter-

man (2004). 8-dimensional hypercube. 35

5.1 Initial population as a matrix of 1′s and 0′s. 43
5.2 Plan τ for hunting snakes in a 4-Dimensional hypercube. 53
5.3 Results with fitness function as in Equation 5.17. 54
5.4 Results with fitness function as in Equation 5.18. 55
5.5 Results with fitness function as in Equation 5.19. 56
5.6 Results with fitness function as in Equation 5.20. 58
5.7 Results with fitness function as in Equation 5.21. 58
5.8 Results with fitness function as in Equation 5.22. 60
5.9 Results with fitness function as in Equation 5.23. 61
5.10 Conjecture 1 of lower bound in the number of points in longest snakes

vs. theoretical (Weisstein, 2006) and empirical (Casella and Potter, 2004)
findings. 62

5.11 Upper bound of number of points of longest snakes in hypercubes. Klee
(1970) and Snevily (1994) correspond to upper bounds for coils. Casella
and Potter (2004) corresponds to empirical findings for snakes. 64

6.1 Case I: Structured Initial Population. Perfect Population Diversity, Center
of Mass (x1,y1) = (x0,y0) = (6,6). 75

viii

6.2 Case II: Structured Initial Population. Perfect Gene Diversity, H(P(0)) =
1.0. 76

6.3 Measuring a Random Initial Population of 11 Individuals. Chromosome
Length 11. 30 Runs. 76

6.4 Measuring a Random Initial Population of 16 Individuals. Chromosome
Length 15. 30 Runs. 77

6.5 Difficulty in tuning of external parameters. Comparison of three fitness
functions. (•): Without the union operator. (?): With the union operator.
30 runs per parameter setting. 81

6.6 Average number of generations per user/activity and I length. Union op-
erator used. 83

6.7 Average number of generations per user/activity and I length. Union op-
erator not used. 83

6.8 Enlarging the number of intrusions in the AE matrix to 48, 144, 528 and
1, 008 intrusions. False negatives appears. 85

6.9 Intrusions Ip found by a neural network. 89
6.10 Event type, vector of observations OV and constraint comparison using

solution I—shown in Table 6.9—which does not violate the constraint. . 91
6.11 A Subset of intrusions S2 that violates the constraint with subset S1 found

by a GA. 91
6.12 Vector of observations OV ′. Same Solution I—shown in Table 6.9—

which does not violate the constraint. 92
6.13 Second Phase. A Subset of intrusions S2 that violates constraint with

subset S1 found by iterative process. 92
6.14 Adjacency Matrix (AM) for a 3-dimensional hypercube, Snake (S) 0 −

1− 3− 7− 6, and Vector of Neighbors (VN). 94
6.15 Results of snakes in a 4-dimensional hypercube; different fitness func-

tions; ≤ 1, 000 generations; 30 runs. 95
6.16 K-S test results for snakes. Probability of results assuming the null hy-

pothesis. ≤ 1, 000 generations. 30 runs per fitness function. 96
6.17 Results of number of generations for hunting longest snakes in a 4-dimensional

hypercube; different fitness functions; 30 runs. 96
6.18 K-S test results for longest snakes. Probability of results assuming the null

hypothesis. Number of generations until longest snake found. 30 runs per
fitness function. 104

6.19 Quartiles for fitness functions to hunt snakes. Number of generations until
longest snake found. 30 runs per fitness function. 104

6.20 Number of generations for different fitness functions in finding longest
snakes in a 4-dimensional hypercube. Initial population randomly gener-
ated with different seeds. 30 runs per seed for each fitness function. . . . 105

6.21 Improvement of the one-max GA in solution quality and cost when crossover
and/or mutation are included in procedure τ . 30 runs. 110

ix

6.22 Improvement of the one-max GA in solution quality with no selection
pressure. 111

6.23 Finding snakes in a 8-d hypercube. Initial population provided with one
7-d snake of length 49. 114

6.24 Finding snakes in a 8-d hypercube. Initial population from scratch. 114
6.25 Influence of selection pressure on the quality of the solution for the One-

Max Function. First part with no mutation. Second part, when Schema
Theorem trade-off is obeyed. pc = 1. 115

6.26 Influence of selection pressure on the quality of the solution for snakes
in 8-dimensional hypercubes. Left part change of Sp without mutation
change. Right part, when Schema Theorem trade-off is obeyed. 1, 000
Iterations. 1, 000 individuals. 30 runs per (Sp,pc,pm). 117

6.27 Selection pressure and its influence on the quality of the solution for
snakes in 8-dimensional hypercubes. Initial population provided with one
7-dimensional snake of length 49. pm = 0.001. 1, 000 Iterations. 1, 000
individuals. 30 runs per each parameter set. 118

6.28 Characteristics of open paths obtained when proportional selection used.
Initial population provided with one 7-dimensional snake of length 49.
pc = 0.2, pm = 0.001. 1, 000 Iterations. 1, 000 individuals. 30 runs. . . . 118

6.29 Results for hunting longest snakes in a 4-dimensional hypercube; different
fitness functions; mutation rate pm = 3% and as in Equation 6.14; 30 runs. 122

6.30 T-test for hunting longest snakes in a 4-dimensional hypercube; differ-
ent fitness functions; adaptive mutation rate; number of generations until
longest snake found; Probability of results given the null hypothesis is
shown; 30 runs per fitness function . 123

6.31 Average number of generations for hunting longest snakes in a 4-dimensional
hypercube; different fitness functions; different mutation rates; 30 runs. . 123

6.32 Average solution quality and cost for different plans for the one-max func-
tion. 128

6.33 Ave. of ave. of # of times the solution quality of ≥ 95% is reached and,
ave. of ave. of # of generations, over all pc as in Figure 6.44, when Sp is
increased. Initial population from scratch. pm = 0.0012 constant. Max.
generations 2, 000. 30 runs. 130

7.1 Specific hypotheses to test for general hypothesis 1. 135
7.2 Pearson’s Coefficient for the one-max problem. Entropy metric used. No

significant linear correlation found. 138
7.3 Fisher’s Coefficient for the one-max problem. No significant linear corre-

lation found. 138
7.4 Pearson’s Coefficient for the one-max problem. Hamming metric used.

No linear correlation found. 150
7.5 Fisher’s Coefficient for the one-max problem. Hamming metric used.

Zero correlation found. 150

x

7.6 Pearson’s Coefficients for the Snake-in-the-box problem. Entropy metric.
No linear correlation found. 162

7.7 Fisher’s Coefficients for the Snake-in-the-box problem. Entropy metric.
No linear correlation found. 162

7.8 Pearson’s Coefficients for the Snake-in-the-box problem. Hamming Met-
ric. No linear correlation found. 182

7.9 Fisher’s Coefficients for the Snake-in-the-box problem. Hamming Metric.
No linear correlation found. 182

7.10 Average of false positives, false negatives, and the corresponding Hanssen
& Kuipers’ Score given by Equation 7.4, using different setting for exter-
nal parameters α and β. 30 runs per parameter setting. 205

7.11 Comparison between best fitness functions as shown in Table 7.10 and
fitness function as in Equation 7.3. 30 runs per scenario per Equation. . . 206

7.12 Average of false positive given by Equation 7.4. 30 runs per scenario. . . 206
7.13 Hanssen & Kuipers’ scores given by Equation 7.4 for averages as in Tables

7.11 and 7.12. 206
7.14 Statistics for data set U satisfying Equation 7.5 and data set V that does

not satisfy Equation 7.5. One-max problem. 10 runs per triple. 211
7.15 ANOVA test for the one-max problem at generation 20. 215
7.16 Statistics for maximum length of snakes for data set U that satisfies Equa-

tion 7.5 and data set V that does not satisfy Equation 7.5. Snake-in-the-
box problem in 8-dimensional hypercube. 10 runs per triple. Initial pop-
ulation randomly generated. 216

7.17 ANOVA test for the snake-in-the-box problem at generation 100. Initial
population randomly generated. 226

7.18 Statistics for maximum length of snakes of data set U that satisfies Equa-
tion 7.5 and data set V that does not satisfies Equation 7.5. Snakes-in-
the-box problem in 8-dimensional hypercube. 10 runs per triple each Sp.
Half of the population with schema the GA has to look for and half of the
population randomly generated. 226

7.19 ANOVA test for the snake-in-the-box problem at generation 100. Initially
half of the population with schema the GA has to look for and half of the
population randomly generated. 227

7.20 Statistics for maximum length of snakes of data set U that satisfy Equation
7.5 and data set V that does not satisfy Equation 7.5. Snake-in-the-box
problem in 8-dimensional hypercube. 10 runs per triple per each Sp. En-
tire initial population with schema ξ. 227

7.21 ANOVA test for the snake-in-the-box problem at generation 100. Entire
initial population with schema the GA has to look for. 227

xi

List of Figures

2.1 Schema in a 4-dimensional hypercube. 11
2.2 A and B ∈ B crossing over to generate A′ and B′. 14

3.1 Prototype of GASSATA. 21
3.2 Example of an Attack Event matrix AE, I vector to be maximized, the

product of AE and I , the observed vector OV and counts of faults T and
T ′. 23

3.3 Counting of overestimates for intrusions I5 and I21. 26

4.1 Hypercube of dimension 4 with a snake of length 7. 31

5.1 Some factors to take into account when the initial population is generated
randomly. 37

5.2 Isolated and lazy points in a 4-dimensional hypercube 51
5.3 Hypercube of dimension 4 with a snake of length 7. 52
5.4 Fitness evaluation of the length of a snake. 65
5.5 Snake in a 4-dimensional hypercube to be converted to a coil. 66
5.6 Snake in Figure 5.5 converted to a coil by two rotations. 67
5.7 pc when pm = 0.001. Long schema. 72
5.8 pm when pc = 0.0. Long or short schema. Log x option used. 72

6.1 Entropy Measure vs. Quality of the Solution. One-Max Function. Popu-
lation size changing. 30 Runs. 78

6.2 Average number of generations with union operator and without union
operator; length of I: 24, 32, 40, and 48; 70 runs per length; 280 runs in
total. 82

6.3 Average number of generations with union operator; length of I: 24, 32,
40, and 48; 70 runs per length; 280 runs in total. 83

6.4 Average number of generations without union operator; length of I: 24,
32, 40, and 48; 70 runs per length; 280 runs in total. 84

6.5 Average % of false negatives when Attack-Event Matrix AE is enlarged.
Population sizes of 40, 100, and 1, 000 individuals. 30 runs on each pop-
ulation size. 85

xii

6.6 Average number of possible intrusions found by a GA and total found by
an iterative process. 40, 100 and 1, 000 individuals in the initial popula-
tion. 30 runs on each population size. 87

6.7 Intrusions type 48 and 21 found by a neural network. At iteration 6, 000
the convergence values were I48 = 0.6426, I21 = 0.241 and non intrusion
I917 = 3.5889e− 34. 90

6.8 Histogram for hunting snakes using Equation 6.5; generations ≤ 1, 000. . 97
6.9 Histogram for hunting snakes using Equation 6.6; generations ≤ 1, 000. . 97
6.10 Histogram for hunting snakes using Equation 6.7; generations ≤ 1, 000. . 98
6.11 Histogram for hunting snakes using Equation 6.8; generations ≤ 1, 000. . 98
6.12 Histogram for hunting snakes using Equation 6.9; generations ≤ 1, 000. . 99
6.13 Histogram for hunting snakes using Equation 6.10; generations ≤ 1, 000. 99
6.14 Histogram for hunting snakes using Equation 6.11; generations ≤ 1, 000. 100
6.15 Histogram for longest snakes using Equation 6.5; generations until global

maximum reached. 100
6.16 Histogram for longest snakes using Equation 6.6; generations until global

maximum reached. 101
6.17 Histogram for longest snakes using Equation 6.7; generations until global

maximum reached. 101
6.18 Histogram for longest snakes using Equation 6.8; generations until global

maximum reached. 102
6.19 Histogram for longest snakes using Equation 6.9; generations until global

maximum reached. 102
6.20 Histogram for longest snakes using Equation 6.10; generations until global

maximum reached. 103
6.21 Histogram for longest snakes using Equation 6.11; generations until global

maximum reached. 103
6.22 Comparison of accumulative average number of generations as in Table

6.20 ranking chromosomes in two ways: considering the first length en-
countered (FirstEval) and taking the maximum length of all encountered
(SecondEval). Seeds values 0 through 7 shown. 30 runs per seed for each
of seven fitness functions. 106

6.23 Average solution quality. 20 runs per point. 0.0 ≤ pc ≤ 1.0, Sp = 2,
pm = 0.0. 108

6.24 Average function evaluations. 20 runs per point. 0.0 ≤ pc ≤ 1.0,
Sp = 2, pm = 0.0. 109

6.25 Average solution quality. Sp = 2. One-max function. 30 runs per set of
parameters. 110

6.26 Average solution quality. Sp = 1 bottom, Sp = 2 top. 0.0 ≤ pm ≤
0.015, step size 0.001. Each line shows a pm value. One-max function.
30 runs per set of parameters. 111

6.27 Fitness function as in Eq. 6.12 . 112

xiii

6.28 Average function evaluations to reach solution quality approx. 95.0.Fitness
function as in Eq. 6.12. 113

6.29 Average quality of the solution for different Sp and 0 ≤ pm ≤ 0.03. As
Sp is increased, pm should be increased in order to obtain better quality.
One-Max Function. 30 runs per set of parameters. 116

6.30 Selection pressure and its influence on the average quality of the solution
for snakes in 8-dimensional hypercubes. Initial population provided with
one 7-dimensional snake of length 49. pm = 0.001. 1, 000 Iterations.
1, 000 individuals. 30 runs per each parameter set. 119

6.31 One-max function; Maximum quality of the solution per generation when
proportional selection used; Sp = 1.20, pc = 1.0 pm = 0.00298; 30
runs. 119

6.32 One-max function; Average quality of the solution per generation when
proportional selection used; Sp = 1.20, pc = 1.0 pm = 0.00298; 30
runs. 120

6.33 One-max function; Proportional selection pressure per generation over 30
runs. 120

6.34 One-max function; Mutation probability per generation when proportional
selection used; Sp = 1.20; 30 runs. 121

6.35 Open paths in 8d-hypercubes; Proportional selection pressure per gener-
ation over 30 runs. 121

6.36 Histogram for longest snakes using Equation 6.7; generations until global
maximum reached; mutation rate 3% fixed in all generations. 124

6.37 Histogram for longest snakes using Equation 6.7; generations until global
maximum reached; mutation rate 3% when generation < 1, 000 and 100%
when generation ≥ 1, 000. 124

6.38 Histogram for longest snakes using Equation 6.7; generations until global
maximum reached; mutation rate 3% when generation < 500 and 100%
when generation ≥ 500. 125

6.39 Histogram for longest snakes using Equation 6.7; generations until global
maximum reached; mutation rate 3% when generation < 250 and 100%
when generation ≥ 250. 125

6.40 Histogram for longest snakes using Equation 6.7; generations until global
maximum reached; mutation rate percentage equal to the generation. . . . 126

6.41 Average function evaluations to reach solution quality as in Fig. 6.25;
0.0 ≤ pm ≤ 0.015, step size 0.001. 127

6.42 Average of function evaluations for pc = 1.0, different pm and Sp in-
creased. If pm > 1/h = 0.02 then Ave. # of iterations is prohibited.
One-Max Function. 30 runs per set of parameters. 129

xiv

6.43 Ave. generations to reach solution quality ≥ 95% (top lines above 1000).
Number of times algorithm reaches quality ≥ 95% (bottom lines under
1000). 0.0012 ≤ pm ≤ 0.002, step size 0.0002. Max. generations
2, 000. 30 runs. 130

6.44 Ave. # of generations to reach a solution quality of ≥ 95% when Sp is
increased. Initial population from scratch. pm = 0.0012 constant. Max.
generations 2, 000. 30 runs. 131

7.1 Entropy vs. quality of the solution. One-max problem. Snapshot at initial
generation. Trial 1. 90 Runs. 138

7.2 Entropy vs. quality of the solution. One-max problem. Snapshot at gen-
eration 5. Trial 1. 90 Runs. 139

7.3 Entropy vs. quality of the solution. One-max problem. Snapshot at gen-
eration 10. Trial 1. 90 Runs. 139

7.4 Entropy vs. quality of the solution. One-max problem. Snapshot at gen-
eration 15. Trial 1. 90 Runs. 140

7.5 Entropy vs. quality of the solution. One-max problem. Snapshot at gen-
eration 20. Trial 1. 90 Runs. 140

7.6 Entropy vs. quality of the solution. One-max problem. Snapshot at gen-
eration 40. Trial 1. 90 Runs. 141

7.7 Entropy vs. quality of the solution. One-max problem. Snapshot at gen-
eration 60. Trial 1. 90 Runs. 141

7.8 Entropy vs. quality of the solution. One-max problem. Snapshot at initial
generation. Trial 2. 90 Runs. 142

7.9 Entropy vs. quality of the solution. One-max problem. Snapshot at gen-
eration 5. Trial 2. 90 Runs. 142

7.10 Entropy vs. quality of the solution. One-max problem. Snapshot at gen-
eration 10. Trial 2. 90 Runs. 143

7.11 Entropy vs. quality of the solution. One-max problem. Snapshot at gen-
eration 15. Trial 2. 90 Runs. 143

7.12 Entropy vs. quality of the solution. One-max problem. Snapshot at gen-
eration 20. Trial 2. 90 Runs. 144

7.13 Entropy vs. quality of the solution. One-max problem. Snapshot at gen-
eration 40. Trial 2. 90 Runs. 144

7.14 Entropy vs. quality of the solution. One-max problem. Snapshot at gen-
eration 60. Trial 2. 90 Runs. 145

7.15 Entropy vs. quality of the solution. One-max problem. Snapshot at initial
generation. Trial 3. 90 Runs. 145

7.16 Entropy vs. quality of the solution. One-max problem. Snapshot at gen-
eration 5. Trial 3. 90 Runs. 146

7.17 Entropy vs. quality of the solution. One-max problem. Snapshot at gen-
eration 10. Trial 3. 90 Runs. 146

xv

7.18 Entropy vs. quality of the solution. One-max problem. Snapshot at gen-
eration 15. Trial 3. 90 Runs. 147

7.19 Entropy vs. quality of the solution. One-max problem. Snapshot at gen-
eration 20. Trial 3. 90 Runs. 147

7.20 Entropy vs. quality of the solution. One-max problem. Snapshot at gen-
eration 40. Trial 3. 90 Runs. 148

7.21 Entropy vs. quality of the solution. One-max problem. Snapshot at gen-
eration 60. Trial 3. 90 Runs. 148

7.22 Entropy metric vs. number of generations to reach the global maximum.
One-max problem. 90 Runs. 149

7.23 Hamming metric vs. quality of the solution. One-max Problem. Snapshot
at initial generation. Trial 1. 90 Runs. 150

7.24 Hamming metric vs. quality of the solution. One-max Problem. Snapshot
at generation 5. Trial 1. 90 Runs. 151

7.25 Hamming metric vs. quality of the solution. One-max Problem. Snapshot
at generation 10. Trial 1. 90 Runs. 151

7.26 Hamming metric vs. quality of the solution. One-max Problem. Snapshot
at generation 15. Trial 1. 90 Runs. 152

7.27 Hamming metric vs. quality of the solution. One-max Problem. Snapshot
at generation 20. Trial 1. 90 Runs. 152

7.28 Hamming metric vs. quality of the solution. One-max Problem. Snapshot
at generation 40. Trial 1. 90 Runs. 153

7.29 Hamming metric vs. quality of the solution. One-max Problem. Snapshot
at generation 60. Trial 1. 90 Runs. 153

7.30 Hamming metric vs. quality of the solution. One-max Problem. Snapshot
at initial generation. Trial 2. 90 Runs. 154

7.31 Hamming metric vs. quality of the solution. One-max Problem. Snapshot
at generation 5. Trial 2. 90 Runs. 154

7.32 Hamming metric vs. quality of the solution. One-max Problem. Snapshot
at generation 10. Trial 2. 90 Runs. 155

7.33 Hamming metric vs. quality of the solution. One-max Problem. Snapshot
at generation 15. Trial 2. 90 Runs. 155

7.34 Hamming metric vs. quality of the solution. One-max Problem. Snapshot
at generation 20. Trial 2. 90 Runs. 156

7.35 Hamming metric vs. quality of the solution. One-max Problem. Snapshot
at generation 40. Trial 2. 90 Runs. 156

7.36 Hamming metric vs. quality of the solution. One-max Problem. Snapshot
at generation 60. Trial 2. 90 Runs. 157

7.37 Hamming metric vs. quality of the solution. One-max Problem. Snapshot
at initial generation. Trial 3. 90 Runs. 157

7.38 Hamming metric vs. quality of the solution. One-max Problem. Snapshot
at generation 5. Trial 3. 90 Runs. 158

xvi

7.39 Hamming metric vs. quality of the solution. One-max Problem. Snapshot
at generation 10. Trial 3. 90 Runs. 158

7.40 Hamming metric vs. quality of the solution. One-max Problem. Snapshot
at generation 15. Trial 3. 90 Runs. 159

7.41 Hamming metric vs. quality of the solution. One-max Problem. Snapshot
at generation 20. Trial 3. 90 Runs. 159

7.42 Hamming metric vs. quality of the solution. One-max Problem. Snapshot
at generation 40. Trial 3. 90 Runs. 160

7.43 Hamming metric vs. quality of the solution. One-max Problem. Snapshot
at generation 100. Trial 3. 90 Runs. 160

7.44 Hamming metric vs. number of generations to reach the global maximum.
One-max Problem. 90 Runs. 161

7.45 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 1.
Snapshot at initial generation. 90 Runs. 162

7.46 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 1.
Snapshot at generation 10. 90 Runs. 163

7.47 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 1.
Snapshot at generation 20. 90 Runs. 163

7.48 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 1.
Snapshot at generation 30. 90 Runs. 164

7.49 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 1.
Snapshot at generation 40. 90 Runs. 164

7.50 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 1.
Snapshot at generation 50. 90 Runs. 165

7.51 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 1.
Snapshot at generation 60. 90 Runs. 165

7.52 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 1.
Snapshot at generation 70. 90 Runs. 166

7.53 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 1.
Snapshot at generation 80. 90 Runs. 166

7.54 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 1.
Snapshot at generation 90. 90 Runs. 167

7.55 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 1.
Snapshot at generation 100. 90 Runs. 167

7.56 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 1.
Snapshot at generation 110. 90 Runs. 168

7.57 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.
Snapshot at initial generation. 90 Runs. 168

7.58 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.
Snapshot at generation 10. 90 Runs. 169

7.59 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.
Snapshot at generation 20. 90 Runs. 169

xvii

7.60 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.
Snapshot at generation 30. 90 Runs. 170

7.61 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.
Snapshot at generation 40. 90 Runs. 170

7.62 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.
Snapshot at generation 50. 90 Runs. 171

7.63 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.
Snapshot at generation 60. 90 Runs. 171

7.64 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.
Snapshot at generation 70. 90 Runs. 172

7.65 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.
Snapshot at generation 80. 90 Runs. 172

7.66 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.
Snapshot at generation 90. 90 Runs. 173

7.67 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.
Snapshot at generation 100. 90 Runs. 173

7.68 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.
Snapshot at generation 110. 90 Runs. 174

7.69 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.
Snapshot at initial generation. 90 Runs. 174

7.70 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.
Snapshot at generation 10. 90 Runs. 175

7.71 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.
Snapshot at generation 20. 90 Runs. 175

7.72 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.
Snapshot at generation 30. 90 Runs. 176

7.73 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.
Snapshot at generation 40. 90 Runs. 176

7.74 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.
Snapshot at generation 50. 90 Runs. 177

7.75 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.
Snapshot at generation 60. 90 Runs. 177

7.76 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.
Snapshot at generation 70. 90 Runs. 178

7.77 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.
Snapshot at generation 80. 90 Runs. 178

7.78 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.
Snapshot at generation 90. 90 Runs. 179

7.79 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.
Snapshot at generation 100. 90 Runs. 179

7.80 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.
Snapshot at generation 110. 90 Runs. 180

xviii

7.81 Entropy metric vs. number of generations to reach the global maximum.
100, 000 Generations. Snake-in-the-box Problem. 90 Runs. 181

7.82 Hamming metric vs. quality of the solution. Snake-in-the-box Problem.
Trial 1. Snapshot at initial generation. 90 Runs. 182

7.83 Hamming metric vs. quality of the solution. Snake-in-the-box Problem.
Trial 1. Snapshot at generation 10. 90 Runs. 183

7.84 Hamming metric vs. quality of the solution. Snake-in-the-box Problem.
Trial 1. Snapshot at generation 20. 90 Runs. 183

7.85 Hamming metric vs. quality of the solution. Snake-in-the-box Problem.
Trial 1. Snapshot at generation 30. 90 Runs. 184

7.86 Hamming metric vs. quality of the solution. Snake-in-the-box Problem.
Trial 1. Snapshot at generation 40. 90 Runs. 184

7.87 Hamming metric vs. quality of the solution. Snake-in-the-box Problem.
Trial 1. Snapshot at generation 50. 90 Runs. 185

7.88 Hamming metric vs. quality of the solution. Snake-in-the-box Problem.
Trial 1. Snapshot at generation 60. 90 Runs. 185

7.89 Hamming metric vs. quality of the solution. Snake-in-the-box Problem.
Trial 1. Snapshot at generation 70. 90 Runs. 186

7.90 Hamming metric vs. quality of the solution. Snake-in-the-box Problem.
Trial 1. Snapshot at generation 80. 90 Runs. 186

7.91 Hamming metric vs. quality of the solution. Snake-in-the-box Problem.
Trial 1. Snapshot at generation 90. 90 Runs. 187

7.92 Hamming metric vs. quality of the solution. Snake-in-the-box Problem.
Trial 1. Snapshot at generation 100. 90 Runs. 187

7.93 Hamming metric vs. quality of the solution. Snake-in-the-box Problem.
Trial 1. Snapshot at generation 110. 90 Runs. 188

7.94 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.
Snapshot at initial generation. 90 Runs. 188

7.95 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.
Snapshot at generation 10. 90 Runs. 189

7.96 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.
Snapshot at generation 20. 90 Runs. 189

7.97 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.
Snapshot at generation 30. 90 Runs. 190

7.98 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.
Snapshot at generation 40. 90 Runs. 190

7.99 Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.
Snapshot at generation 50. 90 Runs. 191

7.100Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.
Snapshot at generation 60. 90 Runs. 191

7.101Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.
Snapshot at generation 70. 90 Runs. 192

xix

7.102Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.
Snapshot at generation 80. 90 Runs. 192

7.103Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.
Snapshot at generation 90. 90 Runs. 193

7.104Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.
Snapshot at generation 100. 90 Runs. 193

7.105Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.
Snapshot at generation 110. 90 Runs. 194

7.106Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.
Snapshot at initial generation. 90 Runs. 194

7.107Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.
Snapshot at generation 10. 90 Runs. 195

7.108Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.
Snapshot at generation 20. 90 Runs. 195

7.109Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.
Snapshot at generation 30. 90 Runs. 196

7.110Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.
Snapshot at generation 40. 90 Runs. 196

7.111Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.
Snapshot at generation 50. 90 Runs. 197

7.112Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.
Snapshot at generation 60. 90 Runs. 197

7.113Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.
Snapshot at generation 70. 90 Runs. 198

7.114Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.
Snapshot at generation 80. 90 Runs. 198

7.115Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.
Snapshot at generation 90. 90 Runs. 199

7.116Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.
Snapshot at generation 100. 90 Runs. 199

7.117Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.
Snapshot at generation 110. 90 Runs. 200

7.118Hamming metric vs. number of generations to reach the global maximum.
100, 000 Generations. Snake-in-the-box Problem. 90 Runs. 201

7.119Distribution of the means of a randomized 1, 000 Hanssen and Kuipers’
samples taken from 25 intrusion scenarios. Line corresponds to the mean
0.84 of the observed data. Original data from Equation 7.4. 207

xx

7.120Distribution of the means of a randomized 1, 000 samples taken from 25
intrusion scenarios when original Hanssen and Kuipers’ scores are com-
bined for Equations 7.3 and 7.4. Left line corresponds to the mean 0.84 of
the observed data for Equation 7.4. Middle line corresponds to the mean
of the means over the 1, 000 samples of the combined data. Right line
corresponds to the mean 1.00 of the observed data for Equation 7.3. . . . 208

7.121Empirical cumulative distributions of U and V at generation 20. One-max
problem. x corresponds to fitness value. 212

7.122Probability of crossover and probability of mutation vs. quality of the
solution. Sp = 2. One-max problem. Ave. over 10 runs at generation 20. . 213

7.123Probability of crossover and probability of mutation vs. quality of the
solution. Sp = 3. One-max problem. Ave. over 10 runs at generation 20. . 213

7.124Probability of crossover and probability of mutation vs. quality of the
solution. Sp = 4. One-max problem. Ave. over 10 runs at generation 20. . 214

7.125Probability of crossover and probability of mutation vs. quality of the
solution. Sp = 5. One-max problem. Ave. over 10 runs at generation 20. . 214

7.126Probability of crossover and probability of mutation vs. quality of the
solution. Sp = 6. One-max problem. Ave. over 10 runs at generation 20. . 215

7.127Empirical cumulative distributions of U and V at generation 100. Initial
population randomly generated. 217

7.128Empirical cumulative distributions of U and V at generation 100. Half of
the initial population with schema included and half randomly generated. 217

7.129Empirical cumulative distributions of U and V at generation 100. Entire
initial population with schema included. 218

7.130Probability of crossover and probability of mutation vs. quality of the
solution. Sp = 2. Snake-in-the-box problem. Initial population randomly
generated. Ave. over 10 runs at generation 100. 218

7.131Probability of crossover and probability of mutation vs. quality of the
solution. Sp = 3. Snake-in-the-box problem. Initial population randomly
generated. Ave. over 10 runs at generation 100. 219

7.132Probability of crossover and probability of mutation vs. quality of the
solution. Sp = 4. Snake-in-the-box problem. Initial population randomly
generated. Ave. over 10 runs at generation 100. 219

7.133Probability of crossover and probability of mutation vs. quality of the
solution. Sp = 5. Snake-in-the-box problem. Initial population randomly
generated. Ave. over 10 runs at generation 100. 220

7.134Probability of crossover and probability of mutation vs. quality of the
solution. Sp = 6. Snake-in-the-box problem. Initial population randomly
generated. Ave. over 10 runs at generation 100. 220

xxi

7.135Probability of crossover and probability of mutation vs. quality of the so-
lution. Sp = 2. Snake-in-the-box problem. Half of the initial population
with schema included and half randomly generated. Ave. over 10 runs at
generation 100. 221

7.136Probability of crossover and probability of mutation vs. quality of the so-
lution. Sp = 3. Snake-in-the-box problem. Half of the initial population
with schema included and half randomly generated. Ave. over 10 runs at
generation 100. 221

7.137Probability of crossover and probability of mutation vs. quality of the so-
lution. Sp = 4. Snake-in-the-box problem. Half of the initial population
with schema included and half randomly generated. Ave. over 10 runs at
generation 100. 222

7.138Probability of crossover and probability of mutation vs. quality of the so-
lution. Sp = 5. Snake-in-the-box problem. Half of the initial population
with schema included and half randomly generated. Ave. over 10 runs at
generation 100. 222

7.139Probability of crossover and probability of mutation vs. quality of the so-
lution. Sp = 6. Snake-in-the-box problem. Half of the initial population
with schema included and half randomly generated. Ave. over 10 runs at
generation 100. 223

7.140Probability of crossover and probability of mutation vs. quality of the
solution. Sp = 2. Snake-in-the-box problem. Initial population with
schema included. Ave. over 10 runs at generation 100. 223

7.141Probability of crossover and probability of mutation vs. quality of the
solution. Sp = 3. Snake-in-the-box problem. Initial population with
schema included. Ave. over 10 runs at generation 100. 224

7.142Probability of crossover and probability of mutation vs. quality of the
solution. Sp = 4. Snake-in-the-box problem. Initial population with
schema included. Ave. over 10 runs at generation 100. 224

7.143Probability of crossover and probability of mutation vs. quality of the
solution. Sp = 5. Snake-in-the-box problem. Initial population with
schema included. Ave. over 10 runs at generation 100. 225

7.144Probability of crossover and probability of mutation vs. quality of the
solution. Sp = 6. Snake-in-the-box problem. Initial population with
schema included. Ave. over 10 runs at generation 100. 225

xxii

Abstract

Genetic Algorithms (GAs) belong to the field of evolutionary computation which is in-

spired by biological evolution. From an engineering perspective, a GA is an heuristic tool

that can approximately solve problems in which the search space is huge in the sense that

an exhaustive search is not tractable. The appeal of GAs is that they can be parallelized

and can give us “good” solutions to hard problems.

In the GA framework, a species or population is a collection of individuals or chro-

mosomes, usually initially generated randomly. A predefined fitness function guides se-

lection while operators like crossover and mutation are used probabilistically in order to

emulate reproduction.

One of the difficulties in working with GAs is choosing the parameters—the popu-

lation size, the crossover and mutation probabilities, the number of generations, the se-

lection mechanism, the fitness function—appropriate to solve a particular problem. Be-

sides the difficulty of the application problem to be solved, an additional difficulty arises

because the quality of the solution found, or the sum total of computational resources re-

quired to find it, depends on the selection of the parameters of the GA; that is, finding a

correct fitness function and appropriate operators and other parameters to solve a problem

with GAs is itself a difficult problem. The contributions of this dissertation, then, are:

to show that there is not a linear correlation between diversity in the initial population

and the performance of GAs; to show that fitness functions that use information from the

problem itself are better than fitness functions that need external tuning; and to propose

a relationship between selection pressure and the probabilities of crossover and mutation

that improve the performance of GAs in the context of of two extreme schema: small

schema, where the building block in consideration is small (each bit individually can be

considered as part of the general solution), and long schema, where the building block in

consideration is long (a set of interrelated bits conform part of the general solution).

xxiii

The Dissertation proposes three general hypotheses. The first one, in an attempt to

measure the impact of the input over the output, study that there is not a linear corre-

lation between diversity in the initial population and performance of GAs. The second

one, proposes the use of parameters that belong to the problem itself to joint objective

and constraint in fitness functions, and the third one use Holland’s Schema Theorem for

finding an interrelation between selection pressure and the probabilities of crossover and

mutation that, if obeyed, is expected to result in better performance of the GA in terms

of the solution quality found within a given number of generations and/or the number of

generations to find a solution of a given quality than if the interrelation is not obeyed.

Theoretical and practical problems like the one-max problem and the intrusion detec-

tion problem (considered as problems with small schema) and the snake-in-the-box prob-

lem (considered as a problem with long schema) are tested under the specific hypotheses

of the Dissertation.

xxiv

Chapter 1

Introduction

GAs take their inspiration from biological evolution as proposed by Darwin. In biological

evolution, individuals from species that adapt to their environment have a chance to sur-

vive and reproduce through natural selection. Species that survive usually develop new

capabilities and capacities that can be inherited by offspring, if those prove to be worth-

while, and can be maintained through generations (Bäck, 1996). In GAs, a population

of individuals survive and reproduce through “artificial selection.” Fittest individuals are

selected to go to the next generation, or are selected to mate and possibly cross over to

produce offspring. Little changes called mutations can occur in the genotype of individu-

als and those can continue through generations if they prove to be “good” in maintaining

fitness (Bäck, 1996).

In biology, organisms are composed of cells, cells contain chromosomes, chromo-

somes are composed of genes, and genes are the initial pieces for information of life

(Mitchell, 1998). A gene encodes a trait, and each possible value of a gene is called an

allele (Mitchell, 1998). The set of genetic material of a species is called its genome. An

individual’s set of genes is called its genotype and the phenotype is the expression of the

genotype in an environment. In GAs, artificial genomes are evaluated “judging phenotyp-

ical expressions of genotypes” (Bäck, 1996). Likewise, in the GA framework, a species or

population is a collection of individuals or chromosomes, usually initially generated ran-

domly. The fittest are usually selected to crossover and mutate to give rise to possibly new

genotypes that are sometimes better than their parents; they constitute a new generation.

This artificial evolutionary process gives the idea of evolution to the best, i.e., climbing to

a maximum.

1

The environment (E), the structure of life1 (A) which is selected because it is the

fittest in the environment, i.e., the one that evolves according to an adaptive plan2 (τ), and

the measure used in performing selection (µ) constitute the salient features of adaptation

(Holland, 1992). There could be different environments, so a structure could be evaluated

differently depending on the environments it is in. The evaluation of the structure is then

a function that depends on the environment and that can, in a general form, be defined

as: µE : A → < where A is the set of structures that are evaluated3 in the corresponding

environment E ∈ ε.

1.1 The Problem: Improving the Performance of Genetic

Algorithms

This problem constitutes the core of this dissertation: How can a GA be made “robust” so

that if

1. the set of all possible structures A, is large and complex, there is a method or mea-

sure that could help to choose the initial structures,

2. the function that evaluates the structure A in the corresponding environment E has

multiple parameters that conflict with each other, then one knows how to choose

those parameters using information from the problem domain itself, avoiding pos-

sible tuning of external parameters,

3. the operators Ω influence the evolutionary process, those influences should be un-

derstood, taking into account not only their influence in finding good solutions but

also their possible influence in poor performance of the algorithm?

These points can be summarized in the following research questions:

1An artificial chromosome for a GA.
2This dissertation follows the original name given by Holland (1992), however, it would be better to call

such plans “procedures.”
3As µE is an evaluation function, its mapping usually goes to a real number and the range could depend

on the specific environment. In some GAs it is common to consider for example µE : A → <+ ∪ {0} or
µE : A → [0, 1] if µE is a normalized function greater than or equal to zero.

2

1. The structure A ∈ A: Is there a correlation between diversity in the initial popu-

lation and the performance of the algorithm, measured in the quality of solutions

formed and/or number of generations to find “good” solutions?

2. The parameters that join the objective and the constraint in the function that eval-

uates the structure A: Do internal parameters (i.e., parameters that belong to the

problem itself) result in better performance than external parameters (i.e., exoge-

nous parameters that may be tuned according to the input)?

3. The operators Ω: Is there a relation between the selection, crossover, and mutation

operators of the corresponding plan τ , that influences the evolutionary process, and

if there is, what is that relation?

1.2 The Problem in Detail: Optimization of Parameters

for Genetic Algorithms

A generation for a GA is a set of individuals or chromosomes that constitutes the set

of structures under artificial adaptation at some step t. Usually in GAs, the first set of

individuals is generated randomly and from there each one is generated using the selection

mechanism and the set of operators Ω. The first generation then is generated at step 1,

the next generation is generated at step 2, and so forth. This means that a GA uses the

generation at step t to give rise to an entire set of chromosomes that constitute the next

generation at step t + 1. A GA iterates from 1 through T generations, where T could

be a fixed parameter or it could be the step where the fittest individual is found or where

another stop criterion is satisfied.

In GAs, the environment E is the input to the algorithm, so there is a large set of

possibilities that the algorithm should be able to handle and that constitutes the uncer-

tainty of the environment. The structure A is the encoding of the approximate solution

to the specific problem and that can be large and complex. Usually with binary GAs, the

possible solution is encoded as 1′s and 0′s, so the search space is O(2k), where k is the

length of the structure A. The corresponding plan τ is the GA itself that uses the fitness

function (performance measure) µE to perform selection; once the fittest structures have

been selected to reproduce probabilistically, the crossover and mutation operators (Ω) are

3

applied to them to give rise to new offspring that are expected to be better than their par-

ents at least occasionally. This process of recombination of different structures, that gives

as a result a fitter structure than the previous ones, becomes a process of climbing to a

maximum in a search space (Holland, 1992; Bäck, 1996).

A typical adaptive plan followed by a GA is (Mitchell, 1998):

(1) Randomly generate the first population of chromosomes

(2) Do
(3) Evaluate each chromosome according to the fitness function

(4) Iterate
(4.1) Probabilistically select a pair of the best evaluated chromosomes

(4.2) Probabilistic reproduce with crossover and mutation

Until next generation is completed

Until termination criterion has been satisfied

(5) Return the best chromosome of the population according to the fitness function

(this is the approximate solution).

When the problem is encoded using GAs, usually some questions arise regarding the

number of individuals in the population (i.e., the size of the set of possible solutions or

structures A to be tested), the probability of crossover, the probability of mutation, the

number of generations to be examined, the stopping criteria, the selection pressure, and

the fitness function to be used in order to solve the problem.

The number of individuals in the population influences the quality of the best solution

found and/or the number of generations to find a possible solution (Lobo and Lima, 2005;

Piszcz and Soule, 2006a). If the number of individuals is not large enough, then it could

be that an optimum can not be reached (Jaroslaw Arabas and Mulawka, 1995; Frederick

et al., 1993; Koumousis and Katsaras, 2006; Pelikan et al., 2000; Piszcz and Soule, 2006a)

and, if the number of individuals is quite large then the GA could expend more computa-

tional time in finding a possible solution (Jaroslaw Arabas and Mulawka, 1995; Harik and

Lobo, 1999; Koumousis and Katsaras, 2006; Lobo and Goldberg, 2004; Lobo and Lima,

2005). But, the initial population is related to diversity, in the sense that, it is expected

that the more individuals a population has, the higher diversity measure is expected, and

the fewer individuals a population has the less diversity measure is expected. Diversity,

4

then, influences the quality of the solution and it is a common belief that a higher diver-

sity can help GAs to find better solutions (Jaroslaw Arabas and Mulawka, 1995; Burke

et al., 2004; Lobo and Lima, 2005; Grefenstette, 1986; McPhee and Hopper, 1999; Rosca,

1995). So, if the initial population is generated randomly, it would be useful to measure

how different individuals are, if in general, this common belief is true. One contribution

of this dissertation, then, is to show that there is no direct correlation between diversity

and GA’s performance, at least with the standard range of diversity measures used in a

randomly generated population.

The fitness function µE is responsible for guiding evolution; it needs to guide the GA

to find a “good” solution to the problem. The fitness function is at the core of the evolu-

tionary process and it joins objectives and constraints. There are at least two forces: one

that tries to maximize objectives while the other tries to minimize violations of constraints

(Coello, 1998; Mé, 1998). Sometimes what happens is that the parameters that are joining

objectives with constraints are tuned for specific data but when the input changes—when

the environment changes—it is possible that the parameters previously found are not op-

timal. So, could fitness functions be built using information about the problem itself

in order to set those parameters? This dissertation is going to present a hypothesis that

shows the possibility of building such functions, showing a fitness function that uses only

information from the problem itself that outperforms a fitness function that needs external

tuning for doing misuse detection.

Looking at GA operators Ω, it can be seen that one purpose of the crossover opera-

tor is to “recombine good blocks” of two chromosomes in order to climb to a maximum

according to the fitness function given. Researchers often use a probability of 70% for

performing crossover (Mitchell, 1998), but why? Is this probability “good” for almost all

GAs? With regard to the mutation operator, it gives the possibility of moving a chromo-

some to a new region of the search space; therefore, mutation helps with diversity and

in moving the algorithm from stationary points. For example, if there is a specific gene

which has the same allele for all individuals in a population, then in performing crossover

that specific gene is never going to change. Mutation, then, is the tool that can probabilis-

tically change that gene to a different allele. How could the probability value that should

be used for mutation be determined?. The fitness function, as a performance measure, is

used to perform the selection. The selection mechanism is the one that is used to select

chromosomes in the population in order to reproduce (Mitchell, 1998). If the selection

5

pressure is quite high, i.e., if the best ones are almost the only ones that are selected,

then it is possible that better regions of the search space are going to be unexplored. In

contrast, if the selection pressure is quite low, it is possible that the algorithm is going to

spend more generations to converge. This trade-off is called exploitation vs. exploration

(Mitchell, 1998). Is there a relation between the crossover and mutation probabilities and

selection pressure that can help some GAs to find better solutions? This dissertation pre-

tend to contribute in this topic showing a relationship, based on the schema theorem (see

Sections 2.3.1 and 2.3.2), between selection pressure and the probabilities of crossover

and mutation, that could help GAs in finding better solutions quality more quickly.

All the parameters just stated affect the performance of a GA and actually, they are

inter-related, i.e., they form a system. The goal of this dissertation, then, is to gain some

insight into the difficult problem of finding a good fitness function and good parame-

ters and operators—population diversity, selection pressure, and crossover and mutation

probabilities—in order to answer some questions addressed here in the context of the

one-max problem and two “real world” problems: the intrusion detection problem and the

snake-in-the-box problem; and to contribute to the evolutionary computation field, trying

to generalize the results to a larger class of GA problems. However, it should be taken

into account that GAs are so complex that there is no general rule or conclusion that can

be applied to the all problems (Zitzler et al., 2000).

The number of generations has a strong influence on the GA’s effectiveness in finding

an approximate solution and this parameter is usually addressed experimentally. If the

algorithm stops quite soon then it is likely that a good solution has not yet been found.

But what, then, is an optimal number of generations, if one exists? How is this parameter

related to other parameters, if there is a relation? For example, is there a relationship

between the number of generations and the number of individuals in the population? A

maximum on the number of generations certainly provides a stopping criterion but could

the algorithm stop before that number of generations is reached? What, then, are stopping

criteria that can help to improve GAs?

Most of the empirical studies realized use tournament selection, where the GA chooses

a number of individuals in the tournament and from them they selects the best, and one

point crossover. With tournament selection the selection pressure is more even all along

all the generations than with proportional selection, where the selection pressure usually

changes in each generation because the selection pressure depends on the relative fitness

6

values of each individual. Besides that, all tests corresponds to generational GAs, how-

ever it is possible that some theoretical results apply to non-generational GAs.

7

Chapter 2

Foundations of Genetic Algorithms

As stated in Chapter 1, the GA framework can be enumerated in terms of the environment

E, the adaptation plan τ that acts on the set of structures A, and the environment’s re-

sponse µE to the structure. All constrain a system that iterates to an adapted structure A

or set of adapted structures for an environment E.

One can think of this as an iterative process and there for can define the structure

A(t) ∈ A at a specific time step1 t. A(t) is, then, the end result of the application of the

operators Ω, from the adaptive plan τ , to selected structures from the set A to form the

sequence A(1), A(2), through A(t− 1). So A(t), besides being the structure at time step

t, can be seen as a state. The path of structures A(1), A(2), through A(t) are generated

according to the feedback (payoff) λ(t) = µE(A(t)) received from the environment E.

The sequence λ(1), λ(2), ..., λ(t − 1) provides the tools for the definition of a plan τ

(Holland, 1992):

τd : λ × A → A.

If the adaptive plan τ is selecting structures stochastically, τ can be seen as a function

over a probability distribution P of possible structures A (Holland, 1992), i.e., τ receives

the information from the environment λ(t−1) regarding the structureA(t−1) and assigns

probabilities to a range of structures to select A(t):

τs : λ × A → P .

where P(A, t) is the probability to select A(t), and 0 ≤ P ≤ 1.

1Section 1.2 refers to step t or generation t, however here the term time step is used to follow Holland’s
terminology.

8

The probability distribution of the plan τ can be associated with the probabilities em-

bedded in the set of operators Ω because A(t) is generated applying operators from Ω to

the structure A(t− 1) (Holland, 1992).

Following Holland (1992), this format is used for the benefit of having the chance

to look at different plans τ ∈ J , see the efficiency χ of each one, and compare them.

Efficiency can be defined in terms of how rapidly a plan accumulates payoff and the time

(number of steps) it spends in finding the fittest structures. However, a particular definition

of χ depends on the environment and the researcher creating the algorithm. A useful way

to consider χ is: if the plan τ is deterministic then τd : λ × A → A, and the cumulative

payoff for τd at time step T is (Holland, 1992)

Uτd,E(T) =
T∑

t=1

µE(Aτd
(t))

where µE(Aτd
(t)) is the payoff (environment’s response) for the structure A, in the envi-

ronment E, at time t. If the plan τ is stochastic then τs : λ × A → P and µE(Aτs(t)) is

replaced by the expected payoff µE(τs, t) in order to obtain

Uτs,E(T) =
T∑

t=1

µE(τs, t)

where µE(τs, t) =
∑

j P(Aj, t)µE(Aj), with Aj ∈ A being the structure selected with

probability P(Aj, t). With this in mind, Holland (1992) suggests the following as a bound

for comparing efficiency χ of plans τs: In the first T steps the greatest possible cumulative

payoff is:

U∗
E(T) =

lub
τs∈J Uτs,E(T) (2.1)

where lub is the least upper bound, and

lim
T→∞

Uτs,E(T)

U∗
E(T)

= 1 (2.2)

which means that in the limit the rate at which τ accumulates payoff is the same as the

best possible rate (Holland, 1992). However, there is the problem of T →∞, so Holland

9

(1992) suggests a lower bound using a non-negative decreasing succession < sT > such

that

Uτ,E(T)

U∗
E(T)

> (1− < sT >) (2.3)

for all T and where < sT > could be something like < 1/T k > with k > 0.

Summarizing, a problem in adaptation is well posed (Holland, 1992) once τ ∈ J ,

E ∈ ε, and χ have been specified along with the set (A, Ω, λ, τ), where

A = {A1, A2, ...} is the set of structures, i.e., the domain of the adaptive plan,

Ω = {ω1, ω2, ...} is the set of operators for modifying structures,

λ is the feedback received from the environment, and

τ is the adaptive plan that determines the operator to be used for the structure A(t).

2.1 The Schema Theorem

As stated at the beginning of this chapter, the goal of GA research in general is to find an

algorithm that improves the performance of A(t) according to plan τ in the environment

E over time. If the algorithm is at time step T , then a cumulative average measure of the

performance of the structure A(t) gained from t = 1, 2, ...T is

µE(T) =
1

T

T∑
t=1

µE(Aτd
(t)). (2.4)

At time step T the ideal is to find structures ξ such that µξ,E > µE(T). In order to

identify a subset of structures, Holland (1992) gives the general concept of schemata,2

which are subsets of structures taken from the power set P (A(t)). To do that, a new

symbol ∗ is introduced (Mitchell, 1998) that indicates any allowable allele value.3

The interpretation of schema is particular to each problem. For example, if we take a

representation of a 4-dimensional hypercube (see Figure 2.1), where each node is labeled

in binary notation, the schema 0∗∗∗ denotes the lower hypercube of dimension 3, i.e., the

subset of points 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111. Likewise, 1∗∗∗ denotes

2Mitchell (1998) indicates the term either as schemata or schema.
30 or 1 for binary GAs.

10

1100

0000 0001

0100 0101

0110

1000 1001

1010 1011

1101

1110 1111

Lower hypercube

Upper hypercube

0010 0011

0111

Figure 2.1: Schema in a 4-dimensional hypercube.

the upper hypercube of the same dimension. The schema ∗∗0∗ denotes the front plane of

the hypercube, i.e., the subset of points 0000, 0001, 0100, 0101, 1000, 1001, 1100, 1101.

Now the questions are, what are the schema ξ that increase the performance of A at

time step T + 1 and how many of those schema are there? To solve these questions,

Holland (1992) proposes the following algorithm:

1. Find schema ξ such that µ̂ξ,E > µE(T), where µ̂ξ,E is the sample average perfor-

mance of schema ξ in environment E; if there is no such schema ξ, stop.

2. Generate new4 instances of the above-average schema ξ, returning from time to

time to step 1 to locate new schema ξ′ such that µ̂ξ′,E > µE(T), particularly if

µE(T) ≈ µ̂ξ,E .

This type of search, as pointed out by Holland (1992), intuitively is an improvement

over a random search or an enumerative one because the algorithm is searching for in-

stances ξ ∈ A such that it continuously increases the previous average payoff of structure

A(t).

But there is still a question to answer: How many schema ξ are needed in order to fol-

low the previous algorithm? Holland (1992) addresses here the encoding of the structure
4The fact that the instances are to be new is emphasized by Holland (1992).

11

A, in the sense that the longer the structure is, the more schema there are. For exam-

ple, the nodes of the 4-dimensional hypercube in Figure 2.1 are encoded in binary using

a structure of length 4, which gives 34 schema.5 If a hexadecimal notation was used to

encode the nodes, the structure would have length 1 and 171 schema (Seventeen symbols

to use in one position). For reproductive plans, then, longer structures with fewer allele

values are better than shorter length structures with more allele values because the more

schema there are, the more possibilities there are from which to choose (Holland, 1992).

Formally, the set of all possible schema is Ξ = {Vi

⋃
{∗}}l, where Vi = {0, 1}

for binary GAs and l is the length of the structure. Following the previous algorithm,

schema ξ are sampled according to the feedback µξ,E . So, schema ξ can be seen as an

event in the space A. But, how is µξ,E calculated for schema ξ? It can be approximated

as an average of the number of instances of schema ξ sampled. For example, for the

schema ξ = 0∗0∗ and the samples 0000, 0001, and 0101, the sample average is µ̂0∗0∗,E =

(µE(0000) + µE(0001) + µE(0101))/3. This is the sample average performance µ̂ξ,E of

the first step of Holland’s algorithm, above.

2.2 Selection Mechanism

Looking at how adaptive plans τ work, the structure A(t) ∈ A must be selected in order

to undergo the corresponding operators Ω, giving rise, possibly, to new offspring. The

selection mechanism, then, gives the pressure toward the fittest individuals (Bäck, 1996)

using as a measure the payoff µE(A) (Holland, 1992).

Various selection mechanisms have been proposed, like proportional probability selec-

tion and tournament selection (Mitchell, 1998). However, the drawback of any selection

mechanism is the balance between exploitation and exploration. If the selection mecha-

nism makes extensive use of exploitation, it can get trapped in a local minimum. If, on the

contrary, the selection mechanism makes extensive use of exploration, then it may take a

longer time to converge or it may not converge at all (Bäck, 1996).

The selection mechanism that perhaps follows Holland’s ideas in the closest way is

proportional probability selection. In proportional probability selection an individual is

evaluated and the probability to be selected is proportional to its fitness value µE(A). That

5Three symbols used in four positions.

12

is, if the population at time t is B(t) ⊂ A, then structure A ∈ B(t) can be selected with a

probability equal to µE(A)/
∑

µE(Bi) for all Bi(t) ∈ B(t) (Bäck, 1996). An alternative

is q-tournament selection. In q-tournament selection, q individuals Bi(t) ∈ B(t) are

chosen randomly, each with equal probability, and the one that has the greatest fitness

value µE(Bi), for1 ≤ i ≤ q among those q is the one that finally is selected.

In this dissertation most of the experiments use q-tournament selection because of the

ability to control selection pressure. With proportional probability selection, as the algo-

rithm iterates it is expected that the selection pressure decreases because the algorithm is

looking for the fittest individuals which begin to dominate. With q-tournament selection,

the selection pressure is even over all iterations, with the possibility that if an algorithm

needs a higher or lower selection pressure, then q can be increased or decreased accord-

ingly.

2.3 Genetic Operators

As stated at the beginning of Chapter 2, the evolutionary process of a structureA occurs as

an application of operators Ω toA, according to the adaptive plan τ . That is, the sequence

A(1), A(2), through A(T) evolves as a consequence of adaptation of structure A to the

environment E, according to plan τ .

Section 1.2 delineated an adaptive plan τ , which is restated here to highlight the use

of operators (Holland, 1992):

(1) Set t = 0 and randomly initialize B(t) ⊂ A
(2) Calculate and store µE(Bi) for all Bi ∈ B(t)

(3) Increment t

Iterate
(4) Select B1 ∈ B(t− 1) based on proportion of better µE(Bi(t)) found in step (2)

(5) Select B2 ∈ B(t− 1) based on proportion of better µE(Bi(t)) found in step (2)

(6) Determine randomly an operator ωt ∈ Ω to be applied to B1 and/or B2

(7) Use ωt to produce a two new structures A′
1 and A′

2

(8) Store A′s in B(t)

Until next generation is completed

If termination criterion is not satisfied go to step (2)

13

(9) Return the best chromosome of the population according to the fitness function

The set of operators Ω acts on structures in B. The crossover operator recombines

structures, exploiting information already obtained and trying to explore new areas of the

search space. The mutation operator rescues the algorithm from the possibility of losing

a specific allele in B.6

2.3.1 Crossover

?6

0 00 0 0 0 0 0

11 1 1 1 1 1 1

0 0 0 11 1 11

1 1 1 00 0

Interchange of genes

Parents

0 0

B

Offspringx

A

B′

A′

Figure 2.2: A and B ∈ B crossing over to generate A′ and B′.

The crossover operator is applied to two individuals in the population in order to give

raise to two offspring. A random number 1 ≤ x ≤ l, with l the length of the cromosome,

is choosen. The first offspring is generated with the first part (bits 1 to x) from the first

parent and the last part (bits (x + 1 to l) from the second parent. The second offspring is

generated with the first part (bits 1 to x) from the second parent and the last bits (x + 1

to l) from the first parent. Figure 2.2 shows the way the one point crossover operator acts

on two structures A and B from B. A point 1 ≤ x < l, where l is the length of the

chromosome, is chosen at random. Two new structures A′ and B′ are generated. The first

one, A′, takes the first x alleles from A and alleles from x + 1 to l from B; the second one

B′, takes the first x alleles from B and from x + 1 to l from A.

Consider the effect of the crossover operator in a pool B(0) as given in Table 2.1,

where some schema have been chosen to show the effect of the crossover operator on

6Holland (1992) also suggests the inversion operator in order to try to explore new schema in the sense
that some may not be present in B. However, inversion is usually not used by the GA community.

14

Chromosome Schema Class
1 1 1 0 1 1 0 1 0 1 1 0 0 0 1 1 1 1 1 ∗ ∗ 1 0 ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ 1 ∗ S1

2 1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 ∗ 0 ∗ ∗ ∗ ∗ 0 1 0 ∗ ∗ ∗ 1 1 S2

3 0 0 1 0 0 0 1 1 1 1 0 1 1 1 1 1 0 0 ∗ 0 ∗ 0 1 ∗ 1 ∗ ∗ 1 ∗ ∗ ∗ ∗ S3

4 1 0 1 0 1 1 1 1 0 1 0 0 1 0 1 1 1 0 ∗ 0 ∗ ∗ ∗ ∗ 0 1 0 ∗ ∗ ∗ 1 1 S2

5 1 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 0 ∗ 0 ∗ ∗ ∗ ∗ 0 1 0 ∗ ∗ ∗ 1 1 S2

6 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 0 1 1 ∗ ∗ 1 0 ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ 1 ∗ S1

7 1 1 1 1 1 0 1 0 1 1 0 1 0 1 1 0 1 1 ∗ ∗ 1 0 ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ 1 ∗ S1

8 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 1 1 1 ∗ ∗ 1 0 ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ 1 ∗ S1

9 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0 1 0 0 ∗ 0 ∗ 0 1 ∗ 1 ∗ ∗ 1 ∗ ∗ ∗ ∗ S3

10 0 0 0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0 ∗ 0 ∗ 0 1 ∗ 1 ∗ ∗ 1 ∗ ∗ ∗ ∗ S3

Table 2.1: Initial set B(0) of 10 chromosomes and some schema.

Chromosome Schema Class
1 0 0 1 0 0 0 1 1 1 1 0 1 1 1 1 1 0 0 ∗ 0 ∗ 0 1 ∗ 1 ∗ ∗ 1 ∗ ∗ ∗ ∗ S3

2 1 1 1 1 1 0 1 0 1 1 0 1 0 1 1 0 1 1 ∗ ∗ 1 0 ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ 1 ∗ S1

3 1 0 1 0 1 1 1 1 0 1 0 1 0 1 1 0 1 0 ∗ 0 ∗ ∗ ∗ ∗ 0 1 0 ∗ ∗ ∗ 1 0 S4

4 1 1 1 1 1 0 1 0 1 1 0 0 1 0 1 1 1 1 ∗ ∗ 1 0 ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ 1 ∗ S1

5 0 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 0 0 ∗ 0 ∗ 0 1 ∗ 1 ∗ ∗ 1 ∗ ∗ ∗ ∗ S3

6 0 0 1 0 0 0 1 1 1 1 1 1 0 0 0 1 0 0 ∗ 0 ∗ 0 1 ∗ 1 ∗ ∗ 1 ∗ ∗ ∗ ∗ S3

7 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 ∗ 0 ∗ ∗ ∗ ∗ 0 1 0 ∗ ∗ ∗ 0 0 S5

8 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 0 0 ∗ 0 ∗ 0 1 ∗ 1 ∗ ∗ 1 ∗ ∗ ∗ ∗ S3

9 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 0 1 1 ∗ ∗ 1 0 ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗ 1 ∗ S1

10 1 0 1 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 ∗ 0 ∗ ∗ ∗ ∗ 0 1 0 ∗ ∗ ∗ 1 1 S2

Table 2.2: Set B(1) of chromosomes after crossing over some pairs of chromosomes from
set B(0). Two new schema S4 and S5 have emerged.

them.7. At t = 1 the effect of crossover using a probability of crossover pc = 60% is

shown in Table 2.2. Structures number 3 and 7 are selected from B(0) with a probability

of 60% that they are going to be crossed over. In this case they did not cross over, so

they are copied to the next generation B(1) in positions 1 and 2. Now, individuals 4 and

7, belonging to schemas S2 and S1, respectively, are selected from B(0). This time, they

crossover at position x = 11 to give rise to structure 1010111101010110 (which is an

example of a new schema 10∗0∗∗∗∗010∗∗∗10) and structure 1111101011001011 (which

belongs to schema S1 as does its parent 7). The process continues until the entire set B(1)

is generated.

7Other schema could be chosen (for example, 111∗∗0∗0∗∗∗∗∗∗1∗) However, for simplicity these were
the ones chosen. For this case there are 316 schema, and just 3 of those are exemplified.

15

If the rank of schema (Holland, 1992) is defined as the count of schema in pools B(0)

and B(1), it can be appreciated that in B(0), S1 is given a rank of 4, S2 is given a rank of

3, and S3 is given a rank of 3. In B(1), S1 is given a rank of 3, S2 is given a rank of 1,

S3 is given a rank of 4, S4 is given a rank of 1, and S5 is given a rank of 1. So the rank

changed.8 In B(0) the highest ranked was S1, now in B(1) the most dominant is S3 and

schema S2 loses rank and now it is competing with two new schema S4 and S5. So there

are at least three aspects to highlight here:

1. the generation of new instances of schema that already exist in the pool—as in the

case of schema S3,

2. the generation of new schema, i.e., schema that do not belong to the set B(0)—as

with S4 and S5,

3. the loss of instances of schema—as with S1 and S2, and

4. the loss of some schema from the pool.9

These four aspects comprise the tasks accomplished by the crossover operator.

Looking in detail at the constructive factor, i.e., when the instances of a schema in-

crease, for instance, structure S3 (00∗0∗01∗1∗∗1∗∗∗∗), if the crossover point is beyond

x = 12 the schema is not going to be destroyed. However, for 1 < x < 12 there is a

possibility for the schema to be disrupted because in that range there are h = 7 defined

positions. Defining length of a schema d(ξ) is defined as the distance between the two

extreme defined positions, i.e., the count of the positions between them (Mitchell, 1998).

For example, d(00∗0∗01∗1∗∗1∗∗∗∗) = 12 − 1 = 11. The bigger d(ξ) the greater the

possibility for schema ξ to be destroyed.

Theorem 1 (Holland, 1992) Given n(ξ, t), the number of schema ξ at step t, the expected

number (N) of schema ξ at step t + 1 after proportional probability selection and one

point crossover is

N (ξ, E, t + 1) ≥
(

1− pc
d(ξ)

l − 1
(1− pξ)

)
µ̂ξ,E(t)

µE(t)
n(ξ, t)

8One can differentiate rank from importance in the sense that perhaps the most important are those
schema that have more defined bits—as schema S2 in B(0)—in the sense that those have more information
in them.

9For this particular example there is no loss of any particular schema considered.

16

where pc is the probability of crossover, pξ is the probability of crossing with the same

schema ξ, and l is the length of the structure.

Following Holland (1992) and Mitchell (1998) the explanation of terms is like this:

• if the number of schema ξ is n(ξ, t) at step t, then the expected number of those

schema at step t + 1 is µ̂ξ,E(t)n(ξ,t)
µE(t)

, assuming proportional probability selection,

• if two structures are selected with probability pc for one point crossover then, if the

point x at which crossover is to take place is within the defining length d(ξ) then

schema ξ can be disrupted; the probability of this is pc
d(ξ)
l−1

,

• if the two structures selected belong to the same schema ξ with probability pξ, then

the effect of crossover does not change the schema, so the possible effect of disrup-

tion is 1− pξ,

• so the net chance of disruption of schema ξ is pc
d(ξ)
l−1

(1− pξ).

Concluding, then, the building effect of crossover at step t + 1 is

1− pc
d(ξ)

l − 1
(1− pξ)

in a proportion equal to µ̂ξ,E(t)n(ξ,t)
µE(t)

. The ≥ holds in the sense that other schema ξ′ can

give rise to schema ξ in doing crossover (just as schema ξ can give rise to another schema

ξ′′ as the net effect of one point crossover).

2.3.2 Mutation

The mutation operator is applied randomly to a bit of a chromosome, randomly choosen.

When the mutation operator is applied, it flips the value of the bit. This operator is used

because as the set of structures A evolves as a result of the selection mechanism in con-

junction with the crossover operator, some alleles can be lost because some schema can

disappear. That could be the case for locus (location) 6 in the population in Table 2.2

where a great percentage (90%) of individuals have allele 0. Likewise, a 0 in locus 4 of

schema S1 would give us allele 0 in all individuals at locus 4. The only way to again try

17

an allele of value 1 in locus 4 is through the mutation operator; the crossover operator can

not restore that allele.

If the probability of mutation per bit is pm and the the number of defined positions is

h, then the probability of not disrupting the schema ξ is (1− pm)h and the probability of

disruption would be 1− (1− pm)h.

In conclusion, using crossover and mutation operators, the expected number of schema

ξ at time step t + 1 is given by the following corollary.

Corollary 1 (Holland, 1992) Given n(ξ, t), the number of schema ξ at step t, the expected

number of schema ξ at step t + 1 after proportional probability selection, one point

crossover, and mutation is

N (ξ, t + 1) ≥
(

1− pc
d(ξ)

l − 1
(1− pξ)

)
(1− pm)h µ̂ξ(t)

µ(t)
n(ξ, t).

18

Chapter 3

State of Research of the Intrusion Detection Problem

As stated in Chapter 1, the goal of this dissertation is to work on the difficult problem

of understanding what constitutes good parameters and operators for GAs in the context

of two particular problems: intrusion detection and the snake-in-the-box problem. Both

problems are appealing for use with GAs principally because the search space is huge.

In the case of intrusion detection the search space is of magnitude 2k, where k is the

number of intrusions the algorithm is looking for. For the snake-in-the-box problem it is

2n, where n = 2d and d is the dimension of the hypercube. However, for the present,

we have choosen the intrusion detection problem because it is a real problem that give us

a good example of a fitness function that tries to maximize a value satisfying a second

constraint.

3.1 The Intrusion Detection Problem

The intrusion detection problem is the computer security problem of protecting the in-

tegrity, confidentiality, and availability of data from intruders (Crosbie and Spafford,

1995). An intruder is a “subject” (defined by Denning (1986) as an entity that performs an

action over an “object”) that attempts to gain access to computer resources by subverting

the system or without valid authorization. Once an intruder is in the system, there is an

intrusion. Besides that, a “valid user” can exceed his or her privileges in an attempt to

gain confidential information. He or she is an intruder too. There are both external and

internal intruders (Anderson, 1980) and, likewise, external and internal intrusions.

An intruder can exploit a system’s vulnerabilities, defined as those holes in systems,

like the ones found in Microsoft Internet Explorer 5.0, Netscape Enterprise Server 3.6,

19

Real Secure Network Intrusion Detection Software, and so on (Schneier, 2000) (some

statistics in this topic can be found in (Diaz-Gomez and Hougen, 2006e).

An incident is an attack; for example, e-mail spoofing, computer virus spreading, and

so forth. Some attacks can be known in advance so there should be security mechanisms

that protect the system against those. Intrusion detection systems are some of those mech-

anisms.

An intrusion detection system is a system that looks for penetrations in computers and

computer networks (Bace, 2000). Misuse detection refers to the detection of internal pen-

etrations (Tjaden, 2004), i.e., users that use the computer system gaining unauthorized

privileges in order to obtain their own benefits or destroy important data. In misuse de-

tection, penetration methods are known in advance, so the intrusion detection system is

matching user activity against the known set of penetrations. Anomaly detection refers to

the detection of abnormal activity, i.e., activity which is a deviation from normal activity

(Denning, 1986). In anomaly detection, normal activity is known in advance, so that the

system can compare between normal and abnormal.

Some of the difficulties with misuse detection systems are (1) that the search space

can be huge, (2) that the system can give false positive and/or false negative alarms, and

(3) that exclusive attacks can be present (Mé, 1998)—i.e., there may be attacks that can

occur independently but not at the same time as other attacks because of violations of

the constraint— If a computer system tries to look for k known intrusions directly in the

audit trail file, that could be prohibitively expensive because of the huge amount of data,

which makes heuristic tools appropriate for approximately solving this kind of problem

(Mé, 1998). For their part, anomaly detection systems have the difficulty of differentiating

between “normal” and “abnormal” activity; usually these types of systems use statistical

models in order to gain information on these two classes (Denning, 1986). False positive

and false negative errors are inherent problems for all intrusion detection models (Bace,

2000) and, of course, the lower the number of those errors, the better the intrusion detec-

tion system.

Intrusion detection systems can be classified according to the type of system they are

monitoring as host, multi-host, or network-based (Tjaden, 2004), and whether the detec-

tion is taking place in real-time or off-line (Bace, 2000). Intrusion detection systems usu-

ally use audit trail logs which are composed of information gathered from the operating

system (Bace, 2000).

20

This dissertation is going to present a GA that performs the task of an off-line misuse

detection system, not only as a practical experiment that shows the benefit of using a

heuristic tool in solving a particular security problem but as an example system to use in

order to explore the theory behind the use of GAs.

3.2 A Genetic Algorithm Approach to Misuse Detection

One motivation for this topic was the paper “GASSATA, A Genetic Algorithm as an Alter-

native Tool for Security Audit Trail Analysis” (Mé, 1998). GASSATA is an off-line tool

that increases security audit trail analysis efficiency. The goals of this approach are the

following:

• to investigate misuse detection, i.e., to determine if the events generated by a user

correspond to known attacks, and

• to search in the audit trail file for the occurrence of attacks by using a heuristic

method (GAs) because this search is an NP-complete problem.

Vector
Weighted Attack−Event

Audit Trail

In

Matrix

Syntax
Analyser

Genetic
Algorithm

OV
Observed
Vector

W AE

I

((

(

))

)

Figure 3.1: Prototype of GASSATA.

This approach is shown schematically in Figure 3.1. The audit subsystem recognizes

various kinds of events (such as changing to a particular directory or copying a file) which

are recorded in the audit trail file. The Syntax Analyzer classifies those audit events and

generates the Observed Vector (OV), which is the aggregation of all the activity performed

by a user during some period of time. The GA module finds the hypothesized vector I

21

that maximizes the product W · I , subject to the constraint (AE ∗ I)i ≤ OVi (it is noticed

that W does not appears in the constraint because the constraint is that the set of intru-

sions must be possible, and W tell us how important an intrusion is to be, not weather

it is possible or not), where W is the weighting vector of I that reflects the priorities of

the security manager,1 AE is the Attack-Event matrix that correlates sets of events with

known attack profiles, 1 ≤ i ≤ Ne, and Ne is the number of events. See Figure 3.2 for

an example of an Attack-Event matrix AE which is encoded by the security manager with

the type of intrusions to look for, an example of an I vector of the type that needs to be

maximized (the goal is to find all possible intrusions, therefore avoiding false negatives),

and an observed vector OV which tells us about the user’s activity. Furthermore, Table 3.2

shows the current multiplication of the AE matrix with the hypothesis vector of possible

intrusions I (this product is compared with the actual observed activity OV in order to

look for violations of the constraint; if (AE ∗ I)i > OVi, then the algorithm is hypothe-

sizing higher occurrences of activity i than really happened, so there is a violation of the

constraint) and columns T and T ′ which are related to constraint violations (see Sections

3.3.1 and 3.3.2 for further explanations of T and T ′).

3.3 Fitness Functions for Misuse Detection

Most of the success of GAs in finding a solution is attributed to the fitness function in the

sense that convergence to correct solutions depends in great part on it. A fitness function

that captures all goals and constraints can be straightforwardly proposed. However, setting

parameters that appropriately join goals and constraints can be more difficult to find (Diaz-

Gomez and Hougen, 2005c). The fitness function suggested for GASSATA (Mé, 1998) is

defined as:

F (I) = α +
Na∑
i=1

Wi ∗ Ii − β ∗ T 2. (3.1)

The goal of each component of the equation is as follows:

• α: To maintain F (I) > 0, and therefore maintain diversity in the population.

1Wj = 1, for all j, was used in all test performed in this dissertation.

22

A T T A C K #
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 I AE*I OV T T'

0 3 0 0 0 0 0
1 1 0 0 0 0 0
2 1 0 1 0 1 1
3 3 1 0 0 0 0
4 3 0 0 0 0 0
5 3 8 1 8 0 1 1
6 5 1 5 1 10 0 1 2
7 30 1 30 76 0 0
8 5 1 5 0 1 1

 9 3 0 0 0 0 0

10 2 1 2 20 0 0

 11 3 1 3 0 1 1

T 12 10 1 1 0 0 0 0

N 13 1 0 0 6 0 0

E 14 1 0 0 0 0 0

V 15 4 0 4 4 0 0

E 16 1 0 0 0 0 0
17 3 35 5 8 3 2 3 10 3 300 2 5 4 0 62 94 0 0
18 100 1 100 0 1 1
19 5 0 5 42 0 0
20 10 1 0 0 0 0
21 1 1 0 0 0 0
22 10 0 0 0 0 0
23 5 1 5 5 0 0
24 1 0 0 0 0
25 1 3 3 459 0 0
26 30 30 1335 0 0
27 50 0 0 0 0

Figure 3.2: Example of an Attack Event matrix AE, I vector to be maximized, the product
of AE and I , the observed vector OV and counts of faults T and T ′.

23

• I: To allow for hypotheses of attacks. The system is rewarded for hypothesizing

attacks, particularly those of greatest concern to the security manager. This is gen-

erated randomly in the first generation.

• β: To provide a slope for the penalty function.

• T : To count the number of times the constraint is violated, i.e., (AE ∗ I)i > OVi.

The system is penalized, then, for hypothesizing sets of attacks that could not have

occurred, given the observations.

Mé (1998) reported results which seam to satisfy his approach to the problem. How-

ever, our approach shows weakness in his approach.

3.3.1 Analysis of GASSATA’S Fitness Function

In order to appreciate the problem of finding appropriate parameters to combine objectives

and constraints, we conducted the following analysis (Diaz-Gomez and Hougen, 2005c):

take Equation 3.1 and, as a first approximation, choose the parameter β = 1.0, so that the

penalty term is T 2. As 0 ≤ T ≤ Ne then 0 ≤ T 2 ≤ N2
e . Assuming that, on average,

the count of faults is T = Ne/2, then the penalty term would be, on the average, in the

range of 0 ≤ T 2 ≤ N2
e /4. As the initial testing was done with proportional probability

selection, a positive fitness value allows for less frequent elimination of individuals—

compared with negative fitness values where the individual essentially disappears from the

current population—so, α was set as α = N2
e /2 (twice as large as the average penalty term

assumed). Wi, which corresponds to the risk of each attack i, was assumed to be equal

to 1 for all i so that after finding all possible intrusions, those can be sorted according to

the weights given by the security manager. With these parameters and using as input a

file corresponding to user 20512—with 4 known intrusions—Table 3.1 shows the results.

A large number of false positives and some false negatives are observed in the 11 runs

performed with the same input file.

Analyzing the term
∑Na

i=1 Wi∗Ii in Equation 3.1, it can be inferred that this term guides

the solution to have a maximum number of intrusions, because this is the rewarding term.

However, this is good only until the correct set of intrusions are found. If more intrusions

than that are hypothesized, the problem of false positives occurs.
2The data used was downloaded from the Lincoln Laboratory at MIT (Fried and Zissman, 1998).

24

Run False + False – Detected Greatest Fitness
0 7 0 4 649.0
1 8 1 3 672.0
2 6 1 3 682.0
3 10 1 3 637.0
4 9 0 4 648.0
5 9 0 4 674.0
6 10 1 3 674.0
7 9 1 3 663.0
8 11 0 4 655.0
9 9 1 3 610.0
10 8 1 3 645.0

Table 3.1: User 2051 at 11:00 am; α = N2
e /2; β = 1; 500, 000 generations; 11 runs.

Similarly, the term β ∗T 2 decreases the fitness value but various intrusions can require

the same event. When this happens, the counting of overestimates is wrong. See, for

example, Figure 3.3. In 1 (dashed lines in Figure 3.3) there is a first case: A type 5

intrusion was hypothesized. This intrusion requires occurrences of events of types 6, 7,

and 17. For event type 6, the hypothesis gives a number of occurrences greater than the

number of required occurrences that really happened; T is then incremented by 1. For

event types 7 and 17 there is no penalty since (AE ∗ I)7 ≤ OV7 and (AE ∗ I)17 ≤ OV17

(that is, 30 ≤ 76 and 62 ≤ 94).

In 2 (solid lines in Figure 3.3) there is a second case: Intrusion type 21 was hypothe-

sized which requires events of types 6 again, 17 again, and 23. For event types 17 and 23

there is no penalty because (AE ∗ I)17 ≤ OV17 and (AE ∗ I)23 ≤ OV23, and for event 6

there is no penalty either because the penalty was already taken into account for intrusion

type 5. In this case, where there should be a penalty, there is no penalty at all (Diaz-

Gomez and Hougen, 2005a). To address this problem Diaz-Gomez and Hougen (2005c)

propose counting exactly the number of constraint violations made by each attack, which

corresponds to the term T ′ in Figure 3.2.

Figure 3.2 gives, then, the AE matrix, an individual I hypothesized in the last genera-

tion, the counts of constraint violations for that individual T—as suggested by Mé (1998)

for GASSATA—and the correct count of constraint violations T ′ as suggested by Diaz-

Gomez and Hougen (2005b). However, it should be taken into account that T is raised

to the power of 2 in Equation 3.1 and the parameter β is used to tune it; actually this is

25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

0 0 0
0 0 0

1 0 0
 0 0 0

0 0 0
 1 2 20

1 0 0
0 0 6
0 0 0
0 4 4
0 0 0
 0 62 94

1 0 0
1 0 0

 30 1335
 0 0

1 3 0 1

1 5 0 1

1 8 0 1

 3 459
 0 0

1 100 0 1

1 30 76

 0 0 0
1 5 5

0 1 0 1

0

1 10 0 11

 0 5 422

Event OV I AE*I T

Figure 3.3: Counting of overestimates for intrusions I5 and I21.

a problem in the sense that β has to be tuned for almost every file (i.e., observed vector)

and with the side effect that if β is not well tuned, T 2 becomes quite high and then fitness

values become negative unless α is incremented (if many fitness values are negative and

proportional selection is used, then, many chromosomes are going to dissapear from the

population).

Table 3.2 summarizes results with the same parameters and different data sets. The

tendency is quite similar to that seen in Table 3.1: the average of false positives is large3

and there is a false negative average overall (except when the input is an observed vec-

tor that does not have intrusions). An improved fitness function is needed in order to

overcome these difficulties (see Section 3.3.2).
3The percentage for false positives is greater than 100% because 100% corresponds to the real number

of intrusions, i.e, three, four, zero and twenty four, depending of the specific case.

26

10 Run Average Average %
Input File False + False – Detected False + False – Detected

2051 7 8.9 0.2 2.8 297 7 93
2506 15 8.6 0.8 3.2 215 20 80

Zero Vector 10.0 0.0 0.0 Inf. 0 100
Full Vector 0.0 10.9 13.1 0 45 55

Table 3.2: Test with different input files; α = N2
e /2; β = 1; 500, 000 generations; 10

runs.

3.3.2 An Improved Fitness Function

As stated in Section 3.3.1 and Diaz-Gomez and Hougen (2005a), the term
∑Na

i=1 Wi ∗
Ii was incorrectly guiding the fitness function, and the term T 2 was quite high when

counting false hypotheses. As a first step towards an improved fitness function, consider

the objective function:

1. Cut the positive side
∑Na

i=1 Ii, and

2. Count overestimates in the correct way; this means, if two intrusions require excess

occurrences of the same event, then count them twice, and so forth.

With this in mind, the fitness function only has one term, the penalty function,4 and as

the number of events is Ne, the new fitness function suggested is

F (I) = Ne − T ′

. Ne corresponds to the total number of classified events. For testing, this value is 28. T ′

corresponds to the number of over counts for entry i, i.e., if (AE · I)i > OVi.

It must be taken into account that the role of α corresponds now to Ne and that β is

equal to one (see Equation 3.1). However, the term
∑Na

i=1 Ii was suppressed, as stated

before. It must be reinforced that the reason for doing that is because the term
∑Na

i=1 Ii is

giving the number of intrusions hypothesized but those intrusions have not been evaluated

yet. In doing so, the evaluations may produce an incorrect count of overestimates, as can

be seen in Figure 3.3.

Now, the hypothesized vector I is really evaluated in T ′; the better the hypothesized

vector, the smaller T ′ is, and of course, F (I) → Ne, the maximum.
4In a similar work Li (2003) found a similar fitness function.

27

10 run Average Average %
User False + False – Detected False + False – Detected

2051 7 0 0 3 0 0 100
2051 11 0 0 4 0 0 100
2506 15 0 0 4 0 0 100

Zero Vector 0 0 0 0 0 100
One Intrus. 0 0.1 0.9 0 0 90
Two Intrus. 0 0 2 0 0 100

Three Intrus. 0 0 3 0 0 100

Table 3.3: Robustness of the GA in doing misuse detection. Averaged over 10 runs.

In order to approximate a solution to the problem of finding the complete set of in-

trusions, as the GA runs it creates an aggregate solution set of all possible compatible

types of abnormalities or intrusions found, using the union operator. The union operator

functions as follows: (1) It records all the realistic solutions I (those where T ′ = 0) found

in the search space while running. (2) Keeps track of each intrusion it finds within each

realistic solution. (3) When a local maximum is found, the algorithm checks if the new

intrusion already exists in its current solution set and if it does not, then it checks if it is

mutually exclusive or not in order to add it to the corresponding aggregate solution set.

In this way the algorithm builds up the set of all compatible abnormalities—the abnormal

subset and the abnormal subset exclusive of the previous one.

The results found with the new fitness function and the union operator are shown in

Table 3.3.

As can be seen, with the new fitness function there are no false positives and the

number of false negatives decreases dramatically. This time 70 runs were performed, 10

for each type of data, and only one time a false negative was present.

This research has suggested some enhancements to the original work of Mé (1998) in

order to avoid false negatives and false positives (Diaz-Gomez and Hougen, 2006a). For

the false negative case, we have developed two mechanisms: the first one is the capturing

of all possible intrusions in two subsets called the abnormal and abnormal exclusive sub-

sets, which take into account the set of possible intrusions and the ones that in union with

the set of possible intrusions violate the constraint. The second mechanism—quite related

with the previous one—is the union operator, which stores and compares all the intrusions

as the algorithm iterates. For the false positive case, we have suggested initially a fitness

function that penalizes each chromosome taking into account intrusions that require the

28

same event (see Section 3.3.1). Elaboration of these mechanisms and a dynamic fitness

function is presented in Sections 5.1 and 5.1.1.

29

Chapter 4

State of Research on the Snake-in-the-Box Problem

The snake-in-the-box problem is a problem that can be stated in a simple way as: find the

longest snake in a hypercube. At the same time, it is a problem that grows in complexity

as the search space increases. The snake-in-the-box problem is so difficult that it is not

known if the longest snakes found until now in hypercubes of dimensions d > 7 are

actually the longest that can be found in those hypercubes. The snake-in-the-box problem,

as a search problem of optimum paths, has been recognized as a NP problem due to the

size of the search space and the constraints imposed (Bitterman, 2004). This dissertation

has choosen this problem because it is a real problem of theoretical interest (Bitterman,

2004; Casella and Potter, 2004; Diaz-Gomez and Hougen, 2006b; Klee, 1970; Potter et al.,

1994; Snevily, 1994) as well as practical in coding theory (Rajan and Shende, 1999),

digital design, and telecommunications (Greenberg and Bhatt, 1990).

4.1 The Snake-in-the-Box Problem

A d-hypercube is a connected, non-directed graph of 2d vertexes (or nodes), where each

vertex has d neighbors and a binary labeling of each node may be given that differs in

exactly one bit from that of each of its neighbors (Lakshmivarahan and Dhall, 1990). For

example, Figure 4.1 shows a hypercube of dimension 4; it has 16 nodes, and each node is

connected to 4 neighbors which differ in one base-two digit. For instance, node 0000 has

4 neighbors: 0001, 0010, 0100, and 1000.

A snake in a hypercube of dimension d is a connected open path in the hypercube

where each node in the path has exactly 2 neighbors, except the head (source) and the tail

(destination) that each have only one neighbor. The constraint is, then, that a node in the

30

1100

Snake

0001

0100 0101

0110

1000 1001

1010 1011

1101

1110 1111

0000

0010 0011

0111

Figure 4.1: Hypercube of dimension 4 with a snake of length 7.

traversal is visited if it is not a neighbor of a previously visited node. Figure 4.1 shows a

snake in a hypercube of dimension 4. The snake path is: 0000 − 0001 − 0011 − 0111 −
0110−1110−1100−1101. Each node in the snake has exactly 2 neighbors, except nodes

0000 and 1101 that are the head and the tail. This snake has length 7 and is the longest in

a hypercube of dimension 4 (Casella and Potter, 2004). Node 0100, for example, can not

be in the snake because if it were in that path then it would have 3 neighbors: 0000, 0110,

and 1100, violating the constraint1 that the maximum number of neighbors must be 2, and

there would be closed paths like 0100−0110−0111−0011−0001−0000−0100, violating

the constraint that the snake is an open path and that there should be two distinguished

points each with only one neighbor in the path.

The length of a snake is the number of edges in the connected path.2 Besides the

complexity of the problem, one is faced with the fact that the lengths of longest snakes

in hypercubes of dimension greater than 7 are unknown. Some theoretical upper bounds

have been referenced (Weisstein, 2006) regarding coils, i.e., closed paths, or where the

head is equal to the tail:

1. Klee (1970):
1Nodes 0110 and 1100 would violate this constraint as well, and node 0000 violates the heads’ constraint.
2Some authors count the length as the number of vertexes or nodes.

31

7

4(d− 1)
≤ c(d)

2d
≤ 1

2
− 1− 12/2d

7d(d− 1)2 + 2
for d ≥ 6 (4.1)

2. Abbott and Katchalski (1988):

c(d) ≥ 77 · 2d−8 (4.2)

3. Snevily (1994):

c(d) ≤ 2d−1(1− 1

20d− 41
) for d ≤ 12 (4.3)

and conjectured

c(d) ≤ 3 · 2d−3 + 2 for d ≥ 5 (4.4)

where c(d) corresponds to the length of the longest coil.3

To find the length of a snake s(d), the difference between c(d) and 2 is found; an

approach that is used because of the lack of theoretical results with open paths.

The snake-in-the-box problem is a search problem in a search space of dimension 22d ,

where d is the dimension of the hypercube. The search space then grows exponentially
3It should be noticed that Equation 4.4 was conjectured independently by Diaz-Gomez and Hougen

(2006c) as a lower bound on the length of longest open paths in hypercubes of dimension d.

Hypercube Snake
Dimension Length

3 4
4 7
5 13
6 26
7 50
8 97
9 186
10 358
11 680
12 1260

Table 4.1: Lengths of longest known snakes. Casella and Potter (2004).

32

(22d) as the dimension of the hypercube (d) increases. There have been some non-heuristic

methods to solve the problem in hypercubes of dimension less than 8 (Casella and Potter,

2004) and at the same time, it has been shown experimentally that GAs are a powerful tool

to solve this type of problem (Potter et al., 1994). Of course, experimentally researchers

have been recording the longest snakes found, see Table 4.1 (Casella and Potter, 2004).

4.2 A Genetic Algorithm Approach to Hunting Snakes

With the explosion of the search space for the snake-in-the-box problem, a GA is an ap-

pealing tool to try to solve the problem approximately (Casella and Potter, 2004). As

usual with GAs, besides the method to encode the possible solution, at least six param-

eters should taken into account: the population size, the fitness function, the selection

mechanism, the crossover and mutation probability, and the stop criteria.4 The parameters

form a system; they are interrelated so a change in one could impact the quality of the

solution or the number of computations required to obtain it (Diaz-Gomez and Hougen,

2007c).

For encoding the possible solution, basically one method has been applied (Bitterman,

2004): decimal encoding. With decimal encoding, two approaches have been used: (1)

the labeling of the nodes from 0 to 2d − 1 (for example the snake in Figure 4.1, with this

encoding, would be 0−1−3−7−6−14−12−13); and (2) the labeling of the nodes using a

Gray code (in which case the snake in Figure 4.1 would be 0−1−2−3−1−4−2−1). With

the first approach, a data structure that stores the connection of nodes is needed in order

to guarantee a connected path; with the second one, a such data structure is not needed

because the Gray code links adjacent nodes (Potter et al., 1994). However, the most

common encoding used by GAs, binary encoding, has not been used, to our knowledge,

except in our work (Diaz-Gomez and Hougen, 2006c,b), perhaps because the information

regarding the connection of nodes is needed and/or the length of the chromosome grows

exponentially (2d).

The crossover and mutation probabilities used previously obey the standard for GAs:

crossover in a range from 0.6 to 0.95, and mutation probability of 0.0, or in the range

from 0.01 to 0.04 (Potter et al., 1994). However, there is no other justification for their use

4This dissertation is going to consider four in order to make the problem tractable.

33

Function Ave. Best Found Maximum Length Stdv.
(1) 58.0 66 3.42
(2) 57.9 66 3.83
(3) 57.9 62 3.06

Table 4.2: Comparison of three fitness functions to hunt snakes reported by Bitterman
(2004). 8-dimensional hypercube.

than empirical results. It should be highlighted that normally the operators used maintain

the characteristics of snakes (Potter et al., 1994), so constructive factors are the only ones

present.

As the snake-in-the-box problem is quite constrained, usually population sizes larger

than 10, 000 individuals are used (Potter et al., 1994), with the common practice to embed

the longest snakes found in a hypercube of dimension d − 1 or the ones found in the d-

dimensional hypercube. In order to evaluate the possible solutions a fitness function that

takes into account the length of the snake is used (Potter et al., 1994), explicit formulation

of fitness functions are reported as: (1) the length of the snake to the power of three, (2)

the cube of the longest sub-snake plus the square of the length of smallest sub-snakes and

(3) an evaluation of the length of the snake based on the narrowness of its path (Bitter-

man, 2004). Bitterman (2004) performed 40 runs for searching snakes in a 8-dimensional

hypercube maintaining constants all parameters except the fitness function. Comparative

results of these three fitness functions are shown in Table 4.2 taken from Bitterman (2004),

where there is almost no difference in the average of longest snakes found.

According to Casella and Potter (2004), selection mechanisms like proportional selec-

tion, q-tournament selection, and rank selection have been tested, with results that show

that rank selection has outperformed the other two (Casella and Potter, 2004), Bitterman

(2004) reported over 40 runs results in Table 4.3, where in average, there is almost no dif-

ference on the selection mechanism used. Finally, as stop criteria, an approximate number

of generations of 50, 000 or when there is no progress in the evolutionary process are used

(Casella and Potter, 2004).

It should be emphasized that usually an hybrid approach has been taken in order to

find snakes. Casella and Potter (2004) uses the population-based stochastic hill-climber

PBSHC, where the snake is built gradually at each generation, there is no crossover, and

the next node to growth is chosen at random from the possible nodes available in the

34

Selection Ave. Best Found Maximum Length Stdv.
2-Tournament 58.9 63 2.56
3-Tournament 57.6 61 3.10

Roulette 58.1 66 3.44
Rank 58.4 66 3.88

Table 4.3: Comparison of selection mechanisms to hunt snakes reported by Bitterman
(2004). 8-dimensional hypercube.

snakes’ path. This means that at each generation all snakes have the same length. there-

fore, in order to perform selection the tightness5 of the snake is used. Bitterman (2004)

uses GA alone just for comparison purposes with hybrids like GA and depth first search

and GA and narrowest path heuristic.6 Bitterman (2004) states that GA alone are not

good for finding snakes, but that combining GA with traditional search methods are more

promising. However, as our research is in canonical GAs, we use only GAs not hybrids

(see Section 6.3.3).

5Tightness is defined as the total number of valid nodes available in the hypercube to be used by the
building snake (Casella and Potter, 2004).

6In narrowest path heuristic the algorithm performs n-look ahead in order to look for better paths (Bit-
terman, 2004).

35

Chapter 5

Theoretical Results

This dissertation addresses the difficult problem of setting certain parameters for GAs:

the fitness function, the initial population, and the probabilities of crossover and mutation.

This does not mean that other parameters, like selection pressure and stopping criteria are

not important; but because each parameter itself constitutes an entire research topic, some

have not been addressed.

The setting of parameters for GAs constitutes an optimization problem itself. Here,

it raises the question: What is an optimal parameter setting (plan τ) for the solution of a

problem that could guide the algorithm to get better solution solution quality? Parameter

setting is usually approached by practitioners and researchers as providing empirical set-

tings. Usually one looks for “good” solutions, but there may be a lack in the analysis of

parameter setting.

The set of parameters for GAs constitutes a system. A change in one or more can

impact others, but, besides that, it can impact the performance of the algorithm. Perfor-

mance is measured in better solution quality and/or in the number of generations to reach

a solution (Diaz-Gomez and Hougen, 2007c) (see Chapter 6 for empirical results).

We hope, then, to contribute to the research community with the present study, making

a theoretical approximation for the setting of some parameters, the results of which are

expected to be generalized.

5.0.1 Possible Factors that Influence the Initial Population

The first step in the functioning of a GA is, then, the generation of an initial population.

Each member of this population encodes a possible solution to a problem. After creating

36

GA
Diversity

Search
Space

Population Result
Initial

Number
of Individuals

Fitness
Function

Difficulty
Problem

Selection
Pressure

Figure 5.1: Some factors to take into account when the initial population is generated
randomly.

the initial population, each individual is evaluated and assigned a fitness value according

to the fitness function. However, this dissertation approaches the first research statement

having in mind that the problem of finding a good initial population and the optimal pop-

ulation size is a hard problem (Eiben et al., 1999) and a general rule can not be applied to

every type of problem or function to be evaluated (Lunacek and Whitley, 2006).

Figure 5.1 shows some factors that influence the initial population or that should be

taken into account when an initial population is generated randomly: the search space,

the fitness function, the diversity, the problem difficulty, the selection pressure, and the

number of individuals.

The search space is influencing the initial population in the sense that usually there

is a direct relation between search space and population size, the bigger the search space

is, the more individuals the GA should have. However, if the problem is quite difficult

and some information regarding the possible solution is available, then it is good to seed

the GA with that information (Casella and Potter, 2004; Rajan and Shende, 1999), i.e., the

initial population is seeded with some of those possible solutions or partial solutions of the

problem. But, besides quantity, it has been recognized that if the initial population to the

GA is good, then the algorithm has a better possibility of finding a good solution (Burke

et al., 2004). A measure of diversity plays a role here in the sense that, when there is

no information regarding a possible solution, then we could expect, that the more diverse

the initial population is, the greater the possibility to find a solution is, and of course,

the number of individuals in the population to get a good degree of diversity becomes

important.

37

The selection pressure should be taken into account in the initial population size (Yu

et al., 2006). One can say that, if a selection pressure Sp1 is greater than a selection

pressure Sp2, then, when using selection pressure Sp1 the population size should be larger

than when using selection pressure Sp2, because a higher selection pressure can cause a

decrease in diversity (Harik and Lobo, 1999) of the population at a greater rate, perhaps

causing the algorithm to converge prematurely.

The fitness function can be taken into account, in the sense that, the fitness evalu-

ation of the initial population can be used as a metric of diversity (Burke et al., 2004;

Diaz-Gomez and Hougen, 2007c), looking, for example, at the initial standard deviation

of fitness values and evaluating the dispersion of such values or generating the initial pop-

ulation randomly and uniformly in the fitness value range (if bounded) (Diaz-Gomez and

Hougen, 2007c).

Over previous stated factors, the one that is going to be studied in this dissertation is

diversity. It is widely accepted that diversity plays an important role in the performance

of GAs (Jaroslaw Arabas and Mulawka, 1995; Bitterman, 2004; Burke et al., 2004; Lobo

and Lima, 2005; Grefenstette, 1986; McPhee and Hopper, 1999; Rosca, 1995). However,

the research community has not formally defined diversity nor they have formally tested

this hypothesis. There for, in this dissertation, we attempt to formalize various metrics to

measure diversity and propose the first general hypothesis:

If V (PA) ≥ V (PB) then X(G, PA) ≥ X(G, PB) (5.1)

where V (PA) is the diversity of population PA and X(G, PA) is the expected performance

of a genetic algorithm G with population PA. Expected performance is measured as the

expected solution quality of the best solution found so far after a given number of gen-

erations or the expected number of function evaluations to obtain a solution of a given

quality. Diversity is measured in terms defined in Section 5.0.2.

5.0.2 Metrics to Evaluate Diversity

This dissertation consider basically three types of measures for a fixed length population

of chromosomes: one at the gene-level, one at the chromosome-level, and one at the popu-

lation level. At the gene-level, diversity is measured at each locus of the entire population;

38

at the chromosome-level, diversity is measured in each chromosome of the entire popu-

lation; and, at the population level, the position of each bit of each chromosome of the

entire population is pondered.

5.0.2.1 Grefenstette Bias

In order to find diversity at the gene-level in a population, a formula that can be used is

the bias measure suggested by Grefenstette (cited by Bäck (1996)) that is defined as

b(P (t)) =
1

l ·N

l∑
j=1

max

{
N∑

i=1

(1− ai,j),
N∑

i=1

ai,j

}
(5.2)

where b(P (t)) is the bias of the population P (t) at time step t; l is the length of the

chromosome, N is the number of individuals in the population, and ai,j is the j-gene of

the i-individual.

Diversity as in Equation 5.2 is in the range [0.5, 1.0]; the nearer to 0.5 the more diverse

the population is (Bäck, 1996). As it seams intuitive range diversity from [0.0, 1.0], where

values near to 1 are those that are more diverse, this dissertation suggest a slight change

to Equation 5.2 to

d(P (t)) = 2 ∗ (1− b(P (t))) (5.3)

Equation 5.2 is such that if N increases, then the term max{
∑N

i=1(1−ai,j),
∑N

i=1 ai,j}
→ N/2 because in an initial random generation of genes it is expected to have half ze-

roes and half ones. Formally, if N → ∞ and the initial random generation of genes is

uniformly distributed, then

b(P (0)) =
1

l ·N

l∑
j=1

max

{
N

2
,
N

2

}
=

1

l ·N
N · l

2
=

1

2
(5.4)

That corresponds to d(P (0)) = 1 in Equation 5.3, a fact that shows that in order to obtain

“good” diversity—according with Grefenstette formula—the number of individuals in the

population should be “big enough.”

39

It should be reinforced that Equation 5.3 can not be seen as if all individuals in the

population are different. If, for example, in an initial population of 8 individuals, 4 in-

dividuals are 11111111 and 4 individuals are 00000000, then d(P (0)) = 1.0 (the best),

but it turns out that there are only two types of individuals. However, all positions of

the chromosome have been represented with the possible values 0 and 1. If, on the con-

trary, all individuals in the initial population are different, as is the case of a base in an

n-dimensional space, then d(P (0)) = 2 ∗ {1− [(n− 1) · l/l ·n]} = 2 ∗ {1− [(n− 1)/n]},

clearly equal to 1.0 only when n = 2. These examples show some considerations that

should be taken into account in Equation 5.3, if applied alone to measure diversity in the

initial population (Diaz-Gomez and Hougen, 2007c).

5.0.2.2 Gene-Level Entropy

One common measure of uncertainty is entropy, defined as (Shannon, 1948)

Hj = −
N∑

i=1

pij ∗ log2pij (5.5)

where pij is the probability of occurrence of independent event ai,j , and N is the number

of trials (that is the population size in this case).

A measure of entropy at the gene-level for a population could be, then, the equation

H(P (0)) =
1

l

l∑
j=1

Hj, (5.6)

where Hj corresponds to the entropy as in Equation 5.5 for locus j of the entire population.

Looking at entropy values for different chromosome lengths, we find the same patterns

as just discussed in Section 5.0.2.1—as l and N increase, entropy values are quite similar

independently of l and N . However, both metrics, Equation 5.3 and Equation 5.6 scale

different. Equation 5.5 (which is part of Equation 5.6)—takes into account the probability

of occurrence of 1′s and 0′s for each locus in the entire population. On the contrary,

Equation 5.3 takes into account the maximum number of 1′s or 0′s, whichever it is, for

each locus of the entire population. For example, for 3 bits with values 1, 0, 0, according

to equation 5.5, H = −(1
3
log2

1
3
+ 2

3
log2

2
3
) = −(−0.5283−0.39) = 0.9183 and, according

to Equation 5.3, d = 2 ∗ (1− 2
3
) = 2

3
= 0.6667 (Diaz-Gomez and Hougen, 2007c).

40

5.0.2.3 Chromosome-Level Hamming Distance

The Hamming distance measures the number of bits at which two individuals differ; it is

defined as (Bäck, 1996; Frederick et al., 1993):

ρH(C1, C2) =
l∑

k=1

(|C1,k − C2,k|), (5.7)

where C1, C2 are chromosomes and, C1, C2 ∈ {0, 1}l.

In order to calculate an average Hamming distance, the Hamming distance between

each pair of chromosomes in the population is needed. The Hamming distance of a pop-

ulation of size N , averaged by the total number of computations ((N − 1) ∗N/2) is

ΓH(P (0)) =
2 ∗
∑N−1

i=1

∑N
j=i+1 ρH(Ci, Cj)

N ∗ (N − 1)
(5.8)

For a uniformly randomly generated population, the average Hamming distance tends

to l/2, because it is assumed that half of the bits are 1′s, half are 0′s, and that they are

equally distributed. However, if in two chromosomes every bit is flipped, their Hamming

distance is l. So the nearer to l the better. Cases where ΓH(P (0)) < l/2 may be an

indication of poor diversity at the chromosome level (Diaz-Gomez and Hougen, 2007c).

Taking again the example of 8 individuals, the first 4 being all genes 1′s and the last 4

being 0′s, it is obtained ΓH(P (0)) = 2 ∗ (8 ∗ 4 + 8 ∗ 4 + 8 ∗ 4 + 8 ∗ 4)/(8 ∗ 7) = 4.5714.

This value is greater than l/2, and that could be considered as a good grade of diversity.

However, if for the GA’s purposes, there are only two types of individuals, having four of

each type makes a difference.1

5.0.2.4 Chromosome-Level Neighborhood Metric

The Hamming distance with the concept of neighborhood defined by Bäck (1996) can be

used, as a metric of diversity at the chromosome-level

Bk(Cm) = {Cj ∈ {0, 1}l|ρH(Cm, Cj) = k} (5.9)

1The difference is basically that the population size is different, and as such, it is expected that the
performance of the GA is going to be different.

41

where k ∈ {0, 1, ..., l} and ρH(Cm, Cj) is as in Equation 5.7.

Equation 5.9 gives the neighbors of a chromosome Cm at a distance equal to k. In

other words, if, for example, we want to find the individuals equal to Cm, then k = 0.

The chromosome-level neighborhood metric is defined as:

N (Cm) =

∑l
k=0 |Bk(Cm)| ∗ k∑l

k=0 |Bk(Cm)|
(5.10)

with Cm a pivot chosen from the population, |Bk(Cm)| the cardinality of Bk(Cm), i.e., the

number of neighbors of Cm at a distance k in the whole population.

It is appreciated—using Equation 5.10—that as the population size grows, the ten-

dency of the chromosome-level neighborhood is toward a distance of l/2, there is a con-

centration of points around the median point Cm at a distance k = l/2.

Again take the example of a population of 8 individuals, 4 of which are 1′s and the last

ones are 0′s. In order to calculate the neighborhood Bk(Cm) = {Cj ∈ {0, 1}l|ρH(C1, Cj) =

k}, a pivot is needed; that could be any chromosome in the initial population. If the mid-

point used is the chromosome of all 0′s, then Cm is going to have 3 neighbors at a distance

k = 0, and 4 neighbors at a distance k = 8, then the average neighborhood distance as

in Equation 5.10 is (3 ∗ 0 + 4 ∗ 8)/(3 + 4) = 4.5714; that, for this particular case, is ex-

actly the same as the Hamming distance measure calculated in Section 5.0.2.3. However,

the computational complexity of the chromosome-level neighborhood metric is O(N ∗ l)

against O(N2 ∗ l) of the Hamming distance metric.

5.0.2.5 Population-Level Center of Mass

Before a theoretical formulation of this metric, let us present an example of an initial

population as in Table 5.1, where the center of mass (x1, y1) with respect to 1 is going to

be calculated. For calculating the x1 coordinate, the column positions of gene 1 in row 1

is counted, that is 1 + 2 + 0 + 4, plus the positions of gene 1 in row 2 that is 1 + 2 + 3 + 0,

plus the positions of gene 1 in row 3 that is 1 + 0 + 3 + 0, and finally the positions of

gene 1 in row 4 that is 0 + 0 + 0 + 0 in order to obtain a total of 17, which is divided by

the number of 1′s in the population (8) to obtain x1 = 2.125. Now, in order to calculate

the y1 for gene 1, the row position of gene 1 in all columns is counted, which simplifying

gives as a result: 1 + 2 + 3 + 0, 1 + 2 + 0 + 0, 0 + 2 + 3 + 0 and 1 + 0 + 0 + 0, for

a total of 15. Again, the total is divided by the number of 1′s in the population to obtain

42

1 1 0 1
1 1 1 0
1 0 1 0
0 0 0 0

Table 5.1: Initial population as a matrix of 1′s and 0′s.

y1 = 15/8 = 1.875). The center of mass with respect to gene 0 is calculated in a similar

way, but taking into account gene 0 instead of gene 1.

Theoretically, population-level diversity metric looks at all genes in a population as a

matrix of two types of genes (particles) and calculates the center of mass with respect to an

origin (0, 0)—that is located at the left-top of the matrix. For the case of the x coordinate

of the center of mass for a gene with value 1, it is suggested

x1 =

∑N
i=1

∑l
j=1 T (ai,j)∑N

i=1

∑l
j=1 ai,j

(5.11)

where

T (ai,j) =

{
j, if ai,j = 1

0, otherwise

and
∑N

i=1

∑l
j=1 ai,j is the number of those genes (i.e., where ai,j = 1).

In order to obtain the y coordinate for a gene of type 1 a similar equation is suggested

y1 =

∑l
j=1

∑N
i=1 R(ai,j)∑l

j=1

∑N
i=1 ai,j

(5.12)

where R(ai,j) is the row position i of gene ai,j where the gene has value 1, and
∑l

j=1

∑N
i=1ai,j

is the number of such genes as in Equation 5.11.

Equations 5.11 and 5.12 can be applied taking into account 0′s instead of 1′s, in order

to find the center of mass with respect to gene value 0. If the number of 1′s and the number

of 0′s are uniformly distributed then it is expected that (x1, y1) ≈ (x0, y0) ≈ (l
2
+ 1

2
, N

2
+ 1

2
).

The 1
2

comes from the fact that the first gene is considered at a position (1, 1).

Let us analyze the special case presented in section 5.0.2.1, where we have an initial

population of 8 individuals, the first 4 of which are 11111111 and the last 4 individuals

are 00000000. According to Equation 5.11—for the case of gene 1, x1 coordinate—∑8
j=1 T (ai,j) = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36 and, as there are 4 chromosomes

43

with 1′s, then, the numerator is 36 ∗ 4. As
∑N

i=1

∑l
j=1 ai,j = 8 ∗ 4 then, it is obtained

x1 = 36 ∗ 4/8 ∗ 4 = 4.5. The same procedure applied in order to find the y1 coordinate

gives y1 = 2.5. This example gives as a result (x1, y1) = (4.5, 2.5), i.e., the center of

mass, for gene 1, is exactly in the middle coordinate of the first 4 chromosomes, with

respect to origin (0, 0). If the same calculation is performed for the center of mass for

gene value 0, it is obtained (x0, y0) = (4.5, 6.5). Clearly the y′s coordinates of the two

centers of mass for 1 and 0, are showing an “unbalance” (y1 = 2.5 6= y0 = 6.5) in the

distribution of 1′s and 0′s in the matrix. At the x coordinate, the population is “balanced”,

i.e., x1 = 4.5 = x0.

This dissertation is suggesting to use this metric in uniformly randomly generated

genes in a population because there could be cases—non randomly generated—where

there is a perfect center of mass (l
2
+ 1

2
, N

2
+ 1

2
) for x and y coordinates but the population

couldn’t be diverse at all. As a matter of example, if we have N = 11 chromosomes with

length l = 11, and genes with value 1 are in positions (1, 1), (1, 12), (12, 1), and (12, 12),

and the rest of the genes are equal to 0, then the center of mass with respect to origin

(0, 0) is (x1, y1) = (x0, y0) = (6, 6). However, extreme cases like a population equal to a

base in the Bn space, is well captured by the center of mass, but not for other metrics just

studied—see Section 5.0.2.1.

5.0.3 Analysis of Metrics

Studying metrics at gene level, similarities are observed among them. For instance, given

any two individuals, both metrics give the same measure. However, when there are more

than two individuals, the evaluation differs for all combinations where there are different

proportion of 1′s with respect to 0′s. Both present the same rank ordering but with dif-

ferent scale. The computation time needed in order to evaluate these metrics is O(N ∗ l),

where N is the size of the population and l is the chromosome length. These results

suggest, that it does not matter which of these metrics is used.

Chromosome-Level neighborhood metric—as in Equation 5.10—takes less computa-

tion time (O(N ∗ l)) than Chromosome-level Hamming distance diversity O(N2 ∗ l), a

fact that leads us to suggest using it at the Chromosome-Level. Both metrics are com-

puting diversity at the chromosome level and both are using the Hamming distance; this

44

makes the corresponding chromosome-level diversity values quite similar—at least for the

current study.

Population-level diversity can capture the distribution of 1′s and 0′s in the whole pop-

ulation taking into account the structure of it. In order to see this, let us take the example

of three individuals 101, 000, 101 (Deb and Jain, 2004). In this case the Grefenstette met-

ric as in Equation 5.3 evaluates to 0.4444, the Entropy metric as in Equation 5.6 evaluates

to 0.6122, the Hamming metric as in Equation 5.8 evaluates to 1.3333, the Neighborhood

metric evaluates to 1.3333, and the center of mass with respect to 1′s and 0′s evaluates

to (2, 2). If the structure is changed as 110, 110, 000, then all metrics evaluate the same

except the center of mass, that evaluates (x1, y1) = (1.5, 1.5) and (x0, y0) = (2.4, 2.4).

The center of mass with respect to 1 and the center of mass with respect to 0 should tend to

the middle of the matrix, and if that is not the case, that could be an indication that there is

some bias toward a specific region of the search space, as this is the case.2 However, what

is a benefit for center of mass, could be a bias in small populations, as the case where we

have a small change like 101, 010, 101 where the center of mass with respect to 1′s and

0′s is the same as in 101, 000, 101. The computational complexity of population diversity

is O(N ∗ l), where N is the size of the population and l is the chromosome length.3

5.0.4 Conclusions

The evaluation of diversity in a random population, using some of the metrics analyzed

in this section, depends on the population size and chromosome length. However, as the

population size and chromosome length increase, diversity becomes independent of them,

and this is part of the difficulty of sizing an initial random population using only this

approach. So, for small population sizes, one of the previous methods could be applied

and, perhaps for big population sizes, one could measure diversity in a small portion of it

or try to generate chromosomes uniformly distributed in the fitness landscape.

This chapter has suggested evaluating the initial population and, depending of the

problem we are solving, we can choose gene-level diversity, chromosome-level diversity,

2Naturally, as the search progresses, the search is guided by the fitness function to find the correct
solution, however, possibly an initial bias of the initial population could mislead the solution, or lower the
search of the correct one.

3It is expected that if the computation time is lower for one metric with respect to other, the one with
lower computation is preferred.

45

population-level diversity, or a combination of those, having in mind that some metrics

are more computationally expensive than others. Some measures of diversity have been

proposed, being maybe the prominent ones the neighborhood because it outperforms in

computational complexity the Hamming distance metric, and population-level diversity

that measures gene-level and chromosome level at the same time, with the y and x co-

ordinate of the center of mass respectively, and that can be computed in O(N ∗ l). It

is expected that this theoretical approach is going to help us to address the first research

statement regarding the influence of diversity in the initial population and the performance

of some GAs.4

5.1 Parameter Tuning in Fitness Functions

A fitness function to be maximized is needed to construct a GA—the combination of

objectives and constraints in a single function using arithmetic operators seems to be an

appropriate way to define it. There are, however, problems with this approach. The first

is that accurate scalar information must be provided on the range of objectives, to avoid

some of them dominating the others (Section 3.3.1 presented a case study in this regard).

The second is the difficulty in determining appropriate weights when there is not enough

information about them. In this case, any optimal point obtained will be a function of the

coefficients used to combine the objectives and constraints (Coello, 1998).

As an approximation to avoid the tuning of external parameters for some linear fitness

functions (see Equation 5.15), we use internal parameters, i.e., parameters that belong

to the problem itself, then, there is no external tuning required, just the fitness function

that must be logically constructed (see Equation 5.14). The second hypothesis of this

dissertation is then: If GF1 is a GA with a fitness function with internal parameters which

uses the union operator and GF2 is a GA with a fitness function with external parameters,

then

X(PA, GF1) ≥ X(PA, GF2) (5.13)

4Details of this research question will be given in Section7.1.

46

where X(PA, GF1) is the expected performance of the GA with fitness function F1 with

internal parameters and with the union operator, and X(PA, GF2) is the expected perfor-

mance of the GA with fitness function F2 with external parameters; expected performance

is defined to be the expected solution quality after a given number of generations.

In order to perform specific test of the general hypothesis 2, the off-line intrusion

detection problem is tested with F1 Equation 5.14 and F2 Equation 5.15. F1 is used in

conjunction with the union operator (see Section 3.3.2) in order to help the algorithm

(GF1) to avoid false negatives.

F1(I) =

Na∑
j=1

(AE ∗ I)j −
Na∑
j=1

max[0, (AE ∗ I)j −OVj]

Na∑
j=1

(AE ∗ I)j

(5.14)

with Na the number of attacks, AE the misuse matrix, I the chromosome, OV the ob-

served activity and
∑No

j=1(A ∗ I)j 6= 0 for 1 ≤ j ≤ No (Diaz-Gomez and Hougen,

2006a).

F2(I) = α +
Na∑
i=1

Wi ∗ Ii − β ∗ T 2. (5.15)

with α > 0 and β > 0 external parameters to be tuned, Na is the number of attacks and

T the counting of fails as described in Section 3.3, and Wi = 1 for all 1 ≤ i ≤ Na as

described in Section 3.3.1.

Fitness function as in Equations 5.14 and 5.15 have been tested in order to find intru-

sions in audit trail files—see Section 6.2 and Mé (1998). Equation 5.14 has been tested

too as part of some of some fitness functions proposed to find snakes in hypercubes—see

Section 5.1.3.

5.1.1 A Dynamic Fitness Function

Equation 5.14 use only information that belongs to the solution of the problem itself, i.e.,

it has no external parameters and it can be rewritten in a more general form as

47

F (I) = 1−

(
1∑No

j=1(A ∗ x)j

)
No∑
j=1

max[0, (A ∗ x)j −Bj] (5.16)

and though of as α = 1, β = 1/
∑No

j=1(A ∗ x)j , where β is an adaptive parameter that

depends on x, and Penalty =
∑No

j=1 max[0, (A ∗ x)j − Bj] which takes into account

the violation of the constraint in a dynamic way, i.e., it does not count the number of

violations, but instead it finds, in a finer way, the positive difference of each (A ∗ x)j

from Bj and adds them up to get the net penalty for that particular x.5 For example—

see Section 3.3.1 and using AE as A, OV as B, I as x, Ne as No—if the target is the

analysis of an observed vector that contains the count of a user’s activity performed in a

computer, then an individual of the population might incorrectly hypothesize with respect

to one category of the observed vector. The number of faults, in this particular case, is

one. However, how far (or near) was that fault? If the fault corresponds, for example, only

to an entry in the observed vector which value is 0 and the individual is hypothesizing for

that entry 299, then the distance is 299 because
∑Ne

j=1 max[0, (AE ∗ I)j − OVj] = 299.

On the contrary, if the hypothesis were a count of 1 (for the same specific entry), then the

distance is 1 because
∑Ne

j=1 max[0, (AE ∗ I)j − OVj] = 1. This is the type of dynamic

differentiation the algorithm is performing. In the first case the individual is penalized

with 299 and in the second case it is penalized with 1.

5.1.2 Additional Contributions

For the case of intrusion detection systems, we have worked to find a dynamic fitness

function independent of external parameters that can be successfully applied given various

data sets. Beyond that, we have continued with the union operator in order to reduce the

number of false negatives and the number of generations to find optimums. So, having

encountered a vector I of abnormality how can the algorithm come to a better solution

that tries to get the maximum number of abnormalities or attacks? The next two sections

deal with this topic and Sections 5.1.1 and 5.1.2.2 cover in more detail the benefits of

Equation 5.14.

5Equation 7.3 was found independently by Fu and Wang (2005)—for a rule extraction system—in the
general form F (x) = 1− E(x), where E(x) is the classification error rate of chromosome x.

48

5.1.2.1 Abnormal and Abnormal Exclusive

In this study the set of abnormalities has been divided into two subsets: abnormal and

abnormal exclusive. Abnormal exclusive is defined as those intrusions that can not occur

at the same time as the abnormal subset. Depending on the Observed Vector in the anal-

ysis, if each type of attack is considered alone, it may satisfy
∑Ne

j=1 max[0, (AE ∗ I)j −
OVj] = 0, but if some attacks are considered together the constraint may be violated (i.e.,

(AE ∗ I)j > OVj for some j), then some of them are exclusive, i.e., can not occur at the

same time. This is the case for intrusions that share some event type; for example, intru-

sions number 5, 19, and 21 share events number 6 and 17 (see Table 3.2); if the observed

vector has, for instance, 8 events of type 6, then—looking only that entry6—intrusions 5

and 19 or 19 and 21 can occur—because (AE ∗ I)6 = 6 (which is less than or equal to

OV6 = 8) but not all together because in considering intrusions 5, 19, and 21, at the same

time, (AE ∗ I)6 = 11 which violates the constraint because (AE ∗ I)6 ≤ OV6.

5.1.2.2 Pseudo Intrusions ς

An interesting topic to take into account in doing misuse detection is how near some

activity is to abnormal (Diaz-Gomez and Hougen, 2006a). The fitness function proposed

in Equation 5.14 gives the similarity to intrusions. For example, looking for individuals

such that the constraint is not violated, (i.e., the fitness value F (I) is equal to 1), then a set

of currently possible intrusions can be obtained (intrusions that may have occurred during

the period in question). However, if F (I) is such that

ς ≤ F (I) < 1

with ς � 0, then, there could be pseudo intrusions in the neighborhood ς . The set of

pseudo intrusions is exclusive from the set of intrusions because the pseudo intrusion sets

violate the constraint (see Section 5.1.2.1 and (Diaz-Gomez and Hougen, 2006a)).

6Other entries must be considered to get full intrusions 5, 19, and 21; for clarity entry 6 is the only one
presented here.

49

5.1.3 Fitness Functions for Hunting Snakes

In order to try to generalize the application of the dynamic and generic Equation 5.14,

this section is proposing some fitness functions to hunt snakes in hypercubes (see the

definition of the problem in Section 4.1). The objective here is to find the longest snake,

i.e., to maximize the number of nodes in the path. The constraint is to ensure that no

characteristic of a snake is violated, i.e., to ensure that:

1. the path has exactly two end points—the head and the tail—with one neighbor each,

and

2. the number of neighbors (VNj) of each node j (other than the end points) belonging

to the path is no greater than 2.

For the first constraint it should be noted that the expression “belonging to the path”

means that the nodes (points) in the uni-dimensional array that represents the snake form

a connected graph. There should not be isolated points, i.e., points marked as a 1 in the S

array but unconnected (Diaz-Gomez and Hougen, 2006c). More generally, there should

only be one connected path in the S array.

The second constraint takes into account whether there are no such distinguished

points, or there is only one, or there are more than 2.

Longest snakes are those that have the maximum number of ones (nodes or points)

in their chromosomes. Therefore, it is inferred that hypercubes containing longest snakes

generally do not have many lazy points, i.e., points without neighbors (Diaz-Gomez and

Hougen, 2006c). See Figure 5.2, where there is a chromosome 11010000000100100 with

the path 0 − 1 − 3 − 11, one isolated point (node 14), and one lazy point (node 13).

However, if point 15 is added, the isolated point and the lazy point disappear and give rise

to a snake 0− 1− 3− 11− 15− 14.

An appropriate fitness function that joins the objective (maximum length) and the

constraints (retaining the properties of snakes) is needed.

5.1.3.1 A Normalized Fitness Function

As a first approach to joining the objective and the constraints, consider a normalized fit-

ness function (Equation 5.17) that follows the guidelines of the fitness function in Equa-

tion 5.14 of Section 5.1:

50

9

54

10

3

8

Isolated

0 1

11

2

Lazy

12

15

13

14

6 7

Figure 5.2: Isolated and lazy points in a 4-dimensional hypercube

F (I) =

(∑2d−1
j=0 (AM ∗ S)j − Penalty∑2d−1

j=0 (AM ∗ S)j

) (
Length(S) + 1

#P

)
. (5.17)

where AM is the adjacency matrix that encodes the hypercube, S is the individual (solu-

tion) which is being evaluated, Length(S) is the length of the longest snake in S,7 #P is

the number of points in the chromosome S, and

Penalty =
2d−1∑
j=0

max[0, (AM ∗ S)j − 2] + #Lazy + #Isolated + |#HeadTail − 2|

for j such that Sj = 1, i.e., where the first term
∑2d−1

j=0 max[0, (AM ∗ S)j − 2] takes

into account those points j of the possible solution S that at the same time have gene

value Sj = 1 and number of neighbors greater than 2; #Lazy is the number of lazy

7It should be emphasized that the term Length(S) takes into account when a point in S—except the end
points—has more than two neighbors. Besides that, if the path in S is unconnected, it results in a reduction
of the length because just the longest snake in S is taken into account for calculating the length.

51

1100

Snake

0001

0100 0101

0110

1000 1001

1010 1011

1101

1110 1111

0000

0010 0011

0111

Figure 5.3: Hypercube of dimension 4 with a snake of length 7.

points; #Isolated is the number of isolated points; and #HeadTail is the number of

distinguished points.8

Two terms should be emphasized in Equation 5.17:

• the first one—which is quite similar to Equation 5.14—takes into account the vio-

lation of the constraints, and

• the second (Length(S) + 1)/#P , takes into account the connected path.

Whenever F (I) of Equation 5.17 is equal to 1 chromosome S is a snake in the corre-

sponding hypercube.9 For example, in Figure 5.3 the snake 0000−0001−0011−0111−
0110− 1110− 1100− 1101 in a 4-dimensional hypercube, satisfies

F (I) =

(
32− 0

32

)(
7 + 1

8

)
= 1.

8In this problem there is not the longest snake to compare with and check for constraint violations—as
there is for the misuse problem with the OV vector—so whenever S has a point j, with Sj = 1, in which
(AM ∗ S)j > 2 then that counts for that difference in the first term of Penalty.

9There are many cases of hypercubes that do not contain snakes, examples like a chromosome S with
no points, a single point, 3 isolated points, a closed loop, and so forth. Additionally if S contains a “snake”
with an isolated point or additional unconnected paths, then S is not itself a snake.

52

Parameter Value
Hypercube Dimension 4
Fitness Function Normalized as in Equation 5.17
Max. generations 1,000
Type of Selection Tournament Selection (75%-25%)
Initial Population Randomly Generated
Individuals 10
Chromosome Encoding Binary
Chromosome Size 24

Crossover Probability 60%
Mutation Probability 3% per chromosome

Table 5.2: Plan τ for hunting snakes in a 4-Dimensional hypercube.

Each point of the possible solution S adds d to the sum in the first term in Equation

5.17 because each point is connected to d nodes in the d-hypercube. In this case, d is 4 and

as there are 8 points belonging to the path, 32 is obtained as a result of
∑15

j=0(AM ∗ S)j .

Penalty is equal to 0 in this case because there are no points in the snake with more than

two neighbors, there are two distinguished points (0000 and 1101) with only one neighbor

each, and there are no isolated or lazy points.

Another example is the path in Figure 5.2 where the fitness value is

F (I) =

(
20− 1− 1

20

)(
3 + 1

5

)
= 0.72

because there are 5 points in the chromosome, one isolated point, one lazy point and

Length(S) is 3.

Test were done on a 4-dimensional hypercube with the experimental settings as in

Table 5.2. Results on 10 runs are given in Table 5.3, where Run is the number of the

corresponding run, Fitness is the maximum value of the fitness in that run, Length is the

maximum length of the snake found in the corresponding run, #Isolated is the number

of isolated points found in that chromosome, #Lazy is the number of lazy points in that

chromosome, #Bad is the number of bad points—which are those that have more than

two neighbors—and #Distinguish are the number of distinguished points (which must be

equal to 2 in a snake). Ten individuals are generated randomly;10 in each run the same

initial population was used.

10Only ten because the search space is 224
, which is quite small.

53

Equation 5.17
Run Fitness Length #Isolated #Lazy #Bad #Distinguish
1 1.0 6 0 0 0 2
2 1.0 6 0 0 0 2
3 1.0 6 0 0 0 2
4 1.0 6 0 0 0 2
5 1.0 6 0 0 0 2
6 0.96 6 0 1 0 2
7 1.0 6 0 0 0 2
8 1.0 7 0 0 0 2
9 1.0 5 0 0 0 2
10 1.0 6 0 0 0 2

Totals
10 9.96 60 0 1 0 20

Table 5.3: Results with fitness function as in Equation 5.17.

With the normalized fitness function as in Equation 5.17, on 10 runs, from Table 5.3

the following is observed:

• The fitness function reaches the maximum value (1) in 90% of the cases.

• In all cases the algorithm finds finds chromosomes S that are snakes, including

the case where the fitness value is 0.96, because the lazy point does not violate

the constraint, i.e., lazy points are not good for finding longer snakes, but they can

occur.

• The algorithm finds the longest snake in run 8.

• The algorithm has no way to differentiate based on the lengths of the snakes, i.e., a

snake of length 6 is as fit as a snake of length 7 because the fitness value is 1.0 in

both cases.

• In all runs the algorithm finds the two distinguished points.

5.1.3.2 A Length-Differential Fitness Function

In order to see if a fitness function can usefully differentiate between snakes of different

lengths, and to see if the number of longest snakes can be improved, Equation 5.17 was

54

Equation 5.18
Run Fitness Length #Isolated #Lazy #Bad #Distinguish

1 5.81 6 1 0 0 2
2 7.0 7 0 0 0 2
3 6.0 6 0 0 0 2
4 5.81 6 1 0 0 2
5 6.0 6 0 0 0 2
6 7.0 7 0 0 0 2
7 7.0 7 0 0 0 2
8 5.81 6 1 0 0 2
9 5.81 6 1 0 0 2

10 5.81 6 1 0 0 2
Totals

10 62.05 63 5 0 0 20

Table 5.4: Results with fitness function as in Equation 5.18.

changed slightly. The second factor of Equation 5.17 is changed so that the length of the

snake is not normalized by the number of points in the array S, giving

F (I) =

(∑2d−1
j=0 (AM ∗ S)j − Penalty∑2d−1

j=0 (AM ∗ S)j

)
∗ Length(S). (5.18)

The same type of tests as in Subsection 5.1.3.1 was performed taking into account now

that 0 ≤ Length(S) ≤ 7, Table 5.4 shows the corresponding results and (Diaz-Gomez and

Hougen, 2006b):

• The fitness function reaches maximum a fitness value (7) in 30% of the cases.

• In 50% of the cases the algorithm finds chromosomes S that are snakes; in the other

50% the graph of the chromosome is unconnected—to make S into a snake the

isolated point must be removed.

• The algorithm finds a longest snake on 3 runs.

• The algorithm has a way to differentiate lengths of snakes.

• In all runs the algorithm finds the two distinguished points.

55

Equation 5.19
Run Fitness Length #Isolated #Lazy #Bad #Distinguish
1 7.0 7 0 0 0 2
2 7.0 7 0 0 0 2
3 7.0 7 0 0 0 2
4 6.0 6 0 1 0 2
5 6.0 6 0 1 0 2
6 6.0 6 0 1 0 2
7 6.0 6 0 1 0 2
8 7.0 7 0 0 0 2
9 7.0 7 0 0 0 2
10 6.0 6 1 0 0 2

Totals
10 65.0 65 1 4 0 20

Table 5.5: Results with fitness function as in Equation 5.19.

5.1.3.3 A Single-Length-Dependent Fitness Function

The length of the snake is a good distinguishing factor for snakes, so one can use only that

factor as a fitness function (Diaz-Gomez and Hougen, 2006b):

F (I) = Length(S). (5.19)

One may think that perhaps no evaluation of the constraint is present in Equation 5.19

but this is not the case because when the length of the snake is calculated the algorithm

begins in a distinguished point (head or tail) and it follows the path until the constraint is

violated. The results obtained now are quite similar to the ones found in Section 5.1.3.2,

but there are differences as well—see Table 5.5:

• The fitness function reaches a maximum (7) in 50% of the cases.

• In 90% of the cases the algorithm find snakes; in the other 10% the graph of the

chromosome was unconnected.

• The algorithm finds a longest snake on 5 runs.

• The algorithm has a way to differentiate lengths of snakes.

• In all runs the algorithm found the two distinguished points.

56

5.1.3.4 A Quadratic Fitness Function

In Equation 5.19 lazy points are not penalized but there are some alternatives to do that;

one is to choose a quadratic fitness function based on the number of points in the chromo-

some:

F (I) = (#P −#Lazy) ∗ Length(S). (5.20)

This equation is called quadratic because as Length(S) is a function of the number of

points, Equation 5.20 is quadratic in the number of points (#P). Results are shown in

Table 5.6.

This time some interesting things happen:

• The fitness function reaches a maximum (56) in 50% of the cases.

• In 50% of the cases the algorithm finds snakes; in the other 50% the graph of the

chromosome is unconnected.

• When the algorithm finds snakes, those found are longest, i.e., the algorithm finds a

longest snake on 5 runs.

• The algorithm has a way to differentiate lengths of snakes.

• In 90% of the runs the algorithm finds the two distinguished points.

This brief description shows how a parameter can mislead the algorithm.

5.1.3.5 A Linear Fitness Function that Takes into Account Lazy Points

Starting from the fitness function in Equation 5.19 it is possible to penalize the lazy points

in a different way than what is done in Equation 5.20 (see Section 5.1.3.4):

F (I) = Length(S)−#Lazy . (5.21)

Now the results are shown in Table 5.7 including:

• The fitness function reaches a maximum (7) in 70% of the cases.

57

Equation 5.20
Run Fitness Length #Isolated #Lazy #Bad #Distinguish

1 48 6 1 0 0 2
2 56 7 0 0 0 2
3 56 7 0 0 0 2
4 48 6 1 0 0 2
5 13 1 0 0 9 1
6 56 7 0 0 0 2
7 56 7 0 0 0 2
8 48 6 1 0 0 2
9 56 7 0 0 0 2

10 48 6 1 0 0 2
Totals

10 485 60 4 0 9 19

Table 5.6: Results with fitness function as in Equation 5.20.

Equation 5.21
Run Fitness Length #Isolated #Lazy #Bad #Distinguish
1 6 6 0 0 0 2
2 7 7 0 0 0 2
3 6 6 1 0 0 2
4 7 7 0 0 0 2
5 7 7 0 0 0 2
6 7 7 0 0 0 2
7 6 6 0 0 0 2
8 7 7 0 0 0 2
9 7 7 0 0 0 2
10 7 7 0 0 0 2

Totals
10 67 67 1 0 0 20

Table 5.7: Results with fitness function as in Equation 5.21.

58

• In 90% of the cases the algorithm finds snakes; in the other 10% the graph of the

chromosome is unconnected.

• The algorithm finds a longest snake on 7 runs.

• The algorithm has a way to differentiate lengths of snakes.

• In all runs the algorithm finds the two distinguished points.

Success at finding longer snakes improves by 20% compared with results as in Equa-

tion 5.19 and all chromosomes show snakes except one—see run 3 where there is an

isolated point.

5.1.3.6 A Linear Fitness Function that Takes into Account Lazy and Isolated Points

As good results were obtained with the linear function in Equation 5.21, a new linear

function that takes into account both lazy and isolated points is going to be proposed:

F (I) = Length(S)−#Lazy −#Isolated (5.22)

Results are shown in Table 5.8, including:

• The fitness function reaches a maximum (7) in 60% of the cases.

• In 90% of the cases the algorithm finds snakes; in the other 10% the graph of the

chromosome is unconnected.

• The algorithm finds a longest snake on 6 runs.

• The algorithm has a way to differentiate lengths of snakes.

• In all runs the algorithm finds the two distinguished points.

Contrary to what might be expected, there are not better results than with Equation

5.21 because this time 6 longest snakes are obtained vs. 7 as is shown in Tables 5.7 and

5.8. The new term #Isolated in Equation 5.22 did not fix it at all, as in shown in entry 7

of Table 5.8.

59

Equation 5.22
Run Fitness Length #Isolated #Lazy #Bad #Distinguish

1 6 6 0 0 0 2
2 7 7 0 0 0 2
3 6 6 0 1 0 2
4 7 7 0 0 0 2
5 7 7 0 0 0 2
6 7 7 0 0 0 2
7 6 6 1 0 0 2
8 6 6 0 0 0 2
9 7 7 0 0 0 2

10 7 7 0 0 0 2
Totals

10 66 66 1 1 0 20

Table 5.8: Results with fitness function as in Equation 5.22.

5.1.3.7 A Rational Fitness Function

As the objective of the snake-in-the-box problem is to find longest snakes two factors

should be considered: (1) longest, which means with a maximum number of points, and

(2) snakes, which is the constraint—see Section 5.1.3. This leads to the idea of a rational

fitness function, i.e., a fraction where the numerator is the objective and the denominator

is the constraint. In this way if the numerator increases, then the fraction increases, and if

the denominator decreases, then the fraction increases, accomplishing the maximization

of the fitness function. The fitness function proposed is, then,

F (I) =
Length(S)

1 + Penalty
(5.23)

where Penalty is as defined in Section 5.1.3.1.

Results are shown in Table 5.9, including:

• The fitness function reaches a maximum (7) in 30% of the cases.

• In all cases the algorithm finds snakes.

• The algorithm finds a longest snake on 3 runs.

• The algorithm has a way to differentiate lengths of snakes.

• In all runs the algorithm finds the two distinguished points.

60

Run Fitness Length #Isolated #Lazy #Bad #Distinguish
1 7 7 0 0 0 2
2 6 6 0 0 0 2
3 6 6 0 0 0 2
4 7 7 0 0 0 2
5 3 6 0 1 0 2
6 6 6 0 0 0 2
7 3 6 0 1 0 2
8 3 6 0 1 0 2
9 3 6 0 1 0 2
10 7 7 0 0 0 2

Totals
10 51 63 0 4 0 20

Table 5.9: Results with fitness function as in Equation 5.23.

Comparing with Equation 5.17 which gave as result all snakes, as it is the case, fitness

function as in Equation 5.23 obtained longest snakes in 30% of the tests against 10%

compared to Equation 5.17 in Section 5.1.3.1 and the average length was 6.3 against 6.0

as in Equation 5.17—but this time there are 4 lazy points in the 10 runs against 1 as in

Equation 5.17 (See Table 5.9). Linear Equations as in 5.19, 5.21 and 5.22 outperformed

Equation 5.23 in finding longest snakes and in average—see Tables 5.5, 5.7 and 5.8.

5.1.4 Additional Contributions

One issue regarding the snake-in-the-box problem is that the length of longest snakes in

hypercubes of dimension greater than 6 is unknown. Some theorist have suggested and

justified mathematical bounds for such length for the case of coils (see Section 4.1 and

we have conjectured a lower and an upper bound for the case of snakes (Diaz-Gomez and

Hougen, 2006b). This topic, the way the length of the snake can be evaluated and some

open questions are going to be outlined in this section.

5.1.4.1 Mathematical Conjectures on the Snake-In-The-Box Problem

We define the energy of a snake (coil) as the dot product between the proposed snake (the

chromosome S) and the product vector VN which is the result of the matrix multiplication

between the adjacency matrix AM (see Section 6.2.3) and the chromosome S. Formally,

61

d Energy #P Conjecture 1 Abbott Casella
3 8 - 2.4 5
4 14 8 4.8 8
5 26 14 9.6 14
6 50 26 19.2 26
7 98 50 38.5 50
8 194 98 77.0 97
9 386 194 154.0 186

10 770 386 308.0 358
11 1,538 770 616.0 680
12 3,074 1,538 1, 232.0 1,260

Table 5.10: Conjecture 1 of lower bound in the number of points in longest snakes vs.
theoretical (Weisstein, 2006) and empirical (Casella and Potter, 2004) findings.

E = S · (AM ∗ S)T = S · (VN)T . (5.24)

The energy of a snake (coil) is independent of d (Diaz-Gomez and Hougen, 2006c).

For instance, for snake {0, 1, 3, 7, 6} the energy is the scalar value E = (1 1 0 1 0 0 1 1) ·
(1 2 3 2 2 2 1 2)T = 8.

Conjecture 1. The number of points in the longest snake in a hypercube of dimension

d where d > 3, is greater than or equal to the energy of the longest snake in the hypercube

of dimension d− 1 (Diaz-Gomez and Hougen, 2006c).

Table 5.10 shows the values of the energy for known longest snakes and the corre-

sponding number of points for each snake. We use the energy definition inductively, i.e.,

beginning with an already known number of points of a longest snake in the 3-dimensional

hypercube, the number of points of a longest snake in the 4-dimensional hypercube can be

conjectured, and so forth. Table 5.10 compares conjecture 1 with theoretical results from

Abbot (Weisstein, 2006) and empirical results (Casella and Potter, 2004). Values quite

near between conjecture 1 and both the experimental findings and the theoretical bounds

are observed.

Conjecture 2. A lower bound for the number of points of the longest snake in a

hypercube of dimension d, with d > 3 is

3 · 2d−3 + 2.

62

This conjecture holds directly from the energy of a snake.11

Conjecture 3. An upper bound for the number of points of the longest snake in a

hypercube of dimension d is (Diaz-Gomez and Hougen, 2007b)

#P ≤ 2d−1 −
d−3∑
i=1

i + 1, for d ≤ 7 (5.25)

and

#P ≤ 2d−1 −
d−2∑
i=1

i + 1, for d > 7 (5.26)

This conjecture is related to the conjecture of the number of points that a longest snake

can traverse in the next dimensional hypercube. For example, if a (d − 1)l-dimensional

hypercube12 has a longest snake of length n, then the maximum number of points that can

be used in the next (d− 1)u-hypercube is (2d−1 − n), because 2d−1 is the number of new

nodes given by the (d− 1)u-hypercube and n cannot be used because those were already

used in the (d− 1)l-hypercube. The question is if n nodes of the (d− 1)u-hypercube has

been invalidated by the longest snake in the (d− 1)l-hypercube, how many new nodes are

going to be invalidated in the new (d − 1)u-hypercube as the snake is growing? Suppose

those are going to be m nodes, the number of points of the snake in the d-hypercube would

be #P = (n+1)+2d−1−n−m = 2d−1−m+1. Where m is the number of new nodes

that are invalidated by the snake in the (d − 1)u-hypercube and that corresponds to the∑
i term in Equations 5.25 and 5.26. In general, if a point p is chosen in the snake path,

that point has d neighbors, one of which can be chosen as the next link in the path—if

p is not the last one and if the next point p + 1 does not violate the constraint—then, p

can invalidate (d − 1) nodes if it is a head or a tail or at most (d − 2) otherwise. Table

5.11 compares theoretical results (Weisstein, 2006) with coils13 and practical founding as

in (Casella and Potter, 2004) for dimension d ≤ 12.
11This result was independently conjectured by Snevily (1994) as an upper bound for the length of longest

coil of dimension d ≥ 5. We conjectured this as a lower bound for snakes.
12A d-dimensional hypercube can be seen as two d− 1-dimensional sub-hypercubes: (d− 1)l-hypercube

and (d− 1)u-hypercube
13For comparison purposes and because of the lacking of theoretical findings for bounds for snakes (open

paths).

63

D Conjecture Klee Snevily Casella
3 5 - - 5
4 8 - - 8
5 14 - 14 14
6 27 32.0 26 27
7 55 63.9 50 51
8 101 127.9 98 98
9 221 255.9 194 187
10 468 511.8 386 359
11 970 1, 023.7 770 681
12 1, 983 2, 047.6 1, 540 1261

Table 5.11: Upper bound of number of points of longest snakes in hypercubes. Klee
(1970) and Snevily (1994) correspond to upper bounds for coils. Casella and Potter (2004)
corresponds to empirical findings for snakes.

5.1.4.2 Snakes’ Fitness Evaluation

The way the length of a snake is evaluated can impact the performance of the algorithm in

terms of the number of generations required to find an optimum. For example, if the algo-

rithm is evaluating the length of the chromosome 01010001101000110110111010010001

in a 5-dimensional hypercube (see Figure 5.4), then it could start counting the length

by using one of the three points: 18, 24, or 27. If the algorithm just finds one starting

point (head or tail) and begins to count until the constraint is violated, then, if the algo-

rithm begins with point 18, then the length is going to be 7 which corresponds to the path

18− 22− 20− 21− 17− 1− 3− 7 because point 15 has three neighbors in the connected

path, i.e., it is violating the constraint. If the algorithm begins to count the length starting

at point 24 then the length is going to be 3 which corresponds to the path 24−8−10−14.

Finally, if the algorithm begins to count the length starting at point 27, the length is go-

ing to be 1 because the connected path without violation of the constraint is going to be

27− 31. So, the actual chromosome could be evaluated with different lengths, depending

on the starting point the fitness function is using in the evaluation14 impacting the perfor-

mance of the algorithm in the number of generations to find snakes, as is shown in Section

6.2.4.1.
14Another possibility of evaluation is to take the sum of all lengths. However, there is not always a point

like 15 in the example that makes the path connected.

64

0 1

6

8 9

10 11

12 13

14 15

54

16

18

20 21

22 23

24 25

26 27

28 29

30

17

19

2 3

7

31

Head

Tail
Head

Bad

Figure 5.4: Fitness evaluation of the length of a snake.

65

9

54

10

3

8

15

1

11

2

12

76

13

14

Upper hypercube

Snake

Lower hypercube
x−

y+

0

Figure 5.5: Snake in a 4-dimensional hypercube to be converted to a coil.

5.1.4.3 Open Questions

Several open questions remain (Diaz-Gomez and Hougen, 2006b). One question is, given

the length of a snake in a d-dimensional hypercube, how many different snakes does the

hypercube contain of that length, excluding possible isomorphisms? The reason for this

question is that, depending on the number of snakes (solutions), finding one can be more

or less difficult.15

A second question can be formulated as, is the longest coil (a closed path that oth-

erwise conforms to the constraints of a snake) minus one point the longest snake in the

d-dimensional hypercube?16

The next interesting topic related to snakes and coils is how, by doing rotations and/or

translations, a snake can be converted to a coil. For example, see Figure 5.5 which is a

snake. The lower 3-dimensional hypercube is rotated −90◦ around the x axis, and the

upper 3-dimensional hypercube is rotated +90◦ around the y axis to obtain the coil in

Figure 5.6. It should be taken into account that the rotations and/or translations are done

but the numbering remains stationary. For instance, in the previous example the coil is

7− 5− 4− 12− 8− 9− 11− 15− 7, as is shown in Figure 5.6.

15One possible answer could be 0 snakes of that specific length.
16Coils, like snakes, are also of practical interest.

66

Upper hypercube

0 1

(6)
54

3

6

2

7

(7)

(10)

8
(8)

9

10 11(9)

(14)
12

(12)
13

14 15

(4) (5)

(0) (1)

(2) (3)

(11)

(15) (13)

Lower hypercube

Coil

Figure 5.6: Snake in Figure 5.5 converted to a coil by two rotations.

5.1.5 Conclusions

A GA needs a fitness function that combines objectives and constraints into a single

value (Coello, 1998). The problem is not only to find the appropriate form for the func-

tion, but also to provide accurate values for the parameters so that they will produce the

correct solution in as many instances of the problem as possible. Objectives and con-

straints are given in Equation 5.14.
∑No

j=1(A ∗ x)j is the objective—the more intrusions

the better.
∑No

j=1 max[0, (A ∗ x)j − Bj] is the penalty if the constraint is violated. How-

ever, as the function in Equation 5.14 is normalized, it is useful for finding local minima

or maxima (Diaz-Gomez and Hougen, 2006a). Knowing this fact, we propose the use of

the union operator, so that each time the algorithm finds a local maximum, it is stored—

avoiding false negatives—and it is tested in conjunction with previous maxima obtained

(see Section 3.3.2). We have performed an empirical study for the case of the intrusion

detection problem in order to test the validity of this assumption (see Sections 6.2 and

3.3.2). We found found a speed up well in excess of an order of magnitude (Diaz-Gomez

and Hougen, 2006a).

It is highlighted that Equation 5.14 has no external parameters to be tuned, contrary

to what is suggested in previous research (Mé, 1993, 1998). The function 5.14 is using

67

information from the problem itself and penalizing each individual according to how far

(or near) it is from the observed vector B (see Section 5.1.1).

Equation 5.14 was rewritten as Equation 7.3 (see Section 5.1.1), a form that indicates

explicitly no violation of the constraint when F (I) = 1.0. This form (Equation 7.3) has

been used by ourselves (Diaz-Gomez and Hougen, 2005c) and other researchers, not only

in the same context of intrusion detection (Crosbie and Spafford, 1995; Li, 2003), but also

in a different context (Fu and Wang, 2005). However, we emphasized again, not only the

granularity of the penalty term in Equation 7.3, but also that it has been mathematically

justified (see Section 5.1).

Equation 5.14 is used as part of certain fitness functions proposed for hunting snakes

(see Section 5.1.3) in an effort to apply it in a different domain. However, in the snake-

in-the-box problem, the length is of crucial importance because the GA is looking for the

longest snakes. Therefore, the term length(S) is going to be in all the equations proposed

(see Section 5.1.3). Again, all fitness functions proposed for trying to solve this problem

use information from the problem itself; no external parameters have to be tuned. This

problem is quite constrained: one head, one tail, longest connected path with exactly two

neighbors in the path (except the head and the tail). If for example, one is using Equation

5.17 and a result is obtained as a path with 4 heads/tails, one could say that the term

|#HeadTail − 2| of the penalty should have a greater weight. What would be a “good”

value for that weight? Tests should be conducted in order to find such a value, and here is

where the parameter setting comes into account using information from the problem itself

in order to avoid external setting.

5.2 Crossover Rate vs. Mutation Rate

When a problem is encoded using GAs, one must address the number of possible struc-

tures A to be tested, the probability of crossover and mutation, the stopping criteria, the

type of selection operator, and the fitness function to be used in order to solve the prob-

lem. This section focuses on the GA crossover and mutation operators, using as a tool the

schema theorem (see Section 2.1), having in mind that the choice of τ ′s parameters and

operators are problem dependent.

68

Looking at GA operators, it can be seen that one purpose of the crossover operator, for

example, is to search prominent regions of the search space in order to climb to a maxi-

mum according with the fitness function given. Researchers usually use a probability of

60%− 70% for performing crossover (Mitchell, 1998), but why? How does the probabil-

ity of crossover influence the quality of the possible solution or the number of iterations?

With regard to the mutation operator, it gives the possibility to move a chromosome to a

new region of the search space, it helps with diversity and in moving the algorithm from

stationary points. That is, if we have a specific gene which has a value is of 1 for all

individuals in a population, then in performing crossover that specific gene is never going

to change. Mutation, then is the tool that can probabilistically change the value of that

gene—in this case to 0. How could one figure out the probability value to be used for

mutation? Is there a relation between the crossover ratio and the mutation ratio for some

GAs? This Section is then answering the third research question regarding the relation

between crossover and mutation probability.

As stated before, the approach taken for this study of the crossover and mutation rates

is the schema theorem, which has been generalized by Goldberg and Sastry (2001) as the

equation

E(ξ, t + 1) ≥ (1− pcε)Spn(ξ, t) (5.27)

where Sp is the selection pressure which plays the role of µ̂ξ(t)/µ(t) and ε = d(ξ)/(l−1)

corresponds to the disruption of schema ξ.

As n(ξ, t) is expected to be greater than 1, then, in order to obtain a non decreasing

number of schema, Equation 5.27 should satisfy (1 − pcSpε) ≥ 1 (Goldberg and Sastry,

2001), which gives an upper bound on the probability of crossover with respect to selec-

tion pressure of pc ≤
(
1− S−1

p

)
/ε (Goldberg and Sastry, 2001). For example, if ε = 1

and Sp = 2 then pc ≤ 0.5. This approach is used in this section, including for the mutation

operator.

69

5.2.1 The Schema Theorem Trade-Off

The schema theorem, without considering the possibility pξ of crossing with the same

schema, can be written as (Mitchell, 1998):

E(ξ, t + 1) ≥
(

1− pc
d(ξ)

l − 1

)
(1− pm)h µ̂ξ(t)

µ(t)
n(ξ, t), (5.28)

or as E(ξ, t+1) ≥ (1−pcε)(1−pmh)Spn(ξ, t) when pm is close to zero because if pm ≈ 0

then (1− pm)h ≈ (1− pmh). This approximation allow us to see similarities between pc

as related to ε, as well as, similarities between pm as related to h (see Equations 5.30 and

5.31). Schema ξ is expected to grow if

(1− pcε) (1− pmh)Sp ≥ 1. (5.29)

with pcε 6= 1 and/or pmh 6= 1 as is done by Goldberg and Sastry (2001) without mutation.

Of the three factors in Equation 5.29, the only one that could be greater than 1 is Sp,

so selection pressure is the hand that guides the artificial evolutionary process. But, if the

other two factors (1 − pcε) and (1 − pmh) can not be greater than 1, then both could be

approximately 1 to try to increase the instances of ξ at t + 1. To do that, pmh ≈ 0 and

pcε ≈ 0. For pmh ≈ 0, as h, the number of defining bits, is usually ≥ 1, then pm should

be, in general, ≈ 0. For pcε ≈ 0, if ε ≈ 1, then pc ≈ 0, and if ε ≈ 0, then pc ≈ 1.

Theoretically it could be concluded that besides Sp, in order to help schema ξ grow, if

h ≥ 1 then pm should be maintained ≈ 0 and, if the schema is long (ε ≈ 1) then pc could

be≈ 0, and if the schema is short (ε ≈ 0) then pc could be≈ 1 (Diaz-Gomez and Hougen,

2007f).

Formally, from Equation 5.29:

pc ≤
1

ε

(
1− 1

(1− pmh)Sp

)
, (5.30)

which constitutes the third general hypothesis of this dissertation: there is a relationship

between selection pressure, crossover and mutation rates < Sp, pc,pm > expressed in

Equation 5.30, with pmh 6= 1, pm ≈ 0, h > 1, and Sp > 1, where ε is the crossover

disruptive factor, h is the number of defining bits, and Sp is the selection pressure of the

corresponding plan τ that influences the evolutionary process.

70

As 1/(l − 1) ≤ ε ≤ 1, then from Equation 5.30 we obtain:

pc ≤
1

ε

(
1− 1

(1− pmh)Sp

)
≤ (l − 1)

(
1− 1

(1− pmh)Sp

)
.

Looking at this bound for short schema, and considering (l − 1) > 1, then, in order

to have pc bounded17 the term
(
1− 1

(1−pmh)Sp

)
→ 0, in which case pc ≈ 0 and pm ≈

(Sp − 1)/Sph, or
(
1− 1

(1−pmh)Sp

)
→ 1/(l − 1), in which case pc ≈ 1, and if l � Sp

then pm ≈ (Sp − 1)/Sph. This result shows the strong dependence of pm on the selection

pressure Sp and the number of defining bits h.

Considering long schema, i.e., where d(ξ)
l−1

= 1 = ε, then pc ≤ 1− 1/(1− pmh)Sp. In

the limit, if pm → (Sp − 1)/sph then pc ≈ 0, and if pm → 0 then pc ≈ 1− 1/Sp.

The previous cases showed a limit approach maintaining 0 ≤ pc ≤ 1. A practical

approach could be if pm = 0.001, Sp = 2, h = 2, and schema is long, then pc ≤ 0.4989

(low).18 Figure 5.7 shows a case of long schema with pm constant and equal to 0.001.

As the number of defining bits grow, pc decreases; but, if the selection pressure increases,

then pc grows. For Sp = 2, h = 512 and pm = 0.001, pc = −0.025, this could be an

indication that the probability pm should be changed; for example if pm is changed to

0.0009 then pc = 0.073, maintaining Sp = 2 and h = 2.

An equation similar to Equation 5.30 can be obtained for the case of mutation:

pm ≤ 1

h

(
1− 1

(1− pcε)Sp

)
, (5.31)

that can be used as an upper bound on pm.

If h ≥ 1, then from Equation 5.31

pm ≤ 1

h

(
1− 1

(1− pcε)Sp

)
≤
(

1− 1

(1− pcε)Sp

)
17Attention should be taken with this theoretical approach. As pc and pm are probabilities, then the

corresponding range is [0, 1]. But, equations like 5.30 and 5.31 can give values > 1.0 or < 0.0 depending on
the parameters used, values that could be interpreted as a possible change in one or more of the parameters
involved or that could be constrained to specific bounds as suggested in this section.

18This corroborates that pc → 1− 1/Sp when pm ≈ 0.

71

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500
C

ro
ss

ov
er

 P
ro

ba
bi

lit
y

Number of Defining Bits

Sp=2
Sp=3
Sp=4
Sp=6
Sp=8

Sp=10
Sp=12
Sp=14
Sp=16

Figure 5.7: pc when pm = 0.001. Long schema.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 10 100

M
ut

at
io

n
Pr

ob
ab

ili
ty

Number of Defining Bits

Sp=2
Sp=3
Sp=4
Sp=6
Sp=8

Sp=10
Sp=12
Sp=14
Sp=16

Figure 5.8: pm when pc = 0.0. Long or short schema. Log x option used.

is obtained. Looking at this bound, if pc → 0 then pm → 1− 1/Sp, and if pc → 1 and ε is

small, then pm → 1− 1/Sp, which means that the bigger the selection pressure Sp is, the

bigger the probability of mutation pm should be.19 Now, if h is considered in the analysis,

then according to Equation 5.31, if pc → 0 then pm ≤ (1/h)(1 − 1/Sp) which, besides

considering the selection pressure Sp, shows that the more defining bits h there are, the

lower the probability of mutation should be.

The previous cases showed a limit approach. A practical approach could be if pc = 0,

h = 2, and Sp = 2, then pm ≤ 0.25 independent of ε; but if pc → 1 then only small schema

19The case pc → 1 and ε long is not considered because pcε must be 6= 1 according to the initial premise
stated in Equation 5.29.

72

can be considered, i.e., if ε = 1/(l−1), h = 2, and Sp = 2 then pm ≤ (l−3)/(2(2l−4)),

so if l is large enough then pm ≤ 0.25. This shows an upper bound of 0.25 on mutation

probability when Sp = 2 and h = 2. A similar approach can show different bounds

depending on Sp, h, and pc. Figure 5.8 shows a case with pc constant (= 0). As the

number of defining bits increases, pm decreases, but if the selection pressure increases,

then pm increases (Diaz-Gomez and Hougen, 2007f).

5.2.2 Conclusions

This section suggest a guide to finding possible values for the probabilities of crossover

and mutation for GAs, taking as a reference the schema theorem in order to answer the

third research question. A trade-off of the schema theorem has been presented in which it

can be seen that the parameters ε = d(ξ)/(l − 1) and h (the number of defining bits) can

be related to the difficulty of the problem. If ε ≈ 1 and h � 1, then the problem could be

cataloged as a difficult problem and then pc and pm should be low. If ε ≈ 1/(l − 1) then

the problem can be cataloged as moderate and then pc could be high. If the number of

defining bits is high (i.e., h � 1) maybe the more difficult the problem is and the mutation

operator can be destructive, so the assumption is to maintain pm small, depending on the

selection pressure used.

For the present analysis, selection pressure is the hand that guides evolution: if there is

not enough selection pressure, then, it is possible that the algorithm is not going to obtain

“good” quality on the solution, but if the selection is quite increased without considering

changes in crossover and mutation probabilities—i.e., if the schema theorem trade-off is

not obeyed—then, it is possible that the quality of the solution is diminished, as is shown

in some of the empirical studies presented in Section 6.3.4. As stated in Section 5 the

setting of parameters constitutes an optimization problem itself. There are no fixed rules

and, besides the crossover and mutation rates, others parameters can impact the quality on

the solution as well. Empirical studies is conducted in Section 6.3 in order to see how the

trade-off of the schema theorem presented in this section works.

73

Chapter 6

Exploratory Study

Trying to answer the three general questions outlined in Section 1.1, some empirical stud-

ies regarding (1) population size, (2) the use of internal parameters by a fitness function

in an off-line intrusion detection system, and (3) the schema theorem trade-off were per-

formed before the specific hypotheses were tested in order to be more confident with some

of the problems and parameters used and that are stated in Chapter 7.

6.1 Initial Population

Many efforts have been made toward solving the problem of population size but, because

population size depends in part on the difficulty of the problem to be solved (Harik and

Lobo, 1999; Pelikan et al., 2000; Yu et al., 2006), it remains an open problem (Piszcz

and Soule, 2006a). However, as population size is quite important for the efficiency of

evolutionary algorithms (Jaroslaw Arabas and Mulawka, 1995; Costa et al., 1999; Piszcz

and Soule, 2006a), various empirical methods have been proposed and some success re-

ported (Eiben et al., 1999), like the use of self adaptation (Bäck et al., 2000; Harik and

Lobo, 1999), which basically uses varying population size and may be the most promi-

nent result until now. This dissertation presented in Section 5.0.1 a theoretical approach

to population size using metrics at the gene-level, chromosome-level, and population-

level, which are going to be used here to measure populations of some cases that have

been reported as good populations, but also, to address the problem using some classical

functions used in the GAs’ literature, like the one-max and deceptive functions.

74

Code/Chromosome
1 1 0 1 1 1 0 0 0 1 0 0
2 0 1 0 1 1 1 0 0 0 1 0
3 0 0 1 0 1 1 1 0 0 0 1
4 1 0 0 1 0 1 1 1 0 0 0
5 0 1 0 0 1 0 1 1 1 0 0
6 0 0 1 0 0 1 0 1 1 1 0
7 0 0 0 1 0 0 1 0 1 1 1
8 1 0 0 0 1 0 0 1 0 1 1
9 1 1 0 0 0 1 0 0 1 0 1

10 1 1 1 0 0 0 1 0 0 1 0
11 0 1 1 1 0 0 0 1 0 0 1

Table 6.1: Case I: Structured Initial Population. Perfect Population Diversity, Center of
Mass (x1,y1) = (x0,y0) = (6,6).

6.1.1 Error-Detecting Codes

Reeves (1993) presents an interesting case of a structured initial population for error de-

tecting. Here the population size is small and the initial random generation of the popula-

tion is not sufficient for the solution of the problem. The populations in Tables 6.1 and 6.2

show two cases (Reeves, 1993).

In Table 6.1 each column and each row has 5 ones and 6 zeros. Diversity measured

at the gene-level is 0.9940. At the chromosome-level, the diversity is 6. Finally, at the

population-level, (x1, y1) = (x0, y0) = (6, 6). Looking at the gene-level, the measure

is above 0.99; with a population size of 10, that can be considered good. This fact is

reinforced with the values obtained at the chromosome-level and population-level being

“perfect” (see Section 5.0.2). The pivot used in Equation 5.10 was the fifth member of the

population in Table 6.1; it turns out that any pivot used has 10 neighbors at a distance of

6.

For comparison, 11 codes of length 11 were generated randomly 30 times. Table 6.3

shows the corresponding diversity values. None score as high in diversity as the ones

obtained with the structured population. For example, x0 was always equal to 6.00 but

that never was the case for x1;1. Wether this difference is practical significant remains to

be seen.
1Not all x1 are in Table 6.3 however, none of them is equal to x0.

75

Code/Chromosome
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
3 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
4 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
5 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
6 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0
7 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
8 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1
9 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

10 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
11 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0
12 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
13 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
14 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1
15 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
16 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

Table 6.2: Case II: Structured Initial Population. Perfect Gene Diversity, H(P(0)) = 1.0.

Metric Maximum Minimum Average Std. Dev.
Entropy 0.98 0.83 0.93 0.03

Neighbors 5.44 4.60 5.33 0.15
(x1, y1) (6.61,6.83) (5.43,5.39) (6.07,5.96) (0.28,0.35)
(x0, y0) (6.00,6.62) (6.00,5.38) (6.00,6.06) (0.00,0.32)

Table 6.3: Measuring a Random Initial Population of 11 Individuals. Chromosome
Length 11. 30 Runs.

In Table 6.2, the population has 8 ones and 8 zeros in each column, and 8 ones and

7 zeros in each row except for row 1 which has all zeros. Diversity measures at the

gene-level result in a perfect value of 1.00; at the chromosome-level the diversity value

is 8 (it should be noted that all members of the population are at a Hamming distance

of 8, independent of the pivot used); and, at the population-level (x1, y1) = (8, 9) and

(x0, y0) = (8, 8).

For comparison, 16 individuals of length 15 were generated randomly 30 times. The

corresponding diversity values are in Table 6.4. There were not “good” diversity val-

ues like the ones obtained with the structured population in Table 6.2. For instance, the

maximum gene-level diversity was 0.99 vs. 1.00 for the structured.

76

Metric Maximum Minimum Average Std. Dev.
Entropy 0.99 0.91 0.95 0.02

Neighbors 6.35 5.73 6.07 0.20
(x1, y1) (8.47,9.38) (7.38,8.10) (7.99,8.59) (0.31,0.31)
(x0, y0) (8.00,8.92) (8.00,7.67) (8.00,8.42) (0.00,0.30)

Table 6.4: Measuring a Random Initial Population of 16 Individuals. Chromosome
Length 15. 30 Runs.

6.1.2 The One-Max Function

The one-max problem has been wide used in the lecture as a classical theoretical problem

to be studied using GAs (Cheng and Kosorukoff, 2004; Harik and Lobo, 1999; Giguere

and Goldberg, 1998; Yu et al., 2003). The problem is to find a chromosome of all ones

starting from an initial population randomly generated. This problem has the characteris-

tic that the schema under consideration is one: every single bit is going to contribute to

the solution. In this problem there is only one global maximum and no local minima.

Harik and Lobo (1999) tested the one-max function using an optimal GA in order

to compare results with a “parameter-less genetic algorithm.” The optimal GA has the

following parameters with no mutation involved: chromosome length 100, tournament

size 2, and probability of crossover 1 (Harik and Lobo, 1999). These authors reported, on

average, 2, 500 function evaluations with the optimal GA and 7, 400 with the “parameter-

less genetic algorithm,” performing 20 runs.

Our test is performed over 30 runs, i.e., using 30 different seeds. The tests run the al-

gorithm until it reaches the maximum or gets stuck, i.e., a column of zeros is encountered.

Figure 6.1 shows how the entropy measure—changing the population size—influences

the average quality of the solution. For population size less than 42 (entropy values less

than 0.98299) almost no run finds the optimum. For population sizes between 44 and

110 (entropy values between 0.983887 and 0.993427), at least one run finds the optimum.

For population sizes between 112 to 144 (entropy values between 0.993573 and 0.995),

almost all find the optimum. Finally, the algorithm always converges to the maximum for

entropy values averaging above 0.995 for the test set described previously. But how the

result turns out if the only variable that changes is diversity? This is the topic of hypothe-

sis 1 as is going to be stated in Chapter 7. More exploratory study is in Diaz-Gomez and

Hougen (2007a)

77

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0.965 0.97 0.975 0.98 0.985 0.99 0.995 1

A
ve

. S
ol

ut
io

n
Q

ua
lit

y

Entropy Value

Figure 6.1: Entropy Measure vs. Quality of the Solution. One-Max Function. Population
size changing. 30 Runs.

6.1.3 Conclusions

Some case studies were presented regarding the influence of diversity in the performance

of GAs. The case of the error-coding examples (Reeves, 1993), could be seen in two ways.

As a counter example to random initial populations, in the sense that the error-coding

population was structurally generated, and as a perfect example of diversity because the

error-coding has “optimum” diversity values according to some of the metrics presented

in Section 5.0.2. It seems that for small populations it may be better to generate structured

chromosomes than random ones (Reeves, 1993), and diversity can help to measure how

structured the initial population is.

For the cases of the one-max function and deceptive functions (Diaz-Gomez and

Hougen, 2007a), it is highlighted that a minimum initial population is needed in order

to converge—in our experimental set up we obtain less than 42 individuals, i.e, entropy

values less than 0.98 for the one-max function, and less than 22 individuals , i.e., entropy

values less than 0.96—however, there is approximately an optimum size in the neighbor-

hood of 100 for the one-max function (Harik and Lobo, 1999) and 64 for the deceptive

one, in the sense that, usually, fewer individuals or more individuals than that neighbor-

hood can cost more function evaluations to reach an optimum (global for the case of the

78

one-max and local for the case of the deceptive function) or the divergence of the algo-

rithm.

Deceptive functions and its variants (Diaz-Gomez and Hougen, 2007a) show a draw-

back in the random generation of the initial population, in the sense that if almost all

chromosomes are going to be in the same neighborhood, i.e., where a local maximum is

located, the GA is going to be trapped in it. This fact enforces the hypothesis that if there

is no “good” diversity in the search space, it is possible for the algorithm to diverge or find

a poor solution (see first research question in Section 1.1). However, this does not imply,

in general, that a higher diversity automatically gives us a better performance in GAs.

This is a natural consequence of the “optimal neighborhood” of population size where

fewer or more individuals than the “optimal” can cause the algorithm to diverge, expend

more computations, or find poor solutions. It is possible that not even with 1, 000, 000

individuals in the population will the GA reach the global optimum because at that pop-

ulation size the maximum number of ones obtained in the chromosomes are less than or

equal to 75, exactly where the inflexion or discontinuity occurs (Diaz-Gomez and Hougen,

2007a). Neither the crossover and mutation operators, nor the selection pressure, could

produce the necessary changes to reach the global optimum when the population was cre-

ated using random generation of genes. In order to get out of the trap, the initial random

generation had to be changed taking into account a uniform distribution of fitness values

in conjunction with a higher selection pressure.

However, it should be taken into account that the setting of the rest of the GAs’ pa-

rameters influence the performance of the algorithm as well.

6.2 Parameter Tuning in Fitness Functions

This section is going to outline the benefit of using a fitness function with internal parame-

ters as in Equation 5.14 and the union operator. A comparison between the fitness function

proposed by Mé (1993), and the fitness function proposed by Diaz-Gomez and Hougen

(2005c), and Diaz-Gomez and Hougen (2006a) is made in order to show the drawbacks

of tuning external parameters. The three fitness functions are presented here again:

F (I) = α +
Na∑
i=1

Wi ∗ Ii − β ∗ T 2. (6.1)

79

F (I) = Ne − T ′ (6.2)

F (I) =

Ne∑
j=1

(AE ∗ I)j −
Ne∑
j=1

max[0, (AE ∗ I)j −OVj]

Ne∑
j=1

(AE ∗ I)j

(6.3)

The GA parameters that are going to be used are the ones used by Mé (1993): population

size 50, crossover probability 0.60, mutation probability 0.0083 per bit, I length 24, and

1, 000 generations. Besides that, Mé (1993) utilizes a threshold D in order to differentiate

an intrusion or a non-intrusion. For example, in the final population each locus of the

entire population is analyzed: if the number of 1′s is greater than D, then there is a

possible intrusion. This is different from what is proposed in this dissertation in the sense

that the algorithm is storing the best solution so far and, if the union operator is used, then

when a new intrusion is found, it is checked to see if it is already in the current solution.

If not, then it is checked to see if it violates the constraint in order to add the possible

intrusion to the current solution subset or to add it to the exclusive abnormal subset (see

Sections 5.1.2.1 and 3.3.2).

Equation 6.1 was tested with various α′s and β′s (external tuning, Mé (1993) suggests

α = 50.0 and β = 1.0) and Equations 6.2 and 6.3, which use information from the

problem itself, where tested and compared with Equation 6.1 as is shown in Table 6.5.

As β is the factor that is influencing the penalty term (see Equation 6.1), if it is quite

high (β3) then the number of false negatives is high (7 with α3 = 50 and β3 = 7).

However, as β begins to decrease (β3, β4, and β5 maintaining α = 50 constant), the

number of false negatives decreases, but the number of false positives begins to increase

3 − 6 − 32 for previous β′s. If α and β are decreased (α3 = 4 and β3 = 0.05), then the

number of false positives is huge (296). If α is increased as α1 = N2
e /2 and β1 = 1.0,

the algorithm performed the best for external tuning in the present test set. How is this

drawback conciliated? Equations 6.2 and 6.3 do not need tuning because they do not have

external parameters;2 however, the appearance of false negatives needs to be approached

as is shown in the next section.
2For the case of Equation 6.2, one can think that Ne is external, however, that parameter is the number

of events of the observed vector, i.e., the parameter is using information from the problem. If the number of
events change, then Ne changes accordingly.

80

Parameters
Equation α β False + False -

6.1 392.0 1.0 5 0
6.1 4.0 0.05 296 1
6.1 50.0 7.0 3 7
6.1 50.0 1.0 6 0
6.1 50.0 0.5 32 0
6.2 (•) - 0 39
6.3 (•) - 0 28
6.2 (?) - 0 0
6.3 (?) - 0 0

Table 6.5: Difficulty in tuning of external parameters. Comparison of three fitness func-
tions. (•): Without the union operator. (?): With the union operator. 30 runs per parameter
setting.

6.2.1 Avoiding False Negatives

The fitness function as is Equation 6.3 tries to avoid false positives. The GA proposed was

tested with different inputs (different users and artificial intrusion sets). No false positives

nor false negatives where found in these test sets when the union operator is used;3 with

the aggregate value that the union operator makes the algorithm converge quickly. Figure

6.2 shows that in testing done, on average 2, 524.83 generations were needed using the

union operator, against 79, 431.90 without it. The test was done this time over 280 runs,

and using different lengths for the intrusion vector (I) in order to get a general conclusion.

The I vector used had lengths 24, 32, 40, and 48 (Diaz-Gomez and Hougen, 2006a); data

are from the Lincoln Laboratory (Fried and Zissman, 1998) and in addition, artificial

intrusion vectors are used to simulate more attacks.

In order to check the computability of the algorithm, the length of the hypothesized

vector (individual) is crucial for the applicability of the algorithm and fitness function

proposed. If vector I has length 24, the possible number of solutions is 224, which is

of a magnitude of 16 million. If it has a length of 32, the possible number of solutions

is 232, which is a magnitude of billions; if it has a length of 40 the possible number of

solutions is 240, which is of a magnitude of trillions; and so forth. So tests are performed

using different I vector lengths as is shown in Figures 6.3 and 6.4. The test is repeated

3When the number of intrusion is enlarged to hundreds and thousands, the problem of false negatives
appears—see Section 6.2.2.1.

81

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

Without UnionWith Union

A
ve

. N
um

be
r

of
 G

en
er

at
io

ns

2,524.83

79,431.90

Figure 6.2: Average number of generations with union operator and without union opera-
tor; length of I: 24, 32, 40, and 48; 70 runs per length; 280 runs in total.

70 times for each length vector and different input data (Observed Vectors) as is shown

on Table 6.6, where the union operator is used, and Table 6.7 where the union operator

is not used. Each entry on Tables 6.6 and 6.7 corresponds to an average over 10 runs

performed with the same input vector. For example, the first entry, which corresponds to

user User2051 74 and I vector of length 24, is equal to an average of 193.1 over 10 runs.

When using the union operator the maximum average number of generations needed is

1, 158.8 for a I vector with length 48, against 127, 746.5 for a vector of length 24 when

not using the union operator (see Tables 6.6 and 6.7).5

With the fitness function as in Equation 6.3 and using the union operator, the GA

did not give false positives or false negatives in the present tests. However, the problem

of finding the complete set of intrusions is open and more tests are going to be done in

Section 6.2.2.1 enlarging the attack-event matrix AE from 48 to 1008 intrusions.

4Userxxxx y, means user with identification xxxx at time y.
5It should be emphasized that for I vectors of length 24, the average is quite large for the last entry,

perhaps because usually the algorithm converges quicker to a local optimum, then, it spends more iterations
to get a global maximum. Once the algorithm converges, the mutation operator is the one that can help the
algorithm to reach the global maximum

82

 0

 200

 400

 600

 800

 1000

48403224

A
ve

. N
um

be
r

of
 G

en
er

at
io

ns

299.4

484.5

830.0

910.9

Figure 6.3: Average number of generations with union operator; length of I: 24, 32, 40,
and 48; 70 runs per length; 280 runs in total.

I Length
OV 24 32 40 48

User2051 7 193.1 343.7 565.2 661.9
User2051 11 220.1 484.3 539.7 814.1
User2506 15 278.6 328.0 925.8 790.9
6 Intrusions 344.3 319.8 843.7 1,129.1
9 Intrusions 291.8 618.8 1,115.8 1,158.8
11 Intrusions 420.2 570.1 852.1 955.7
12 Intrusions 347.8 727.1 967.5 865.8

Table 6.6: Average number of generations per user/activity and I length. Union operator
used.

I Length
OV 24 32 40 48

User2051 7 193.1 343.7 565.2 661.9
User2051 11 220.1 925.8 539.7 814.1
User2506 15 515.1 328.0 925.8 790.9
6 Intrusions 1,228.8 319.8 2,310.2 1,129.1
9 Intrusions 9,795.8 7,181.6 6,765.6 16,206.2

11 Intrusions 40,292.9 45,799.2 47,148.4 54,993.3
12 Intrusions 127,746.5 58,933.4 53,875.8 75,473.3

Table 6.7: Average number of generations per user/activity and I length. Union operator
not used.

83

 0

 5000

 10000

 15000

 20000

 25000

48403224

A
ve

. N
um

be
r

of
 G

en
er

at
io

ns

25,713.1

16,261.6 16,018.6

21,438.4

Figure 6.4: Average number of generations without union operator; length of I: 24, 32,
40, and 48; 70 runs per length; 280 runs in total.

6.2.2 Additional Contributions

For the case of the intrusion detection problem, some questions arise because of the size

of the search space, i.e., if the algorithm can handle hundreds or thousands of intrusions.

Some questions also arise regarding the possible solution of the problem with a different

heuristic or iterative method.

6.2.2.1 Enlarging the Number of Intrusions

For the case of the intrusion detection problem, as the number of intrusions grow, the

search space increase exponentially. If the number of intrusions is 48, then the search

space is 248, likewise, if the number of intrusions is 1, 008, then the search space is 21,008.

So, in order to test the viability of the GA for hundreds and thousands of intrusions in

the AE matrix, empirical studies is done with the following GAs’ parameters and fitness

function as in Equation 6.3: 60% probability of one-point crossover, 2.4% probability

of mutation per chromosome, 20, 000 generations, selection pressure of 1.5 (tournament

selection of size 2 with 75% of choosing the fittest), and a population size of 40. With

this configuration of parameters the tests were perfomed 30 times for 48, 144, 528, and

1, 008 intrusions (Diaz-Gomez and Hougen, 2007e). As the number of intrusions in the

AE matrix grow, the average percentage of false negative grows, in the present tests.

84

AE Average of False Negatives
Length 40 Ind. 100 Ind 1,000 Ind

48 0.01 0.00 0.00
144 0.14 0.11 0.02
528 0.66 0.44 0.29

1,008 0.99 0.67 0.39

Table 6.8: Enlarging the number of intrusions in the AE matrix to 48, 144, 528 and 1, 008
intrusions. False negatives appears.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

100852814448

A
ve

. F
al

se
 N

eg
at

iv
e

R
at

io

Number of Intrusions in Attack-Event Matrix AE

40 Indiv.
100 Indv.

1,000 Indv.

Figure 6.5: Average % of false negatives when Attack-Event Matrix AE is enlarged.
Population sizes of 40, 100, and 1, 000 individuals. 30 runs on each population size.

But, as AE was enlarge to thousands of intrusions (and likewise the search space) and

the number of individuals in the inital population was fixed, a parameter that could be

increased in order to diminish the false negative ratio, is the population size (see Table

6.8).

If the number of individuals in the GA’s population is changed from 40 to 100 and

1, 000 (keeping other parameters the same) the GA’s false negative percentage is better,

as expected (see Figure 6.5 for the average number of false negatives when using 40, 100

and 1, 000 individuals). However, setting parameters so that the quality of the solution is

better is one of the difficulties in working with GAs.

6.2.2.2 Two Different Approaches to Misuse Detection

In order to analyze the possible benefits of the initial solution to the intrusion detection

problem suggested by Mé (1993) using a GA, a comparison is made with an iterative

85

process and with a neural network to solve the problem. It was highlighted in Section

6.2.2.1, that as the number of intrusions Na grows, the search space grows exponentially

2Na , however, each intrusion (column) of the AE matrix could be tested against the ob-

servation vector OV in order to check if that particular intrusion occurred and, if some

intrusion have been occurred, then, iteratively those possible intrusions can be tested to-

gether if there is violation of the constraint. The two sets of abnormal and abnormal

exclusive could then be generated iteratively. But, this is a possible solution because the

explosion of possible combinations of intrusions that could be together with and without

the violation of the constraint.

The second approach is the use of a neural network to solve the problem, this work is

done for the benefit of comparing different approaches.

An Iterative Process vs. A Genetic Algorithm Usually an IDS processes log records

received from the operating system for a specific period of time in order to have a complete

set of user activity (Bace, 2000; Crosbie and Spafford, 1995). After that, the IDS performs

analysis of the current activity, using a rule base system, statistics, or a corresponding

heuristic, in order to determine the possible occurrence of abnormality or intrusion.

For the present, the misuse mechanism uses a pre-defined matrix AE of intrusion

patterns (Mé, 1998), so the system knows in advance the appearance of misuse and/or

abuse. The bigger this table, the more space and computation time is spent in the analysis.

This work continues with hundreds and more than one thousand intrusions and the same

set of GA’s parameters as in Section 6.2.2.1.

If a column P of the AE matrix, is such that each entry of it is less or equal than

each entry of the observed vector OV , then, it is possible that intrusion P has occurred.

However, looking at some possible intrusions together, it is possible that one or several can

occur, but not all together, because adding each corresponding entry, some results could

be greater than the corresponding entry of the user activity vector OV (Diaz-Gomez and

Hougen, 2006a, 2005c; Mé, 1993). This is called a violation of the constraint.

The iterative process first checks each intrusion pattern P to determine if it may have

occurred. For doing that, each entry of each P array is compared with the corresponding

OV entry. If there is no violation of the constraint, i.e., if Pj ≤ OVj ∀ 1 ≤ j ≤ Ne, where

Ne is the number of activities monitored, then P is a possible intrusion. After finding all

the possible intrusions, the iterative process begins to build two sets. It adds iteratively the

86

 0

 0.2

 0.4

 0.6

 0.8

 1

100852814448

A
ve

. R
at

io
 o

f
In

tr
us

io
n

D
et

ec
tio

n
Number of Intrusions in Attack-Event Matrix AE

Iterative
1,000 Indv.

100 Indv.
40 Indiv.

Figure 6.6: Average number of possible intrusions found by a GA and total found by an
iterative process. 40, 100 and 1, 000 individuals in the initial population. 30 runs on each
population size.

corresponding entries of the possible intrusions found, in order to check for a violation of

the constraint when considered together. If in doing such addition, an entry of an intrusion

violates the constraint, then that possible intrusion is marked as an exclusive intrusion. So,

the result is going to be a set of possible intrusions that can occur together and a set of

exclusive intrusions.

Figure 6.6 shows the average ratio of number of possible intrusions found by the GA

and the total number of intrusions found by the iterative process. There were no false

positives given by either algorithm and the iterative process had no false negatives in

these tests.

As stated in Section 6.2.2.1 If the number of individuals in the GA’s population is

increased, then the GA’s false negative percentage is decreased (see Figure 6.5.

The result of both algorithms is two sets: one of possible intrusions (Y) and the other

of possible intrusions that could not happen at the same time as the previous ones because

of violations of the constraint (Diaz-Gomez and Hougen, 2006a, 2005c; Mé, 1993). This

is called exclusive set (X) (Diaz-Gomez and Hougen, 2005c). For the case of the iterative

process, these two sets (Y and X) are always the same, but for the GA case, the two sets

could be different because of the randomness involved in the process.

In this work, the exclusive set X was disaggregated, i.e., the algorithm continues look-

ing for constraints until a set of disjoint sets X1, X2, ..., Xh is found, the union of which

87

is the set X , so the entire set of possible intrusions is Y ∪ X1 ∪ X2 ∪ ... ∪ Xh, where

Y ∩X1 ∩X2 ∩ ... ∩Xh = ∅.

It should be emphasized that exclusive intrusions makes this an NP-Complete problem

because the solution set Y ∪X1 ∪X2 ∪ ... ∪Xh is not unique. However, the algorithms

presented in this section and Section 6.2.2.1 are finding one solution, not all possible

solutions.

When looking at the computational complexity, the iterative process performs, for

each P Column, Ne comparisons (Ne is the number of types of user activity), and as

there are Na such columns, then it spends Ne ∗Na computation time. For the second step

of looking at the two exclusive set of intrusions, that depends on the actual number of

possible intrusions found K. For each type of activity Ne, it checks the common type of

activity in order to check for violations of constraints. So for this case it spends Ne ∗K

computation time, where K < Na. In conclusion, the iterative process is O(NeNa).

For the case of the GA, it depends on the population size S, number of generations G

and length Ne of each P column. So, for each hypothesized array I—of length Na, and

the ones that belong to the population—the algorithm performs Na calculations for each

type of activity, and as there are Ne types of activity, this gives Ne∗Na calculations. As the

population size is S, for each generation the algorithm performs Ne ∗Na ∗S calculations.

As the algorithm has G generations, it gives a total computational complexity of order

O(NeNaSG). Clearly, the GA cost is higher by O(SG) with the down side of a false

negative ratio that depends in part on the population size (see Fig 6.5).

The computational complexity done by both algorithms in finding the disjointed sets

X1, X2, ..., Xh of possible intrusions is O(K2Ne), where K is the cardinality of the

disjointed set X .

The space complexity is such that both algorithms have to store the matrix of known

intrusions and the user activity, i.e., O(Na ∗ Ne). The GA, additionally, has to store the

population that is of order O(SNa).

As observed, the iterative process outperformed the GA for this test set, as established

by the false negative ratio and in computational and space complexity. The population

size of the GA was increased in order to improve the quality of the solution—fewer false

negatives—but other parameters may be changed in the GA as well, such as the number

of generations and the probability of the operators, in trying to improve its performance.

However, some of those possible changes may or may not improve the quality of the

88

21 48 69 96 117 144 165 192 213 240 261 288 309 336 357 384 405 432 453 480 501
528 549 576 597 624 645 672 693 720 741 768 789 816 837 864 885 912 933 960 981 -

Table 6.9: Intrusions Ip found by a neural network.

solution and some may expend more computation time. The correct setting of parameters

is one of the difficulties in working with GAs.

A Neural Network vs. A Genetic Algorithm The misuse detection problem can be

formulated as: Given the observation vector OV ∈ Z+ ∪ {0}, and the Attack-Event

matrix AE ∈ Zmn of known intrusion types, find the best parameter vector I ∈ {0, 1}
such that rj(I) = (AE ∗ I)j − OVj ≤ 0, for all 0 ≤ j ≤ m, where Ip are independent

variables for all 0 ≤ p ≤ n (m is the number of event types to consider Ne and, n is

the number of intrusions to check Na). The best I is the one that minimizes the length

of the residual r(I), i.e., we are facing a linear least squares problem, that can be solved

with different methods. However, one can look at the problem as a linear constrained

optimization problem, where a Neural Network (NN) can be proposed to solve it.

How the problem is addressed can reveal different methods to solve it. Some meth-

ods require more computation time and/or space than others, and some give better quality

solutions than others. This section presents a NN to solve approximately the misuse de-

tection problem and compares it with the GA tested in Section 6.2.2.1.

Neural networks have been widely used to solve optimization problems (Ham and

Kostanic, 2001) and, as was addressed previously, the misuse detection problem can be

seen as an optimization problem where we want to maximize f(I) = wT · I , subject to

rj(I) = AEj1I1 + AEj2I2 + ... + AEjnIn − OVj ≤ 0 for j = 1, 2, ...,m, I1 ≥ 0, I2 ≥
0, ..., In ≥ 0, where Ip are independent variables and w is the weighting vector.

In order to solve this linear problem with inequality constraints, Ham and Kostanic

(2001) propose the use of a NN with the recursive equation of motion

Ip(k + 1) =

Ip(k)− µp

{
wp + K

∑m
j=1 rj(I)AEjp

}
if Ip(k + 1) ≥ 0,

0 if Ip(k + 1) < 0

(6.4)

where µp is the learning rate, K is a positive parameter, and k is the iteration step.

89

The following parameters is set: Ip(0) = 0 for all p, µp = µ0/(log(1 + k)) with

µ0 = 0.005 (Ham and Kostanic, 2001), wp = 1 ∀p, K = 1, OV —that is used in rj(I)—

as in Table 6.10, AE corresponds to the m ∗ n matrix in which columns are intrusions,

m = 28, n = 1, 008, and the NN stops if µp < 0.00001 or if the number of iterations is

h = 6, 000.

The net found 41 out of 108 possible intrusions (see Table 6.9) and had no false posi-

tives. Some convergence values for iterations until 600 are shown in Figure 6.7.6 The last

µp was µ6000 = 0.00057473.

0 100 200 300 400 500 600
0

0.5

1

1.5

2

Iteration Number

C
on

ve
rg

en
ce

 V
al

ue

Intrusions

Non−Intrusion

Figure 6.7: Intrusions type 48 and 21 found by a neural network. At iteration 6, 000 the
convergence values were I48 = 0.6426, I21 = 0.241 and non intrusion I917 = 3.5889e −
34.

Table 6.10 shows an example of an OV vector and the result of AE∗I−OV that shows

that the neural network found an I vector that does not violates the constraint. The solution

I is such that Ip ≥ 0, ∀p. For example, looking at entries in the AE matrix, intrusions

p = 21 + mod(0, 48) have values AE26,21+mod(0,48) = 3 and there were 21 of those;

intrusions p = 48 + mod(0, 48) have values AE26,48+mod(0,48) = 8 and there were 20 of

those; they give a total of activity for entry 26 equal to 3∗21∗0.241+8∗20∗0.6426 = 118

that is exactly OV26—see Figure6.7 and Table 6.10.
6Tendency after iteration 600 is the same

90

Event # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
OV 0 0 0 0 0 0 0 1 0 0 5 0 0 0 0 1 0 25 0 13 0 0 0 2 0 118 315 0

AE ∗ I −OV 0 0 0 0 0 0 0 -1 0 0 -5 0 0 0 0 -1 0 -25 0 -13 0 0 0 -2 0 0 -315 0

Table 6.10: Event type, vector of observations OV and constraint comparison using solu-
tion I—shown in Table 6.9—which does not violate the constraint.

S1 21 69 155 157 192 213 261 309 336 384 453 480 501 528 576 683 693 741
S1 768 789 837 864 933 960 1008 - - - - - - - - - - -
S2 48 96 117 144 165 240 288 357 405 432 549 597 623 644 815 884 911 980

Table 6.11: A Subset of intrusions S2 that violates the constraint with subset S1 found by
a GA.

It should be emphasized that if the initial conditions change, for example if Ip(0) = 1

for all p, then the algorithm converges to a second solution. It finds all possible solutions

(108), but, in this case the solution violates the constraint and it gives 399 false positives

(Diaz-Gomez and Hougen, 2007d).

The first topic that we are going to address is how the algorithms presented here, distin-

guish an intrusion of a non intrusion and the second one is the computational complexity

of each algorithm.

For the GA it is clear that a 1 in Ip means a possible intrusion p occurred and a 0

means non-intrusion. For the NN, if Ip converges to a value > 0 then we consider a

possible occurrence of an intrusion. However, there is not an exact threshold for the NN to

distinguish an intrusion from a non intrusion, as in the GA case. In order to reinforce this

fact, we performed tests again, with the same set of parameters defined in section 6.2.2.2

but the vector of observations OV was changed (OV ′) as in Table 6.12. The solution of

the NN was the same in section 6.2.2.2—see Table 6.9—but the values of convergence

of the intrusions (I48 = 0.0163, I21 = 0.0061) and non intrusion changed (I917 = 0).

The NN was looking at each variable (intrusion) Ii independently, as it is expected to do

in accordance with the conditions of this paradigm—the most that concerns here is the

convergence of Ip ≥ 0 and that Ip’s are independent. To the contrary, the GA looks the

possible solution I , with all its components Ip, together, i.e., if there is a possible solution

I which violates the constraint, then, I is penalized accordingly—see Equation 6.3. The

set of Ip’s are evaluated by the GA at the same time and the algorithm chooses them by

looking for the best of those sets (Diaz-Gomez and Hougen, 2007d).

91

OV ′ 0 0 0 0 0 0 1 40 0 0 5 0 0 0 0 1 0 25 0 13 0 0 0 2 0 3 30 0
AE ∗ x−OV ′ 0 0 0 0 0 0 -6 -40 0 0 -5 0 0 0 0 -1 0 -25 0 -13 0 0 0 -2 0 0 -30 0

Table 6.12: Vector of observations OV ′. Same Solution I—shown in Table 6.9—which
does not violate the constraint.

S1 21 48 69 96 117 144 165 192 213 240 261 288 309 336 357 384 405 432 453 480 501 549
S2 528 576 597 624 645 672 693 720 741 768 789 816 837 864 885 912 933 960 981 - - -

Table 6.13: Second Phase. A Subset of intrusions S2 that violates constraint with subset
S1 found by iterative process.

As NN does not have the capability to look at exclusive sets of intrusions (S1∩S2 = ∅),

because Ip are independent for 0 ≤ p ≤ n, an iterative process that receives as input the

output of the NN—i.e., Table 6.9—and analyzes violations of constraint using Ip ∈ {0, 1}
can be used as a second phase. This process looks at each row of the AE matrix for

columns corresponding to the positions of the NN solution I where Ip is considered a

possible intrusion. The output is a subset of Table 6.9 given in Table 6.13 as S1. This time

we obtain 12 intrusions type 21 + mod(0, 48)—see Section 6.2.2.2—and 10 intrusions

type 48 + mod(0, 48), which gives us a total of 3 ∗ 12 ∗ 1 + 8 ∗ 10 ∗ 1 = 116 which clearly

does not violate the constraint (i.e. 116 ≤ OV26 = 118). More than this 22, will begin to

violate the constraint—see S2 in Table 6.13 (Diaz-Gomez and Hougen, 2007d).

The NN needs to calculate the constraint, i.e., AE ∗ I−OV which has a cost of m∗n,

it adjusts I and, as the algorithm iterates h times, it gives an estimated computational

complexity of O(mnh). The GA needs to calculate the constraint for each individual in

the population that has a cost of m∗n per individual, i.e., with s individuals it gives m∗n∗s
per generation, and as the algorithm iterates g generations, it gives a total computational

complexity of O(mnsg) (Diaz-Gomez and Hougen, 2007e). So the GA computational

complexity is higher by O(sg/h).

The space complexity for the NN can be considered as O(nm) because it needs to

store the AE matrix, and the OV and I vectors. The GA, besides previous structures,

needs to store the population that is of orderO(sl). So the GA space complexity is higher

in O(sl) than the NN space complexity.

Comparing these two paradigms, as some intrusions share the same types of events, the

possible solution I is such that some Ip are dependent, which makes the genetic algorithm

92

paradigm more suited for solving this problem. However, the quality of the solution ob-

tained with the GA has a higher computational complexity cost of O(sg/h)—population

size by the ratio of number of generations over the NN iterations—and space complexity

cost of O(sl)—population size by length of I—with respect to the NN.

The GA has the advantage of discriminating an intrusion from a non-intrusion as the

solution of the problem is encoded as 1 (intrusion) and 0 (non-intrusion). As the range of

values of Ip for the NN are such that Ip ≥ 0 the values of intrusions are input dependent—

depending on the observed vector OV . However, at least for this test set, non-intrusions

are variables Ip that converge to 0 or to values≈ 0 when in the initial conditions I is zero.

For the test set defined in this section, there were no false positives, except if the NN

is considered without the second phase or if the initial conditions change. For the false

negative side, if we look at the two sets S1 and S2, the GA has in average (over 30 runs) of

39.14% false negatives, and the NN has 60.95%. However, the set S2 can have exclusive

intrusions, so the process can continue until we get a set of mutually exclusive subsets

whose union is S (Diaz-Gomez and Hougen, 2007e).

In order to improve the false negative ratio of the GA, it is possible that by increasing

the population size (s > 1, 000) the ratio is going to decrease; however, it is possible that

the number of generations g should be considered too, independently or in conjunction

with the population size. For the case of the NN, it is a more challenging problem to try to

diminish the false negative ratio. After the convergence of all Ip’s there is no improvement

in the solution I , if the number of iterations h is higher.

6.2.3 Fitness Functions to Hunt Snakes in Hypercubes

In this section we are going to report our work in the snake-in-the box problem, which is

of particular interest in coding and hypercube-based computing and networking, using a

standard GA, i.e., using binary encoding, 2-tournament selection, one point crossover with

a probability of 0.6, a mutation rate of 0.024 per chromosome, a population size of 1, 000,

and as stop criteria 1, 000 generations, or when the algorithm finds a snake. We propose

seven fitness functions for hunting snakes, and we perform initial test in hypercubes of

dimension 4, in order to evaluate their effectiveness.

93

Node Adjacency Matrix (AM) S V N

0 0 1 1 0 1 0 0 0 1 1
1 1 0 0 1 0 1 0 0 1 2
2 1 0 0 1 0 0 1 0 0 3
3 0 1 1 0 0 0 0 1 1 2
4 1 0 0 0 0 1 1 0 0 2
5 0 1 0 0 1 0 0 1 0 2
6 0 0 1 0 1 0 0 1 1 1
7 0 0 0 1 0 1 1 0 1 2

Table 6.14: Adjacency Matrix (AM) for a 3-dimensional hypercube, Snake (S) 0 − 1 −
3− 7− 6, and Vector of Neighbors (VN).

The snake was encoded as an uni-dimensional array (chromosome) of length 2d, where

d is the dimension of the hypercube in which to search for snakes. To encode the hyper-

cube itself, an adjacency-matrix representation is used. To calculate the number of neigh-

bors of each node in a snake, the matrix multiplication between the adjacency-matrix and

the snake is performed. Table 6.14 shows the nodes {0, 1, 3, 6, 7} in the array S, which

may be seen as the connected path 0 − 1 − 3 − 7 − 6, with nodes 1, 3, and 7 having two

neighbors in the path, and nodes 0 and 6 being the nodes with one neighbor each. It should

be noted that node 2 has three neighbors, but that node does not belong to the path S, so

its value in S is 0 (Diaz-Gomez and Hougen, 2006b).

Some fitness functions have been suggested for hunting snakes in d-dimensional hy-

percubes (see Section 5.1.3), from Equation 5.17 to Equation 5.23 that are going to be

rewritten here for simplicity). Results in a 4-dimensional hypercube and initially with at

most 1, 000 generations, are summarized in Table 6.15, where each test was made over

30 runs to obtain more statistically interesting results. Equation 6.5, followed by Equa-

tions 6.10 and 6.6, found more snakes, but, of the three, Equation 6.6 finds more of max-

imum length. Equation 6.8 is the only one that has bad points, i.e., points that violate the

constraint having more than two neighbors (14 in total in two out of the 30 runs) and, as

addressed in Section 5.1.3.4, that Equation is deviating the algorithm.7 All these results

are obtained when the algorithm is stopped when it finds a maximum (local or global)

7In Table 6.15 Equation 6.8 obtained 60 end points (#D), however this does not mean that using that
equation in all the 30 runs the algorithm reported one head and one tail. For this Equation, one time the
algorithm found a solution with four end points and in two solutions the algorithm found a solution with
one end point. For the rest of Equations the algorithm found two end points in all the 30 runs.

94

Eq. # Snakes # Longest # T.Isolated # T.Lazy # T.Bad #D.
6.5 30 5 0 3 0 60
6.6 27 24 3 0 0 60
6.7 24 15 6 4 0 60
6.8 21 19 7 0 14 60
6.9 21 20 9 0 0 60

6.10 28 16 2 7 0 60
6.11 26 16 4 4 0 60

Table 6.15: Results of snakes in a 4-dimensional hypercube; different fitness functions;
≤ 1, 000 generations; 30 runs.

in less than 1, 000 generations or when 1, 000 generations is reached (Diaz-Gomez and

Hougen, 2006b).

F (I) =

(∑2d−1
j=0 (AM ∗ S)j − Penalty∑2d−1

j=0 (AM ∗ S)j

) (
Length(S) + 1

#P

)
. (6.5)

F (I) =

(∑2d−1
j=0 (AM ∗ S)j − Penalty∑2d−1

j=0 (AM ∗ S)j

)
∗ Length(S). (6.6)

F (I) = Length(S). (6.7)

F (I) = (#P −#Lazy) ∗ Length(S). (6.8)

F (I) = Length(S)−#Lazy . (6.9)

F (I) = Length(S)−#Lazy −#Isolated (6.10)

F (I) =
Length(S)

1 + Penalty
(6.11)

95

Equation
Eq. 6.5 6.6 6.7 6.8 6.9 6.10
6.6 0.005 - - - - -
6.7 0.000 0.055 - - - -
6.8 0.026 0.537 0.055 - - -
6.9 0.002 0.760 0.109 0.936 - -

6.10 0.000 0.109 0.760 0.342 0.760 -
6.11 0.000 0.109 0.342 0.537 0.537 0.887

Table 6.16: K-S test results for snakes. Probability of results assuming the null hypothesis.
≤ 1, 000 generations. 30 runs per fitness function.

Number of Generations
Fitness Function Minimum Maximum Average σ

Eq. 6.5 26 17, 032 2, 874.2 4, 104.0
Eq. 6.6 6 25, 352 3, 174.1 5, 414.7
Eq. 6.7 8 20, 435 2, 044.4 4, 187.6
Eq. 6.8 2 9, 807 2, 739.6 3, 032.2
Eq 6.9 4 15, 138 2, 770.3 3, 939.4

Eq. 6.10 1 13, 089 1, 750.5 3, 015.5
Eq. 6.11 5 17, 117 2, 295.5 4, 206.4

Table 6.17: Results of number of generations for hunting longest snakes in a 4-
dimensional hypercube; different fitness functions; 30 runs.

Table 6.16 shows the K-S test results, for the # of snakes as in Table 6.15, for these

equations when a maximum number of generations of 1, 000 is used. Basically Equa-

tion 6.5 is different from most of the others in finding snakes in 4-dimensional hyper-

cubes, as is shown in Table 6.15.8 This is also reflected in the histograms as in figures 6.8

to 6.14 where it can be seen that the data is not normally distributed (fact that suggests the

realization of the K-S test which makes no assumption of the distribution9).

But how would the results turn out if the algorithm is freed to find the longest snake,

not only a snake when the number of generations is ≤ 1, 000, i.e., when the stopping

criteria is the finding of the longest snake—in this particular analysis when length is 7.

Table 6.17 shows the minimum, maximum, average (mean), and standard deviation

σ of the number of generations. As can be observed, the standard deviation is greater

than the average in all cases which suggest that the distribution is not normally distributed

8There is a multiple comparison problem here, that we do not address, because this is an exploratory
study that allow us to get an idea of how these fitness functions work.

9Frequency corresponds to ne number of snakes as is Table 6.15.

96

 0

 5

 10

 15

 20

 25

751-1000

501-750

251-500

1-250

0

Fr
ec

ue
nc

y

Number of Generations

Figure 6.8: Histogram for hunting snakes using Equation 6.5; generations ≤ 1, 000.

 0

 5

 10

 15

 20

 25

751-1000

501-750

251-500

1-250

0

Fr
ec

ue
nc

y

Number of Generations

Figure 6.9: Histogram for hunting snakes using Equation 6.6; generations ≤ 1, 000.

97

 0

 5

 10

 15

 20

 25

751-1000

501-750

251-500

1-250

0

Fr
ec

ue
nc

y

Number of Generations

Figure 6.10: Histogram for hunting snakes using Equation 6.7; generations ≤ 1, 000.

 0

 5

 10

 15

 20

 25

751-1000

501-750

251-500

1-250

0

Fr
ec

ue
nc

y

Number of Generations

Figure 6.11: Histogram for hunting snakes using Equation 6.8; generations ≤ 1, 000.

98

 0

 5

 10

 15

 20

 25

751-1000

501-750

251-500

1-250

0

Fr
ec

ue
nc

y

Number of Generations

Figure 6.12: Histogram for hunting snakes using Equation 6.9; generations ≤ 1, 000.

 0

 5

 10

 15

 20

 25

751-1000

501-750

251-500

1-250

0

Fr
ec

ue
nc

y

Number of Generations

Figure 6.13: Histogram for hunting snakes using Equation 6.10; generations ≤ 1, 000.

99

 0

 5

 10

 15

 20

 25

751-1000

501-750

251-500

1-250

0

Fr
ec

ue
nc

y

Number of Generations

Figure 6.14: Histogram for hunting snakes using Equation 6.11; generations ≤ 1, 000.

 0

 5

 10

 15

 20

>3000

2001-3000

1001-2000

751-1000

501-750

251-500

1-250

0

Fr
ec

ue
nc

y

Number of Generations

Figure 6.15: Histogram for longest snakes using Equation 6.5; generations until global
maximum reached.

100

 0

 5

 10

 15

 20

>3000

2001-3000

1001-2000

751-1000

501-750

251-500

1-250

0

Fr
ec

ue
nc

y

Number of Generations

Figure 6.16: Histogram for longest snakes using Equation 6.6; generations until global
maximum reached.

 0

 5

 10

 15

 20

 25

>3000

2001-3000

1001-2000

751-1000

501-750

251-500

1-250

0

Fr
ec

ue
nc

y

Number of Generations

Figure 6.17: Histogram for longest snakes using Equation 6.7; generations until global
maximum reached.

101

 0

 5

 10

 15

 20

 25

>3000

2001-3000

1001-2000

751-1000

501-750

251-500

1-250

0

Fr
ec

ue
nc

y

Number of Generations

Figure 6.18: Histogram for longest snakes using Equation 6.8; generations until global
maximum reached.

 0

 5

 10

 15

 20

 25

>3000

2001-3000

1001-2000

751-1000

501-750

251-500

1-250

0

Fr
ec

ue
nc

y

Number of Generations

Figure 6.19: Histogram for longest snakes using Equation 6.9; generations until global
maximum reached.

102

 0

 5

 10

 15

 20

 25

>3000

2001-3000

1001-2000

751-1000

501-750

251-500

1-250

0

Fr
ec

ue
nc

y

Number of Generations

Figure 6.20: Histogram for longest snakes using Equation 6.10; generations until global
maximum reached.

 0

 5

 10

 15

 20

 25

>3000

2001-3000

1001-2000

751-1000

501-750

251-500

1-250

0

Fr
ec

ue
nc

y

Number of Generations

Figure 6.21: Histogram for longest snakes using Equation 6.11; generations until global
maximum reached.

103

Generations until Longest Found
Eq. 6.5 6.6 6.7 6.8 6.9 6.10
6.6 0.200 - - - - -
6.7 0.342 0.537 - - - -
6.8 0.537 0.936 0.109 - - -
6.9 0.537 0.537 0.537 0.537 - -

6.10 0.011 0.200 0.342 0.055 0.055 -
6.11 0.011 0.342 0.537 0.109 0.200 0.997

Table 6.18: K-S test results for longest snakes. Probability of results assuming the null
hypothesis. Number of generations until longest snake found. 30 runs per fitness function.

Equation
Quartil 6.5 6.6 6.7 6.8 6.9 6.10 6.11

Q1 205.0 45.5 93.0 126.0 839.5 46.0 44.0
Q2 539.5 1, 059.0 671.0 1, 827.0 1, 238.5 161.5 151.0
Q3 5, 708.0 3, 979.5 1, 969.5 4, 867.5 4, 569.0 3, 596.5 3, 389.5

Table 6.19: Quartiles for fitness functions to hunt snakes. Number of generations until
longest snake found. 30 runs per fitness function.

because the minimum is zero (see histograms in Figures 6.15 to 6.21). There is no sta-

tistically significant difference for this test set for any fitness function (except between

Equation 6.5 and Equations 6.10 and 6.11) as can be seen in the results presented in Table

6.18.

Table 6.19 shows the quartiles for different fitness functions presented in this section

in finding longest snakes, over a total of 30 runs for each one. For this test set, Equation

6.7 outperformed others in the number of generations spend in finding longest snakes. It

can be observed that 75% Equation 6.7 spent less than 1, 969.5 generations for finding

longest snakes. For this data set (using Equation 6.7), there were three outliers, the data

points 20, 435, 10, 751 and 7, 773 (which makes its mean, presented in Table 6.17, biased)

because those are out of the 1.5 ∗ IQR +Q3 where IQR = Q3−Q1 (Mann, 2007). Now,

taking for example Equation 6.5, 75% of the times the algorithm spent less than 5, 708.0

generations to find a longest snake.

Our analysis lead us to belief that Equation 6.7 is the appropriate fitness function to

use in some of the test performed in Chapter 7.

104

Seed
Equation 0 1 2 3 4 5 6 7

6.5 2, 874.2 719.7 1, 647.4 1, 578.3 1, 921.6 1, 002.4 798.2 2, 285.3
6.6 3, 174.1 1850.9 3, 116.7 1, 713.3 2, 274.3 1, 834.0 1, 922.1 2, 222.8
6.7 2, 971.8 2208.0 2, 494.7 1, 685.8 1, 541.0 2, 194.1 2, 600.8 2, 083.3
6.8 3, 356.4 3830.1 3, 114.9 1, 555.6 2, 982.7 1, 169.7 1, 978.7 1, 511.5
6.9 1, 346.4 1600.5 1, 799.6 3, 063.9 813.4 922.9 1, 947.1 1, 547.8
6.10 1, 452.7 1474.1 2, 045.0 2, 308.8 1, 804.9 870.5 1, 215.8 1, 701.6
6.11 3, 264.2 2704.9 2, 621.0 2, 006.5 1, 573.9 1, 585.2 3, 086.4 1, 812.4

Totals
FirstEval 18, 437.8 14, 388.2 16, 839.4 13, 912.1 12, 911.7 9, 578.8 13, 549.0 13, 164.5

SecondEval 12, 418.9 13, 407.1 9, 697.6 15, 221.9 12, 764.7 9, 221.6 9, 670.8 10, 244.9

Table 6.20: Number of generations for different fitness functions in finding longest snakes
in a 4-dimensional hypercube. Initial population randomly generated with different seeds.
30 runs per seed for each fitness function.

6.2.4 Additional Contributions

For the snake-in-the-box problem, an interesting topic of investigation is how to find the

length of a snake. Our method needs a head/tail to begin with; however, if the chromosome

has more than two heads/tails then the algorithm could take the first head and tail and

calculate the length or, as we proposed, the algorithm can look for all the possible lengths

and assign the longer as the length of the snake.

6.2.4.1 Snakes’ Fitness Evaluation

As stated in Section 5.1.4.2 the starting point chosen to begin the evaluation of the length

of a snake, can give different results in the calculation of the length. Two types of tests

were performed: in the first one FirstEval (see Figure 6.22), the evaluation was performed

taking into account the first head and tail found, i.e., the ones with lower numeric node

labels; in the second one SecondEval, all the distinguishing points (head/tail) are taken

into account ranking all the connected paths found that obeys constraints, compares them,

and takes the longest one as the actual length for the chromosome.

For this empirical study, 8 different initial population are chosen (seeds 0 through 7)

and, seven fitness function for hunting snakes in 4-dimensional hypercubes are tested (see

Section 6.2.3). Figure 6.22 compares the two ways to conduct fitness evaluations. With

105

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

76543210

N
um

be
r

of
 G

en
er

at
io

ns

Initial Population Seed

FirstEval
SecondEval

Figure 6.22: Comparison of accumulative average number of generations as in Table 6.20
ranking chromosomes in two ways: considering the first length encountered (FirstEval)
and taking the maximum length of all encountered (SecondEval). Seeds values 0 through
7 shown. 30 runs per seed for each of seven fitness functions.

SecondEval there is an average reduction of 18% in the total number of generations for

finding the longest snakes.

6.2.5 Conclusions

Our theory developed around the setting of some fitness functions using only information

from the problem (see Section 5.1). The empirical study performed to test the second

research statement regarding the better performance of some GAs when the objective(s)

and the constraint(s) are joined with parameters that belong to the problem itself shows

the benefit of avoiding external tuning. Section 6.2 compares a fitness function with exter-

nal parameters with two functions proposed by us. The ones that need no external tuning

outperform the one that needs external tuning. Results showed that increasing or decreas-

ing an external parameter causes the algorithm to diminish or augment false positives, but

pays the cost of increasing or decreasing the false negative ratio. The setting of fitness

functions’ parameters constitutes an optimization problem by itself. This problem is ap-

proached by trying to join the objective(s) with the constraint(s) using information from

the problem. However, as some of the fitness functions proposed are normalized, they

106

make the fitness function quite effective for finding local maxima or minima. In order to

avoid this problem the use of the union operator is proposed, for the particular case of

finding intrusions and, for finding snakes we propose the use of the term length(S).

For the case of the intrusion detection problem, when the Attack-Event matrix, AE,

was enlarged it was not enough to use the dynamic fitness function as in Equation 6.3.

Nor was the use of the union operator adequate to solve the problem of false negatives.

An increase in the population size was necessary in order to diminish the false negative

ratio presented. This shows the conjunction of parameters in GAs and how difficult trying

to improve the solution of a problem by just isolating one parameter can be.

Seven fitness functions that use parameters from the problem itself to hunt snakes in

hypercubes have been tested. The first set of tests (over 30 runs) used as stop criteria the

finding of a maximum (local or global) or at most 1, 000 generations. The second set of

tests used as stop criteria the finding of a global maximum. For the first set of tests, the

fitness functions that showed better performance in quality of the solution were Equations

6.5, 6.10 and 6.11. These functions were those that had less violations of the constraints

(see Table 6.15). Equation 6.5 has no violation of the constraint,10 Equation 6.10 has two

isolated and three lazy points, and Equation 6.11 has two isolated and four lazy points.

Of the three, Equation 6.10 is the one that finds the longest snakes: 21 in total, against

16 in Equation 6.11 and 2 in Equation 6.5. For the second set of tests, i.e., when the stop

criteria was the finding of a longest snake, it was observed that, on average, the best fitness

functions for finding longer snakes are Equations 6.9 and 6.10 (see Tables 6.17 and 6.19).

Both have the peculiarity that they are linear and both join the objective (the length) with

the constraint (the snake). As a matter of fact, all the fitness functions presented tried to

do that, but in different ways (Diaz-Gomez and Hougen, 2007b).

Additionally, this section shows two approaches to the intrusion detection problem

and the particular benefits of each one (Diaz-Gomez and Hougen, 2007d,f) in a effort to

compare the GA and enhance the number of intrusions considered. Besides this, for the

case of the snake-in-the-box problem, an additional contribution was presented regarding

the evaluation of the length of snakes, where all the possible sub-snakes are considered,

and the maximum length of those (if present) is the length that is reported as the actual

length of the path.

10Besides the fact that Equation 6.5 has 5 lazy points, a lazy point actually does not violates the constraint,
however, it is possible that it helps in finding longer snakes.

107

6.3 Crossover Rate vs. Mutation Rate

For years the schema theorem has been a principal mathematical foundation for Genetic

Algorithms. This section performs empirical studies about the schema theorem trade-off

with respect to crossover and mutation rates presented in Section 5.2.1. The one-max

function, a variant of it, and finding snakes in hypercubes are used to demonstrate this

trade-off, looking at the impact on solution quality and number of function evaluations

required when the schema theorem trade-off is violated.

6.3.1 The One-Max Function

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
ve

. Q
ua

lit
y

of
 S

ol
ut

io
n

Crossover Probability

Figure 6.23: Average solution quality. 20 runs per point. 0.0 ≤ pc ≤ 1.0, Sp = 2,
pm = 0.0.

To study the schema theorem trade off, the one-max problem is presented here as a

problem for which schema can be considered small because the building block is just

each gene of the structure under consideration. Harik and Lobo (1999) perform tests on

the one-max function reporting on average 2, 500 function evaluations over 20 different

runs, using a population size of 100 structures, with l = 100, Sp = 2, uniform crossover

with pc = 1, and pm = 0. Note that the parameters given conform to the equations that

was shown in Section 5.2.1 for short schema. However, it could be the case that for some

population sizes the algorithm does not converge to the optimal solution because pm = 0,

i.e., if the correct value of all alleles at a specific locus in the entire population are lost,

then the background operator is not there to recover it (Holland, 1992).

108

 500

 1000

 1500

 2000

 2500

 3000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
A

ve
. #

 o
f

Fu
nc

tio
n

E
va

lu
at

io
ns

Crossover Probability

Figure 6.24: Average function evaluations. 20 runs per point. 0.0 ≤ pc ≤ 1.0, Sp = 2,
pm = 0.0.

To compare with Harik and Lobo (1999), tests were performed with the one-max func-

tion using their parameters but varying the crossover probability, using a different random

seed in each of 20 runs. Figures 6.23 and 6.24 show the average quality of the solution

(how close it comes to 100 1’s) and the average of the number of function evaluations over

the 20 runs when the probability of crossover varies from 0.0 to 1.0 in steps of 0.025 and

pm = 0.0. As expected, the quality of the solution for this problem is better as pc → 1

(high). Two stop criteria were used: (1) If the GA reaches the maximum or (2) if at least

one locus has the value 0 for the entire population, in which case the algorithm will not

converge because of the missing mutation operator.

Tests were also performed varying pm from 0.001 to 0.015 in steps of 0.001, in or-

der to see how the performance of the algorithm changes while the other parameters and

operators remain the same. This time the test was performed over 30 runs in order to

look for statistical significance. The same two stop criteria were used, i.e., the algorithm

reaches the maximum or at least one locus has the value 0 for the entire population. Of

course, with mutation the algorithm usually can “repair” a lost gene; however, mutation

can “damage” a gene too. Figure 6.25 shows the effect of mutation on the quality of the

solution when pc varies from 0.0 to 1.0 as in the previous case. Table 6.21 shows the

improvement of the GA, in the average quality of the solution, when a mutation ratio of

0.015 is included in the procedure (last row). It can be observed that using selection pres-

sure alone (first row), it is obtained on average the less solution quality; that entry gives an

109

procedure τ Qual. Func. Ev. Mutations
Sp pc pm Ave. std. Ave. std. Ave. std.
2 0 0.000 61.8 2.00 650.0 73.1 0.0 0.0
2 0 0.015 79.4 7.54 7,210.0 9,276.4 10,801.4 13,892.9
2 1 0.000 99.7 1.40 2,521.9 222.9 0.0 0.0
2 1 0.015 100.0 0.00 9,305.7 4,037.58 14,049.4 6,087.4

Table 6.21: Improvement of the one-max GA in solution quality and cost when crossover
and/or mutation are included in procedure τ . 30 runs.

average quality of the solution equal to 61.8. At least one of the operators should be used

in order to improve. Nonetheless, selection pressure is also necessary. Table 6.22 shows

that with no selection pressure (i.e., Sp = 1) there is no improvement at all. Figure 6.26

shows all the effects: the bottom of the figure shows the use of the operators with no se-

lection, in which case the maximum quality was 62.16 over 30 runs; the upper part shows

the effect of the selection pressure and both operators. The improvement in the quality

using the two operators and a selection pressure of Sp = 2 is evident.

0
0.2

0.4
0.6

0.8
1

0

0.005

0.01

0.015

0.02
60

70

80

90

100

Crossover ProbabilityMutation Probability

A
ve

. Q
ua

lit
y

of
 S

ol
ut

io
n

Figure 6.25: Average solution quality. Sp = 2. One-max function. 30 runs per set of
parameters.

6.3.2 One-Max Variant

To see if previous results generalize, a local maximum was added to the one-max function.

The new function as in Figure 6.27 is

110

procedure τ Qual. Func. Ev. Mutations
Sp pc pm Ave. std. Ave. std. Ave. std.
1 0 0.000 56.8 2.70 3,156.6 936.1 0.0 0.0
1 0 0.015 59.8 3.33 53,940.0 50,916.7 81,019.6 76,456.7
1 1 0.000 60.5 2.20 2,336.6 569.6 0.0 0.0
1 1 0.015 60.7 1.80 50,956.6 34,626.1 76,515.8 51,970.1

Table 6.22: Improvement of the one-max GA in solution quality with no selection pres-
sure.

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 0.2 0.4 0.6 0.8 1

A
ve

. Q
ua

lit
y

of
 th

e
So

lu
tio

n

Crossover Probability

Figure 6.26: Average solution quality. Sp = 1 bottom, Sp = 2 top. 0.0 ≤ pm ≤
0.015, step size 0.001. Each line shows a pm value. One-max function. 30 runs per set
of parameters.

F (I) = −0.5 ∗#Ones + 75, if #Ones < 50

F (I) = #Ones, otherwise.
(6.12)

The average quality obtained for this function has the same tendency as for one-max

when Sp = 2 is used.

To see the trade-off of the schema theorem for one-max and Equation 6.12, consider

the cost of different plans in reaching a solution quality of approximately 95.0. Figure 6.26

has a straight row of +’s at that value. All points that cross that row correspond to plans

for which the average solution quality is approximately equal to 95.0; however, the cost

to achieve that quality is different for each plan as Figure 6.28 shows for the case of

Equation 6.12. When pm ≥ 0.01 and pc is decreased (i.e., the schema theorem trade-off

is violated) the number of function evaluations increases dramatically.

111

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100
Fu

nc
tio

n
V

al
ue

Number of Ones

Figure 6.27: Fitness function as in Eq. 6.12

6.3.3 Open Paths in 8-Dimensional Hypercubes

We previously (Diaz-Gomez and Hougen, 2006d) suggested the fitness function

F (I) =

(∑2d−1
j=0 (MP)j − Penalty∑2d−1

j=0 (MP)j

)(
Length(S) + 1

#P

)
(6.13)

for finding open paths that obey the constraints just described, where MP is the result of

the multiplication between the adjacency matrix, which encodes the hypercube, and the

chromosome that is being evaluated; Penalty is the number of genes in the chromosome

that violate the constraints; i.e., number of nodes in the path without neighbors (Isolated

points), number of nodes in the path with more than 2 neighbors (bad points), number of

nodes in the path with one neighbor that exceed 2 (the head and the tail), number of genes

with no neighbors (lazy points). Length(S) is the length of the open connected path, and

#P is the total number of nodes in the path.

Using fitness function as in Equation 6.13 in an eight dimensional hypercube, a snake

of length 81 was obtained over 30 runs and an average snake length of 69.30 with a

standard deviation of 6.70 (Diaz-Gomez and Hougen, 2006d). 1, 000 individuals were

generated for the initial population with the first 128 genes filled with a 7-d snake of

length 49. The last 128 bits were generated uniformly randomly turning off 50 bits in

positions p + 128, where p is a position with allele value of 1 in positions 0 to 127,

in order to preserve the embedded 7-d snake. The probability of one point crossover was

112

0.2
0.4

0.6
0.8

1

5

10

15

x 10
−3

0

0.5

1

1.5

2

2.5

3

x 10
5

Crossover ProbabilityMutation Probability

A
ve

. #
 o

f
Fu

nc
tio

n
E

va
lu

at
io

ns

Figure 6.28: Average function evaluations to reach solution quality approx. 95.0.Fitness
function as in Eq. 6.12.

60%, the probability of mutation was 2.4% per chromosome, crossover and mutation were

performed above gene 128, and 1, 000 generations as the stop criterion was used (Diaz-

Gomez and Hougen, 2006d).

As mutation and crossover are performed above gene 128, the schema under consid-

eration corresponds to bits 128 to 255. The number of defining bits in those positions is

50—these were the bits turned off in order to maintain in the initial population the 7-d

snake provided—and the distance d(ξ) = 110 because the first bit of the 7-d snake pro-

vided is in position 0 and the last is in position 110. With these parameters, and with

Sp = 1.5 as previously (Diaz-Gomez and Hougen, 2006d), pc should be ≤ 0.344 using

Equation 5.30 with pm = 0.001 per bit. An empirical study was performed to review this

threshold, using pm = 0.001 per bit (fixed), and 0 ≤ pc ≤ 1.0 per chromosome with 30

runs for each pc and a step size 0.1. An 8-d snake of length 85 was found when pc = 30%,

showing for this test set that it was better to use a small pc in order to find a higher lo-

cal maximum—see Table 6.23. This result outperforms previous findings of Bitterman

(2004) using a GA, where it was obtained an average length of 75.5, the longest one of 76

with a standard deviation of 0.71.

In order to corroborate this finding, we performed tests again but this time the initial

population was totally filled with zeros, i.e., the algorithm has to build the 8-d snake

from scratch. The parameters used were population size 500 initially emptied, 2, 000

113

1, 000 iterations, 1, 000 pop. size, 30 runs, pm = 0.001
pc 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Max. 82 83 83 85 82 82 80 82 83 84 82
Aver. 75.8 75.0 76.1 75.1 75.8 76.1 75.8 76.7 74.7 73.5 75.5
Std 3.43 3.90 4.07 4.49 3.49 2.93 2.66 2.41 4.04 6.28 3.58

Table 6.23: Finding snakes in a 8-d hypercube. Initial population provided with one 7-d
snake of length 49.

2, 000 iterations, 500 pop. size, 30 runs, pm = 0.001
pc 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Max. 70 67 69 68 65 66 65 66 66 64 64
Aver. 59.3 60.2 58.7 58.9 59.0 57.5 56.9 58.4 56.6 57.7 58.1
Std 4.70 3.66 4.40 4.55 3.37 4.78 4.66 4.26 4.44 4.82 3.82

Table 6.24: Finding snakes in a 8-d hypercube. Initial population from scratch.

generations, pm = 0.001 per bit, and 0 ≤ pc ≤ 1.0 with step size 0.1. The longest 8-d

snake found was 70 when pc = 0, and the longer ones were found when pc ≤ 30%, over

30 runs, for each set of parameters. See Table 6.24. This result outperforms Bitterman

(2004) tests, over 30 runs, with GAs: (1) using random initial population, it was obtained

an average length of 56.1 with a longest one of length 61 (stdv = 3.76), (2) using guided

random initial population11 it was obtained an average length of 57.70 with the best snake

found with length 67 (stdv = 4.27), (3) using 1-point crossover it was obtained an average

length of 58.6 with best snake found length of 69 (stdv = 3.96), (4) using mutation

rate of 0.01 it was obtained an average of 59.4 with longest snake found of length of 63

(stdv = 1.84).

6.3.4 Selection Pressure

When the schema under consideration is small, the parameter that could have a high effect

on the evolution of structure A is mutation. Section 5.2.1 shows that pm → (Sp− 1)/Sph,

so, the higher Sp is, the higher pm should be. Theoretically, if h ≈ 50, and if Sp = 2,

Sp = 4, Sp = 8, Sp = 16, Sp = 32 and Sp = 64, then, the corresponding probability of

mutation is p2m = 0.010, p4m = 0.015, p8m = 0.0175, p16m = 0.01875, p32m = 0.0194,

and p64m = 0.0196, i.e., if Sp → 100 then pm → 1/h = 0.020. Empirical studies were

11Term not defined in Bitterman (2004).

114

procedure τ Average STDV.
Sp pc pm Qual. Func. Ev. # Mut. Qual. Func. Ev. # Mut.
2 1 0.000 99.7 2,521.9 0 1.40 222.9 0.0
4 1 0.000 96.0 1,399.0 0 6.73 337.6 0.0
8 1 0.000 91.5 925.2 0 8.42 353.6 0.0
16 1 0.000 79.6 469.7 0 9.75 276.3 0.0
32 1 0.000 72.6 273.3 0 4.31 78.4 0.0
64 1 0.000 67.0 173.3 0 4.63 52.0 0.0
2 1 0.010 100.0 3,885.4 3,930.2 0.00 308.7 320.9
4 1 0.015 100.0 2,210.4 3,387.8 0.00 232.3 356.4
8 1 0.017 97.3 1,567.7 2,908.2 7.49 404.4 761.3
16 1 0.019 93.5 1,160.6 2,253.9 7.81 476.5 968.6
32 1 0.019 80.36 498.4 952.7 7.93 298.5 572.8
64 1 0.020 72.9 276.6 556.9 5.27 89.76 189.9

Table 6.25: Influence of selection pressure on the quality of the solution for the One-Max
Function. First part with no mutation. Second part, when Schema Theorem trade-off is
obeyed. pc = 1.

performed with the optimal GA described in Harik and Lobo (1999), however, changing

the selection pressure Sp from 2 to 64 in steps of power of 2, over 30 runs for each Sp,

diminishes the quality of the solution, as well as the number of function evaluations (see

top part of Table 6.25). But, if the mutation probability pm is changed according to Sp,

then, there is an improvement on the quality of the solution, as is shown in Table 6.25

(bottom part) and Figure 6.29.

In order to continue with the relationship between selection pressure and mutation

probability, when the schema under consideration is long, as in the case of snakes in the

8-dimensional hypercube (ε = 110/127 = 0.866), test for the cases of pc = 0.3 and

pc = 0.7, which were the best results obtain as is shown in Table 6.23, are shown in Table

6.26.12 If pc = 0.3, pm = 0.001 and Sp is increased, then, there is no improvement in

the average quality of the solution with respect to Sp = 1.5, as is shown in the top left of

Table 6.26. As a first case, if the mutation probability is increased according to the schema

theorem trade-off (Equation 5.31), then, there is an improvement for the cases of selection

pressures above 4 comparing with previous case (See top right of Table 6.26). Now, as

a second case, if the crossover probability is increased to 0.7 (maintaining pm = 0.001

fixed), then, there is not a special tendency in the improvement of the average quality of

12The case where pm = 0.001 is not base on Equation 5.31. Those entries were used for comparison
purposes.

115

 65

 70

 75

 80

 85

 90

 95

 100

 0 0.005 0.01 0.015 0.02 0.025 0.03

A
ve

. Q
ua

lit
y

of
 S

ol
ut

io
n

Mutation Probability

Sp=2
Sp=4
Sp=8

Sp=16
Sp=32
Sp=64

Figure 6.29: Average quality of the solution for different Sp and 0 ≤ pm ≤ 0.03. As Sp

is increased, pm should be increased in order to obtain better quality. One-Max Function.
30 runs per set of parameters.

the solution (except that all average values are lower for Sp > 1.5 and that a higher snake

appears when Sp = 8, see bottom left of Table 6.26), but, if besides the increasing of the

crossover probability to 0.7, there is an increase in the mutation probability in accordance

to pc and Sp, then, there is an increase in the average quality of the solution above Sp = 2,

comparing top left with bottom right of Table 6.26.

In order to compare results, as in Table 6.23, changing only selection pressure Sp,

tests were performed again, increasing Sp, as is shown in Table 6.27. With the parameter

setting established: pm = 0.001 fixed and, Sp and pc varying—but not in accordance

with the schema theorem trade-off, on average (over all pc) the quality of the solution

diminished (see Figure 6.30 where top line corresponds to Sp = 1.5 and bottom line

corresponds to Sp = 64).

Proportional Selection Proportional selection is perhaps the one that is closest to the

schema theorem: Sp = µ̂ξ(t)/µ(t); however, in tests performed presently, the pressure of

proportional selection was not enough to climb to “good” solutions. For the case of the

one-max function, using the 100 individuals, pc = 1.0, proportional selection, an adapting

mutation probability as pm = (Sp − 1)/Spµ(t), where Sp = Max(fitness(t))/µ(t), i.e.,

µ̂ξ(t) ≈ Max(fitness(t)) and h ≈ µ(t), and the algorithm stops when it reaches the

global maximum or when a column is totally zeroed. Figure 6.31 shows the maximum

116

Sp pc pm Max. Ave.Q. STDV. pm Max. Ave.Q. STDV.
1.5 0.3 0.001 85 75.1 4.49 0.001 85 75.1 4.49
2 0.3 0.001 81 73.3 4.47 0.006 72 67.3 2.24
4 0.3 0.001 83 74.1 4.04 0.013 73 68.4 1.94
8 0.3 0.001 81 73.3 4.67 0.016 79 75.1 2.93

16 0.3 0.001 79 73.9 4.54 0.018 84 76.7 4.17
32 0.3 0.001 81 72.7 3.65 0.019 85 77.3 4.68
64 0.3 0.001 82 71.6 5.34 0.019 85 77.8 4.75
1.5 0.7 0.001 82 76.7 2.41 0.001 82 76.7 2.41
2 0.7 0.001 81 73.7 4.44 -0.005 - - -
4 0.7 0.001 80 73.7 3.67 0.007 81 75.8 4.20
8 0.7 0.001 86 74.1 5.24 0.013 85 77.8 3.08

16 0.7 0.001 85 73.0 5.82 0.016 84 76.8 3.47
32 0.7 0.001 83 72.2 5.10 0.018 83 76.4 3.79
64 0.7 0.001 84 73.9 5.97 0.019 85 78.3 3.55

Table 6.26: Influence of selection pressure on the quality of the solution for snakes in
8-dimensional hypercubes. Left part change of Sp without mutation change. Right part,
when Schema Theorem trade-off is obeyed. 1, 000 Iterations. 1, 000 individuals. 30 runs
per (Sp,pc,pm).

quality of the solution, and Figure 6.32 shows the average of the solution quality with

the standard deviation. The algorithm did not reach the global maximum for the test set

specified. The average of the selection pressure was Sp = 1.20—see Figure 6.33—and

the average of the mutation probability was pm = 0.00298—see Figure 6.34—over 30

runs with an average of 3, 476.67 function evaluations per run.

For the case of open paths in hypercubes, “small” probabilities of crossover (pc = 0.2)

and mutation (pm = 0.001) were chosen in order to compare results with Table 6.23.

Figure 6.35 shows the proportional selection pressure, the average was Sp = 1.14 over

30 runs (30, 000 generations). Table 6.28—where #P is the number of points in the

path, HT is the number of head-tail, Is. is the number of isolated points and Bad is the

number of bad points—shows the configuration of paths found; there were violations of

the constraints in all of them, i.e., there were no snakes in each of the 30 runs.

6.3.5 Additional Contributions

Plan τ as presented in Section 5.1.3.1 in Table 5.2 uses as Ω parameters, a probability of

crossover (pc) of 60% and a probability of mutation per chromosome (pm) of 3%. How

117

Sp = 1.5
pc 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Max. 82 83 83 85 82 82 80 82 83 84 82
Aver. 75.8 75.0 76.1 75.1 75.8 76.1 75.8 76.7 74.7 73.5 75.5
Std 3.43 3.90 4.07 4.49 3.49 2.93 2.66 2.41 4.04 6.28 3.58

Sp = 2
Max. 82 83 81 81 81 80 80 81 83 82 80
Aver. 72.5 73.5 73.2 73.3 74.5 73.2 72.3 72.9 73.2 73.6 73.1
Std 6.27 5.18 5.43 4.47 3.86 4.63 4.79 3.48 5.01 3.60 4.81

Sp = 4
Max. 79 85 82 83 79 81 85 79 80 80 83
Aver. 72.6 74.1 74.3 74.1 73.3 72.4 73.7 72.1 72.4 72.5 74.0
Std 4.28 5.74 4.62 4.04 4.01 5.05 4.71 4.77 5.05 5.73 3.65

Sp = 8
Max. 78 83 83 81 81 81 78 79 83 81 81
Aver. 71.8 73.2 73.7 73.3 72.6 73.7 72.8 72.6 73.0 73.1 73.3
Std 3.99 5.88 4.60 4.67 4.61 4.12 4.90 4.63 5.29 4.43 4.74

Sp = 16
Max. 83 83 81 79 80 81 81 86 85 82 80
Aver. 72.6 74.4 72.5 73.9 74.5 72.4 71.3 72.5 73.5 73.4 72.9
Std 5.20 5.16 5.48 4.54 4.24 5.12 5.91 6.85 4.42 5.10 3.82

Sp = 32
Max. 85 80 79 81 84 78 79 83 85 82 81
Aver. 72.5 70.7 73.0 72.7 74.3 70.3 71.3 73.5 71.8 70.6 72.4
Std 5.42 5.35 4.79 3.65 4.74 5.21 4.98 4.49 5.01 6.69 5.32

Sp = 64
Max. 79 82 81 82 80 83 80 78 80 83 82
Aver. 72.4 71.6 74.0 71.6 72.6 73.4 72.2 70.7 72.6 72.0 73.5
Std 5.18 6.27 5.09 5.34 4.67 5.08 5.40 4.31 4.82 5.80 4.86

Table 6.27: Selection pressure and its influence on the quality of the solution for snakes in
8-dimensional hypercubes. Initial population provided with one 7-dimensional snake of
length 49. pm = 0.001. 1, 000 Iterations. 1, 000 individuals. 30 runs per each parameter
set.

#P 80 81 81 81 79 78 82 78 85 82 81 78 80 85 80 84 79 81 77 81 81 81 81 81 78 82 81 78 82 76
Len. 71 75 65 75 72 65 76 73 76 76 71 70 57 74 76 82 75 70 69 72 77 79 71 71 63 76 57 57 68 67
HT 2 5 7 4 2 6 4 2 6 2 6 6 14 4 2 2 2 8 2 2 2 2 4 6 8 4 12 8 8 4
Is. 3 1 3 10 7 8 3 1 9 9 14 5 23 20 13 8 8 5 15 5 6 12 5 4 8 5 9 7 22 10

Bad 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 4 0 0 0 4 0 0 0

Table 6.28: Characteristics of open paths obtained when proportional selection used.
Initial population provided with one 7-dimensional snake of length 49. pc = 0.2,
pm = 0.001. 1, 000 Iterations. 1, 000 individuals. 30 runs.

118

 70

 71

 72

 73

 74

 75

 76

 77

 0 0.2 0.4 0.6 0.8 1

A
ve

. Q
ua

lit
y

of
 th

e
So

lu
tio

n

Crossover Probability

Sp=1.5
Sp=2.0
Sp=4.0
Sp=8.0
Sp=16

Sp=32.0
Sp=64.0

Figure 6.30: Selection pressure and its influence on the average quality of the solution for
snakes in 8-dimensional hypercubes. Initial population provided with one 7-dimensional
snake of length 49. pm = 0.001. 1, 000 Iterations. 1, 000 individuals. 30 runs per each
parameter set.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

M
ax

im
um

 Q
ua

lit
y

Generation

Figure 6.31: One-max function; Maximum quality of the solution per generation when
proportional selection used; Sp = 1.20, pc = 1.0 pm = 0.00298; 30 runs.

119

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

A
ve

. Q
ua

lit
y

of
 th

e
So

lu
tio

n

Generation

Figure 6.32: One-max function; Average quality of the solution per generation when
proportional selection used; Sp = 1.20, pc = 1.0 pm = 0.00298; 30 runs.

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 0 10 20 30 40 50 60

Pr
op

or
tio

na
l S

el
ec

tio
n

Pr
es

su
re

Generation

Figure 6.33: One-max function; Proportional selection pressure per generation over 30
runs.

120

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0.0055

 0 10 20 30 40 50 60

M
ut

at
io

n
Pr

ob
ab

ili
ty

Generation

Figure 6.34: One-max function; Mutation probability per generation when proportional
selection used; Sp = 1.20; 30 runs.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 0 100 200 300 400 500 600 700 800 900 1000

Pr
op

or
tio

na
l S

el
ec

tio
n

Pr
es

su
re

Generation

Figure 6.35: Open paths in 8d-hypercubes; Proportional selection pressure per generation
over 30 runs.

121

pm = 3% pm as in Eq. 6.14
Fitness Function Minimum Maximum Average σ Minimum Maximum Average σ

Eq. 6.5 26 17, 032 2, 874.2 4, 104.0 1 42 13.3 11.1
Eq. 6.6 6 25, 352 3, 174.1 5, 414.7 1 92 25.8 23.2
Eq. 6.7 8 20, 435 2, 044.4 4, 187.6 2 85 26.7 19.0
Eq. 6.8 2 9, 807 2, 739.6 3, 032.2 4 86 27.4 22.4
Eq 6.9 4 15, 138 2, 770.3 3, 939.4 2 103 30.1 24.1

Eq. 6.10 1 13, 089 1, 750.5 3, 015.5 3 154 30.3 29.5
Eq. 6.11 5 17, 117 2, 295.5 4, 206.4 3 82 21.5 21.2

Table 6.29: Results for hunting longest snakes in a 4-dimensional hypercube; different
fitness functions; mutation rate pm = 3% and as in Equation 6.14; 30 runs.

can plan τ be improved so that the number of generations and the standard deviation are

reduced?

For the 4-dimensional hypercube, it turns out that a parameter ωt ∈ Ω capable of

producing a large change is mutation because with the population of size 10, once the

algorithm converges, if it has not reached an optimum, then in order to obtain it, the

operator that could still make it is mutation. The mutation probability was changed so

that it is applied in accordance with the average fitness value of the entire population.

Plan τm is such that the mutation parameter is variable according to

pm(t + 1) =
µmax(t)− µ(t)

µmax(t)
∗ 100% (6.14)

where µ(t) is the average fitness value of the population at step t (generation t).

Equation 6.14 is such that if at time step t the normalized average fitness value of the

population is quite far from the optimum of 1, then pm(t+1) is high. If, on the contrary, the

average normalized fitness value of the entire population is quite near the optimum, then

pm(t + 1) is going to be low. Comparative results with a fixed probability of mutation per

chromosome of 3%, are shown in Table 6.29. Table 6.30 shows the corresponding results

when Equation 6.14 is used. Equation 5.17 is statistically significantly different from all

the others except Equation 5.23.13

Table 6.31 compares the average number of generations to find a maximum when

Equation 6.14 is used against other mutation rates. A fixed mutation rate of 3%, as il-

lustrated previously; mutation rates of 100% after generation 1, 000, 500, and 250; and a

13Here, we are facing a multiple comparison problem, however, this is the exploratory study, where we
are testing different parameters, in order to see the possibility to use some of them in the test of hypothesis.

122

pm as in Equation 6.14
Eq. 6.5 6.6 6.7 6.8 6.9 6.10

Eq. 6.6 0.010 - - - - -
Eq. 6.7 0.001 0.870 - - - -
Eq. 6.8 0.003 0.791 0.901 - - -
Eq 6.9 0.001 0.491 0.554 0.658 - -

Eq. 6.10 0.005 0.517 0.580 0.669 0.973 -
Eq. 6.11 0.065 0.457 0.322 0.302 0.151 0.192

Table 6.30: T-test for hunting longest snakes in a 4-dimensional hypercube; different
fitness functions; adaptive mutation rate; number of generations until longest snake found;
Probability of results given the null hypothesis is shown; 30 runs per fitness function

Mutation rate
Equation Fixed 3% S1000 S500 S250 Generation Pop*Generation (1-µ(t))*100
Eq. 6.5 2, 874.2 744.3 394.4 194.5 189.9 62.5 13.3
Eq. 6.6 3, 174.1 670.7 381.0 211.4 141.8 42.0 25.8
Eq. 6.7 2, 970.8 607.5 322.2 181.0 164.0 34.0 26.7
Eq. 6.8 3, 356.4 500.5 382.9 215.7 172.2 46.5 27.4
Eq 6.9 1, 346.4 551.6 329.1 237.9 167.8 40.6 30.1

Eq. 6.10 1, 451.7 696.1 379.1 235 139.9 39.7 30.3
Eq. 6.11 3, 264.2 411.7 373.2 202.5 139.2 50.4 21.5

Totals
17, 648.6 4, 182.4 2, 561.9 1, 478 1, 114.8 315.7 175.1

Table 6.31: Average number of generations for hunting longest snakes in a 4-dimensional
hypercube; different fitness functions; different mutation rates; 30 runs.

mutation rate equal to the generation, a mutation rate equal to the number of individuals

in the population (10) multiplied by the generation are used.14 As the mutation rate in-

creases, the number of generations to reach the maximum diminishes.15 Some mutation

rates begin fixed and get a full rate like S1000, others increase gradually like Generation,

but Equation 6.14 begins high and decreases. We obtained the idea of Equation 6.14 from

observation, in the sense that we wanted to diminish the average number of generations

and “good” results were obtained by increasing the mutation rate.16

If a comparison is made between different mutation rates using a fitness function as

in Equation 6.7, histograms from Figures 6.36 to 6.40 show the net effect of mutation

14It should be taken into account that the mutation rate is per chromosome, i.e., a mutation rate of 100%
per chromosome of length l = 16 means an effective mutation of 6.25% per bit.

15Possibly the cause of this factor is that the length of the chromosome is short (16 bits).
16The proposal and testing of mutation rates occured in the order specified in Table 6.31.

123

 0

 5

 10

 15

 20

>2000

1001-2000

901-1000

801-900

701-800

601-700

501-600

401-500

301-400

201-300

101-200

1-100

0

Fr
ec

ue
nc

y

Number of Generations

Figure 6.36: Histogram for longest snakes using Equation 6.7; generations until global
maximum reached; mutation rate 3% fixed in all generations.

 0

 5

 10

 15

 20

>2000

1001-2000

901-1000

801-900

701-800

601-700

501-600

401-500

301-400

201-300

101-200

1-100

0

Fr
ec

ue
nc

y

Number of Generations

Figure 6.37: Histogram for longest snakes using Equation 6.7; generations until global
maximum reached; mutation rate 3% when generation < 1, 000 and 100% when genera-
tion ≥ 1, 000.

124

 0

 5

 10

 15

 20

>2000

1001-2000

901-1000

801-900

701-800

601-700

501-600

401-500

301-400

201-300

101-200

1-100

0

Fr
ec

ue
nc

y

Number of Generations

Figure 6.38: Histogram for longest snakes using Equation 6.7; generations until global
maximum reached; mutation rate 3% when generation < 500 and 100% when generation
≥ 500.

 0

 5

 10

 15

 20

>2000

1001-2000

901-1000

801-900

701-800

601-700

501-600

401-500

301-400

201-300

101-200

1-100

0

Fr
ec

ue
nc

y

Number of Generations

Figure 6.39: Histogram for longest snakes using Equation 6.7; generations until global
maximum reached; mutation rate 3% when generation < 250 and 100% when generation
≥ 250.

125

 0

 5

 10

 15

 20

>2000

1001-2000

901-1000

801-900

701-800

601-700

501-600

401-500

301-400

201-300

101-200

1-100

0

Fr
ec

ue
nc

y

Number of Generations

Figure 6.40: Histogram for longest snakes using Equation 6.7; generations until global
maximum reached; mutation rate percentage equal to the generation.

rate on the number of generations with each mutation rate. For snakes in hypercubes of

dimension 4, mutation rate is like the “blade” that cuts the number of generations down

when it is increased. When the mutation rate is constant and equal to 3% in all generations,

the average number of generations to find a longest snake is 2, 044.4 with a maximum of

20, 435 generations; however, if the mutation rate is changed to 100% after generation

1, 000, the average is 607.5 with a maximum of 1, 078 generations; if the mutation rate

is changed to 100% after generation 500, then the average number of generation to find

a longest snake is 322.2 with a maximum of 564 generations; and if the mutation rate is

changed to 100% after generation 250, the average number of generation is 181.0 with a

maximum of 412 generations. The bimodality presented in previous cases is changed to

an unimodal distribution when the mutation rate is variable according to the number of

generations—see Figure 6.40.17

6.3.6 Conclusions

Section 6.3.1 presents the performance of the crossover and mutation operators with re-

spect to the quality of the solution for the one-max function, with and without selection

17When the mutation rate is variable and changed to Pop ∗Generation or (1− µ(t)) ∗ 100 the number
of generations is less than 100, so there is no distribution according to the range selected.

126

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0 0.2 0.4 0.6 0.8 1

A
ve

. #
 o

f
Fu

nc
tio

n
E

va
lu

at
io

ns

Crossover Probability

Pm=0.015
Pm=0.014
Pm=0.013
Pm=0.012
Pm=0.011
Pm=0.010
Pm=0.009
Pm=0.008
Pm=0.007
Pm=0.006
Pm=0.005
Pm=0.004
Pm=0.003

Figure 6.41: Average function evaluations to reach solution quality as in Fig. 6.25; 0.0 ≤
pm ≤ 0.015, step size 0.001.

pressure. But quality has a cost. Figure 6.41 shows the average number of function evalua-

tions performed by the GA for different procedures. Table 6.21 shows the average number

of function evaluations and mutations performed with a mutation probability of 0.015 and

also without mutation. The impact on the average number of function evaluations when a

probability of mutation of 0.015 (greater than 0.01, violating the schema theorem trade-

off) is used is evident. Another way to look at the problem with this cost is that when

pm is increased and pc is decreased, (i.e., when the trade-off of the schema theorem is not

followed for this type of problem) the cost is going to be high. From Figure 6.25, it can be

inferred that quality can be reached by increasing the probability of mutation and decreas-

ing the probability of crossover; but, as just stated, the number of function evaluations is

going to increase—see Section 6.3.2 for the one-max variant.

Figure 6.26 shows the net effect of procedures that use selection versus no selection

at all, and Table 6.32 shows the result of those procedures and the corresponding costs

on the averages of function evaluations for various pm. It can be seen the big difference

between pm ≤ 0.009 and pm ≥ 0.01, i.e., when there is no violation of the schema

theorem trade-off, and when there is: if pc → 1, and l >> Sp, then pm → (Sp − 1)/Sph

(see Section 5.2.1) and, as l = 100, Sp = 2, and h ≈ 50 (since it is expected that there

will be approximately 50 ones and 50 zeros in each chromosome), then pm → 0.01.

127

procedure τ Qual. Func. Ev.
Sp pc pm Ave. std. Ave. std.
1 0 0.000 56.86 2.72 3,156.66 936.12
1 0 0.009 58.70 2.84 8,360.00 5,388.21
1 0 0.015 59.83 3.33 53,940.00 50,916.77
1 1 0.000 60.56 2.26 2,336.66 569.62
1 1 0.009 60.10 3.19 6,766.66 3,454.36
1 1 0.015 60.70 1.82 50,956.66 34,626.19
2 0 0.000 61.86 2.01 650.00 73.10
2 0 0.009 70.16 5.50 1,726.66 2,137.01
2 0 0.015 79.46 7.54 7,210.00 9,276.45
2 1 0.000 99.70 1.46 2,521.90 222.97
2 1 0.009 100.00 0.00 3,665.30 365.75
2 1 0.015 100.00 0.00 9,305.73 4,037.58

Table 6.32: Average solution quality and cost for different plans for the one-max function.

Similar results were obtained using Equation 5.31. This is corroborated in Figures 6.28

and 6.41, where it can be appreciated how, for pm ≥ 0.01, the average number of function

evaluations grows. This tendency occurs in the one-max function and its variant.

If having no selection pressure makes little progress in the quality of the solution, as

shown in Table 6.22, having a quite high selection pressure makes the algorithm, for the

one-max function, converge quickly with less quality of the solution as is shown in Table

6.25. However, if the Schema Theorem Trade-Off is obeyed—i.e., pm → (Sp−1)/Sph—

an improvement of the quality of the solution is obtained, as is shown in Table 6.25 and

Figure 6.29, with no guarantee to reach the 100%. But, if the Schema Theorem Trade-Off

is violated for this problem, i.e., for pc = 1.0, if pm > 1/h = 0.02 when Sp is high, then

the number of function evaluations is going to be prohibited to get convergence with no

guarantee to reach the global optimum either (see Figure 6.42 for the average of function

evaluations when Sp is increased and pm > 0.02).

It is a difficult problem finding snakes in the 8-dimensional hypercube, not only be-

cause the search space is large (228 encoding the path as a 28-array of ones and zeros)

but also because of the constraints imposed—every time a point is added, it restricts the

use of other points in an asymmetric way. The genetic operators crossover and mutation

seem to be quite destructive in this case. The tests performed, as defined in Section 6.3.3,

showed that pc and pm should be maintained “small”. So, if pc and pm are increased,

then, the number of generations are going to increase and/or the quality of the solution

128

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

A
ve

. #
 o

f
Fu

nc
tio

n
E

va
lu

at
io

ns

Mutation Probability

Sp=2
Sp=4
Sp=8

Sp=16
Sp=32
Sp=64

Figure 6.42: Average of function evaluations for pc = 1.0, different pm and Sp increased.
If pm > 1/h = 0.02 then Ave. # of iterations is prohibited. One-Max Function. 30 runs
per set of parameters.

is going to decrease. The probability of crossover and the probability of mutation were

varied to corroborate the schema theorem trade-off for this particular problem. The pa-

rameters used were a maximum of 2, 000 generations, a population size of 500 initially

zeroed, 0.0012 ≤ pm ≤ 0.002 per bit with step size 0.0002, 0 ≤ pc ≤ 100% for one point

crossover with step size 10%, and Sp = 1.5. While the algorithm runs, it stores snakes it

finds by looking for snakes with fitness value ≥ 0.95. If it finds a snake with fitness value

≥ 0.95, it stops; otherwise it continues until generation 2, 000, reporting the findings. If

a snake is not found the algorithm diverges for the parameters established. Figure 6.43

shows how the average number of function evaluations increases (lines above 1000 in the

y axes) and how the number of times (amplified by 25) the algorithm reached a quality

of solution ≥ 95% decreases, for this test set, when pm and pc increase, i.e., when the

schema theorem trade-off is violated. Each line corresponds to a constant pm. For muta-

tion rates 0.018 and 0.02, the algorithm never reaches the quality stipulated in the 2, 000

generations.

The test performed at the end of Section 6.3.4 for the case of the snake problem showed

a slight diminishing of the quality of the solution when the only parameter that changes is

129

times ≥ 95% # of Generations
Sp Ave. of ave. STDV Ave. of ave. STDV
1.5 24.8 2.52 1,069.2 138.77
2 28.0 1.14 466.2 77.70
4 28.4 1.21 378.8 63.87
8 29.0 0.54 309.9 59.15
16 28.8 1.17 367.2 81.77
32 28.5 1.04 370.4 86.91
64 27.4 1.86 441.5 114.46

Table 6.33: Ave. of ave. of # of times the solution quality of ≥ 95% is reached and, ave.
of ave. of # of generations, over all pc as in Figure 6.44, when Sp is increased. Initial
population from scratch. pm = 0.0012 constant. Max. generations 2, 000. 30 runs.

 0

 500

 1000

 1500

 2000

 0 0.2 0.4 0.6 0.8 1

of

 H
ig

h
Q

ua
lit

y
-

A
ve

. #
 o

f
G

en
er

at
io

ns

Crossover Probability

Pm=0.0012
Pm=0.0014
Pm=0.0016
Pm=0.0018
Pm=0.0012
Pm=0.0014
Pm=0.0016
Pm=0.0018

Figure 6.43: Ave. generations to reach solution quality ≥ 95% (top lines above 1000).
Number of times algorithm reaches quality ≥ 95% (bottom lines under 1000). 0.0012 ≤
pm ≤ 0.002, step size 0.0002. Max. generations 2, 000. 30 runs.

130

 200

 400

 600

 800

 1000

 1200

 1400

 0 0.2 0.4 0.6 0.8 1

A
ve

. #
 o

f
G

en
er

at
io

ns

Crossover Probability

Sp=1.5
Sp=2
Sp=4
Sp=8

Sp=16
Sp=32
Sp=64

Figure 6.44: Ave. # of generations to reach a solution quality of ≥ 95% when Sp is
increased. Initial population from scratch. pm = 0.0012 constant. Max. generations
2, 000. 30 runs.

selection pressure Sp (see Table 6.27 and Figure 6.30). Tests were performed again, ini-

tiating the algorithm with the population totally zeroed—500 individuals—pm = 0.0012,

0 ≤ pc ≤ 1 and increasing Sp in order to reach a quality ≥ 95%. As Figure 6.44 shows,

the number of generations diminished with respect to Sp = 1.5. Table 6.33 shows the av-

erage of the average (over pc values tested) of the number of times the algorithm reaches

a quality ≥ 95% and the average of the average of the number of generations over all

pc. For this test set, the average of the average of the solution quality increases, and the

average of the average of the number of generations begins to decrease for Sp ≤ 8 (see

Table 6.33). It is possible that changing the initial condition to initiate the algorithm with

an initial population totally zeroed helps to reach the quality ≥ 95% in less generations

when 1.5 ≤ Sp ≤ 8.

For both problems, with the test set defined and results shown in Section 6.3.4, there

was no improvement in the solution quality when proportional selection is used. It seems

that the selection pressure was not high enough to climb to better solutions (the average

of the proportional selection pressure was less than 1.2 in both cases, see Figures 6.33 and

6.35). Besides the empirical studies in regarding the schema theorem trade-off, additional

contribution was done with the empirical study about the impact of the mutation rate

131

in finding the global optimum for snakes in 4-dimensional hypercubes. Mutation rate

according to Equation 6.14 helps the algorithm to find higher quality on the solution (7

length snakes) with fewer function evaluations (see Table 6.31).

132

Chapter 7

Hypotheses, Experiments, and Results

We have concluded the exploratory study that allows us to understand the research ques-

tions more clearly, so now we can formulate specific testable hypotheses, run experiments,

and present results. This chapter, then tests the theory developed in Chapter 5 around the

three research statements proposed in this dissertation (see Section 1.1): Is there a cor-

relation between diversity in the initial population and the performance of the algorithm,

measured in the quality of the solutions found and/or the number of generations to find

“good” solutions? do internal parameters combined with the union operator result in bet-

ter performance than external parameters (i.e., exogenous parameters that may be tuned

according to the input)? and, is there a relationship between selection pressure and the

crossover and mutation probabilities that could help GAs in finding better solutions? Be-

sides the two problems analyzed in Sections 3.1 and 4.1, the classic problem, the one-max

problem, which is addressed extensively in the GA literature (Cheng and Kosorukoff,

2004; Harik and Lobo, 1999; Giguere and Goldberg, 1998; Yu et al., 2003), has been used

for comparison purposes. These problems have been chosen because they represent prob-

lems where the schema under consideration is small (d(ξ) = 1/(l − 1) for the one-max

problem and the intrusion detection problem) and problems where the schema under con-

sideration is long (d(ξ) ≈ 1 for the snake-in-the-box problem). Considering that these

two kind of problems make results more general and possibly of more applicability.

The three general research questions that were stated in Chapter 1 are here refined into

specific, testable hypotheses, which are presented along with appropriate experiments and

results, in the same order as in Chapter 1.

133

7.1 Diversity & Performance

It is widely believed that if the initial population is more diverse, then the performance

of the algorithm may be improved (see for example Jaroslaw Arabas and Mulawka (1995);

Bitterman (2004); Burke et al. (2004); Lobo and Lima (2005); Grefenstette (1986); McPhee

and Hopper (1999) and Rosca (1995)). Our purpose with this research, then, is to do an

empirical study regarding the relationship between diversity in an initial population and

GA performance. Do initial populations that are more diverse give better performance

than populations with lower diversity? If this is the case, then it would be beneficial to

look for initial populations where diversity value is higher. However, if this is not the case,

then we need to look for factors of initial populations that do impact the performance; one

such factor could be population size. It is also possible that a single factor alone may not

be.

Research Question 1: The structure A ∈ A: Is there a correlation between diversity

in the initial population and the performance of the algorithm, measured in the quality of

the solutions found and/or the number of generations to find “good” solutions?

General Form of Hypothesis 1.

If V (PA) ≥ V (PB) then X(G, PA) ≥ X(G, PB) (7.1)

where V (P) is the diversity of population P and X(G, P) is the expected performance

of a genetic algorithm G with population P . Expected performance is measured as the

expected solution quality of the best solution found so far after a given number of genera-

tions or the expected number of function evaluations to obtain a solution of a given quality.

Diversity is measured as the difference between genes according to the entropy metric and

as the difference between individuals according to the Hamming metric in terms defined

in Section 5.0.2.

Two problems are going to be tested, one with small schema (the one-max problem)

and one with long schema (the snake-in-the-box problem). The performance of the GA

is going to be measured as the quality of the solution found so far in a fixed number of

generations, and as the number of generations to reach the global maximum. These give

a set of eight specific hypotheses to test for the general hypothesis 1, as can be seen in

Table 7.1. As we are going to test eight different hypotheses at the 95% confidence level

134

One-Max Snake-in-the-box
Diversity Metric Diversity Metric

Entropy Hamming Entropy Hamming
Performance Metric

Hypothesis Quality Generations Quality Generations Quality Generations Quality Generations
1.1 X
1.2 X
1.3 X
1.4 X
1.5 X
1.6 X
1.7 X
1.8 X

Table 7.1: Specific hypotheses to test for general hypothesis 1.

or greater, in three trials, there is possibility that we may obtain a false positive result (one

that could appear statistically significant but is not). To avoid this multiple comparison

problem, if we find one result that appears statistically significant for a particular com-

bination of metric and outcome, we will run the test set a second time for that particular

combination of metric and outcome, generating a new set of results to look for a truly

significant result.

To form specific, testable hypotheses, we need to specify a set of other parameters for

the GA used in testing.

Parameter set 1.1: Population size N = 20, chromosome length l = 64, 2-tournament

selection, probability of uniform crossover pc = 1.0, probability of mutation pm = 0.001

per bit, stop criterion is a maximum of 100, 000 generations.

Parameter Justification: As Lobo and Goldberg (2004) suggested for a 64 bit length

chromosome 64 individuals, we used 20 individuals in order to have a more diversity

differentiation and possible to avoid a ceiling effect. Besides that, Lobo and Goldberg

(2004) used 2-tournament selection, a probability of uniform crossover of pc = 1.0, a

probability of mutation pm = 0.0 per bit, and 100 individuals, we just changed pm = 0 to

pm = 0.001 ≈ 0 in order to help the algorithm to recover from the loss of an allele in a

locus for the whole population.

Parameter set 1.2: Population size N = 20, chromosome length l = 32, 2-tournament

selection, probability of uniform crossover pc = 1.0, probability of mutation pm = 0.001

per bit, stop criterion is a maximum of 100, 000 generations.

135

Parameter Justification: As the snake-in-the-box problem for a 5-dimensional hyper-

cube is encoded as 32 bit string, the length of the chromosome was chosen as l = 32. The

rest of parameters: 2-tournament selection, a probability of uniform crossover of pc = 1.0,

a probability of mutation pm = 0.001 ≈ 0, were as in parameter set 1.1

Specific Hypothesis 1.1
Equation 7.1 is satisfied for the one-max problem using the entropy metric to measure

diversity, solution quality of the best solution found so far to measure expected perfor-

mance, and parameter set 1.1.

Specific Hypothesis 1.2
Equation 7.1 is satisfied for the one-max problem using the entropy metric to mea-

sure diversity, number of generations to reach a global maximum to measure expected

performance, and parameter set 1.1.

Specific Hypothesis 1.3
Equation 7.1 is satisfied for the one-max problem using the Hamming metric to mea-

sure diversity, solution quality of the best solution found so far to measure expected per-

formance, and parameter set 1.1.

Specific Hypothesis 1.4
Equation 7.1 is satisfied for the one-max problem using the Hamming metric to mea-

sure diversity, number of generations to reach a global maximum to measure expected

performance, and parameter set 1.1.

Specific Hypothesis 1.5
Equation 7.1 is satisfied for the snake-in-the-box problem in a 5-dimensional hyper-

cube using the entropy metric to measure diversity, solution quality of the best solution

found so far to measure expected performance, and parameter set 1.2.

Specific Hypothesis 1.6
Equation 7.1 is satisfied for the snake-in-the-box problem in a 5-dimensional hyper-

cube using the entropy metric to measure diversity, number of generations to reach a

global maximum to measure expected performance, and parameter set 1.2.

Specific Hypothesis 1.7
Equation 7.1 is satisfied for the snake-in-the-box problem in a 5-dimensional hyper-

cube using the Hamming metric to measure diversity, solution quality of the best solution

found so far to measure expected performance, and parameter set 1.2.

Specific Hypothesis 1.8

136

Equation 7.1 is satisfied for the snake-in-the-box problem in a 5-dimensional hyper-

cube using the Hamming metric to measure diversity, number of generations to reach a

global maximum to measure expected performance, and parameter set 1.2.

Method
Use 90 different seeds to obtain 90 initial populations with a range of diversity values

maintaining the initial population size constant (20). Run a GA for each function with

each initial population. Record the quality of the best solution found so far at every z

generations, where z = 5 until generation 20 and after that at each 20 generations for

the one-max problem, and z = 10 until generation 110 for the snake-in-the-box problem.

Record the total number of generations to obtain the global maximum. In both cases the

quality of the solution of the initial population is recorded.

Data Analysis
Plot data sets using plots of performance versus diversity. Check for linear correlations

using Pearson’s correlation coefficients. If warranted, use Fisher’s R to Z transform in

order to test if the correlation between two factors is near zero.

7.1.1 Results for Specific Hypothesis 1.1

The first specific hypothesis to test is the following: Equation 7.1 is satisfied for the one-

max problem using the entropy metric to measure diversity, solution quality to measure

expected performance, and parameter set 1.1.

Table 7.2 shows the corresponding Pearson’s coeficients—for different trials until gen-

eration 60, after generation 60 a ceiling effect begins to appear—where it can be observed

that there is no significant linear correlation between diversity in the initial population and

the quality of the solution for these test sets (see Figures 7.1 to 7.21). As the Pearson’s

values are small, in order to see if the two variables, diversity and solution quality, have

correlation zero, the Fisher’s coefficient is presented in Table 7.3, where no values are

statistically significant.

137

Generation
Trial 0 5 10 15 20 40 60

1 RXY 0.099 0.134 0.198 0.174 0.088 −0.066 −0.080
2 RXY −0.084 −0.122 −0.094 −0.198 −0.047 −0.128 −0.165
3 RXY −0.048 −0.087 −0.033 0.033 0.041 0.066 0.081

Table 7.2: Pearson’s Coefficient for the one-max problem. Entropy metric used. No
significant linear correlation found.

Generation
Trial 0 5 10 15 20 40 60

1 Z 0.93 1.26 1.87 1.64 0.82 −0.62 −0.75
2 Z −0.79 −1.14 −0.88 −1.87 −0.44 −1.20 −1.55
3 Z −0.45 −0.81 −0.31 0.31 0.38 0.62 0.76

Table 7.3: Fisher’s Coefficient for the one-max problem. No significant linear correlation
found.

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Initial Generation

Figure 7.1: Entropy vs. quality of the solution. One-max problem. Snapshot at initial

generation. Trial 1. 90 Runs.

138

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 5

Figure 7.2: Entropy vs. quality of the solution. One-max problem. Snapshot at generation

5. Trial 1. 90 Runs.

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 10

Figure 7.3: Entropy vs. quality of the solution. One-max problem. Snapshot at generation

10. Trial 1. 90 Runs.

139

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 15

Figure 7.4: Entropy vs. quality of the solution. One-max problem. Snapshot at generation

15. Trial 1. 90 Runs.

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 20

Figure 7.5: Entropy vs. quality of the solution. One-max problem. Snapshot at generation

20. Trial 1. 90 Runs.

140

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 40

Figure 7.6: Entropy vs. quality of the solution. One-max problem. Snapshot at generation

40. Trial 1. 90 Runs.

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 60

Figure 7.7: Entropy vs. quality of the solution. One-max problem. Snapshot at generation

60. Trial 1. 90 Runs.

141

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0.945 0.95 0.955 0.96 0.965 0.97 0.975

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Initial Generation

Figure 7.8: Entropy vs. quality of the solution. One-max problem. Snapshot at initial

generation. Trial 2. 90 Runs.

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0.945 0.95 0.955 0.96 0.965 0.97 0.975

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 5

Figure 7.9: Entropy vs. quality of the solution. One-max problem. Snapshot at generation

5. Trial 2. 90 Runs.

142

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0.945 0.95 0.955 0.96 0.965 0.97 0.975

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 10

Figure 7.10: Entropy vs. quality of the solution. One-max problem. Snapshot at genera-

tion 10. Trial 2. 90 Runs.

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0.945 0.95 0.955 0.96 0.965 0.97 0.975

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 15

Figure 7.11: Entropy vs. quality of the solution. One-max problem. Snapshot at genera-

tion 15. Trial 2. 90 Runs.

143

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0.945 0.95 0.955 0.96 0.965 0.97 0.975

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 20

Figure 7.12: Entropy vs. quality of the solution. One-max problem. Snapshot at genera-

tion 20. Trial 2. 90 Runs.

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0.945 0.95 0.955 0.96 0.965 0.97 0.975

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 40

Figure 7.13: Entropy vs. quality of the solution. One-max problem. Snapshot at genera-

tion 40. Trial 2. 90 Runs.

144

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0.945 0.95 0.955 0.96 0.965 0.97 0.975

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 60

Figure 7.14: Entropy vs. quality of the solution. One-max problem. Snapshot at genera-

tion 60. Trial 2. 90 Runs.

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Initial Generation

Figure 7.15: Entropy vs. quality of the solution. One-max problem. Snapshot at initial

generation. Trial 3. 90 Runs.

145

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 5

Figure 7.16: Entropy vs. quality of the solution. One-max problem. Snapshot at genera-

tion 5. Trial 3. 90 Runs.

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 10

Figure 7.17: Entropy vs. quality of the solution. One-max problem. Snapshot at genera-

tion 10. Trial 3. 90 Runs.

146

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 15

Figure 7.18: Entropy vs. quality of the solution. One-max problem. Snapshot at genera-

tion 15. Trial 3. 90 Runs.

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 20

Figure 7.19: Entropy vs. quality of the solution. One-max problem. Snapshot at genera-

tion 20. Trial 3. 90 Runs.

147

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 40

Figure 7.20: Entropy vs. quality of the solution. One-max problem. Snapshot at genera-

tion 40. Trial 3. 90 Runs.

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 60

Figure 7.21: Entropy vs. quality of the solution. One-max problem. Snapshot at genera-

tion 60. Trial 3. 90 Runs.

148

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0.935 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985

of

 I
te

ra
tio

ns

Entropy Metric

Global Reached

Figure 7.22: Entropy metric vs. number of generations to reach the global maximum.
One-max problem. 90 Runs.

7.1.2 Results for Specific Hypothesis 1.2

The second specific hypothesis to test is the following: Equation 7.1 is satisfied for the

one-max problem using the entropy metric to measure diversity, number of generations to

reach a global maximum to measure expected performance, and parameter set 1.1.

Figure 7.22 takes into account the number of generations to reach a global maximum.

No statistically significant correlation was discovered between the entropy metric and the

expected number of generations. The Pearson’s and Fisher’s coefficient were of −0.106

and −0.992 (see Figure 7.22).

7.1.3 Results for Specific Hypothesis 1.3

The third specific hypothesis to test is the following: Equation 7.1 is satisfied for the one-

max problem using the Hamming metric to measure diversity, solution quality to measure

expected performance, and parameter set 1.1.

Table 7.4 shows the corresponding Pearson’s coeficients (for the different trials) were

it can be observed that there is no significant linear correlation between diversity in the

initial population and the quality of the solution for these test sets (see Figures 7.23 to

7.43). As the Pearson’s values are small, in order to see if the two variables, diversity and

149

Generation
Trial 0 5 10 15 20 40 60

1 RXY 0.092 0.135 0.203 0.177 0.088 −0.064 −0.077
2 RXY −0.078 −0.118 −0.089 −0.196 −0.046 −0.121 −0.159
3 RXY −0.050 −0.092 −0.035 0.033 0.040 0.065 0.082

Table 7.4: Pearson’s Coefficient for the one-max problem. Hamming metric used. No
linear correlation found.

Generation
Trial 0 5 10 15 20 40 60

1 Z 0.86 1.27 1.92 1.67 0.82 −0.60 −0.72
2 Z −0.73 −1.11 −0.83 −1.85 −0.43 −1.13 −1.50
3 Z −0.47 −0.86 −0.33 0.31 0.37 0.61 0.77

Table 7.5: Fisher’s Coefficient for the one-max problem. Hamming metric used. Zero
correlation found.

solution quality, have correlation zero, the Fisher’s coefficient is presented in Table 7.5,

where no values are statistically significant.

 30

 35

 40

 45

 50

 55

 60

 65

 70

 31 31.2 31.4 31.6 31.8 32 32.2 32.4 32.6 32.8

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Initial Generation

Figure 7.23: Hamming metric vs. quality of the solution. One-max Problem. Snapshot at

initial generation. Trial 1. 90 Runs.

150

 30

 35

 40

 45

 50

 55

 60

 65

 70

 31 31.2 31.4 31.6 31.8 32 32.2 32.4 32.6 32.8

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 5

Figure 7.24: Hamming metric vs. quality of the solution. One-max Problem. Snapshot at

generation 5. Trial 1. 90 Runs.

 30

 35

 40

 45

 50

 55

 60

 65

 70

 31 31.2 31.4 31.6 31.8 32 32.2 32.4 32.6 32.8

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 10

Figure 7.25: Hamming metric vs. quality of the solution. One-max Problem. Snapshot at

generation 10. Trial 1. 90 Runs.

151

 30

 35

 40

 45

 50

 55

 60

 65

 70

 31 31.2 31.4 31.6 31.8 32 32.2 32.4 32.6 32.8

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 15

Figure 7.26: Hamming metric vs. quality of the solution. One-max Problem. Snapshot at

generation 15. Trial 1. 90 Runs.

 30

 35

 40

 45

 50

 55

 60

 65

 70

 31 31.2 31.4 31.6 31.8 32 32.2 32.4 32.6 32.8

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 20

Figure 7.27: Hamming metric vs. quality of the solution. One-max Problem. Snapshot at

generation 20. Trial 1. 90 Runs.

152

 30

 35

 40

 45

 50

 55

 60

 65

 70

 31 31.2 31.4 31.6 31.8 32 32.2 32.4 32.6 32.8

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 40

Figure 7.28: Hamming metric vs. quality of the solution. One-max Problem. Snapshot at

generation 40. Trial 1. 90 Runs.

 30

 35

 40

 45

 50

 55

 60

 65

 70

 31 31.2 31.4 31.6 31.8 32 32.2 32.4 32.6 32.8

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 60

Figure 7.29: Hamming metric vs. quality of the solution. One-max Problem. Snapshot at

generation 60. Trial 1. 90 Runs.

153

 30

 35

 40

 45

 50

 55

 60

 65

 70

 31.2 31.4 31.6 31.8 32 32.2 32.4 32.6

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Initial Generation

Figure 7.30: Hamming metric vs. quality of the solution. One-max Problem. Snapshot at

initial generation. Trial 2. 90 Runs.

 30

 35

 40

 45

 50

 55

 60

 65

 70

 31.2 31.4 31.6 31.8 32 32.2 32.4 32.6

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 5

Figure 7.31: Hamming metric vs. quality of the solution. One-max Problem. Snapshot at

generation 5. Trial 2. 90 Runs.

154

 30

 35

 40

 45

 50

 55

 60

 65

 70

 31.2 31.4 31.6 31.8 32 32.2 32.4 32.6

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 10

Figure 7.32: Hamming metric vs. quality of the solution. One-max Problem. Snapshot at

generation 10. Trial 2. 90 Runs.

 30

 35

 40

 45

 50

 55

 60

 65

 70

 31.2 31.4 31.6 31.8 32 32.2 32.4 32.6

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 15

Figure 7.33: Hamming metric vs. quality of the solution. One-max Problem. Snapshot at

generation 15. Trial 2. 90 Runs.

155

 30

 35

 40

 45

 50

 55

 60

 65

 70

 31.2 31.4 31.6 31.8 32 32.2 32.4 32.6

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 20

Figure 7.34: Hamming metric vs. quality of the solution. One-max Problem. Snapshot at

generation 20. Trial 2. 90 Runs.

 30

 35

 40

 45

 50

 55

 60

 65

 70

 31.2 31.4 31.6 31.8 32 32.2 32.4 32.6

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 40

Figure 7.35: Hamming metric vs. quality of the solution. One-max Problem. Snapshot at

generation 40. Trial 2. 90 Runs.

156

 30

 35

 40

 45

 50

 55

 60

 65

 70

 31.2 31.4 31.6 31.8 32 32.2 32.4 32.6

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 60

Figure 7.36: Hamming metric vs. quality of the solution. One-max Problem. Snapshot at

generation 60. Trial 2. 90 Runs.

 30

 35

 40

 45

 50

 55

 60

 65

 70

 31 31.2 31.4 31.6 31.8 32 32.2 32.4 32.6 32.8

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Initial Generation

Figure 7.37: Hamming metric vs. quality of the solution. One-max Problem. Snapshot at

initial generation. Trial 3. 90 Runs.

157

 30

 35

 40

 45

 50

 55

 60

 65

 70

 31 31.2 31.4 31.6 31.8 32 32.2 32.4 32.6 32.8

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 5

Figure 7.38: Hamming metric vs. quality of the solution. One-max Problem. Snapshot at

generation 5. Trial 3. 90 Runs.

 30

 35

 40

 45

 50

 55

 60

 65

 70

 31 31.2 31.4 31.6 31.8 32 32.2 32.4 32.6 32.8

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 10

Figure 7.39: Hamming metric vs. quality of the solution. One-max Problem. Snapshot at

generation 10. Trial 3. 90 Runs.

158

 30

 35

 40

 45

 50

 55

 60

 65

 70

 31 31.2 31.4 31.6 31.8 32 32.2 32.4 32.6 32.8

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 15

Figure 7.40: Hamming metric vs. quality of the solution. One-max Problem. Snapshot at

generation 15. Trial 3. 90 Runs.

 30

 35

 40

 45

 50

 55

 60

 65

 70

 31 31.2 31.4 31.6 31.8 32 32.2 32.4 32.6 32.8

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 20

Figure 7.41: Hamming metric vs. quality of the solution. One-max Problem. Snapshot at

generation 20. Trial 3. 90 Runs.

159

 30

 35

 40

 45

 50

 55

 60

 65

 70

 31 31.2 31.4 31.6 31.8 32 32.2 32.4 32.6 32.8

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 40

Figure 7.42: Hamming metric vs. quality of the solution. One-max Problem. Snapshot at

generation 40. Trial 3. 90 Runs.

 30

 35

 40

 45

 50

 55

 60

 65

 70

 31 31.2 31.4 31.6 31.8 32 32.2 32.4 32.6 32.8

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 60

Figure 7.43: Hamming metric vs. quality of the solution. One-max Problem. Snapshot at

generation 100. Trial 3. 90 Runs.

160

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 15.4 15.6 15.8 16 16.2 16.4 16.6

of

 I
te

ra
tio

ns

Hamming Metric

Global Reached

Figure 7.44: Hamming metric vs. number of generations to reach the global maximum.
One-max Problem. 90 Runs.

7.1.4 Results for Specific Hypothesis 1.4

The fourth specific hypothesis to test is the following: Equation 7.1 is satisfied for the

one-max problem using the Hamming metric to measure diversity, number of generations

to reach a global maximum to measure expected performance, and parameter set 1.1.

Figure 7.44 takes into account the number of generations to reach a global maximum.

There is no statistically significant correlation was discovered between the Hamming met-

ric and the expected number of generations as the Pearson’s and Fisher’s coefficient have

values of −0.096 and −0.898, which shows that diversity and solution quality are inde-

pendent.

7.1.5 Results for Specific Hypothesis 1.5

The fifth specific hypothesis to test is the following: Equation 7.1 is satisfied for the

snake-in-the-box problem using the entropy metric to measure diversity, solution quality

to measure expected performance, and parameter set 1.2

No statistically significant correlation between the entropy metric and the expected

quality of the solution was discovered as the Pearson and Fisher’s coefficients show in

Tables 7.6 and 7.7 that correspond to the snapshots as in Figures 7.45 to 7.80.

161

Generation
Trial 0 10 20 30 40 50

1 RXY −0.068−0.014−0.008−0.017−0.022−0.015
2 RXY 0.185−0.115−0.115−0.186−0.143−0.150
3 RXY −0.015−0.047−0.003 0.045 0.028 0.028

Trial 60 70 80 90 100 110
1 RXY −0.039−0.039−0.011 0.005 0.016 0.006
2 RXY −0.154−0.108−0.097−0.156−0.161−0.227
3 RXY 0.073 0.103 0.103 0.122 0.119 0.127

Table 7.6: Pearson’s Coefficients for the Snake-in-the-box problem. Entropy metric. No
linear correlation found.

Generation
Trial 0 10 20 30 40 50 60 70 80 90 100 110

1 Z −0.64−0.13−0.07−0.16−0.21−0.14−0.36−0.36−0.10 0.05 0.15 0.06
2 Z 1.75−1.08−1.08−1.76−1.34−1.41−1.45−1.01−0.91−1.47−1.51−2.15
3 Z −0.14−0.44−0.03 0.42 0.26 0.26 0.68 0.96 0.96 1.44 1.11 1.19

Table 7.7: Fisher’s Coefficients for the Snake-in-the-box problem. Entropy metric. No
linear correlation found.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.93 0.935 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Initial Generation

Figure 7.45: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 1.

Snapshot at initial generation. 90 Runs.

162

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.93 0.935 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 10

Figure 7.46: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 1.

Snapshot at generation 10. 90 Runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.93 0.935 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 20

Figure 7.47: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 1.

Snapshot at generation 20. 90 Runs.

163

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.93 0.935 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 30

Figure 7.48: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 1.

Snapshot at generation 30. 90 Runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.93 0.935 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 40

Figure 7.49: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 1.

Snapshot at generation 40. 90 Runs.

164

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.93 0.935 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 50

Figure 7.50: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 1.

Snapshot at generation 50. 90 Runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.93 0.935 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 60

Figure 7.51: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 1.

Snapshot at generation 60. 90 Runs.

165

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.93 0.935 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 70

Figure 7.52: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 1.

Snapshot at generation 70. 90 Runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.93 0.935 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 80

Figure 7.53: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 1.

Snapshot at generation 80. 90 Runs.

166

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.93 0.935 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 90

Figure 7.54: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 1.

Snapshot at generation 90. 90 Runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.93 0.935 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 100

Figure 7.55: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 1.

Snapshot at generation 100. 90 Runs.

167

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.93 0.935 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 110

Figure 7.56: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 1.

Snapshot at generation 110. 90 Runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Initial Generation

Figure 7.57: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.

Snapshot at initial generation. 90 Runs.

168

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 10

Figure 7.58: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.

Snapshot at generation 10. 90 Runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 20

Figure 7.59: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.

Snapshot at generation 20. 90 Runs.

169

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 30

Figure 7.60: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.

Snapshot at generation 30. 90 Runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 40

Figure 7.61: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.

Snapshot at generation 40. 90 Runs.

170

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 50

Figure 7.62: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.

Snapshot at generation 50. 90 Runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 60

Figure 7.63: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.

Snapshot at generation 60. 90 Runs.

171

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 70

Figure 7.64: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.

Snapshot at generation 70. 90 Runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 80

Figure 7.65: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.

Snapshot at generation 80. 90 Runs.

172

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 90

Figure 7.66: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.

Snapshot at generation 90. 90 Runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 100

Figure 7.67: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.

Snapshot at generation 100. 90 Runs.

173

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 110

Figure 7.68: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.

Snapshot at generation 110. 90 Runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.93 0.935 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Initial Generation

Figure 7.69: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.

Snapshot at initial generation. 90 Runs.

174

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.93 0.935 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 10

Figure 7.70: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.

Snapshot at generation 10. 90 Runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.93 0.935 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 20

Figure 7.71: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.

Snapshot at generation 20. 90 Runs.

175

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.93 0.935 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 30

Figure 7.72: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.

Snapshot at generation 30. 90 Runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.93 0.935 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 40

Figure 7.73: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.

Snapshot at generation 40. 90 Runs.

176

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.93 0.935 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 50

Figure 7.74: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.

Snapshot at generation 50. 90 Runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.93 0.935 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 60

Figure 7.75: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.

Snapshot at generation 60. 90 Runs.

177

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.93 0.935 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 70

Figure 7.76: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.

Snapshot at generation 70. 90 Runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.93 0.935 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 80

Figure 7.77: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.

Snapshot at generation 80. 90 Runs.

178

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.93 0.935 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 90

Figure 7.78: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.

Snapshot at generation 90. 90 Runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.93 0.935 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 100

Figure 7.79: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.

Snapshot at generation 100. 90 Runs.

179

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.93 0.935 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985

Q
ua

lit
y

of
 S

ol
ut

io
n

Entropy Metric

Generation 110

Figure 7.80: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.

Snapshot at generation 110. 90 Runs.

7.1.6 Results for Specific Hypothesis 1.6

The sixth specific hypothesis to test is the following: Equation 7.1 is satisfied for the

snake-in-the-box problem using the entropy metric to measure diversity, number of gen-

erations to reach a global maximum to measure expected performance, and parameter set

1.2.

Figure 7.81 shows the number of generations to reach a global maximum for the cor-

responding seeds.1 No statistically significant correlation between the entropy metric and

the expected number of generations to reach a global maximum was found. The Pearson

and Fisher’s coefficient values obtained were 0.123 and 1.153.

In order to see if the seeds that converge (17 points as in Figure 7.81) and the ones

that do not converge, are correlated, the logistic regression test was applied. This gives

a p value of 0.0075 for the best Ξ2 model value, i.e., the model cannot adequately fit the

model. Therefore, there is no correlation between the two sets.
1There were seeds that did not reach a global maximum in the 100, 000 generations.

180

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0.93 0.935 0.94 0.945 0.95 0.955 0.96 0.965 0.97 0.975 0.98

of

 I
te

ra
tio

ns

Entropy Metric

Global Reached

Figure 7.81: Entropy metric vs. number of generations to reach the global maximum.
100, 000 Generations. Snake-in-the-box Problem. 90 Runs.

7.1.7 Results for Specific Hypothesis 1.7

The seventh specific hypothesis to test is the following: Equation 7.1 is satisfied for the

snake-in-the-box problem using the Hamming metric to measure diversity, solution qual-

ity to measure expected performance, and parameter set 1.2.

Snapshots were taken at generations at each 10 generations until generation 110 as

is shown from Figure 7.82 to 7.93. No statistically significant correlation between the

entropy metric and the expected quality of the solution was discovered as the Pearson

and Fisher’s coefficient show in Tables 7.8 and 7.9 that correspond to the snapshots as in

Figures 7.82 to 7.117.

181

Generation
Trial 0 10 20 30 40 50

1 RXY −0.068−0.011−0.005−0.015−0.020−0.013
2 RXY 0.187−0.116−0.119−0.191−0.148−0.156
3 RXY −0.013−0.049−0.005 0.044 0.027 0.026

Generation
Trial 60 70 80 90 100 110

1 RXY −0.037−0.037−0.009 0.007 0.017 0.008
2 RXY −0.160−0.114−0.103−0.160−0.165−0.230
3 RXY 0.070 0.112 0.100 0.119 0.116 0.124

Table 7.8: Pearson’s Coefficients for the Snake-in-the-box problem. Hamming Metric.
No linear correlation found.

Generation
Trial 0 10 20 30 40 50 60 70 80 90 100 110

1 Z −0.64−0.10 −0.05−0.14−0.19−0.12−0.34−0.34−0.08 0.06 0.16 0.07
2 Z 1.76−1.09 −1.11−1.80−1.39−1.47−1.50−1.07−0.96−1.50−1.55−2.18
3 Z −0.12−0.46−0.048 0.41 0.25 0.24 0.65 1.05 0.94 1.11 1.09 1.16

Table 7.9: Fisher’s Coefficients for the Snake-in-the-box problem. Hamming Metric. No
linear correlation found.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16 16.1 16.2 16.3 16.4

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Initial Generation

Figure 7.82: Hamming metric vs. quality of the solution. Snake-in-the-box Problem.

Trial 1. Snapshot at initial generation. 90 Runs.

182

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16 16.1 16.2 16.3 16.4

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 10

Figure 7.83: Hamming metric vs. quality of the solution. Snake-in-the-box Problem.

Trial 1. Snapshot at generation 10. 90 Runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16 16.1 16.2 16.3 16.4

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 20

Figure 7.84: Hamming metric vs. quality of the solution. Snake-in-the-box Problem.

Trial 1. Snapshot at generation 20. 90 Runs.

183

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16 16.1 16.2 16.3 16.4

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 30

Figure 7.85: Hamming metric vs. quality of the solution. Snake-in-the-box Problem.

Trial 1. Snapshot at generation 30. 90 Runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16 16.1 16.2 16.3 16.4

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 40

Figure 7.86: Hamming metric vs. quality of the solution. Snake-in-the-box Problem.

Trial 1. Snapshot at generation 40. 90 Runs.

184

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16 16.1 16.2 16.3 16.4

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 50

Figure 7.87: Hamming metric vs. quality of the solution. Snake-in-the-box Problem.

Trial 1. Snapshot at generation 50. 90 Runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16 16.1 16.2 16.3 16.4

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 60

Figure 7.88: Hamming metric vs. quality of the solution. Snake-in-the-box Problem.

Trial 1. Snapshot at generation 60. 90 Runs.

185

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16 16.1 16.2 16.3 16.4

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 70

Figure 7.89: Hamming metric vs. quality of the solution. Snake-in-the-box Problem.

Trial 1. Snapshot at generation 70. 90 Runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16 16.1 16.2 16.3 16.4

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 80

Figure 7.90: Hamming metric vs. quality of the solution. Snake-in-the-box Problem.

Trial 1. Snapshot at generation 80. 90 Runs.

186

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16 16.1 16.2 16.3 16.4

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 90

Figure 7.91: Hamming metric vs. quality of the solution. Snake-in-the-box Problem.

Trial 1. Snapshot at generation 90. 90 Runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16 16.1 16.2 16.3 16.4

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 100

Figure 7.92: Hamming metric vs. quality of the solution. Snake-in-the-box Problem.

Trial 1. Snapshot at generation 100. 90 Runs.

187

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16 16.1 16.2 16.3 16.4

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 110

Figure 7.93: Hamming metric vs. quality of the solution. Snake-in-the-box Problem.

Trial 1. Snapshot at generation 110. 90 Runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.2 15.4 15.6 15.8 16 16.2 16.4

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Initial Generation

Figure 7.94: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.

Snapshot at initial generation. 90 Runs.

188

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.2 15.4 15.6 15.8 16 16.2 16.4

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 10

Figure 7.95: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.

Snapshot at generation 10. 90 Runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.2 15.4 15.6 15.8 16 16.2 16.4

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 20

Figure 7.96: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.

Snapshot at generation 20. 90 Runs.

189

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.2 15.4 15.6 15.8 16 16.2 16.4

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 30

Figure 7.97: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.

Snapshot at generation 30. 90 Runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.2 15.4 15.6 15.8 16 16.2 16.4

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 40

Figure 7.98: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.

Snapshot at generation 40. 90 Runs.

190

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.2 15.4 15.6 15.8 16 16.2 16.4

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 50

Figure 7.99: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.

Snapshot at generation 50. 90 Runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.2 15.4 15.6 15.8 16 16.2 16.4

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 60

Figure 7.100: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.

Snapshot at generation 60. 90 Runs.

191

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.2 15.4 15.6 15.8 16 16.2 16.4

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 70

Figure 7.101: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.

Snapshot at generation 70. 90 Runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.2 15.4 15.6 15.8 16 16.2 16.4

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 80

Figure 7.102: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.

Snapshot at generation 80. 90 Runs.

192

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.2 15.4 15.6 15.8 16 16.2 16.4

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 90

Figure 7.103: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.

Snapshot at generation 90. 90 Runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.2 15.4 15.6 15.8 16 16.2 16.4

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 100

Figure 7.104: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.

Snapshot at generation 100. 90 Runs.

193

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.2 15.4 15.6 15.8 16 16.2 16.4

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 110

Figure 7.105: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 2.

Snapshot at generation 110. 90 Runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.2 15.4 15.6 15.8 16 16.2 16.4 16.6

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Initial Generation

Figure 7.106: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.

Snapshot at initial generation. 90 Runs.

194

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.2 15.4 15.6 15.8 16 16.2 16.4 16.6

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 10

Figure 7.107: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.

Snapshot at generation 10. 90 Runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.2 15.4 15.6 15.8 16 16.2 16.4 16.6

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 20

Figure 7.108: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.

Snapshot at generation 20. 90 Runs.

195

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.2 15.4 15.6 15.8 16 16.2 16.4 16.6

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 30

Figure 7.109: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.

Snapshot at generation 30. 90 Runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.2 15.4 15.6 15.8 16 16.2 16.4 16.6

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 40

Figure 7.110: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.

Snapshot at generation 40. 90 Runs.

196

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.2 15.4 15.6 15.8 16 16.2 16.4 16.6

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 50

Figure 7.111: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.

Snapshot at generation 50. 90 Runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.2 15.4 15.6 15.8 16 16.2 16.4 16.6

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 60

Figure 7.112: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.

Snapshot at generation 60. 90 Runs.

197

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.2 15.4 15.6 15.8 16 16.2 16.4 16.6

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 70

Figure 7.113: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.

Snapshot at generation 70. 90 Runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.2 15.4 15.6 15.8 16 16.2 16.4 16.6

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 80

Figure 7.114: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.

Snapshot at generation 80. 90 Runs.

198

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.2 15.4 15.6 15.8 16 16.2 16.4 16.6

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 90

Figure 7.115: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.

Snapshot at generation 90. 90 Runs.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.2 15.4 15.6 15.8 16 16.2 16.4 16.6

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 100

Figure 7.116: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.

Snapshot at generation 100. 90 Runs.

199

 0

 2

 4

 6

 8

 10

 12

 14

 16

 15.2 15.4 15.6 15.8 16 16.2 16.4 16.6

Q
ua

lit
y

of
 S

ol
ut

io
n

Hamming Metric

Generation 110

Figure 7.117: Entropy vs. quality of the solution. Snake-in-the-box Problem. Trial 3.

Snapshot at generation 110. 90 Runs.

7.1.8 Results for Specific Hypothesis 1.8

The eighth specific hypothesis to test is the following: Equation 7.1 is satisfied for the

snake-in-the-box problem using the Hamming metric to measure diversity, number of

generations to reach a global maximum to measure expected performance, and parameter

set 1.2.

Figure 7.118 takes into account the number of generations to reach a global maxi-

mum for the corresponding seeds.2 No statistically significant correlation between the

Hamming metric and the expected number of generations to reach a global maximum was

discovered as the Pearson and Fisher’s coefficient values of 0.125 and 1.172 were obtained

(see Figure 7.118 for the snapshot at last generation (100, 000)).

In order to see if the seeds that converge (17 points as in Figure 7.118) and the ones

that do not converge, are correlated, the logistic regression test was applied. This gives

a p value of 0.0039 for the best Ξ2 model value, i.e., the model cannot adequately fit the

model. Therefore, there is no correlation between the two sets.
2There were seeds that did not reach a global maximum in the 100, 000 generations.

200

 0

 20000

 40000

 60000

 80000

 100000

 120000

 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16 16.1 16.2 16.3

of

 I
te

ra
tio

ns

Hamming Metric

Global Reached

Figure 7.118: Hamming metric vs. number of generations to reach the global maximum.
100, 000 Generations. Snake-in-the-box Problem. 90 Runs.

7.2 Internal vs. External Parameters

A fitness function is needed for a GA to work, and it appears natural that the combination

of objectives and constraints into a single scalar function using arithmetic operations is

appropriate (Coello, 1998; Mé, 1998). One problem with this approach, however, is that

accurate scalar information must be provided on the range of objectives and constraints,

to avoid one of them from dominating the other (Coello, 1998). One possible solution,

then, is to try to join the objectives with the constraints with internal parameters, i.e.,

information that belongs to the problem itself, thereby avoiding external tuning. The

building of the fitness function is so complex that, using internal or external parameters,

any optimal point obtained will be a function of the coefficients used to combine objectives

and constraints (Coello, 1998). However, it is possible that with internal parameters, the

averages of false positive and/or false negative may decrease.

Equation 7.3 is normalized, this means that it is good for finding local maxima, while

at the same time a false negative ratio can be expected depending on the sizes of the

chromosome and the population (Diaz-Gomez and Hougen, 2007e,d). For the case of

the intrusion detection problem, we propose the use of the union operator which is a

mechanism that stores the first local minimum found (if that is the case, because the file

201

could have no intrusions at all) and thereafter, if another local is found, it performs the

union of the previous intrusions with new ones and, if there is no violations of constraints,

then the new intrusion is added to the solution set. In this way it avoids a high false

negative ratio.

Equation 7.4 requires external tunning: α and β should be such that it gives no false

positives nor false negatives. However, this is a difficult task because when we try to

avoid false positives (let say increasing β), then it is possible that false negatives appear

and viceversa (see Section 7.2.1). So, if we are going to compare Equation 7.4 with

Equation 7.3, and 7.4 has been tunned to avoid false negatives (or false positives), then,

the results could be ambiguous in the sense that there could be a statistically difference

between the two for the false positive (or false negative) case, but not for the false negative

(or positive) case, where the algorithm was trained. To avoid this, we need a score that

takes into account both, the false positives and false negatives. The Hanssen and Kuipers’

score, is considered a good predictor, and it takes into account not only the false positives

(B) and false negatives (C) but the correct positives (A) and correct negatives (D). The

formula used for the Hanssen and Kuipers’ score is Skill = A/(A + C) − B/(B + D)

which tell us how well the algorithm, with the corresponding fitness function, separates

the “intrusion” from the “non-intrusion”. The range of the Hanssen and Kuipers’ score is

between −1 to 1, being 1 perfect score, and 0 an indication of no skill.3

Research Question 2:
The parameters that join the objective and the constraint in the function that evaluates

the structure A: Do internal parameters combined with the union operator result in bet-

ter performance than external parameters (i.e., exogenous parameters that may be tuned

according to the input)?

General Form of Hypothesis 2.
If GFi

is a GA with a fitness function with internal parameters which uses the union

operator and GFe is a GA with a fitness function with external parameters, then

X(P, GFi
) ≥ X(P, GFe) (7.2)

where X(P, GF) is the Hanssen and Kuipers’ score of the GA with fitness function F on

population P .

3Thanks to Dr. Michael Richman for suggesting this score.

202

Parameter set 2: Population size N = 50, chromosome length l = 24, 2-tournament

selection (75%−25% which means that two individuals are selected randomly and with a

probability of 75% the best is chosen, and with a probability of 25% the worst is chosen),

probability of 1-point crossover pc = 0.6, probability of mutation pm = 0.0083 per bit,

stop criterion is 1, 000 generations.

Parameter Justification: This set of parameters was used by Mé (1993), except the

2-tournament selection pressure (75%−25%), which is not defined in Mé (1993), but that

we used in previous tests with good results (Diaz-Gomez and Hougen, 2006a, 2007e).

Fitness Functions to use: Fitness function with internal parameter suggested by Diaz-

Gomez and Hougen (2006a) (see Section 5.1)

F (I) =

Ne∑
j=1

(AE ∗ I)j −
Ne∑
j=1

max[0, (AE ∗ I)j −OVj]

Ne∑
j=1

(AE ∗ I)j

(7.3)

Fitness function with external parameter suggested by Mé (1998) (see Section 3.3)

F (I) = α +
Na∑
i=1

Wi ∗ Ii − β ∗ T 2. (7.4)

Specific Hypothesis 2.1
Equation 7.2 is satisfied for the off-line intrusion detection problem, using as fitness

function Fi Equation 7.3 with internal parameters and the union operator, and as fitness

function Fe Equation 7.4. Parameter set to use 2. Averages of false positive and false

negative are measured in order to obtain the Hassen and Kuipers’ score.

Method
Use 5 different sets of external parameters (α, β) for fitness function 7.4 which are:

(392.0, 1.0), (4.0, 0.05), (50.0, 7.0), (50.0, 1.0), (50.0, 0.5).4 Run 30 times for each set of

parameters finding the average number of false positives and negatives in the 30 runs, in

order to obtain the best set of parameters in terms of the Hansen and Kuipers’ score.

4Mé (1993) used α = 50 and β = 1.0, so we begin from there to test if a better set of parameters could
be obtained,as it happened with parameters α = 392.0 and β = 1.0.

203

Equation 7.4 will be compared with equation 7.3 using the best set of external pa-

rameters found in previous step for Equation 7.4. Run the GA 30 times with the fitness

function as in Equation 7.3 and with the union operator, and 30 times with Equation 7.4,

using 25 different scenarios (from no intrusion to a full vector of intrusions). Each sce-

nario is tested 30 times, so the average number of false positives and false negatives is

recorded, for each scenario, in order to find the Hanssen and Kuipers’ score.

The average of the Hanssen and Kuipers’ scores for each Equation is found and com-

pared statistically using the Z score.

Data Analysis
First the Hanssen and Kuipers’ scores for Equations 7.4 and 7.3 will be calculated for

each scenario. After that, the corresponding average of the Hanssen and Kuipers’ scores

will be calculated for each Equation, and they will be compared looking at the Z score, in

order to check if both are statistically significant different.

In order to corroborate the acurase of the Hanssen and Kuipers’ average for Equations

7.4 and 7.3, the bootstrapping technique will be applied taken 1, 000 samples (samples of

25 Hanssen and Kuipers’ means respectively).

In order to see if there is a statistically significant difference between the Hanssen and

Kuipers’ scores obtained with Equations 7.4 and 7.3, a combined bootstrapping will be

applied using both sets (i.e., they comform a set of 50 combined Hanssen and Kuipers’

scores) and the corresponding comparison is made with the average of the Hanssen and

Kuipers’ averages of each equation, in order to check if they are statitically diferent at the

95% level.

7.2.1 Results for Specific Hypothesis 2

30 times the GA with the dynamic fitness function as in Equation 7.3 was executed, with

the set of GA parameters as the parameter set 2 and with the union operator, recording the

number of false positives and false negatives. No false positives, nor false negatives were

present, so the Hanssen and Kuipers’ score was a perfect score of 1.

204

Parameters Average
Equation α β False + False - H.&K. Score

7.4 392.0 1.0 0.16 0.00 0.988
7.4 4.0 0.05 9.86 0.03 0.239
7.4 50.0 7.0 0.10 0.23 0.971
7.4 50.0 1.0 0.20 0.00 0.985
7.4 50.0 0.5 1.06 0.00 0.918

Table 7.10: Average of false positives, false negatives, and the corresponding Hanssen &
Kuipers’ Score given by Equation 7.4, using different setting for external parameters α
and β. 30 runs per parameter setting.

30 times the GA with the fitness function as in Equation 7.4 was executed, with the set

of GA parameters as the parameter set 2, recording the average number of false positives

and false negatives and the Hanssen and Kuipers’ score as is shown in Table 7.10.5

In order to compare Equations 7.4 and 7.3, a new test set over 30 runs was performed

with the best external parameters available so far (α1 = 392, β1 = 1.0 that correponds to

the best Hanssen and Kuipers’ score of 0.988), and various scenarios6 as shown in Table

7.11. Equation 7.3 with no external tuning, and using the union operator, outperforms

Equation 7.4 in all scenarios. However, as the best external parameters for Equation 7.4

were obtained with an intrusion vector of 11 intrusions, two new scenarios were tested:

1. 11 intrusions with no exclusive ones: Equation 7.3 gives no false positives nor false

negatives, i.e., a perfect Hanssen and Kuipers score of 1. Equation 7.4 gives 3 false

positives and no false negatives in the 30 runs, with a Hanssen and Kuipers score

for the average of 0.992.

2. 11 intrusions with one exclusive one: Equation 7.3 gives no false positives nor false

negatives, i.e., a perfect Hanssen and Kuipers score of 1. Equation 7.4 gives 30 false

positives and 30 false negatives in the 30 runs, with a Hanssen and Kuipers score

for the average of 0.832.

A complement set of tests as the one shown in Table 7.11 that covered from two

intrusions to 23 intrusions, (i.e., two intrusions, three intrusions, and so forth until 23

5Other integer values for 1 < β < 7 with α = 50.0 were tested until the average of false negatives were
0.0 No one of those gives as result 0.0 for averages of false positive and false negatives. Less than 30 runs
were done until the 0.0 average of false negatives appeared.

6Previous tests used an artificial vector of 11 intrusions.

205

Equation 6.1 with α = 392.0, β = 1.0 Equation 6.3 with Union Operator
Scenario Scenario

No Intrusion 1 Intrusion 24 Intrusion No Intrusion 1 Intrusion 24 Intrusion
False+ False- False+ False- False+ False- False+ False- False+ False- False+ False-

Ave. 9.67 0.00 9.00 0.03 0.00 3.03 0.00 0.00 0.00 0.00 0.00 0.00
Std. 1.35 0.00 0.00 0.18 0.00 1.43 0.00 0.00 0.00 0.00 0.00 0.00

Table 7.11: Comparison between best fitness functions as shown in Table 7.10 and fitness
function as in Equation 7.3. 30 runs per scenario per Equation.

2 3 4 5 6 7 8 9 10 12 13
Ave. 7.16 1.93 2.00 2.06 0.23 2.06 2.00 2.00 1.93 0.26 0.01
Std. 0.37 0.36 0.00 0.36 0.77 0.18 0.00 0.00 0.36 0.45 0.30

14 15 16 17 18 19 20 21 22 23 -
Ave. 0.23 0.30 0.26 0.33 0.20 0.30 0.23 0.30 0.40 0.00 -
Std. 0.43 0.46 0.45 0.47 0.40 0.46 0.43 0.46 0.49 0.00 -

Table 7.12: Average of false positive given by Equation 7.4. 30 runs per scenario.

intrusions—0, 1, 11, and 24 intrusions were already calculated as shown in Table 7.11)

were performed using Equations 7.3 and 7.4, running each set of intrusions 30 times. No

false positives, nor false negatives were given by Equation 7.3. Table 7.12 shows the

average of the false positives given by Equation 7.4 which gives no false negatives for this

test set, and Table 7.13 shows the corresponding Hanssen and Kuipers’ scores.

Taking together all 25 scenarios, i.e., from no intrusion to 24 intrusions (no exclusive

ones), the estimated average of the Hanssen and Kuipers’ scores, for Equation 7.4, gives

0.840 with a standard deviation of 0.279 and the estimated standard error of the average

of 0.056. As the average of the Hanssen and Kuipers’ score of Equation 7.3 is 1.00 with

standard deviation of 0.00 and estimated standard error of 0.00 then the difference between

the two averages is 1.00− 0.840 = 0.160 with an estimated standard error of 0.056. The

Number of Intrusions
0 1 2 3 4 5 6 7 8 9 10 11 12

-0.403 0.579 0.675 0.908 0.900 0.892 0.987 0.879 0.875 0.867 0.862 0.992 0.978
Number of Intrusions

13 14 15 16 17 18 19 20 21 22 23 24 -
0.999 0.977 0.967 0.967 0.953 0.967 0.940 0.942 0.900 0.800 1.000 1.000 -

Table 7.13: Hanssen & Kuipers’ scores given by Equation 7.4 for averages as in Tables
7.11 and 7.12.

206

 0

 50

 100

 150

 200

 250

 300

 0.809
 0.8271
 0.8452
 0.8633
 0.8814
 0.8995
 0.9176
 0.9357
 0.9538
 0.9719

Fr
ec

ue
nc

y

Bootstrap Means

Figure 7.119: Distribution of the means of a randomized 1, 000 Hanssen and Kuipers’
samples taken from 25 intrusion scenarios. Line corresponds to the mean 0.84 of the
observed data. Original data from Equation 7.4.

observed difference 0.160 is 0.160/0.056 = 2.86 estimated standard errors greater than

zero, which means that the Hanssen and Kuipers’ scores for Equation 7.4 is statistically

significantly different than the average of the Hanssen and Kuipers’ scores of Equation

7.3 at the 95% confidence level according to the Z score (Cohen, 1995).

In order to corroborate the accuracy of the estimated average of 0.84, bootstrapping

was applied (Efron and Tibshirani, 1993): 1, 000 samples were taken at random from the

25 scenarios. The average of the 1, 000 sample averages was 0.8482 with an estimated

standard error of 0.054, these values are quite similar to the ones previously calculated for

the Hanssen and Kuipers’ scores. Figure 7.119 shows the histogram of the mean of the

1, 000 samples means and the one that corresponds to 0.84.

Looking at the two Equations, if we combined the two data sets of Hanssen and

Kuipers’ scores obtained independently for each Equation, and perform the bootstrapping

technique again over 1, 000 samples, an estimated averaged combined mean of 0.9258

with estimated standard error of 0.0284 is obtained. Comparing the combined estimated

mean (0.9258) with the estimated mean of Equation 7.4 using the Z score, the result ob-

tained is (0.8482 − 0.9258)/(0.0559 − 0.0284) = −2.82 which means that both means

correspond to statitically significantly different distributions at the 95% confidence level.

If the two estimated means that are compared are combined with the one that corresponds

to the average of Equation 7.3 the Z score is (1.00−0.9258)/0.0284 = 2.61 which means

207

 0

 50

 100

 150

 200

 250

 300

 0.635
 0.6735
 0.712
 0.7505
 0.789
 0.8275
 0.866
 0.9045
 0.943
 0.9815

Fr
ec

ue
nc

y

Bootstrap Means

Figure 7.120: Distribution of the means of a randomized 1, 000 samples taken from 25 in-
trusion scenarios when original Hanssen and Kuipers’ scores are combined for Equations
7.3 and 7.4. Left line corresponds to the mean 0.84 of the observed data for Equation 7.4.
Middle line corresponds to the mean of the means over the 1, 000 samples of the combined
data. Right line corresponds to the mean 1.00 of the observed data for Equation 7.3.

that the distributions of each estimated mean are statistically significantly different at the

95% confidence level. The corresponding histogram for the combined case is in Figure

7.120.

7.3 The Selection Pressure and Crossover and Mutation

Probabilities Relationship

The third research question looks at the GA operators Selection pressure, crossover and

mutation. The crossover operator has the purpose of recombining chromosomes in order

to climb to a maximum according to the fitness function given. However, there are prob-

lems where the crossover operator could be quite destructive, for instance, the snake-in-

the-box problem. The mutation operator gives the possibility of local changes; therefore,

mutation helps with diversity and in moving the algorithm from stationary points. How-

ever, a high mutation rate could make the algorithm diverge and a low mutation rate could

make the algorithm spend more generations to reach a maximum (see Section 6.3.6). But

a GA with just crossover and mutation would be a random walk. Selection pressure is the

208

invisible hand that makes GAs do progress in looking for possible solutions (Diaz-Gomez

and Hougen, 2007f). However, a high selection pressure could make the algorithm to

converge prematurely and a low selection pressure could make the algorithm to spend a

lot of number of generation to find a possible solution (Jaroslaw Arabas and Mulawka,

1995). How then, should one set selection pressure (Sp), the probability of crossover (pc)

and the probability of mutation (pm) so that GAs can be improved? Usually researchers

and practitioners use empirical studies to approach this problem. We are proposing the

use of the schema theorem in order to find ranges of possible values for the crossover and

mutation probabilities depending on the problem to be solved, that could help the algo-

rithm to obtain better solution quality. However, it should be highlighted that the fitness

function and parameters of GAs are influencing the expected performance of the GA too.

The operators Ω: Is there a relation between selection pressure Sp and crossover and

mutation operators of the corresponding plan τ , that influences the evolutionary process,

and if there is, what is that relation?

General Form of Hypothesis 3.
There is a relationship between selection pressure (Sp), crossover (pc) and mutation

rates (pm)

pc ≤
1

ε

(
1− 1

(1− pmh)Sp

)
(7.5)

with pmh 6= 1, pm ≈ 0 but 6= 0, h > 1, pc 6= 0 and Sp > 1, where ε is the crossover

disruptive factorand h is the number of defining bits of the corresponding plan τ that

influences the evolutionary process such that if < Sp, pc, pm > satisfies Equation 7.5 and

< S ′p, p
′
c, p

′
m > does not satisfying Equation 7.5 then

X(GA, < Sp, pc, pm >) ≥ X(GA, < S ′p, p
′
c, p

′
m >) (7.6)

where X(GA, < Sp, pc, pm >) is the expected performance of a genetic algorithm GA

using parameters < Sp, pc, pm >. Expected performance is measured as the expected

solution quality after a given number of generations.

< Sp, pc, pm > parameter setting:
Sp range is 2 ≤ Sp ≤ 6 with step size 1, pm range is 0.004 ≤ pm ≤ 0.018 with step

size 0.002, and pc range is 0.0 ≤ pc ≤ 1.0 with step size 0.1, in order to obtain the number

of points indicated in Hypotheses 3.1.1 and 3.2.1.

209

Parameter justification: For the case of Sp, the values were chosen in that way be-

cause GAs usually work with Sp > 1, so we choose values from 2 with step size of 1. For

the case of pm the values were chosen ≥ 0.004 because the range 0 ≤ pm < 0.004 are all

in set < Sp, pc, pm > that obey Equation 7.5 for the case of the one-max function, and we

wanted to have a similar number of values in both sets (the ones that obey equation 7.5

and the ones that do not obey Equation 7.5) and for both problems (the one-max and the

snake-in-the-box problems).

Parameters set 3.1 Population size N = 100, chromosome length l = 100, stop

criterion when the GA reaches the global maximum or a maximum of 20 generations for

the one-max problem.

Parameter Justification A similar set of parameters was suggested by Lobo and Gold-

berg (2004). They found that the algorithm usually converges to the global maximum in

25 generations. We reduced the number of generations to 20, in order to see the effect

of Sp, pc and pm (avoiding ceiling effects). All other parameters are the same as those

suggested by Lobo and Goldberg (2004).

Specific Hypothesis 3.1.1
Equation 7.6 is satisfied for the one-max problem using 297 triples < Sp, pc, pm >

satisfying Equation 7.5 and 143 triples < S ′p, p
′
c, p

′
m > where Equation 7.5 does not hold.

The set of parameters to use is parameter set 3.1.

Parameter set 3.2 population size N = 1, 000, stop criterion when it reaches the global

maximum in 100 generations for snakes in 8-dimensional hypercubes with a sub-snake of

length 49 of a 7-dimensional hypercube embedded.

Parameter Justification A similar set of parameters was suggested by Bitterman (2004).

We only reduced the number of generations to 100 in order to see the effect of Sp, pc and

pm, avoiding ceiling effects.

Specific Hypothesis 3.2.1
Equation 7.6 is satisfied for the snake-in-the-box-problem using 167 triples < Sp, pc, pm >

satisfying Equation 7.5 and 273 triples < S ′p, p
′
c, p

′
m > where Equation 7.5 does not hold.

The set of parameters to use is parameter set 3.2.

Method
Run the algorithm 10 times for each set of triples < Sp, pc, pm > (U) and < S ′p, p

′
c, p

′
m >

(V) recording the best solution found in the last generation. calculate the mean, the stan-

dard deviation, the maximun, the minimum and quartiles for each set over the 10 runs

210

Data Set Mean Stdv. Low Q1 Q2 Q3 High
U 87.39 5.27 70 84 88 91 98
V 85.20 5.16 73 82 85 89 96

Table 7.14: Statistics for data set U satisfying Equation 7.5 and data set V that does not
satisfy Equation 7.5. One-max problem. 10 runs per triple.

for each set U and V . Perform the Kolmogorov-Smirnov test. Perform the ANOVA test.

Figures of the averages for each Sp will be drawn.

Data Analysis
Sets U and V will be compared using the Kolmogorov-Smirnov test in order to cor-

roborate that the two sets U and V belong to statistically different distributions and, the

ANOVA test will check the impact of each operator Sp, pc and pm independently, in pairs,

and the three together, on the quality of the solution. Besides this, the mean, the standard

deviation, the maximun, the minimum and quartiles for each set will be compared.

7.3.1 Results for Specific Hypothesis 3.1

297 triples of the form < Sp, pc, pm > that satisfy Equation 7.5 (set U) and 143 triples of

the same form that do not satisfy Equation 7.5 (set V) where generated. The algorithm

was run 10 times for each set of < Sp, pc, pm > generating 10 samples of 440 instances

of quality of solution corresponding to each < Sp, pc, pm >. Table 7.14 shows the mean,

standard deviation, highest, lowest, and quantities for both data sets. For the case of the

data set that satisfies Equation 7.5, the three quartiles were higher for U than for V . The

Kolmogorov-Smirnov test (K-S test) was applied over U and V . The corresponding p

value was 9.07e− 40, the H value was 1, and the D value was 0.22 showing that the two

data sets differs significantly (see Figure 7.121 where U and V are pointing the empirical

cumulative distributions of U and V respectively, it can be observed that U is better than

V).

211

70 75 80 85 90 95 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F(
x)

V

U

Figure 7.121: Empirical cumulative distributions of U and V at generation 20. One-max

problem. x corresponds to fitness value.

For this problem we estimated h = 50 because initially the population is generated

randomly, i.e., it is expected that there are approximately 50 ones and 50 zeros in each

chromosome. If pc = 0, then pm has the higher value of pm = (Sp − 1)/Sph (see Section

5.2.1), which for Sp = 2 gives pm = 0.01 as initial upper value for the points that satisfy,

and initial lower bound for the points that do not satisfy; and, for Sp = 6 gives pm = 0.017

as upper bound for any point that satisfy. This means that pm values greater than 0.017

do not satisfy Equation 7.5 (see section 6.3.6). However, the points that do not satisfy

Equation 7.5, chosen to test these hypotheses where in the range of 0.01 ≤ pm ≤ 0.018 in

order to perform a harder test.7

Figures from 7.122 to 7.126 show pc and pm together and the corresponding quality of

the solution for different selection pressures according to parameter set 3.1. Figure 7.122

shows the case just discussed regarding the pm probabilities selected for these tests, where

pm begins in 0.01 for the points that do not satisfy Equation 7.5. As the selection pressure

is increased, the number of points that do not satisfy Equation 7.5, in the range chosen

0.01 ≤ pm ≤ 0.018 is lower because pm, for the points that satisfy, is increasing according

7For example the triple < 2, pc, 0.01 > where 0.0 < pc ≤ 1.0.

212

to pm = (Sp − 1)/Sph (see Figures from 7.122 to 7.126 where it is shown that is better

for small schema, as this is the case, to have a higher pc, a smaller pm and a higher Sp).

 0.004
 0.006

 0.008
 0.01

 0.012
 0.014

 0.016
 0.018 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 20

 40

 60

 80

 100

A
ve

. Q
ua

lit
y

of
 th

e
S

ol
ut

io
n

Satisfied
Not Satisfied

Mutation Probability

Crossover Probability

Figure 7.122: Probability of crossover and probability of mutation vs. quality of the

solution. Sp = 2. One-max problem. Ave. over 10 runs at generation 20.

 0.004
 0.006

 0.008
 0.01

 0.012
 0.014

 0.016
 0.018 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 20

 40

 60

 80

 100

A
ve

. Q
ua

lit
y

of
 th

e
S

ol
ut

io
n

Satisfied
Not Satisfied

Mutation Probability

Crossover Probability

Figure 7.123: Probability of crossover and probability of mutation vs. quality of the

solution. Sp = 3. One-max problem. Ave. over 10 runs at generation 20.

213

 0.004
 0.006

 0.008
 0.01

 0.012
 0.014

 0.016
 0.018 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 20

 40

 60

 80

 100

A
ve

. Q
ua

lit
y

of
 th

e
S

ol
ut

io
n

Satisfied
Not Satisfied

Mutation Probability

Crossover Probability

Figure 7.124: Probability of crossover and probability of mutation vs. quality of the

solution. Sp = 4. One-max problem. Ave. over 10 runs at generation 20.

 0.004
 0.006

 0.008
 0.01

 0.012
 0.014

 0.016
 0.018 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 20

 40

 60

 80

 100

A
ve

. Q
ua

lit
y

of
 th

e
S

ol
ut

io
n

Satisfied
Not Satisfied

Mutation Probability

Crossover Probability

Figure 7.125: Probability of crossover and probability of mutation vs. quality of the

solution. Sp = 5. One-max problem. Ave. over 10 runs at generation 20.

214

Source Sum. Sq. d. f. Mean Sq. F Prob > F

pm 1,115.4 7 159.3 9,225.38 0
pc 57,486.3 10 5,748.6 332,815.17 0
Sp 54,477.6 4 13,619.4 788,491.73 0
pm ∗ pc 2,605.1 70 37.2 2,154.63 0
pm ∗ Sp 1,674.1 28 59.8 3,461.53 0
pc ∗ Sp 1,186.5 40 29.7 1,717.35 0
pm ∗ pc ∗ Sp 6,327.8 280 22.6 1,308.38 0
Error 68.4 3,960 0 - -
Total 124,941.3 4,399 - - -

Table 7.15: ANOVA test for the one-max problem at generation 20.

 0.004
 0.006

 0.008
 0.01

 0.012
 0.014

 0.016
 0.018 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 20

 40

 60

 80

 100

A
ve

. Q
ua

lit
y

of
 th

e
S

ol
ut

io
n

Satisfied
Not Satisfied

Mutation Probability

Crossover Probability

Figure 7.126: Probability of crossover and probability of mutation vs. quality of the

solution. Sp = 6. One-max problem. Ave. over 10 runs at generation 20.

Table 7.15 shows the ANOVA results for this hypothesis. Each operator, pc, pm and Sp

independently; each pair of operators, and the three operators together, have a statistically

significant impact on the quality of the solution at much greater than 95% confidence

level. Sp moderates the impact of pm on the relationship between pc and the quality of the

solution.

215

Data Set Mean Stdv. Low Q1 Q2 Q3 High
U 55.92 11.67 1 53 56 61 76
V 38.80 19.41 1 29.5 49 52 75

Table 7.16: Statistics for maximum length of snakes for data set U that satisfies Equation
7.5 and data set V that does not satisfy Equation 7.5. Snake-in-the-box problem in 8-
dimensional hypercube. 10 runs per triple. Initial population randomly generated.

7.3.2 Results for Specific Hypothesis 3.2

167 triples of the form < Sp, pc, pm > that satisfy Equation 7.5 and 273 triples of the

same form that do not satisfy Equation 7.5 where generated. The algorithm was run 10

times for each set of < Sp, pc, pm >, generating 10 samples of 440 instances of quality of

solution.

Three cases are going to be considered to test this hypothesis: (1) when the initial pop-

ulation is generated randomly, (2) when the initial population has half of the population

with the schema the GA has to look for and half of the population is randomly generated,

and (3) a third case where the entire initial population has the schema the GA has to look

for. These three cases were considered in order to test the performance of the algorithm

with different scenarios (initial populations) and sets U and V respectively.

Tables 7.16, 7.18 and 7.20 show the mean, standard deviation, highest, lowest and

the corresponding quartiles for both data sets for each case: when the initial population is

generated randomly, when half of the initial population has schema ξ and half is generated

randomly, and when all the entire initial population has schema ξ. For data set U that sat-

isfy Equation 7.5 each quartile was above the corresponding quartile when the algorithm

uses < S ′p, p
′
c, p

′
m > that does not satisfies Equation 7.5 (data set V) for all cases. The

corresponding K-S tests were performed for each case: when the initial population is gen-

erated randomly p < 5.50E−282, H = 1, D = 0.557, when half of the initial population

has schema ξ and half is generated randomly p < 1.78E − 292, H = 1, D = 0.568 and

when all the initial population has schema ξ, p < 4.47E − 294, H = 1, and D = 0.569;

showing that in all cases the two data sets U and V are statistically significantly different

(see Figures 7.127, 7.128, and 7.129, where U and V are pointing to the empirical cu-

mulative distributions of U and V , respectively; it can be observed that U is better than

V).

216

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F(
x)

V

U

Figure 7.127: Empirical cumulative distributions of U and V at generation 100. Initial

population randomly generated.

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F(
x)

V

U

Figure 7.128: Empirical cumulative distributions of U and V at generation 100. Half of

the initial population with schema included and half randomly generated.

217

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F(
x)

V

U

Figure 7.129: Empirical cumulative distributions of U and V at generation 100. Entire

initial population with schema included.

Figures from 7.130 to 7.144 show pc and pm together and the corresponding quality

of the solution for different selection pressures according to the set of parameters 3.2 for

the three cases considered.

 0.004
 0.006

 0.008
 0.01

 0.012
 0.014

 0.016
 0.018 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

A
ve

. L
en

gt
h

Satisfied
Not Satisfied

Mutation Probability

Crossover Probability

Figure 7.130: Probability of crossover and probability of mutation vs. quality of the

solution. Sp = 2. Snake-in-the-box problem. Initial population randomly generated. Ave.

over 10 runs at generation 100.

218

 0.004
 0.006

 0.008
 0.01

 0.012
 0.014

 0.016
 0.018 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

A
ve

. L
en

gt
h

Satisfied
Not Satisfied

Mutation Probability

Crossover Probability

Figure 7.131: Probability of crossover and probability of mutation vs. quality of the

solution. Sp = 3. Snake-in-the-box problem. Initial population randomly generated. Ave.

over 10 runs at generation 100.

 0.004
 0.006

 0.008
 0.01

 0.012
 0.014

 0.016
 0.018 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

A
ve

. L
en

gt
h

Satisfied
Not Satisfied

Mutation Probability

Crossover Probability

Figure 7.132: Probability of crossover and probability of mutation vs. quality of the

solution. Sp = 4. Snake-in-the-box problem. Initial population randomly generated. Ave.

over 10 runs at generation 100.

219

 0.004
 0.006

 0.008
 0.01

 0.012
 0.014

 0.016
 0.018 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

A
ve

. L
en

gt
h

Satisfied
Not Satisfied

Mutation Probability

Crossover Probability

Figure 7.133: Probability of crossover and probability of mutation vs. quality of the

solution. Sp = 5. Snake-in-the-box problem. Initial population randomly generated. Ave.

over 10 runs at generation 100.

 0.004
 0.006

 0.008
 0.01

 0.012
 0.014

 0.016
 0.018 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

A
ve

. L
en

gt
h

Satisfied
Not Satisfied

Mutation Probability

Crossover Probability

Figure 7.134: Probability of crossover and probability of mutation vs. quality of the

solution. Sp = 6. Snake-in-the-box problem. Initial population randomly generated. Ave.

over 10 runs at generation 100.

220

 0.004
 0.006

 0.008
 0.01

 0.012
 0.014

 0.016
 0.018 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

A
ve

. L
en

gt
h

Satisfied
Not Satisfied

Mutation Probability

Crossover Probability

Figure 7.135: Probability of crossover and probability of mutation vs. quality of the

solution. Sp = 2. Snake-in-the-box problem. Half of the initial population with schema

included and half randomly generated. Ave. over 10 runs at generation 100.

 0.004
 0.006

 0.008
 0.01

 0.012
 0.014

 0.016
 0.018 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

A
ve

. L
en

gt
h

Satisfied
Not Satisfied

Mutation Probability

Crossover Probability

Figure 7.136: Probability of crossover and probability of mutation vs. quality of the

solution. Sp = 3. Snake-in-the-box problem. Half of the initial population with schema

included and half randomly generated. Ave. over 10 runs at generation 100.

221

 0.004
 0.006

 0.008
 0.01

 0.012
 0.014

 0.016
 0.018 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

A
ve

. L
en

gt
h

Satisfied
Not Satisfied

Mutation Probability

Crossover Probability

Figure 7.137: Probability of crossover and probability of mutation vs. quality of the

solution. Sp = 4. Snake-in-the-box problem. Half of the initial population with schema

included and half randomly generated. Ave. over 10 runs at generation 100.

 0.004
 0.006

 0.008
 0.01

 0.012
 0.014

 0.016
 0.018 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

A
ve

. L
en

gt
h

Satisfied
Not Satisfied

Mutation Probability

Crossover Probability

Figure 7.138: Probability of crossover and probability of mutation vs. quality of the

solution. Sp = 5. Snake-in-the-box problem. Half of the initial population with schema

included and half randomly generated. Ave. over 10 runs at generation 100.

222

 0.004
 0.006

 0.008
 0.01

 0.012
 0.014

 0.016
 0.018 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

A
ve

. L
en

gt
h

Satisfied
Not Satisfied

Mutation Probability

Crossover Probability

Figure 7.139: Probability of crossover and probability of mutation vs. quality of the

solution. Sp = 6. Snake-in-the-box problem. Half of the initial population with schema

included and half randomly generated. Ave. over 10 runs at generation 100.

 0.004
 0.006

 0.008
 0.01

 0.012
 0.014

 0.016
 0.018 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

A
ve

. L
en

gt
h

Satisfied
Not Satisfied

Mutation Probability

Crossover Probability

Figure 7.140: Probability of crossover and probability of mutation vs. quality of the

solution. Sp = 2. Snake-in-the-box problem. Initial population with schema included.

Ave. over 10 runs at generation 100.

223

 0.004
 0.006

 0.008
 0.01

 0.012
 0.014

 0.016
 0.018 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

A
ve

. L
en

gt
h

Satisfied
Not Satisfied

Mutation Probability

Crossover Probability

Figure 7.141: Probability of crossover and probability of mutation vs. quality of the

solution. Sp = 3. Snake-in-the-box problem. Initial population with schema included.

Ave. over 10 runs at generation 100.

 0.004
 0.006

 0.008
 0.01

 0.012
 0.014

 0.016
 0.018 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

A
ve

. L
en

gt
h

Satisfied
Not Satisfied

Mutation Probability

Crossover Probability

Figure 7.142: Probability of crossover and probability of mutation vs. quality of the

solution. Sp = 4. Snake-in-the-box problem. Initial population with schema included.

Ave. over 10 runs at generation 100.

224

 0.004
 0.006

 0.008
 0.01

 0.012
 0.014

 0.016
 0.018 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

A
ve

. L
en

gt
h

Satisfied
Not Satisfied

Mutation Probability

Crossover Probability

Figure 7.143: Probability of crossover and probability of mutation vs. quality of the

solution. Sp = 5. Snake-in-the-box problem. Initial population with schema included.

Ave. over 10 runs at generation 100.

 0.004
 0.006

 0.008
 0.01

 0.012
 0.014

 0.016
 0.018 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

A
ve

. L
en

gt
h

Satisfied
Not Satisfied

Mutation Probability

Crossover Probability

Figure 7.144: Probability of crossover and probability of mutation vs. quality of the

solution. Sp = 6. Snake-in-the-box problem. Initial population with schema included.

Ave. over 10 runs at generation 100.

225

Source Sum. Sq. d. f. Mean Sq. F Prob > F

pm 454,114.9 7 64,873.6 433.92 0
pc 3,294 10 329.4 2.2 0.0151
Sp 327,984.6 4 81,996.1 548.45 0
pm ∗ pc 15,165.7 70 216.7 1.45 0.009
pm ∗ Sp 112,379 28 4,013.5 26.85 0
pc ∗ Sp 10,007.4 40 250.2 1.67 0.0051
pm ∗ pc ∗ Sp 43,609 280 155.7 1.04 0.3101
Error 592,037 3,960 149.5 - -
Total 1,558,591.6 4,399 - - -

Table 7.17: ANOVA test for the snake-in-the-box problem at generation 100. Initial pop-
ulation randomly generated.

Data Set Mean Stdv. Low Q1 Q2 Q3 High
U 57.07 7.40 1 53 56 61 79
V 45.09 11.62 1 39 49 52 71

Table 7.18: Statistics for maximum length of snakes of data set U that satisfies Equation
7.5 and data set V that does not satisfies Equation 7.5. Snakes-in-the-box problem in 8-
dimensional hypercube. 10 runs per triple each Sp. Half of the population with schema
the GA has to look for and half of the population randomly generated.

Table 7.17 shows the analysis of variance for the first case. There is a statistically

significant impact of each operator alone, and pair-wise in the quality of the solution, but

not of the three operators together.

Table 7.19 shows the analysis of variance for the second case. There is a statisti-

cally significant impact of each operator alone, pair-wise, and all the three together in the

quality of the solution.

Table 7.21 shows the analysis of variance for the third case, where the initial popu-

lation has the schema ξ in all chromosomes. There is a statistically significant impact

of each operator alone and pair-wise in the quality of the solution. However, there is no

statistically significant impact looking at the three independent variables together.

226

Source Sum. Sq. d. f. Mean Sq. F Prob > F

pm 217,740.3 7 31,105.8 915.44 0
pc 2167 10 216.7 6.38 0
Sp 188,113.7 4 47,028.4 1,384.04 0
pm ∗ pc 7,274.7 70 103.9 3.06 0
pm ∗ Sp 21,234.9 28 758.4 22.32 0
pc ∗ Sp 4,552.3 40 113.8 3.35 0
pm ∗ pc ∗ Sp 13,325.5 280 47.6 1.4 0
Error 131,566.9 3,872 34 - -
Total 583,200.1 4,311 - - -

Table 7.19: ANOVA test for the snake-in-the-box problem at generation 100. Initially half
of the population with schema the GA has to look for and half of the population randomly
generated.

Data Set Mean Stdv. Low Q1 Q2 Q3 High
U 57.31 7.61 1 53 56 61 79
V 44.95 11.88 1 39 49 53 70

Table 7.20: Statistics for maximum length of snakes of data set U that satisfy Equation
7.5 and data set V that does not satisfy Equation 7.5. Snake-in-the-box problem in 8-
dimensional hypercube. 10 runs per triple per each Sp. Entire initial population with
schema ξ.

Source Sum. Sq. d. f. Mean Sq. F Prob > F

pm 238,216.4 7 34,030.9 869.8 0
pc 3,981.6 10 398.2 10.18 0
Sp 198,001.4 4 49,500.4 1,265.19 0
pm ∗ pc 7,870.6 70 112.4 2.87 0
pm ∗ Sp 21,737 28 776.3 19.84 0
pc ∗ Sp 2,807 40 70.2 1.79 0.0016
pm ∗ pc ∗ Sp 12,186.2 280 43.5 1.11 0.1035
Error 154,934.6 3,960 39.1 - -
Total 639,735.2 4,399 - - -

Table 7.21: ANOVA test for the snake-in-the-box problem at generation 100. Entire initial
population with schema the GA has to look for.

227

Chapter 8

Discussion

GAs, by definition, are algorithms; they receive an input, they process the input and they

give a result. The result is the possible solution obtained and, as such, it would be bene-

ficial to obtain better solutions. However, the quality of the solution for GAs depends on

the parameters used: the number of generations or stop criterion, the type of crossover,

the probabilities of crossover and mutation, the selection mechanism, and possibly the

selection pressure. The problem, as addressed in Chapter 1, is then, how to choose good

parameters that could have a positive impact in the quality of the possible solution. Re-

garding the input, a parameter to be set is the population size which has been related to

diversity(Jaroslaw Arabas and Mulawka, 1995; Yu et al., 2006). A common belief is that,

if the initial population is more diverse then it is expected that the quality of the possi-

ble solution is likely to be better (Jaroslaw Arabas and Mulawka, 1995; Bitterman, 2004;

Burke et al., 2004; Lobo and Lima, 2005; Grefenstette, 1986; McPhee and Hopper, 1999;

Rosca, 1995), so this dissertation tested this hypothesis.

The second hypothesis of this dissertation touches the core of GAs: fitness functions.

Fitness functions guide GAs to possible solutions, they work in conjunction with the se-

lection mechanism in choosing chromosomes that possibly are going to be mated and give

rise to possibly better solutions. So, it is expected that if the fitness function is selected

correctly, it could guide the algorithm to good solutions, however, if it is not set correctly,

it can mislead the algorithm. The problem here is then, how to join objective(s) and con-

straint(s) in fitness functions that could help in the setting of fitness functions; the second

hypothesis was tested in the context of this dissertation to address this problem.

But going a step forward this dissertation asked if there is a relationship between some

parameters that could influence the performance of GAs. The third hypothesis tested

228

a relationship between selection pressure Sp and the crossover (pc) and mutation (pm)

probabilities using the schema theorem as its foundation.

This chapter analyzes the results obtained in Chapter 7 regarding the three hypotheses

tested in this dissertation: the impact of diversity on the initial population in the perfor-

mance of GAs, the impact in the use of internal parameters vs. external parameters that

join the objectives and the constraints in fitness functions; and the impact of the relation-

ship between the probability of crossover, the probability of mutation, and the selection

pressure on the quality of the solution.

8.1 Hypothesis 1: Diversity in the Initial Population and

Performance of GAs

One of the problems with diversity is how to measure diversity in a population. Diversity

is the difference between the objects that are being compared. The first approach, then,

is to look at the difference at the gene level. If the initial population is represented as a

two dimensional matrix, gene level diversity can be measured looking at each column. A

second approach is to look at diversity at each chromosome, in which case diversity can

be measured looking at each row (see Chapter 5 for more details).

Once how to measure diversity is defined, this dissertation tested the first hypothesis

that says in its general form:

If V (PA) ≥ V (PB) then X(G, PA) ≥ X(G, PB), (8.1)

where V (P) is the diversity of population P and X(G, P) is the expected performance

of a genetic algorithm G with population P . Expected performance is measured as the

expected solution quality of the best solution found so far after a given number of gen-

erations or the expected number of function evaluations to obtain a solution of a given

quality.

Two problems, two diversity metrics, and two expected performance metrics were

used, to give a total of eight specific hypotheses, which are summarized in Table 7.1 in

Section 7.1. For none of the specific hypothesis tested was a strong correlation between

diversity and performance found (see Section 7.1) using as test statistics the Pearson’s

coefficient and the Fisher’s r to z transform.

229

The Pearson’s coefficient RXY gives a positive, negative, or no linear relationship

between two variables (Cohen, 1995). For the particular case of Hypothesis 1, the two

variables are diversity and performance of a GA (measured as the solution quality or

number of generations to reach a global maximum). If RXY ≈ 1.0 then there is a strong

to perfect positive linear correlation, and if RXY ≈ −1.0 there is a strong to perfect

negative linear correlation (Cohen, 1995). No one of those values was reached for any

of the specific hypothesis as can be seen in Tables 7.2, 7.4, 7.6, and 7.8 in Section 7.1.

However, to be more certain about the independence of the two variables the Fisher’s r

to z transform was applied, the results of which are in Tables 7.3, 7.5, 7.7, and 7.9. In

all cases the correlation was almost zero, and in one case, a small negative correlation

was found (see Table 7.6 second trial at generation 110 the Pearson value of −0.227).

Because no result returns a statistically significant outcome, we are not concerned with

false positives of multiple comparison test, and the conclusion remains that there is no

direct linear correlation between diversity and performance.1

Results for specific hypotheses 1.1 to 1.8 showed an independence between diver-

sity in the initial population and performance of GAs. If diversity alone is not impacting

performance of GAs, then what could be the factor or factors in the input that could be im-

pacting performance? As was highlighted at the beginning of this chapter, population size

is another parameter to be set when working with GAs. So, we return to the exploratory

study where we found empirically a positive correlation between population size and per-

formance (see Chapter 6). However, population size as addressed in Chapter 6 carried a

change in diversity,2 and this fact lead us to hypothesize that the factor that was impacting

performance was diversity. What, then, is the implication of the negative result obtained

for hypothesis 1? Possibly that diversity and population size together are factors that im-

pact performance or that population size alone is a factor that is influencing performance.

But, what about other factors? We need to consider not only the input, but the process

that is in between the input and the output. As the algorithm iterates, usually the diversity

measure is decreasing. If decreasing in diversity leads to a value near of zero quite soon,

it is possible that a premature convergence occurs with poor quality (Jaroslaw Arabas and

Mulawka, 1995; Burke et al., 2004; Lobo and Lima, 2005; Grefenstette, 1986). This is one
1The only case of a Pearson’s value of −0.227 and Fisher’s value of −2.15 does not change the con-

clusion in the sense that, this value could occur by chance, and contrary of what it was expected, a higher
diversity value returned a lower outcome.

2Usually increasing population size carries an increase in diversity in terms defined in Section 5.0.2.

230

of the difficulties when working with GAs—due to the interdependence of parameters, a

change in one can impact the whole result (Eiben et al., 1999).

8.2 Hypothesis 2: Joining Objective(s) and Constraint(s)

in Fitness Functions

A genetic algorithm needs a fitness function that combines the objective(s) and con-

straint(s) into a single value (Coello, 1998; Mé, 1998). The problem is not only to find

the appropriate function but also to provide accurate values to the parameters that produce

the correct solution of the problem for as many instances as possible. It appears that the

fitness function proposed in GASSATA, a combination of objectives and constraints into

a single value using arithmetical operations, should be correct. However, it is difficult to

set the parameters so that the algorithm finds intrusions and converges (see Sections 3.3.1

and 5.1).

For this problem GASSATA uses a fitness function that has three terms:
∑Na

i=1 WiIi

that is rewarding, β T 2 that is penalizing, and α that is used to balance the previous terms

trying to maintain a positive value.3

As the fitness function is giving a payoff to the highest valued individual, the term∑Na

i=1 WiIi is guiding the solution to have the maximum number of intrusions. However,

this is good enough until the correct set of intrusions are found. Later on, i.e., if more

intrusions than that are hypothesized, the problem of false positives occurs. Now, the

penalty term β T 2 is diminishing the fitness value, but in doing so, various intrusions can

require the same event, a fact that should be taken into account to avoid a higher number

of false positives (Diaz-Gomez and Hougen, 2005c). These two facts were tested and

false positives and false negatives were found (Diaz-Gomez and Hougen, 2005a).

In order to illustrate one more time some of the problems in doing external tuning

to parameters that join objectives and constraints in fitness functions, see Table 7.10 in

Section 7.2.1 that shows some examples of external parameters used in Equation 7.4. If

the set of parameters (α, β) is (50.0, 7.0) then there are not so many false positives but

the average number of false negatives is the maximum (0.23). This is because as β = 7.0

is high (compared with others values used in these tests as the penalty factor) then the

3It is desirable to have positive values in fitness functions overall if proportional selection is used.

231

algorithm tries to avoid to hypothesized intrusions, because if it does it and it is wrong,

then it is going to be highly penalized. Now, if β = 7.0 is high as a penalty factor we

can try with lower values. Let say that β = 1.0, what happens then? The average of

false negatives decreases to 0.0, but the average of false positive increases from 0.10 to

0.20. This is one of the problems of external tuning for fitness functions, the weighting of

objective(s) and penalty term(s). On the other hand, α and β must be tuned for each input.

To solve the problem of external tuning for the intrusion detection problem, hypothesis

2 proposes three things:

• replace the positive side
∑Na

i=1 Ii that is guiding the algorithm to have false positives,

with the union operator,

• penalize each chromosome taken into account if more than one intrusion requires

the same event, and

• cut the α term.

The fitness function proposed by hypothesis 2 works in conjunction with the union

operator to find the maximum number of intrusions and has only the penalty term:

F (I) = 1−

(
1∑Ne

j=1(AE ∗ I)j

)
Ne∑
j=1

max[0, (AE ∗ I)j −OVj] (8.2)

where AE is the attack-event matrix, I is the chromosome, OV is the observed vector,

β = 1/
∑Ne

j=1(AE ∗ I)j , and Penalty =
∑Ne

j=1 max[0, (AE ∗ I)j −OVj].

Equation 8.2 does not need external tuning. The only parameter to set is β, but β is

an adaptive parameter that depends on I . The drawback of Equation 8.2 is that it does

not have have a rewarding term that pushes F (I) to get more intrusions. For solving this

drawback, the union operator was proposed (see Section 3.3.2).

The results obtained for hypothesis 2 showed a perfect Hanssen and Kuipers’ score

(= 1) with Equation 8.2 and the union operator, for all the 25 scenarios, outperforming

Equation 7.4 which obtained on average a Hanssen and Kuipers’ score of 0.840. In or-

der to check if there is any difference between the Hanssen and Kuipers’ score for each

Equation and a combination of both scores, a bootstrapping approach was applied with

the scores combined. There was statistically significant difference, at the 95% confidence

level, between the combined scores and each one (see Section 7.2 where is shown specific

232

results). This means, that the use of internal parameters that join the objective(s) and the

constraint(s), in fitness functions, could be benefitial for finding better solutions or at least

the external tuning, which sometimes can mislead the GA for finding a correct solution

(Diaz-Gomez and Hougen, 2005c), is avoided.

8.3 Hypothesis 3: Interrelation Between pc, pm and Sp

It has been a common practice to use in almost all binary GAs the same set of parameters

for crossover and mutation (pc = 0.6 or pc = 0.7 and mutation per bit pm = 0.001), or, in

some cases a trial and error procedure is used—researches try with different probabilities

and the ones that give better results are the ones that are reported (Eiben et al., 1999).

Hypothesis 3 pointed out this problem and proposed a relationship between pc, pm and

Sp as:

pc ≤
1

ε

(
1− 1

(1− pmh)Sp

)
, (8.3)

with pmh 6= 1, pm ≈ 0 but 6= 0, h > 1, pc 6= 0 and Sp > 1, where ε is the crossover

disruptive factor, h is the number of defining bits, and Sp is the selection pressure. Clearly,

if pm = 0 and pc = 0 all what we have is selection pressure Sp > 1, so, if the solution

is not in the initial population, then the GA is unable to find it (see Section 6). Cases for

pm ≈ 0 and pc ≈ 0 remains an open question for future work.

Equation 8.3 shows that the choosing of pc, pm and Sp depends on the problem itself

(ε and h) and that there is an interrelation between < pc, pm, Sp > that could affect the

quality of the solution.

Equation 8.3 was derived from the Schema Theorem (see Section 2.3.1), where it is

expected that the number of schema ξ at step t is not going to decrease at step t + 1.

But what is schema ξ? Schema ξ is the schema the algorithm is looking for. But, as it

is almost certain that at the beginning schema ξ is not present, then the GA has to build

it progressively at each time step. However, in the building process, destructive factors

occur owing to crossover and mutation (see Sections 5.2.1 and 6.3.6), so the probabilities

of crossover and mutation should be such that they try to be set avoiding that destructive

effect, and this is what hypothesis 3 is proposing with Equation 8.3. However, an optimal

233

setting of parameters for GAs is so difficult that trying to find them is almost impossible

(Eiben et al., 1999).

Two problems were chosen to test the third hypothesis: the one-max problem and the

snake-in-the-box problem. The one-max problem is such that the schema under consid-

eration is small (ε = 1/(l − 1)) and the snake-in-the-box-problem in a 8-dimensional

hypercube is such that ε = 110/127 (that could be considered long) because a 50-long

snake that begins at node 0 and finishes at node 110 was embedded in the lower hyper-

cube. The algorithm needs then, to preserve the sub-snake given and look at the 128 nodes

of the upper hypercube to complete it.

The set of triples < pc, pm, Sp > chosen to perform the tests of specific hypotheses

were such that there is almost no boundary between the points that satisfy Equation 8.3

(set U) and the points that do not satisfy Equation 8.3 (set V), making the problem harder

to solve. The probability of crossover could be set in the full range 0.0 ≤ pc ≤ 1.0. The

probability of mutation began at 0.004 because for the case of the one-max problem all

the points with pm ≤ 0.004 belong to set U (330 in total independent of pc and Sp), and

we wish to have sets of approximately equal size. For example, for Sp = 2, the points that

belong to V begin at pm = 0.01, so the range for pm was between 0.004 and 0.018.

For the case of the one-max problem, as the schema is small, it is expected that the

crossover operator is not destructive. This fact is so strong that the algorithm perform

quite well with pc high in both sets U and V (see Figures 7.122 to 7.126 in Section 7.3.1).

However, on average set U that obeys Equation 8.3 outperforms set V that does not obey

Equation 8.3 as is shown in Table 7.14 in Section 7.3.1.

In order to check the impact of each operator alone, the impact of each pair-wise com-

bination, and the impact of the three operators together on the quality of the solution,

the ANOVA test was performed. The ANOVA test shows the effect of the independent

variables over the dependent variable, as well as if there are some interactions of the inde-

pendent variables that affect the dependent variable. Following Jaccard (1998), in order to

perform the analysis of variance, it is useful to define a focal independent variable, a first

order moderator independent variable and a second order moderator independent variable.

It is a common belief that the crossover operator is the principal factor of influence in GAs

and that the mutation operator is a background operator (Holland, 1992). So, we propose

the crossover operator as the focal independent variable, the mutation operator as the first

order moderator, and the selection pressure as the second order moderator. This helps

234

us to analyze the three way interaction that could exist between crossover, mutation, and

selection pressure.

Table 7.15 in Section 7.3.1 shows the ANOVA results for the one-max problem. Each

operator, pc, pm and Sp alone; each pair-wise set of operators; and the three operators

together impact the quality of the solution. Sp moderates the impact of pm on the relation-

ship between pc and the quality of the solution.

For the case of the snake-in-the-box problem in a 8-dimensional hypercube, three

cases were considered: (1) when the initial population is generated randomly4 (possibly

there is no presence of schema ξ in the initial generation), (2) when the initial population

has half of the individuals with schema ξ and half are randomly generated, and (3) when all

the individuals in the initial population have schema ξ. These three cases were considered

in order to see the performance of the GA not only when schema ξ is present, but also,

when the algorithm has no instances of it.

For the first case, where there is no presence of schema ξ, Sp plays its roll where it

is more beneficial for the GA to have higher selection pressures for both sets U and V

(see Figure 7.130 for selection pressure of 2 and Figure 7.134 for selection pressure of 6).

Theoretically, pc should be quite destructive but initially schema ξ is not present, so pc is

playing its roll of building ξ. However, it should be taken into account that for 3 ≤ Sp ≤ 6

on average the maximum quality of solution was obtained when pc = 0.0 and pm = 0.004

(a point belonging to set U). Table 7.16 shows the statistics for set U and V . On average,

set U outperformed set V .

Table 7.17 shows the analysis of variance for specific hypothesis 3.2.1 first case. There

is a statistically significant impact of each operator alonea nd in pair-wise combinations

on the quality of the solution, but not the three operators together. The ANOVA test is

showing, then, that the interaction effect between Sp, pc and pm on the dependent variable

is not statistically significant. It is possible that the cause is that the initial schema ξ that

the algorithm is looking for is not initially present so it is expected that the majority of

individuals are going to have approximately the same fitness value. The effect that could

have on Sp in the moderation of the impact of pm on the relationship between pc and the

quality of the solution is not statistically significant.

4It should be highlighted that a 50 sub-snake is embedded, and that just the last 128 genes are generated
randomly.

235

For the second case, half of the initial population has schema ξ and half are generated

randomly. In this case, the crossover operator could be destructive if an instance of schema

ξ is selected to mate with an individual randomly generated. However, this fact is lesser

in the sense that individuals with schema ξ probabilistically tend to be the ones selected

(individuals with schema ξ are expected to be more fit). This time again, on average the

maximum average of quality of solution was obtained when pc = 0 and pm = 0.004, and

set U outperformed set V as is shown in Table 7.18.

Table 7.19 shows the analysis of variance for hypothesis 3.2.1 second case. There is

a statistically significant impact of each operator alone, in pair-wise combinations, and

all the three together on the quality of the solution. The ANOVA test is showing then

that there is a statistically significant correlation between the operators pc, pm and Sp that

impact the quality of the solution, and it is possible that the cause is that the schema ξ the

algorithm is looking for is initially present. In this case, schema ξ competes with different

schema and the three operators pc, pm and Sp interact together to impact the quality of the

solution.

For the third case, where all individuals in the initial population have schema ξ, the

disruptive factor of pc on ξ is not present. This does not mean that pc has no impact on

the solution quality because the algorithm nonetheless has to look for a snake in the 8-

dimensional hypercube that contains the sub-snake given. This time again, on average the

maximum average of quality of solution was obtained when pc = 0 and pm = 0.004, and

set U outperformed set V as is shown in Table 7.20.

For cases where schema ξ is already present, the mutation operator could be quite

destructive, such as a change of a bit in the h = 50 positions already fixed because of the

snake embedded causes schema ξ to be destroyed.

Table 7.21 shows the analysis of variance for hypothesis 3.2.1, third case, where the

initial population has the schema ξ in all chromosomes. There is a statistically significant

impact of each operator alone, and in a pair-wise combinations, on the quality of the solu-

tion. However, there is no statistically significant impact looking at the three independent

variables together. It is expected that if all the individuals already have schema ξ, then al-

most all of them are going to be evaluated approximately with the same values, making it

harder for Sp to moderate the impact of pm in the relationship between pc and the solution

quality.

236

Chapter 9

Conclusions

Some questions arise when solving a problem with GAs: What is a good fitness function,

a good number of individuals in the initial population, a good selection mechanism and

selection pressure, a correct crossover probability, a correct mutation probability, and an

appropriate stop criterion to use in order to solve a problem? The setting of these param-

eters constitutes an optimization problem (Diaz-Gomez and Hougen, 2007c; Eiben et al.,

1999). Any set of values for these parameters: fitness function,1 number of individuals,

selection mechanism, selection pressure Sp, crossover probability pc, mutation probability

pm, and stop criterion used, can lead the algorithm to a different quality of the solution

(Grefenstette, 1986). Therefore, it is expected that the time spent in the selection of these

parameters could be compensated for the performance of GAs, where performance is mea-

sured in solution quality and possibly in the number of generations to obtain a solution

(Eiben et al., 1999).

This dissertation has worked three research questions that gathers five parameters: the

diversity of the initial population, the fitness function, the crossover and mutation proba-

bilities and the selection pressure, in an effort to address the difficult problem of optimiza-

tion of parameters for GAs. The GA’s parameters constitute, in some cases, open problems

like the number of individuals in the initial population (Piszcz and Soule, 2006a) and all

are problem dependent. However, our study approaches the initial population problem,

proposing some measures of diversity in an effort to validate the general hypothesis that

says that if the diversity measure V (PA) for a population PA is greater than the diversity

1The fitness function defines the optimization problem, but in a practical sense it is a necessary step in
the implementation of GAs, for example, in the snake-in-the-box problem, multiple fitness functions try to
find the longest snake, but each one influences the finding of a better solution.

237

measure V (PB) for a population PB of the same number of individuals, then, it is expected

that the performance (X(G, PA)) of the GA with population PA is going to be better than

the performance (X(G, PB)) of the GA with population PB. The problem of finding a

good fitness function has been addressed by proposing the use of fitness function’s inter-

nal parameters that penalize, in a graduated way, violations of the constraint, diminishing

the false positive ratio. For the case of the crossover and mutation probabilities, some

upper thresholds that could be used depending on the disruptive factors of these operators

and selection pressure used, has been proposed, and a relationship between them has been

established.

9.1 Diversity in Initial Population and GA Performance

The first general hypothesis points out the relationship between diversity in the initial pop-

ulation and the quality of the possible solution. This dissertation reports how to measure

diversity in an initial population. Two approaches were used in order to measure diversity

for the specific hypotheses 1.1 to 1.8: entropy and Hamming diversity, i.e., diversity at the

gene-level and diversity at the chromosome-level. The results of these specific hypothe-

ses showed no direct correlation between diversity and the quality of the solution, nor for

the number of generations to reach the global maximum, for the one-max function and

the snake-in-the-box problem in a 5-dimensional hypercube, using the set of parameters

1 (see Section 7.1). This result goes against the common belief that diversity in the initial

population (using wide used definitions of diversity) influences directly the performance

of GAs (Jaroslaw Arabas and Mulawka, 1995; Burke et al., 2004; Lobo and Lima, 2005;

Grefenstette, 1986; McPhee and Hopper, 1999; Rosca, 1995). This does not mean that

diversity in the initial population is not important, as stated in the exploratory study (see

Chapter 6). But different than the exploratory study in Section 6.1.2, in hypothesis 1,

population size is constant and diversity is the independent variable that could impact the

performance GAs.

The rejection of hypothesis 1 lead us to think that maybe, it is not diversity alone but

the increasing of the population size that could help sometimes in the performance of

GAs as was shown in the empirical studies in Section 6.1.2 and Diaz-Gomez and Hougen

(2007a). However, population size and diversity cannot be considered isolated from the

rest of parameters, and specifically it is quite important to measure how diversity changes

238

as the algorithm iterates. If diversity decreases quite soon then it is expected that the al-

gorithm is going to converge prematurely. The parameter that could have a strong relation

with diversity is selection pressure (Jaroslaw Arabas and Mulawka, 1995). If selection

pressure is high then it is expected that the GA is going to choose the more fit individuals,

and in consequence it is going to converge prematurely (Jaroslaw Arabas and Mulawka,

1995). If, on the contrary, selection pressure is quite low, then it is possible that the algo-

rithm is going to expend a lot of computations to converge or it may diverge because of the

lack of selection pressure (Jaroslaw Arabas and Mulawka, 1995). It should be highlighted

that the selection pressure used for testing hypotheses 1.1 to 1.8 was previously used by

Lobo and Goldberg (2004) (Sp = 2) in testing the one-max function and by Diaz-Gomez

and Hougen (2006b,d) in testing the snake-in-the-box problem in 4 and 8-dimensional

hypercubes. In conclusion, diversity cannot be seen alone in the initial population, but

in conjunction with the rest of parameters: selection pressure (as described previously),

crossover and mutation, that are responsible for exploring new regions of the search space,

and the stop criteria, where diversity itself can be used as a measure of stopping.

9.2 Internal vs. External Parameters

The second general hypothesis addressed the difficult problem of finding good param-

eters that join the objective(s) and the constraint(s). For doing that, the corresponding

empirical study for the intrusion detection problem and the snake-in-the-box problem was

performed (see Section 6.2). Equation 7.3 penalizes each individual in a finer way with

no use of external parameters. This characteristic makes Equation 7.3 good for avoiding

false positives. Equation 7.3 with the union operator, free of external tuning, outperforms

Equation 7.4, with external tuning, using the Hanssen and Kuipers’ score (see Section

7.2) validating specific hypothesis 2.1 that says that Equation 7.2 is satisfied for the off-

line intrusion detection problem, using as fitness function Fi Equation 7.3 with internal

parameters and the union operator; and using as fitness function Fe Equation 7.4, and pa-

rameter set 2 (see Section 7.2). As Equation 7.3 alone has the drawback of giving false

negatives, the union operator was suggested, a mechanism that stores the current solution

and begins to add possible solutions if the algorithm finds them—because sometimes the

algorithm could converge to a local maximum (see Section 6.2). However, if parameter

239

set 2 (as suggested by Mé (1993)) is changed and the length l of the individual I is en-

larged to hundreds or thousands, as done in the exploratory study (see Section 6.2.2.1),

the false negative problem appears again. An increase in the number of individuals in the

initial population was needed in order to diminish the false negative ratio (Diaz-Gomez

and Hougen, 2007e).

Certainly, Equation 7.3, which is free of external tuning of parameters and outperforms

Equation 7.4 (with external tuning), is a contribution. Work done in this dissertation

tried to generalize the concept of Equation 7.3 using it partially for finding snakes in

hypercubes (see Sections 5.1.3 and 6.2.3). However, the snake-in-the-box problem has

certain characteristics, like the fact that the solution should be a connected path, that

Equation 7.3 alone can not handle. Therefore, a new term in the fitness function was used:

Length(S). It should be highlighted that for the case of the snake-in-the-box problem

there is no explicit observed vector OV that can be used in the penalty term in order to

compare its entries with (AM ∗ S)j; therefore, because a node of the snake is such that

1 ≤ (AM ∗ S)j ≤ 2, then the comparison is made as
∑2d

j=1 max[0, (AM ∗ S)j − 2],

where AM is the adjacency matrix that encodes the d-dimensional hypercube and S is

the chromosome (possible snake), or a count of the number of failures is taken, i.e, the

number of times that (AM ∗ S)j > 2 for all 0 ≤ j ≤ 2d such that Sj = 1. Besides the

counting of bad points, the penalty term includes the counting of isolated and lazy points.

Equation 6.5, normalized as Equation 7.3, is good for finding local minima, it is quite

effective for finding snakes, but not longer ones (see Section 6.2.3). In an effort to obtain

longer snakes, an empirical study regarding the mutation rate for snakes in 4-dimensional

hypercubes was conducted, giving as a result a mutation rate as in Equation 6.14, which is

adaptive according to the average fitness value µ(t) at generation t of the entire population.

Equation 6.14 outperforms other mutation rates that depend on external parameters like

the fixed mutation rate of 3% per chromosome (see Section 6.3.5). Besides this, the term

Length(S), that is guiding to longer snakes, was tested alone and in conjunction with

some penalty terms like #Lazy and #Isolated, where Equation 6.7 maybe one of the

most prominent in finding longer snakes in 4-dimensional hypercubes (see Table 6.19 in

Section 6.2.3 where seven fitness functions have been proposed).

240

9.3 The Selection Pressure and Crossover and Mutation

Relationship

Hypothesis 3 basically tested the Schema Theorem, which usually is not considered in the

design of GAs. It is a common practice to solve problems with GAs using a probability of

crossover pc = 0.70 and a probability of mutation of pm = 0.001 without considering the

problem itself (this dissertation investigated these values as many others to determine how

they influence the performance of GAs), as suggested by Holland (1992). If results are

not as expected, changes in both parameters begin to occur and usually the ones that give

better results are the ones that are reported. Therefore, basically the principal justification

for specific values or a range of values used, in solving a problem with GAs, is the empir-

ical studies. The third general hypothesis proposes then a relationship between the values

of the probability of crossover pc and the probability of mutation pm that depends on the

selection pressure Sp and the schema under consideration (i.e., long schema where ε = 1,

and small schema where ε = 1/(l− 1) with l the length of the chromosome). Such a rela-

tionship has been derived from the Schema Theorem proposed by Holland (1992), taking

into account the hypothesis that the number of each schema is expected to grow propor-

tionally to its fitness value, considering also non-disruptive factors due to the crossover

and mutation operators. This relationship is important, because it shows that a change in

one factor (for instance a change in pm) should take into account a corresponding change

in the other(s) (for instance pc and/or Sp). Besides the interdependency between pc and

pm, the relationship proposed as in Equations 5.30 and 5.31 highlights the importance of

pm that sometimes is not given in GAs (Piszcz and Soule, 2006b).

The validation of specific hypotheses 3.1 and 3.2 showed that the proposed relation-

ship between Sp, pc and pm, as in Equation 7.5, can lead the cases of the snake-in-the-box

problem for the 8-dimensional hypercube and the one-max function to obtain on average

better quality solutions, where, for example, obeying the Schema Theorem Trade-off (as

this relationship is called), longer snakes can be found (see Section 6.3.3). But, if a wrong

combination of them is chosen, that can lead the algorithm to mislead the solution or to

expend a lot of computational resources to find it (see the exploratory study in Sections

6.3.2 and 6.3.6 and the validation of the specific hypotheses in Sections 7.3.1 and 7.3.2).

241

The optimization of parameters for GAs is a difficult problem, and there is no a rule

or general conclusion that can be applied to every kind of problem (Eiben et al., 1999).

However, the theoretical analysis, the empirical studies conducted, and the validation of

hypotheses 2 and 3, and the rejection of hypothesis 1, presented in Chapter 7, in this

dissertation, could be another piece of the block that could help in the building of param-

eter setting for GAs. Future research in areas like the relationship between entropy and

Hamming diversity; diversity and selection pressure; mutation/crossover probability and

diversity; selection pressure, diversity and mutation/crossover probability; a definition of

schema diversity, the use of new operators (like the union operator used in Section 6.2.1)

that could help fitness functions like Equation 7.3 to avoid false negatives; the beginning

of the algorithm with an initial population totally zeroed, so the algorithm has to build the

solution from scratch; the possible importance of the mutation operator in the building of

better solutions where the crossover operator is quite destructive (as the snake-in-the-box

problem presented in Section 6.3.3); and the possible adaptation of Sp, pc and pm accord-

ing to the Schema Theorem Trade-off (see Section 5.2.1) as the GA runs, are some of the

areas for continuing this research.

242

Bibliography

Anderson, J. P., 1980: Computer security threat monitoring and surveillance. Technical

report, Fort Washington, PA.

Bace, R. G., 2000: Intrusion Detection. MacMillan Technical Publishing, USA.

Bäck, T., 1996: Evolutionary Algorithms in Theory and Practice. Oxford University

Press.

Bäck, T., A. Eiben, and V. der Vaart, 2000: An empirical study on GAs “without param-

eters”. Proceedings of the 6th International Conference on Parallel Problem Solving

from Nature, 315–324.

Bitterman, D. S., 2004: New lower bounds for the snake-in-the-box problem: A prolog

genetic algorithm and heuristic search approach. Master Thesis accessed Jun. 2007.

URL http://www.cs.uga.edu/p̃otter/CompIntell/bitterman derr

ick s 200412 ms.pdf

Burke, E. K., S. Gustafson, and G. Kendall, 2004: Diversity in genetic programming: An

analysis of measures and correlation with fitness. IEEE Transactions on Evolutionary

Computation, 8, 47–62.

Casella, D. A. and W. D. Potter, 2004: New lower bounds for the snake–in–the–box

problem: Using evolutionary techniques to hunt for snakes. Proceedings of the Florida

Artificial Intelligence Research Society Conference, 264–268.

Cheng, C. D. and A. Kosorukoff, 2004: Interative One-Max Problem Allows to compare

the Performance of Interactive and Human-Based genetic Algorithms. Chapter in Lec-

ture Notes in Computer Science.

243

Coello, C. A. C., 1998: A comprehensive survey of evolutionary-based multiobjective

optimization techniques. Knowledge and Information Systems, 1, 269–308.

Cohen, P. R., 1995: Empirical Methods for Artificial Intelligence. The MIT Press.

Costa, J. C., R. Tavares, and A. Rosa, 1999: An experimental study on dynamic ran-

dom variation of population size. Proceedings of the IEEE International Conference on

Systems, Man, and Cybernetics, 607–612.

Crosbie, M. and G. Spafford, 1995: Applying genetic programming to intrusion detection.

Proceedings of the AAAI Fall Symposium, 1–8.

Deb, K. and S. Jain, 2004: Running performance metrics for evolutionary multi-objective

optimization. Technical report, Indian Institute of Technology Kanpur.

Denning, D. E., 1986: An intrusion-detection model. Proceedings of the IEEE Symposium

on Security and Privacy, 118–131.

Diaz-Gomez, P. A. and D. F. Hougen, 2005a: Analysis of an off-line intrusion detection

system: A case study in multi-objective genetic algorithms. Proceedings of the Florida

Artificial Intelligence Research Society Conference, 822–823.

—, 2005b: Further analysis of an off-line intrusion detection system: An expanded case

study in multi-objective genetic algorithms. Proceedings of The South Central Infor-

mation Security Symposium.

—, 2005c: Improved off-line intrusion detection using a genetic algorithm. Proceedings

of the International Conference on Enterprise Information Systems, 66–73.

—, 2006a: A genetic algorithm approach for doing misuse detection in audit trail files.

Proceedings of the International Conference on Computing, 329–335.

—, 2006b: Genetic algorithms for hunting snakes in hypercubes: Fitness function analysis

and open questions. Proceedings of the International Conference on Software Engineer-

ing, Artificial Intelligence, Networking, and Parallel/Distributed Computing, 389–394.

—, 2006c: The snake in the box problem. mathematical conjecture and a genetic algo-

rithm approach. Proceedings of the Genetic and Evolutionary Computation Conference,

1409–1410.

244

—, 2006d: The snake in the box problem: Mathematical conjecture and a genetic algo-

rithm approach. Proceedings of the Genetic and Evolutionary Computation Conference,

1409–1410.

—, 2006e: Three approaches to intrusion detection: Analysis and enhancements. Pro-

ceedings of the National Computer and Information Security Conference.

—, 2007a: Empirical study: Initial population diversity and genetic algorithm perfor-

mance. In Proceedings of the Conference on Artificial Intelligence and Pattern recog-

nition.

—, 2007b: Hunting for snakes in hypercubes using genetic algorithms. International Jour-

nal of Computer & Information Science, to appear.

—, 2007c: Initial population for genetics algorithms: A metric approach. Proceedings of

the International Conference on Genetic and Evolutionary Methods.

—, 2007d: MISUSE DETECTION: A neural network vs. a genetic algorithm approach.

Proceedings of the International Conference on Enterprise Information Systems.

—, 2007e: MISUSE DETECTION: An iterative process vs. a genetic algorithm approach.

Proceedings of the International Conference on Enterprise Information Systems.

—, 2007f: A trade-off of the schema theorem. In Proceedings of the Conference on Arti-

ficial Intelligence and Pattern recognition.

Efron, B. and R. J. Tibshirani, 1993: An Introduction to the Bootstrap. Chapman &

Hall/CRC.

Eiben, A. E., R. Hinterding, and Z. Michalewicz, 1999: Parameter control in evolutionary

algorithms. IEEE Transactions on Evolutionary Computation, 3, 124–141.

Frederick, W. G., R. L. Sedlmeyer, and C. M. White, 1993: The hamming metric in

genetic algorithms and its application to two network problems. Proceedings of the

ACM/SIGAPP Symposium on Applied Computing, 126–130.

Fried, D. and M. Zissman, 1998: Intrusion detection evaluation. Technical report, Lincoln

Laboratory, MIT, accessed March 2004.

URL http://www.ll.mit.edu/IST/ideval/

245

Fu, X. and L. Wang, 2005: A rule extraction system with class-dependent features. Evo-

lutionar Computation in Data Mining, 79–99.

Giguere, P. and D. E. Goldberg, 1998: Population sizing for optimum sampling with

genetic algorithms: A case study of the onemax problem. Proceedings of the Third

Anual Genetic Programming Conference.

Goldberg, D. E. and K. Sastry, 2001: A practical schema theorem for genetic algorithm

design and tuning. Proceedings of the Genetic and Evolutionary Computation Confer-

ence, 328–335.

Greenberg, D. S. and S. N. Bhatt, 1990: Routing multiple paths in hypercubes. Proceed-

ings of the Second Annual ACM Symposium on parallel Algorithms and Architectures.

Grefenstette, J. J., 1986: Optimization of control parameters for genetic algorithms. IEEE

Transactions on Systems, Man, and Cybernetics, SMC-16, 122–128.

Ham, F. M. and I. Kostanic, 2001: Principles of Neurocomputing for Science & Engineer-

ing. Mc Graw Hill.

Harik, G. R. and F. G. Lobo, 1999: A parameter-less genetic algorithm. Proceedings of

the Genetic and Evolutionary Computation Conference, 258–265.

Holland, J., 1992: Adaptation in Natural and Artificial Systems. MIT Press.

Jaccard, J., 1998: Interaction effects in factorial analysis of variance. a SAGE UNIVER-

SITY PAPER, monograf Series/Number 07-118.

Jaroslaw Arabas, Z. M. and J. Mulawka, 1995: GAVaPS—a genetic algorithm with vary-

ing population size. Proceedings of the IEEE International Conference on Evolutionary

Computation, 73–78.

Klee, V., 1970: What is the maximum length of a d-Ddimensional snake. American Math-

ematics Monthly, 77, 63–65.

Koumousis, V. K. and C. P. Katsaras, 2006: A saw-tooth genetic algorithm combining the

effects of variable population size and reinitialization to enhance performance. IEEE

Transactions on Evolutionary Computation, 10, 19–28.

246

Lakshmivarahan, S. and S. Dhall, 1990: Analysis and Design of Parallel Algorithms:

Arithmetic and Matrix Problem. MacGraw-Hill.

Li, W., 2003: A genetic algorithm approach to network intrusion detection. Global Infor-

mation Assurance Certification. Practical assignment, accessed July 19/2004.

URL http://www.giac.org/practical/GSEC/Wei Li GSEC.pdf

Lobo, F. G. and D. E. Goldberg, 2004: The parameter-less genetic algorithm in practice.

Information Sciences—Informatics and Computer Science, 167, 217–232.

Lobo, F. G. and C. F. Lima, 2005: A review of adaptive population sizing schemes in

genetic algorithms. Proceedings of the Genetic and Evolutionary Computation Confer-

ence, 228–234.

Lunacek, M. and D. Whitley, 2006: The dispersion metric and the CMA evolution strat-

egy. Proceedings of the Genetic and Evolutionary Computation Conference, 447–484.

Mann, P. S., 2007: Introductory Statistics. Wiley.

McPhee, N. E. and N. Hopper, 1999: Analysis of genetic diversity through population

history. Proceedings of the Genetic and Evolutionary Computation Conference, 1112–

1120.

Mé, L., 1993: Security audit trail analysis using genetic algorithms. Proceedings of the

International Conference on Computer safety, reliability, and Security, 329–340.

—, 1998: GASSATA, a genetic algorithm as an alternative tool for security audit trail

analysis. Proceedings of the First International Workshop on the Recent Advances in

Intrusion Detection.

Mitchell, M., 1998: An Introduction to Genetic Algorithms. MIT Press.

Pelikan, M., D. E. Goldberg, and E. Cantú-Paz, 2000: Bayesian optimization algorithm,

population sizing, and time to convergence. Technical report, Illinois Genetic Algo-

rithms Laboratory, University of Illinois.

Piszcz, A. and T. Soule, 2006a: Genetic programming: Optimal population sizes for vary-

ing complexity problems. Proceedings of the Genetic and Evolutionary Computation

Conference, 953–954.

247

—, 2006b: A survey of mutation techniques in genetic programming. Proceedings of the

Genetic and Evolutionary Computation Conference, 951–952.

Potter, W. D., R. W. Robinson, J. A. Miller, K. Kochut, and D. Z. Redys, 1994: Using

the genetic algorithm to find snake-in-the-box codes. Proceedings of the 7th Interna-

tional Conference on Industrial & Engineering Applications of Artificial Intelligence

and Expert Systems, 421–426.

Rajan, D. S. and A. M. Shende, 1999: Maximal and reversible snakes in hypercubes.

Proceedings of the Australasian Conference on Combinatorial Mathematics and Com-

binatorial Computing.

Reeves, C. R., 1993: Using genetic algorithms with small populations. Proceedings of the

5th International Conference on Genetic Algorithms, 92–99.

Rosca, J. P., 1995: Entropy-driven adaptive representation. Proceedings of the Workshop

Genetic Programming: From Theory to Real-World Applications, 23–32.

Schneier, B., 2000: Secrets & Lies: Digital Security in a Networked World. Wiley Com-

puter Publishing.

Shannon, C. E., 1948: A mathematical theory of communication. The Bell System Tech-

nical Journal, 27, 379–423, 623–656.

Snevily, H. S., 1994: The Snake-in-the-Box problem: A new upper bound. Discrete Math-

ematics, 307–314.

Tjaden, B. C., 2004: Fundamentals of Secure Computer Systems. Franklin and Beedle &

Associates.

Weisstein, E. W., 2006: Snake – from mathworld. Accessed May 2007.

URL http://mathworld.wolfram.com/Snake.html

Yu, T.-L., K. Sastry, D. E. Goldberg, and M. Pelikan, 2006: Population sizing for entropy-

based model building in genetic algorithms. Technical report, Illinois Genetic Algo-

rithms Laboratory, University of Illinois.

248

Yu, T.-L., K. Sastry, D. E. Goldberg, and K. Sastry, 2003: Optimal sampling and speed-

up for genetic algorithms on the sampled onemax problem. Technical report, Illinois

Genetic Algorithms Laboratory, University of Illinois.

Zitzler, E., K. Deb, and L. Thiele, 2000: Comparison of multiobjective evolutionary algo-

rithms: Empirical results. Evolutionary Computation, 8, 173–195.

249

