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Abstract 

To use reflectivity data from X-band radars for quantitative precipitation 

estimation and storm-scale data assimilation, the effect of attenuation must be properly 

accounted for. Traditional approaches try to make correction to the attenuated 

reflectivity first before using the data. An alternative, theoretically more attractive 

approach builds the attenuation effect into the reflectivity observation operator of a data 

assimilation system, such as an ensemble Kalman filter (EnKF), allowing direct 

assimilation of the attenuated reflectivity and taking advantage of microphysical state 

estimation using EnKF methods for a potentially more accurate solution. 

This study first tests the approach for the CASA (Center for Collaborative 

Adaptive Sensing of the Atmosphere) X-band radar network configuration through 

observing system simulation experiments (OSSE) for a quasi-linear convective system 

(QLCS) that has more significant attenuation than isolated storms. To avoid the 

problem of potentially giving too much weight to fully attenuated reflectivity, an 

analytical, echo-intensity-dependent model for the observation error (AEM) is 

developed and is found to improve the performance of the filter. By building the 

attenuation into the forward observation operator and combining it with the application 

of AEM, the assimilation of attenuated CASA observations is able to produce a 

reasonably accurate analysis of the QLCS inside CASA radar network coverage. 

Compared with foregoing assimilation of radar data with weak radar reflectivity or 

assimilating only radial velocity data, our method can suppress the growth of spurious 

echoes while obtaining a more accurate analysis in the terms of root-mean-square 

(RMS) error. Sensitivity experiments are designed to examine the effectiveness of AEM 
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by introducing multiple sources of observation errors into the simulated observations. 

The performance of such an approach in the presence of resolution-induced model error 

is also evaluated and good results are obtained.  

The same EnKF framework with attenuation correction is used to test different 

possible configurations of 2 hypothetical radars added to the existing network of 4 

CASA radars through OSSEs. Though plans to expand the CASA radar network did not 

materialize, such experiments can provide guidance in the site selection of future X-

band or other short-wavelength radar networks, as well as examining the benefit of X-

band radar networks that consist of a much larger number of radars. Two QLCSs with 

different propagation speeds are generated and serve as the truth for our OSSEs. 

Assimilation and forecast results are compared among the OSSEs, assimilating only X-

band or short-wavelength radar data.  Overall, radar networks with larger downstream 

spatial coverage tend to provide overall the best analyses and 1-hour forecasts. The best 

analyses and forecasts of convective scale structure, however, are obtained when Dual- 

or Multi-Doppler coverage is preferred, even at the expense of minor loss in spatial 

coverage. 

Built-in attenuation correction is then applied, for the first time, to a real case 

(the 24 May 2011 tornadic storm near Chickasha, Oklahoma), using data from the X-

band CASA radars. The attenuation correction procedure is found to be very effective—

the analyses obtained using attenuated data are better than those obtained using pre-

corrected data when all the values of reflectivity observations are assimilated. The 

effectiveness of the procedure is further examined by comparing the deterministic and 

ensemble forecasts started from the analysis of each experiment. The deterministic 
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forecast experiment results indicate that assimilating un-corrected observations directly 

actually retains some information that might be lost in the pre-corrected CASA 

observations by forecasting a longer-lasting trailing line, similar to that observed in 

WSR-88D data. In the ensemble forecasts, assimilating un-corrected observations 

directly, using our attenuation-correcting EnKF, results in a forecast with a more intense 

tornado track than the experiment that assimilates all values of pre-corrected CASA 

data.  

This work is the first to assimilate attenuated observations from a radar network 

in OSSEs, as well as the first attempt to directly assimilate real, uncorrected CASA data 

into a numerical weather prediction (NWP) model using EnKF. 



1 

Chapter 1: Introduction 

1.1 Background and Motivations 

In many areas over the continental United States, the current operational 

Weather Surveillance Radar-1988 Doppler (WSR-88D) radar network lacks an effective 

means of providing dense, comprehensive, lower-troposphere observations. To address 

this shortcoming, the Center for Collaborative Adaptive Sensing of the Atmosphere 

(CASA;McLaughlin et al. 2009) has developed a network low-cost, high-spatial-density, 

adaptively-scanning X-band dual-polarization Doppler radars.  The Doppler and 

polarimetric capabilities of the CASA network, operating at high spatial and temporal 

resolutions, can be used to detect, track, analyze, and predict tornadoes or processes 

leading to tornadogenesis. CASA radars are designed and deployed to operate as a 

network, providing dense, overlapping coverage to overcome the horizon problem 

common to large, long-range radars. This network approach to scanning, known as 

distributed collaborative adaptive sensing (DCAS) (McLaughlin et al. 2009), optimizes 

the low-level volume coverage scanning and maximizes the utility of each scanning 

cycle for users. The data from the first CASA test-bed, known as Integrated Project One 

(IP1, active from 2006 to 2011), are used to drive real-time surface analyses, 

nowcasting, and dynamic numerical weather prediction (NWP) models (Brotzge et al. 

2010). 

Many studies assimilating Doppler radar observations into NWP models have 

shown reasonable success in analyzing and forecasting convective storms (Sun et al. 

1998; Weygandt et al. 2002; Xue et al. 2003; Xiao et al. 2005; Schenkman et al. 2010; 

Schenkman et al. 2011; Snook et al. 2011). Compared to the 3-dimensional variational 
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(3DVAR) and 4-dimensional variational (4DVAR) methods, the ensemble Kalman 

filter (EnKF) has the notable advantage of incorporating flow-dependent error 

covariance information (Evensen 2003), as well as providing a set of ensemble member 

analyses suitable for initializing ensemble forecasts. For convection-resolving NWP, the 

microphysics scheme is one of the most important physical processes and has a 

profound impact on the forecast. Considering the complexity and highly nonlinear 

nature of microphysical processes, the linearization required by 4DVAR in the 

minimization process often encounters difficulties, particularly when ice species are 

involved (Xu 1996). However, the EnKF method, which uses the full nonlinear model 

to propagate the ensemble state, appears to be more attractive (Tong and Xue 2005).  

The impact of attenuation due to precipitation poses an additional challenge for 

accurate quantitative and qualitative interpretation of shorter wavelength X-band radar 

data. To successfully use reflectivity observations from X-band radars for quantitative 

precipitation estimation and storm-scale data assimilation, the effect of attenuation must 

be properly accounted for. As a result, attenuation correction is a significant area of 

research in utilizing reflectivity observations from X-band and other shorter-wavelength 

radars.  Numerous attenuation algorithms have been studied in the observation space, 

and results are promising (Bringi et al. 2001; Gorgucci and Chandrasekar 2005; Park et 

al. 2005a; Park et al. 2005b). Although attenuation can be estimated, and its effects on 

reflectivity and differential reflectivity fields can be compensated for, little can be done 

in cases of complete attenuation where the signal drops to near the noise floor (Snyder 

et al. 2010). 
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More recently, there have been efforts to include attenuation in the forward 

observation operator of the data assimilation system. Attenuation correction can be 

achieved using a variational approach by estimating the attenuation at each range gate 

and iterating this process until an accurate estimate of attenuation is reached (Hogan 

2007); the expected attenuation can also be calculated using the estimated atmospheric 

state, which can be obtained through ensemble-base data assimilation (Xue et al. 2009; 

XTZ09 hereafter). The latter approach, as proposed by XTZ09, does not require any 

prior assumption about the specific hydrometeor types at particular grid points, and it is 

possible to include error or uncertainty from all data sources in the assimilation 

framework, as well as allowing for close coupling of attenuation correction with the 

dynamical model. Such a procedure was demonstrated to be effective in XTZ09 using a 

set of observing system simulation experiments (OSSEs), in which simulated radar 

observations of a supercell were collected using a single simulated radar. This work 

establishes a new direction in dealing with attenuation correction during radar 

reflectivity data assimilation. 

 

1.2 Dissertation Overview 

The primary objective of this work is to test the effectiveness of, and further 

improve, attenuation correction built into an EnKF system, in particular for more 

complex convective storm systems and for observations from CASA-like X-band radar 

networks. For a thorough evaluation, the capability of the EnKF system will be tested in 

OSSEs by assimilating simulated radar observations for QLCSs and in real data 

experiments by assimilating observations collected from the CASA IP1 network during 
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the 24 May 2011 tornado outbreak happened in southwest Oklahoma. The results of 

analyses and subsequent deterministic and ensemble forecasts will be evaluated. 

Chapter 2 contains a brief overview of traditional attenuation algorithms and the 

current attenuation correction methods used by CASA radar network. A detailed 

description of the attenuation-containing forward observation operator used in the 

research as well as an observation error model (OEM) that is designed to improve the 

performance of the EnKF system are included, too. 

In Chapter 3 we describe the truth simulation, observation simulation, and data 

assimilation experiment configurations of the OSSEs. As this is the first study that 

directly assimilates attenuated observations from a radar network for a linear convective 

system, OSSEs are preferred to test the new methodology (Lord et al. 1997). The results 

from perfect and imperfect model experiments are discussed. In the latter, model 

resolution errors are introduced into the OSSEs to examine the robustness of the 

attenuation correction procedure in the presence of model error. The situation where 

multiple error sources present in observations is also examined. Another type of 

observation error model is proposed and examined, too. 

The same EnKF framework with attenuation correction is used in OSSEs to test 

the possible configurations of an expanded CASA IP1 radar network in Chapter 4. 

CASA had previously planned to increase the size of the radar network, positioning the 

added radars in a way that would cover existing blind spots for the most common storm 

modes, especially for cases where severe attenuation happened (Brewster 2005). 

Recently, the CASA Dallas Fort Worth (DFW) Urban Demonstration Network also has 

plan to expand the existing DFW Test-bed (Philips 2012). OSSEs can be an effective 
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way to evaluate trade-offs in the design of observing systems and provide the 

quantitative basis for a rational design of observing systems that will be used primarily 

for numerical weather prediction (Lord et al. 1997). In our OSSEs, the impact of storm 

motion speed is considered by designing experiments with slow-moving and fast-

moving convective lines. The main focus is on evaluating the accuracy of analyses and 

predictions assimilating data collected by radars with different site arrangements. These 

OSSEs can provide guidance to future X-band radar network site selection for the 

purpose of data assimilation or convective storm NWP. 

Tests of the attenuation correction procedure using real observations from the 

CASA IP1 network are discussed in Chapter 5. A brief case description of the 24 May 

2011 tornado outbreak is presented. The experiment set-ups are then introduced, and 

preliminary results are discussed. Comparisons are made between the experiment 

assimilating pre-corrected observations using the original EnKF algorithm (without 

built-in attenuation correction) and one assimilating un-corrected observations using our 

attenuation-correcting EnKF system.  

A summary of the dissertation and outlines of future work are presented in 

Chapter 6. 
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Chapter 2: Historical Review and Description of Techniques 

2.1 Overview of traditional attenuation algorithms 

2.1.1. Existing attenuation algorithms 

Weather radar is one of few remote sensing platforms that can provide high 

spatial and temporal resolution measurements of precipitation in weather systems, 

including convective storms. By sending directional microwave pulses with 

wavelengths of 1 to 10 cm (approximately ten times the diameters of the droplets of 

liquid, ice crystals, snow and graupel particles of interest), Rayleigh or Mie scattering 

occurs and part of the energy of each pulse bounces off of these particles, back in the 

direction of the radar station. Theoretically, shorter wavelengths with superior angular 

resolution are useful for smaller particles.  Shorter wavelength electromagnetic energy, 

however, is more strongly absorbed by water or ice droplets. For example, 3 cm 

wavelength X-band radars suffer echo power loss up to100 times larger than that 

suffered by the 10 cm S-band radars of the WSR-88D radar network (Doviak and Zrnic 

1993). Significant errors can be introduced during quantitative and qualitative 

interpretation of X-band radar data if the effects of attenuation are not considered and 

corrected. 

An electromagnetic wave suffers power loss both from energy absorption and 

scatter. Each hydrometeor absorbs an amount of power PL from the incident power with 

power density Si , that can be expressed as 

PL = (σa+σs) Si , (1) 
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where σa is the absorption cross section, an apparent area that intercepts from the 

incident radiation a power equal to the power dissipated as heat in the drop, and σs is the 

total scatter cross section. 

 If we use the Born approximation, which neglects the scattering of the scattered 

field, drops within a volume element ∆V(r) do not significantly alter Si  within this 

volume. The power density change ∆Si in a wave propagating a short distance ∆r 

through the volume is  

1

( )
N

i an sn i

n

r
S S

V
 




   


  ,  (2) 

where the negative sign signifies loss, the summation extends over all N drops within 

∆V, and σan and σsn are the absorption and scattering cross section, respectively, of the 

nth particle. In the limit ∆r→0, the rate of change in power density is then 

0
lim( )i i

i
r

S dS
kS

r dr 


  


 ,  (3) 

and the power density at any range r is the integral solution of Eq.(3), 

2
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S r S r kdr   ,  (4a) 
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e
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k N D D dD
V

 




 


 


  r    (4b) 

is the specific attenuation, or the attenuation coefficient. N(D, r), is the drop size 

distribution (DSD), which is the expected number density of hydrometeors per unit 

diameter. The product N(D, r)dD gives the number of hydrometeors per unit volume 

having diameters in the interval dD about D. The specific attenuation expressed in 

decibels per kilometer is  
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31

2 2

( )
[10log ] 4.34 10

( )

S rd
K k

dr S r
     dB km

-1
 (5) 

where k has units of m
-1

. 

 It has been observed, for a wide range of rainfall rates and rain types, that a 

consistent relationship exists between specific attenuation of microwaves and the 

rainfall rate measured with rain gauges along the propagation path. Burrows and 

Attwood (1949) have used the drop size data of  Laws and Parsons (1943) to compute a 

power law relation between specific attenuation K and rainfall rate R at various 

wavelengths and temperatures. 

 Existing attenuation correction algorithms include (a) the Hitschfeld and Bordan 

(H-B) solution/algorithm, and its modified versions, for correcting single polarization 

radar reflectivity (Hitschfeld and Bordan 1954), (b) the method based on measurement 

from dual-polarization radar and (c) the networked approach (Lim et al. 2010); the latter 

of these is the approach mainly used by the CASA radars. 

The H-B method uses a reflectivity-attenuation relation to solve for true 

reflectivity from attenuated reflectivity. This relation, as outlined by Hitschfeld and 

Bordan (1954), is numerically unstable and extremely sensitive to calibration errors and 

partial beam blockage. The H-B solution can be made stable by using total path-

integrated attenuation (PIA) as a constraint; such a method has been applied 

successfully to the space/air-borne radar measurement of rain in the TRMM project 

(Meneghini and Kozu 1990) where the PIA is determined using the surface reference 

method. Independent estimates of PIA, however, are not available in general. Also, in 

case with multiple coexisting hydrometeor species, typical attenuation correction 

methods, including that of H-B, usually have difficulties. 
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The specific attenuation-differential phase parameterization method (DP 

method) uses the specific propagation differential phase KDP provided by dual-

polarization weather radars (Bringi et al. 1990; Jameson 1992; Park et al. 2005a). This 

is a more stable approach, whereby specific horizontal and differential attenuation (AH 

and ADP) can be estimated through relations with KDP. The coefficients in the relations 

must be supplied a priori, and they vary as a function of the drop size distribution 

(DSD), temperature, and drop shape relation. 

Testud et al.(2000) constrains the two-way path-integrated horizontal attenuation 

(PIAH )by the total change in ΦDP along a radial through a rain cell, termed the ZPHI. 

The attenuation is then apportioned according to the distribution of reflectivity factor at 

horizontal polarization (ZH ) along the radial, making this technique significantly more 

stable than the H-B method. The correction is done either by directly adding to 

reflectivity and differential reflectivity using correction amounts determined from the 

measured differential propagation phase ΦDP  (Matrosov et al. 2002; Anagnostou et al. 

2006), or by adjusting coefficients in the attenuation-reflectivity and attenuation-

differential phase relations used in the attenuation correction procedure such that the 

system is self-consistent(Bringi et al. 2001; Park et al. 2005a). 

The pseudo-dual-frequency (PDF) method (Tuttle et al. 1983) estimates PIAH at 

the end of a ray by the dual-wavelength ratio (DWR, defined as the difference between 

the S- and X-band horizontal reflectivity factor at the end of the cell) and apportions 

attenuation similarly to the ZPHI method. The PDF method requires radar data from 

systems operating at two different frequencies and is highly dependent upon the 

assumption of ZH being equal at two wavelengths. 
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2.1.2 Attenuation correction with CASA radar network 

For the X-band CASA radars, attenuation is corrected in one of two ways: 

(i) Single radar data are corrected using the dual-polarization variable specific 

differential phase (Gorgucci et al. 2005); a self-consistency check is performed between 

Kdp, Zh, Zdr, and specific attenuation or differential attenuation. The estimated Kdp 

profile is then integrated in range to build an estimated profile of differential phase 

(ΦDP), and ΦDP is iteratively solved to obtain the best match to the observations. The 

initial condition for the iterative solution is obtained from the estimates of the specific 

attenuation profile from the differential phase constraint algorithm. This attenuation 

correction was evaluated and showed good performance in Gorgucci et al. (2006); 

(ii) Data within multi-Doppler regions can be corrected by processing data from 

multiple radars. The real-time network-based reflectivity retrieval system (NBRR) 

involves collecting data from multiple remote radars and performing digital signal 

processing (Lim et al. 2010). By employing the methodology for reflectivity retrieval in 

a networked radar environment proposed by Chandrasekar and Lim (2008), the NBRR 

system works robustly in real-time while retrieving attenuation-corrected reflectivity. 

While the algorithm CASA used has been shown to accurately retrieve un-

attenuated reflectivity values, it can only do so when the reflected power is above the 

noise floor of the radar receiver. When total signal extinction occurs, the resulting radar 

data cannot be objectively distinguished from true clear-air data. To avoid erroneous 

assimilation of completely attenuated reflectivity data, some studies only assimilate 

radial velocity data. Snook et al. (2011)  assimilates CASA reflectivity and radial 

velocity data only in regions where attenuation-corrected reflectivity exceeds 20 dBZ. 
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Unfortunately, the above constraint prevents the use of CASA clear-air reflectivity data 

for suppressing spurious storms that can develop within the numerical model. Tong and 

Xue (2005)  showed that the assimilation of clear-air reflectivity data is very beneficial 

in suppressing spurious storms. 

 

2.2 Overview of Simultaneous attenuation correction and state estimation 

As the foundation of modern data assimilation for the atmosphere (Daley 1991; 

Kalnay 2002), the optimal estimation theory (Leith 1974) optimally combines different 

sources of information together with their error or uncertainty (usually in the least 

square sense) to obtain the best estimate of the state and/or parameters. Variational 

techniques and the ensemble Kalman filter (EnKF) (Evensen 1994) are advanced data 

assimilation (DA) methods based on optimal estimation theory and have been 

effectively applied to convective-scale model initialization with radar data (Sun et al. 

1994; Snyder et al. 2003; Tong et al. 2005; Hu et al. 2006; Schenkman 2008; Putnam et 

al. 2010). 

 Modern data assimilation techniques such as variational and EnKF approaches 

are able to assimilate observations directly using the forward observation operators that 

link the model state variables to the observations (Kalnay 2002). For weather radars, the 

forward observation operators link the atmospheric state variables, including velocity, 

and hydrometeor species and amount, to the observed radial velocity and reflectivity 

(Xue et al. 2006). Accurate observation operators should take into account radar beam 

propagation (Gao et al. 2006), beam pattern weighting (Xue et al. 2006; Xue et al. 

2007), thermodynamic effects such as bright band effects (Jung et al. 2008b), and 
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attenuation (XTZ09). Additional observational parameters available from polarimetric 

Doppler radars, including differential reflectivity and differential phase measurements, 

provide helpful information about the density, shape, orientation, and drop size 

distributions (Doviak and Zrnic 1993; Gorgucci et al. 2001) and can also be connected 

through forward observation operators (Jung et al. 2008a). 

  With proper observation operators, variational and EnKF methods seek to 

minimize the difference between the observed quantities, which may be attenuated, and 

the model presentation of those quantities, subject to their respective uncertainties. 

Information with a smaller uncertainty will be weighted more heavily in the 

minimization/estimation process, and prior estimate together with its uncertainty 

information can also be readily used. 

2.2.1 Overview of observation operator with attenuation 

 Hogan (2007) estimates rain rate using dual-polarization radar data through the 

variational approach, where attenuation correction is built directly into the forward 

observation operator using explicit treatment of errors, and attenuation is included 

straightforwardly without the instability problem encountered by H-B method. Their 

scheme is tested on S-band radar data and found to be robust and stable, even in the 

presence of differential phase shift on backscatter. However, the retrieval in low-rain-

rate regions has been found to be very sensitive to the calibration of ZDR. With such 

standalone analysis procedures, it is difficult to directly couple rain rate estimation with 

precipitation microphysics employed in numerical models, assuming the model 

microphysics is accurate enough for the model to benefit from such coupling. 
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Because flow-dependent background-error covariance derived from a forecast 

ensemble can be used to ‘retrieve’ unobserved state variables, EnKF is particularly 

useful for radar data assimilation. XTZ09 builds the attenuation effect into the forward 

observation operator of the ARPS EnKF system. The attenuation is calculated based on 

the estimate of atmospheric state, including the hydrometeor species. Such a procedure 

does not require any prior assumption about the specific hydrometeor types at particular 

grid points. It is possible to include error or uncertainty from all sources of information 

in the assimilation framework and allow for a close coupling of the calculation of 

attenuation with the dynamic model. As the model state estimate improves through data 

assimilation, the attenuation estimate also improves. The effectiveness of their 

procedure was demonstrated using a set of observation system simulation experiments 

(OSSEs), in which data from a single X-band radar that covered a supercell storm was 

simulated. 

The observation operator with attenuation proposed by XTZ09 is used in this 

study; it is described below. The equations for reflectivity listed in (Xue et al. 

2006;XTD06 hereafter) and the attenuation calculation introduced in XTZ09 form the 

forward observation operator for radar reflectivity data. These equations are used in 

both radar data simulation and assimilation.  

The measured equivalent reflectivity factor in the presence of attenuation at a 

given range r can be expressed as  

 

  

Ze '(r) = Ze (r)A(r), (6)   

where '( )eZ r  is the attenuated equivalent reflectivity factor,  
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0
( ) exp( 0.46 ( ) )

r

A r k s ds    is the two-way Path-Integrated Attenuation (PIA) factor for 

equivalent reflectivity, and k is the attenuation coefficient (dBkm
-1

).  The attenuated 

reflectivity in dBZ can be obtained by taking 1010log ()  of Equation (6) so that, 

 
0

'( ) ( ) 2 ( )
r

Z r Z r k s ds    , (7) 

where Z(r) and Z’(r) are reflectivity in dBZ before and after attenuation, i.e. the intrinsic 

reflectivity and attenuated reflectivity, respectively. It can be seen that the total PIA in 

dB, i.e. 1010log ( ( ))PIA A r  , is equal to twice the integral of k between range 0 and r, 

reflecting the effects of two-way attenuation. For the purpose of data assimilation, the 

effect of attenuation and its correction can be achieved by including Equation (7) in the 

observation operator for reflectivity. The equation for the reflectivity calculation in the 

observation operator therefore becomes, 

 10 6 3 0
'( ) 10log ( ) 2 ( )

1

r
eZ

Z r k s ds
mm m

   ,        (8) 

The radar reflectivity factor Ze and the attenuation coefficient k are linked to 

hydrometeor mass content (W, in mass per unit volume of air) through an exponential 

form DSDs of rain, snow and hail/graupel, consistent with the DSD assumptions in the 

5-class single-moment microphysics scheme of Lin et al.(1983) used in the ARPS 

prediction model used in this study: 

 0( ) exp( )N D N D  ,  (9)  

where N0 is the intercept parameter and Λ is the slope parameter. The intercept N0 is a 

constant, and the slope parameter is then uniquely linked to W (=ρaq, where ρa is the air 

density and q is the mixing ratio), through the assumptions about the DSDs and 
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hydrometeor density. The effect of DSD uncertainty has been tested in a set of 

sensitivity experiments in XTZ09; the attenuation correction procedure as part of the 

EnKF data assimilation system appears to be less sensitive to the DSD model or radar 

calibration error than conventional methods. 

The hydrometeor content and radar variables are represented by weighted 

integrals over the DSDs as follows: 

 3 ( )
6

W D N D dD

  , (10) 
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( ) ( )e b

W

Z D N D dD
K





  , (11) 

 4.343 ( ) ( )ek D N D dD  , (12) 

where ρ is the density of hydrometeors, 
1

2

r
W

r

K








  is the dielectric factor of water, εr 

is the relative dielectric constant of water, σb is the backscattering radar cross-section 

and σe the extinction cross-section for hydrometeor particles. Either Mie theory or a T-

matrix method are chosen to calculate the cross-sections, depending on the experiment. 

In this study, we mainly use Mie theory.  

For computational efficiency, we perform calculations within the possible range 

of water content beforehand, and use curve fitting to obtain formulae that can be used 

efficiently during data assimilation. We derive parameterized relations of model-

predicted W with Ze and K through equations (9), (10), (11) and (12), in which the Mie 

theory is used to calculate the backscattering radar cross-sections and the attenuation or 

extinction cross-sections. Details of the coefficients for power-law relations for all 

hydrometeor species are described in XTZ09 and can be found in Appendix A. 
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2.2.2 The observation error model (OEM) 

Attenuated radar data inherently leads to spatially non-uniform observation 

errors. Severely or completely attenuated observations often contain significant 

observation errors, while un-attenuated observations tend to be more accurate. 

Unfortunately, in practice, we have little knowledge of the distribution of observation 

error associated with attenuated radar observations. We can, however, try to capture the 

main structure empirically by noting that when attenuation is occurring along the path, 

the reflectivity observations become small or even zero. The observation error model 

(OEM) is proposed to serve this purpose. 

As the first attempt, an analytical relation between observation error and 

reflectivity is designed based on the observed value of reflectivity. In this relation, 

larger observation errors will be assigned when observed reflectivity is smaller, or even 

zero, under the assumption that small reflectivity values indicate the possibility of 

attenuation.  Smaller observation errors (decreasing to a small constant value) will be 

used when the reflectivity observation value is larger. In real CASA radar data, a flag 

can be included to distinguish between clear air echo and fully-attenuated echo. Thus, in 

our OSSEs, the simulated observations contain such information as well. When an 

observation is marked as clear air, a constant small value (e.g. 2 dB) will be specified as 

the reflectivity observation error during data assimilation. We name this relation the 

analytical observation error model (hereafter, AEM).  

The AEM is designed as below: in regions where reflectivity is below a 

specified minimum threshold (e.g., 10 dBZ), the observation error deviation is assigned 

a constant, large value (e.g., 8 dB), while in other regions a logarithmic relation is used 
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to model the observation errors for the observations. Equation (13) gives such a 

relation: 

_ min R  < R

       C

      max(log( ),1.0)

e e

obs

obs set

e

if

else

U

R



 



  .               (13)

 

Here, 𝜎obs denotes the modified observation error variance; 𝜎set denotes the original 

preset observation error variance. Re is the value of observed reflectivity and Re_min is 

the threshold used to define whether a constant value C should be set as observation 

error, or a logarithmic form should be used. U inside the logarithmic form can be varied 

in the equation. The constant value C and U are chosen based on experimentation, and 

can be varied from case to case to obtain the best analyses. In Chapter 3, we will further 

discuss the possible settings of C and U and corresponding results. 

Other than the analytical forms of observation error model, another possible 

form of observation error model that considers multiple possible error sources and 

calculates corresponding error based on estimation obtained through EnKF is proposed 

in section 3.5. According to the process of obtaining radar observations and assimilating 

radar observations in EnKF, the observations can be decomposed into different parts 

and parameterized differently. The possible error components are: observation 

estimation error; reflectivity model error; attenuation mode error; signal-to-noise-ratio 

related bias or error; and inhomogeneity related error. During data analysis, those error 

components can be calculated based on the information estimated from the background, 

thus providing us another possible way to specify proper observation error for each 

observation. And this type of observations error model is named as the multi-sources 
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error model (MSEM). Tests and result comparisons between the two types of 

observation error models (MSEM and AEM) will be discussed in section 3.5. 
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Chapter 3: OSSEs Assimilating Attenuated Data from an X-band 

Radar Network for a Squall Line and testing with multi-error sources 

observation 

3.1 The truth simulation 

A numerically-simulated QLCS was generated by the Advanced Regional 

Prediction System (ARPS;Xue 2000; 2001; 2003) to serve as the truth simulation for 

OSSEs. The ARPS is used in a 3D cloud model mode in which cumulus 

parameterization is not used and surface physics and radiation processes are ignored. 

The prognostic variables include three velocity components u, v, w, potential 

temperature θ, pressure, p, and six moisture variables, i.e., water vapor specific 

humidity qv,, and mixing ratios for cloud water, qc, cloud ice qi, snow qs and hail qh. In 

addition, turbulence kinetic energy is also predicted and used to determine turbulent 

mixing coefficients based on a 1.5-order turbulence closure scheme. The microphysical 

processes are parameterized using the Lin et al (1983) scheme with two categories of 

liquid water and three categories of ice. 

The physical domain of all experiments is 293



197



16 km
3
 and the horizontal 

grid spacing is 1.5 km in most experiments (FIG 3. 1a). To better resolve the lower 

atmosphere, a vertically stretched grid with a minimum vertical grid-spacing of 100 m 

near the surface is used. The initial homogeneous storm environment is defined by a 

two-layer wind shear profile (FIG 3. 1b), in which the westerly wind increases linearly 

from zero to 15 m s
-1

 at 2.5 km and remains at 15 m s
-1

 above 2.5 km. To initialize the 

truth simulation, a line of thermal bubbles with 4 K maximum potential temperature 

perturbation, along with additional random perturbations of 5%, is used to trigger the 
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storm, located at x=50 and z=1.5 km from the northern domain boundary to southern 

domain boundary. The radii of these bubbles are 10 km in x-direction, 20 km in y-

direction and 1.5 km in the z-direction, while the distance between each bubble is 9.6 

km, and the southernmost bubble is 9.6 km from the southern boundary. A wave 

radiation condition is applied at the west and east boundaries while a periodic condition 

is used at the north and south boundaries. Free-slip conditions are applied to the top and 

bottom boundaries. The length of the simulation is four hours. 
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FIG 3. 1 (a) Map of 288 km × 192 km computational domain. The small solid circles 

represent the maximum 40 km range of the CASA IP1 radars. (b) Environmental 

soundings used to generate the truth simulation of a squall line. 
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3.2 Simulation of radar observations 

The four X-band polarimetric CASA IP-1 radars used in OSSEs are located near 

Chickasha, Rush Springs, Lawton and Cyril (McLaughlin et al. 2009) in Oklahoma (FIG 

3. 1a).  Simulated radar data are generated, following XTD06, using a Gaussian power 

weighting function in the vertical for observations simulated on radar elevation levels 

(PPI or plan position indicator planes). Data are assumed to have been interpolated to 

the model Cartesian coordinates horizontally, but remain on the radar elevations 

vertically. The effect of Earth curvature and beam bending due to vertical change of 

refractivity are taken into account using the 4/3 effective Earth radius model discussed 

in Doviak and Zrnic (1993). The velocity is projected to the direction of radar beam 

locally to give the simulated radial velocity, and the terminal velocity effect is properly 

taken into account using the hydrometeor state variables. The radars are assumed to 

operate in one of the CASA radar storm scan modes, having 10 elevations with one 

volume scan every 5 minutes and a 1.8 beamwidth. The attenuated reflectivity is 

calculated by integrating along the path of each radar beam using Eq. (7), where the 

reflectivity before attenuation (in dBZ) is given by 

  

Z =10log10[Zer +Zes +Zews +Zeh +Zewh ], (where subscripts r, s, and h denote rain, snow 

and hail, while ws and wh denote wet snow and wet hail, respectively). 

As an example, FIG 3. 2 shows the simulated radar reflectivity obtained from 

the four radars at an elevation of 5.0, with and without attenuation, at 135 min of 

model time. Each radar only partially covers the QLCS. The high reflectivity regions, 

mainly associated with high mixing ratios of rainwater and hail, including melting hail, 

tend to be completely attenuated at large ranges from the observing radars, resulting in 
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wedges of zero or near-zero reflectivity behind heavy precipitation cores. The 

maximum reflectivity in the convective cores is reduced by more than 50 dBZ. Thus, 

the pattern and magnitude of attenuation appear realistic. Since this radar network has 

many overlapping regions, some of the heavily-attenuated reflectivity regions from one 

radar can be detected by other radars, which in the following experiments helps model 

correct attenuation. 

 

FIG 3. 2 Simulated (a) non-attenuated and (b) attenuated reflectivity observations at 5 ° 

elevation at 135 min of the squall line simulation time. 

 

In all experiments, Gaussian-distributed random errors with a mean of zero and 

standard deviations of 1 m s
-1

 and 2 dB for radial velocity Vr, and reflectivity Z, 

respectively, are added to the simulated data sampled from the truth simulation. These 

values are also used to specify the observation error variances during data assimilation.  

This is not the case in the observation error model series of experiments to be discussed 

later. 
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3.3 Data assimilation experiments  

The basis of our data assimilation is the EnKF radar data assimilation 

framework of XTD06, which was based on Tong and Xue (2005) and further enhanced 

in Tong and Xue (2008) to include the terminal velocity effect in the radial velocity 

observation operator. The observation operator including the attenuation effect, as 

described in section 2.2.1, is used for reflectivity. 

An ensemble of 40 members is initialized at t = 105 min of model time by 

adding random perturbations to a horizontally homogeneous ensemble mean defined by 

the environmental sounding used by the truth simulation. Observations are assimilated 

every 5 min beginning at t=110 min. The smoothed random perturbations are sampled 

from Gaussian distributions with zero mean and standard deviations of 2 ms
-1

 for u, v, 

and w, 2 K for potential temperature θ, and 0.6 gkg
-1

 for qv, qc, qr, qi, qs, and qh. 

Pressure and microphysical variables are not perturbed. The variables u, v, θ, and qv at 

the first grid level above ground are not perturbed, following XTD06, as doing so was 

found to introduce noise into the analyzed pressure field. The covariance localization 

procedure follows Houtekamer and Mitchel (2008a), applying a Schur product of the 

background error covariance calculated from the ensemble and a correlation function 

with local support. Covariance inflation is limited to the grid points where observed Z > 

10 dBZ and all points within 4 grid points in the horizontal (6 km in perfect model 

experiments) and/or vertical directions. The multiplicative inflation factor, β, is set to 

1.07. 

As described in Table 3. 1 a set of standard experiments is first performed to test 

the effectiveness of the reflectivity observation operator for the QLCS case. We 
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compare the performance of performing attenuation correction during EnKF data 

assimilation (experiments name start with ‘ATC’) with the experiments that do not 

perform attenuation correction (experiment names start with ‘N’). Suffix ‘Z’ indicates 

that only reflectivity data is assimilated, otherwise both Z and Vr data are assimilated. In 

VRONLY, only radial velocity data are assimilated. Simulated attenuated radar data are 

used in all experiments except in experiment ‘NAC10Z’, in which only reflectivity data 

above 10 dBZ are assimilated. Experiment names starting with “OBSE” indicate the 

application of the AEM during data assimilation. We also tested three types of possible 

reflectivity relations in OBSEs series experiments. The assimilation of Vr data is 

conduct once read-in Z exceeding 10 dBZ in all experiments. Details of the observation 

error model will be discussed further in section 3.4.2. 
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Table 3. 1 Lists of perfect model OSS experiments 

Experiment Observation operator 

with attenuation effect 

Observations 

assimilated 

Observations error 

standard deviation 

NAC No Z & Vr 2dB 

NAC10Z No Z ( >10 dBZ ) & Vr 2dB 

VRONLY No (not necessary) Vr 2dB 

ATC Yes Z & Vr 2dB 

ATCZ Yes Z 2dB 

OBSE Yes Z & Vr reflectivity relation 2 

OBSEZ Yes Z reflectivity relation 2 

OBSEONLY No Z & Vr reflectivity relation 2 

OBSE1 Yes Z & Vr reflectivity relation 1 

OBSE3 Yes Z & Vr reflectivity relation 3 

 

Table 3. 2 lists all imperfect model experiments and contains specific 

descriptions of the experiment settings. In this set of experiments, the truth simulation is 

generated in the same way as the truth used in the perfect model experiments except that 

the grid spacing is 500 m.  When the EnKF OSSEs are performed using a 1.5 km grid 

spacing, model error due to the resolution difference arises.  The impact of model 

resolution error is examined in experiments starting with “LOWRES”.   For 

comparison, experiments with prefix “HIRES” are run at the full 500-m grid-spacing 

(i.e. without model resolution error). The observation operator with attenuation effect is 

used in all imperfect model experiments; the suffix “OBSE” denotes whether the 
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Observation Error Model is applied during data assimilation. Comparison between these 

experiments will enable us to evaluate the impact of observation error and model error 

when assimilating attenuated radar observations. 

Table 3. 2 Lists of imperfect model OSS experiments 

 

Experiments Observations 

assimilated 

Observation error 

deviation 

Localization 

radius 

Model resolutions 

(model error 

contained) 

HI_ORG Z & Vr fixed observation error 

(2dB) 

4dx (2 km) dx=dy=500 m, 

dz=500 m 

(no) 

HI_OBSE Z & Vr reflectivity relation 2 4dx (2 km) dx=dy=500 m, 

dz=500 m 

(no) 

LOW_ORG Z & Vr fixed observation error 

(2dB) 

4dx (6 km) dx=dy=1500 m, 

dz=500 m 

(yes) 

LOW_OBSE Z & Vr reflectivity relation 2 4dx (6 km) dx=dy=1500 m, 

dz=500 m 

(yes) 

 

3.4 Results of experiments 

A key question our study seeks to answer is whether or not the EnKF system can 

successfully recover the attenuated signal in areas with near-complete signal extinction. 

We also examine the impact of the fact that the QLCS in the truth simulation is much 

larger than the radar network observing it. XTD06 shows that when the radar does not 

provide full coverage of the storm system, significant errors could develop in the 

analysis that cannot be effectively corrected due to lack of observational information. 

Including data from WSR-88D radars can help increase the radar coverage. However, 

because the purpose of this research is to examine the performance of a short-

wavelength observation operator with attenuation effects, we will focus on observations 
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from X-band radars only. As such, it is expected that the root-mean-square (RMS) 

errors of the results will be higher than those in XTZ09.  

           Furthermore, in this study, calculation of RMS errors is confined to grid points 

inside of the IP1 radar network coverage region since the model cannot accurately 

analyze storm features outside the radar coverage area. Calculating RMS error only 

inside radar network coverage allows us to focus on evaluating the capability of the DA 

system in recovering the model state subjecting to reflectivity attenuation.    

3.4.1. Perfect model experiments—simultaneous attenuation correction in EnKF 

for a squall line 

First we evaluate the effectiveness of the observation operator with attenuation 

(hereafter called the attenuation observation operator) proposed by XTZ09 in the 

simulated squall-line case. The analysis of NAC (FIG 3. 3b) shows a very weak storm 

system, which is mainly due to assimilating data, containing large error caused by 

attenuated observations and an improper observation operator which does not account 

for attenuation (hereafter called the original observation operator). Especially for the 

fully attenuated reflectivity from KSAO and KRSP (FIG 3. 2b), the observations 

provide incorrect information regarding the storm, which result in nearly echo-free 

regions in the south-east portion of radar network (this region is located around 150-170 

km in x direction, and 64-82 km in y direction). Discarding radar reflectivity below 10 

dBZ during data assimilation (NAC10Z) could improve the analysis quality by omitting 

bad observations; however, doing so will also remove the clear air data that could aid in 

suppressing spurious echoes. NAC10Z shows minor improvement on storm reflectivity 

structure (FIG 3. 3c). Assimilating radial velocity only can improve the wind field and 
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produce a reflectivity pattern closer to the truth in the squall line area inside the radar 

network coverage region (FIG 3. 3d). There is still, however, a large amount of spurious 

echo surrounding the storm system due to lack of clear air data assimilation. On the 

other hand, the application of the attenuation observation operator allows the model to 

correct attenuation based on simultaneous state estimation inside the storm system. 

Even assimilating reflectivity data alone (as in ATCZ) can help capture several 

convective cells of the storm (FIG 3. 3e) compared to NAC (FIG 3. 3b) and NAC10Z 

(FIG 3. 3c). However, some of the attenuation correction seems erroneous, especially in 

the area near 70km in the x direction and 170 km in the y direction in FIG 3. 3e, 

possibly due to inaccurate state variable estimation affected by the spurious echoes 

located just outside of the southeast edge of KRSP range. The addition of radial velocity 

data in experiment ATC makes the storm look much like the truth storm inside the radar 

coverage area both in terms of storm structure and intensity at 135 min of model time 

(FIG 3. 3f), except for the southern part of the squall line. Here, in the overlapping 

region of KLWE and KRSP, the model is still able to recover some small echoes, likely 

because data from KLWE are less attenuated at the time (FIG 3. 2b). When only 

observations from KRSP are available, the filter failed to correct this area because it 

was assimilating fully attenuated observations. However, the model does not produce 

erroneous echoes as in ATCZ due to assimilation of radial velocity data. Still, more 

work is needed to improve our system of EnKF which includes attenuation correction. 
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FIG 3. 3 The horizontal wind vectors (m/s, plotted every third grid point) and computed 

reflectivity (shaded at 5 dB interval, starting from 5 dBZ) for (a) Truth simulation; and 

experiments (b) NAC; (c) NAC10Z ; (d) VRONLY; (e) ATCZ; (f) ATC at model time 

135 mins 
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FIG 3. 4 The ensemble mean analysis RMSEs averaged over points inside radar 

coverage for (a) u, (b) v, (c) w, (d) perturbation potential temperature θ’, (e) qv, (f) qc, 
(g) qr, (h) qi, (i) qs, (j) qh for experiments NAC (dotted), NAC10Z (dashed), 
VRONLY(thin solid), and ATC(thick solid) 

 

We examine the quality of state estimation, i.e. the analyzed individual model 

state variables, by looking at the RMS errors of ensemble mean analyses during the 

analysis cycles. As mentioned in the beginning of section 3.4, the calculation of RMS 

error will be only inside the radar network coverage. These RMS errors are calculated 

against the truth fields in regions where the truth reflectivity is greater than 0 dBZ only, 

i.e. the verification is not performed when truth reflectivity is equal or less than 0 dBZ. 

In another word, the spurious echoes that do not exist in truth are not verified. Thus 

although VRONLY produces quite a lot spurious echoes, the RMS error levels are 

lower than other experiments (FIG 3. 4). For clarity, we show the RMS errors for the 

analyses only, not for the background forecasts. 

FIG 3. 4 compares the RMS errors from four expermients (NAC, NAC10Z, 

VRONLY and ATC). The error levels of ATC are lower than other experiments in 
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hydrometer fields especially for qr, qi, qs and qh before model time 130 min. Later, 

however, a sudden increase in error levels occurs around 135 min. FIG 3. 5 reveals that 

during this period the storm system is moving away from the radar network center and 

entering an area where fewer Multi-Doppler observations are available. Ingesting fully-

attenuated observations appears to deteriorate the analysis. To better explain this result 

we can examine the EnKF analysis equation, given by:  

 [ ( )]
a b b

o

jy H  x x K x ,                                (14)  

where 
a

x  is the ensemble mean analysis vector containing all model state variables. The 

amount of attenuation can only be correct when the estimate states are accurate, but at 

this time the state estimation is poor (FIG 3. 4), thus attenuation calculations based on 

the estimated states are not very accurate either. Thus, when fully attenuated 

observations read in, o

jy  has a value of zero, but ( )
b

H x  is not (instead, it has a positive 

reflectivity value). The analyzed model state variables 
a

x  become smaller than the 

background state variable 
b

x ; in other words, bad observations result in deterioration of 

the analysis. As seen in FIG 3. 5, the decrease of storm intensity or even complete 

disappearance of storm echoes occurs in the ensemble mean analysis compared to the 

ensemble mean forecast after each cycle of data assimilation, especially in the southern 

part of the QLCS inside the radar network coverage area where only observations from 

KRSP are available. 
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FIG 3. 5 Same as FIG 3. 3 but for ensemble mean forecast (left panels) and ensemble 

mean analysis (right panels) from ATC at model times 130 min, 135 min and 140 min 
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FIG 3. 4 also indicates that VRONLY has the smallest errors in the wind field 

compared to the other experiments, and that VRONLY also most accurately analyzes 

the potential temperature, water vapor, and cloud water distributions; however, prior to 

130 minutes of model time, RMS errors are worse for qr, qi, qs, qh  are worse in 

VRONLY than in other experiments due to the spurious storms found within the radar 

network coverage area that could not be effectively suppressed without the help of 

reflectivity data. 

3.4.2 Perfect model experiments— the analytical observation error model (AEM) 

As discussed in section 2.2.2, observations with severe attenuation usually 

contain larger errors than data with little or no attenuation, and zero reflectivity has 

uncertainties (because it is unclear if such data are fully attenuated or truly clear-air 

returns). The observation error model (AEM), based on a reflectivity relation, is 

designed to specify the observation error in the EnKF DA as introduced in section 2.2.2. 

Since this is an empirical technique, we first tested several possible observation error 

variance relation curves and show 3 of them in FIG 3. 6. Eq. 13 is used to generate these 

relation curves. Here, Re_min is set to 10 dBZ and 𝜎set is set to 2.5 dB in all test 

experiments. The three relations are generated by changing the C and U in Eq. 13.  C is 

set to 8.0 dB in relation 1 and 2, and 16.0 dB in relation 3. U is set to 220 dBZ in 

relation 2 and 3, and 160 dBZ in relation 1. FIG 3. 7 shows the RMSEs of the ensemble 

mean analysis of the experiments using the 3 relations. Differences among the 

experiments exist mainly in w and hydrometer fields, because improvement from 

assimilating reflectivity data is mainly evident in hydrometeor fields, and estimation of 

mixing ratio is critical to w retrieval (Jung et al. 2008b). Although relation 3 has the 
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lowest error level after 165 min, during the period from 140 min to 155 min, when less 

Multi-radar observation coverage are available, errors grow quickly and the analysis 

becomes the worst (especially for rain water) compared to other two relations (FIG 3. 

7c). This is likely due to the relatively large observation error assigned when reflectivity 

is less than 10 dBZ. Such large observation error variance (16 dB) can limit the usage of 

zero reflectivity data caused by full attenuation. We have a clear air flag to prevent us 

from erroneously treating clear air observation as fully attenuated data. When weak 

reflectivity (<10dBZ) that are not fully attenuated occur and the correct attenuation 

amount can be calculated, adding overly large observation errors (relation 3) reduces the 

positive impact of this reflectivity data.  In comparison, experiments employing relation 

2 show better analyses during the same period (relation 2 has the smallest error level 

from 140 min to 155 min and larger error than relation 3 but smaller error than relation 

1 after 165 min). Hence, relation 2 is chosen as the AEM used in our remaining 

experiments.  
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FIG 3. 6 Empirical relations between observation error and radar reflectivity. Green 

(solid), red (dashed), blue (dotted) lines represent the observation error reflectivity 

relation 1, 2, 3 respectively. Black solid line indicate the observation error used by 

ATC, ATCZ 
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FIG 3. 7 The ensemble mean analysis RMSEs averaged over points inside radar 

coverage for (a) w, (b) qc, (c) qr, (d) qi, (e0qs, (f)qh for experiments OBSE1 (reflectivity 

relation 1, dotted), OBSE(reflectivity relation 2, solid), OBSE3 (reflectivity relation 3, 

dashed) from 125 min to 170 min. 

 

 

 

 

 

 

 

 

 

 

 



38 

The observation error structures after applying AEM relation 2 to radar 

observations on 4
th

 elevation at model time 135 min are shown in FIG 3. 8. It is easy to 

tell that the small constant value (2.0 dB) of calculated observation error as a denotation 

for clear air echo appears in center/western part of the coverage of KCYR and KLWE, 

since at this time, storm located at far east portion of this two radar coverage. Areas 

behind radar echoes are specified with large values, while the storm regions (where 

large reflectivities are) are filled with varied observation errors especially in north part 

of the storm that observed by KSAO and KRSP. 

 

FIG 3. 8 Corresponding observation error deviation (using obserr-reflectivity relation 2) 

for radar (a) KCYR (b) KSAO (c) KLWE (d) KRSP at 4
th

 tilt at model time 135 min 

 

Applying AEM relation 2 leads to much improved analyses, especially for the 

fully attenuated reflectivity that is essentially treated as clear air signal in experiments 

such as ATCZ. For example, the analyzed storm echoes from ATCZ decay rapidly from 

135 min to 145 min, and mainly exist in the center of radar network coverage at 145 
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min. In contrast, the result of OBSEZ shows that some strong convective cells still 

appear in the south part of radar network coverage area at this time (FIG 3. 10). When 

the result of OBSEZ (FIG 3. 10) is compared to the truth at 145 min (FIG 3. 9), the 

convective cells located in the center of radar network coverage and the southern part of 

KRSP coverage are similar to the truth in reflectivity fields. However a strong cell that 

does not exist in truth also appears in the southeast part of the KRSP radar coverage 

region at this time. Moreover, the north part of squall line of OBSEZ is still much 

weaker than in the truth simulation at 145 min.  

Adding high-quality Vr data into our EnKF DA system shows a larger positive 

impact than assimilating reflectivity data alone (FIG 3. 9). Looking at Vr , the 

comparisons between using constant observation error and using AEM are more 

obvious. As the analyzed QLCS shrinks in to middle in ATC from 135 min to 145 min, 

the analysis from OBSE successfully recovers most of the squall line, especially at later 

times (145 min).  Plots of RMS errors from experiments ATCZ, ATC, OBSEZ, and 

OBSE (FIG 3. 11) confirm the advantage of using the AEM. Overall, the analysis error 

levels of OBSEZ and OBSE are lower than those of ATCZ and ATC. The RMS errors 

of the analyzed model fields are about 1/3 less than those not using AEM, i.e., when 

assuming a constant error variance for reflectivity observations. 



40 

 

FIG 3. 9 Same as FIG 3. 3 but for Truth (upper panel), ATC (middle panel) and OBSE 

(lower panel) from model time 15 min to 145 min 
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FIG 3. 10 As FIG 3. 3, but for experiments ATCZ (upper panel) and OBSEZ (lower 

panel) 
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FIG 3. 11 As in FIG 3. 4, but for experiments ATC (thin solid), ATCZ (dotted), 

OBSE(thick solid), OBSEZ (dashed) 

 

Through OBSEONLY, we also examine the situation when the AEM is used 

without correcting the attenuation through the observation operator. Can the DA system 

still produce a quality analysis under such a restriction? The resulting analysis RMS 

errors (FIG 3. 12) indicate that the AEM has a smaller positive impact on the model 

solution when attenuation is not included in the observation operator. This result 

confirms the importance of including attenuation in the observation operator.  Overall, 

best results are obtained when an attenuation-correcting observation operator is used in 

combination with the AEM. 
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FIG 3. 12 As in FIG 3. 4, but for experiments ATC (dashed), VRONLY(thin solid), 

OBSE (thick solid) and OBSEONLY (dotted) 

 

3.4.3 Experiments with imperfect assimilating model 

In reality, numerical prediction models are never perfect. In fact, in many cases 

model error is likely one of the largest sources of error. In XTZ09, which examined a 

super cell storm, the robustness of the attenuation correction process was tested by 

introducing error into the intercept parameters of the rain, snow, and hail size 

distributions assumed in the ice microphysics parameterization scheme of the prediction 

model. These intercept parameters were also involved in the reflectivity and attenuation 

calculations. Neglecting the effect of non-spherical raindrop shapes in the observation 

operator is found to have minimal impact. Further, the procedure was not sensitive to 

moderate-sized systematic radar calibration errors. In this study, model resolution error 

is introduced into the OSSEs to examine the impact of an attenuation-correcting 

observation operator and the AEM under imperfect model conditions. 
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As in the perfect model experiments, the truth simulation used here is created by 

adding the same perturbations to the same environmental sounding to generate the 

ensemble initial conditions for the first analysis cycle, using a finer horizontal grid 

spacing of 500 m. The same vertically-stretched grid with minimum grid-spacing of 100 

m near the surface is used. Radar observations are simulated from this high-resolution 

truth simulation, while the EnKF DA cycles are performed on model grids with dx = 

500 m and dx = 1500 m in different experiments (see.Table 3. 2). Prefix “HI” in the 

experiment names indicates DA on the 500 m resolution grid, while “LOW” indicates 

DA on the 1500 m grid that has model resolution error (compared to the truth 

simulation). Suffix “ORG” indicates that a fixed value of observation error variance was 

used during data assimilation, while “OBSERR” indicates use of the AEM (the 

observation error model using relation 2). 

          We note that the observations assimilated on the 1500 m grid (exp. LOW series) 

are interpolated in the horizontal directions to the 1500 m grid. Because our simulated 

radar data are defined at the model columns, the number of observations assimilated in 

the LOW experiments is one-ninth of the number in the HI experiments. The 

localization radius is set to 4 grid intervals in all directions in both sets of experiments, 

so that each state variable is updated by a similar number of observations in the two sets 

of experiments.  

          In the 500 m truth simulation, the QLCS propagates faster than in the 1500 m 

truth simulation. To keep the QLCS inside the radar network during the data 

assimilation period, the assimilation cycles are started earlier, at 80 min of model time. 

Assimilation cycles are run from 80 min to 160 min at 5 min intervals, and in both sets 
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of experiments (listed in Table 3. 2), both reflectivity and radial velocity data are 

assimilated.  

 

FIG 3. 13 As in FIG 3. 4, but for experiments HIG_ORG(dashed), HIG_OBSE(thick 

solid), LOW_ORG(dotted), LOW_OBSE(thin solid) 

 

    In order to quantitatively compare the experiments results against the same 

truth, a 1500 m resolution truth is generated by using every third point from the 500-m 

truth simulation. Both HI experiments and LOW experiments are verified against this 

1500 m resolution truth.  FIG 3. 13 presents the RMSEs for results of the imperfect 

model experiments. Overall, HIG_OBSE gives the lowest error levels while the worst 

analyses in terms of RMSEs are from LOW_ORG. When both model error and large 

observation error exists in experiment LOW_ORG, significant errors develop in the 

analysis that cannot be effectively corrected by data assimilation.  However, the EnKF 

data assimilation system appears to be less sensitive to resolution-related model error 

than to observation error when we compare HI_ORG, HI_OBSE and LOW_OBSE. The 

differences in error levels between LOW_OBSE and HIG_OBSE indicates the impact 
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of model resolution error, which are smaller than the differences between HIG_ORG 

and HIG_OBSE that represents observation error impact. Such differences are obvious, 

especially in w and hydrometeor fields. In other words, the AEM is still effective even 

when model error exists. The results of the experiments indicate the robustness of our 

attenuation correction procedure as part of EnKF data assimilation. 

3.5 Testing OEM with simulated observations contain multiple error sources 

 In above experiments, Gaussian-distributed random errors with a mean of zero 

and a standard deviation of 2 dB are added to the simulated reflectivity (Z) data sampled 

from the truth simulation. In reality, observation errors can come from various sources. 

           According to the process of obtaining radar observations and assimilating radar 

observations in EnKF, the observations can be decomposed into different parts and 

parameterized differently. The possible error components are: observation estimation 

(measurement) error ( Ze ); reflectivity model error ( Zm ); attenuation model error 

( Za ); signal-to-noise-ratio (SNR) related bias or error ( ZSNR ); and inhomogeneity 

related error ( homZin o ). 

The observation estimation (measurement) error represents the error caused by 

instruments. The error standard deviation Ze  is considered as a constant value of 2 dB. 

The reflectivity model used in experiments is imperfect, thus a concave function with 

minimal error for median reflectivity represents the reflectivity model error standard 

deviation Zm  (FIG 3. 14). Similarly, a monotonically-increasing function with path-

integral-attenuation (PIA) defines the error standard deviation Za , related to attenuation 

model (FIG 3. 15). SNR is another source for error and we consider the error standard 
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deviation 
ZSNR  as a monotonically-decreasing function with SNR (FIG 3. 16). Finally, 

radar observations are not uniformly distributed. Dense observations can be obtained 

close to the radar location while sparse observations usually exist in far from the radar. 

Interpolation of radar data from observation space to model space can produce 

inhomogeneity related error. But in OSSEs, since radar observations are produced on 

the model grid horizontally, inhomogeneity-related error is not considered in 

experiments in this section. 

Gaussian distribution is assumed for each error term, and the sum of all the 

errors is added to Ze, producing the observations to be assimilated during the EnKF 

experiments. The average error deviation generated using this method is around 6 dB. 

 
FIG 3. 14 Reflectivity model error as a function of reflectivity original designed (blue) 

and used in experiments (red) 
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FIG 3. 15 Attenuation model error as a function of Path-Integral-Attenuation (PIA) 

 

 

FIG 3. 16 Signal-to-noise ratio related error as a function of signal-to-noise ratio 

original designed (blue) and used in experiments (red) 

 

The purpose of this set of experiments is testing the performance of our 

attenuation-correcting system when observation errors come from multiple sources. To 

keep the experiment simple, we produce a supercell storm (instead of a QLCS) using a 
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sounding from May 20, 1977.  An X-band radar with 60 km range is placed at the 

southwest corner of a domain with a physical size of 70 km × 70 km × 16 km. Doing so 

avoids error caused by lack of radar coverage. The truth simulation is generated on a 

grid with 500 m horizontal and 500 m vertical resolution, while EnKF analysis and 

cycles forecast are run on a 1.5 km horizontal model grid. The model resolution error is 

included in this set of experiments. Other configurations are the same as in the OSSE 

experiments from the previous sections. The same method used in section 3.2 is adopted 

to generate the simulated reflectivity data sampled from the truth simulation, but added 

with the sum of above observation errors. FIG 3. 17 shows an example of the simulated 

observation after adding errors. Compared with the simulated observation with additive 

perturbations using 2dB standard deviations Gaussian-distributed random errors, the 

severe attenuation area contains more noise due to attenuation model error. The average 

standard deviation of error added onto Ze at every time step based on this method is 

between 5~6 dB. 
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FIG 3. 17 Simulated radar observations on elevation 1.0° at 120 mins model time. 

Character ‘R’ indicates the location of radar 

 

 

 

Table 3. 3 List of experiments in multi-error sources experiments 

Experiments Observation error deviation 

ATTC 2 dB 

ATTC_AEM Empirical analytical function 

ATTC_MSEM Use background information to estimate error using the 

same equation as in generating observation 

ATTC_LGERR 8 dB 
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The experiments in this section all use the forward observation operator with 

attenuation (Table 3. 3), but differ in the way that observation errors in EnKF are 

specified. ATTC uses a constant (2 dB) value for observation error deviation, while 

ATTC_AEM applys the same AEM as other experiments in previous sections. In 

ATTC_MSEM, the observation error also varies, but is not specified by an empirical 

analytical function, which actually is another type of OEM; for this reason we name it 

the multi-sources error model (MSEM). A large constant (8 dB) observation error 

deviation is used in ATTC_LGERR. The background information is used to estimate 

observation error deviation; in other words, we calculate each term of the observation 

error deviation ( Zm , Za , ZSNR ) through the same equations, but do so based on the 

estimated reflectivity, PIA, and SNR in Equation (15). 

2 2 2 2

Ze Zm ZA ZSNRR                    (15) 

RMSE level in ATTC is high since the value used for observation error 

deviation is too small. And when the same equations are used to calculate the error 

deviation that used in EnKF (ATTC_MSEM), the error levels are reduced slowly, 

which might be due to the calculation of errors mainly relying on the background 

estimation, putting too much weight on the background. The AEM, on the other hand, 

specifies the observation error deviation based on the observation value. The RMSEs 

levels in ATTC_AEM decrease faster than those in ATTC_MSEM. When both large 

observation error and large model error exist, using a large constant value 

(ATTC_LGERR) is another way to reduce the error level in the analysis. However, we 

also conducted a set of experiments in perfect model scenario, and simply increasing the 

constant value of observation error deviation in EnKF is not as effective as in imperfect 
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model cases. However, at the end of assimilation time, the error in the three experiments 

(ATTC_MSEM, ATTC_AEM, ATTC_LGERR) reaches the same level, which may 

suggests a saturation error level in this experiment.      

 

FIG 3. 18 The ensemble mean analysis RMSEs averaged over points where true Z is 

greater than 10 dBZ for (a) u, (b) v, (c) w, (d) perturbation potential temperature θ’, (e) 
qv, (f) qc, (g) qr, (h) qi, (i) qs, (j) qh for experiments ATTC (gray), ATTC_AEM (blue), 
ATTC_MSEM(red), and ATTC_LGERR(green) 

  

3.6 Summary and discussion 

An ensemble Kalman filter system that can directly assimilate attenuated radar 

reflectivity observations is examined for a simulated squall line in an OSSE framework. 

A forward observation operator with attenuation included is adopted to deal with 

attenuated radar observations. The calculation of attenuation is based on the current 

estimate of the atmospheric state, including the hydrometeor species. The estimated 

state is obtained through an ensemble-based data assimilation system, using attenuated 

data. This implies that we are performing simultaneous “attenuation correction” and 



53 

state estimation. Xue et al. (2009) first demonstrated the effectiveness of such a 

procedure through a set of OSSEs for a relatively isolated supercell storm. In this study, 

we apply this procedure to a simulated QLCS that has a broader precipitation regions 

than an isolated supercell storm and hence more attenuation problems; a network of four 

X-band radars positioned according to the CASA IP1 radar network is assumed in the 

OSSEs. The overlapping observation coverage afforded by multiple radars is very 

helpful in producing more accurate reflectivity analyses, as multiple viewing angles 

reduce the areas of complete attenuation.  

Severe or complete attenuation in the reflectivity data do lead to larger analysis 

errors than those in earlier studies when no attenuation exists and/or when radar 

provides more complete coverage on the convective storms. Despite these added 

difficulties, the EnKF system with the attenuation effects built into the reflectivity 

observation operator is shown to significantly improve the analyses, compared to the 

case when the attenuation effect is ignored. In the latter case, the model hydrometeor 

fields tend to be substantially under-estimated. When assimilating radial velocity data 

alone, extensive spurious echoes develop in the analyses that cannot be effectively 

suppressed. As a simple attempt to avoid using fully attenuated reflectivity, only 

reflectivity data exceeding 10dBZ are assimilated in one experiment. A problem with 

excessive spurious echoes also arises, because of the lack of clear-air observational 

information in those areas that could help suppress spurious storms. This points to the 

importance of effectively utilizing all available reflectivity information to the maximum 

extent feasible. Since, in the EnSRF, observations are assimilated sequentially, to 

prevent fully attenuated observations from negatively impacting previous analyses 
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during DA, an attempt to rearrange the sequence in which observations are read in using 

a different radar order is also examined. However, the improvements to analyses are 

still minor. One possible solution is to use the reflectivity data whenever they are 

available, but it would be necessary to estimate their uncertainty, including possible 

attenuation effect, so that negative impacts from erroneous use of fully attenuated data 

are reduced.  

Considering that observations with severe attenuation usually contain larger 

errors than data with little or no attenuation, and that zero reflectivity has larger 

uncertainty (because we cannot be sure if the zero reading is due to complete 

attenuation or actual clear air), an empirical analytical observation error model or AEM 

based on a reflectivity relation is designed and used to specify the observation error 

variance in the EnKF DA. In such a relation, larger observation errors are assigned to 

lower observed reflectivity values, while higher reflectivity can be weighted more by 

specifying a smaller error. The clear-air data are properly taken care of by flagging them 

during the process of producing simulated radar observations. Such data can be 

generated in a real case too, which will be discussed in Chapter 5. A small error 

variance is assigned to known clear air data. With the help of the AEM, the analysis 

results are greatly improved. The RMS errors of the analyzed model fields are about 1/3 

less than those assuming a constant error variance for the reflectivity observations. 

The effectiveness of the attenuation correction procedure and the utilization of a 

reflectivity-dependent observation error model are further tested in the presence of the 

resolution-related error in the assimilating model. This error is introduced by using a 

truth simulation that is produced at 3 times the resolution as that of the assimilating 



55 

model. It was shown that while the analysis errors increase when such model error 

exists, the model error impact is smaller than the positive impacts of the attenuation 

correction procedure and the use of the AEM.  

When multiple error sources are present in the observations, AEM is still 

effective in reducing the RMSEs levels quickly. Using MSEM can also reduce the error 

levels, however the reduction is slower than that obtained using AEM. Theoretically, 

the same equations used to produce observation errors are used in MSEM to estimate 

the observation error deviation in EnKF. MSEM should be able to produce similar 

observation error structure to the observations. However, the PIA related error we 

generated is based on a Gaussian distribution (which is unrealistic); this might be the 

key reason that MSEM did not exhibit better performance than AEM. In the future, we 

plan to add PIA related error with spatial correlations and test how the MSEM and 

AEM will perform under that circumstance. 

 Meanwhile, using large constant observation error deviation in EnKF is another 

way to obtain a good analysis when model error is considered. Since the average error 

deviation produced in the observations is around 6 dB, which is close to the large 

constant observation error deviation (8 dB) used in EnKF, this might be a coincidence. 

In another set of perfect-model experiments for this multiple error source case (not 

shown here), using a large constant observation error actually leads to worse results 

compared to AEM and MSEM. Thus, the inclusion of model error could be another 

reason why simply using large constant observation error in the EnKF works. This 

results also suggest that when the observation error structure is unknown, using large 

observation error can help to improve the analysis. 
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The OEM designed here aimed at specifying different observation errors used in 

the EnKF since the attenuated observation can contain nonuniform errors. It is mainly 

based on an analytical empirical reflectivity observation error relation. More realistic 

error models are possible. Because attenuation occurs along the radar beam propagation 

path, a more realistic OEM could consider the beam propagation path and radar range. 

In the current AEM, smaller observation errors are assigned to large reflectivity values. 

In reality, large observation error can exist in strong echoes because of uncertainties 

with the microphysical processes, including uncertainties with the observation operator. 

In current MSEM, the PIA related error is designed as simply Gaussian distribution, but 

in reality it should be spatial related.  More sophisticated OEMs that address these 

issues should be investigated in the future.  
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Chapter 4: Optimal Design of Radar Networks: Expansion of CASA 

IP1 Network and Impacts on Squall line Analysis and Forecast 

CASA radars are designed and deployed to operate as a network. It had been 

previously planned to expand the IP1 network with more radars to probe the benefit of 

X-band radar network consisting of a much larger number of radars. How to design the 

radar network appropriately and maximize the benefits is an important issue to consider 

before actually deploying the radars.  In this study, different possible configurations 

with 4 IP1 radars with 2 hypothetical radars are tested through OSSEs using the same 

EnKF framework with attenuation correction capability discussed in Chapter 2 and 

examined in Chapter 3 to provide guidance for site selection. 

4.1 The truth simulation 

The truth simulations (nature runs) are initialized in almost the same way as in 

Chapter 3, except that the domain is larger to keep the QLCS inside the model domain 

during the assimilation and forecast.  The model domain is therefore increase to 

267×195 horizontal points with 1.5 km resolution, corresponding to 395×288 km in 

physical size (FIG 4. 1). The evaluation of the impact of possible radar network 

configuration under the effects of storm motion is desired. Thus two sets of squall-line 

systems with different propagation speed are created. We create a slow-moving QLCS 

with propagation speed of 15 ms
-1

 using an initially homogeneous storm environment 

defined by a two-layer shear wind profile (identical to that in Chapter 3). The fast-

moving QLCS (propagation speed = 25 ms
-1

) is generated by adding 10 m/s u wind to 

the slow-moving QLCS. To trigger the storms, a line of 4 K thermal bubbles sit from 

north to south located at x=50 and z=1.5 km, along with additional perturbations of 5%. 
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The radii of these bubbles are 9.6 km in x-direction, 20 km in y-direction, and 1.5 km in 

the z-direction, and the distance between bubbles is 9.6 km. The southernmost bubble is 

9.6 km from the southern boundary. The number of vertical layers is 35. The horizontal 

grid spacing is 1.5 km, and a vertically stretched grid with a minimum vertical 

resolution of 100 m is used to better resolve the lower atmosphere. Open conditions are 

used at the lateral boundaries. A wave radiation condition is also applied at the west and 

east boundaries, while a periodic condition is used at the north and south boundaries. 

Free-slip conditions are applied to the top and bottom boundaries. The length of the 

simulation is four hours. 

 

FIG 4. 1 Map of the computational domain. The interior black rectangle denotes the 

domain over which quantitative verification statistics are calculated. The diamonds are 

locations of CASA IP1 radars and the small squares represent locations of proposed 

additional CASA radars. The circles represent the 40-km-range rings of CASA radars 
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4.2 Simulation of radar observations 

The four X-band polarimetric CASA IP1 radars used in OSSEs are located near 

Chickasha (KSAO), Rush Springs (KRSP), Lawton (KLWE) and Cyril (KCYR) in 

Oklahoma. The proposed new locations for additional radars are mainly north or east of 

the IP1 network, like Newcastle (KNEW), El Reno (KELR), Bridgeport (KBRI), 

Lexington (KLEX), and Duncan (KDUN), as shown in FIG 4. 1. The new radars will 

have a maximum range Rmax= 40 km, which is the same as the IP1 radars. The possible 

configuration of expanded radar network will be 4 IP1 radars plus any 2 radars selected 

from the new proposed locations.  

The simulation of radar data follows Chapter 3, using a Gaussian power 

weighting function in the vertical for observations simulated on radar elevation levels 

(plan position indicator planes). In the horizontal, the data are assumed to have been 

interpolated to the model Cartesian coordinates (the horizontal locations of model grid 

columns). The effects of Earth curvature and beam bending due to vertical change of 

refractivity are taken into account using the 4/3 effective Earth radius model discussed 

in Doviak and Zrnic (1993). The velocity is projected to the direction of radar beam 

locally to give the simulated radial velocity. Radars are assumed to operate in CASA 

radar storm scan mode, having 10 elevations with one volume scan every 5 minutes and 

a 1 beam width. The attenuation effect of X-band radar data is properly taken into 

account by calculating the expected attenuation within the forward observation 

operators using the estimated atmospheric state following Chapter 3.  

Gaussian-distributed random errors with a mean of zero and standard deviations 

of 1 m/s and 2 dBZ are added to the simulated radial velocity, Vr, and reflectivity, Z, 
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data sampled from the truth simulation in linear domain, and then become non-Gaussian 

when they are transformed to the log domain.   

 

4.3 Data assimilation experiments  

A 40 member ensemble is used all experiments. For slow-moving squall line 

experiments (FIG 4. 3a), the assimilation of reflectivity and radial velocity starts at 110 

min of model time and is repeated at 5 min intervals until 165 min. While for fast-

moving squall line experiments (FIG 4. 3b), the assimilation starts at 80 min and ends at 

135 min, since the simulated storm moves faster than the one in slow-moving squall 

line experiments. 

 Since observations with severe attenuation usually contain larger errors than 

data with little or no attenuation, and zero reflectivity measurements contain large 

uncertainty (because we are not sure if they are due to complete attenuation ), Chapter 3 

has shown that using an empirical analytical observation error model or AEM to specify 

the observation error variance in the EnKF DA can substantially improve the analyses. 

Thus the AEM, which assigns large observation errors for small reflectivity values, is 

employed in all experiments. The covariance localization radius used in the filter is 6.0 

km, which is 4 times of the horizontal grid spacing and determined based on prior 

experimentation. The multiplicative inflation initially proposed by Anderson (2001) and 

modified by Tong and Xue (2005) is used, which increases the ensemble spread by 

multiplying the ensemble perturbations by a factor greater than 1 in regions within and 

close to observed precipitation echo. The covariance inflation factor used in 

experiments is 7%.  



61 

The initial ensemble first guesses are generated by adding spatially smoothed 

stochastic perturbations with a horizontal correlation scale of 6.0 km into a horizontally 

homogeneous environment defined by the soundings extracted from corresponding truth 

simulation at 105 min model time (for slow-moving storm experiments) and 75 min 

model time (for fast-moving storm experiments) respectively, to make sure the lengths 

of forecast times are the same before the first analyses are taken. Perturbations are 

added to u, v, w, θ, qv, qc, qr, qi, qs, and qh at the grid points located within 6 km of 

significant observed reflectivity (i.e. where reflectivity exceeds 10 dBZ). The standard 

deviations of those perturbations are 2 m s
-1

, 2 K, and 0.6 g kg
-1

, respectively. 

As mentioned earlier, the expanded radar network will be 4 IP1 radars plus any 

2 radars selected from the list of new proposed locations. The experiments are named 

after the combination of the last two characters of the two new radars. For example, 

EWEX means the radar network contains new radars KNEW and KLEX, as well as the 

4 existing CASA IP1 radars. FIG 4. 2 details each possible radar network tested in this 

research. Table 4. 1lists the radar network chosen following assimilation experiments 

and the corresponding names. 
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FIG 4. 2 The composition of radar networks of (a) EWEX, (b) EWRI, (c) EWUN, (d) 

RILR, (e) RIUN and (f) LRUN. The diamonds are locations of CASA IP1 radars and 

the small squares represent locations of proposed additional CASA radars. The circles 

represent the 40-km-range rings of CASA radars. 
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Table 4. 1 List of radar network names and corresponding radars 

 

RADAR NETWORK RADARS 

EWEX CASA IP1 + KNEW + KLEX 

EWRI CASA IP1 + KNEW + KBRI 

EWUN CASA IP1 + KNEW + KDUN 

RILR CASA IP1 + KBRI + KELR 

LRUN CASA IP1 + KELR + KDUN 

RIUN CASA IP1 + KBRI + KDUN 

 

 Since two sets of storm at different speed are produced here, we have two sets 

of assimilation and forecast experiments. The prefix ‘slw’ indicates the observations are 

obtained from slow-moving squall line, while ‘fst’ represents observations generated by 

fast-moving squall line. For example, experiment ‘fstEWEX’ indicates that in this 

experiment, fast-moving squall line is used as the truth and attenuated observations 

from radar KNEW, KLEX, and the 4 CASA IP1 radars are assimilated. FIG 4. 3 shows 

the timeline of assimilation for each set of experiment. The impact of the length of 

assimilation time is examined too, by evaluating the quality of 1-hour forecasts starting 

from different assimilation cycles (12 cycles and 15 cycles, i.e. 60 minutes and 75 

minutes). To make the comparison as fair as possible, the same number of assimilation 

cycles is used in both slow-moving and fast-moving squall-line experiments. All the 

experiments here assimilate both Vr  and Z data. 
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FIG 4. 3 Time line of assimilation and forecast for (a) slow moving squall-line 

experiments and (b) fast moving squall-line experiments. (Note that the starting times of 

two sets of experiments are different). 

 

4.4 Assimilation Results  

First we examine the quality of state estimation, i.e. the analyzed individual 

model state variables, by looking at the root-mean-square (RMS) errors of ensemble 

mean analyses during the analysis cycles. The verification domain is smaller than model 

domain, as shown in FIG 4. 1, and is a rectangular zone that covers the radar network 

and downstream area, designed to avoid large errors from lack of radar coverage, thus 

allowing us to focus on the difference between each type of radar network while still 

having enough room for forecast verification. The RMS errors are calculated against the 

truth fields in regions where the truth reflectivity is greater than 10 dBZ inside the 

verification domain. When describing the results, for convenience and clarity, the west 

side of the network coverage will be called the “upstream area”, while the east side of 

the network coverage will be called the “downstream area”, since the simulated storms 

move from west to east. 
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4.4.1. Slow-moving squall-line experiments 

As mentioned in section 4.3, for slow-moving squall line experiments, radar 

observations are assimilated every 5 min and the first analysis is performed at 110 min. 

The length of assimilation window is 60 minutes (assimilation ends at 165 min, 12 

cycles, short assimilation window hereafter) or 75 minutes (assimilation ends at 180 

min, 15 cycles, long assimilation window hereafter), thus the impact of length of 

assimilation time can be examined as well. As shown in FIG 4. 4b, the squall-line is still 

located inside radar network at the end of the long assimilation window, thus the issue 

of the squall line moving out of radar network coverage can be neglected. 
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FIG 4. 4 Radar reflectivity (shaded; dBZ) of slow moving squall-line simulation at (a) 

T=9900s (165 min); (b) T=10800s (180 min) and fast moving squall-line simulation at 

(c) T=8100s (135 min); (d) T=9000s (150 min) at 500 m AGL 

 

Overall, the error levels of model state variables in each experiment decrease 

(FIG 4. 5) during assimilation window. The RMSEs of slwEWRI (blue), slwRIUN 

(sky), slwRILR (green) start from lower values and decrease more rapidly during earlier 

cycles than the other three experiments, especially for u, θ’, qr, qi, qs, and qh. These 

three types of network include radar KBRI, which increases the number of observations 

in the upstream area. In the early cycles, the squall line is mainly located in the 

coverage area of KBRI, KCYR, and KLWE. More observations are available for EWRI, 
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RIUN and slwRILR, which helps the model to quickly reach a better estimation of the 

state variables. For estimation of potential temperature, as shown in FIG 4. 5d, error 

levels of potential temperature of slwEWRI (blue), slwRIUN (sky), slwRILR (green) 

stay low even at the end of assimilation window. This is mainly because the 

observations from upstream radars are in locations where the cold pool is still useful for 

potential temperature estimation even at the later assimilation cycles. 

 

FIG 4. 5 The RMS errors of the ensemble-mean analysis, averaged over points at which 

the reflectivity is greater than 10 dBZ inside verification domain for (a) u, (b) v, (c) w, 

and (d) θ’, (e) qv, (f) qc, (g) qr, (h) qi, (i) qs, (j) qh, for experiments slwEWEX (gray), 

slwEWRI (blue), slwEWUN (red), slwRILR (green), slwLRUN (light purple), 

slwRIUN (sky). Units are shown in the plots 

 

As storm approaches the eastern edge of the radar network coverage, acquiring 

more observations downstream starts to become important for better results. The sudden 

decrease in error levels of slwEWUN (red) and slwLRUN (light purple) is quite striking 

from 140 min to 160 min. The comparison between these two experiments reveals that 

under such circumstances, increased radar coverage (slwLRUN) is more important for 
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improved data analysis than greater dual-Doppler coverage (slwEWUN), at least in 

terms of RMS errors. Downstream radar network coverage at this time can suppress 

spurious echoes effectively. In FIG 4. 6, the differences of reflectivity between truth and 

each experiment at the end of the short assimilation window (12 cycles) are presented. 

The calculation of differences is made in the areas where analyzed storm reflectivity 

exists, thus clear air regions shown in the north of EWEX coverage (FIG 4. 6a) and also 

in the northern portion of the EWUN coverage area (FIG 4. 6c) are not included in the 

calculation. Experiments with observations from radar KDUN or KELR or both show 

less differences than those without these radar observations. Overall, slwLRUN 

produces the best analyses, exhibiting the lowest error levels and smallest differences 

from truth at the end of the long assimilation window (15 cycles). 
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FIG 4. 6 Difference of reflectivity between truth and (a) slwEWEX, (b) slwEWRI, (c) 

slwEWUN, (d) slwRILR, (e) slwRIUN, (f) slwLRUN at 165 min on level z=500m 

 

The increase in error levels during later assimilation cycles (from 165 min to 

180 min) in almost all the experiments is also notable. Such increases are most obvious 

in w and hydrometeor fields, indicating the state estimation become worse during this 

period. The rise of RMSEs occurs primarily starting from 165 min, when the storm 

system begins moving out of the multi-Doppler coverage area. Since attenuation effects 

are considered in our experiment, as discussed in Chapter 3, error levels can increase 

due to lack of multi- or dual-Doppler observations available. Fully attenuated 

observations from one radar can be supplemented by observations from another radar 
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with a different detection angle. For this reason, radar networks with more multi- or 

dual-Doppler radar coverage (EWEX and EWUN in this case) downstream have 

relatively smaller error increases. 

The advantage of assimilating radar observations upstream is more clear when 

the attenuation effect is excluded (not shown). As discussed in Chapter 3, the accuracy 

of state variable estimation improves through data assimilation, and the estimate and 

correction of attenuation also improve. Once attenuation is no longer an issue for DA, 

storm features can be captured and recovered in early assimilation cycles by 

assimilating observations with no attenuation (and thus less observation error).  For 

most of the model variables, large error reduction could be found in slwRILR, 

slwEWRI and slwRIUN up to 12 cycles of assimilation time. Among them, slwRIUN 

shows the best performance, again suggesting that the larger coverage of the radar 

network, and thus the increased number of observations, the better the analysis will 

become. As the storm moves toward the eastern edge of the radar network, error levels 

of slwLRUN tend to decrease rapidly; slwLRUN has the best performance at the end of 

assimilation time (15 cycles). 

4.4.2. Fast-moving squall-line experiments 

As the simulated storm system moves through the radar network coverage 

rapidly, placing radars upstream gives only a minor advantage in earlier data 

assimilation cycles, except for relatively good estimates of potential temperature and 

water vapor at early cycles (FIG 4. 7). For instance, fstEWRI (blue) shows the lowest 

error level in potential temperature during entire assimilation time (FIG 4. 7d), which 
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indicates that observations at upstream of the storm are vital to the estimate of potential 

temperature. 

Networks with radars at downstream, such as LRUN (light purple), EWUN (red) 

or EWEX (gray), show the benefits of obtaining more observations during the passage 

of the storm. Comparison among these three experiments can give us a good 

understanding of impacts of overlapping radar coverage and spatial coverage (along the 

storm) on analyses and subsequent forecasts in such fast-moving storm cases. Having 

more spatial coverage, network LRUN (light purple) tends to produce the lowest 

RMSEs during most of the assimilation period, up to a model time 150 min (15 cycles) 

for u ,qv, qi, qs, and qh  (FIG 4. 7a, e, h, i, j).  On the contrary assimilating observations 

from EWEX(gray), which has the smallest spatial coverage but most overlapping radar 

coverage, does not reduce error much during assimilation for almost all model variables 

examined here. However, fstEWEX(gray) has the smallest RMSEs at the end of the 

long assimilation window (15 cycles) for w, qc, qr and qh (FIG 4. 7c,f,g,h). The 

difference of error level between fstLRUN (light purple) and fstEWEX (gray) at end of 

assimilation time (15 cycles) is not as big as the difference in the middle of the 

assimilation window. Considering that during the last several assimilation cycles the 

squall-line storm system is almost out of the coverage area of LRUN but still partially 

captured by EWUN (red) and EWEX (gray), the performance of fstLRUN (light purple) 

is promising. 
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FIG 4. 7 As in FIG 4. 5, but for fstEWEX (gray), fstEWRI (blue), fstEWUN (red), 

fstRILR (green), fstLRUN (light purple), fstRIUN (sky). 

 

As in the slow-moving squall-line experiments discussed in section 4.4.1, 

adding radars downstream can effectively suppress spurious echoes. Upstream 

observations still have a positive impact even at the end of the assimilation window 

when the storm has already moved out of the upstream radar coverage area. For 

example, in FIG 4. 8, we note a smaller difference inside the coverage of KNEW for 

fstEWRI (FIG 4. 8b) compared to fstEWEX (FIG 4. 8a) and fstEWUN (FIG 4. 8c). 

Although not obvious, the same situation can be found in the comparison between 

fstRILR (FIG 4. 8d), fstRIUN (FIG 4. 8e), fstLRUN (FIG 4. 8f) (LRUN does not have 

radar KBRI to provide upstream observations of the northern part of the QLCS). Since 

among these three types of radar network EWRI is the only one has the upstream radar 

KBRI in the northern part of the domain, we believe that upstream radars still can have 

a positive impact even when the storm quickly passes through the radar network 

coverage area.    
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FIG 4. 8 Difference of Reflectivities between truth and (a) fstEWEX, (b) fstEWRI, (c) 

fstEWUN, (d) fstRILR, (e) fstRIUN, (f) fstLRUN at 165 min on level z=500m 

 

Attenuation is a key factor limiting the performance of upstream radar 

observations. For example, radar networks RILR, RIUN, and EWRI can still have a 

positive impact on the analysis during earlier assimilation times when no attenuation 

exists in the observations. The difference in error level between fstLRUN and fstEWEX 

becomes significant at the end of assimilation. Another interesting phenomenon is that 

without attenuation in the observations, fstEWEX and fstEWUN show more advantage 

in the w and qr fields. 
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4.5 Forecast Results  

The quality of forecasts produced from ensemble mean analysis of the 

experiments described in section 4.4 is examined here. 

4.5.1. Slow-moving squall-line experiments 

In general, assimilating radar data 15 minutes longer does not result in a better 

1-hour forecast RMSEs of all experiments grow quickly (FIG 4. 9, FIG 4. 10), and 

reach the same level at the end of the 1-h forecast no matter whether the forecast is 

started from the earlier or the later time for both slow-moving and fast-moving squall-

line experiments. However, differences in the forecast error among those experiments 

are still worthwhile to discuss. 

In section 4.4.1, we noted that slwLRUN (light purple) tends to produce the best 

analysis results by providing overall lowest error levels in most model state variables 

during later cycles of assimilation. Such situation continues in forecast experiments. 

Although at the end of long assimilation window (FIG 4. 5), slwLRUN (light purple) 

does not have the lowest error for w, it manages to maintain a relatively slow increase of 

error levels during the 1 hour forecast and has the lowest error levels for u, v, and 

hydrometeor fields (FIG 4. 9).  Thus, the best 1hour forecast started from model time 

180 min is still given by slwLRUN in terms of RMSEs. 

Another experiment worth mentioning is slwEWUN (red). As seen in FIG 4. 5, 

slwEWUN(red) tends to have good performance during later analysis cycles, but not as 

good as slwLRUN (light purple). When the forecast starts, error levels of 

slwEWUN(red) have the slowest rate of increase, making the performance of 
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slwEWUN(red) almost as good as that of slwLRUN(light purple), except for v and qs 

(FIG 4. 9b,i). As shown in FIG 4. 9, the RMSEs lines of these two experiments remain 

close and often overlap later in the forecast for u, w ,qv, qc ,qr, qi, and qh when the 

forecast is initialed at 180 min (15 cycles) of model time. For θ and qs, although error 

levels of slwEWUN (red) increase slowly at the beginning of the forecast, error levels 

do not reach the level of slwLRUN (light purple) because initial differences in errors 

level are too large (FIG 4. 9d,i). For forecasts of v, slwEWUN(red) starts with a smaller 

error, but error increases after almost half an hour (FIG 4. 9b). A possible reason is that 

the lack of coverage in y-direction results in insufficient information for the model to 

accurately analyze and forecast the v wind field. 

 

FIG 4. 9 The RMS errors of forecasts averaged over the verification domain  for (a) u, 

(b) v, (c) w, and (d) θ’, (e) qv, (f) qc, (g) qr, (h) qi, (i) qs, (j) qh. The forecasts begin from 

ensemble-mean analysis at t=180 min (15 cycles) of experiments slwEWEX (gray), 

slwEWRI (blue), slwEWUN (red), slwRILR (green), slwLRUN (light purple), 

slwRIUN (sky).  
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When the forecast starts from the end of short assimilation window (12 cycles, 

165 min) (FIG 4. 10), the best 1-hour v wind forecast is given by slwRIUN. Experiment 

slwEWEX, the one that has the highest error levels during analysis, surprisingly, 

produces good w, qh, qi forecasts, and the best rain water forecast (FIG 4. 10c,h,j), 

probably benefiting from its use of multi- or dual-Doppler observations. In the set of 

slow-moving experiments, multi- or dual-Doppler observations have more impact on 

smaller, thunderstorm-scale disturbances in w and qr. Experiment slwEWUN, which 

assimilates more observations from overlapping radar coverage than slwLRUN does, 

also manage to give a better forecast of w and qr. However, slwLRUN more accurately 

forecasts the storm environment by providing smaller errors of u, v, 𝜃 and qv. 

 

FIG 4. 10 As in FIG 4. 9 but the forecasts begin from ensemble mean analysis at t=165 

min (12 cycles) 
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4.5.2. Fast-moving squall-line experiments 

As discussed in 4.4.2, overall the best analysis is produced by fstLRUN, but 

lowest errors of w and qr are seen in fstEWUN and fstEWEX which assimilate more 

downstream and multi-radar observations at the end of the long assimilation window 

(15 cycles) (FIG 4. 7).These observations not only improve the analysis results during 

data assimilation but also help forecast smaller thunderstorm-scale disturbances. This 

time, for both the short assimilation window and the long assimilation window, FIG 4. 

11 and FIG 4. 12 shows that fstEWUN (red) and fstEWEX (gray) maintain relatively 

low increases of RMSE for w and qr during the forecast. By assimilating more x-

direction observations than other experiments, fstEWEX(gray) maintains an even lower 

error growth rate for forecasts of u. However, due to lack of spatial coverage along the 

squall line system, fstEWEX(gray) also has the highest error levels for v, 𝜃, and qv, 

which means spatial coverage is still critical for forecasting environment conditions. 

When starting from different assimilation times, slwLRUN tends to produce a 

worse forecast of 𝜃 when starting forecast the 15
th

 analysis cycle (FIG 4. 11d) than 

when starting from the 12
th

 cycle (FIG 4. 12d). This did not happen in slwRIUN, in 

which observations from KBRI were assimilated. This means the impact from upstream 

observation not only exists in analyses but also in forecasts. 
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FIG 4. 11 As in FIG 4. 10 but the forecasts begin from ensemble-mean analysis at t = 

150 min (15 cycles) of experiments fstEWEX (gray), fstEWRI (blue), fstEWUN (red), 

fstRILR (green), fstLRUN (light purple), fstRIUN (sky) 

 

Just as in the slow-moving squall-line experiments, assimilating observations 

from radar network RIUN(sky) which considered both upstream and downstream 

coverage along y direction improves forecasts of v. 



79 

 

FIG 4. 12 As in FIG 4. 11 but the forecasts begin from ensemble-mean analysis at t = 

135 min (12 cycles) 

 

 

4.5.3. Equitable threat score (ETS) 

The RMSEs shown above are used for verification of forecast model state 

variables. According to its formulation, RMSE is sensitive to large errors rather than 

being representative of the forecasts as a whole (Jolliffe and Stephenson 2003). Also, 

the point-by-point calculation is too strict for the storm-scale, especially when spatial 

displacement errors exist. Alternatively, the continuous values can be categorized, for 

example, by threshold, and statistics based on the resulting contingency tables can be 

calculated (Gilleland et al. 2010). The Gilbert skill score (Schaefer 1990), a statistic 

more commonly known as the equitable threat score (ETS),  is a method that measures 

the fraction of observed and/or forecast events that were correctly predicted, adjusted 

for hits associated with random chance. We will now examine the 1-h forecast from 

every experiment using ETS for radar reflectivity verification. 
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The ETS is measured at each grid point within the verification domain where 

reflectivity exceeds a threshold of 15, 25, 35, or 45 dBZ. We calculate ETS at 500 m 

MSL, which can reflect the benefits from CASA radar low levels detection.  

Generally, the best 1-hour forecast is from the experiment assimilating the 

observations of radar network LRUN (light purple) in both slow-moving and fast-

moving squall-line experiments. In detail, when the forecast starts from the end of the 

short assimilation window (12 cycles) (FIG 4. 13), slwRILR(green) can achieve a good 

ETS for the 15 dBZ threshold, but it shows no advantage for higher thresholds, 

indicating that it could not provide much information on storm details at these 

thresholds. On the contrary, radar network EWUN (red), which provides more 

overlapping observations than LRUN (light purple), generates a better forecast in strong 

convection details no matter how long the assimilation windows are. Such good 

performance exists in both slow-moving and fast-moving squall-line experiments.  

Assimilating radar observations 15 minutes longer (15 total cycles) (FIG 4. 14, FIG 4. 

16) results in insignificant improvement in the forecast for all experiments. 
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FIG 4. 13 ETS computed over the verification domain for reflectivity threshold at (a) 

15dBZ, (b) 25 dBZ, (c) 35 dBZ and (d) 45 dBZ. The forecasts begin from ensemble-

mean analysis at t=165 min (12 cycles) of experiments slwEWEX (black), slwEWRI 

(blue), slwEWUN (red), slwRILR (green), slwLRUN (light purple), slwRIUN (sky). 
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FIG 4. 14 As in FIG 4. 13 but the forecasts begin from ensemble-mean analysis at t=180 

min (15 cycles) 
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FIG 4. 15 As in FIG 4. 13 but the forecasts begin from ensemble-mean analysis at t=135 

min (12 cycles) of experiments fstEWEX (black), fstEWRI (blue), fstEWUN (red), 

fstRILR (green), fstLRUN (light purple), fstRIUN (sky blue) 
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FIG 4. 16 As in FIG 4. 15 but the forecasts begin from ensemble-mean analysis at t=150 

min (15 cycles) 

 

4.6 Summary and Discussion 

In this study, possible configurations of extended an CASA radar network are 

tested using OSSEs assimilating data from the 4 existing CASA Integrated Project 1 

(IP1) radars plus 2 new, hypothetical radars, using an ensemble square-root Kalman 

filter.  Such experiments can be used to provide guidance for site selection in future X-

band radar networks. The unavoidable attenuation problem inherent to X-band radar 

must be properly accounted for. The method proposed by Xue et al.(2009) and further 

developed in Chapter 3 proves very effective in dealing with attenuation in 
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observations, thus the same attenuation correction EnKF system is adopted in all 

experiments. Recent work of Zhang et al.(2011) shows that lower quality data with 

better coverage is beneficial to hurricane track forecasting.  The trade-off between Dual-

Doppler coverage and spatial coverage in a convective squall line system is also worth 

evaluating in this study.  To make such an examination, the impacts of storm 

propagation speed and assimilation time window length on the quality of analysis and 

forecast are also examined. 

 For a slow moving quasi-linear convective storm system, with severe 

attenuation in the observations, a radar network with larger spatial coverage and 

observations is preferable to one with smaller spatial coverage; though the latter can 

provide more Dual- or Multi-Doppler observations, during both analysis and forecast. 

Since the slow-moving storm system is nearly stationary within the radar network, 

assimilating radar observations every 5 min for an hour is sufficient to obtain the main 

structure of the storm. More Dual- or Multi-Doppler features can provide details in 

smaller storm structure, but results in the loss of more information by limiting spatial 

coverage. Radars located upstream of a storm can aid the model in obtaining a better 

estimate and forecast of potential temperature. Assimilating observations 15 minutes 

longer does not improve the forecast significantly because the error levels increase 

rapidly to saturation levels no matter how low they were initially, which indicates that 

model error quickly dominates once the forecast starts. 

In experiments where the storm system moves quickly through the radar 

network, radars located downstream become important, providing sufficient 

observations to suppress spurious echoes during later assimilation cycles. However, the 
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best analysis and forecast of potential temperature is still given by experiments 

assimilating more upstream observations. Although reducing the spatial coverage, a 

radar network with more overlapping coverage shows distinct improvements, especially 

in smaller, storm-scale forecasts. When downstream coverage is present, ETS shows 

that experiments with more Dual- or Multi-Doppler observations generate a more 

accurate forecast of convective activities. Because a longer assimilation period has the 

problem of the storm system moving out of the network, assimilating data longer does 

not improve the analysis and may let spurious echoes grow and cause deterioration in 

the forecast. Thus, in our case of both slow-moving and fast-moving squall line 

systems, 1 hour DA should be sufficient for analysis and forecast.  

In general, as guidance to future X-band network site selection, radar network 

LRUN (CASA IP1 plus KELR and KDUN), the one with larger downstream spatial 

coverage, tends to provide the overall best analysis and 1 hour forecast. However, in our 

experiment design, observations from only the X-band radar network are used, and the 

storm system is larger than radar network coverage. Once other long range radars (e.g. 

WSR88D) are taken into account to provide full coverage of storm system, spatial 

coverage will not be an important issue. However, dual-Doppler coverage is always 

essential to the convective scale structure analysis and forecast, especially when 

attenuation exists in X-band or other short-wavelength radar networks. 

The location of additional radars were proposed by a former IP5 plan, thus the 

networks examined here are mainly in Oklahoma. Due to the limitation of physical 

domain size, the impact of different radar network on 1hour warn-on-forecast is 

evaluated. Also, the weather system considered here is a quasi-linear convective system. 
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Future studies could use more radars and more extreme situation for radar network 

design, e.g. more overlapping radar coverage versus larger spatial coverage, or more 

upstream radars versus more downstream radars. The forecast could also be increased, 

up to 3 hours long. 
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Chapter 5: Application of Attenuation-Correcting EnKF to Real 

CASA X-band Radar Data 

Having explored and examined the vulnerabilities and effectiveness of the 

technique assimilating radar observations directly using EnKF within OSSEs, the 

technique is next tested with real observations of a CASA X-band radar network. The 

chosen case is that of the 24 May 2011 Oklahoma tornado outbreak, which is 

characterized by a synoptic and mesoscale set-up with the development of long-lived 

supercells with large, destructive tornadoes. A total of 12 tornadoes were reported 

during the severe weather event, and two EF-4 tornadoes (C1 and D1, FIG 5. 1) 

developed within two supercells that initiated within the CASA IP1 radar network. The 

settings and results of the data assimilation and forecast experiments are presented in 

this chapter. 
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FIG 5. 1 Map of tornado tracks over Central Oklahoma from the National Weather 

Service with tornado ratings shown below each reported tornado (Tornado tracks are 

marked with red lines; Yellow shaded denote the metropolitan area) 

(http://www.srh.noaa.gov/images/oun/wxevents/20110524/maps/overview-800.jpg) 

 

5.1 Case background 

On 24 May 2011, a major outbreak of severe weather occurred across much of 

the southern Great Plains region of the US. One of the ingredients for this severe 

weather scenario was the approach of a strong jet stream, which was rounding the base 

of a broad upper level trough located over the Rocky Mountains (CIMSS Satellite Blog 

http://cimss.ssec.wisc.edu/goes/blog/archives/8237). A deepening low (995 hPa) 

associated with a negatively tilted shortwave trough emerging from the Rockies 

facilitated significant advection of moisture northward from the Gulf of Mexico ahead 
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of a pronounced dryline in the Texas panhandle (Fierro et al. 2012). The dryline started 

to advance east-west direction with visible satellite imagery (FIG 5. 2) showing an 

expanding field of cumulus from I-40 in western OK south-west direction to near San 

Angelo in west central Texas after 1830 UTC. Dewpoints ahead of the dryline were as 

high as 294K (72F). There was high static instability in the low to mid troposphere with 

mixed layer CAPE (convective available potential energy) values around 3000 Jkg
-1

 

(FIG 5. 3) over a broad area. Extreme low-level wind shear resulted in 0-3km storm 

relative helicity value in excess of 250 m
2
s

-2
, while the threshold for the occurrence of 

significant tornadoes is 100 m
2
s

-2
.(Fierro et al. 2012) 

 

FIG 5. 2 Satellite image of the GOES-13 0.63 µm visible channel at 18:32 UT on 24 

May 2011 from CIMSS 
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FIG 5. 3 Sketch of the mesoscale discussion analysis (#925) at 1718 UTC from the 

Storm Prediction Center showing various key environmental factors of the 24
th

 May 

2011 tornado outbreak 

 

Within this exceptional thermodynamic and dynamic environment, 

thunderstorms began to develop along the dryline across western parts of Oklahoma and 

north Texas around 1900UTC. These thunderstorms intensified rapidly and became 

severe and tornadic quickly. Tornado C1, the so-called Chickasha-Blanchard-Newcastle 

tornado, formed around 3km south of Chichasha at 2206UTC and then moved northeast 

until reaching the SW 149
th

 and Portland Ave in Oklahoma City (FIG 5. 1). This 

tornado was persistent, lasting 55 minutes, and the damage path length was over 50 km 

long. Tornado D1, known as Washinton-Goldsby tornado of May 24, 2011, was 

spawned at 2 miles west of Bradley at 2226 UTC and proceeded to 1 miles west of 

Goldsby, lasting 49 minutes (FIG 5. 1). Fortunately tornado D1 dissipated just prior to 
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hitting the National Weather Center, the building that houses School of Meteorology of 

University of Oklahoma and Storm Prediction Center in Norman, OK on May 24, 2011. 

The storms that spawned these two tornadoes originated inside CASA IP1 radar 

network coverage, thus the experiments are designed according to these two tornadoes’ 

locations and lifetime.  

  

5.2 Experiment design and data 

In Chapter 3, it is noted that incomplete radar coverage of a widespread storm 

system can lead to large analysis error in OSSEs. Things are generally even worse in 

real data experiments. Although S-band WSR-88D radar data may reduce the impact of 

attenuation within the CASA X-band radar observations, we assimilate both WSR-88D 

radar and CASA radar data to help suppress the growth of spurious radar echoes outside 

of the CASA IP1 network coverage. The 88D radar observations used are from KTLX 

in Oklahoma City, OK and KFDR in Frederick, OK.  

The experiments are designed as follows: ARPS is initialized from NAM 12 km 

analyses at 1800 UTC, 24 May 2011, on a 363×363×43 with 1500 m horizontal spacing 

and stretched vertical grid spacing of 50 m near the ground with an average vertical grid 

spacing of 500 m. Meanwhile, the NAM 12 km forecasts at 1900 UTC, 2000 UTC and 

2100 UTC on 24 May 2011 are used to provide external boundary conditions. To 

generate initial ensemble, we add 2 m s
-1

 standard deviation Gaussian random 

perturbations to u, and v, and 0.5 K perturbations to θ’ for the first guess interpolated 

from NAM analyses at 1800 UTC. The extent of the domain is shown below in FIG 5. 

5.  The small rectangle box in FIG 5. 5 corresponds to the nested/inner domain with 500 
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m horizontal resolution, which mainly covers the CASA IP1 radar network and the 

downstream area. After a1 hour “spin up” forecast, Oklahoma Mesonet (OK Mesonet) 

data are assimilated at 1900 UTC and 2000 UTC in the outer domain. Then the WSR-

88D radar data from KTLX and KFDR, together with OK Mesonet data, are assimilated 

every 15 minutes from 2000 UTC to 2100 UTC. Two hour ensemble forecasts are 

conducted to provide ensemble boundary conditions for experiments on inner domain.  

The ensemble members of the inner domain experiments are generated from 

interpolation from the analyses on the outer domain at 2100UTC. Observations from 

CASA radar are assimilated every 5 minutes from 2105UTC to 2200UTC.After that, 1 

hour (from 2200 UTC to 2300 UTC) deterministic forecasts and ensemble forecasts are 

conducted, respectively. This period will cover the tornado C1 (formed at 2206 UTC) 

and tornado D1 (formed at 2206 UTC) genesis. FIG 5. 4 illustrates the timeline for the 

analysis and forecasting experiments. 

Four inner-domain experiments are run: a control experiment (hereafter referred 

to as “CTRL”) using all pre-corrected reflectivity and radial velocity data provided by 

CASA; an experiment using radial velocity data and pre-corrected reflectivity data 

exceeding 20 dBZ (hereafter referred as “PreAC_20DBZ”) from CASA; an experiment 

using all values of pre-corrected CASA radar observations and applying the AEM 

(hereafter referred as “PreAC_OEM”) to reflectivity observations; and an experiment 

assimilating all values of uncorrected reflectivity and radial velocity provided from 

CASA but using forward observation operator with attenuation and applying the AEM 

(hereafter referred as “ATTC”). In CTRL, PreAC_20DBZ, the observation error 

variances are set to 5 dB for reflectivity and 3 m s
-1

 for radial velocity. The radial 
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velocity data are assimilated when reflectivity data exceed 10 dBZ, even in 

PreAC_20DBZ. The analytical observation error-reflectivity relation in AEM used in 

PreAC_OEM and ATTC is shown in FIG 5. 6. Besides the relation, the clear air/full 

attenuation flag is another important part of the AEM, and will be discussed later in the 

data description. The differences in model setup between these four experiments are 

summarized in Table 5. 1  

 

 

FIG 5. 4 Timeline of the analysis and forecast periods 



95 

Table 5. 1 Lists of experiments 

Experiments Observations Assimilated Attenuation 

Correction in EnKF 

Observation Error 

CTRL Re and Vr from 88D 

Pre-corrected Re and Vr 

from CASA 

N 3 m/s for Vr 

5 dB for Re 

88D and CASA 

PreAC_20DBZ Re and Vr from 88D 

Pre-corrected Re and Vr  

from CASA 

Re < 20 dBZ is discard in 

CASA data 

N 3 m/s for Vr 

5 dB for Re 

88D and CASA 

PreAC_OEM Re and Vr from 88D 

Pre-corrected Re and Vr 

from CASA 

 

N 3 m/s for Vr 

5 dB for Re for 88D 

AEM applied to 

CASA 

ATTC Re and Vr from 88D 

Un-corrected Re and Vr  

from CASA 

Y 3 m/s for Vr 

5 dB for Re for 88D 

AEM applied to 

CASA 
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FIG 5. 5 Map of the computational domain. The interior rectangle denotes the domain 

where the CASA radar data are assimilated. The small squares represent locations of 

CASA radars and WSR-88D radars. Small circles represent CASA radar 40 km range, 

while large circles represent WSR-88D radar 60 km range. 
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FIG 5. 6 Analytical relations between observation error deviation and radar reflectivity 

 

To counteract the inherent tendency for the ensemble to converge on a solution 

that is different from the true state of atmosphere because of model error, a method for 

maintaining ensemble spread is needed (Anderson and Anderson 1999). A covariance 

inflation factor of γ=1.15 is applied to the prior deviation of each ensemble member 

from the ensemble mean (Tong and Xue 2005) when assimilating Oklahoma mesonet 

data on the outer domain. This value of γ was chosen to be large enough to broaden the 

ensemble distribution, but not so large as to result in an unstable or unrealistic model 

state. Whitaker et al. (Whitaker 2010; Zhu 2013) proposed an adaptive inflation 

algorithm to apply to posterior that can restored the ensemble spread lost during the 

assimilation period, 

2 2
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 Such a method does not add any inflation where there are no increments, and 

add more inflation where there are dense/accurate observations. However potentially 
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large spatial gradients in inflation may disrupt growing structures. Thus we use α=0.85 

and apply this adaptive inflation only once on the outer domain to increase ensemble 

spread, at 2000UTC when the background covariance is more reliable than the initial 

model time. For inner domain experiments, after several tests, only γ=1.20 is used, 

which generates sufficient spread and does not cause model instability. The localization 

radius used in mesonet data assimilation is 75km, while those used for radar 

observations are 6 km for Vr and 4 km for Re. 

In all experiments, level-II volume scans of WSR-88D radial velocity and 

reflectivity from two WSR-88D radars are assimilated at 15 minute intervals on the 

outer domain, and at 5 minute intervals on the inner domain. The WSR-88D radars used 

are those located at Oklahoma City, OK (KTLX) and Frederick, OK (KFDR). These 

two radars can provide enough coverage for the storms that developed in Oklahoma and 

northern part of Texas from 1900 UTC to 2100 UTC in the outer domain, and from 

2100 UTC to 2300 UTC in the inner domain. In experiments using CASA data, 

aggregate volumes of radial velocity and reflectivity data are assimilated, also at 5 

minute intervals. They are from four CASA IP1 network radars: Cyril, OK (KCYR); 

Lawton, OK (KLWE); Chickasha, OK (KSAO); and Rush Springs, OK (KRSP). 

Aggregate CASA radar volumes are created by interpolating raw CASA scan data on 

observed elevations to a uniform radial grid with azimuthal spacing of 1 degree. For 

each radial, the nearest data before and after the radial are linearly interpolated to obtain 

the corresponding radial in the aggregate volume scan. If only one scan is available for 

a given radial, that scan is used with interpolation. If no scans are available, that radial 
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is marked as missing. For both WSR-88D and CASA data, we pick the scan closest to 

the assimilation time. No time interpolation is applied. 

Since observations are assimilated one by one in EnSRF, a different sequence 

may results in a different analysis. However, the changes of sequence of using radar 

data show a minor difference on analysis results after several tests. The results 

presented here are obtained by assimilating radar in the sequence of: KCYR, KLWE, 

KSAO, KRSP, KTLX and KFDR. A summary of the radars used and their locations are 

given in Table 5. 2. 

Table 5. 2 List of radars used in data assimilation experiments 

 Radar Type Latitude Longitude Elevation 

KCYR CASA 34.8739 N 98.2522 W 448 m 

KLWE CASA 34.6239 N 98.2708 W 396 m 

KSAO CASA 35.0314 N 97.9562 W 356 m  

KRSP CASA 34.8128 N 97.9306 W 436 m 

KTLX WSR-88D 35.3331 N 97.2778 W 384 m 

KFDR WSR-88D 34.3521 N 98.9839 W 383 m 

    

FIG 5. 7 shows examples of radar reflectivity from CASA and 88D that are used 

in four experiments at 2135 UTC, after being interpolated to the aggregate radar 

volume. The pre-corrected observations are obtained by applying attenuation correction  

using a method employing differential phase measurements from dual-polarization radar 

(Gorgucci et al. 2006).The attenuation correction algorithm used had been shown to be 

quite accurate in retrieving true reflectivity values. However, traditional attenuation 

correction method can only make correction to where signals are above noise floor as 
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we mentioned in Chapter 2 except the pseudo-dual-frequency (PDF) method, which 

requires radar data from systems operating at two different frequencies and is highly 

dependent upon the assumption of ZH being equal at two wavelengths. In pre-corrected 

CASA data, fully attenuated data cannot be distinguished from clear air echo. The same 

area may have strong echoes when observed by other radars. For example, at 2135 

UTC, the northern part of the storm is strong in KSAO, with observed reflectivity as 

high as 55 dBZ. However, in KCYR, the largest echo is around 45 dBZ, and the 

northern part of the storm is shown as clear air (FIG 5. 7a). And in KTLX and KFDR, 

the north part of the storm is even stronger than in KSAO (FIG 5. 7c). In the 

uncorrected CASA observations (FIG 5. 7b), the storm is even weaker and the 

inconsistency is even larger. This severe inconsistency that exists in different radar 

observations at the same time not only decreases the performance of EnKF but also 

causes imbalances during analysis, which requires many tests to tune the model to 

obtain a stable analysis, especially for CTRL.  

 CASA data are obtained using a dynamically-adaptive scanning strategy that is 

designed to focus on certain storm features. However, when processing data for 24 May 

2013, we found that with the exception of the second full azimuth scan, the section 

scans sometimes were not aimed at the target storms, or only provide partial coverage of 

the target storms. Since CASA focuses at low level detection, a limited number of 

elevations (most of the time only 3) are available.  The number of effective observations 

assimilated from a single WSR-88D could be 100 times more than the effective 

observations provided by a single CASA radar at one assimilation step. 
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FIG 5. 7 Observed (a) CASA pre-corrected reflectivity on 2°; (b) CASA un-corrected 

reflectivity on 2°; (c) KTLX reflectivity on 0.92° and KFDR reflectivity on 0.53°. Light 

blue colors indicate the clear air echoes 

 

It is also challenging to make flags to distinguish between clear air echo and 

completely attenuated echo in real observations. After many tries, we decided to search 

reflectivity value gate by gate along each beam and flag the all the data once a threshold 

of reflectivity value is met (in this case, 35 dBZ). Since such a flag is only used in AEM 



102 

to judge whether the observation is clear air or complete attenuation, reflectivity 

observations larger than 0 dBZ are not affected by this flag during data assimilation.  

 

5.3 Assimilation results 

Before proceeding to experiments to test attenuation-correcting EnKF on the 

inner domain grids, the analysis on outer domain grids must be promising enough to 

provide the initial state of ensemble members.  FIG 5. 8 shows the reflectivity and total 

wind field of ensemble mean analysis at 2100 UTC on the outer domain grids (FIG 5. 

8a) and the corresponding observations from KTLX and KFDR (FIG 5. 8b,c), which are 

interpolated to 2.0 km AGL for comparison purpose. At this time, the WSR-88D radar 

data and the OK Mesonet data have been used four times from 2000 UTC to 2100 UTC. 

Compared to the observation, a qualitatively accurate portrayal of the state of the 

convective system has been produced. The experiment produces storm systems with 

reflectivity structure very similar to that observed by KTLX and KFDR. Assimilation of 

radar data may result in decreasing ensemble spread. FIG 5. 9, FIG 5. 10 and FIG 5. 11 

show the horizontal RMS ensemble spread for u, v, and θ of 40 ensemble members at 

the end of analysis time on outer domain. The RMS spread of u can reach as high as 10 

ms
-1

 in the storm region, and 2.5 in the western part of the outer domain. This number is 

a little low in eastern Oklahoma. However, since the downstream area is not included in 

the inner domain, this is acceptable. Also, the ensemble spread is 2 to 3 ms
-1

 near the 

west and south boundaries, which is good since this is the upstream area (the 

background wind field is mainly southwesterly). Similar patterns can be found in FIG 5. 
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10 for v and in FIG 5. 11 for θ. Thus, it is acceptable to interpolate the ensemble 

analyses to the higher-resolution inner domain(500 m horizontal grid spacing). 

 

FIG 5. 8 (a) The horizontal wind vectors (m/s), and computed reflectivity from outer 

domain analyses, and interpolated reflectivity from (b) KTLX and (c) KFDR at 2000 

UTC May 24, 2012  
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FIG 5. 9 RMS ensemble spread of u for 40 ensemble members at 2100 UTC 24 May 

2011 on outer domain 

 

FIG 5. 10 RMS ensemble spread of v for 40 ensemble members at 2100 UTC 24 May 

2011 on outer domain 
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FIG 5. 11 RMS ensembles spread of potential temperature θ of 40 ensemble members at 

2100 UTC 24 May 2011 on outer domain 

 

The major difference among the design of the four experiments on the inner 

domain is the way the reflectivity data are assimilated. Making comparisons of the 

reflectivity field calculated from the results can give us a direct vision of how these 

methods work. We mainly look at the calculated reflectivity field of each experiment 

plotted at 2 km altitude, which is a level at which every radar has data available. In 

those plots, only the observations from KTLX are interpolated onto the same level for 

comparison convenience, since the coverage of KTLX is enough for this storm system. 

Though CASA data can provide low-level detection and higher resolution 

compared to 88D data when 88D is far from the feature of interest, attenuation in X-

band observations is so severe that even pre-corrected reflectivity could only partially 

capture the storm system. FIG 5. 12 shows the reflectivity calculated from analyses of 
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four experiments and the observed reflectivity from KTLX interpolated onto 2 km MSL 

at 2135 UTC, a time when the location of the storm can be covered by most radars. 

The storm system analyzed in CTRL is much weaker inside the CASA network 

than in the observations (FIG 5. 12b), mainly due to the fully-attenuated observations 

that could not be effectively corrected. Because we assimilated all values of reflectivity 

from CASA, the zero reflectivity areas that might be caused by fully attenuation play an 

important role in suppressing storm development. In fact, during the assimilation 

window, storms tend to grow in forecast steps, but get suppressed in assimilation steps 

by zero reflectivity from CASA. The storms outside of the CASA network, for example 

in northern part of the inner domain, are stronger than those inside the CASA coverage 

area, which further suggests that using all values of CASA reflectivity results in 

deterioration of the analysis.  

It is expected that discarding observed reflectivity smaller than 20dBZ in the 

CASA observations may reduce the negative impact. The analyzed storm systems inside 

the CASA IP1 network in PreAC_20DBZ are much stronger than in CTRL (FIG 5. 

12d). In Chapter 3, when we discarded reflectivity smaller than 10 dBZ, spurious 

echoes grew with no way to suppress them. Here, since we also use observations from 

WSR-88D radars which can suppress spurious echoes efficiently due to the effective 

absence of attenuation at S-band, the analyzed storm is much stronger than in CTRL.  

Applying AEM to CASA observations during analysis is another way to reduce 

the impact of fully-attenuated observations. The weight of weak reflectivity is reduced 

by assigning small observation errors, and zero values of reflectivity are ignored where 

the clear air flag is negative. Doing so puts more weight on less-attenuated WSR-88D 
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observations, background estimation, and high reflectivity CASA data, while also using 

information from weak reflectivity CASA data. FIG 5. 12e indicates that PreAC_OEM 

also obtains a relatively stronger storm compared to CTRL.  

Different from the other three experiments, the un-corrected reflectivity data 

from CASA are used in ATTC and EnKF with built-in attenuation correction is applied. 

Combined with AEM, the analyzed storm structures are closer to observations from 

KTLX at this time, especially in the area where reflectivity is greater than 50 dBZ 

inside CASA the network. In PreAC_20DBZ and PreAC_OEM, a similar storm system 

can be obtained, too, but it is slightly weaker in the region where reflectivity exceeds 

50dBZ.  
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FIG 5. 12 (a) Observed reflectivity of KTLX interpolated to 2 km MSL; (b) calculated 

reflectivity in (b) CTRL; (c) ATTC; (d) PreAC_20DBZ; (e) PreAC_OEM on 2 km 

MSL at 2135 UTC 24 May 2011 
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Analyses in CTRL are still bad at the end of the assimilation window in the 

terms of calculated reflectivity. The analyses at 2200UTC show minor differences 

among experiments ATTC, PreAC_20DBZ, and PreAC_OEM at 2 km. We decide to 

plot results on 500m since CASA data feature low level detection which can benefit the 

analyses at low MSL. Unfortunately, WSR-88D radar observations are not available at 

this level, and CASA pre-corrected data are not good enough for verification. However, 

comparing storm A and storm B as denoted in FIG 5. 13, we see that these two storms 

are stronger in ATTC than in PreAC_20DBZ or PreAC_OEM since there are more 

areas with reflectivity exceeding 50 dBZ in ATTC than in PreAC_20DBZ or 

PreAC_OEM. Considering that storm A produces a tornado (C1) 6 minutes later, and 

that storm B spawns tornado D1 26 minutes later, the storm systems analyzed in ATTC 

seem more realistic.   
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FIG 5. 13 Calculated reflectivity in (a) CTRL; (b) ATTC; (c) PreAC_20DBZ and (d) 

PreAC_OEM on 500 m MSL at 2200 UTC 24 May 2011 

 

5.4 Forecast results 

 Examination of the forecasts is another way to verify the results of these 

experiments. We have performed 1 hour deterministic forecasts starting from the 

ensemble mean analysis at the end of the assimilation window, and 1 hour ensemble 
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forecasts starting with the 40 member analyses at the same time. The deterministic 

forecasts on the outer domain 1500m grid from 2200 UTC to 2300 UTC are used as the 

boundary conditions for the deterministic forecasts on inner domain 500 m grid, while 

the ensemble forecasts on the outer domain serve as the ensemble boundary conditions 

for the ensemble forecasts on inner domain for the same period. Discussion of the 

forecasts is provided here.   

5.4.1. Deterministic Forecast  

Since the analyzed storm obtained in CTRL at the end of assimilation time is 

weak compared with the other three experiments, we do not show the forecast 

reflectivity field of CTRL in FIG 5. 14, FIG 5. 15, FIG 5. 16, FIG 5. 17, FIG 5. 18, and 

FIG 5. 19, in which the calculated reflectivity fields are plotted in 10 minute intervals 

from 2200 UTC to 2300 UTC, for the sake of brevity.  

In addition to the development of storm A and storm B, a trailing line T starts to 

grow from 2200 UTC to 2300 UTC, according to KTLX and KFDR observations. FIG 

5. 14 shows the forecasted reflectivity at 2 km MSL at 2210 UTC. All three experiments 

(ATTC, PreAC_20DBZ, and PreAC_OEM) forecast solid storm A and B structures and 

even a “hook echo” feature similar to the observations. The trailing line (T) can be 

found in the three experiments, too. In PreAC_OEM T is the weakest with maximum 

reflectivity below 25 dBZ. In PreAC_20DBZ, the forecasted reflectivity in T is as large 

as 35 dBZ, however the length of the trailing line is shorter than the one forecasted in 

ATTC; the reflectivity reaches above 50 dBZ in the T forecasted in ATTC.  
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FIG 5. 14 (a) Observed reflectivity of KTLX interpolated to 2 km MSL; the horizontal 

wind vectors (ms
-1

), calculated reflectivity in (a) ATTC; (b) PreAC_20DBZ; (c) 

PreAC_OEM on 2 km MSL at 2210 UTC 24 May 2011 

 

At 2220UTC, 20 minutes after the final analysis, ATTC, PreAC_20DBZ, and 

PreAC_OEM continue to forecast the “hook echo” features of storms A and B that are 

observed in KTLX (FIG 5. 15). However the trailing line T shrinks in PreAC_OEM and 
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is almost gone in PreAC_20DBZ. In ATTC, though T is not as long as in KTLX 

observations, the largest echoes can still reach 50 dBZ. This may benefit from the small 

values of reflectivity (less than 20 dBZ in CASA data) that contain some useful 

information, because small values are still used in ATTC and PreAC_OEM but not 

PreAC_20DBZ. Also, T is stronger in ATTC than in PreAC_OEM, which indicates that 

pre-corrected data also misses some information, motivating the use raw observation 

directly in data assimilation.  
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FIG 5. 15 Same as FIG 5. 14 but at 2220 UTC 24 May 2011 

 

The trailing line T shrinks in ATTC at 2130 UTC (FIG 5. 16b), while remaining 

strong in KTLX observations (FIG 5. 16a). In PreAC_20DBZ and PreAC_OEM, T has 

completely dissipated (FIG 5. 16c, d). The model error likely dominates, and 
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information obtain from raw observations is unable to confer benefits after 30 minutes 

of forecast time. The structure of storms A and B, especially the “hook echo” region, is 

still similar to the observations in ATTC, PreAC_20DBZ, and PreAC_OEM.  

After 40 minutes of forecast (FIG 5. 17), storm A starts to dissipate in 

PreAC_20DBZ and PreAC_OEM. In observations, storm A is still intense at this time. 

The “hook echo” feature of storm A is lost in ATTC, but the storm predicted in ATTC 

looks more intense than in other two experiments.  

Although the trailing line T is absent, in ATTC storm B still has similar 

structure as KTLX observations after 50 minutes of forecast (FIG 5. 18b), while in 

PreAC_OEM, storm B shrinks to a small size. In PreAC_20DBZ, the forecasted 

reflectivity in storm B is as high as 55 dBZ, however, the size of the storm is smaller 

than in the observations. Storm C developed outside of CASA radar coverage, thus the 

forecast of storm C in the three experiments is much worse than the forecast of storm A 

and B. In PreAC_20DBZ and PreAC_OEM storm C is stronger than in ATTC, but is 

shifted to the southeast of the location of the observed storm C, while the storm C 

location is close to observations in ATTC .  
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FIG 5. 16 Same as FIG 5. 14 but at 2230 UTC 24 May 2011 
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FIG 5. 17 Same as in FIG 5. 14 but at 2240 UTC 24 May 2011 
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FIG 5. 18 Same as FIG 5. 14 but at 2250 UTC 24 May 2011 

 

 One issue with the forecast is that the storm systems predicted in all three 

experiments are phase shifted, though these shifts are not severe. At 2300 UTC, storm A 

is shrank to the northeast corner of the inner domain. Storm B is shifted about 15 ~ 20 
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km to the east in ATTC, PreAC_20DBZ, and PreAC_OEM.  In ATTC, the location of 

storm C is about 25 km east of the same storm in the observations, while in 

PreAC_20DBZ and PreAC_OEM, the predicted storm C moves to the southeast of the 

observed one, further displaced than in ATTC. There is another storm that developed 

between storm B and storm C in all the three experiments, which does not exist in 

observations. The development of this spurious storm may be the reason that storm C 

becomes so weak in ATTC, PreAC_20DBZ, and PreAC_OEM. Overall, most of the 

precipitation areas could still be captured in all three experiments, except in the 

southern part of the domain where forecasting is difficult because of interaction with the 

southern domain boundary. 
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FIG 5. 19 Same as FIG 5. 14 but at 2300 UTC 24 May 2011 

  

The forecast results of all four experiments (CTRL, PreAC_20DBZ, 

PreAC_OEM and ATTC) are also verified against OK Mesonet observations. In FIG 5. 

20 and the following FIG 5. 21, FIG 5. 24 and FIG 5. 25, labels ‘A’, ‘B’, ‘C’ and ‘T’ 

are included in the figures to indicate the location of storm A, B, C and trailing line T. 
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Since those figures show the deviation of forecasted variables from the surface 

observations obtained from the OK Mesonet, the lighter the color is, the closer the 

forecast is to the observation.  

Comparison with OK Mesonet 2-m temperature observation suggests that at 

2230 UTC (FIG 5. 20), all four experiments (CTRL, PreAC_20DBZ, PreAC_OEM, and 

ATTC) produce relatively strong cold pools near the western boundary of the domain 

and warm temperatures in the east part of domain. Small differences exist between 

every experiment. For example, it is too warm in the trailing line area as well as in the 

cold pool of storm A in CTRL compared to the other three experiments. The cold pool 

produced by storm A and C is too strong (widespread and colder) in PreAC_20DBZ and 

PreAC_OEM than in ATTC. In the eastern part of storm C, the temperature is much 

lower in CTRL than in the other three experiments. 

At 2300 UTC, the end of forecast period (FIG 5. 21), the strong regions of low 

temperature that exist in all four experiments move into the northwest portion of the 

domain, propagating with the background wind. A large amount of warm air enters the 

domain via the southern boundary in all four experiments. This may all come from the 

boundary conditions. In CTRL, the area east of storm A as well as the area near storm B 

and T are warmer than in the other three experiments. And in ATTC, the cold pool 

produced by storm C is still closer to the observation than the other three experiments, 

which may explain why the location of storm C forecasted in ATTC is closer to the 

observed position. 
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FIG 5. 20 Deviation of 2 m temperature forecasted from surface observation (OK 

Mesonet) for (a) CTRL, (b) ATTC, (c) PreAC_20DBZ and (d) PreAC_OEM at 2230 

UTC 
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FIG 5. 21 Same as in FIG 5. 20 but at 2300 UTC 24 May 2011 

 

Further comparison with time series plots of observed temperature T from 

Minco (FIG 5. 22) and Norman OK Mesonet site (FIG 5. 23) shows that the temporal 

evolution of temperature represents part of the development of trailing line, and storm A 

and B evolution respectively. The temperature evolution in ATTC shows the smallest 

difference and the closest match with observations at the Minco mesonet station, which 
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reminds us that only in ATTC do the trailing line features last longer than in 

PreAC_20DBZ and PreAC_OEM. At the Norman station, the temperatures predicted in 

ATTC also have a similar pattern to that of the observations, as well as the smallest 

temperature departure among those experiments.   

 

FIG 5. 22 Meteogram of temperature (C) observed (black) and simulated (blue for 

CTRL, red for PreAC_20DBZ, green for PreAC_OEM and purple for ATTC) at Minco 

mesonet sites from 2200 UTC -2300 UTC 24 May 2011. 
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FIG 5. 23 Same as in FIG 5. 22 but at Norman mesonet site 

 

We also calculated the deviation of relative humidity forecasts from the 

observations. Again, the lighter the color is, the closer the forecast is to the 

observations. After 30 minutes of forecast, widespread moisture advects in through the 

western boundary (FIG 5. 24). The most obvious difference among those four 

experiments is near the trailing line (T) area, where the air is much drier in CTRL, 

PreAC_20DBZ, and PreAC_OEM. Considering that the temperature in ATTC is also 

close to observation (FIG 5. 20b, FIG 5. 22) in this area, this explains why the trailing 

line T lasts longer in the forecast of ATTC than in other three experiments. At the end 

of the forecast, it is drier in the area of T and storm A and C in CTRL than in the other 

three experiments. The difference among PreAC_20DBZ, PreAC_OEM, and ATTC at 
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2300 UTC, is not significant except that the deviation in relative humidity near storm B 

is a little bit smaller in ATTC than in other three experiments. 

 

FIG 5. 24 Deviation of 2 m relative humidity forecasted from surface observation (OK 

Mesonet) for (a) CTRL, (b) ATTC, (c) PreAC_20DBZ and (d) PreAC_OEM at 2230 

UTC 
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FIG 5. 25 Same as in FIG 5. 24 but at 2300 UTC 24 May 2011 

 

 The difference in the time evolution of relative humidity is small at the Minco 

mesonet site (FIG 5. 26). The value of calculated relative humidity of the four 

experiments is similar. The forecast from CTRL has the lowest value for most of the 

time, furthest from the observations.  
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 At the Norman mesonet site (FIG 5. 27), for the first 20 minutes the forecasted 

relative humidity is almost the same in all four experiments. After this, in ATTC the 

forecasted value starts to rise and remains close to the observations until the end of 

forecast time, while in CTRL the value starts to decrease and becomes the lowest 

among the four experiments until 2300 UTC. We also calculate the average relative 

humidity every experiment from 2200 UTC to 2300 UTC and compare to the 

observations from Minco mesonet site and Norman mesonet site, respectively (Table 5. 

3). At Minco site, the closest number of relative humidity to observation is forecasted 

by PreAC_20DBZ, but ATTC actually forecasted a close number that has less than 1% 

deviation from PreAC_20DBZ. At Norman site, the best forecast is given by ATTC, 

followed by PreAC_20DBZ with over 3% deviation from ATTC. 



129 

 

FIG 5. 26 Meteogram of relative humidity (percent) observed (black) and simulated 

(blue for CTRL, red for PreAC_20DBZ, green for PreAC_OEM and purple for ATTC) 

at Minco mesonet site from 2200 UTC -2300 UTC 24 May 2011. 
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FIG 5. 27 Same as in FIG 5. 26 but at Norman Mesonet site 

 

Table 5. 3 Average relative humidity observed and forecasted from 2200 UTC to 2300 

UTC 

RH(%) Minco Norman 

OK Mesonet 88.51 76.42 

CTRL 67.85 66.66 

PreAC_20DBZ 77.03 70.16 

PreAC_OEM 71.08 67.69 

ATTC 76.08 73.20 
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5.4.2. Ensemble Forecast  

Ensemble forecasts can provide the probability of intense low-level vertical 

vortices, which are usually associated with tornadoes. As in section 5.2, ensemble 

forecasts are started from the final analyses of the 40 ensemble members and use the 

ensemble boundary conditions produced by the 40 member forecasts on outer domain 

grid. Here we count the numbers of vortices that exceed a certain threshold at the first 

level above ground in all ensemble members from 2200 UTC to 2300 UTC and plot 

those numbers in FIG 5. 28 and FIG 5. 29 . 

The threshold is set at 0.012 s
-1

 in FIG 5. 28; this is a relatively high value. All 

four experiments produce the frequency count lines along the track (green line in the 

north of domain) of tornado C1, spawned by storm A, which moved from southwest to 

northeast. In CTRL, the frequency count line is thin (and even broken in many places) 

(FIG 5. 28a) compared to other three experiments, indicating that the number of low-

level vortices above 0.012 s
-1

 forecasted by ensemble members in CTRL is less than in 

the other three experiments, probably due to the forecast starting from the weak storm A 

in the CTRL analyses.  The frequency count lines in ATTC (FIG 5. 28b), 

PreAC_20DBZ (FIG 5. 28c), and PreAC_OEM (FIG 5. 28d) along the tornado C1 track 

are all rather intense.  The difference among the three experiments is small. Only the 

line in ATTC is more intense in the southwest part of the track, which indicates 

improved prediction of the early stage of tornado C1 compared to PreAC_20DBZ and 

PreAC_OEM. 

 Tornado D1, produced by storm B, starts 26 minutes after the final analysis 

time, thus it is more difficult to forecast than tornado C1. As shown in FIG 5. 28, in 
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which the green line in the south indicates the observed track of tornado D1, not too 

many members forecast low-level vortices near its track at this threshold. Some 

ensemble members forecast relatively large low-level vortices embedded in Storm B 

before tornado D1 actually touches down. FIG 5. 29 shows the ensemble frequency 

count plot when threshold is reduced to 0.008 s
-1

, which is a bit smaller but still strong 

enough to indicate tornado potential. Although the field is much noisier, there is still a 

line overlaid on and much longer than the track of tornado D1, especially in ATTC (FIG 

5. 29b), PreAC_20DBZ (FIG 5. 29c), and PreAC_OEM (FIG 5. 29d). The difference 

among the three experiments is not significant. The line overlaid on the tornado D1 

track in CTRL (FIG 5. 29a) is shorter than the other three.     
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FIG 5. 28 Ensemble frequency count when vorticity > 0.012 s
-1

 in (a) CTRL, (b) ATTC, 

(c) PreAC_20DBZ and (d) PreAC_OEM from 2200 UTC to 2300 UTC. Red line in the 

north indicates the observed track of tornado C1, while the one in the south indicates the 

observed track of tornado D1. Circles represent the 40 km range of CASA radars.  
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FIG 5. 29 Same as in FIG 5. 28 but when vorticity > 0.008 s
-1

 

  

5.5 Summary and Discussion 

Testing the technique using real radar observations is more difficult than running 

OSSEs. The true state of atmosphere is not known; uncertain observation error amounts 

and sources exist in radar data processing (due to clutter removal; aliasing; bias; 

interpolating to model grids); and the DSD model used in microphysics scheme may not 
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be accurate enough. The purpose of running real case experiments is to examine the 

effectiveness of our EnKF system with capability of assimilating attenuated radar 

observations directly. Thus compared to other similar EnKF works (Snook et al. 2011), 

we tend to assimilate reflectivity data in all thresholds, which can seriously affect the 

quality of analyses.  Fortunately, our approach still produces similar convective storm 

structure in the data assimilation and forecast. 

The 24 May 2011 tornado outbreak is selected as a case study since the storms 

spawned two EF4 tornadoes (C1 and D1) that developed inside the CASA IP1 radar 

network. To make the results comparable with each other, all experiments on the 500 m 

resolution grids use the same first guess interpolated from 1500 m resolution analysis at 

2100 UTC. WSR-88D observations from KTLX and KFDR and the radial velocity 

observed from CASA IP1 network are assimilated in all experiments. The difference 

among those experiments are whether the reflectivity used in EnKF is pre-corrected or 

not, and the corresponding methods to deal with the reflectivity observations.  

Despite the instability brought by the inconsistency existing in WSR-88D and 

CASA observations, assimilating reflectivity data at all thresholds do harms the quality 

of analysis. Although the observations provided by CASA are pre-corrected in 

observation space through traditional approach, the zero value reflectivity which might 

contain full attenuation that could not be corrected effectively tends to suppress the 

development of the storms and leads to a much weaker storm system. One way to avoid 

the impact of zero or near-zero reflectivity is omitting reflectivity below a threshold 

(e.g. 20 dBZ). Another way is applying the AEM that we proposed and tested in OSSEs 

to limit the impact brought by zero or near-zero reflectivity. In this real CASA case, the 
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two methods, discarding weak reflectivity or applying AEM, are proven effective with 

pre-corrected CASA observations by presenting a more solid storm system than simply 

assimilating all values of pre-corrected CASA observations. 

Once the attenuation correcting procedure is built into EnKF, it is possible to 

assimilate the un-corrected (attenuated) CASA reflectivity data directly. Combining 

with AEM, the analysis results are quite promising by analyzing a strong storm system 

with similar reflectivity structure as in the observations. The deterministic forecast 

experiment indicates that assimilating un-corrected observations directly actually retains 

some information that might be lost in the pre-corrected CASA observations. The 

experiments assimilating un-corrected CASA observations forecast a longer-lasting 

trailing line feature than experiments assimilating pre-corrected observations. The storm 

system forecasted in experiment using un-corrected CASA reflectivity manages to 

maintain strong radar echoes even after 50 minutes of forecast, while the storm system 

forecasted by experiments assimilating pre-corrected observations dissipates sooner. 

The comparison with 2 m temperature and relative humidity observed by Oklahoma 

Mesonet shows a small advantage when using un-corrected CASA data over the 

experiments using pre-corrected CASA observation. The difference is not very large, 

though.  

The results of ensemble forecasts indicate that experiments using un-corrected 

observations have more members that predict low-level vortices, a signature of possible 

tornadoes, above a specified (large) threshold than the experiments using pre-corrected 

observations early in the lifetime of tornado C1. Thusly, we believe that directly 

assimilating raw observations using EnKF can preserve more information than using 
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pre-processed observations. Again, the difference between the experiment using un-

corrected CASA data, the experiment using pre-corrected observations above 20 dBZ, 

and the experiment assimilating pre-corrected observation using AEM is not obvious. 

But the above three experiments all do a better job than the experiment simply 

assimilating all values of pre-corrected CASA data. 

The assimilation window we chose here is a period when many thunderstorms 

had begun to develop and intensify rapidly. Limited by the 40 km range, using CASA 

data alone could not provide enough coverage of those storms and let spurious echoes 

grow. For this reason, we use S-band WSR-88D observations to suppress those spurious 

echoes, though doing so may mask the impact of attenuated data on the EnKF analyses. 

One may tempted to think that WSR-88D data alone can also provide a promising 

analysis. However, after simple tests, we found that the cold pool analyzed in the 

experiment that use WSR-88D only spread out too wide and quick. Similar results are 

also obtained in Schenkman (Schenkman et al. 2011), in which CASA and WSR-88D 

observations are assimilated using a 3DVAR method.        

As a part of AEM, the way to distinguish fully attenuation from zero reflectivity 

used in this research is simply searching each beam gate by gate. Once certain large 

values are found in one gate, all the bins after it will are flagged as possibly containing 

attenuation. Combined with the judgment inside the AEM, fully attenuation can be 

recognized and skipped. This method may, however, treat some real clear air echoes as 

fully-attenuated. The differential propagation phase shift ΦDP could also assist in 

flagging the attenuation. When SNR is low, ΦDP is difficult to use, though. It would be 
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very helpful if CASA and other CASA-like X-band radar network could provide such 

information to tell attenuation has happened or not.      
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Chapter 6: Summary and Future Work 

6.1 General summary 

In this study, a simultaneous state estimation and attenuation correction method 

for convective storm systems within an ensemble Kalman filter (EnKF) data 

assimilation (DA) system has been improved and tested using Observing System 

Simulation Experiments (OSSEs) and a real case. Advanced data assimilation 

technologies, such as ensemble Kalman filter (EnKF) methods, offer flexibility to do 

simultaneous attenuation correction within the data assimilation procedure. By 

calculating the expected attenuation within the forward observation operators using the 

estimated atmospheric state, attenuation correction is built into the ensemble square-root 

Kalman filter (EnSRF) data assimilation system.  

We first apply this method to a simulated convective squall line system that has 

a much broader precipitation region and hence substantially more attenuation than an 

isolated supercell storm examined in (Xue et al. 2009) . A network of four X-band 

radars positioned according to the Center for Collaborative Adaptive Sensing of the 

Atmosphere (CASA) integrated project 1 (IP1) radar network is assumed in the OSSEs. 

Overlapping observation coverage afforded by multiple radars is very helpful in 

producing more accurate reflectivity analyses as multiple viewing angles reduces the 

areas of complete attenuation.   

Considering that observations with severe attenuation usually contain larger 

errors than data with little or no attenuation, and zero reflectivity has large uncertainty 

(maybe an area of complete attenuation or simply an area with no scatters), an empirical 

analytical observation error model (AEM) based on a reflectivity relation is designed 
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and used to specify the observation error variance in the EnKF data assimilation. In 

such a relation, larger observation errors are assigned to lower observed reflectivity 

values, while higher reflectivity can be weighted more by specifying a smaller error. 

The clear-air data are properly taken care of by flagged out during the process of 

producing simulated radar observation. Such flag can be read in during EnKF and the 

observation marked with fully attenuation will be discarded. A small error variance is 

assigned to relatively small value of observed data during analysis.  

The effectiveness of the attenuation correction procedure and the utilization of a 

reflectivity-dependent AEM are further tested in the presence of the resolution-related 

error in the assimilating model. This error is introduced by using a truth simulation that 

is produced at 3 times the resolution as that of the assimilating model. It was shown that 

while the analysis errors increase when such model error exists, the model error impact 

is smaller than the positive impacts of the attenuation correction procedure and the use 

of the AEM. 

When multiple error sources are present in the observations (e.g. the 

instrumental error, the reflectivity model error, the attenuation model error, the Signal-

to-noise ratio related error, and the inhomogeneity error) AEM is still effective and can 

reduce the RMSEs levels quickly. Meanwhile, another type of observation error model 

(multiple sources error model, or MSEM) that can use the same calculation equations to 

estimate the observation error deviation during EnKF is proposed and tested, too. The 

preliminary results show MSEM helps to improve the analysis, but not as much as the 

AEM does. In this set of experiments the attenuation model error that related to the PIA 

was designed as a Gaussian distribution, but in reality, this type of error should be 
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spatially correlated. Thus, further experiments in which the attenuation model error has 

spatial correlation are planned. MSEM is actually an attempt to design a more 

sophisticated observation error model than the AEM. And we see there are more 

potential in this type of observation error model.    

The attenuation correction EnKF system is used to explore the problem of 

expanded X-band radar network site selection, since CASA had previously planned to 

expand the IP1 radar network. Experiments are designed based on assimilating 

observations from possible radar network configuration, that is, 4 CASA IP1 radars 

with additional 2 hypothetical radars. The trade-off between radar overlapping coverage 

and spatial coverage has been evaluated.  The impact of storm propagation speed and 

assimilation window length on the quality of analysis and forecast are also examined. 

 For a slow moving squall line storm system, with severe attenuation effects, the 

radar network with larger spatial coverage is preferable than the one with smaller spatial 

coverage and more overlapping coverage, even though the latter can provide more 

Dual- or Multi-Doppler observations, in both analysis and forecast. Since the slow-

moving storm system is nearly stationary within radar network during DA, assimilating 

radar observation every 5 min for an hour is sufficient to obtain the main structure of 

the storm. Dual- or Multi-Doppler observations can provide details in smaller-scale 

storm structures but lose more information of the storm system in whole owing to more 

limited spatial coverage. Radars located upstream of a storm can aid model to a better 

analysis of potential temperature and generated a better stratiform precipitation forecast. 

Assimilating observations 15 minutes more can produce better estimate of potential 

temperature and water vapor but worse w field and hydrometeor fields, which are 
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mainly due to the storm moving out of the network center, and lack of Dual-Doppler 

observations could not aid DA system to correct attenuation effectively. Forecasts 

starting from different assimilation windows do not show significant differences, 

because the error levels increase rapidly to saturation levels no matter how low they 

started. One possible explanation is that the lack of spatial coverage cannot provide 

enough observations to model to capture the correct dynamic information of storm 

system, no matter how long the assimilation windows are. Model error starts to 

dominate the forecast, and error increases very quickly to counteract the positive impact 

of data assimilation. 

In experiments where the storm system moves quickly through the radar 

network, radars located downstream become important because they provide sufficient 

observations to suppress spurious echoes during later assimilation cycles. Although 

spatial coverage is reduced, the radar network with more Dual- or Multi-Doppler 

features shows more improvement in smaller-storm scale structure, especially in the 

forecast. When combined with sufficient downstream coverage, ETS shows that 

experiments with more Dual- or Multi-Doppler observations generate a more accurate 

forecast of convective storm evolution. Since assimilating observations 15 minutes 

longer faces the situation that squall line system is about to move out of some radar 

networks, starting the forecast from longer assimilation windows means starting from a 

much worse analysis. Experiments with less upstream observations tend to forecast 

worse potential temperature and water vapor fields when the forecast starts from the 

longer assimilation window than from the shorter window. The forecast of hydrometeor 
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fields is not affected much by the length of assimilation window though, as their error 

reaches a saturation level quickly.   

In general, on the condition of only X-band or short-wavelength radar network 

being available, a radar network with larger downstream spatial coverage tends to 

provide the best overall analysis and 1-hour forecast. However, if the emphasis is on 

convective scale structure analysis and forecast, more Dual- or Multi-Doppler coverage 

is preferred despite losing some spatial coverage. 

Because of the lack of knowledge of the true atmosphere state, observational 

uncertainty amount, and even the sources of error in the data assimilation system (e.g. 

observation error, model error), applying our attenuation correction EnKF system to a 

real case is quite challenging. However, our procedure shows promising results. Once 

the attenuation correcting procedure is built into EnKF, it is possible to assimilate the 

un-corrected CASA reflectivity data directly. Combining with AEM, the analysis results 

in a much stronger storm system, close to the WSR- 88D observations, compared to the 

experiment that simply assimilates all value of pre-corrected observation without AEM 

applied. Subsequent deterministic forecast experiments indicate that assimilating un-

corrected CASA observations directly has retained some information that might be lost 

in the pre-corrected CASA observations. The experiments assimilating un-corrected 

CASA observation forecast a longer lasting trailing line feature that disappears quickly 

in experiments assimilating pre-corrected observations. Also, 40 member ensemble 

forecast experiments reveal that the experiment using un-corrected observations has 

more members predict low-level vortices stronger than a specified threshold, a signature 

of possible tornadoes, than the experiment using all values of pre-corrected observations 
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without the application of AEM. And the prediction of the track of tornado D1, 

although not accurate, is still more intense than the one predicted by the experiments 

using all values of pre-corrected observations. Thus, we believe that directly 

assimilating raw observations using EnKF, is a competitive way to use observations 

from X-band radars, and has the potential to preserve more information than using pre-

processed observations. 

 

6.2 Concluding remarks and future work 

In this research we test the forward observation operator with attenuation and 

develop an analytical observation error model designed especially for the attenuated 

observation data assimilation problem. This is the first time this method tested using 

OSSEs with a radar network and applied to real data cases, with promising results. 

Our method is mainly based on model state variables estimation in EnKF. It 

does not require dual-Polarization radar measurements and does not need to estimate 

PIA independently thus avoiding problems with numerically instability which are found 

in traditional attenuation correction algorithms.   

The capability of the technique allows us to use attenuated radar observations 

directly, particularly when the observations come from CASA X-band network, which 

is an attractive direction for radar data assimilation. More and more short-wave radars 

are used for scientific research purposes (e.g. mobile radars, airborne radars). Applying 

our method to those radar observations can provide another way to ingest information. 

More case studies should be made in the future in order to get more robust conclusions. 
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The application of AEM is a way to limit the possible negative impact brought 

by near-zero reflectivity observations while retaining useful information contained in 

those weak reflectivity observations. Currently, the AEM we used in all the experiments 

is mainly depends on the value of reflectivity. The only way to flag fully attenuated data 

is to use information from along the beampath. We would like to further improve AEM 

by including more information that could be obtained from radar observations. For 

example, φDP could be used to recognize attenuation. Large errors are  also contained in 

the melting layer, which means large values of reflectivity may also contain errors. The 

MSEM is another potential direction to improve the observation error model that is 

designed especially for use in attenuated radar data assimilation. 

As another essential part of AEM, the procedure to identify clear air returns 

needs to be improved, too. We will not only flag the data where raw reflectivity and 

corrected reflectivity are not equal, but also search for sudden reflectivity value changes 

gate by gate along each beam during processing CASA radar. Doing so may help to 

identify areas where complete attenuation has occurred; large observation error can be 

used in these areas thus improving the data assimilation of X-band radar data. 

Currently, the calculation of attenuation in EnKF is performed sequentially, 

consuming a lot of computation time (around 160 minutes in total to assimilate 

observation from 2 WSR-88D radars and 4 CASA radars for one analysis step, while 

the time used in the MPI version and without the attenuation correction procedure inside 

EnKF is only around 36 minutes).This attenuation correcting procedure needs to be 

merged into the distributed-memory parallel version (DMP) of ARPS-EnSRF (Wang 

2013) to save computational cost. Also, it would be interesting to see how the 
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attenuation correction procedure performs in ARPS LETKF system. Different from the 

EnSRF system, all the observations are assimilated at the same time in LETKF. Under 

that circumstance, will AEM be still useful? Merging the current AEM into the LETKF 

system will be another challenge.  

The forward observation operator designed for attenuated radar observations are 

non-local, just like those for satellite radiance data. As suggested by the so-called hybrid 

algorithm, which uses a combination of the static and ensemble derived flow-dependent 

covariance, i.e. the hybrid covariance (Lorenc 2003; Buehner et al. 2010), the state-

space-based covariance localization used in the hybrid formulation is potentially 

advantageous for non-local forward observation operator. Thus, testing the attenuation 

correcting procedure in the hybrid EnKF framework is another interesting research 

direction. 

The parameterized relations between model-predicted total mass content W with 

equivalent reflectivity factor Ze and the attenuation coefficient k are derived based on 

the exponential form Drop size distributions (DSDs) in the 5-class single-moment 

microphysics scheme of Lin et al. (1983). We can also derive the relations based on 

different DSDs forms, and see how this approach works in two-moment or multi-

moment microphysics parameterization. Accurate representation of microphysical 

processes is especially important for attenuated radar data assimilation. Polarimetric 

radars observations could be assimilated into storm-scale numerical models to improve 

the estimation of the shape of DSD. The correct shape of DSD itself can affect other 

microphysical processes, which in turn can influence the thermodynamic and 

kinematics of the storm. Improving the DSD can also help the estimation of the 
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attenuation in our EnKF. Additionally, dual-pol observations can produce the 

“hydrometeor classification” product. The current version of the hydrometeor 

classification algorithm classifies radar echoes as light/moderate ran heavy rain, “big 

drops”, rain/hail mixture, biological scatterers, ground clutter/AP, dry snow, wet snow, 

ice crystals and graupel. This classification product could be used to identify potential 

attenuation areas versus clear air echoes, which is another possible way to improve our 

AEM. 

Given the general challenges facing storm-scale data assimilation using radar 

data, and as the first step to using attenuated observation directly and try to extract as 

much information as possible, much research is still needed in these area.  
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Appendix A: Calculation of Ze-W and k-W relations 

The parametrized relations between model-predicted W with Ze and k are derived 

through the following procedure: 

 1) Use Equation (9) in  (10) and solve for Λ as a function of W, yielding the 

slope parameter 1/40( )
N

W


   . 

 2) Vary W in its possible range then calculate Λ and the corresponding Ze and k 

through Equation (11) and (12). The backscattering radar cross-sections and the 

attenuation or extinction cross-sections are calculated through Mie theory method. 

 3) Performing least-square fitting to the data for Ze-W and k-W in log domain, 

leading to power-law relations 

  Z

e ZZ W   and  k

kk W
             (17)    

  The units for W, Ze and K are gm
-3

, mm
6
m

-3
 and dBkm

-1
, respectively. The 

above procedure is applied to all hydrometeor species and the results are given below. 

A.1 Rainwater 

Based on Equation (17), we are assuming Mie scattering and a 10 °C temperature. The 

relative dielectric constant used is εr = 55.43 - 37.85i, a complex number. Rain intercept 

parameter assumes the default value, 6

0 8 10rN    m
-4

, of the Marshal-Palmer DSD. 

The resulting parameters in (17) are 42.53 10Zr    , 1.84Zr   , 0.319kr    and 

1.83kr  , where subscript r denotes rain. 

A.2 Dry snow and hail 

The calculation and fitting procedures for dry snow and dry snow are the same as those 

for rain. Mie scattering theory is used for hail and snow because they have little 
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polarization signatures. For snow, 6

0 3 10sN    m
-4

, 0.1s   gcm
-3 

(s is for snow), and 

for hail 4

0 4 10hN    m
-4

, 0.917h   gcm
-3

(h is for hail). The resulting parameters in 

(17) are 33.48 10Zds   , 1.66Zds   , 48.18 10Zdh   , 1.50Zdh  , 0.00483kds   , 

1.28kds   , 0.159kdh   and 1.64kdh  . 

A.3 Melting snow and hail 

The melting ice model of Jung et al. (2008) is used to derive the formulae for melting or 

wet snow and hail. Using the same procedure in Jung et al. (2008), we can obtain the 

coefficients for the power-law relations for the wet snow: 

2 5

2

2 3

2 3

(0.00491 5.75 5.58 ) 10 ,

1.67 0.202 0.398 ,

0.0413 22.7 50.5 28.6 ,

1.06 0.579 2.03 1.24 ,

Zms ws ws

Zms ws ws

kms ws ws ws

kms ws ws ws

f f

f f

f f f

f f f









   

  

   

    

                    (18) 

 and for wet hail. 

2 5

2

2 3

2 3

(0.809 10.13 5.98 ) 10 ,

1.48 0.0448 0.0313 ,

0.256 6.28 11.36 6.01 ,

1.26 0.659 1.44 0.817 .

Zmh wh wh

Zmh wh wh

kmh wh wh wh

kmh wh wh wh

f f

f f

f f f

f f f








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  

   

   

  

fw is the melting percentage that can be calculated. Detail information for calculating fw 

can be found in Jung et al. (2008). 

 

 

 


