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CHAPTER 1
INTRODUCTION

1.1, ﬂ;gﬁgziggl Review. The problem of continuous rectangular
plates has been treatgd in several different ways. Solutions for
rectangular plates that are continuous in a single direction over
rigid supports have been presented by Marcus (l)+, Galerkin (2),
and Jensen (3). A distribution procedure for the analysis of plates,
continuous in a single direction over rigid or flexible beams with
the two other sides simply supported, was developed by Newmark (4).
Hawk (5) applied the carry-over moment method to plates continuous
over rigid simple supports which lie transverse to simply supported
edges, the angular functions beingldeveloped to describe the equi-
librium state of a simple plate acted upon by lateral léads and
bending moments distributed along its edges.

Solutions to the problem of a plate consisting of an infinite
number of identical panels supportéd by point columns and subjected

to a uniformly distributed load were treated by Nadai (6) and

Galerkin (2). Sutherland, et al., (7) treated the same problem

*Note: Numbers in parentheses,after names, refer to numbered
references in Selected Bibliography.



with beams of equal flexural stiffness framed between the point
columns., Nielsen (8) made analyses of the same problems by finite
differences. Bittner (9), and Maugh and Pan (10) presented algebraic
solutions for plates continuous over rigid beams by assuming certain
approximate continuity conditions between panels and expressing the
rotations on each edge of a panel in terms of the moments on all
edges. Engelbreth (11), and Siess and Newmark (12) developed approxi-
mate distribution procedures for determining the total moments across
any section for plates continuous over rigid beams. A combination

of finite differences to get single panel solutions and an extension
of the moment distribution procedure to get the boundary deformations
was described by Ang and Newmark (13) to handle problems involving
plates continuous over supports consisting of columns and beams with
flexural and torsional stiffnesses.

1.2. Scope of Study. A method for analyzing thin rectangular
plates of constant thickness, continuous in two directions over rigid
supports, is described herein.

The flexibility approach is used, the basic structure being &
simply supported rectangular plate., The essentials of this method
have been discussed by Tuma (17) in a graduate course in plate
structures. The angular functions are defined in terms of the in-
fluence coefficients for deflection of the simple plate. These co-
efficients are obtained from a set of comprehensive tables prepared
by Tuma, Havner, and French (16). It is assumed that the ordinary
theory of flexure of plates is valid and that no horizontal direct

stress exists on any vertical cross section of the plate.



A general moment equation is presented in both matrix and carry-
over form. The solution of the continuous plate is derived from
single panel solutions by accounting for the conditions of continuity
and equilibrium with adjoining panelsn Since the solutions for the
simple plate are based on the calculus of finite differences, these
solutions are necessarily approximate and therefore the angular
functions obtained are also approximate. A comparison with angular
functions obtained by classical methods is presented. Finally, a
general moment equation directly in terms of influence coefficients

for deflectlon of a simple plate is given.



CHAPTER II
GENERAL MOMENT EQUATION

2,1. Derivation of Moment Equation. & continuous rectangular
plate thet is subjected to loads normel to the middle plane of the
plate is considered (Figure 2.1 ). The flexural rigidity in any

panel is constant. The supports are rigid.

Figure 2,1. General Structure



The equilibrium states of panels 1 and m (any two adjacent
panels) are now combined so that geometrical compatibility is
satisfied at the intersection of the two panels., This condition re-

quires that
Z'ei = 0 , (2.1)

where 94 denotes rotation at point i, i being a particular point

between panels.,

Equation (2.1) can be written (see Figure 2.2):

where . (8;); and (84), are the rotations at i of panels 1 and m

respectively.

Figure 2.2, Slope Compatibility of Adjacent Panels



The algebraic expressions for the slopes are:

H

(1)1 }J Tik Pk * (Fi)1 M3 + ZJGiij (2.3)
1 1

(ei)m

where:
Jj 1s any point, other than i, on the boundary of panels.
k is a typical interior point of panels.

The angular load function Tik is the edge slope at i due to a

unit load at k, considering the plate simply supported,

The angular flexibility (F3i)1. p is the edge slope at i, of

plate 1 or m respectively, due to a unit moment at i, consider-
ing the plate simply supported.

The angular carry-over Gii is the edge slope at 1 due to a unit

moment &t j, considering the plate simply supported.

Py is any load applied at k.

Ms is the bending moment at 1.

Mj is the bending moment at j.
An equation of the form of equations' (2.3) and (2.4) was presented
by Tuma (14).

Using equations (2.3) and (2.4) in equation (2.2),

% Tik Pk + (Fi)l Mi + %’ Gij I‘/Ij +

% Tik P+ Fodp My +;Giij = 0 (2.5)



Rearranging terms in equation (2.5), the general moment equation

becomes:

NPT M, ¥ F. M. G.. = O 2.6
2; k ik * i 2; i 7 >ﬂ 3] (2.6)
l,m 1,m lym

where 1,m beneath the summation sign indicates a summation over all

boundary points of both panels 1 and m,

2.2. Moment Equation in Carry-Over Form. The carry-over method
was originated by Tuma (15) for the analysis of continuous beams.
This method can be used as a very valuable tool for the solution
of the general moment equation of continuous plates derived in
article 2.1.

From equation (2.6), the following identity is obtained:

Miziﬁ.="ZGm% "Z Ti%FK (2,7)
lym

lym 1,m

which leads to the relation

ZJ Gyg M zJ Tix Pk
bt L - (2.8)

M., = - Y'Y S
24 Fs 24 Py
lym l,m

1

7 Bubstituting:

= Pij (2.9)

1,m

) Ti
I

%_ TikPk
-2 M (2,10)
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in equation (2.8), the moment equation in its carry-over form is obtained:

l,m
The constants involved in equation (2.11) can be interpreted in
the carry-over procedure as follows:

The carry-over factor T is the moment at i due to & unit moment

applied at j if continuity with adjacent panels is developed only

at point 1.

1 and m 1f continulty is developed only at point i.
2.3, Matrix Formulation of Moment Egquation. When the number
of panels in the continuous plate becomes large the applicability
of the carry-over moment method decreases because of the complexity
of the carry-over process. A matrix formulation and computer solution
of the problem becomes desirable in such cases.
The general moment equation [ Eqg, (2,6)] can be expressed in

matrix form as follows:

T 2 F ¢ G . . G i
1k 1 12 18 1P 1
Tzk GLR.I Fa Gza ° S B Ggp Mz
Ta k G31 as 2‘1 Fa o e Ga p I\/I:3
o + . . e« e e e . . = 0 (2.12)




where the loading has been reduced to a unit concentrated load at a

single point k in order to obtain an influence coefficient matrix,

and the subscript p corresponds to the total number of boundary points.
The solution of equation (2.12) can be obtained by using the

inverse matrix. The solution procedure is as follows.

Using an abbreviated notation, equation (2.12) becomes

[ -0 -o
C1pd- - [

Premultiplying both sides by the inverse of matrix G,

(o] Te) D) = - [e] [-]

from which

or, since [GJ [G
i

[I] = unit matrix of order p,

Sl

is the adjoint of [Gl divided by the determinant

—
| I
i

it

The inverse of [G

of [G],
Then, [M] _ “éﬁfrg [T]

where: Adj G is the adjoint of the square metrix G (the matrix obtained

i

n

by replacing each element in [G] by its cofactor, then
interchanging rows and columns).

[ G| is the determinant of the square matrix G.
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Denoting
i+

gy = cofactor Gyy = (-1) (minor of Gi;),

the solution of the moment equation in its expanded form becomes:

"] — - .
1 gll gal g31 o gP1 1k
Y €12 B2 8ap * + -+ Bp Tak
Ma ‘ 813 Bas 83z . . Epa Tak
. = - 1 . e e e e . (2.13a)
Key
¥ | | &ip E:p &ap pp| | pk |
or,
My = - *—rai—*“” (gll Tok* 8,1 Tok* 8a1 Tak v v '*’gpiTpk)
(i = 1, 2, . ) p)
(2.13Db)
where: gi3 = cofactor ZﬁFi'

The minor of Gij is the determinant of the matrix that remains when
the row and column containing the element Gij in the square matrix

G are deleted.



CHAPTER IIT
ANGULAR FUNCTIONS

3.1. Angular Load Function,

(a) Derivation of Formula., Consider a simply supported rec-
tangular plate to be acted upon by a load P = 1 at point k (Figure 3.1).
From the definition given in Chapter II, the rotation (slope of the

deflection curve) at i due to Py = 1 is the angular load function

Tk’

P=1

Figure 3.1. Angular Load Function in Simple Plate

11
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If the plate is divided into an arbitrary number of equally sized

rectangular elements with sides Ax and Ay in the directions x and y,

respectively, the slope of the deflection curve can be approximated as:

Wa
e 1 =G, 3 . l
o= (3.1)
where LI 1is the displacement of point 1 + 1.
From equation (7-3), reference 19, the displacement of point
i+ 1 due to a unit load at k is:
1
o = A A o R
- (14 1)k D x W n(;‘L + 1)k (3.2)

where: D is the flexural rigidity of the plate.

ﬂ(. " is the influence coefficient fof,displacement at

i+
i+ 1 due to a unit load at k.

Using equation (3.2) in equation (3.1), the angular load function

is found to be:

Ay
= 3.3
Tik D n(j_ + 1)k ( a)

If i is on an edge parallel to the x direction, the expression

for the angular load function becomes:

Ax
T = N (3.3Db)
ik D (1 * 1)k
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(b) Alternate Derivation. Equations (3.3) can be derived using
the reciprocal theorem of Maxwell. This theorem (generalized by Betti
and Rayleigh) states that: "if an elastic body is subjected to two
systems of body and surface forces, then the work that would be done
by the first system of external forces in acting through the dis-~
placements due to the second system of forces is equal to the work
that would be done by the second systen of forces in acting through
the displacements due to the first system of forces" (page 169,

reference 20). Thus, for the two load systems given in Figure 3.2:

Mi (ei)P = Pk (wk)Mi (3.4)

Figure 3.2. Load Systems in Simple Plate
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When P, = 1, (8,) = T;)» and equation (3.4) becomes,

k 1 Pk
My (1y) = () Gady (3.5)
from which
Tik = _(.v.%%qi (3.6)

To solve equation (3.6) for the angular load function, it is

necessary to find the deflection at k due to a moment at i. Applying

a unit moment at i (a couple with forces T&Y at 1 and 1 + 1 in

Figure 3.3), the deflection at k is:

1
x

(e )T TS (7

Ax Ay nk(i . 1)

N B

Figure 3.3. Moment Equivalence in Simple Plate
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Using now equation (3.7) in equation (3.6),

1
X

D Ax
by nk(i + 1)

or,

by

T = e )

" T Meie) (3.8)

From the reciprocal relation between influence coefficients in the

plate,

=

nk(i +1) n(i +‘1)k

Thus, equation (3.8) becomes identical to equation (3.3z).

(¢) Non-Nodal Load. Equations (3.4a) and (3.4b) can be
evaluated numerically for a particular problem with thé aid of the
tables in reference 16 if P, is & nodal load, If by is a nop—nodal
load, the tables cannot be used directly and a formula for the
angular load function in terms of the influence coefficients for
deflection due to equivalent nodal loads must be derived. |

In Figure 3.4, a non-nodal load is resolved into four adjacent

nodal loads.
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P "
Ay’
y
Figure 3.4. Equivalentes of Non-Nodal Load
The formulas for these nodal loads are:
Ax” Ay'
P = P 3.9a
" " T (3.92)
n 4
Pk” = Pk Ax Ay (309b)
Ax Ay
_ AX, Ay”
Pk/// = Pk bx by (3.90)
rx’' by’
Pkllﬂ = Pk J;X .'Zy_ (3.,96«)

Pk o+ Pk// + Pk/// + Pk”” = Pk (3 ° 96)
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The displacement of a point i + 1 due to Py will be equal to the
sun of the displacements developed at 1+ 1 by Pk', Py, Pp*, and

Pyo# , thus:

W = W + + +
(i 41 )k (i + l)kl W(i . 1)k// W(i . l)k/// W(i + 1 )k////
(3.108)
and, from equations (3.9) and the equation for deflections,
P .
- ok P +Ax// A “" )
Y1+ 1)k TBx by D hx by [Ax by ﬂ(i + 1)K’ v n(i s )K"
\ / 72 . A ’ / o
b by n(i + 1)k o+ b by n(i + 1)k ]
(3.10b)

Combining equations (3.10) and (3.1) (with P, = 1), the angular

load function becomes:

= L ! ! " )+ " /
Tik D Ax [Ax (&y n(i +1)k" v by n(i + 1)k”) ax" (4y ﬂ(i +1 )k’

+ ay” ﬂ(i + 1)k”)] (3.11a)

The above equation is valid when i is on an edge parallel to the

y direction. When 1 is on an edge parallel to the x direction, the

angular load function is:

+ A 14
4 y 'n(i + 1)k

. - ? 7 A:K// A / ;
i . [Ax (8y ﬂ(i 1)K m) + u“ﬁ“(:y n(i )k

* by Ms s l)k”)] (3.11b)
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3.2. Angular Flexibility. Consider a simply supported rectangular
plate to be acted upon by & unit moment at point i (Figure 3.5). From
the definition given in Chapter II, the rotation at i due to My = 1

is the angular flexibility F;.

Ly

Figure 3.5. Angular Flexibility in Simple Plate

Using the approach illustrated in Figure 3.2,

1

- _ _ ix .
(Wi+1)1v1i=l“w(i+1)(l+l) = -——«-—1—)—-—-———-— AXA}I T?(i*‘l)(i*‘l)

(3.12)
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The angular flexibility can be approximated as:

Vi a)(1+)

i = ' Ax

that is, from the value for w( given in equation (3.12),

i+1)(i+1)

=
ER R [CR D
Fi =
Ax
or,
by 1
F' = emniaressarion 3013
= Ax D n(i +1)(1+ 1) ( )

If 1 is on an edge parallel to the x direction,

L N

by D n(j_+ 1)(1+ 1) (3.13pb)

3.3. Angular Carry-Over. Consider a simply supported rectangular
plate to be acted upon by a unit moment at j (Figure 3.6). From the
definition given in Chapter II, the rotation at i due to Mj = 1 1is
the angular carry-over Gij“

Using the approach illustrated in Figure 3.2 and the reciprocal

relation between coefficients,

wi + 1)Mj =1 w(i +1)(5 + 1) -

(3+1)(1+1) =

1

X Mz Ay M

; (5+ )2y O
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b'd
Figure 3.6. Angular Carry-Over in Simple Plate
The angular carry-over can be approximated as:
W
G s (j+1)(i+])
ij =
Ay
thus,
Ges = — T (3.152)
1 D (j+2)(i+1)
If j and 1 are on parallel edges,
(normal to the x direction)
A ! : ‘
G-. = ————X—-— am T] (3015b)
1] B D (3 n)(E )
(normal to the y direction)
S NLAN | (3.15¢)

G.. =
1 D (e a)
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3.4. Modification of Formulae for 1, F, and G. In the preced-

ing articles, the derivation of the formulas for the angular functions
was made by assuming that the deflection surface is composed of a
series of string polygons. If now the deflection surface is con-
sidered to be composéd of a series of second degree parabolas pass-
ing through the vertices of the assumed string polygons (Figure 3.7),
another approximate formula for the slope of the deflection curve

will be obtained and a new set of formulas for the angular functions

can be derived.

N

Figure 3.7. Deflection Curve, Second Degree Parabola
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For the parabolic segment shown in Figure 3.7, the slope at i

can be obtained using forward difference equations and considering

points i, i + 1, and 1 +2 . The general equation yields,
dz\ ien T My Wieg TRAWG 4+ g+ Yy
dx/i Ax 2 Ax
EEAC TR PP R
2Ax

end, since w; 1s equal to zero,

dz _ 4wi+1"wi+;;

dx /i 2Ax

(3.16)

Using equation (3.16), and the equations for deflection found

in articles 3.1, 3.2, and 3.3 for the angular load function, the

angular flexibility, and the angular carry-over, respectively, the

following equations for the angular functions are obtained:

AX 40

. LN
(edge ::>i | x axis) L - (1+1)x . (1 + 2)k (3.17a)
. . By M.y “ M.
(edge ::)1 Il v axis) Tie = = (1* 1)k > (1 2)k (3"l7b)
N N
(edge )i || xaxis) By = o — <l+1><1+12) (1+ 2)(i+1)

(3.18a)
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b1 4 NS
(edge.::>i Il v axis) e x T il +21) ot
’ ' (3.18Db)
Ax 1 40 -7
o _ - (G+1)(i+1) (Fs1)(is+2)
(edge::>1,3 |l x axis) Gij_ 55 T - 5
(3.19a)
v e .y e, e
R D] C e Je1)li, 2
i, i G.. = — . . .
(edge )1i,il| y axis) “GtE T T
| (3.19b)

' 1 4N, -0 |
. ; (J+2)(i+1) (Jr2)(i+2)
‘(edgqi>1. Iedge::>3) Gij 5 5 .

(3.19¢)

where the following symbolism is used:

) ... containing.

|| . « . parallel to,

_L . « » perpendicular to.



CHAPTER IV
COMPARISON OF RESULTS

4.1. General. The algebraic procedure given in reference 19
yields exact solutions of the single panel finite difference equations,
and the numerical procedure used to solve the continuous plate moment
equations can be carried out to a desired degree of accuracy (either
by matrix or iteration methods). Thus the values for the angular
load function, the angular flexibility, and the angular carry-over,
and consequently the solution of the whole problem, depend upon two
factors: the grid chosen to obtain the influence coefficients for
deflection in a simple plate, and the resemblance of the deflection
curve chosen to the true one. A comparison of the results obtained
by applying the formulae in Chapter III with those obtained by classical
methods thusibecomes necessary and will be the object of this chapter.

4.2, Classical Solutions for Angular Functions. Expressions
for deflections of & simply supported rectangular plate under trans-—
verse loads or edge moments can be found in Timoshenko and Woinowsky-
Krieger (18). TFrom these classical expressions for deflections, the
slopes (angular functions) of the simple plates are computed.

Some changes in notation have been introduced in the classical
expressions in order to be consistent with the general notation

adopted in this thesis.

24
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(a) Simple Plate Under a Concentrated Load. Consider a concentrated

load P acting on a simple plate at y = _%X , X = € (Figure 4.1).

lav]
(o]

157/%{ -
-

J

Figure 4.1, Simple Plate Under a Concentrated Load

From the Navier solution, the deflection is given as (reference 18):

_a ® o sin g sin —o&
(w) = Py } (tanh oy = a ) L - Ly
= E’bf oD cosh?o n
y 2""" n=. n
(4.1)
where: o = .r.lll_'X___
n o1,
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From equation (4.1),

e . nmn nnx

sin cos MMX

ng ' = E?bLWW, E}tanhqh - oy ) L. T
Ox v = -*-]53’” 212D n=1 cogh? an e

(4.2)

(b) Simple Plate Under a Uniform Load, Consider a uniform load q

acting over the entire surface of a simple plate (Figure 4.2).

Figure 4.2. Simple Plate Under a Uniform Load
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From the Levy solution, the deflection is given as (reference 18):

L& o, tanh 2 2o (v - =)
W= 4‘__q_.._.__LX [1 _ %n * cosh L rz *
7w D n=l1,3,5,... 2 cosh @ Ly
L - _L_X. gin - nx
+ I (v - _2}[) sinh 2 1 (v g ) :| E I
Ly cosh o Ly n
| (4.3)
where: o = E“_L.Y_.ﬁ :
n 2LX \
From equation (4.3),
o tanh o« 4+ 2  cOS nI1:rx
a _ 4 q _ n n X
——5}"%— 5: = Ix 2 (1 2 cosh Cfn ) 4
= n=1,3,5,... &
(4od)

(c) Simple Plate Under Moments Distributed Along the Edges. Consider

distributed moments, represented by a trigonometric series
. _
' . nmx
- Z E, sin -—L-._——
n=1

acting along the edge y = Ly of a simple plate (Figure 4.3).



x
/‘\
{
Ly
e ~
Figure 4.3. Bending Moments Along Edge of Simple Plate
The deflection is given as (reference 18):
L
L; i { 1 [ tanh hn‘rr(y-wg—) +
W o= o, tanh o, cos
= TOSh o n n
L2 D 5o COS dn ;x
L
nr(y - Eg;) am(y - 1) .
(=) 2" 5inn
Lx Lx
LT
. 1 [ nm(y - --—5,5—-)
Simh o an coth ah sinh . +
X
L L . X
n‘n’(y - _.EZ._) n‘n(y - ..._Py;—) En sin I
(-) cosh i ] } X,
LX LX ne
(4.5)

where: a,. = Mly
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From equation (4.5) the three following equations for slopes are

derived:

aw @

e L Ymthe oM g
x ya%[. 4mD &.n cosh o ‘

: o
v - LX 2 2
- o, (coth®a, - tanh®a ) +
ey 7 =0 LD Zﬂ[ n n n
E s nnx
in 1':;
+ (tamh«':zn - cotho_zn) ]»n (47)
- n
_ B sin nmx
s
v - coth2 ) n Ly (4.8)
dy v Ly sinh32a n n

In the case of concentrated moments (the group of concentrated moments

must be symmetrical with respect to the line x = —Lx—

2 E, sinE"-xI;, = 2 M’ - s:Ln-I-)-'—TE— .sin-l_“—?— (4.9)
n=1 n=1,3%... x x

where ,M? 1g the magnitude of the moment at a distance x = E,

In the case of uniform.distribution of the bending moments,

E, sin omx = & 8% L oip X (4.10)

. L “-._" 7., - .n T,
n=1" - X ‘L ; n.=1’3h’5’_...." » Lx

where. M’ is the intensity of the moment per unit length,
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Negative signs will be obtained for some angular functions when
classical solutions are used because of the convention adopted (see

Figure 4.4).

Figure 4.4. 8Sign Convention for Rotations of Plates. GClassical Solutions

4.3. Numerical Angular Load Functions by Clagsical Methods.

From equation (4.2), angular load functions due to a concentrated load
at different points on the plate are calculated. From equation (4.4),
angular load functions due to a uniform load over the entire surface
of the plate are calculated. Results are tabulated for three

different ratios of Ly/Ix (Tables 1 and 2).



TABLE 1

ANGULAR LOAD FUNCTIONS FOR UNIFORM IOAD q = 1 OVER
ENTIRE SURFACE OF PIATE. CLASSICAL SOLUTION.

L D D
Tx T5Tx0, =¥ | p"wels y=F
L 0195 -.0195
2L L] L]
L
L ,0135 -.0135
L .
2L .0325 , -.0325
T :
TABLE 2
ANGULAR LOAD FUNCTIONS FOR CONCENTRATED
LOAD, CLASSICAL SOLUTION
x coordinate __I-._X D D .
of unit load T - T - L
(y = Ly/?) Ly L ¥ 7 % L by y=
L
= .01 -
3 35 0135
Ly L .0295 -.0295
2 L
.2.%_ .0450 -.0450
L .0264, -.0061
2L
Ix L .0366 -.0200
3 L
2L .0503 ~.0330
L .
L ,0390 ~.0024
2L
Ix L .0352 ~.0100
6 L
iLT_; 0432 -.0175
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4ob. Numerical Angular Flexibilities and Carry-Overs by Classical

Methods. It is possible to find a classical solution for the slope
of a simple plate acted upon by an edge moment at a particular point,
but this solution is rather complex. To simplify the problem, since
only a few comparisons are intended, the solutions obtained by using
équations (4.9) and (4.10) with equations (4.6), (4.7), and (4.8)
are selected. By substituting equation (4.9), when £ = %%5 and

M’ = 1, in equations (4.6) and (4.7), angular carry-overs are
obtained. When equation (4.9) is substitued in equation (4.8), how-
ever, the angular flexibility is expressed as a series which is
practically non-computable. Consequently, this solution is dis-
carded and equation (4.10) is used in equation (4.8) to obtain a
quantiﬁy which is called the total angular flexibility under uni-
form moment. Results are presented in tabular form in Tables 3

and 4. The product M'L, is taken equal to five in equation (4.10),
believeing it to be more realistic when comparing the results ob-

tained with those given by approximate methods.

4.5, Numerical Angular Load Functions by Deflection Coefficients
Formulas. Two sets of formulas, one for the straight line approxi-
mation and the other for the parabolic approximetion to the deflection
curve, are used., The influence coefficients for deflection are
taken from Tables C, reference 16, and the calculated angular load

functions are shown in tabular form in Tables 5 and 6.



TABLE 3

ANGULAR CARRY-OVERS DUE TO UNIT MOMENT AT

X:‘:__Izlx’y:Ly,

GLASSICAL SOLUTION

Ly Doy yo Ly /D6 Iy x= I, yeo| P Ix, oo |2y 2L x#‘._sk, g0 Déx.-:l.x, Iy
Ix ' 3 3 6 2
éLE L0431 .05'74 | 1108 .1359 .1108 .6574' -.0431
= L0870 ~.0216 0378 .0438 .0378 .0216 ~,0870
-2%‘- .0428 .0032 .0056 . 0064, .0056 .0032 | ~.0428
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TABLE 4

TOTAL ANGULAR FLEXIBILITIES DUE TO UNIFORM
MOMENT ALONG y = Ly. CLASSICAL SOLUTION

1y D(Total Fy = %;, y = Ly)
Lx

L -.7196

2L

L -

T .9083

= -.9284,

TABLE 5

ANGULAR LOAD FUNCTIONS FOR UNIFORM LOAD g = 1 OVER"
ENTIRE SURFACE OF PLATE. APPROXIMATE SOLUTIONS.

Ly s ook 3 D D
-I_’;c .ApprOle&tlon _I-.‘.s..TXzo’ y= % f'_G-Tx:‘IiC’ y= !’zﬂ
L Straight Line 0175 L0175
2L Parabola L0214 .0214
L Straight Line L0127 . 0127
L | parabola L0147 LO0L47
2L Straight Line .0309 .0309
L | paravola .0354 .0354




TABLE 6

ANGULAR LOAD FUNCTIONS FOR CONCENTRATED

35

LOAD, APPROXIMATE SOLUTIONS.
x coordinate Eﬂ _ D D
of unit load Approximation | ZTyoo o Ly | = Ty - Ly

I Straight Line .0145 L0145
2L Parabola .0122 0122

L, L Straight Line .0303 .0303

= I Parabola .0316 .0316
2L Straight Line L0484, 0484
L Parabola .0522 .0522
L Straight Line .0266 .0069
2L Parabola .0268 .0052

Ly L Straight Line L0377 .0204,

K3 T Parabola L0422 .0206
EE Straight Lins .0539 .0353
L Parabola .0616 0372
y Straight Line .0383 .0027
2L Parabola L0634 .0019

L, L Straight Line .0361 .0102

6 L Parabola 0534 .0101
2L Straight Line L0441 .0185
T Parabola L0612 .0193
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4+6. Numerical Angular Flexibilities and Carry-Overs by De-

flection Coefficients Formulae. Angular carry-overs are tabulated

in Table 7. Functions necessary to calculate the total flexibilities
are shown in Table 8 and the evaluated total F's are tabulated in

Table 9.

47, Errors in Angular Load Functions. A tebulation of the

errors in angular load functions, obtained by using the approxi-
mate procedures suggested, is presented in Table 10. The classical

solution is considered the exact one,

4.8. Errors in Angular Flexibilities and Carry-Overs. 4

tabulation of the errors in G's and total F's, obtained by using
the approximate procedures suggested, is presentsd in Table 11,

The classical solution is considered the exact one.



TABLE 7

ANGULAR CARRY-OVERS DUE TO UNIT MOMENT AT
x = 1%, y = Ly. APPROKIMATE SOLUTIONS

% Approxlmat on DGX:O = %Z DGX:: S, y=0 DGX:;__X s J=0 DGX.—.:I'__QE s y=0 DGXZZ..:'.;'_.X =G DGX: .._L_).C 3 y=0 DGX:LX W= l‘y
, 2 6 3 2 3 6 » 2

1, |Straight Line| .0428 .0385 .0813 .1109 .0813 .0385 .0428

21,/ Parabola L0374 0423 .0874 ,1158 . 0874, .0423 L0374

L, |Straight Line| .0827 .0296 .0523 L0611 .0523 .02%6 .0827

1 | Parabola ,0899 .0301 .0525 .0608 .0525 .0301 .0899

op | Straight Line .0428 .0040 .0070 .0080 .0070 L0040 .0428

T | Parabola 0482 .0029 .0050 .0057 .0050 .0029 L0482




TABLE 8

ANGULAR CARRY-OVERS AND FLEXIBILITIES FOR CALCULATING
TOTAL FLEXIBILITIES. APPROXIMATE SOLUTIONS.

%ﬁ Function Straight Line Parabola

G

o

x= 7, y=ly 0496 ,0591
%=, y=ly

N

[l
i
I\JLL-_‘

L ) V=ly 1284 L1611
=Ly

i
b

. R645 3672

el

~

¥
i
s

=L
P Ty . 0696 .0931

’ y=Ly

gl

. 1459 .R033
X, y:Ly

L s %, y=ly
I
=

2167 . 3201

%ﬁ
N
K
g

0472 0755

it

ol ol
5
J

.0896 1454

i

F
i
ol
4
J

g3

¥

i
ol

, y=Ly .1150 .1901
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TABLE 9

TOTAL ANGULAR FLEXIBILITIES DUE TO UNITARY MOMENTS
AIONG y = Ly APPROXIMATE SOLUTIONS

Ly imat L
T Approximation D(Total F _ 7%’ v = Ly)
L Straight Line 6203
2L Parabola .8077
L Straight Line L6479
T Parabola .9129
oI Straight Line . 3886
T Parabola .6318




TABLE 10

ERRORS IN ANGULAR LOAD FUNCTIONS
% ERROR when

40

L . . R
=+ |Approximation)Location|P__L. —EX.P _Ly EE.P Ly | a
Ly x=Zy=F| =373 == Xy
= +7 +1 -2 -10
Straight Ty = Ey
Line x = Ly
+ 7 +13 +12 ~10
vy=1 '
.E".... 2
2L =0 -10 +1 +62 +10
y=%’¥ -
Parabola
x =Ly ~10 -15 ~21 +10
y=1*2z
X = 0 » '
. + 3 + 3 + 3 -6
Straight 7 = %?
Line =
n * Lx -.|..3 + 2 + 2 -6
y=F
L =
T | + 7 +15 +52 + 9
Y,=,—2¥
Parabola
x’ﬁ; L7 +3 +1 +9
J = 3
=0 +8 + 7 + 2 -5
Straight =.I§z
Line X = Lx + 8 + 7 +6 -5
vy =21y
2
&L X =0
L '%Z +16 +22 +42 +9
y:
Parabola .
x =Ly +16 +13 +10 +9
y=1




TABLE 11

ERROR IN ANGULAR FLEXIBILITIES AND CARRY-OVERS

| . % ERROR in
EX R Total

Approximation|F G G G G G G I
LX .. }Lﬁ%,yzly .'2;‘:0 ,y::Ig. X:%;-,y:o x:%;,y:o X= l—g{,y—.—o x:%x,y:o X=5_6I‘_'7£,y= X:Lx,yzjzi
'L Straight Line| -14 -1 -33 ~27 -18 -27 -33 -1
2L|Parabola +12 -13 -26 -21 -15 -21 —26 -13
L Straight Line -29 -5 +37 +38 +39 | +38 +37 -5
1 | Parabola - +1 + 3 +39 +39 +39 +39 +39 + 3
| Straight Ling  -58 0 +25 +25 +25 +25 +25 0
L | Parabola - -32 +13 -9 ~11 -11 -11 -9 +13

T7



4.9. Analysis of Errors. From the tabulation (Tables 10
and 11) of the errors obtained in the Angular Functions by using
the formulae in terms of deflection coefficients, several con-
clusions can be drawn:

1. For the angular load functions better results are obtained
by using the string polygon as the deflection curve. When this
straight line approximation is used, most of the errors are
positive if a concentrated load is applied and negative if a
uniform load is applied. In practice, when a combination of uni-
form and concentrated loads is encountered, much better results
can be expected. The results found here are nevertheless con-
sidered satisfactory since a great majority of them yield errors
within ten percent.

2. TFor the angular flexibilities and carry-overs fair results
are obtained by both approximate methods. It is difficult to
decide in general which of the th approximations would give
better solutions because of the lack of adequate classical fe—
sults, but the parabolic approximation seems to be somewhat more
advantageous.

3. Using a finer grid some improvement undoubtedly would be ob-
tainéd in the results, and the change in the curvature of the
deflection curve observed for some loading conditions might be
partly avoided (the angﬁlar functions obtained by the parabolic
approximation being smaller than those obtained by the straight

line approximation in these cases).

42



43

L, It is doubtful that an investigation of the use of other curves
to fit the deflection surface would prove worth while,

5. Finally, it should be remarked that the classical solutions

are not exact, They are considered exact solutions here because
the assumptions made in the ordinary theory of bending of elastic
plates are made for both the classical and the approximate methods.
It may also be added that in practice some approximate results

may be as good as some classical results since there 1s no exact
knowledge in loading, actual edge conditions, and rigidity of

foundations.



CHAPTER V

MOMENT EQUATION IN TERMS OF
DEFLECTION COEFFICIENTS

5.1. General Moment Eguation. Combining the formulas de-
veloped for the angular functions in Chapter III with the formulas
derived for the moments in Chapter II, the moment equation in its
different forms can be expressed directly in terms of the influ-
ence coefficients for deflection. The equations developed for the
angular load function corresponding to the string polygon approx-
mation and the equations developed for the angular flexibility
and the angular carry-over corresponding to the parabolic approxi-
mation are applied here (based on the results obtained in Chapter
IV). It should be noted that the momenfs computed from the final
moment equations'are actually the edge bending moments divided by
1 + p, where p is Poisson's ratio.

The general moment equation for the particular case in which
i is on an edge perpendicular to the x direction and j is on an
edge parallel to the x direction is developed first and then
equations for the other three particular cases are shown. Using
equations (3.3a), (3.13a), and (3.15a) in equation (2.6), the

following expression is obtained:

&,
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by ¢ Ay L AM(se1)(d+1)” 'n(i+ 2) (1+1)
Din(l+1)k k ( A D 5 ’ My +
L AN Ee)” M) (A va) 20
(5.1)
Multiplying equation (5.1) by 2D and noting that %if = %xx,

2AYZ“(1+:)1{ Pk’rk[}(m(lﬂ)@”) '(i+a)(i+1_)):| Mi +

*) (m(ju)(iﬁ) " N3er) v 2) ) My =0
| (5.2)
If the moments are expressed dimensionally as force times
length per length instead of force times length, a useful sim-
plification can be made, the moments in equation (5.2) then be-
- coming moments multiplied by Ay. Cancelling Ay, the general

moment equation reduces to:

) ) - e
22 M5k FE *ﬁ[z(“(iuﬂiu) “(m)cm))] i
*) (‘*“(j +1)(1+0)” (5 +1>(i+e>> My =0
' | (5.3)
where an interesting and important observation can be made: the

equation depends on the relative lengths of the sides of the

‘plates and not on the separate sizé of the network elements chosen.
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From the relative position of 1 and j, three additional equations

similar to equation (5.3) can be developed. Thasevequations are:

(edge ) i||x axis | edge ) )
2 2n1+1)k k i’;‘ [2 (4n(i+1)(i+1) _n(i+a)(i+1) ) ]Mi+

*) (4“<j+1)<i+1) ¢ n)(m)) Hy =0

(5.4)
(edge D’i’ illx axis)

: Z“(m)kPW%'[z (Maeiyen) ™ M@ emyaen) ) s

+%yx2(4n(j+1)(i+’1) M5 1)(“2)) Hy =0

(5.5)
(edge :::)i, j 1 x axis)
22 T’(i+ 1)k Pk +%'xx [Z ( 4n(i+1)(i+1) B TI(i+2)(i+1) ) :’Mi ¥

+%§2 (m(j?’“)(i“) ] n(§+ 1)(1+2) )M.i =0
(5.6)

5.2, Carry-Over Moment Equation. To define the moment equation
in its carry-over form ih terms of the influence coefficients for
deflection, it is necéssary to express only the starting moment
and the carry-over fag;ef/as functions of these ccefficients.

Using equation;’(2010) and (2.9) with their corresponding

engular functions for the four particular cases, the following

formulas are obtained:
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Mi* =
Mg ot ylran) ~ “(1+a)(i+1)]

(5.7)

ey = 1@ ) 7 Kan )

A’ -

) ["“(i e)(is1) "V (Lan)(Ls 1)]
(5.8)

where the primed A's can be either Ax or Ay, depending upon the

position of points i and j. Thus

= Ax, A" = Ay, when edge )i | x axis

= Ay, A" = &x, when edge ) i|| x axis
edge )i
= A" = Ay, when edge )i, j|] x axis;

a!
L
ﬁf
L
Bf
A" = A" = bx, when edge )i, j L x axis.

5.3. Matrix Moment Equation. The expressions of angular

functions in matrix form in terms of influence coefficients for

deflection are:

AR A ﬂ(1+ 1)k
Tak Bz N(s 4 1)k
T:-’-k 6; T‘(a +1)k
_ 1
¢ - D
T AL
pk p (p+ 1)k
B - el (5.9)
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and - —_ — _
Glj Z” (4nh'+1)j - ﬂ@.+a)j)

)

¢ 87 U 1)y ™ e va);

2j Az

=7 )

. il
3 j A 3+1)j (a+2)j

n

%
» "W
L bJ Ap (p+1)d (p+a)j

(5.10)

where each primed A can take on either of the values Ax and Ay,
depending upon the position of points i, j.

Using equations (5.9) and (5.10) in equation (2.12), the
moment equation in matrix form in terms of deflection coefficients

is obtained:



n(r+1)k
ﬂ(2+1)k

(s+1)k

T](p+1)k

ZJ(AH(Lfl)l—n(l+2)l)tll
(4T - )i,
(241 1 (2421 -
(47 -7 )ta;

(3+1 )1 (.'3+2)1 1
U ™ Mipra)y ) oo

(

(47

(

(2+1)2 (2+2)2

(3+1)2

w‘(pn )2—n(p+2)2

)t

)t

4“(1+1)g—n(1+2)2)2_2

(4

p2

I IR LV

Jag (4T

(

=

1 - B &
(A—T‘.( 1+1 )P n(l +g)p 1p

Yt M

(2+1 )3

(4m

)t ! ol
(2+1)p (afa)p

2
(2+42)a P

23 *°°*

=T )t (4mn -7 )t
(a+1)p (=42)p

(3+i)3=(3+2)3 e

2P

My

ZFT?(10+1 )3.4;(1% )a Vs - .Z(Aﬂ( p+1)p\~ ! ®+e)b)tpp

(5.11)

6%
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where: moments are given in force times length per length, and

t35 (4,5 =1, 2, 3,...,p) = 1 if edge ) iledge ) j,
%? i: edge ) i, jll x axis, and %ﬁ if edge ) i,‘j Ily axis,

From equation (5;11) the complete solution of the continuous
plate problem is obtained. It should be noted that tij can be
different in each row and/or column and is a function of the rela-~
tive lengthe of the sides of the plate containing i and j. 4n
illustration of the use of the derived moment equations in a

numerical problem is given in the next chapter.



CHAPTER VI
NUMERICAL EXAMPLE

6.1. Statement of Problem. A uniformly loaded rectangular
plate of constant thickness, continuous in two directions over
rigid supporting beams, is considered (Figure 6.1). The uniform
load g over the entire aresa of the plate is taken as 100 1b per sq ft,
and the Poisson's ratio is taken equal to zero. Moments in pounds

are to be calculated,

simply supported /////////// //////////

Q e son
/ / |
% ,'»

10! 20!
50' -

/,

Figure 6.1. Continuous Rectangular Plate
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6.2, Modified Moment Equations. Since both the plate and

loading are symmetrical, the general moment equation (Eg. 2.6)

can be modified in the following manner:

ZTikPk+Mi<ZFi+ Gii’ +G‘iill+..-) +

i

(Gij + G‘ij’+ Gij”+ PP ) IVIj = 0

In particular (see Figure 6.2):
a| 22 (n) +2 22 (Mn T+ (QFy 4oyt Gyyo)
4y ( Z Gyt Gyp/s Gppr)
+ Mg ( Z Gyg* Gyzrt Gy30)

+ MA— ( G14+ G14/+ GlZp”)

t

" ( Gyt Gy gt Gl5,,)

+ M (G16+G16’) +

M, (G, +Gpe) 4
+ M (G18)

Similarly, the other seven moment equations are obtained.
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/ 1/ %

- \lJ/ 4/3 %i

pavtreyvave /6//48% /
7,

!
|
|
3

sym.

Figure 6.2, Modified Continuous Rectangular Plate

6.3. Matrix Moment Egquation. An equation of the form of
equation (5.11) can be developed by using the modified moment
equations. Using Tables C in reference 16, the coefficients are

evaluated and the matrix moment equation becomes:



2

3506.014

139.420 |

3965. 576
3506014
2139.420

940,672

1585.498

1812,128

5790711
3751273
.224,5610

1292341

.0603421

.0056954

.0099165

.0114764

3759861

.8070671

.5125393

.R9T72546

1391171

.0155197

0272583

.0316432

2276272
5166264
.8930432

« 5482486

2608198

.0356532
. 0640606

0747584

.1350766
.3082739
. 5606568

.8952217

WAVAYE!
.0782648

.1430393

.1657040

.0663538
.1532807
2875547

.5019071

.7693866

« 2292477
.2908306

. 3018622

.0091323

.0236643

.0507051

.1006040

.1816912
.6301563
.6570652

6435344,

.0157675

.0405758

.0846619

.1522410

1961134
6091731
1.0821229

1.1414230

.0090901 |
.0233243
.0481799

.0839392

.0992082
.2980986

. 5623904

7507406

Vs
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.6.4. Solution Matrix. The task of calculaeting the moments
from equation (6.2) was assigned to the IBM 650 electronic combuter
at the Oklahoma State University computing center. Use was made
of an availeble program for the inversion of a matrix. The results

given are:

F—Ml r1_357‘.7687‘ Tizcl—
y 6032
M, 1799. 603 i,
M 1842, 3855 M.
E v %3
M 1508. 0989 M,
bl I
M 2.81715 | |
5 572,817 .
. .
M% 102, 44873 Myé
M 534.952
. 34,9594 M&7
M €69.36579 M
3 - Sl s

(6.3)
6.5. Analysis of Results. The results given in equation
(6.3) are compared with solutions of the same problem given in

reference 12 (see Table 12).
TAELE 12
COMPARISON OF MOMENTS

iption | -M_ |- | - BT ST I R VN VA T VIR |
Description %q_ %Q MXB Mx4 Mx5 Ixave %6 Ty MYg qyave

Thesis 1358|1800 | 18421 1508 | 573 1416 | 102 | 535| 669 435

~J

Reference 12| 1209|1732 | 1813| 1521 821 1419 551 232 304 19
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The comparison of moments shown in Table 12 indicates a fairly
good agreement between the two methods of computation along the Jong
edge of panel m, the average moments being almost equal. Along
the short edge of panel m, however, the moments calculated by
finite differences are approximately twice as large as the ones
given in reference 12, These results could be expected from the
respective errors in the angular functidns corresponding to these
two edges and because the moments along the short edge are much

smaller than the moments along the longer one,



CHAFTER VII
SUMMARY AND CONCLUSIONS

The flexibility method, as applied to the analysis of con-

tinuous rectangular plates rigidly supported, is presented in this

thesis., The major steps in the discussion are summarized as follows.

1.

The moment equation in terms of angular functions for simple
rectangular plates is derived and methods for solving this
aquation are giwven,

The angular functions are expressed in terms of deflection
coefficients that are obtained by solving a finite difference
network.

A comparison of the results obtained for the angular functions
by using the formulas developed with those obtained by using
classical solutions is presented.

Moment equations in terms of deflection coefficients are de-
veloped, including a matrix moment equation which yields the
complete solution of the continuous plate problem.

The use of the method in the analysis of a plate continuous

in two directions is illustrated by an example.
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The most significant conclusions drawn from this study can be
described in the following manner.

a, The angular functions evaluated from deflection coefficients
that are obtained by solving a thirty~six unit finite differ-
ence net are in many cases sufficiently accurate.

b. The use of the angular functions developed in the moment
equations derived yields satisfactory results along the longer
edges of rectangular plates.

c. The formulated solution for the continuous plate problem is
relatively simple to apply (in the illustrative problem only
eight equations had to be solved against seventeen equations
that had to be solved to obtain the results listed in refer-
ence 12). By increasing the gridwork points a greater accuracy
can be obtained if desired (the gridwork used actually being
somewhat coarse), while the number of equations to be solved

still remains relatively low,
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