HARDWARE IMPLEMENTATION OF

DIGITAL FIR FILTER IN

RESIDUE NUMBER

SYSTEM

By

KADAMBARI KALURI

Bachelor of Engineering
University of Madras
Chennai, India

2000

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
December, 2002

HARDWARE IMPLEMENTATION OF

DIGITAL FIR FILTER IN

RESIDUE NUMBER

SYSTEM

Thesis Approved:

Thésis Advisor

Tty OFff

Beth of the Graduate College

i

Dedication

[would like to dedicate my thesis to my family for all their support

and faith in me to achieve this today.

iii

Acknowledgements

I would like to express my sincere thanks to my advisor Dr. Louis Johnson for his
patience, inspiration, and guidance in helping me with my thesis and throughout my
Master degree. I would also like to thank the Committee members, Dr. Chung and
Dr.Yarlagadda for their guidance and support in completion of my thesis.

I would like to extend my thanks to Dr. Michael Soderstrand for his support and
critical suggestions, effective guidance, throughout my thesis and career in Oklahoma
State University.

My sincere thanks to the Digital Signal Processing and Communication
Laboratories at the Oklahoma State University for supporting me with the most advanced
resources which has helped me in using various mathematical and simulation software to
achieve my goal efficiently.

I would like to thank Dr. Barrick for proofreading my thesis and making the
necessary corrections.

I would also like to thank Kannan, for all his help during my Masters degree and
the thesis, helping me throughout my career and being patient and bearing with me
during the entire time.

Finally, I would like to thank my father Rangarao, mother Lavanya and sister

Chinni, for their moral support and enthusiasm that I regard as important.

v

Preface

Over the past few years Digital Signal Processing has gained in popularity in the
field of communication. The rise in the popularity of digital signal processing is due to
the many advantages it possesses, such as high noise immunity, low cost, high speed, and
flexibility. In recent times, many innovative methods are being developed to make
communication devices as small and portable as possible. Hence efficient hardware
implementation plays a key role in making communication devices more portable. FIR
filters are the basic components used to manufacture communication devices

The hardware implementation of the RNS filter can be done using Look-Up-Table
(LUT) in the block RAM’s in FPGA’s of the Xilinx Virtex FPGA’s. The RAMs
generated by the core generator are used for this purpose. The implementation was done
on an example filter, to compare it with other implementations.

The result of this thesis is a highly efficient hardware realization of the desired
FIR filter. The implementations of the Digital FIR filter in Residue Number System saves
CLBs. CLBs are the basic building block of the FPGA. Residue Number System
implementation utilizes the block RAMs present around the FPGA chip, which are
generally not used by the communication circuitry. The hardware savings is obtained by
using Block RAMs to implement the filter instead of CLBs. Conventional methods of
implementations are faster than Residue Number System implementation, but that is the

tradeofT to the savings in hardware.

Table of Contents

Chapter Page
T: TRrodRCHON i isiimsmaiinsrsassaasss i v s s s e s s s s s s s s s s aens 1

1.1 itrodicHoOnTo PSP cove e sas i s s rinssnsad

1.2 IMOTIVALION . .ottt e e e e et e e e e et e aea e ene e 2

1.3 Problem DEIRIEON: ««.cvosuavissusvas virsusmmaes ssas v viiior sesivans 5. 2

1.4 Thesis Organization.o.vuesereeeesieeneiensinneen e aeneesens s 3

2 3 G T s T Py (r 5
21 Classification of Digital Filters..........coooviieiiiiiiieiiiiiiiiieienen 5

2.1.1 Finite Impulse Response Filters (FIR Filters)..................... 5

2.1.2 Infinite Impulse Response Filters (FIR Filters)................... 7

2.2 Different Number System and previous work done....................... 8

2.2.1 Two’s Complement Number System..............ccoevuuennenn... 8

2.2.2. Canonical Signed DIgit.....xvuvnnnsnviaissmmimis v i 9

2.2.3 Dempster Macleod.........ccovviiiiiiiiiiiiiiiiiiieeee 10

3. Residue Number SYStem...c.cviuiiuiiieieiieiriisiiiesssisiesssssssssssssssssasssssans 11
3.1 INErOAUCTION. ..t ettt e e e e 11

32 TheModulo Operation . i vy sndssvvicis s vsaeiaiss 11

33 Residue Number System...........ooovriiiiiieiiiiiiieeaaeenn 12

34 Multiplicative Inverse on Modulo Operation............cccocuiiuinnnn. 15

3.5 Chinese Remainder Theorem..............cooviiiiiiiiniiiiiiiiiiiiiiinnn 15

3.6 An Example using Residue Number System.................ccccoenennn. 16

4. XIhnX VIEEX FPGAS i iiiommiesmsisiaismiaiis i s isasnssssisnisssasiis 19
4.1 Introduction to Field Programmable Gate Arrays....................... 19

4.2 XilinxX VIrteX FPGAS.ouvitiiiiiiei e 21

4.3 Contiguirable Logic Block: ::.s.smsisiuninissiniss sassmiimisiig 22

4.4 Input/Output BIOEK: . voscseeiman simsmmmmssmsmssmissnsmsimssmamasammse s 23

4.5 Block Select RAM - «ccosiimm e s 24

5. FIRFilter in Residue Number System..........ccsccseciasseisesssssssssssssvsssssoss 27
5: 1T 1T 6 P e S e e Py Gt 27

521 Basic Concept. . ouwsiaisimurssssoninnis o svsvsessoneason sessssgs s s s 27

5.3 Maodulo AGON:: 10 it ittt sk S H SR SR A e A s 29

vi

54, TheBXariple BIEE: .. .o v momemnm s st s s s 29
5.5 Small Moduli RNS FIR EXample.......ccoueuiiieiiiiiiiianinnniininnennes 30
5.6 Large Moduli RNS FIR Example...........cccoiiiiiiiiiiiiniiiiiiennnn. 33
6. Hardware Implementation of the Filter......ccccteeterierrecrtensacrecnrssnecnsens 40
6.1 INErOAUCTION. Lottt ittt et et 40
6.2 linplementation Procediie. ..ooccvniisnnissismisimss st 40
6.2.1 MIF File Generation...........ccoveviivuieniiiainenineenseneneennn. 42
6.2.2 Core Generator and Xilinx Schematic Editor.................... 42
6.2.3 Hardware Implementation...............ccooviiiiiiiiiiinnnaninn. 48
6.3 Simulation and Implementation Results of
Small Moduli RNS Filter........oouvvniiiiiiiiiiiiiiiiiiee e 49
6.4 Simulation and Implementation Results of
Large Moduli RNS FIlter..........oovuiiiiiiriiiiiiiiiiiiececeeenne 51
7. Conclusion and Future Work.......ccooviiiiiiiiiiiiiiiiiiiiiiiiiiennsncean 53
Tk Xilinx Implementation of Example Filter.....................cooeeenne. 53
72 Comparison of Xilinx and RNS Implementation......................... 54
T3 (000) 1163 1115 (o) s R PSSP 55
T4 PUHTEWOTR s o e e e o a e e A S A S 003 56
BAbHOBrADIY oscuviinnssvsinsvivasssinmhsnsscianpansnonsssiessssssuasssmosivsissaavisisssssiss 57
APPENAIX Aoivasnsensisnmrisisinss i iieiisssiesssv s s e s s P 61

Vil

Figure

4.1
42
43
4.4
45
4.6
51
5.2
53
5.4
5.5
5.6
5.7
5.8
5.9
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
p i

List Of Figures

Page
Types of Field Programmable Gate Array (FPGA).........cooveviiiiiiininnanannn. 20
Vittex Architetaie OVEmMAeW .o sinmmismonmrimir s i s we s 22
2-Slice Virtex Configurable Logic Block (CLB)...........ccoveviiviniineninnnn. 23
Virtex Input/Output Block (IOB).......cooiiiiii e 24
Dual-Port Block SelectRAM.ot 25
Single-Port Blotk SelectRAMcuisininuimisamsmmmmmsimmmmes s s s as evsiess 25
RNS DAl FIR- PHEEE s vnsnimmsmst i e s s o i S s p e 28
Example Digital FIR Filter Response..........cocooviiviiiiiiiiiiiiiiiiiiiiienean 30
Block Diagram of 4-moduli RNS Digital FIR Filter..................coooiin. 32
Binary to RNS (4 block Rams 256x16 and 3, 2’s comp adders)................... 35
Multiplication by b coefficients in Moduli 256 (2 block RAMs 256x16).........36
Multiplication by b coefficients in Moduli 255 (2 block RAMS).................. 36
Multiply byﬂa coefficients in modulus 511 (5 block RAMs 512x8)............... 37
Multiplication by b coefficients in Moduli 127(1 block RAMs 128x32)......... 38
RNS to Binary Conversion (9 block RAMS).........ccvviiiiiiiiiiiiieiiie e, 39
RNS Filter Implementation Procedure............ooovviiiiiiiiiiiiiiiiieeiiiinneans 41
Xalne Core Genetalor WINGOW v oo vrmimmimss s s s s S i a s 43
Siifigle Port RAM WnBoW: ...com s manrmmmm i sy asaimses s e sl 44
Selecting the PINS for the Single POrt RAM.cocvarnvvcreiosararasissssessans 45
Selecting the MIF file for the Single Port RAM...........cooovviiiiiiiiiiininiannn, 46
Final Appearance of the Single Port RAM Window.........c....ccocviivinininnnne. 47
Schematic Editor of Xilinx showing the RAMs as Components................... 48
Xilinx Implementation of the Small Moduli RNS FIR Filter....................... 49
Comparison of ideal filter and actual output of Xilinx implementation........... 50
Xilinx Implementation of the Large Moduli RNS FIR Filter....................... 51
Comparison of ideal filter and actual output of Xilinx implementation........... 52
KCM Block DIagram.cououiiiiniiiieiiiit e 54

viii

Table

7.1

List of Tables

Types of Field Programmable Gate Array (FPGA)

X

Chapter 1

Introduction

1.1 Introduction to DSP

Signal processing can be broadly classified into two kinds Analog and Digital
Signal Processing. In recent years, Digital Signal Processing (DSP) has gained a lot of
popularity. DSP plays a very significant role in today’s world. Some of the applications
of DSP are in the fields of communication, medicine, and entertainment. In the early
stages, the use of digital signals in communication devices was expensive. It was only
after the invention of the microprocessor and the development of Integrated Circuits that
the utilization of digital signal processing in communication was practical and feasible.
The wide growth in the utilization of DSP was due to the many advantages it possesses
like high noise immunity, low cost, high speed, and flexibility. The additional advantages
of using equipment with digital signal processes are stability and consistency.

Digital filters are required in most communication equipment. To design the filter
to meet the required specifications, many methods like Butterworth filter design[1],
Chebyshev filter design [1], or Parks-McClellan filter design [1] can be used based on the
type of filter required. To reduce the hardware utilized when implementing the filter,

many methods have been developed for the representation of the filter coefficients.

1.2 Motivation

Since the digital filter is the most basic building block used for most DSP
applications, an efficient implementation of the filter is essential to save hardware. A
Digital Filter is made up of three basic components: adders, coefficient multipliers and
delays. Efficient implementation of the digital filter can be achieved by selecting an
efficient representation for the filter coefficient. This would help reduce the hardware
required to implement the coefficient multipliers of the filter. The coefficients are
implemented in Residue Number System in this thesis. The hardware implementation of
the RNS filter can be done using Look-Up-Table (LUT) in either the block RAM’s in
FPGA’s of the Xilinx Virtex FPGA’s. The RAMs generated by the core generator are
used for this purpose. The result is a highly efficient hardware realization of the desired

FIR filter, with tradeoffs to achieve the savings.

1.3 Problem Definition

In this thesis, a hardware efficient implementation of digital filters is proposed.
The coefficients of the desired filter are represented by using the number system called
Residue Number System. The core generator provided by Xilinx is used to implement the
filter. The schematic ed:tor is used to represent the core generator components. VHDL
code that is accepted by the core generator of the Xilinx Virtex — II board can also be
used for implementation. To implement the filter coefficients in RNS, block RAMs are
used. The data to be stored in the RAMs to represent the filter coefficients of the desired
filter i1s generated using a Matlab program. The delays and the adders are also

implemented using the core generator. Block RAMs are present around the Xilinx

Virtex — II board. These RAMs are generally not used by any other implementations. By
utilizing the Block RAMs for implementing the coefficients, the CLBs on the chip are
saved. These CLBs can be used for implementing the remaining structure of the
communication system, thus increasing the utilization of the chip and making it possible

to have a complex communication system on the same chip.

1.4 Thesis Organization

Chapter 2 deals with the review of different digital filters classified according to
the type impulse response they have, and their advantages and disadvantages. It also
deals with the different types of number representations that were previously used to
represent the coefficients of the FIR filter and the previous work done to implement the
filter coefficients to save hardware.

Chapter 3 introduces the Residue Number System. which will be used to represent
the coefficients of the filter for implementation. Discussion about how a number is
represented in Residue Number System and how to convert a given number from binary
to the Residue Number System is done. The Chinese Remainder Theorem, which will be
used for converting from Residue Number System back to the Binary Representation is
also discussed in this chapter.

Chapter 4 talks about the Xilinx tools, which are used for simulation and
implementation of the filter in hardware. The logic analyzer used to verify the hardware
implementation of the filter is also discussed in this chapter.

Chapter 5 discusses the two different approaches possible for the implementation

of a FIR Digital filter in the Residue Number System.

Chapter 6 contains the procedure required to follow in order to implement the
filter in RNS. The Filter implementations are shown in this chapter. This chapter also
deals with the simulation and implementation results of the example filters introduced
earlier. Also, comparison of the Matlab simulation results, simulation of the
implementation results and the results from actual implementation in hardware are
provided.

Chapter 7 is the last chapter of the thesis. The results of the work done, to prove
the efficiency of the method is given here. Discussion on comparison of the results with
previous work done and the conclusion of the thesis are also provided in this chapter.

Possible future work on the thesis topic is also discussed here.

Chapter 2
Background

2.1 Classification of Digital Filters

Digital filters are characterized by their impulse response, their transfer function
or by difference equations. Digital Filters can be classified into two groups based on the
type of impulse response they have, infinite impulse response (IIR) or finite impulse
response (FIR). The impulse response of a filter is the response of the filter when the

input signal is an impulse signal.

2.1.1 Finite Impulse Response Filters (FIR Filter)

Digital Filters [2] with finite impulse response are called Finite Impulse Response
Filters[3]. FIR filters are very broadly used in communication equipment. The broad
usage of FIR filters in communication is due to linear phase FIR filters are easily
obtained. By making the filter coefficients symmetric, linear phase can be obtained in
FIR filters, i.e. the first and the last coefficient are the same and so forth. Linear phase
filters are very important, especially in devices, which handle signals carrying
information in the phase. Nonlinear phase distortion can cause the information to be lost,

making the signal useless. When FIR filters with symmetric coefficients are used to

implement the filter, a significant savings in hardware is also obtained, as only half of the
filter coefficients have to be implemented.

A characteristic of FIR filter is that the impulse response of a FIR filter is the
same as the filter coefficients. FIR filters do not have poles, they only have zeros. Hence
the response of a FIR filter is only dependent on current and previous inputs and not on
the output of the filter. Since a finite number of bits must be used to represent the the
input, output and the coefficients of any digital filter, FIR filters can be designed with
sufficient wordlength to guarantee that no rounding or truncation will be done in the
multiplication of the filter input by the coefficients. This should be compared to an IIR
filter, where we must always do rounding when the output is multiplied by a filter
coefficient in order to prevent the wordlength from growing without bound. It is the fact
that only the input is multiplied by the filter coefficients in an FIR filter that allows us to
design FIR digital filters without error in the arithmetic operations. This also makes the
application of RNS arithmetic particularly attractive for FIR filters.

The time response representation of FIR filter also called the difference equation
and is given by

n=1
P ey (2.1)
i=0

The transfer function of the FIR filter is given by

= n-1)
Y _§
X(z) =

H(z)= (2.2)

Lo]

2.1.2 Infinite Impulse Response Filter (FIR Filter)

Digital Filters with infinite impulse response are called Infinite Impulse Response
Filters [3]. There is a feedback from the output to the input in IIR filters, which makes
the impulse response of IIR filters to be infinite. Due to this a finite number of bits cannot
be used to represent the filter coefficients, as there is a feedback, which increases the
filter coefficient bits in every cycle. Due to this, truncation and quantization noise appear
in the filter, as only a finite number of bits can be used to represent the output. This one
of the major disadvantages of IIR filters. Another disadvantage of IIR filters is that they
have non-linear phase, which causes intersymbol interference. Due to the intersymbol
interference, the information content of the signal is destroyed.

The time response representation of an IIR filter, also called the difference

equation, is given by

n-1 n-1
W= Za,.xﬁ_!. + bef"'x-.‘ (2.3)
=]

i=0

The transfer function of the IIR filter is given by

n-1
Za!—z_f
Y(z :
H(z)=1E) - = (2.4)

= n-1 .
X §yp

(]

i=1

2.2 Different Number Systems and Previous Work
Done
Many different number systems exist which have been used to implement the
filters’ coefficients efficiently to save hardware. Some of the number systems that were

previous used and the work done on them is briefly explained here.

2.2.1 Two’s Complement Number System

One of the earliest number system that was used to implement the filter
coefficients is the Two’s Complement Number System. In this number system, a positive
number is represented by the binary representation of that number and a negative number
is represented by the two’s complement of the positive binary number. The two’s
complement of a number is obtained by first complementing the binary number and the
adding a one to the least significant bit. For example the 2’s complement representation
of the number 5 in four digits is ‘0101°. The 2’s complement representation of the
number -5 in four digits is ‘1011°. The two’s-complement number system can also be
considered to be a binary weighted number system where the most significant bit (MSB)
is weighted at -2™ | rather than +2 .

Many authors [4][5][6] used the 2’s complement representation and modified 2’s

complement representation in previous work for implementing the digital FIR filter.

2.2.2 Canonical Sign Digit

Canonical Sign Digit (CSD) is another representation that has been used very
frequently for the implementation of hardware efficient digital filters. In CSD the
representation with minimum number of non-zero components is chosen. When the
minimum occurs for more that one representation, the representation without any
consecutive non-zero-digits is chosen. The digits used to represent a number in CSD are
{0, 1,-1}.

Consider for example the number 13, this can be written as

23=2%+ 9%+ 2V 49 (2.5)
the same number can also be represented as
23 =720 (2.6)
Hence the CSD representation of 13 can be shown in two different ways. One
representation is {10111}; the other representation is {10-100-1}. We can see that the
first representation requires 3 additions but the second representation only requires two
subtractions. Hence the second representation is the representation for the filter.

CSD representation was used to implement FIR filters to obtain multiplierless FIR
filters [7][8]. Also in the previous work that was done, the CSD representation was used
along with other hardware savings methods like Scaling, Order Augmentation and Adder
Extraction to further reduce the hardware. Husinga [9] and Naren [10] did work on this
by developing an automated MATLAB program, which, when given the filter
specifications, initially using Ramez method in MATLAB, obtains a set of coefficients.

These coefficients are then converted to CSD representation and then further

optimization methods are used to reduce the hardware. The hardware implementation of

the filter was also done to test the result.

2.2.3 Dempster Macleod

The Dempster and Macleod (DM) representation has been recently used to further
reduce the hardware utilization during implementation. To understand the representation
methed of DM, an example is considered. The number 32 can be represented as

45=3x 15=(4-1)(16-1) (2.7)
Cascading can be used to use implement the multiplication and the power of two can be
done by using shifting, hence requiring only two adders, where binary and CSD require 3
adders.
The DM technique was used in many works [11][12][13] done previously to
reduce hardware by using the technique of cascading.
Other optimization [14] methods such as Scaling, Order Augmentation and
Adder Extraction were also used along with DM representation to reduce the hardware.
Work on this was done by Leong [15] who developed an automated MATLAB program,
which, given the filter specifications and a cost function reduced the hardware utilization
by outputting the optimum filter coefficients that met the filter coefficients. The
MATLAB program also generated a package VHDL file that contains description of the
filter coefficients which can be used by a VHDL program to construct the FIR filter to
implement the filter. The VHDL code for hardware implementation was developed by
Howe[16]. The package file along with VHDL code is combined automatically by a

script file, which generates the filter for implementation.

10

Chapter 3

Residue Number System

3.1 Introduction

In this chapter we will introduce the Residue Number System (RNS) and the
Chinese Remainder Theorem (CRT) based on [17] and [18]. The Residue Number
System [19] was founded by the Chinese scholar Sun Tzu in the first Century AD, who
stated the Chinese Remainder Theorem. It was in the year 1734 that Euler provided the
proof for the Chinese Remainder Theorem and introduced the concept of the “Modulo’
operation. The residue number system has been used for a long time to implement FIk
digital filters. The modulus operation is the basic operation that is used in the conversior
of a number from Binary to Residue Number System. The Chinese Remainder Theoren

is used for converting back to binary from Residue Number System.

3.2 The Modulo operation

In the modulus operation, the result is reset to the least value after the maximum
value has been reached, i.e. the results of the modulus operation are the remainder left

after division by the chosen modulus and these reminders are called ‘residues’ and they

11

repeat. The modulus operation [18] can be seen as in a clock where the maximum number
that is reached is twelve, and beyond which the clock starts over at one and repeats itself.
Consider a binary integer ‘a’ and positive modulus ‘m’, then we have
b = a(mod m) (3.1)
Here, ‘b’ is the remainder obtained after ‘a’ is divided by ‘m’. The divisor ‘m’ is called
the modulus. The integer ‘b’ is called the residue and is not unique as more than one
remainder can be obtained during the division. The possible residues for a modulo ‘m’
operation are 0 to m-1. For example, we can have
2=16(mod7) (3.2)
but, we can also have
9 =16(mod7) (3.3)
Two integers that have the same residue are said to be equivalent. If two integers ‘a’ and
‘b’ are equivalent, then:
b(mod m) = a(mod m) (3.4)
and, we can express them as
b = a(mod m) (3.5)
The main advantage with the ‘mod” operation is that modular addition subtraction and

multiplication is carry free.

3.3 Residue Number System

The Residue Number System is based on the Modulus Operation. In RNS [17], a
number is represented by a set of Moduli, i.e. the residue representation of an integer ‘x’

is a set of residues {r;, r; . . .ry}, obtained by performing the ‘mod’ operation on the

12

integer ‘x’ using the corresponding set of moduli {m;, m, . . .m,}. The integer r; is also
defined by the set of equations

X=gq.m, +r, Where i=12,..n (3.6)

The integer g, is such thatO<r, <m,. Hence we can conclude that ¢, is the

" . X 7 . " .
quotient obtained from —, also denoted by [—} and r,1s the remainder obtained from
m. m,

i I

X : &y ;
— or as the modulus operation performed on ‘x’. The modulus of a number is not
mn,

unique hence, we define the integer ». as the least positive remainder obtained by the

division of — and is called the residue of x modulo m;, [18] also written as x mod m; or
m,
'

as ‘X

The residue representation of a number is unique as the least positive remainder
of a number when divided by any number is unique. But the converse of this statement is
not true.

For example, in a three moduli system withm, =3 ,m, =4and m, =5 the residue

representation of both 11 and 71 is {2, 3, 1}. This ambiguity occurs only in those
numbers that meet the conditions stated by the theorem given below.

In [18] it states that, “two integers x and x' have the same residue representation
for moduli m;, m>...my if and only if (x — x’) is an integer multiple of the least common
multiple of the moduli, denoted by M.

Hence, to have a unique mapping from the Residue representation, the integer ‘x’

must have a range of M (for positive number we would have x lie between 0 and M-1,

13

however we normally require both positive and negative numbers. In this case the range

of x is different, depending on whether M is even or odd. Foreven M, — Y M <x< /4 M

and for odd M — M2_1 XS M2_1).

Since the Residue Number System is based on the modulo operation, all the
advantages present in the modulo arithmetic are also present in Residue arithmetic.
Hence in the residue number system, addition, subtraction and multiplication are carry-
free, i.e. the result of the arithmetic operation is independent of the neighboring digits. In
multiplication there are no partial products, hence parallel operations can be carried out
with out having to wait for the results from adjacent bits.

Another factor to be considered in the residue number system is the Dynamic
Range. Dynamic Range of the RNS is the product of the residue moduli. Dynamic Range
is the total number of residues that can be uniquely represented. From the dynamic range
of the RNS, the number of bits that will be representing the number is obtained. It is
given as

log,, (product of moduli)

bits = (3.7)

log,,(2)

The moduli {3, 5, 7} corresponds to
qli

bits = 1081 0% 5% 7) (3.8)

log,,(2)

1

pits = 12810(105) (3.9)

log,,(2)
bits =6.7142 (3.10)

14

The dynamic range must be considered because when the Residue Number
System is used to implement the filter coefficients, the number of bits required to

represent the filter coefficient are calculated.

3.4 Multiplicative Inverse on Modulo Operation
Multiplicative inverse [18] of a number ‘4’ with modulo ‘m’ is represented

. The inverse of a number then multiplied by the number itself is 1. This property

m

das

is used to find the multiplicative inverse of a given number. For example, the inverse of

5|, 1.€. can be found as shown below.

9

Let ‘.\‘L; = |%‘ , then based on the above explained property,

g

=11, (3.11)

Jsl, % I,

This implies that |.):L} =2,as0< [xlq <8 and 2x5mod9 =1.

3.5 Chinese Remainder Theorem

In this section discussion on how to convert from the Residue Number System is
discussed. The conversion is done by using the Chinese Remainder Theorem, which is
stated in [18] as, “For a given residue number representation {r; r> ... ry/, we can
determine the integer x’ using the Chinese Remainder Theorem, if the moduli {m,, m; . .

. my} are mutually prime”, 1.e. the greatest common divisor for the moduliis *1°.

15

The Chinese Remainder Theorem states that

1, =12 m, &2 (3.12)
j=l Myl
M
where
i, M (3.13)
m.
M=]]m, (3.14)
i=1
and
(m;m,)=1 for j#k (3.15)

In the equations above, in the notation [x|y;, X’ is the integer obtained from the

Chinese Remainder Theorem.

3.6 An Example using Residue Number System

An example is considered to clearly explain and to provide a better understanding
of the Residue Number System and the Chinese Remainder Theorem. Consider the
integer x = 35 and the moduli m; = 3, m> =4 and m; = 5. The residue representation for
the number in this moduli system is {2, 3, 0}.

To convert back from residue representation the Chinese Remainder Theorem is
used. The product of the moduli, M = 3x4x5 = 60. The weights are now calculated.

J?f1=—Mi=@=20,rﬁ2=£:@=15,fﬁ =-A—/[—=@=12 (3.16)

3
m, 3 m, 4 my, 5

16

Now to find

i]
i,
S m,

¥, 1
=L = ‘?‘ ;] 3
mj L m;. -
:] r
Now we need to find the inverse of i, to find |-
.
4 "l,

The inverses of 7, ,m,,m, are

1

m,

1
=g, = b, =

= ||2|3 x’XI MJ = ’l|3

,

:>|2XX’L :MJ

1
=|X,|.=2=—
‘ |J3 ‘201
Similarly,
1
EIpeTIpe
m,| 15],
1
e)
m, 12|,

Finally to find to |x|y,

|, =[20%[2x2], +15x|3x3|4+12x'0x3|5|w

= |20x|1|3 +15x]l], *0‘60

17

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.24)

(3.25)

(3.26)

Thus, we obtain the integer number x = 35, uniquely from its residue

representation using the Chinese Remainder Theorem.

18

Chapter 4
Xilinx Virtex FPGAs

4.1 Introduction to Field Programmable Gate Arrays

A Field Programmable Gate Array (FPGA) [20] [21] is a programmable VLSI
chip that is used for rapid prototyping to test digital designs. FPGA’s are made up of
many identical blocks and interconnects which can be programmed by the user to obtain
the desired design. Implementing and testing designs in FPGA’s can avoid the cost and
time involved in manufacturing an ASIC chip. FPGA’s can be reprogrammed many
number of times to test many designs, hence any design errors can be corrected easily
without much effort or cost such as involved in wafer fabrication. All these advantages
make the usage of FPGA’s often would be a better choice for testing over conventional
masked gate array or ASIC’s.

There are four different kinds of FPGA’s [21] based on the type of architecture:
Symmetrical array, Row-based, Hierarchical PLD, and Sea-of-gates as shown in Fig 4.1

below.

19

Symmetrical Array Row-Based

\)Y N W) O Y O |
Logic Ik e —,———————
I AR EEREE
Interconnect
Sea of Gates _~— Logic Block Hierarchical PLD
I

PLD Block

=

Interconnect

JT

Figure 4.1: Types of Field Programmable Gate Array (FPGA) [22].
(Printed with permission from the website http:/ www.vee.com fpea.htinl)

There are also four different technologies [21] that are used currently to program
FPGAs. These technologies are: Static RAM cells, Anti-fuse, EPROM transistors and
EEPROM transistors, with each technology having its own advantage based on the
application.

When the Static RAM FPGA'’s are programmed, the circuit is built into the FPGA
chip by making connections in the chip using pass-transistors, transmission gates, or
multiplexers. These different connectors are controlled, i.e. turned on or off by the Static
RAM cells. Due to the usage of Static RAM cells, large chips are required, but this also

has the advantage of having the ability to program within the circuit.

20

In this technology, anti-fuse programmable connections are used. When
programmed, these connections go into low impedance in accordance with the
requirements of the circuit. A disadvantage of this technology is that it can be
programmed only once, but it is much cheaper that the Static RAM technology.

The principle behind the EPROM and EEPROM transistors is the same as that
used in memories. Electrical impulses or ultraviolet light, depending on the type of RAM
being used, is used to erase the RAM to reprogram it. These FPGA chips can be
reprogrammed without external storage of the configuration. The EPROM transistors
cannot be re-programmed within the circuit, however, and must be taken out of the circuit
for programming.

An FPGA chip provided by Xilinx [23] is used to for the implementation of the
Digital FIR Filter designed in this thesis. The Xilinx Virtex FPGA chip uses Static RAM
FPGA programmable connections. Details about the Xilinx Virtex FPGA architecture are

discussed in the next section of this chapter.

4.2 Xilinx Virtex FPGA

The Xilinx Virtex FPGA [24] chip uses Static RAM FPGA'’s. Internal memory
cells are present on the chip, which store the user’s circuit configuration. This
configuration is programmed onto the FPGA chip to obtain the user’s design. The

overview of the Virtex FPGA architecture is shown in Fig. 4.2.

21

DLL 10Bs DLL
VersaRing
£l 2 o g
73 [by o)
§la|s| o= |F|5| B
- @ | m) E
> @
VersaRing
I0Bs
DLL DLL

Figure 4.2: Virtex Architecture Overview [24].

From the overview it can be seen that the Virtex FPGA is mainly comprised of an
array of Configurable Logic Blocks (CLB) and programmable Input/Output Blocks (I10B)
which are interconnected by a hierarchy of fast and versatile routing. The Virtex chip also

consists of on-chip true dual-read/write synchronous Block RAMs.

4.2.1 Configurable Logic Block

The basic building block of the Configurable Logic Block [24] (CLB) is a Logic
Cell. Figure 4.3 shows the structure of the Virtex CLB. Each CLB consists of 2 Slices,
which consists of two logic cells. The logic cell is comprised of a 4-input function
generator, carry logic and a storage element. The function generators are implemented by
using 4-input look up tables (LUTs). Each LUT can also provide a 16 x 1-bit

synchronous RAM or a 16-bit shift register. The storage elements present in the CLB can

be programmed to behave as edge-sensitive D-type flip-flops or level-sensitive D- type

latches. In addition to clock and clock — enable signal, the set and reset signals are also

provided for each slice. Separate carry control logic is present, which enables, the

implementation of high-speed arithmetic functions to provide fast arithmetic carry.

couT CouT
A M,
=] > V8
=2 = L
ET G4
Ga sP a3 P
2 LT Carry 8 oo £ =i Lu Carry & » i & Y
G2 .3 Contrail 2. > Y3 a2 Contral e =
| 9 EC
Gl [P
=5y RC BY > o
= X8 > xe
Fa Z X Ry > .
Gl LUt Carry & - F3-= ut Carmry & =
U Carry i L L eIy b a X0
; D ¢ : 5 —t—| X0
F2 Conlraol e 2. irz Contro EC
| <9 =
- F-
Prc P
BX e ax =
Shice 1 Stioe
£
CIN CIN

Figure 4.3: 2-Slice Virtex Configurable Logic Block (CLB) [24].

4.2.2 Input/Output Block

The Virtex Input/Output block (IOB) [24] is compatible with a wide range of

input/output signaling standards. The IOB block is the interface between the internal

circuitry and the external pins. The Block figure of the Input/Output Block is shown in

Figure 4.4.

23

I T‘_D—
TCE>—|CE

Weaak

Keepor
D l
SR z
PR | c:
[\-‘\\‘\. P & pm
0 l)| | v '
OCE S CE OBUFT b
v
D
SR
| —
I
1Q - o D Programmable
CE— Delay
IBUF
< Vref
SR
s |
CLK

ICE
-

Figure 4.4: Virtex Input/Output Block (IOB) [24].

4.2.3 Block Select RAM

The Xilinx Virtex chip also consists of blocks of true dual-read/write port
synchronous RAM, with 4096 memory cells called the Block SelectRAM [24]. Block
RAMs are organized into columns on both the sides of the Xilinx Virtex FPGA chip.
Block RAMs are present on all Virtex FPGA chips. There are a total of 32 block Select
RAMs in the Virtex FPGA. The most appealing feature of the block RAM is that all the
ports of the Block RAMs can be configured to a read/write port, a read port, or a write
port independently. A generic Dual-port Block RAM and Single Port Block RAM are

shown in Figures 4.5 and 4.6 respectively.

24

RAMB4_S#_S#

WEA
ENA
RSTA DOA[#:0] —
> CLKA
ADDRA[#:0)
DIA[#:0)

] L
WEB
ENB
RSTB DOB{#:0] |—

> CLKSB
ADDRB([#:0)
DIB[#:0)

i

I

Figure 4.5: Dual-Port Block SelectRAM [24].

RAMB4_S#
— WE
— EN
—— RST Dow0)
—T LK
— ADDR[7:0)
—_— O 0]

Figure 4.6: Single-Port Block SelectRAM [24].

Some of the characteristics of Block RAMs are: The block RAM is edge-
sensitive, 1.e. all the inputs in the Block RAMs are read with the rising edge of the clock.
Also the setup and hold time clock timing specifications have to be satisfied. Similarly
there is a clock to output time delay specification. Static RAM memories are used to
implement Block RAMs and there is no combinational path for address to the output, the
Lookup tables in the CLBs are used to perform this function. Read and write operations
require only one clock edge. The output port maintains the previous value it has outputted

till another operation is performed to change the output.

=0

The Block RAMs can be invoked by using Schematic Editor or HDL description
language and turning off the synthesizer during synthesis of the block RAM code in the

HDL description of the code.

26

Chapter 5

FIR Filter in Residue Number
System

5.1 Introduction

Chapter 5 discusses the two different approaches possible for the implementation

of a FIR Digital filter in Residue Number System.

5.2 Basic Concept

Figure 5.1 shows a block diagram of a generic RNS FIR digital filter. The
implementation using this RNS technique proceeds step by step as shown in the block
diagram in Figure 5.1. The first conversion of the binary input to RNS is done by
applying the appropriate moduli. The input is multiplied independently in each moduli
with the coefficients (also expressed in RNS) and the filter is generated for each of the
moduli. Finally, the end conversion back to binary from RNS is done, which generates
the binary output of the filter based on the Chinese Remainder Theorem.

The basic concept in the RNS FIR digital filters is the fact that once conversion

takes place from a single n-bit binary input to a series of RNS moduli whose product

27

spans the range of the n-bit binary input, it is possible to process the FIR filter
independently in each of these smaller moduli without interaction between the arithmetic
within the moduli. Hence, a 16-bit input word can be converted into a number of moduli
that are 5- bit or less in which the hardware required to implement the filter is much less
than in a 16-bit implementation. There are two radically different approaches to

implementing RNS filters.

_ Mod m,

Mod m, Filter

Mod Mod m;,

Sl Filter

Binary RNS
U to to
/ RNS Binary Qutput
Conversion Conversion |_y/

Mod m,

Aok, Filter

Figure 5.1: RNS Digital FIR Filter.

One uses large moduli, one of which is a power of two and the others are a power
of two minus one. These large moduli are chosen to have a product that spans the 16-bit
input plus the coefficient width. The other RNS approach uses small moduli that
typically consist of consecutive prime numbers starting with three and has a product

sufficient to span the 16-bit input number plus the coefficient bit size. Usually one of the

28

numbers is not a prime, but rather a power of two and often it is convenient to combine
some of the smaller prime moduli into larger moduli by multiplying them together to
form a larger modulus. Large moduli systems where all moduli are either a power of two
or a power of two minus one have the advantage that conversion to and from binary is

generally easy and requires only adders and a few look-up-tables (LUT’s).

5.3 Modulo Addition

The implementation of an FIR filter in the Residue Number System requires the
implementation of the filter in each of the moduli. This necessitates the requirement of
‘modulo-adders’ in the moduli that the filters are implemented 1.e. when “511” is used as
one of the modulo to implement the filter in RNS, a ‘modulo-511 adder’ is required. The
arithmetic in the modulus, which is 2%, is standard 2’s complement arithmetic and the
arithmetic in 2™-1 moduli is 1°s complement arithmetic. Hence an N-bit 2’s complement
adder behaves as a ‘2" modulo adder’ and an N-bit 1’s complement adder behaves as a
2™.1 modulo adder’. It can be then concluded that a ‘modulo-511 adder’ can be
implement by using a 9-bit, 1’s complement adder.

When a ‘modulo-adder’ for a modulus other than 2~ or 2™-1 is needed, a 2’s
complement adder can be used with additional circuitry to loop-back the values after the

maximum value has been reached.

5.4 The Example Filter

The example filter used is an 8-tap fixed-coefficient linear-phase FIR filter with

16-bit input, 14-bit coefficients and 30-bit output. The example filter has been optimized

29

for implementation in Xilinx Application Notes [26] this provides a comparison for the
Residue Filter. The pass-band ripple r,=0.1222 (ap=3db), pass-band edge ,=0.3, stop-
band ripple r=0.01 (0,=40db) and ®.=0.65. Figure 5.2 shows the frequency response of

this ideal filter as simulated in MatLab.

-10
-20
-30
-40

0 01 02 03 04 05 06 0.7 08 09 1

Figure 5.2: Example Digital FIR Filter Response.

The filter coefficients are b={-0.0240156, 0.0055081, 0.1661459, 0.3523616,
0.3523616, 0.1661459, 0.0055081, -0.0240156}. This filter is implemented in a large

modulus RNS and a small modulus RNS.

5.5 Small Moduli RNS FIR Example

The example filter shown in the previous section is first implemented in the Small
moduli system [27]. The moduli that were chosen to implement the filter are (4,13,29,31).

The dynamic range is calculated for the chosen moduli to be,

30

log,, (product of moduli)

bits = (5.1)
log,,(2)
bmzlogw(4x13x29x3l) (5.2)
log,,(2)
bits = log,,(46748) (5.3)
log,,(2)
bits =15.51 (5.4)

The original example has a 16-bit input and 14-bit coefficients, which results in a
30-bit output. Our simplified filter supports an 8-bit input with 7.51-bit coefficients,
which results in a 15.51-bit output. The example FIR filter has symmetric coefficients,
hence only half the filter coefficients have to be implemented. The block diagram of the

simplified 4-moduli RNS FIR filter is shown in Figure 5.3.

3l

Binary To RNS

and
vl'_ Multiply with input | 8-bit Input
| | |
RAM RAM RAM RAM
2%16 2%x16 2%16 2°x16
I
1
RNS MOD4 RNS MOD29 RNS MODI13 RNS MOD31
FILTER FILTER FILTER FILTER
[J
RNS [
To
Binary RAM RAM RAM
| 2'x16 2°x8 2°x8

1 1
16-bit ADDER

I'16-bit Output

Figure 5.3: Block Diagram of 4-moduli RNS Digital FIR Filter.

The conversion from Binary to Residue Number System is done using the first
four block RAMs. The multiplication with the input is also done in these block RAMs. In
each of the 2°x16 block RAMs, the 8-bit input of the simplified FIR filter is taken in as
the input for the RAM. Each of the RAMs is designed such that the output of the block
RAM is the product of the input and the coefficient represented in the moduli
(4,13,29,31). For example, the first block RAM is designed such that the 16-bit output of
the Block RAM consists of the product of the filter input and the first coefficient
represented in the moduli (4,13,29,31). Hence, each of the blocks has one of the four

coefficients multiplied by the input and represented in the moduli (4,13,29,31).

32

The moduli coefficients from each of the block RAMs are combined to form each
of the modulo filter, as shown in the next section of Figure 5.3. To implement the filter in
each of the moduli, modulo 4, 13, 29 and 31 adders are need. Modulo 4 adders are
implemented by using 2-bit 2’s complement adders, Modulo 13 and 29 adders are
implemented by using 4-bit and 5-bit 2’s complement adders respectively with a RAM
connected to the output of each adder to loop-back the output after the maximum value
has been reached. Modulo 31 adders are implemented by using 1’s complement 5-bit 1°s
complement adders. In the next stage, the RNS output of the different filters is converted
back to binary and combined to get the output of the filter. The conversion from Residue
Number System to Binary is done using the Chinese Remainder Theorem. This is
implemented in the three block RAMs present in the last stage of the block diagram
shown in Figure 5.3. The binary output obtained from the Block RAMs is combined

using a 16-bit adder, to generate the final output of the FIR filter.

5.6 Large Moduli RNS FIR Example

The example filter is now implemented in Residue Number System using Large
Moduli [28]. The large modulus RNS is based on moduli that are powers of two or
powers of two minus one. The moduli that are chosen to implement the FIR filter in the
large moduli are {511, 256, 255, 127}. The moduli are mutually prime to satisfy the
condition to use the Chinese Remainder theorem to convert back to binary. The dynamic

range for the moduli chosen is calculated for the chosen moduli,

33

_log,,(product of moduli)

bits (5.5

log,,(2))

Kils = log,,(511x256x255x127) (5.6)
log,,(2)

il log,,(4236476160) 5.7)
log,,(2)

bits =31.98 (5.8)

The dynamic range of the filter using the moduli {511, 256, 255, 127} is 31.98,
which satisfies the requirements to represent the example filter with 30-bit output. The
Large moduli RNS FIR filter that is implemented in this section supports a 16-bit input
with 15.98-bit coefficients, which results in a 31.98-bit output. The example FIR filter
has linear phase characteristics and hence it symmetric cocfficients, so only half of the
filter coefficients have to be implemented to implement the entire filter.

The first step in the implementation of the large moduli filter is the conversion
from the RNS of the input. Figure 5.4. Shows the details of the binary to RNS

CONVersion.

34

Bu::ry a’@—'l{zss
RNS |
Most
significant PR,
8 bits .
Binary
; to
16-bit | 256y RNS
Input
Binary Rsii
to
RNS
Least
significa
Binary
to A
RNS FW >R127

Figure 5.4: Binary to RNS (4 block Rams 256x16 and 3, 2’s comp adders).

The conversion is done separately for the Least Significant 8-bits and Most
Significant 8-bits. The bits are then combined after the conversion is done using adders.
The three adders from top to bottom are in modulus 255, modulus 511 and modulus 127.
Hence, each can be implemented with a one’s-complement adder. An 8-bit 1’s
complement adder is used for combining the LSB and MSB of modulo 255, 9-bit 1's
complement adder is used to combine the LSB and MSB of modulo 511 and 7-bit 1’s
complement adder is used to combine the LSB and MSB of modulo 127 respectively.
The MSB of modulo 256 become zero, hence no adder is required to combine the bits of
modulo 256. The Binary to RNS boxes are Block Ram LUT’s each 256x16.

In the next stage, the filter input that was converted into modulo in the previous

section is now multiplied with the filter coefficients. Each of the moduli outputs a total of

35

32 bits, eight bits for each coefficient. Figures 5.5 and 5.6 show the multiplication of the
modulus 256, modulus 255 inputs by the modulus 256 and modulus 255 coefficients.

Moduli 255 and Moduli 256 require two RAMs of size 256 X 16.

Mod 256 Output byu
F——p
256x16

block RAM Mod 256 Output byu
—

Mod 256 Input u

Mod 256 Output b,u

—P
256x16
block RAM Mod 256 Output biu
> >

Figure 5.5: Multiplication by b coefficients in Moduli 256 (2 block RAMs 256x16).

Mod 255 Output bgu
EEm——
255x16
block RAM Mod 255 Output byu
—> P
Mod 255 Input u
Mod 255 Output byu
>
255x16
block RAM Mod 255 Output b;u
» —->

Figure 5.6: Multiplication by b coefficients in Moduli 255 (2 block RAMs).

In the Figure 5.7 the multiplication of the modulus 511 inputs, by the four-

modulus 511 coefficients is shown.

36

512x8
—3 block
RAM
Sh2s8 01\::;;1“{5:]1 u
p| block 0
RAM >
Mod 511 Mod 511
Input u 512x8 Output byu
p»| block —
RAM
51218 Mod 511
p| block Qutput bin
RAM
Mod 511
512x8 Output byu
L p{ block >
RAM

Figure 5.7: Multiply by b coefficients in modulus 511 (5 block RAMs 512x8).

The multiplication of the input by the coefficient for each of the four coefficients
requires five RAMs of size 512 x 8. Hence the output is a total of 40 bits from the five
RAMs, of which only 36 bits are utilized, i.e. nine for each of the four coefficients. The
RAMs are designed such that 8-bits are obtained from the first four, 512 x 8 block RAMs
and the 9" bit for each of the coefficient products is obtained from the last 512 x 8 block

RAM.

37

For the last Moduli 127 only one RAM of size 128 x 32 is required. The
requirement is only 28 bits, of the 32 bits seven bits for each of the four coefficients.

This is shown in Figure 5.8.

»Mod 127 Output bgu
. 128x32 | »
Mod 127 Input u Mod 127 Output bu
~ PP 5! block BAM PEn
— Mod 127 Output b,u

—® Mod 127 Output bsu

Figure 5.8: Multiplication by b coefficients in Moduli 127(1 block RAMs 128x32).

In the next stage the FIR filter is implemented in each of the four moduli. Hence
four filters each in one of the moduli are implemented. Delays and adders are used to
build the FIR filter in the normal fashion. Specific adders have to be used for the different
moduli filters based on the requirements of the modulo. For moduli 511, 255 and 127,
cach of the adders is a 1’s-complement adder of 9, 8§ and 7 bits respectively. For modulus
256, the adders are 2’s-complement adders of 8 bits. The adders and delays can be
combined to use a single component called the ‘adder-delay’. Each adder with delay
takes LUT’s and FF’s equal to the number of outputs of the adder.

The last stage of the implementation of the FIR filter in RNS is the conversion of
the 4 modulo filters from RNS back to binary using Chinese Remainder Theorem and to
combine the outputs to get the final output of the filter. Figure 5.9. shows the conversion

from RNS to Binary, which requires 4 Block RAMs. The number of output bits is 32.

38

Mod 511 Filter Output Mod 256 Filter Mod 255 Mod 127

Output Filter Output Filter Output
512x8 512x8 512x8 512x8 256x16 256x16 256x16 256x16 128x32
block block block block block block block block block
RAM RAM RAM RAM RAM RAM RAM RAM RAM

D e

Figure 5.9: RNS to Binary Conversion (9 block RAMs).

This is the final output of the FIR filter implemented in the Residue Number
System. The design and implementation of the Block RAMs and the complete

implementation of the FIR filter are discussed in the next chapter.

39

Chapter 6

Hardware implementation of the
Filter

6.1 Introduction

Chapter 6 contains the procedure required to implement the filter in RNS. The
Filter implementations are shown in this chapter. This chapter also deals with the
simulation and implementation results of the filters introduced earlier. A comparison of
the Matlab simulation results of the original example filter and simulation of the
implementation results of the small moduli and large moduli FIR filters are also shown in

this chapter.

6.2 Implementation Procedure

Implementation of the RNS FIR filter can be achieved through schematic layout
or by writing VHDL code. The Schematic Layout Editor is used in this thesis to
implement the FIR filter. The RAMs are implemented using the core generator. The data
to be stored in the RAMs can be added by using a .mif file. The .mif file contains the
converted RNS value for its corresponding binary value, the value obtained after

multiplying the input by the coefficient, or the RNS output converted back to binary at

40

the end. The file is included when generating the RAMs. A MATLAB program is used to
generate the .mif file. The adder-delays and the adders are also generated by using the
core generator. The top-level file uses these components to generate the filter. This is

depicted in the Flowchart in Figure 6.1 to provide a better understanding of the concept.

—] Single Port
Xilinx RAM
Core
Generator

Xilinx
Schematic
Editor

FIR
Filter

Figure 6.1: RNS Filter Implementation Procedure.

41

6.2.1 MIF File Generation

A MIF file consists of 0’s and 1’s, which are the values to be stored in the Block
RAMs. Each MIF file is generated to meet the specific requirements of the individual
RAM. For Example, in the Small Moduli case, to generate the RAMs in the first stage of
the RNS filter, the MATLAB program converts the decimal input to RNS and also
multiplies it by the filter coefficients. Then it is converted to binary and stores the results
in the MIF file. Each MIF files is generated with a unique file name to distinguish it from
the others. The Matlab program to generate the MIF files for both the Small Moduli and

Large Moduli are given in Appendix A.

6.2.2 Core Generator and Xilinx Schematic Editor

In the next stage the MIF files that were generated for the RAMs are loaded into
their respective RAMs. The MIF files are placed in the Xilinx project directory. The Core
Generator is opened from the Xilinx Project Manager to generate the RAMs required for
the filter. The Core generator opens the window shown in Figure 6.2. The Single Port

Block Memory is selected from the Memory Elements Option.

42

__] Basic Elements S
:l] g::'lnl::r?ﬂ"é Distributed Memory
__1Encoders & Decoders o n‘k I'I'II'.‘
] Format Conversions == ;

_) Logic Gates & Buflers
Jm

1 Multiplexer

__| Register-Buffer

__| Reqgisters, Shifters & Pipelining

__| Communication & Netwarking

__| Digital Signal Processing

__| Math Functions

__| Microprocessors, Controllers & Peripherals
__| ProtoType & Development Hardware Products
__I Standard Bus Interfaces

__| Storage Elements & Memories

Set current Project to C\F ndtn\Active\Projectsims

iSingié Port Block RAM Generation ModUle

Figure 6.2: Xilinx Core Generator Window.

43

Single Port Block Memory

dofn:0)=

Figure 6.3: Single Port RAM Window.

A window as shown in Figure 6.3, appears when the Single Port Block Memory is
selected. The component name in the window distinguishes one RAM from another when
the RAM is generated, the Depth specifies the number of entries present in the RAM and
hence the number of bits in the address lines to the RAM. For example, if we specify a
Depth of ‘16’ then there will ‘4" address lines since 2*= 16. The Data Width specifies the
number of bits in the output. The default values stored in the Block RAM is Zero. The
number of Slices and Block RAMs used on the Virtex Board to generate the particular

Block RAM is also shown in the window.

Single Poit Block Memory

dafn:0)=

Figure 6.4: Selecting the PINS for the Single Port RAM.

The ‘Pins’ button on the ‘Single Block Memory’ Window is selected to select the
desired pins. This opens a smaller ‘Pins’ Window as shown in Figure 6.4. The Write Port
is not selected as the RAM is being used as ‘Read Only’. The Read Port, Enable and
Output Reset is activated. The RAM is set to Clock in the address in the address lines on
the Rising Edge of the clock. The Enable and Reset are set for Active High. The close

button is pressed to save the options selected for the RAM.

45

Single Port Block Memory

Initial Contents

Figure 6.5: Selecting the MIF file for the Single Port RAM

The ‘Initial Contents’ button on the ‘Single Block Memory’ Window is pressed to load
the MIF file for the RAM. This opens a smaller ‘Initial Contents” Window, as shown in
Figure 6.5. opens to load the MIF file. The MIF file relevant to the RAM being generated
is specified in the MIF Filename option, the Read MIF file is selected and Radix 2 is
selected as the data present in the MIF file in binary. The close button is pressed to save

the options selected for the RAM.

46

| compo

. : . i .. % ;l?‘— :
addi[3 0] ek o] SPesiy Searlin e Fhs '
g0l | | pataw R

' : £ hs.| initial Contents |

FM@ﬂwm@%;f”j

[~ Display Core Viewsr after Generation

Generate | Can.cel | BataSheeLI ‘%RE

Figure 6.6: Final Appearance of the Single Port RAM Window

The final ‘Single Block Memory’ Window is shown in Figure 6.6. In this example
the Component is named ‘RAMOI, it has a depth of ‘16" and hence ‘4’ address lines, the
data width is 32 bits. Figure 6.6 also shows that the initial contents are read from the MIF
file. To generate the ‘RAMO1” component the ‘Generate’ button on the ‘Single Block
Memory’ Window is pressed. This generates the ‘RAMO1’ component and places it in

the list of components in the Xilinx Project.

47

OPADI2
RAM
RAM255_BO_B1
RAM25S_E2_83
RAM256_FO_EB1
RAMZSE B2 83
RAMS11_B_LSE
RAMS11_BO
RAMS11 B1
RAMS11_B2
RAMS11 B3
RAMINI27_B
RAMOUT127
RAMOUT255L
RAMOUT255M
RAMOUT256L
RAMOUT256M

RAMOUTS11LH

RAMOUTS1TLL

RAMOUTS1 1MH

RAMCUTS1 1ML

RAMRI55_256K

RAMRZ55_255Y

RAMRS11_127%

RAMRS11_127Y -

TTEeTENS L BT AN e e e
RS i & d oo T e

Figure 6.7: Schematic Editor of Xilinx showing the RAMs as Components.

The core generator is also used to generator the adder-delays required to
implement the FIR filter in Residue Number System. Figure 6.7 shows the Schematic
Editor of Xilinx. The List of components shown in Figure 6.7 contains the RAMs and the
adder-delays that were generated using the Core Generator. These components are wired

together appropriately in the Schematic Editor design of the RNS FIR filter.

6.2.3 Hardware Implementation

A top-level file combining the lower level files is created. From the top level file
the filter is synthesized and implemented using the Xilinx Synthesizer built into the
project manager software. This creates a file that contains the timing information of the

implemented filter. This file is loaded into the simulator of the Xilinx project manager for

48

testing. Thus the implemented filter is tested through simulation, by testing the timing file
generated through implementation. The implementation also provides a file, which

contains the hardware that was required to implement the filter.

- |l

1 j ==y

-
-

L

il

il

LT
|

E

Figure 6.8: Xilinx Implementation of the Small Moduli RNS FIR Filter

6.3 Simulation and Implementation Results of Small
Moduli RNS Filter
The top-level Schematic of the implementation of the Small Moduli Residue
Number System FIR Filter discussed in the previous chapter (see Figure 5.3) is shown in
Figure 6.8. The implementation [27] required 143 slices, 135 Flip-Flops, 191 LUT’s and

7 block RAMs. Figure 6.9. shows a plot of the ideal filter (dotted line) and the actual

49

output of the Xilinx circuit of Figure 6.8. Based on the comparison of Figure 6.9, the
actual output meets both pass-band and stop-band filter requirements. This demonstrates
the use of the RNS technique implemented using block rams results in filters which can

meet the filter specifications using fewer FPGA resources than non-RNS techniques.

| o,=3db ®,=0.65

®,=0.3

-80 |

| — Xilinx (16-bit output) i
| » =+ Ideal filter(30-bit output) |

'90 L A1
0 20 40 60 80 100 120

Figure 6.9: Comparison of ideal filter and actual output of Xilinx implementation.

50

o= L t_—-‘;
[]

| — >

— | — o T —

Figure 6.10: Xilinx Implementation of the Large Moduli RNS FIR Filter

6.4 Simulation and Implementation of Large Moduli

RNS Filter

The top-level Schematic of the implementation of the Large Moduli Residue
Number System FIR Filter discussed in the previous chapter (see Figures 5.4 and 5.9) is
shown in Figure 6.10. The implementation [28] of this filter required 195 slices, 256 Flip-
Flops, 344 LUT’s and 23 block RAMs. Figure 6.11. Shows a plot of the ideal filter
(dotted line) and the actual output of the Xilinx circuit of Figure 6.10.

From the comparison shown in Figure 6.11 we can say that the use of RNS
techniques of implementing filters in block RAMs result in filters that meet the filter

specification and use fewer FPGA resources than non-RNS techniques.

51

20

™ Ideal Filter
RNS Filter

|
v |

80 - d

-100 - 4

120 | 1 L L . .
0 100 200 300 400 500 600

Figure 6.11: Comparison of ideal filter and actual output of Xilinx implementation.

52

Chapter 7

Conclusion and Future Work

7.1 Xilinx Implementation of the Example Filter

The example filter used for implementation in the thesis was originally
implemented in the Xilinx Application Notes [26]. This provides a method of comparison
between the RNS implementation and the Xilinx implementation. The authors of the
application notes use the basic building blocks to build an 8-tap lowpass FIR filter with
16 bits input and 14 bits signed coefficients. The multipliers of FIR filter, are
implemented such that the inputs to the multiplier are the tap data and the constant
coefficient. These multipliers are called KCM since one of the inputs in a constant. The
authors achieve efficient implementation of the KCM by storing the pre-computed partial
products of the fixed coefficients. These partial products are stored in ROMs using
distributed memory in Xilinx FPGAs. The 16-bit input is divided into 4-bits and they are
inputs to 4 different ROMs. The output of the RAM is the partial product of the input and
the coefficient. The output of the ROM with respect to its input is added to the partial

product output from the other ROM. The KCM block diagram is shown in Figure 7.1.

53

4 16 x 18 18
7 psiz) | ROM £
[29:12]
s /
x[15:0] A 16 % 18
[11.8) | ROM
0xk
1xk
2%k
4%k 4 16x 18
Axk 7] ROM
5xk -
Bxk
ol \
dxk
9k 4 16x 18
10 % k < 130 ROM
1M xk
12x &
154
14 x k
15 x K

Figure 7.1: KCM Block Diagram [26].

7.2 Comparison of Xilinx and RNS Implementation

The Digital FIR filter was implemented using Residue Number System in
hardware using the schematic layout approach. A VHDL code in collaboration with
Xilinx CORE Generator tool can also be used to implement the Digital FIR.

The implementation of the simplified version of the filter in Small Moduli
required 143 slices, 135 Flip-Flops, 191 LUT’s and 7 block RAMs. The comparison
between the Matlab simulation graph and the hardware implementation graph
demonstrates that the use of the RNS technique implemented using block rams results in

filters which can meet the filter specifications.

54

The complete filter in the example filter was implemented in the large moduli.
Table 7.1 shows the results of this filter compared to an 8-tap FIR filter optimized in the

Xilinx application notes.

Technique | Number | Number | Number | Number

of of of FF’s of

Slices | LUT’s Block

Rams
FPGA 645 977 807 0

Express
Synplify 584 931 755 0
Pro

RNS 195 344 256 23

Table 7.1: Comparisons of Various Optimization Tools.

7.3 Conclusion

From Table 7.1 it can be seen that the RNS version offers a considerable
improvement over the optimized circuit discussed in the application note. In fact, in
terms of slices, LUT’s and FF’s, the new RNS technique offers less than one - third of the
hardware of the application note. However, this is obtained at the expense of 23 block
RAMs of the 28 total on the Virtex 800 chip. But many implementations do not use the
Xilinx Block RAMs but require the CLBs for their implementation, so by using the block
RAMs and saving CLBs, larger and complex implementation can be done using the
remaining CLBs. Hence we can conclude that only 1/3 of the hardware was required
when compared to the implementation in the Xilinx Application notes. However since
that conversion between binary and residue and back has to be done, RNS is slower than

other methods of implementation, but in applications where the hardware savings is the

55

essential requirement than speed, RNS provides a solution. Recently, a method to convert
[IR filters into FIR approximations using linear difference equations was proposed [29].
Hence Residue Number System can be used for IIR filters also, after they are converted

into their FIR approximation.

7.4 Future Work

In this thesis a single example digital FIR filter was implemented in Residue
Number System. Further Research can be done to compare of the speed, i.e. the clock
rate, between the Residue Number System and conventional methods to obtain trade offs
between hardware savings and speed can be done.

The work in this thesis can be extended to build a generic code Matlab code that
generates the .mif files for any given file. Also a generic VHDL / Verilog code for the
implementation of the RAMs that is accepted by the Core generator can be written. A
script file can be written to combine the top-level files to generate the desired filter to
meet the filter specification. These modifications can be incorporated into the Public
domain-Matlab program for designing that was previous written by Leong [15] and into

the generic VHDL code that was written by Howe [16].

56

Bibliography

(1]

[6]

(7]

A. V. Oppenheim and R. W. Schafer, Discrete Time Signal Processing, Prentice
Hall, 1989.

Lawrence R. Rabiner and Charles M. Rader, Digital signal processing, IEEE
Press, 1972.

William D. Stanley, Gary R. Dougherty, Ray Dougherty, Digital signal
processing, 2nd Ed: Reston Pub. Co, 1984.

Zhan Yu, Meng-Lin Yu, K. Azadet, AN. Willson, “The use of reduced two's-
complement representation in low-power DSP design,” 1EEE International
Symposium on Circuits and Systems, vol. 1, pp. 77-80, 2002.

Zhan Yu, Meng-Lin Yu, K. Azadet, AN. Willson, “A4 low power adaptive filter
using dynamic reduced 2's-complement representation,” in Proc. IEEE Custom
Integrated Circuits Conf., pp. 141-144, 2002.

O. Salomon, J.M. Green, H. Klar, “General algorithms for a simplified addition
of 2's complement numbers,” IEEE Journal of Solid-State Circuits, vol. 30, pp.
839-844, July 1995.

R.M. Hewlitt, E.S. Swartzlantler Jr, “Canonical signed digit representation for

FIR digital filters, " IEEE Workshop on SiPS ‘00, pp. 416 -426, 2000.

57

(8]

[9]

[10]

(11]

[13]

[15]

[16]

Y .M. Hasan, L.J. Karam, M. Falkinburg, A. Helwig, M. Ronning, “Canonic
signed digit FIR filter design,” Thirty-Fourth Asilomar Conf. Signals Systems
and Computers 2000, vol. 2, pp. 1653 -1656, 2000.

Dannielle L. Husinga, “Design of Optimized Filters Using CSD Coefficient
Representation,” MS Thesis, UC Davis, California, Mar. 1996.

Naren B. Balasubramanian, “Optimal Design of Digital Filter using CSD
Coefficients,” MS Thesis, Univ. of California, Davis, CA, 1997.

Andrew G. Dempster and Malcolm D. Macleod, “Use of minimum-adder
multiplier blocks in FIR digital filters,” Trans. IEEE Circuits and Systems, vol.
42, pp. 407-413, Oct. 1994,

Andrew G. Dempster and Malcolm D. Macleod, “Constant integer multiplication
using minimum adders,” Proc. IEE Circuits Devices Systems, vol. 141, pp. 569-
576, Sept. 1995.

Andrew G. Dempster and Malcolm D. Macleod, “Comparison of fixed-point FIR
digital filter design techniques,” Trans. IEEE Circuits and Systems, vol. 44, pp.
591-593, July 1997.

Kah-HoweTan, Wen F. Leong, Sameer Kadam, M.A Soderstrand, L.G Johnson,
“Public-domain MATLAB program to generate highly optimized VHDL for
FPGA implementation, ” IEEE ISCAS °01, vol. 4, pp.514 -517, May 2001.

Wen F. Leong, “Optimizing FIR filters coefficients using CSD representation and
DM technique,” MS Thesis, Oklahoma State Univ., OK, May 2002.

Kah-Howe Tan, “Optimizing FIR filters coefficients using CSD representation

and DM technique,”” MS Thesis, Oklahoma State Univ., OK, May 2002.

58

[17]

[18]

[19]

[22]
[23]

[24]

[26]

[27]

M. A. Soderstrand, W. K. Jenkins, G. A. Jullien and F. A. Taylor, “Residue
Number System Arithmetic: Modern Applications in Digital Signal Processing,”
IEEE Press, 1988.

Nicholas S. Szabo and Richard 1. Tanaka, Residue Arithmetic and its Applications
to Computer Technology, McGraw-Hill.

P.V. Ananda Mohan, Residue Number Systems: Algorithms and Architectures,
Kluwer Academic Publishers.

FPGA general information, http:/www.andraka.com/whatisan.htm

John V. Oldfield; Richard C. Dorf, Field-Programmable Gate Arrays:
Configurable Logic for rapid prototyping and implementation of digital systems,
John Wiley & Sons Inc., 1995.

FPGA general information, http://www.vcc.com/fpga.html

Xilinx official web page, http://xilinx.com

Xilinx Virtex Application Notes,

http://direct.xilinx.com/bvdocs/publications/ds003.pdf.

Xilinx Virtex SelectBlock RAM Application Notes,

hitp://www .xilinx.com/xapp/xapp 1 30.pdf

V. Pasham, A. Miller and K. Chapman, Transposed Form FIR Filters, Xilinx

Application Note, XAP219 ver. 1.1, hitp:/www.xilinx.com/xapp/xapp219.pdf.
Kadambari Kaluri, Wen F. Leong, K. H. Tan, L.G. Johnson, M.A. Soderstrand,
Comparison of RNS and optimized FIR digital filters in Xilinx FPGA's,” Proc.

44th IEEE MWSCAS 01, vol. 1, pp. 438 -441, 2001.

59

(29]

Kadambari Kaluri, Wen. F. Leong, K.H. Tan, L.G. Johnson, M.A.Soderstrand,
“FPGA hardware implementation of an RNS FIR digital filter,” 35th Asilomar
Conference on Signals, Systems and Computers, vol. 2, pp. 1340 -1344, 2001.

R.K Mallik , K.V.Rangarao, “On the impulse response of a discrete-time linear
IIR system” accepted and to appear in Digital Signal Processing Journal,

December 2002,

60

Appendix A

Matlab Files for the generation of .mif files for the
RAMs

Binary.m

function [B] = binary(D,k1,k2)

function [B] = binary(D,kl,k2)

+ returns rounded binary quantization of the absclute wvalue
iecimal quantity
de 1 cala
t tht ec int (f1 £
3 to SB = E

nD = sign(D);

abs (D) ;

D + 2*({-k2-1);

zeros (1,k1+k2);
for bit = (k1-1):(-1):(-k2),
D_old = D;
D = rem(D,2" (bit));

if Dold - D > 0,

B(-(bit-k1)) = 1;

end

51
D
D
B

mon LQ-

61

Small moduli ramin.m

%#To convert from Binary to RNS the input and multiply with the

tcoefficents

b=[-0.0240156 0.0055081 0.1661459 0.3523616 0.3523616 0.1661459
0.0055081 -0.0240156];
br=round (182*182*b/max (b) /518) ;
m=[31 29 13 4];
for i=1:256
for j=1:4
r(i,j)=mod((i-1)*br(1),m(j));
end
raminb0_dec(i)=r(i,1)+32*(r(i,2)+32*(r(i,3)+16*r(i, 4)));
raminb0 (i, :) =binary (raminb0 dec (i), 16,0);
end
fid=fopen('raminb0.mif', 'w'};
for i=1:2586
for j=1:16
fprintf (fid, '#d',raminb0(i,j));
end
fprintf(£id, '\n');
end
fclose (fid) ;

1=
for j=1:4
r{i,j)=mod((i-1)*br(2),m(j));

end
raminbl_dec(i)=r(i,1}+32*{r(i,2)+32*(r(i,3)+16*r(i,4)});
raminbl (i, :)=binary(raminbl_dec(i),16,0);
end

fid=fopen('raminbl.mif', 'w');
for i=1:256

for j=1:16
fprintf (£fid, '%d',raminbl (i,3)):
end
fprintf (fid, '\n');
end

for i=1:256
for j=1:4
r(i,j)=mod((i-1)*br(3),m(j));
end
raminb2 dec(i)=r(i,1)+32%(r(i,2)+32*(r(i,3)+16*r(i,4)));
raminb2 (i, :) =binary (raminb2 dec(i),16,0);
end
fid=fopen('raminb2.mif', 'w');
for i=1:256
for: j=1:16

62

fprintf (fid, '%d',raminb2 (i, j));

end
fprintf (£id, '\n');
end
fclose(fid) ;
for i=1:256
for j=1:4

r(i,j)=mod((i-1)*br(4),m(j));

end

raminb3 dec(i)=r(i,1)+32* (r(i,2)+32*(r(i,3)+16*r(i,4)));
raminb3 (i, :)=binary(raminb3_dec(i),16,0);

end

fid=fopen('raminb3.mif','w');

for i=1:256
for j=1:16

fprintf (fid, '5d',raminb3 (i,j));

end
fprintf (fid, '\n');
end
fclose (fid) ;

Small moduli_ramout crt.m

£To convert back to Binary

kda=3;

ki3=5;

k29=12;

k31=14;

m=[4 13 29 31];

for j=1:128
I=j=1;
ra (j)=fix (1/275);
r29(j)=1-2"5*r4a(j);

from RNS using Chinese Remainder

out (j)=k4*r4(j)/4+k29*r29(j)/29;
raml (j) =Ffix (2°16* (out (j) -fix(out(j))));
ramoutl (j, :)=binary(ramil(j),16,0);

end

fid=fopen('ramoutl.mif',K6 'w

for i=1:127
for j=1:16

EYoi

fprintf (fid, '%¥d',ramoutl(i,j));

end
fprintf (£id, '\n');
end
for j:l:lﬁ

fprintf (fid, '%d', ramoutl(128,3));

end
fclose (£id) ;

for j=1:512

63

L

negrem

i=j-1;

ri3(j)=£ix(i/2"°5);
r31(j)=1i-2"5*r13(j);

out (§)=k13*r13(j)/13+k31*r31(j)/31;
ram2 (j)=fix (2°8* (out (j) -fix(out(j))));
ramout2 (j, :)=binary(ram2(j),8,0);

out (j)=2"8*out (j) -ram2 (j) ;

ram3 (j)=fix (2" 8*out (j));

ramout3 (j, :)=binary(ram3(j),8,0);

end
fid=fopen('ramout2.mif','w');
for i=1:511
for j=1:8
fprintf(fid, '¥d',ramout2 (i, j));
end
fprintf (£id, ''n');
end
for j=1:8
fprintf (fid, '%d', ramout2(512,3));
end

fclose (fid) ;

fid=fopen('ramout3.mif','w');
for: 2=1:531
for j=1:8
fprintf (fid, '%d',ramout3 (i, j));
end
fprintf (fid, '\n');
end
for j=1:8
fprintf (£id, '%d',ramout3 (512,3));
end

fclose (fid) ;

64

Large moduli rns levl.m

¥To convert from Binary to RNS the input
t From input, u to R
tU=258Y+X
'-1\\"!******‘4A‘*ﬁ**i'**i*i***i’*t****ii’i’*ii**i*!i*?*****#**v**w’xyw
*For 511 and 127
clear
clear rl1 r2
ml=[511;127];
for i=1:256,
for j=1:2,
ri(i,j)=mod((i-1)*256,m1(j));
r2(i,j)=mod((i-1),m1(j));
end
R511 127y dec(i)=r1(i,2)+128*r1(i,1);
R511_127x_dec(i)=r2(i,2)+128*r2(i,1);
R511_127y (i, :)=binary(R511_127y_dec(i),16,0);
R511 127x (i, :)=binary(R511_127x_dec(i),16,0) ;
end

$*Make it into Mif file
fid=fopen('ramr511 127y.mif','w');
for i=1:256,
for j=1:16,
fprintf (fid, '%d',R511_127y (i,3));
end
fprintf (fid, '\n');
end
fclose (£id) ;

fid=fopen('ramR511_127x.mif"','w');
for i=1:256,
for j=1:16,
fprintf (fid, '%d',R511_127x(1i,3));
end
fprintf (fid, '\n');
end
fclose (fid) ;

;-*fiﬂwtiii***s\’-+t+**++twi**i—*v«i**f*****é—*r*n—w***

clear rl r2
$for 255 and 256
m2=[255, 256];
for i=1:256,
for j=1:2;
r2(i,j)=mod((i-1) ,m2(j));
rl(i,j)=mod((i-1)*256,m2(3j));
end

R255 256y_dec (i)=r1(i,2)+256*r1(i,1);

R255 256x_dec (i)=r2(i,2)+256*r2(1,1);
R255_256y(i,:)=binary(R255_256y_dec[i),16,0):

65

R255_256x (i, :)=binary (R255_256x_dec (i), 16,0);
end

*Make 1t into Mif file
fid=fopen('ramR255 256y.mif', 'w');
for i=1:256,
for j=1:16,
fprintf (fid, '%d',R255 256y (i,j));
end
fprintf (fid, '\n') ;
end
fclose (fid) ;

fid=fopen('ramR255 256x.mif','w");
for i=1:256,
for j=1:16,
fprintf (fid, '%d',R255_256x(1i,j));
end
fprintf (fid, '\n"');
end
fclose(£id) ;

S E S AE AR S SEAEEREE SR R E S S R R R AR E TR RS EE R RN

Large moduli rns lev2.m

multiply with the coefficients of FIR filt

ih

-

b=[-0.0240156 0.0055081 0.1661459 0.3523616 0.3523616 0.1661459
0.0055081 -0.0240156]; %Since is a 8 tap symmetry

br=round (64643 .49%64643.49*b/max (b) /183457.8171968796) ;

m=[511 256 255 127];

N R T N e T TR

L EFEESLEITLELES

sFrom R511

clear r

for i=1:512,
for j=1:4,

r(i,j)=mod((i-1)*br(j),511);

end
raminS11 boO (i, :)=binary(r(i,1),9,0);
ramin511_b1l (i, :)=binary(r(i,2),9,0);
ramin511 b2 (i, :)=binary(r(i,3),2,0);
ramin511 b3 (i, :)=binary(r(i,4),9,0);

fid=fopen('ram511_b lsb.mif', 'w');

66

for i=1:512,
fprintf (fid, '%d',ramin511 b0 (i,9));
fprintf (fid, '%¥d',ramin511 _b1(i,9));
fprintf (fid, '#d',ramin511_b2(i,9));
fprintf (fid, '%d',ramin511_b3(i,9));
fprintf(fid, '%d',0);
fprintf (£id, '8d',0);
fprintf (fid, '%¥d',0);
fprintf (£id, '%4',0) ;
fprintf (fid, '\n');

end

fclose (fid) ;

fid=fopen('ram511 _k0.mif',6 'w');
for i=1:512,
for j=1:8;
fprintf (fid, '%d',ramin511 b0 (i, j));
end
fprintf (fid, '\n');
end
fclose (fid) ;

fid=fopen('ram511 bl.mif',6 'w');
for i=1:512,
for j=1:8,
fprintf (fid, '%¥d',ramin511_bl(i,j));
end
fprintf (fid, '\n');
end

fclose (fid) ;

fid=fopen('rams11l b2.mif','w');
for i=1:512,
for j=1:8,
fprintf (fid, '%d',ramin511_b2(i,J)):
end
fprintf (fid, '\n');
end
fclose (fid) ;

fid=fopen('rams511l_p3.mif',6 'w');

for 1=1:512,
for 3=1:8;

fprintf(fid,'%d',raminSll_bB(i,j}):

end
fprintf (£id, '\n');

end

fclose (fid) ;

oo
o
A
it
H
o
B
e
e
P
Ao
a8
o0
oo
v
o

TEEEE LI EEEEILIRERILERLS
$H52EIETEEESES

1%

%$From R256

clear r

for i=1:2586,
for j=1:4,

67

o

r(i,j)=mod((i-1)*bxr(j),256);
end

ramin256 b0 (i, :)=binary(r(i,1),8,0);

ramin256 bl (i, :)=binary(r(i,2),8,0);

ramin256 b2 (i, :)=binary(r(i,3),8,0);

ramin256_b3 (i, :)=binary(r(i,4),8,0);
end

$Write to mif file
fid=fopen('ram256 b0 bl.mif','w');
for i=1:256,
for 3=1:8,
fprintf (fid, '%d',ramin256 b0 (i,j));
end
for j=1:8,
fprintf (fid, '%d',ramin256_bl(i,j));
end
fprintf (£id, '\n');
end
fclose (£fid) ;

sWrite to mif file
fid=fopen('ram256 b2 b3.mif','w');
for i=1:256;
for j=1:8,
fprintf (fid, '%d',ramin256_b2(i,j));
end
foxr :J=1:8,
fprintf (fid, '%d',ramin256_b3(i,]));
end
fprintf (fid, '\n');
end
fclose (£id) ;

e eeetle sy Rl R RS RS R AR

L EEEF LIS RS

$From R255

clear r

for i=1:256,
for j=1:4,

r(i,j)=mod((i-1)*br(j),255);

end
ramin255_b0(i,:)=binary(r(i,1),3,0);
ramin255 bl (i, :)=binary(r(i,2),8,0);
raminZSSrb2(i,:)=binary(r{i,3},8,0);
ramin255_b3(i,:}=binary(r(i,4),8,0};

end

tWrite to mif file
fid=fopen ('ram255_b0_bil.mif', 'w');
for i=1:256,
for j=1:8,
fprintf (fid, '%d',ramin255_b0(i,3j));
end
for j=1:8, _
fprintf (fid, '%d',ramin255_bl(i,j)):

68

end
fprintf (£id, '\n');
end
fclose (fid) ;

tWrite to mif file
fid=fopen('ram255 b2 b3 .mif', 'w');
for i=1:2586,

for j=1:8,
fprintf (fid, '#d',ramin255 b2(i,j));
end
Fof 3=1 58,
fprintf (fid, '%d',ramin255 b3 (i,j));
end
fprintf (£id, '\n');
end

fclose (fid) ;

R

BT T T T R R

$From R127

clear r

for 1=1:127,
for j=1:4,

r(i,j)=mod((i-1)*br(j),127);

end
raminl27_boO (i, :)=binary(r(i,1),7,0);
raminl27 bl (i, :)=binary(xr(i,2),7,0);
raminl27 b2 (i, :)=binary(r(i,3),7,0);
raminl27_b3 (i, :)=binary(r(i,4),7,0);

end

Write to mif file
fid=fopen('raminlz7 b.mif', 'w');
fer i=1:127,

for G=1:7,

fprintf (£id, '#d',ramin127 bo(i,j));
end
for 3=1:7,

fprintf (£id, '¥d',ramin127 _bl(i,j));
end

for 3=1:7;
fprintf (fid, '%¥d',raminl27_b2(i,j));
end
for j=1:7;
fprintf (£i4d, '%d’',raminl27 b3 (i,3));
end
fprintf (fid, '3d',0);
fprintf (fid, '&¥d',0);
fprintf (£fid, '3d',0);
fprintf (fid, '%d"',0);
fprintf (£id, '\n'};
end
fclose (fid) ;

%%%s%%%%%ﬁ%
EEHFTEEREEETIETRE

69

Large moduli rns bin.m

tUsing CRT to convert RNS to Binary
clear

k511=346;
k256=127;
k255=253;
k127=106;

m=[511 256 255 127];

I T E R T I EEE LR LE LR LLREEE

[

For mod51]
clear i j out k
for j=1:512,

out (j)=k511*(j-1)/m(1); 55%

convert back to binary %%

ram511 (j)=Ffix(2°32* (out (j) -fix(out(j)))); %% %
optaln the fractional part $E5%

ramout511(j, :)=binary(ram511(j),32,0); %%
convert from decimal to binary %%%

=nd
fid=fopen('ramout5iimh.mif"', 'w');
for 1=1:512,
for k=1:8,
fprintf (fid, '%d’',ramout511 (i, k));
end
fprintf (fid, '\n') ;
end
feclose (fid) ;

fid=fopen('ramoutsliml.mif', 'w');
for i=1:512,
for k=9:16,
fprintf (fid, '#¥d',ramout511(i, k));
end
fprintf (fid, '\n");
end
fclose (fid) ;

fid=fopen('ramout511Lh.mif"', 'w');
for i=1:512,
for k=17:24,
fprintf (fid, '$d',ramout511(i, k));
end
fprintf (fid, '\n');
end
fclose (fid) ;

70

fid=fopen('ramout511Ll.mif', 'w');
for i=1:512,
for k=25:32,
fprintf (£id, '%4', ramout511(i,k));
end
Eprintf(fid, ‘\a"');
end
fclose (fid) ;

FHBEEHIEEIIRELS

of

S A A AR AR AR AR AR AR AR R R R R R R A SR A SRR R A At

#o
o
o
=
o
el
o
¥
o
AN

T

tFor mod256

clear i j out k

for j=1:256,
out (j)=k256* (j-1})/m(2);
ram256 (j)=fix (2*32* (out (j) -fix(out(j))));
ramout256 (j, :) =binary (ram256 (j), 32,0) ;

end

fid=fopen('ramout256m.mif', 'w');
for i=1:256,
For k=1:16;
fprintf (fid, '%d',ramout256 (i, k));
end
fprintf (£id, '\n");
end
fclose (fid) ;

fid=fopen('ramout2561l.mif', ‘w'});
for i=1:25%56;
for k=17:32;
fprintf (fid, '$d', ramout256(i, k));
end
fpeingf(£id, "Xn')i
end
fclose (fid) ;

s %2R e L RS L T F LA F LTI E TR E T T LT TR ER SO ETTIEITIERE T

“For mod255

clear i j out k
for j=1:256,
out (j)=k255* (j-1) /m(3);
ram255 (j) =fix (2732* (out (j) -fix (out(j))));
ramout255 (j, :) =binary (ram255(j),32,0);
end

fid=fopen('ramoutESSm.mif','w‘];
for i1=1:256;
for k=1:16,
fprintf(fid,'%d‘,ramout255(i,k)};
end
fprintf (£id, '\n');

71

end
fclose(fid) ;

fid=fopen('ramout2551l.mif', 'w'};
for i=1:256,
for k=17:32,
fprintf (£id, '%d', ramout255 (i, k)) ;
end
fprintf (fid, '\n'});
end
fclose(fid) ;

R L L L il i L L T T s

$For modl27

clear i j out k
for j=1:128,
out (j) =k127* (j-1) /m(4) ;
raml27 (j)=fix (2"32* (out (j) -fix(out(j))));
ramout127(j, :)=binary(rami127(j),32,0);
end

fid=fopen('ramoutl27.mif', 'w');
for i=1:128,
for k=132
fprintf (fid, '#d',ramout127(i,k));
end
fprintf (£id, '\n"');
end
fclose (fid) ;

72

VITA 2
Kadambari Kaluri
Candidate for the Degree of

Master of Science

Thesis: HARDWARE IMPLEMENTATION OF DIGITAL FIR FILTER IN
RESIDUE NUMBER SYSTEM

Major Field: Electrical Engineering
Biographical:

Personal Data: Born in Srikakulam, India on August 8™ 1978, the daughter of
Ranga Rao and Lavanya.

Education: Received a Bachelor of Engineering in Electronics and
Communication Engineering from University of Madras in May
2000. Completed the requirements for the Master of Science
degree with a major in Electrical Engineering at Oklahoma State
University in December, 2002.

Experience:
Worked as a Research and Teaching Assistant for the Electrical and

Computer Science Engineering Department for Oklahoma State
University from August 2000 to present.

	Thesis-1.pdf
	Thesis-2.pdf
	Thesis-3.pdf
	Thesis-4.pdf
	Thesis-5.pdf
	Thesis-6.pdf
	Thesis-7.pdf
	Thesis-8.pdf
	Thesis-9.pdf
	Thesis-10.pdf
	Thesis-11.pdf
	Thesis-12.pdf
	Thesis-13.pdf
	Thesis-14.pdf
	Thesis-15.pdf
	Thesis-16.pdf
	Thesis-17.pdf
	Thesis-18.pdf
	Thesis-19.pdf
	Thesis-20.pdf
	Thesis-21.pdf
	Thesis-22.pdf
	Thesis-23.pdf
	Thesis-24.pdf
	Thesis-25.pdf
	Thesis-26.pdf
	Thesis-27.pdf
	Thesis-28.pdf
	Thesis-29.pdf
	Thesis-30.pdf
	Thesis-31.pdf
	Thesis-32.pdf
	Thesis-33.pdf
	Thesis-34.pdf
	Thesis-35.pdf
	Thesis-36.pdf
	Thesis-37.pdf
	Thesis-38.pdf
	Thesis-39.pdf
	Thesis-40.pdf
	Thesis-41.pdf
	Thesis-42.pdf
	Thesis-43.pdf
	Thesis-44.pdf
	Thesis-45.pdf
	Thesis-46.pdf
	Thesis-47.pdf
	Thesis-48.pdf
	Thesis-49.pdf
	Thesis-50.pdf
	Thesis-51.pdf
	Thesis-52.pdf
	Thesis-53.pdf
	Thesis-54.pdf
	Thesis-55.pdf
	Thesis-56.pdf
	Thesis-57.pdf
	Thesis-58.pdf
	Thesis-59.pdf
	Thesis-60.pdf
	Thesis-61.pdf
	Thesis-62.pdf
	Thesis-63.pdf
	Thesis-64.pdf
	Thesis-65.pdf
	Thesis-66.pdf
	Thesis-67.pdf
	Thesis-68.pdf
	Thesis-69.pdf
	Thesis-70.pdf
	Thesis-71.pdf
	Thesis-72.pdf
	Thesis-73.pdf
	Thesis-74.pdf
	Thesis-75.pdf
	Thesis-76.pdf
	Thesis-77.pdf
	Thesis-78.pdf
	Thesis-79.pdf
	Thesis-80.pdf
	Thesis-81.pdf
	Thesis-82.pdf

