
HARDWARE IMPLEMENTATION OF

DIGITAL FIR FILTER IN

RESIDUE NUMBER

SYSTEM

By

KADAMBARI KALURI

Bachelor of Engineering

University of Madras

Chennai, India

2000

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 2002

HARDWARE IMPLEMENTATION OF

DIGITAL FIR FILTER IN

RESIDUE NU~mER

SYSTEM

Thesis Approved:

,~.g~g/~..
T~sis Advisor

11

Dedication

I would like to dedicate ll1y thesis to my family for all their support

and faith in tne to achieve this today.

111

Acknowledgements

I would like to express my sincere thanks to my advisor Dr. Louis Johnson for his

patience, inspiration, and guidance in helping me with my thesis and throughout my

Master degree. I would also like to thank the Committee members, Dr. Chung and

Dr.Yarlagadda for their guidance and support in completion of my thesis.

I would like to extend my thanks to Dr. Michael Soderstrand for his support and

critical suggestions, effective guidance, throughout my thesis and career in Oklahoma

State University.

My sincere thanks to the Digital Signal Processing and Communication

Laboratories at the Oklahoma State University for supporting me with the most advanced

resources which has helped me in using various mathematical and simulation software to

achieve my goal efficiently.

I would like to thank Dr. Barrick for proofreading my thesis and making the

necessary corrections.

I would also like to thank Kannan, for all his help during my Masters degree and

the thesis, helping me throughout my career and being patient and bearing with me

during the entire time.

Finally, I would like to thank my father Rangarao, mother Lavanya and sister

Chinni, for their moral support and enthusiasm that I regard as important.

IV

Preface

Over the past few years Digital Signal Processing has gained in popularity in the

field of communication. The rise in the popularity of digital signal processing is due to

the many advantages it possesses, such as high noise immunity, low cost, high speed, and

flexibility. In recent times, many innovative methods are being developed to make

communication devices as small and portable as possible. Hence efficient hardware

implementation plays a key role in making communication devices more portable. FIR

filters are the basic components used to manufacture communication devices

The hardware implementation of the RNS filter can be done using Look-Up-Table

(LUT) in the block RAM's in FPGA's of the Xilinx Virtex FPGA's. The RAMs

generated by the core generator are used for this purpose. The implementation was done

on an example filter, to compare it with other implementations.

The result of this thesis is a higWy efficient hardware realization of the desired

FIR filter. The implemen~ations of the Digital FIR filter in Residue umber System sa es

CLBs. CLBs are the basic building block of the FPGA. Residue Number System

implen1entation utilizes the block RAMs present around the FPGA chip, which are

generally not used by the communication circuitry. The hardware savings is obtained by

using Block RAMs to implement the filter instead of CLBs. Conventional methods of

implementations are faster than Residue Number System implementation, but that is the

tradeoff to the savings in hardware.

v

Chapter

Table ofContents

Page

1. Introduction 1

1.1 Introduction to DSP 1
1.2 Motivation 2
1.3 Problem Definition 2
1.4 Thesis Organization 3

2. Background 5

2.1 Classification of Digital Filters 5
2.1.1 Finite Impulse Response Filters (FIR Filters) 5
2.1.2 Infinite Impulse Response Filters (FIR Filters) 7

2.2 Different Number System and previous work done 8
2.2.1 Two's Complement Number System 8
2.2.2 Canonical Signed Digit 9
2.2.3 Dempster Macleod 10

3. Residue umber System 11

3.1 Introduction 11
3.2 The Modulo Operation 11
3.3 Residue umber System 12
3.4 Multiplicative Inverse on Modulo Operation 15
3.5 Chinese Remainder Theorem 15
3.6 An Example using Residue Number System 16

4. Xilinx Virtex FPGAs 19

4.1 Introduction to Field Prograffilnable Gate Arrays 19
4.2 Xilinx Virtex FPGAs 21
4.3 Configurable Logic Block 22
4.4 Input/Output Block 23
4.5 Block Select RAM ' 24

5. FIR Filter in Residue umber System 27

5.1 Introduction 27
5.2 Basic Concept. 27
5.3 Modulo Addition 29

VI

5.4 The Example Filter 29
5.5 Small Moduli RNS FIR Example 30
5.6 Large Moduli RNS FIR Example 33

6. Hardware Implementation of the Filter 40

6.1 Introduction 40
6.2 Implementation Procedure 40

6.2.1 MIF File Generation 42
6.2.2 Core Generator and Xilinx Schematic Editor 42
6.2.3 Hardware Implementation 48

6.3 Simulation and Implementation Results of
Small Moduli RNS Filter 49

6.4 Simulation and Implementation Results of
Large Moduli RNS Filter 51

7. Conclusion and Future Work 53

7.1 Xilinx Implementation of Example Filter 53
7.2 Comparison ofXilinx and RNS Implementation 54
7.3 Conclusion 55
7.4 Future Work 56

Bibliography 57

Appendix A 61

VII

Figure

List OfFigures

Page

4.1 Types ofField Programmable Gate Array (FPGA) 20

4.2 Virtex Architecture Overview 22

4.3 2-Slice Virtex Configurable Logic Block (CLB) 23

4.4 Virtex Input/Output Block (lOB) 24

4.5 Dual-Port Block SelectRAM 25

4.6 Single-Port Block SelectRAM 25

5.1 RNS Digital FIR Filter 28

5.2 Example Digital FIR Filter Response 30

5.3 Block Diagram of 4-moduli RNS Digital FIR Filter 32

5.4 Binary to RNS (4 block Rams 256x16 and 3, 2's comp adders) 35

5.5 Multiplication byb coefficients in Moduli 256 (2 block RAMs 256x16) 36

5.6 Multiplication by b coefficients in Moduli 255 (2 block RAMs) 36

5.7 Multiply by'b coefficients in modulus 511 (5 block RAMs 512x8) 37

5.8 Multiplication byb coefficients in Moduli 127(1 block RAMs 128x32) 38

5.9 RNS to Binary Conversion (9 block RAMs) 39

6.1 RNS Filter Implementation Procedure 41

6.2 Xilinx Core Generator Window 43

6.3 Single Port RAM Window 44

6.4 Selecting the PINS for the Single Port RAM 45

6.5 Selecting the MIF file for the Single Port RAM 46

6.6 Final Appearance of the Single Port RAM Window 47

6.7 Schematic Editor ofXilinx showing the RAMs as Components 48

6.8 Xilinx Implementation of the Small Moduli RNS FIR Filter 49

6.9 Comparison of ideal filter and actual output ofXilinx implementation 50

6.10 Xilinx Implementation of the Large Moduli RNS FIR Filter 51

6.11 Comparison of ideal filter and actual output of XiIinx implementation 52

7.1 KCM Block Diagram 54

VIII

List ofTables

Table Page

7.1 Types of Field Programmable Gate Array (FPGA) 55

IX

Chapter 1

Introduction

1.1 Introduction to DSP

Signal processing can be broadly classified into two kinds Analog and Digital

Signal Processing. In recent years, Digital Signal Processing (DSP) has gained a lot of

popularity. DSP plays a very significant role in today's world. Some of the applications

of DSP are in the fields of communication, medicine, and entertainment. In the early

stages, the use of digital signals in communication devices was expensive. It as only

after the invention of the microprocessor and the development of Integrated Circuits that

the utilization of digital signal processing in communication was practical and feasible.

The wide growth in the utilization of DSP was due to the many advantages it possesses

like high noise immunity, low cost, high speed, and flexibility. The additional ad antages

of using equipment with digital signal processes are stability and consistency.

Digital filters are required in most communication equipment. To design the filter

to meet the required specifications, many methods like Butterworth filter design[l],

Chebyshev filter design [1], or Parks-McClellan filter design [1] can be used based on the

type of filter required. To reduce the hardware utilized hen implementing the filter,

many methods have been developed for the representation of the filter coefficients.

1

1.2 Motivation

Since the digital filter is the most basic building block used for most DSP

applications, an efficient implementation of the filter is essential to save hardware. A

Digital Filter is made up of three basic components: adders, coefficient multipliers and

delays. Efficient implementation of the digital filter can be achieved by selecting an

efficient representation for the filter coefficient. This would help reduce the hardware

required to implement the coefficient multipliers of the filter. The coefficients are

implemented in Residue Number System in this thesis. The hardware implementation of

the RNS filter can be done using Look-Up-Table (LUT) in either the block RAM's in

FPGA's of the Xilinx Virtex FPGA's. The RAMs generated by the core generator are

used for this purpose. The result is a highly efficient hardware realization of the desired

FIR filter, with tradeoffs to achieve the savings.

1.3 Problem Definition

In this thesis, a hardware efficient implementation of digital filters is proposed.

The coefficients of the desired filter are represented by using the number system called

Residue Number System. The core generator provided by Xilinx is used to implement the

filter. The schematic editor is used to represent the core generator components. VHDL

code that is accepted by the core generator of the Xilinx Virtex - II board can also be

used for implementation. To implement the filter coefficients in RNS, block RAMs are

used. The data to be stored in the RAMs to represent the filter coefficients of the desired

filter is generated using a Matlab program. The delays and the adders are also

implemented using the core generator. Block RAMs are present around the Xilinx

2

Virtex - II board. These RAMs are generally not used by any other implementations. By

utilizing the Block RAMs for implementing the coefficients, the CLBs on the chip are

saved. These CLBs can be used for implementing the remaining structure of the

communication system, thus increasing the utilization of the chip and making it possible

to have a complex communication system on the same chip.

1.4 Thesis Organization

Chapter 2 deals with the review of different digital filters classified according to

the type impulse response they have, and their advantages and disadvantages. It also

deals with the different types of number representations that were previously used to

represent the coefficients of the FIR filter and the previous work done to implement the

filter coefficients to save hardware.

Chapter 3 introduces the Residue Number System, which will be used to represent

the coefficients of the filter for implementation. Discussion about how a number is

represented in Residue umber System and how to convert a given number from binary

to the Residue Number System is done. The Chinese Remainder Theorem, which ill be

used for converting from Residue Number System back to the Binary Representation is

also discussed in this chapter.

Chapter 4 talks about the Xilinx tools, which are used for simulation and

implementation of the filter in hardware. The logic analyzer used to erify the hard are

implementation of the filter is also discussed in this chapter.

Chapter 5 discusses the two different approaches possible for the implementation

of a FIR Digital filter in the Residue Number System.

3

Chapter 6 contains the procedure required to follow in order to implement the

filter in RNS. The Filter implementations are shown in this chapter. This chapter also

deals with the simulation and implementation results of the example filters introduced

earlier. Also, comparison of the Matlab simulation results, simulation of the

implementation results and the results from actual implementation in hardware are

provided.

Chapter 7 is the last chapter of the thesis. The results of the work done, to prove

the efficiency of the method is given here. Discussion on comparison of the results with

previous work done and the conclusion of the thesis are also provided in this chapter.

Possible future work on the thesis topic is also discussed here.

4

Chapter 2

Background

2.1 Classification of Digital Filters

Digital filters are characterized by their impulse response, their transfer function

or by difference equations. Digital Filters can be classified into two groups based on the

type of impulse response they have, infinite impulse response (IIR) or finite impulse

response (FIR). The impulse response of a filter is the response of the filter when the

input signal is an impulse signal.

2.1.1 Finite Impulse Response Filters (FIR Filter)

Digital Filters [2] with finite impulse response are called Finite Impulse Response

Filters[3]. FIR filters are very broadly used in communication equipment. The broad

usage of FIR filters in communication is due to linear phase FIR filters are easily

obtained. By making the filter coefficients symmetric, linear phase can be obtained in

FIR filters, i.e. the first and the last coefficient are the same and so forth. Linear phase

filters are very important, especially in devices, which handle signals carrying

infonnation in the phase. Nonlinear phase distortion can cause the infonnation to be lost,

making the signal useless. When FIR filters with symmetric coefficients are used to

5

implement the filter, a significant savings in hardware is also obtained, as only half of the

filter coefficiellts have to be implemented.

A characteristic of FIR filter is that the impulse response of a FIR filter is the

same as the filter coefficients. FIR filters do not have poles, they only have zeros. Hence

the response of a FIR filter is only dependent on current and previous inputs and not on

the output of the filter. Since a finite number of bits must be used to represent the the

input, output and the coefficients of any digital filter, FIR filters can be designed with

sufficient wordlength to guarantee that no rounding or truncation will be done in the

multiplication of the filter input by the coefficients. This should be compared to an IIR

filter, where we must always do rounding when the output is multiplied by a filter

coefficient in order to prevent the wordlength from growing without bound. It is the fact

that only the input is multiplied by the filter coefficients in an FIR filter that allows us to

design FIR digital filters without error in the arithmetic operations. This also makes the

application ofRNS arithmetic particularly attractive for FIR filters.

The time response representation of FIR filter also called the difference equation

and is given by

n-l

Yk == Laixk-i
i=O

The transfer function of the FIR filter is given by

6

(2.1)

(2.2)

2.1.2 Infinite Impulse Response Filter (FIR Filter)

Digital Filters with infinite impulse response are called Infinite Impulse Response

Filters [3]. There is a feedback from the output to the input in IIR filters, which makes

the impulse response ofIIR filters to be infinite. Due to this a finite number of bits cannot

be used to represent the filter coefficients, as there is a feedback, which increases the

filter coefficient bits in every cycle. Due to this, truncation and quantization noise appear

in the filter, as only a finite number of bits can be used to represent the output. This one

of the major disadvantages of IIR filters. Another disadvantage of IIR filters is that they

have non-linear phase, which causes intersymbol interference. Due to the intersymbol

interference, the infonnation content of the signal is destroyed.

The time response representation of an IIR filter, also called the difference

equation, is given by

n-l n-l

Yk =Laixk-i + LbiYk-i
i=O i=l

The transfer function of the IIR filter is given by

7

(2.3)

(2.4)

2.2 Different Number Systems and Previous Work
Done

Many different number systems exist which have been used to implement the

filters' coefficients efficiently to save hardware. Some of the number systems that were

previous used and the work done on them is briefly explained here.

2.2.1 Two's Complement Number System

One of the earliest number system that was used to implement the filter

coefficients is the Two's Complement Number System. In this number system, a positive

number is represented by the binary representation of that number and a negative number

is represented by the two's complement of the positive binary number. The two's

complement of a number is obtained by first complementing the binary number and the

adding a one to the least significant bit. For example the 2's complement representation

of the number 5 in four digits is '0101'. The 2's complement representation of the

number -5 in four digits is '1011'. The two' s-complement number system can also be

considered to be a binary weighted number system where the most significant bit (MSB)

is weighted at _2M
, rather than +2M

.

Many authors [4] [5] [6] used the 2' s complement representation and modified 2' s

complement representation in previous work for implementing the digital FIR filter.

8

2.2.2 Canonical Sign Digit

Canonical Sign Digit (CSD) is another representation that has been used very

frequently for the implementation of hardware efficient digital filters. In CSD the

representation with minimum number of non-zero con1ponents is chosen. When the

minimum occurs for more that one representation, the representation without any

consecutive non-zero-digits is chosen. The digits used to represent a number in CSD are

{O, 1, -1 }.

Consider for example the number 13, this can be written as

23 == 24 + 22 + 21 + 2°

the same number can also be represented as

23 == 25
- 23

- 2°

(2.5)

(2.6)

Hence the CSD representation of 13 can be shown In two different ways. One

representation is {I 0111 }; the other representation is {I 0-1 00-1 }. We can see that the

first representation requires 3 additions but the second representation only requires two

subtractions. Hence the second representation is the representation for the filter.

CSD representation was used to implement FIR filters to obtain multiplierless FIR

filters [7][8]. Also in the previous work that was done, the CSD representation was used

along with other hardware savings methods like Scaling, Order Augmentation and Adder

Extraction to further reduce the hardware. Rusinga [9] and Naren [10] did work on this

by developing an automated MATLAB program, which, when given the filter

specifications, initially using Ramez method in MATLAB, obtains a set of coefficients.

These coefficients are then converted to CSD representation and then further

9

optimization methods are used to reduce the hardware. The hardware implementation of

the filter was also done to test the result.

2.2.3 Dempster Macleod

The Dempster and Macleod (DM) representation has been recently used to further

reduce the hardware utilization during implementation. To understand the representation

method ofDM, an example is considered. The number 32 can be represented as

45 =: 3 x 15 == (4-1)(16-1) (2.7)

Cascading can be used to use implement the multiplication and the power of two can be

done by using shifting, hence requiring only two adders, where binary and CSD require 3

adders.

The DM technique was used in many works [11][12][13] done previously to

reduce hardware by using the technique of cascading.

Other optimization [14] methods such as Scaling, Order Augmentation and

Adder Extraction were also used along with DM representation to reduce the hardware.

Work on this was done by Leong [15] who developed an automated MATLAB program,

which, given the filter specifications and a cost function reduced the hardware utilization

by outputting the optimum filter coefficients that met the filter coefficients. The

MATLAB program also generated a package VHDL file that contains description of the

filter coefficients which can be used by a VHDL program to construct the FIR fiiter to

implement the filter. The VHDL code for hardware implementation was developed by

Howe[16]. The package file along with VHDL code is combined automatically by a

script file, which generates the filter for implementation.

10

Chapter 3

Residue Number System

3.1 Introduction

In this chapter we will introduce the Residue Number System (RNS) and the

Chinese Remainder Theorem (CRT) based on [17] and [18]. The Residue umber

System [19] was founded by the Chinese scholar Sun Tzu in the first Century AD, who

stated the Chinese Remainder Theorem. It was in the year 1734 that Euler provided the

proof for the Chinese Remainder Theorem and introduced the concept of the 'Modulo'

operation. The residue number system has been used for a long time to implement FID

digital filters. The modulus operation is the basic operation that is used in the conversior

of a number from Binary to Residue Number System. The Chinese Remainder Theorerr

is used for converting back to binary from Residue Number System.

3.2 The Modulo operation

In the modulus operation, the result is reset to the least value after the maximum

value has been reached, i.e. the results of the modulus operation are the remainder left

after division by the chosen modulus and these reminders are called 'residues' and they

11

repeat. The modulus operation [18] can be seen as in a clock where the maximum number

that is reached is twelve, and beyond which the clock starts over at one and repeats itself.

Consider a binary integer 'a' and positive modulus 'm', then we have

b =a(modm) (3.1)

Here, 'b' is the remainder obtained after 'a' is divided by 'm'. The divisor 'm' is called

the modulus. The integer 'b' is called the residue and is not unique as more than one

remainder can be obtained during the division. The possible residues for a modulo 'm'

operation are 0 to m-I. For example, we can have

but, we can also have

2 = 16(mod 7)

9 = 16(mod 7)

(3.2)

(3.3)

Two integers that have the same residue are said to be equivalent. If two integers 'a' and

'b' are equivalent, then:

and, we can express them as

b(modm) = a(modm)

b = a(modm)

(3.4)

(3.5)

The main advantage with the 'mod' operation is that modular addition subtraction and

multiplication is carry free.

3.3 Residue Number System

The Residue Number System is based on the Modulus Operation. In RNS [17], a

number is represented by a set of Moduli, i.e. the residue representation of an integer 'x'

is a set of residues {rI, r2 ...Tn}, obtained by perfoIming the 'mod' operation on the

12

integer 'x' using the corresponding set of moduli {illl' fi2 ...fin}. The integer ri is also

defined by the set of equations

Where i =1,2, ...n (3.6)

The integer qi is such that 0 ~ r i < mi' Hence we can conclude that qi is the

quotient obtained from ;; , also denoted by [;;] and r; is the remainder obtained from

x
or as the modulus operation perfonned on 'x'. The modulus of a number is not

m·l

unique hence, we define the integer ri as the least positive remainder obtained by the

division of~ and is called the residue ofx modulo mi, [18] also written as x mod mi or
mi

The residue representation of a number is unique as the least positive remainder

of a number when divided by any number is unique. But the converse of this statement is

not true.

For example, in a three moduli system with m1 == 3 ,m_ = 4 and m3 == 5 the residue

representation of bot11 11 and 71 is {2, 3, I}. This ambiguity occurs only in those

numbers that meet the conditions stated by the theorem given below.

In [18] it states that, "two integers x and x' have the same residue representation

for moduli mj, m2· . . Inn if and only if (x - x') is an integer multiple of the least common

multiple ofthe moduli, denoted by M".

Hence, to have a unique mapping from the Residue representation, the integer 'x'

must have a range of M (for positive number we would have x lie between 0 and M-I,

13

however we nOITIlally require both positive and negative numbers. In this case the range

ofx is different, depending on whether M is even or odd. For even M, -,YiM ~ x <,YiM

M -1 M-1
and for odd M - --s x ::; --).

2 2

Since the Residue Number System is based on the modulo operation, all the

advantages present in the modulo arithmetic are also present in Residue arithmetic.

Hence in the residue number system, addition, subtraction and multiplication are cany-

free, i.e. the result of the arithmetic operation is independent of the neighboring digits. In

multiplication there are no partial products, hence parallel operations can be carried out

with out having to wait for the results from adjacent bits.

Another factor to be considered in the residue number system is the Dynamic

Range. Dynamic Range of the RNS is the product of the residue moduli. Dynamic Range

is the total number of residues that can be uniquely represented. From the dynamic range

of the RNS, the number of bits that will be representing the number is obtained. It is

gIven as

b
. loglo (product of mod uli)
zts == ----------

loglo (2)

The moduli {3, 5, 7} corresponds to

b
. . loglo (3 x 5 x 7)
zts==-----

loglo (2)

b
. loglO (105)
zts==----

loglo (2)

bits = 6.7142

14

(3.7)

(3.8)

(3.9)

(3.10)

The dynamic range must be considered because when the Residue Number

System is used to implement the filter coefficients, the number of bits required to

represent the filter coefficient are calculated.

3.4 Multiplicative Inverse on Modulo Operation

Multiplicative inverse [18] of a number (b J with modulo (m' is represented

as I~I m • The inverse of a number then multiplied by the number itself is 1. This property

is used to find the multiplicative inverse of a given number. For example, the inverse of

1519 i.e.I~19 can be found as shown below.

Let Ix l9 = 1~19 ' then based on the above explained property,

(3.11)

This implies that Ixl9 == 2, as 0 ::;; Ixl9 ~ 8 and 2 x 5 mod 9 = 1 .

3.5 Chinese Remainder Theorem

In this section discussion on how to convert from the Residue umber System is

discussed. The conversion is done by using the Chinese Remainder Theorem, which is

stated in [18] as, "For a given residue number representation {r], r2 ... rn}, we can

determine the integer (x' using the Chinese Remainder Theorem, if the moduli {miJ m2 ..

. mn} are mutually prime ", i.e. the greatest common divisor for the moduli is '1 '.

15

where

and

The Chinese Remainder Theorem states that

" Mm.=-
J m.

}

n

M =rIm)
)=]

(3.12)

(3.13)

(3.14)

(3.15)

In the equations above, in the notation IxL!\{, 'x' is the integer obtained from the

Chinese Remainder Theorem.

3.6 An Example using Residue Number System

An example is considered to clearly explain and to provide a better understanding

of the Residue Number System and the Chinese Remainder Theorem. Consider the

integer x == 35 and the moduli mj == 3, m2 == 4 and mj == 5. The residue representation for

the number in this moduli system is {2, 3, O}.

To convert back fron1 residue representation the Chinese Remainder Theorem is

used. The product of the moduli, M == 3x4x5 == 60. The weights are now calculated.

16

(3.16)

r.
Now to find -!­

m.
} m

j

(3.17)

r.
Now we need to find the inverse of mj to find -!- .

m·
} m

j

The inverses ofm1 ,m2 , m3 are

Similarly,

Finally to find to IxIM,

17

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

Thus, we obtain the integer number x

representation using the Chinese Remainder Theorem.

18

(3.26)

35, uniquely from its residue

Chapter 4

Xilinx Virtex FPGAs

4.1 Introduction to Field Programmable Gate Arrays

A Field Prograffilnable Gate Array (FPGA) [20] [21] is a programmable VLSI

chip that is used for rapid prototyping to test digital designs. FPGA's are made up of

many identical blocks and interconnects which can be programmed by the user to obtain

the desired design. Implementing and testing designs in FPGA's can avoid the cost and

time involved in manufacturing an ASIC chip. FPGA's can be reprogrammed many

number of times to test many designs, hence any design errors can be corrected easily

without n1uch effort or cost such as involved in wafer fabrication. All these advantages

make the usage of FPGA's often would be a better choice for testing over conventional

masked gate array or ASIC's.

There are four different kinds of FPGA's [21] based on the type of architecture:

Symmetrical array, Row-based, Hierarchical PLD, and Sea-of-gates as shown in Fig 4.1

below.

19

DD
DDD
DDD Interconnect

Row-Based

Hierarchical PLDLogic Block

PLD Block

nterconnect

S fGea 0 ates ~
J

"

'lllIIII ~

I

Figure 4.1: Types ofField Programmable Gate Array (FPGA) [22].
(Printed with permission from the website http://v.,r\V\v.\CC.COlu!fpQ:a.htinl)

There are also four different technologies [21] that are used currently to program

FPGAs. These technologies are: Static RAM cells, Anti-fuse, EPROM transistors and

EEPROIv1 transistors, with each technology having its own advantage based on the

application.

When the Static RAJv1 FPGA's are programmed, the circuit is built into the FPGA

chip by making connections in the chip using pass-transistors, transmission gates, or

multiplexers. These different connectors are controlled, i.e. turned on or off by the Static

RAM cells. Due to the usage of Static RAM cells, large chips are required, but this also

has the advantage of having the ability to program within the circuit.

20

In this technology, anti-fuse programmable connections are used. When

programmed, these connections go into low impedance in accordance with tIle

requirements of the circuit. A disadvantage of this technology is that it can be

programmed only once, but it is much cheaper that the Static RAM technology.

The principle behind the EPROM and EEPROM transistors is the same as that

used in memories. Electrical impulses or ultraviolet light, depending on the type of RAM

being used, is used to erase the RAM to reprogram it. These FPGA chips can be

reprogrammed without external storage of the configuration. The EPROM transistors

cam10t be re-programmed within the circuit, however, and must be taken out of the circuit

for programming.

An FPGA chip provided by Xilinx [23] is used to for the implementation of the

Digital FIR Filter designed in this thesis. The Xilinx Virtex FPGA chip uses Static RAM

FPGA programmable connections. Details about the Xilinx Virtex FPGA architecture are

discussed in the next section of this chapter.

4.2 Xilinx Virtex FPGA

The Xilinx Virtex FPGA [24] chip uses Static RAM FPGA's. Internal memory

cells are present on the chip, which store the user's circuit configuration. This

configuration is programmed onto the FPGA chip to obtain the user's design. The

overview of the Virtex FPGA architecture is shown in Fig. 4.2.

21

o L

>

o l

0- S

Versa Ing

i,h to
:E :;0

~ CLBs »
3:m .~

Versa ing

lOBs

o

~

~ (;
:JJ CD
S·

(.IJ

(Q

Oll

Figure 4.2: Virtex Architecture Overview [24].

From the overview it can be seen that the Virtex FPGA is mainly comprised of an

array of Configurable Logic Blocks (CLB) and programmable Input/Output Blocks (lOB)

which are interconnected by a hierarchy of fast and versatile routing. The Virtex chip also

consists of on-chip true dual-read/write synchronous Block RAMs.

4.2.1 Configurable Logic Block

The basic building block of the Configurable Logic Block [24] (CLB) is a Logic

Cell. Figure 4.3 shows the structure of the Virtex CLB. Each CLB consists of 2 Slices,

which consists of two logic cells. The logic cell is comprised of a 4-input function

generator, carry logic and a storage element. The function generators are implemented by

using 4-input look up tables (LUTs). Each LUT can also provide a 16 x I-bit

synchronous RAM or a 16-bit shift register. The storage elements present in the CLB can

22

be programmed to behave as edge-sensitive D-type flip-flops or level-sensitive D- type

latches. In addition to clock and clock - enable signal, the set and reset signals are also

provided for each slice. Separate carry control logic is present, which enables, the

implementation of high-speed arithmetic functions to provide fast arithmetic carry.

~----...a.---:.,B

.arry
-·ntroJ

any
L,.<)fi r I

LIT

LU

X Jo...4- --J

an' &:
··on 01

LU

L T

8X~-~--_~

She€' 1 nee 0

C1N Cl.

Figure 4.3: 2-S1ice Virtex Configurable Logic Block (CLB) [24].

4.2.2 Input/Output Block

The Virtex Input/Output block (lOB) [24] is compatible with a wide range of

input/output signaling standards. The lOB block is the interface between the internal

circuitry and the external pins. The Block figure of the Input/Output Block is shown in

Figure 4.4.

23

--._--

<'.

1
08

T
TC >;.-----1

o '---,)---+-~--l

oeE ...")o__--+--+-----l

10 ~--+--+-----1 (J. 01--- --1

CE

s
Vrsf

-. ~

elK ~-->-------------.J

ICE:.---- ---J

Figure 4.4: Virtex Input/Output Block (lOB) [24].

4.2.3 Block Select RAM

The Xilinx Virtex chip also consists of blocks of true dual-read/write port

synchronous RAM, with 4096 memory cells called the Block SelectRAM [24]. Block

RAMs are organized into columns on both the sides of the Xilinx Virtex FPGA chip.

Block RAMs are present on all Virtex FPGA chips. There are a total of 32 block Select

RAMs in tl1e Virtex FPGA. The most appealing feature of the block RAM is that all the

ports of the Block RAMs can be configured to a read/write port, a read port, or a write

port independently. A generic Dual-port Block RAM and Single Port Block RAM are

shown in Figures 4.5 and 4.6 respectively.

24

-------I WEB
-----t Et B
----j RS 8
---t" elK
- __ ADO 8[.:0]

--- OIB[:O]

OAl#:O}

DO t ~O]

Figure 4.5: Dual-Port Block SelectRAM [24].

RAMB4_S#

Figure 4.6: Single-Port Block SelectRAM [24].

Some of the characteristics of Block RAMs are: The block RAM is edge-

sensitive, i.e. all the inputs in the Block RAMs are read with the rising edge of the clock.

Also the setup and hold time clock timing specifications have to be satisfied. Similarly

there is a clock to output time delay specification. Static RAM memories are used to

implement Block RAMs and there is no combinational path for address to the output, the

Lookup tables in the CLBs are used to perform this function. Read and write operations

require only one clock edge. The output port maintains the previous value it has outputted

till another operation is perfonned to change the output.

25

The Block RAMs can be invoked by using Schematic Editor or HDL description

language and turning off the synthesizer during synthesis of the block RAM code in the

HDL description of the code.

26

Chapter 5

FIR Filter in Residue Number
System

5.1 Introduction

Chapter 5 discusses the two different approaches possible for the implementation

of a FIR Digital filter in Residue Number System.

5.2 Basic Concept

Figure 5.1 shows a block diagram of a generic RNS FIR digital filter. The

impleme11tation using this RNS technique proceeds step by step as shown in the block

diagram in Figure 5.1. The first conversion of the binary input to RNS is done by

applying the appropriate moduli. The input is multiplied independently in each moduli

with the coefficients (also expressed in RNS) and the filter is generated for each of the

moduli. Finally, the end conversion back to binary from RNS is done, which generates

the binary output of the filter based on the Chinese Remainder Theorem.

The basic concept in the RNS FIR digital filters is the fact tllat once conversion

takes place from a single n-bit binary input to a series of RNS moduli whose product

27

spans the range of the n-bit binary input, it is possible to process the FIR filter

independently in each of these smaller moduli without interaction between the arithmetic

within the moduli. Hence, a 16-bit input word can be converted into a number of moduli

that are 5- bit or less in which the hardware required to implement the filter is much less

than in a 16-bit implementation. There are two radically different approaches to

implementing RNS filters.

put

Modml
Modml Filter1- r---

Modm2
Modmz

1-

Filter ...-

Binary RNS

U to to

+ RNS Binary Out
Conversion Conversion +

Modmn
Modmn

1- Filter -

Figure 5.1: RNS Digital FIR Filter.

One uses large moduli, one of which is a power of two and the others are a power

of two minus one. These large moduli are chosen to have a product that spans the 16-bit

input plus the coefficient width. The other RNS approach uses small moduli that

typically consist of consecutive prime numbers starting with three and has a product

sufficient to span the 16-bit input number plus the coefficient bit size. Usually one of the

28

numbers is not a prime, but rather a power of two and often it is convenient to combine

some of the smaller prime moduli into larger moduli by multiplying them together to

form a larger modulus. Large moduli systems where all moduli are either a power of two

or a power of two minus one have the advantage that conversion to and from binary is

generally easy and requires only adders and a few look-up-tables (LUT's).

5.3 Modulo Addition

The implementation of an FIR filter in the Residue Number System requires the

implementation of the filter in each of the moduli. This necessitates the requirement of

'modulo-adders' in the moduli that the filters are implemented i.e. when '511' is used as

one of the modulo to implement the filter in RNS, a 'modulo-511 adder' is required. The

arithmetic in the modulus, which is 2 , is standard 2's complement arithmetic and the

arithmetic in 2 -1 moduli is l's complement arithmetic. Hence an N-bit 2's complement

adder behaves as a '2 modulo adder' and an N-bit 1'8 complement adder behaves as a

'2 -1 modulo adder'. It can be then concluded that a 'modulo-511 adder' can be

implement by using a 9-bit, 1's complement adder.

When a 'modulo-adder' for a modulus other than 2 or 2 -1 is needed, a 2' s

complement adder can be used with additional circuitry to loop-back the alues after the

maximum value has been reached.

5.4 The Example Filter

The example filter used is an 8-tap fixed-coefficient linear-phase FIR filter with

16-bit input, 14-bit coefficients and 30-bit output. The example filter has been optimized

29

for implementation in Xilinx Application Notes [26] this provides a comparison for the

Residue Filter. The pass-band ripple rp==0.1222 (ap==3db), pass-band edge cop==O.3, stop­

band ripple r5==0.01 (us==40db) and (05==0.65. Figure 5.2 shows the frequency response of

this ideal filter as simulated in MatLab.

0

-10
CDs==0.65

u p==3db
-20

-30 u s==40db

-40

-50

-60

-70

-80
CDp==O.3

-90
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5.2: Example Digital FIR Filter Response.

The filter coefficients are b=={-O.0240156, 0.0055081, 0.1661459, 0.3523616,

0.3523616, 0.1661459, 0.0055081, -0.0240156}. This filter is implemented in a large

modulus RNS and a small modulus RNS.

5.5 Small Moduli RNS FIR Example

The example filter shown in the previous section is first implemented in the Small

moduli system [27]. The moduli that were chosen to implement the filter are (4,13,29,31).

The dynamic range is calculated for the chosen moduli to be,

30

b
. loglo (product of mod uti)
Its == ---------

loglo (2)

b
" logIo(4x13x29x31)
Its =-------

loglo (2)

bits == _lo_g_l0_(4_6_74_8_)
loglo (2)

bits =15.51

(5.1)

(5.2)

(5.3)

(5.4)

The original example has a 16-bit input and 14-bit coefficients, which results in a

30-bit output. Our simplified filter supports an 8-bit input with 7.51-bit coefficients,

which results in a 15.51-bit output. The example FIR filter has s)'l11II1etric coefficients,

hence only half the filter coefficients have to be implemented. The block diagram of the

simplified 4-moduli RNS FIR filter is shown in Figure 5.3.

31

Binary To RNS
and

~ Multiply with input

I _--.&.1---.
RAM RAM
28x16 28x16

I 8-bit Input

I

I I II ~---~---;------., I

; ; (- - - -- - - - - - .- - - - - - ;.- •. ;. -- - - -- - -' _.- - -i- .- + - - - - -- -1- ----,
r----·---,--·-··....,.·-·------·--..--·---·-------·i----,;·--·-.-..-----, I

RNS MOD4
FILTER

: ,

RNS MOD29
FILTER

RNS MODt3
FILTER

RNS MOD31
FILTER

~
I

RNS
To

Binary RAM
2

7x16
I)

I II 16-bit ADDER

I 16-bIt Output

I
I

Figure 5.3: Block Diagram of 4-moduli RNS Digital FIR Filter.

The conversion from Binary to Residue Number System is done using the first

four block RAMs. The multiplication with the input is also done in these block RAMs. In

each of the 28x16 block RAMs, the 8-bit input of the simplified FIR filter is taken in as

the input for the RAM. Each of the RAMs is designed such that the output of the block

RAM is the product of the input and the coefficient represented in the moduli

(4,13,29,31). For example, the first block RAM is designed such that the 16-bit output of

the Block RAM consists of the product of the filter input and the first coefficient

represented in the moduli (4,13,29,31). Hence, each of the blocks has one of the four

coefficients multiplied by the input and represented in the moduli (4,13,29,31).

32

The moduli coefficients from each of the block RAMs are combined to form each

of the modulo filter, as shown in the next section of Figure 5.3. To implement the filter in

each of the moduli, modulo 4, 13, 29 and 31 adders are need. Modulo 4 adders are

implemented by using 2-bit 2's complement adders, Modulo 13 and 29 adders are

implemented by using 4-bit and 5-bit 2's complement adders respectively with a RAM

connected to the output of each adder to loop-back the output after the maximum value

has been reached. Modulo 31 adders are implemented by using 1's complement 5-bit 1's

complement adders. In the next stage, the RNS output of the different filters is converted

back to binary and combined to get the output of the filter. The conversion from Residue

umber System to Binary is done using the Chinese Remainder Theorem. This is

implemented in the three block RAMs present in the last stage of the block diagram

shown in Figure 5.3. The binary output obtained from the Block RAMs is combined

using a 16-bit adder, to generate the final output of the FIR filter.

5.6 Large Moduli RNS FIR Example

The example filter is now implemented in Residue Number System using Large

Moduli [28]. The large modulus RNS is based on moduli that are powers of two or

powers of two minus one. The moduli that are chosen to implement the FIR filter in the

large moduli are {511, 256, 255, 127}. The moduli are mutually prime to satisfy the

condition to use the Chinese Remainder theorem to convert back to binary. The dynamic

range for the moduli chosen is calculated for the chosen moduli,

33

b
. loglo (prod.uct of moduli)
lts == ----------

loglo (2)

bits = logw (511 x 256 x 255 x 127)

10gIo (2)

bits == _lo_g_lo_(4_2_3_64_7_6_16_0_)

loglo (2)

bits == 31.98

(5.5)

(5.6)

(5.7)

(5.8)

The d)'l1amic range of the filter using the moduli {511, 256, 255, 127} is 31.98,

which satisfies the requirements to represent the example filter with 30-bit output. The

Large moduli RNS FIR filter that is implemented in this section supports a 16-bit input

with 15.98-bit coefficients, which results in a 31.98-bit output. The example FIR filter

has linear phase characteristics and hence it symmetric coefficients, so only half of the

filter coefficients have to be implemented to implement the entire filter.

The first step in the implementation of the large moduli filter is the conversion

from the RNS of the input. Figure 5.4. Shows the details of the binary to RNS

converSIon.

34

Most
significant
8 bits

16-tiit 256y
Input

x

Least
significa

nt
R hits

Binary
to

RNS

Binary
to

RNS

Binary
to

RNS

256

1--+-+--~R511

Binary
to

RNS R 127

Figure 5.4: Binary to RNS (4 block Rams 256x16 and 3, 2's camp adders).

The converSIon is done separately for the Least Significant 8-bits and Most

Significant 8-bits. The bits are then combined after the conversion is done using adders.

The three adders from top to bottom are in modulus 255, modulus 511 and modulus 127.

Hence, each can be implemented with a one's-complement adder. An 8-bit 1's

complement adder is used for combining the LSB and MSB of modulo 255, 9-bit l's

complement adder is used to combine the LSB and MSB of modulo 511 and 7-bit l's

complement adder is used to combine the LSB and MSB of modulo 127 respectively.

The MSB of modulo 256 become zero, hence no adder is required to combine the bits of

modulo 256. The Binary to RNS boxes are Block Ram LUT's each 256x 16.

In the next stage, the filter input that was converted into modulo in the pre lOllS

section is now multiplied with the filter coefficients. Each of the moduli outputs a total of

35

32 bits, eight bits for each coefficient. Figures 5.5 and 5.6 show the multiplication of the

modulus 256, modulus 255 inputs by the modulus 256 and modulus 255 coefficients.

Moduli 255 and Moduli 256 require two RAMs of size 256 X 16.

Mod 256 Output bou

Mod 256 Input u

256x16
block RAM

256x16
block RAM

Mod 256 Output b t u

Mod 256 Output b2u

Mod 256 Output b3u

Figure 5.5: Multiplication by b coefficients in Moduli 256 (2 block RAMs 256x16).

Mod 255 Output bou

Mod 255 Input u

255x16
block RAM

255x16
block RAM

Mod 255 Output btU

Mod 255 Output b2u

Mod 255 Output b3u

Figure 5.6: Multiplication byb coefficie11ts in Moduli 255 (2 block RAMs).

In the Figure 5.7 the multiplication of the modulus 511 inputs, by the four-

modulus 511 coefficients is shown.

36

od 511
tput btU

Mod 511
tput bou

512x8

.----- block
RAM

512x8
Ou

~ block
RAM

511 M

ut U
512x8 Ou

...... block

.......
RAM

......

512x8 M

~
block Ou

......
RAM

......

M
512x8 Out--. block

......
RAM

Mod
Inp

Figure 5.7: Multiply by b coefficients in modulus 511 (5 block RAMs 512x8).

The multiplication of the input by the coefficient for each of the four coefficients

requires five RAMs of size 512 x 8. Hence the output is a total of 40 bits from the fi e

RAMs, of which only 36 bits are utilized, i.e. nine for each of the four coefficients. The

RAMs are designed such that 8-bits are obtained from the first four, 512 x 8 block RAMs

and the 9th bit for each of the coefficient products is obtained from the last 512 x 8 block

RAM.

37

For the last Moduli 127 only one RAM of size 128 x 32 is required. The

requirement is only 28 bits, of the 32 bits seven bits for each of the four coefficients.

This is shown in Figure 5.8.

Mod 127 Output bou

Mod 127 Input u 128x32
block BAM

Mod 127 Output btU

Mod 127 Output b2u

Mod 127 Output b3u

Figure 5.8: Multiplication by b coefficients in Moduli 127(1 block RAMs 128x32).

In the next stage the FIR filter is implemented in each of the four moduli. Hence

four filters each in one of the moduli are implemented. Delays and adders are used to

build the FIR filter in the nonnal fashion. Specific adders l1ave to be used for the different

moduli filters based on the requirements of the modulo. For moduli 511, 255 and 127,

each of the adders is a 1's-complement adder of9, 8 and 7 bits respectively. For modulus

256, the adders are 2's-complement adders of 8 bits. The adders and delays can be

combined to use a single component called the 'adder-delay'. Each adder with delay

takes LUT's and FF's equal to the number of outputs of the adder.

The last stage of the implementation of the FIR filter in RNS is the conversion of

the 4 modulo filters from RNS back to binary using Chinese Remainder Theorem and to

combine the outputs to get the final output of the filter. Figure 5.9. shows the conversion

from RNS to Binary, which requires 4 Block RAMs. The number of output bits is 32.

38

Mod 511 Filter Output Mod 256 Filter
Output

Mod 255
Filter Output

Mod 127
Filter Output

512x8
block
RAM

512x8
block
RAM

512x8
block
RAM

512x8
block
RAM

256x16
block
RAM

256x16
block
RAM

256x16
block
RA

128x32
block
RAM

Figure 5.9: RNS to Binary Conversion (9 block RAMs).

This is the final output of the FIR filter implemented in the Residue umber

System. The design and implementation of the Block RAMs and the complete

implementation of the FIR filter are discussed in the next chapter.

39

Chapter 6

Hardware implementation of the
Filter

6.1 Introduction

Chapter 6 contains the procedure required to implement the filter in RNS. The

Filter implementations are shown in this chapter. This chapter also deals with the

simulation and implementation results of the filters introduced earlier. A comparison of

the Matlab simulation results of the original example filter and simulation of the

implementation results of the small moduli and large moduli FIR filters are also shown in

this chapter.

6.2 Implementation Procedure

Implementation of the RNS FIR filter can be achieved through schematic layout

or by writing VHDL code. The Schematic Layout Editor is used in this thesis to

implement the FIR filter. The RAMs are implemented using the core generator. The data

to be stored in the RAMs can be added by using a .mif file. The .mif file contains the

converted RNS value for its corresponding binary alue, the value obtained after

multiplying the input by the coefficient, or the RNS output converted back to binary at

40

the end. The file is included when generating the RAMs. A MATLAB program is used to

generate the .mif file. The adder-delays and the adders are also generated by using the

core generator. The top-level file uses these components to generate the filter. This is

depicted in the Flowchart in Figure 6.1 to provide a better understanding of the concept.

MIF
File

u
Xilinx
Core

Generator

Xilinx ­
:~... Schematic

Editor

FIR
Filter

Figure 6.1: RNS Filter Implementation Procedure.

41

6.2.1 MIF File Generation

A MIF file consists of O's and 1's, which are the values to be stored in the Block

RAMs. Each MIF file is generated to meet the specific requirements of the individual

RAM. For Example, in the Small Moduli case, to generate the RAMs in the first stage of

the RNS filter, the MATLAB program converts the decimal input to RNS and also

multiplies it by the filter coefficients. Then it is converted to binary and stores the results

in the MIF file. Each MIF files is generated with a unique file name to distinguish it from

the others. The Matlab program to generate the MIF files for both the Small Moduli and

Large Moduli are given in Appendix A.

6.2.2 Core Generator and Xilinx Schematic Editor

In the next stage the MIF files that were generated for the RAMs are loaded into

their respective RAMs. The MIF files are placed in the Xilinx project directory. The Core

Generator is opened from the Xilinx Project Manager to generate the RAMs required for

the filter. The Core generator opens the windo\v shown in Figure 6.2. The Single Port

Block Memory is selected from the Memory Elements Option.

42

-."- Xtlinx CORE GeneJalOi 3 1i ~OO t:J

~ Basic Elements
'. -=.J Comparators

"--=.J Counters 'I'

Encoders &Decoders 1I1III••I6I11••m•••••IIII.IIIIII.IIII1I1I1.IIIIIIIIIIIIIIIIIII•..:J Format Conversions ,I:
'.. i.J Logic Gates &Buffers

iMi414ij'i§i$lh4tiM I.
. .:...J Multiplexer !
~ Register-Buffer I

'. :J Registers, Shifters & Pipelining I
.-.J Communication & Networking I·

'-J Digital Signal Processing I,
-..-J Math Functions I;
-.J Microprocessors, Controllers & Peripherals I:
~ ProtoType & Development Hardware Products Ii ,=

~ Standard Bus Interfaces
.-:-.J storage Elements & Memories I

_----J11J.--------
Set current Project to C:\Fndtn\Active\Projects\rns

Figure 6.2: Xilinx Core Generator Window.

43

Figure 6.3: Single Port RAM Window.

A window as shown in Figure 6.3, appears when the Single Port Block Memory is

selected. The component name in the window distinguishes one RAM from another when

the RAM is generated, the Depth specifies the number of entries prese11t in the RAM and

hence the number of bits in the address lines to the RAM. For example, if we specify a

Depth of ' 16' then there will '4' address lines since 24
== 16. The Data Width specifies the

number of bits in the output. The default values stored in the Block RAM is Zero. The

number of Slices and Block RAMs used on the Virtex Board to generate the particular

Block RAM is also shown in the window.

44

Figure 6.4: Selecting the PINS for the Single Port RAM.

The 'Pins' button on the 'Single Block Memory' Window is selected to select the

desired pins. This opens a smaller 'Pins' Window as sho\\'ll in Figure 6.4. The Write Port

is not selected as the RAM is being used as 'Read Only'. The Read Port, Enable and

Output Reset is activated. The RAM is set to Clock in the address in the address lines on

the Rising_Edge of the clock. The Enable and Reset are set for Active High. The close

button is pressed to save the options selected for the RAM.

45

Figure 6.5: Selecting the MIF file for the Single Port RAM

The 'Initial Contents' button on the 'Single Block Memory' Window is pressed to load

the MIF file for the RAM. This opens a smaller 'Initial Contents' Window, as shown in

Figure 6.5. opens to load the MIF file. The MIF file relevant to the RAM being generated

is specified in the MIF Filename option, the Read MIF file is selected and Radix 2 is

selected as the data present in the MIF file in binary. The close button is pressed to save

the options selected for the RAM.

46

Figure 6.6: Final Appearance of the Single Port RAM Window

The final 'Single Block Memory' Window is shown in Figure 6.6. In this example

the Component is named 'RAMOl, it has a depth of '16' and hence '4' address lines, the

data width is 32 bits. Figure 6.6 also shows that the initial contents are read from the MIF

file. To generate the 'RAMO1' component the 'Generate' button on the 'Single Block

Memory' Window is pressed. This generates the 'RAMOl' component and places it in

the list of components in the Xilinx Project.

47

08UF32
, OPAD32

RAM
RAM255 _80_81
RAM255_82_B3

RAM2S6_BO_81

RAM256_B2_B3

R.A.M511_8_LSB
RAM511_BO
RAM511_81
RAM511_B2

~ RAM511_83
" RAMIt\l127_8

R.a.MOUT127
RAMOUT2S5L
R.a.MOUT255M
RAMOUT2S6L
R..B.MOUT256M
RAMOUT511 LH
RAMOUT511 Ll
RAMOUT511 MH
RAMOUT511 ML
RAMR255_256X
RAMR255_256Y
RAMR511 _127X
RAMR511 _1 27Y

Figure 6.7: Schematic Editor of Xilinx showing the RAMs as Components.

The core generator is also used to generator the adder-delays required to

implement the FIR filter in Residue Number System. Figure 6.7 shows the Schematic

Editor of Xilinx. The List of components shown in Figure 6.7 contains the RAMs and the

adder-delays that were generated using the Core Generator. These components are wired

together appropriately in the Schematic Editor design of the RNS FIR filter.

6.2.3 Hardware Implementation

A top-level file combining the lower level files is created. From the top level file

the filter is synthesized and implemented using the Xilinx Syt1thesizer built into the

project manager software. This creates a file that contains the timing information of the

implemented filter. This file is loaded into the simulator of the Xilinx project manager for

48

testing. Thus the implemented filter is tested through simulation, by testing the timing file

generated through implementation. The implementation also provides a file, which

contains the hardware that was required to implement the filter.

r:=====================±:::::::'=:j-

Figure 6.8: Xilinx Implementation of the Small Moduli RNS FIR Filter

6.3 Simulation and Implementation Results of Small
Moduli RNS Filter

The top-level Schematic of the implementation of the Small Moduli Residue

Number System FIR Filter discussed in the previous chapter (see Figure 5.3) is shown in

Figure 6.8. The implementation [27] required 143 slices, 135 Flip-Flops, 191 LUT's and

7 block RAMs. Figure 6.9. shows a plot of the ideal filter (dotted line) and the actual

49

output of the Xilinx circuit of Figure 6.8. Based on the comparison of Figure 6.9, the

actual output meets both pass-band and stop-band filter requirements. This demonstrates

the use of the RNS technique implemented using block rams results in filters which can

meet the filter specifications using fewer FPGA resources than non-RNS techniques.

Figure 6.9: Comparison of ideal filter and actual output ofXilinx implementation.

50

Figure 6.10: Xilinx Implementation of the Large Moduli RNS FIR Filter

6.4 Simulation and Implementation of Large Moduli
RNS Filter

The top-level Schematic of the implementation of the Large Moduli Residue

Number System FIR Filter discussed in the previous chapter (see Figures 5.4 and 5.9) is

shown in Figure 6.10. The implementation [28] of this filter required 195 slices, 256 Flip-

Flops, 344 LUT's and 23 block RAMs. Figure 6.11. Shows a plot of the ideal filter

(dotted line) and the actual output of the Xilinx circuit of Figure 6.10.

From the comparison shown in Figure 6.11 we can say that the use of RNS

techniques of implementing filters in block RAMs result in filters that meet the filter

specification and use fewer FPGA resources than non-RNS techniques.

51

20

0

..20

-40

g60

..80

..100

-120
0 100 200 300

Ideal Filter

RNS Filter

•

400 500 600

Figure 6.11: Comparison of ideal filter and actual output of Xilinx implementation.

52

Chapter 7

Conclusion and Future Work

7.1 Xilinx Implementation of the Example Filter

The example filter used for implementation in the thesis was originally

implemented in the XilillX Application Notes [26]. This provides a method of comparison

between the RNS implementation and the Xilinx implementation. The authors of the

application notes use the basic building blocks to build an 8-tap lowpass FIR filter with

16 bits input and 14 bits signed coefficients. The lTIultipliers of FIR filter, are

in1plemented such that the inputs to the multiplier are the tap data and the constant

coefficient. These multipliers are called KCM since one of the inputs in a constant. The

authors achieve efficient implementation of the KCM by storing the pre-computed partial

products of the fixed coefficients. These partial products are stored in ROMs using

distributed memory in Xilinx FPGAs. The 16-bit input is divided into 4-bits and they are

inputs to 4 different ROMs. The output of the RAM is the partial product of the input and

the coefficient. The output of the ROM with respect to its input is added to the partial

product output from the other ROM. The KCM block diagram is shown in Figure 7.1.

53

18

x .1(

7 x ,~.

Elxk
9 x k
10 X k
1 X k
12 x k
1 X k
1 X k
1·:> x k

Figure 7.1: KCM Block Diagram [26].

!1 :d]

7.2 Comparison of Xilinx and RNS Implementation

The Digital FIR filter was implemented using Residue Number System In

hardware using the schematic layout approach. A VHDL code in collaboration with

Xilinx CORE Generator tool can also be used to implement the Digital FIR.

The implementation of the simplified version of the filter in Small Moduli

required 143 slices, 135 Flip-Flops, 191 LUT's and 7 block RAMs. The comparison

between the Matlab simulation graph and the hardware implementation graph

demonstrates that the use of the RNS technique implemented using block rams results in

filters which can meet the filter specifications.

54

The complete filter in the example filter was implemented in the large moduli.

Table 7.1 shows the results of this filter compared to an 8-tap FIR filter optimized in the

Xilinx application notes.

Technique Number Number Number Number
of of ofFF's of

Slices LUT's Block
Rams

FPGA 645 977 807 0
Express
Synplify 584 931 755 0

Pro
RNS 195 344 256 23

Table 7.1: Comparisons of Various Optin1ization Tools.

7.3 Conclusion

From Table 7.1 it can be seen that the RNS verSIon offers a considerable

improvement over the optimized circuit discussed in the application note. In fact, in

terms of slices, LUT's and FF's, the new RNS technique offers less than one - third of the

hardware of the application note. However, this is obtained at the expense of 23 block

RAMs of the 28 total on the Virtex 800 chip. But many implementations do not use the

Xilinx Block RAMs but require the CLBs for their implementation, so by using the block

RAMs and saving CLBs, larger and complex implementation can be done using the

remaining CLBs. Hence we can conclude that only 1/3 of the hardware was required

when compared to the implementation in the Xilinx Application notes. However since

that conversion between binary and residue and back has to be done, RNS is slower than

other methods of implementation, but in applications where the hardware savings is the

55

essential requirement than speed, RNS provides a solution. Recently, a method to convert

IIR filters into FIR approximations using linear difference equations was proposed [29].

Hence Residue Number System can be used for IIR filters also, after they are converted

into their FIR approximation.

7.4 Future Work

In this thesis a single example digital FIR filter was implemented in Residue

Number System. Further Research can be done to compare of the speed, i.e. the clock

rate, between the Residue Number System and conventional methods to obtain trade offs

between hardware savings and speed can be done.

The work in this thesis can be extended to build a generic code Matlab code that

generates the .mif files for any given file. Also a generic VHDL / Verilog code for the

implementation of the RAMs that is accepted by the Core generator can be written. A

script file can be written to combine the top-level files to generate the desired filter to

meet the filter specification. These modifications can be incorporated into the Public

domain-Matlab program for designing that was previous written by Leong [15] and into

the generic VHDL code that was written by Howe [16].

56

Bibliography

[1] A. V. Oppenheim and R. W. Schafer, Discrete Time Signal Processing, Prentice

Hall, 1989.

[2] Lawrence R. Rabiner and Charles M. Rader, Digital signal processing, IEEE

Press, 1972.

[3] William D. Stanley, Gary R. Dougherty, Ray Dougherty, Digital signal

processing, 2nd Ed: Reston Pub. Co, 1984.

[4] Zhan Yu, Meng-Lin Yu, K. Azadet, A.N. Willson, {{The use of reduced two's­

complement representation in low-power DSP design," IEEE International

Symposium on Circuits and Systems, vol. 1, pp. 77-80,2002.

[5] Zhan Yu, Meng-Lin Yu, K. Azadet, A.N. Willson, HA low power adaptive filter

using dynamic reduced 2 's-complement representation, " in Proc. IEEE Custom

Integrated Circuits Conf., pp. 141-144,2002.

[6] O. Salomon, I.M. Green, H. Klar, ({General algorithlns for a simplified addition

of 2's complement numbers, " IEEE Journal of Solid-State Circuits, vol. 30, pp.

839-844, July 1995.

[7] R.M. Hewlitt, E.S. Swartzlantler Jr, {'Canonical signed digit representation for

FIR digitalfilters, "IEEE Workshop on SiPS '00, pp. 416 -426, 2000.

57

[8] Y.M. Hasan, L.J. Karam, M. Falkinburg, A. Helwig, M. Ronning, uCanonic

signed digit FIR filter design, " Thirty-Fourth Asilomar Conf. Signals Systems

and Computers 2000, vol. 2, pp. 1653 -1656,2000.

[9] Dannielle L. Rusinga, ((Design of Optimized Filters Using CSD Coefficient

Representation, " MS Thesis, UC Davis, California, Mar. 1996.

[10] Naren B. Balasubramanian, "Optimal Design of Digital Filter using CSD

Coefficients, "MS Thesis, Univ. of Califomia, Davis, CA, 1997.

[11] Andrew G. Dempster and Malcolm D. Macleod, "Use of minimum-adder

multiplier blocks in FIR digital filters, " Trans. IEEE Circuits and Systems, vol.

42, pp. 407-413, Oct. 1994.

[12] Andrew G. Dempster and Malcolm D. Macleod, "Constant integer multiplication

using minimum adders, " Proc. IEE Circuits Devices Systems, vol. 141, pp. 569­

576, Sept. 1995.

[13] Andrew G. Dempster and Malcolm D. Macleod, "Comparison affixed-point FIR

digital filter design techniques, " Trans. IEEE Circuits and Systems, vol. 44, pp.

591-593, July 1997.

[14] Kah-HoweTan, Wen F. Leong, Sameer Kadam, M.A Soderstrand, L.G Johnson,

"Public-domain MATLAB prograln to generate highly optimized VHDL for

FPGA implementation, " IEEE ISCAS '01, vol. 4, pp.514 -517, May 2001.

[15] Wen F. Leong, ((Optimizing FIR filters coefficients using CSD representation and

DM technique, " MS Thesis, Oklahoma State Univ., OK, May 2002.

[16] Kah-Howe Tan, "Optilnizing FIR filters coefficients using CSD representation

and DM technique, " MS Thesis, Oklahoma State Univ., OK, May 2002.

58

[17] M. A. Soderstrand, W. K. Jenkins, G. A. Jullien and F. A. Taylor, "Residue

Number System Arithmetic: Modern Applications in Digital Signal Processing, JJ

IEEE Press, 1988.

[18] Nicholas S. Szabo and Richard T. Tanaka, Residue Arithmetic and its Applications

to Computer Technology, McGraw-Hill.

[19] P.V. Ananda Mohan, Residue Number Systems: Algorithms and Architectures,

Kluwer Academic Publishers.

[20] FPGA general information, http://vv'"\v\v.andraka.conl/\vhatisan.htn1

[21] John V. Oldfield; Richard C. Dorf, Field-Programmable Gate Arrays:

Configurable Logic for rapid prototyping and implementation of digital systems,

John Wiley & Sons Inc., 1995.

[22] FPGA general information, http://\V\V\v.vcc.con1/fpga.htnl1

[23] Xilinx official web page, I1ttp://xilil1X.COlTI

[24] Xilinx Virtex Application Notes,

http://direct.xllinx.colnfbvdocs/pllblication.s/ds003.pdf.

[25] Xilinx Virtex SelectBlock RAM Application Notes,

http://vV\N\N.xilinx .coln/xapp/xapp130.pdf

[26] V. Pasham, A. Miller and K. Chapman, Transposed Form FIR Filters, Xilinx

Application Note, XAP219 ver. 1.1, http://www.xilinx.coln/xapp/xapp219.pdf.

[27] Kadambari Kaluri, Wen F. Leong, K. H. Tan, L.G. Johnson, M.A. Soderstrand,

Comparison of RNS and optimized FIR digital filters in Xilinx FPGA's, JJ Proc.

44th IEEE MWSCAS '01, vol. 1, pp. 438 -441,2001.

59

[28] Kadambari Kaluri, Wen. F. Leong, K.H. Tan, L.G. Johnson, M.A.Soderstrand,

"FPGA hardware implementation of an RNS FIR digital filter, " 35th Asilomar

Conference on Signals, Systems and Computers, vol. 2, pp. 1340 -1344, 2001.

[29] R.K Mallik , K.V.Rangarao, "On the impulse response of a discrete-time linear

IIR system" accepted and to appear in Digital Signal Processing Journal,

December 2002.

60

Appendix A

Matlab Files for the generation of .mif files for the
RAMs

Binary.m

function [B] = binary(D,kl,k2)

% function [B] = binary(D,kl,k2)
%

% returns rounded binary quantization of the absolute value
% of a decimal quantity

% ~NPUTS: D = decimal scalar input
% k 1 blts to the left of decimal point (integer)
~ k j - bits to the right of decimal point (fraction)
%

% OUTPUT:
%

B = binary rector output, MSB = B(l)

signD = sign (D) i

Dabs (D) ;
D = D + 2 A (-k2-1);
B = zeros(1,kl+k2) i

for bit = (k1-1): (-1) : (-k2),
D old = D;
D-= rem(D,2 A (bit));
if D_old - D > 0,

B(-(bit-kl)) = 1_;

end
end

return;

61

Small moduli ramin.m

%To convert from Binary to RNS the input and multiplJ ~'th the
%coef-Ficents

b=[-0.0240156 0.0055081 0.1661459 0.3523616 0.3523616 0.1661459
0.0055081 -0. 0240156J ;
br=round(182*182*b/max(b)/518) ;
m= [3 1 2 9 13 4];
for i=1:256

for j=I:4
r (i , j) =mod ((i - 1) *b r (1) , m (j)) ;

end
raminbO_dec(i)=r(i,I)+32*(r(i,2)+32*(r(i,3)+16*r(i,4))) ;
raminbO(i, :)=binary(raminbO_dec(i) ,16,0);

end
fid=fopen('raminbO.mif', 'Wi) i

for i=1:256
for j=I:16

fprintf(fid, '%d' ,raminbO(i,j));
end
fprintf (fid, ! \n') i

end
fclose(fid) ;
~---

for i=1:256
for j=I:4

r (i , j) =mod ((i -1) *br (2) , m (j)) ;
end
raminb1_dec(i)=r(i,I)+32*(r(i,2)+32*(r(i,3)+16*r(i,4))) ;
raminbl(i, :)=binary(raminbl_dec(i) ,16,0);

end
fid=fopen('raminbl.mif', 'w');
for i=I:256

for j=I:16
fprintf(fid, '%d' ,raminbl(i,j));

end
fprintf (fid,' n');

end
fclose(fid) ;
%---

for i=1:256
for j=I:4

r (i , j) =mod ((i -1) *br (3) , m (j)) i

end
raminb2 dec(i)=r(i,l)+32*(r(i,2)+32*(r(i,3)+16*r(i,4)));
raminb2(i, :)=binary(raminb2_dec(i) ,16,0);

end
fid=fopen('raminb2.mif', 'WI);
for i=1:256

for j=I:16

62

fprintf(fid, '%d'/raminb2(i/j)) i

end
fprintf(fid, I\n') i

end
fclose(fid) i

%---
for i=1:256

for j=1:4
r (i, j) =mod ((i -1) *br (4) / m (j)) ;

end
raminb3_dec(i)=r(i,l)+32*(r(i,2)+32*(r(i,3)+16*r(i,4))) ;
raminb3(i, :)=binary(raminb3 dec(i) /16,0) i

end
fid=fopen('raminb3.mif', IW I

);

for i=1:256
for j=1:16

fprintf (fid, I %d 1/ raminb3 (i, j)) i

end
fprintf (fid/ ' ,n I) i

end
fclose(fid) i

Small moduli ramout crt.m

% 0 convert back to Binary from RNS using Chinese Remainder theorem

k4=3;
k13=Si
k29=12i
k31=14;
m=[4132931]i

for j=1:128
i=j-1;
r4 (j) = f ix (i / 2 A 5) ;

r29(j)=i-2 A S*r4(j) ;
out(j)=k4*r4(j)/4+k29*r29(j)/29;
ram1(j)=fix(2 A 16*(out(j)-fix(out(j)))) i

ramout1(j, :)=binary(raml(j) ,16,0);
end
fid=fopen (I ramout . mif 1 , '~7 I) ;

for i=1:127
for j=1:16

fprintf(fid, '%d' /ramoutl(i,j));
end
fprintf (fid, I \n I) ;

end
for j=1:16

fprintf(fid, '%d ' ,ramout1(128/j)) i

end

fclose(fid) ;

for j=1:S12

63

i=j-1;
r13 (j) =fix (i/2 A S) ;
r31 (j) =i-2 A S*r13 (j) ;
out(j)=k13*r13(j)/13+k31*r31(j)/ 31 i

ram2(j)=fix(2 A S*(out(j)-fix(out(j)))) ;
ramout2(j, :)=binary(ram2(j) ,S,O) i

out(j)=2 A 8*out(j)-ram2(j) i

ram3(j)=fix(2 A S*out(j)) ;
ramout3(j, :)=binary(ram3(j) ,8,0) i

end
fid=fopen('ramout2.mif', 'WI) i

for i=1:511
for j=l:S

fprintf (fid, I %d ' , ramout2 (i, j») ;
end
fprintf (fid, 1\ n I) ;

end
for j::1:S

fprintf (fid, '%d I, ramout2 (512, j)) ;
end

fclose(fid) ;

fid=fopen('ramo t3.mif', 'WI);

for i=1:511
for j::l:8

fprintf(fid, '%d' ,ramout3(i,j)) i

end
fprintf(fid,1 n l

);

end
for j=l:S

fprintf(fid, I%d l ,ramout3(512,j));
end

fclose(fid) ;

64

Large moduli rns levl.m

%To convert from Binary to RNS the input
%From input, u to R
%u=256y+x
%**
%For 511 and 127
clear
clear r1 r2
m1= [511,127] ;
for i=1:256,

for j=1:2,
r 1 (i , j) =ffiod ((i - 1) *256 , ml (j)) ;
r2 (i , j) =ffiod ((i - 1) , ml (j)) ;

end
R511_127y_dec(i)=rl(i,2)+128*r1(i,l) ;
R511_127x_dec(i)=r2(i,2)+128*r2(i,l) ;
R511_127y(i, :)=binary(R511_127y_dec(i) ,16,0) i

R511_127x(i, :)=binary(R511_127x_dec(i) ,16,0);
end

~Make it into Mif file
fid=fopen('ramR511_ 27y.mif / , IW I

) i

for i=1:256,
for j=1:16,

fprintf(fid, '%d',R511_127y(i,j)) i

end
fprintf (fid, 1 n I) i

end
fclose(fid) i

fid=fopen('ramRSl1_127x.mif 1
, 'WI) i

for i=1:256,
for j=I:16,

fprintf(fid, '%d! ,R511_127x(i,j));
end
fprintf (fid, I \n 1) i

end
fclose(fid) i

%***

clear r1 r2
%for 255 and 256
m2 = [255, 2 56] i

for i=I:256,
for j=1:2,

r2 (i , j) =mod ((i - 1) , m2 (j)) i

r1 (i , j) =mod ((i -1) * 256 , m2 (j)) i

end

R255 256y dec(i)=r1(i,2)+256*rl(i,l) i

R255-256x-dec(i)=r2(i,2)+256*r2(i,1) i

R255=256y(i, :)=binary(R255_256y_dec(i) ,16,0) i

65

end

%Make it into Mif file
fid=fopen('ramR255_256y.mif', 'WI) i

for i=1:256,
for j=1:I6,

fprintf (fid, I %d I, R255_256y (i, j)) i

end
fprintf (fid, ! \n!) i

end
fclose(fid) i

fid=fopen('ramR255 256x.mif!, 'Wi) i

for i=1:256,
for j=1:16,

fprintf (fid, I %d I, R255_256x (i, j)) ;
end
fprintf (fid, '\n I) i

end
fclose(fid) i

~***

Large moduli rns lev2.m

;':-To mul t ip1Y 'vi th the coef f ic ients of FIR f i 1 ter
clear;
b=[-0.0240156 0.0055081 0.1661459 0.3523616 0.3523616 0.1661459
0.0055081 -0.0240156] i %S~nce is a 8 tap symmetr~~

br=round(64643.49*64643.49*b/max(b)/183457.8171968796) i

m= [511 256 255 127] i

%%~%%~%%%%%%%%%%%%%%%%~%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*%%~~%%%%%%%%%%%

%%%%%%%%%%%%%%%%%

%From R511
clear r
for i=1:512,

for j=1:4,
r (i, j) =mod ((i-I) *br (j) ,511) i

end
ramin511_bO(i, :)=binary(r(i,l) ,9,0);
ramin511_bl(i, :)=binary(r(i,2) ,9,0) i

ramin511 b2(i, :)=binary(r(i,3) ,9,0) i

ramin511=b3(i, :)=binary(r(i,4) ,9,0) i

end

%Wr'te to mif file

fid=fopen(lram511_b_lsb.mif l
, 'Wi) i

66

for i=1:512,
fprintf(fid, '%d l ,ramin511_bO(i,9)) i

fprintf(fid, '%d' ,ramin511_b1(i,9)) i

fprintf(fid, '%d ' ,ramin511 b2(i,9)) i

fprintf(fid, l%d 1 ,ramin511=b3(i,9)) i

fprintf (fid, I %d 1,0) i

fprintf (fid, I %d', 0) i

fprintf(fid, '%d' ,0) i

fprintf(fid, '%d l ,0) i

fprintf(fid, I\n l) i

end
fclose(fid) i

fid=fopen('ram511 bO.mif', 'WI) i

for i=1:512, -
for j=1:8,

fprintf (fid, I %d I , ramin511_bO (i, j)) i

end
fprintf(fid, l\n 1

) i

end
fclose(fid) ;

fid=fopen('ram511_bl.mif ' , 'Wi) i

for i=1:512,
for j=1:8,

fprintf(fid, '%d' ,ramin511_b1(i,j)) i

end
fprintf (fid, '\n 1) ;

end
fclose(fid) i

fid=fopen('ram511 b2.mif', 'Wi) i

for i=1:512,
for j=1:8,

fprintf(fid, '%d' ,ramin511_b2(i,j));
end
fprintf(fid, '\n!);

end
fclose(fid) i

fid=fopen('ram511_b3.mif', 'w');
for i=1:512,

for j=1:8,
fprintf(fid, '%d' ,ramin511_b3(i,j));

end
fprintf (fid, I \n I) ;

end
fclose(fid) ;

%%%%%%%%%%%%%%i%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%

%From R256
clear r
for i=1:256,

for j=1:4,

67

r (i , j) =mod ((i -1) *br (j) , 256) i

end

ramin256_bO(i, :)=binary(r(i,l) ,8,0) i

ramin256_b1(i, :)=binary(r(i,2) ,8,0) i

ramin256_b2(i, :)=binary(r(i,3) ,8,0) i

ramin256_b3(i, :)=binary(r(i,4) ,8,0) i

end

%Write to mif file
fid=fopen('ram256_bO_bl.mif', 'WI) i

for i=1:256,
for j=1:8,

fprintf(fid, '%d',ramin256_bO(i,j)) i

end
for j=1:8,

fprintf (fid, I %d I, ramin256_b1 (i, j)) i

end
fprintf(fid, I\n!) i

end
fclose(fid) i

%Write to m'f file
fid=fopen('ram256 b2 b3.mif', lW') i

for i=1:256,
for j=1:8,

fprintf(fid, !%d',ramin256_b2(i,j)) i

end
for j=1:8,

fprintf(fid, '%d' ,ramin256_b3(i,j)) i

end
fprintf (fid, I \n') i

end
fclose(fid) i

%%%%%%%%%%%%%%%%%%%%%%%%~%%%~%%%~

%%%%%%%%%%%%%%%%%

%From R255
clear r
for i=1:256,

for j=1:4,
r (i , j) =mod ((i - 1) *b r (j) , 2 55) i

end
ramin255_bO(i, :)=binary(r(i,l) ,8,0) i

ramin255_b1(i, :)=binary(r(i,2) ,8,0) i

ramin255_b2(i, :)=binary(r(i,3) ,8,0) i

ramin255_b3(i, :)=binary(r(i,4) ,8,0) i

end

%Write to mif file
fid=fopen('ram255_bO_bl.mif ' , IW l

) i

for i=1:256,
for j=1:8,

fprintf(fid, l%d' ,ramin255_bO(i,j));

end
for j=1:8,

fprintf(fid, '%d' ,ramin255_bl(i,j)) i

68

end
fprintf (fid, '\n I) i

end
fclose(fid) i

%Write to mif file
fid=fopen('ram255_b2_b3.mif', 'w');
for i=1:256,

for j=1:8,
fprintf(fid, '%d' ,ramin255_b2(i,j));

end
for j=1:8,

fprintf(fid, '%d' ,ramin255 b3(i,j));
end -

fprintf (fid, r \n') ;
end
fclose(fid) ;
%%~%%%~%%%*%~%%%%%%

%%%%%%%%%%%%%%*%%

%From R127
clear r
for i=1:127,

for j=1:4,
r (i , j) =mod ((i -1) *br (j) , 127) ;

end
ramin127_bO(i, :)=binary(r(i,l) ,7,0);
ramin127_bl(i, :)=binary(r(i,2) ,7,0);
ramin127_b2(i, :)=binary(r(i,3) ,7,0);
ramin127_b3(i, :)=binary(r(i,4) ,7,0);

end

~1;rite to mif file
fid=fopen('ramin127_b.mif', 'Wi) i

for i=1:127,
for j=1:7,

fprintf(fid, '%d' ,ramin127_bO(i,j));
end
for j=1:7,

fprintf(fid, '%d' ,ramin127_bl(i,j));
end

for j=1:7,
fprintf(fid, I%d ' ,ramin127_b2(i,j));

end
for j=1:7,

fprintf(fid, '%d' ,ramin127_b3(i,j));
end
fprintf(fid, '%d' ,0);
fprintf (fid, '%d', 0);
fprintf (fid, I %d ' , 0);
fprintf(fid, '%d',O);
fprintf(fid, '\n');

end
fclose(fid) ;

%%%%%%%%%%%%~%%%%%%%%%%%~%%%~%%%%

%%%%%%%%%%%%%%%%%

69

Large moduli rns bin.m

%Using CRT to convert RNS to Binary
clear

k511=346;
k256=127;
k255=253;
k127=106;

m=[511 256 255 127] i

%%%~%%%%%%%%%%%

%

%"or od511
clear i j out k
for j=1:512,

out (j) =k511* (j -1) /m(l) ;

to convert back to binary %%%
ram511(j)=fix(2 A 32*(out(j)-fix(out(j)))) ;

obtain the fractional part %%%
ramout511(j, :)=binary(ram511(j) ,32,0);

convert from decimal to binar/ %%%
end
fid=fopen('ramout511mh.mif', 'Wi);

for i=1:512,
for k=1:8,

fprintf(fid, '%d l ,ramout511(i,k)) ;
end
fprintf (fid, '\n I) ;

end
fclose(fid) ;

fid=fopen('ramout511ml.mif', 'Wi);

for i=1:512,
for k=9:16,

fprintf(fid, '%d ' ,ramout511(i,k)) ;
end
fprintf (fid, In!) ;

end
fclose(fid) i

fid=fopen(lramout511Lh.mif', 'Wi) ;

for i=1:512,
for k=17:24,

fprintf(fid, '%d' ,ramout511(i,k)) ;
end
fprintf (fid, I \n') ;

end
fclose(fid) ;

70

%%~ This is ~he CRT

%%% This is to

%%% This is to

fid=fopen (I ramout511Ll. mif I, I ~ !) ;

for i=1:512,
for k=25:32,

fprintf(fid, '%d' ,ramout511(i,k)) i

end
fprintf(fid, '\n') i

end
fclose(fid) i

%%~%%%%%%

%

%For mod256
clear i j out k
for j=1:256,

out(j)=k256*(j-l)/m(2) i

ram256 (j) =fix (2 A 32* (out (j) -fix (out (j)))) i

ramout256 (j, :) =binary (ram256 (j) ,32,0) i

end

fid=fopen('ramout256m.mif', 'WI) i

for i=1:256,
for k=1:16,

fprintf(fid, '%d ' ,ramout256(i,k)) i

end
fprintf(fid, I n l

);

end
fclose(fid) ;

fid=fopen('ramout2561.mif', 'WI);

for i=1:256,
for k=17:32,

fprintf(fid, I%d ' ,ramout256(i,k)) i

end
fprintf (fid, '\n') ;

end
fclose(fid) ;

%%%%%%%%~%%%%%%%%~%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%~%%%~%~%%%%%%%%

%

%For mod255

clear i j out k
for j=1:256,

out(j)=k255*(j-l)/m(3) ;
ram255(j)=fix(2 A 32*(out(j)-fix(out(j)))) i

ramout255(j, :) =binary(ram255 (j) ,32,0);

end

fid=fopen('ramout255m.mif', 'w l
);

for i=1:256,
for k=1:16,

fprintf(fid, l%d' ,ramout255(i,k)) i

end
fprintf(fid, '\n l

);

71

end
fclose (fid) i

fid=fopen('ramout2551.mif' , 'w');
for i=1:256,

for k=17:32,
fprintf (fid,! %d' ,ramout255 (i,k)) i

end
fprintf(fid, I n l

);

end
fclose(fid) i

%~%%~%%%%%%%%%%%%

%

%For mod127

clear i j out k
for j=1:128,

out(j)=k127*(j-l)/m(4) i

ram127(j)=fix(2 A 32*(out(j)-fix(out(j)))) i

ramout127(j, :) =binary(ram127 (j) ,32,0) i

end

fid=fopen('ramout127.mif', 'WI) i

for i=1:128,
for k=1:32,

fprintf(fid, '%d' ,ramout127(i,k)) i

end
fprintf (fid, , \n!) i

end
fclose (fid) i

72

VITA h
Kadambari Kaluri

Candidate for the Degree of

Master of Science

Thesis: HARDWARE IMPLEMENTATION OF DIGITAL FIR FILTER IN
RESIDUE UMBER SYSTEM

Major Field: Electrical Engineering

Biographical:

Personal Data: Born in Srikakulam, India on August 8th
, 1978, the daughter of

Ranga Rao and Lavanya.

Education:

Experience:

Received a Bachelor of Engineering in Electronics and
Communication Engineering from University of Madras in May
2000. Completed the requirements for the Master of Science
degree with a major in Electrical Engineering at Oklahoma State
University in December, 2002.

Worked as a Research and Teaching Assistant for the Electrical and
Computer Science Engineering Department for Oklahoma State
University from August 2000 to present.

	Thesis-1.pdf
	Thesis-2.pdf
	Thesis-3.pdf
	Thesis-4.pdf
	Thesis-5.pdf
	Thesis-6.pdf
	Thesis-7.pdf
	Thesis-8.pdf
	Thesis-9.pdf
	Thesis-10.pdf
	Thesis-11.pdf
	Thesis-12.pdf
	Thesis-13.pdf
	Thesis-14.pdf
	Thesis-15.pdf
	Thesis-16.pdf
	Thesis-17.pdf
	Thesis-18.pdf
	Thesis-19.pdf
	Thesis-20.pdf
	Thesis-21.pdf
	Thesis-22.pdf
	Thesis-23.pdf
	Thesis-24.pdf
	Thesis-25.pdf
	Thesis-26.pdf
	Thesis-27.pdf
	Thesis-28.pdf
	Thesis-29.pdf
	Thesis-30.pdf
	Thesis-31.pdf
	Thesis-32.pdf
	Thesis-33.pdf
	Thesis-34.pdf
	Thesis-35.pdf
	Thesis-36.pdf
	Thesis-37.pdf
	Thesis-38.pdf
	Thesis-39.pdf
	Thesis-40.pdf
	Thesis-41.pdf
	Thesis-42.pdf
	Thesis-43.pdf
	Thesis-44.pdf
	Thesis-45.pdf
	Thesis-46.pdf
	Thesis-47.pdf
	Thesis-48.pdf
	Thesis-49.pdf
	Thesis-50.pdf
	Thesis-51.pdf
	Thesis-52.pdf
	Thesis-53.pdf
	Thesis-54.pdf
	Thesis-55.pdf
	Thesis-56.pdf
	Thesis-57.pdf
	Thesis-58.pdf
	Thesis-59.pdf
	Thesis-60.pdf
	Thesis-61.pdf
	Thesis-62.pdf
	Thesis-63.pdf
	Thesis-64.pdf
	Thesis-65.pdf
	Thesis-66.pdf
	Thesis-67.pdf
	Thesis-68.pdf
	Thesis-69.pdf
	Thesis-70.pdf
	Thesis-71.pdf
	Thesis-72.pdf
	Thesis-73.pdf
	Thesis-74.pdf
	Thesis-75.pdf
	Thesis-76.pdf
	Thesis-77.pdf
	Thesis-78.pdf
	Thesis-79.pdf
	Thesis-80.pdf
	Thesis-81.pdf
	Thesis-82.pdf

