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CHAPTER I 

INTRODUCTION 

Problem solving is a component of the advancement of knowledge. While a person may define 

a specific problem solving technique for a specific situation, it can be argued that generalized problem 

solving is an iterative process that involves the basic steps of the gathering and analysis of data, the 

identification and classification of problems, the development and selection of alternatives to solve the 

identified problems, and the implementation and monitoring of the chosen alternatives. The step of 

data analysis has traditionally employed statistical techniques to describe data (descriptive statistics) and 

to make inferences (inferential statistics). This dissertation discusses the use ofbackpropagation neural 

networks as a tool for making inferences about data. 

"A neural network is a highly interconnected group of neurons that process information in 

parallel" (Lawrence, 1991a, p 3). Biological neural networks, such as those found in the brain, may be 

modeled on computers. Computer based (or artificial) neural networks can be described as an 

interconnecting set of simple processing units (neurodes that may be either hardware or software based), 

carrying numeric (as opposed to symbolic) data, in which the relationship between neurodes can be 

modified by adjusting weights that modify values passed between the connected units. Learning, in an 

artificial neural network, is a process of adjusting weights such that when a given input data set is 

presented, the system will produce the appropriate output data. Sarel (1994b) notes that "Artificial 

neural networks 'learn' in much the same way that many statistical algorithms do estimation . . . If 

artificial neural networks are intelligent, then many statistical methods must also be considered 

intelligent" (p 1). 

Many different architectures define how computer based neural networks function; there are 

many different learning algorithms used by computer based neural network systems. A common defining 
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characteristic of neural networks is that they all learn from examples or associations, rather than from the 

establishment of rules or mathematical formulas. 

This paper is concerned primarily with reviewing the literature related to the methodologies used 

with artificial neural networks of the backpropagation design used in the analysis of data. When using 

neural networks as a tool to analyze data, it is useful to think of the neural network as a collection of 

nodes with weighted connections between the nodes ( or neurodes, a term used to differentiate computer 

based nodes from biological nodes or neurons). 

A study describing how neural networks can be used in problem solving and data analysis, 

specifically how data should be organized to be used with neural networks and how neural networks relate 

to nonparametric statistics, is appropriate because the use of neural networks represents a new paradigm 

in the way that knowledge is maintained in computers (Decker and Focardi, 1995; Sarel, 1994b; Caelli, 

Squire and Wild, 1994; Caudill and Butler, 1992a; Weiss and Kulikowski, 1991). Where traditional 

computers are programmed with predetermined logical, often sequential steps to perform specific 

activities, neural networks are trained with examples, to either uncover correlations and similarities, or to 

filter data. Where standard artificial neural network learning algorithms are designed to be used on 

massively parallel computers (and may be relatively inefficient when implemented on common serial 

desktop computers), standard statistics are designed to be used in a relatively sequential methodology. 

Where artificial neural networks are often designed for situations where data is available in a real-time 

environment, standard statistical analysis is usually designed to be used with data that is stored and 

repeatedly accessible (Sarel, 1994b). The data techniques of the past are being overwhelmed because the 

amount of data available has increased exponentially with the advent of electronic point-of-sale terminals, 

remote sensing devices, data communication, and lower cost storage (Decker and Focardi, 1995). 

The use of neural networks represents, therefore, a new way of analyzing data. Because a 

paradigm shift means that previous foundations of knowledge are not usable, new foundations must be 

established. This paper will describe how neural networks can be used in the analysis of data in 

conjunction with traditional statistics. 



Neural Networks 

The use of computers to mimic the human cognitive function is a definition of Artificial 

Intelligence. It can be argued that a step in the evolution of Artificial Intelligence (AI) involved the 

creation of self-learning systems similar to neural networks -- systems that either chose their rules, or 

would create new ones based on their analysis of the environment. Neural Networks were originally 

formulated in an attempt to model the biological operations of the human mind. Where Expert Systems 

(another form of AI) focus on an automated process that identifies, captures and uses existing heuristic 

rules developed by expert decision makers in specific domains, Neural Networks are systems that derive 

rules based on the identification of patterns. 
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In 1982 Hopfield showed that a network of interconnected switches, used as a simplified model of 

the brain's neuron organization, could be analyzed mathematically as a physical system. Hopfield's neural 

network processed information differently from the sequential addition and subtraction of digital 

computers in that each individual input neurode received signals from other components, added them up, 

and then chose on the basis of that answer whether to send out a signal of its own. 

These different processing mechanisms have lead to differences in the way neural networks and 

digital computers are given procedures describing how to solve problems. Digital computers are 

"programmed" using logical steps or specific sequences of actions, with programs and data usually being 

separate and distinct entities. Neural Networks are "taught" by examining a series of examples,. 

discovering relationships between inputs and outputs, with programs and data indistinguishable from one 

another. 

Lawrence (1991a) provides a cognitive example describing how neural networks learn. In this 

simplistic example, there are input nodes for "large," "round," "orange," ''yellow," and "vegetable." The 

outputs are "pumpkin" and "zucchini." When the network is first initialized, it is possible that the 

system will initially decide that a large, not-round, yellow vegetable is a pumpkin. Lawrence continues 

with the example: 
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Let's suppose our untrained network initially decides that a large, round, orange vegetable is a 

zucchini. The training example has the correct data and states that the vegetable is actually a 

pumpkin. The neural network simulation software looks at the correct output and realizes that its 

guess was wrong. The software makes changes to its internal connections so that the next time it 

sees the same inputs, it will more likely produce the correct answer. The connections are 

adjusted so that the inputs are associated more strongly with the pumpkin output and less 

strongly with the zucchini output. This training is repeated for a set of examples until the 

network learns the correct answers. Once the network is trained using pre-selected inputs and 

outputs, you can run it on new input information (without any supplied outputs) and have it 

recognize, generalize, or predict answers for you (p. 6). 

Kimmel (1991) suggests that neural networks typically attempt to discover relationships among 

inputs, a form of inductive reasoning. Neural networks use mathematical techniques to uncover 

relationships between variables, with its analysis concluding when the resulting model can accurately 

predict the relationship of inputs. According to Kimmel: 

The program (or shell), given a set of empirical evidence (data), is going to try to "guess" a 

relationship among the data elements. It will continue to tinker with its guess until the guess 

becomes fairly accurate in predicting the evidence. The resulting "network" can be used as a 

model for predicting the behavior of the phenomenon in the future. 

The result is a new way to apply computing power. In the past, programmers translated 

known mathematical models into programs so that models could be executed at high speed. The 

development of the electronic neural networks allows the computer be used to build models -

and allow phenomena be examined for which no mathematical relationships previously could be 

discerned. That is why neural networks are not "programmed" they are "trained" on a given set 

of data (p 56). 

To further expand on Kimmel's example, applying it to the realm of computerized data processing, classic 

digital computer systems store two types of separate but related knowledge: 



* programs-a listing of instructions, based on sequential logic, that tell the digital computer how 

to operate. 

* data-a listing of the values of variables used by programs 
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In the traditional computing paradigm, programs and data work in concert with each other to provide the 

digital computer with the intelligence needed to carry out tasks in specific knowledge areas. To determine 

why a digital computer is performing a specific activity; one examines the program listing and reviews the 

logic described therein. To verify the results presented by a digital computer, assuming the data itself is 

correct, one evaluates the logic of the program that is using the data. 

In contrast, Neural Networks are information processing systems that do not operate in the 

traditional sequential manner. Neural Networks are parallel in nature, patterned after the way biological 

neural cells operate, and can be described as consisting of a number of interconnected nodes called 

neurodes. Numeric values are passed between neurodes in the same way that electric signals are passed 

between biological neurons. The strength of the signal is modified by weights associated with that 

connection-weights represent the strength of the relationship between neurodes and are when taken as a 

whole a form of knowledge representation. A neurode may receive many input signals either from other 

neurodes or from the outside world. Each neurode produces only one output signal. This output signal 

corresponds to the axon of a biological neuron and may be connected as weighted inputs to a large number 

of other neurons. Some of these outputs may terminate outside the network and generate control or 

response patterns. 

Traditional statistics, when performed by a computer, can be validated independently by manual 

calculations. By viewing the program code, it can be verified that statistical programs are using the same 

statistical logic that would be used were calculations to be done manually. However, since neural 

networks combine both program and data in the weights connecting the network's neurodes, a direct 

examination of the weights will not intuitively provide an understanding of how the computer based 

neural network arrived at the information being provided. Part of the purpose of this dissertation will be 

an attempt to bridge the gap of understanding between traditional statistics and neural networks. 



From the standpoints of the mechanics of a computer based neural network, at a minimum 

system will have an input and an output layer, and may contain one or more intermediate (or hidden) 

layers. The input layer consists of several nodes, each receiving a specific category of data (ex., 

temperature or distance) and can be characterized as independent variables. The output layer consists of 

one or more nodes, that represent the result of the network's interaction and can be characterized as 

dependent variables. The weights that connect the notes of the input layer, through any hidden layers, to 

the output layer, represent relationships between the independent and dependent variables. The 

objective of the neural network is to iteratively adjust the weights between the nodes such that when a set 

of data is presented at the input layer (a case of the independent variables), a corresponding response is 

generated at the output layer (the correct value of the associated dependent variable.) In effect, a neural 

network attempts to map inputs to outputs, and assumes that learning, parameter estimation and 

information processing are inherently parallel, and that no additional knowledge is needed about the 

system under analysis (Caelli et al., 1994). 

Types of Problems Suited to Neural 

Network Analysis 

Sarel (1994b) notes that artificial neural networks are used in three main ways: 

1. as models of biological nervous systems and models of cognitive intelligence 

2. as real-time adaptive signal processors or controllers for use in applications such a~ robots 

3. as data analytic methods 
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This paper focuses on neural network use as a data analysis method, but other areas will be 

discussed to provide background information. Neural networks are popular techniques used in forecasting 

(Decker and Focardi, 1995). Historical data are used in training the neural network to identify patterns. 

Once the network has learned the patterns, the most recent historical data are used to predict the future. 

Klimasauskas, (1989) used NeuralWare software to construct a multilayer network and to predict the 

level of Standard and Poor (S&P) 500. Using three years' of data, he trained the network with the 

previous ten weeks as input. Klimasauskas reported that neural networks outperformed 4-week and 



IO-week moving average methods. On the whole, the method is able to predict the next week's closing 

S&P price, with an average accuracy of 5%, and correctly predict the trend 61 % of the time. 

Neural Networks are also good at classification or cluster analysis (Decker and Focardi, 1995). 

Classification would use a supervised learning with historical data for such tasks as targeting direct mail, 

fraud detection or bankruptcy prediction where patterns from previous known cases would be extracted 

from data by the neural network as used to predict future cases. Cluster analysis would use unsupervised 

learning to group data so that all members of a group are similar according to some characteristic(s), and 

is useful in such activities as setting insurance tariffs or customer segmentation. 

From a more general perspective, neural networks are good at solving several types of problems. 
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Pattern recognition, filtering, generalization, and prediction are a few examples to discuss. A pattern may 

consist of visual images, numeric information, or symbolic data. A neural network is good at recognizing 

patterns, even when the information contains noisy, ambiguous, or distorted data. In a related activity to 

pattern recognition, neural networks are also good at identifying patterns and removing noise. The 

process of eliminating noisy, ambiguous or distorted data from patterns is called filtering. 

From a problem solving standpoint, generalization is "the ability to draw conclusions about 

something that hasn't been seen before, when the information given is different from, but similar to, 

information seen before" (Lawrence, 1991a, p 15). Many problems have the ability of being solved based 

on rules or formulas that can be easily identified and placed in expert systems. Because neural networks 

learn by example and not by predefined rules, they can be used to solve complicated, nonlinear problems, 

in which heuristic rules are not available. 

Because of neural networks pattern recognition and generalization abilities, they can be used in 

the prediction of trends. This prediction of trends is a special case of pattern recognition in which time is 

a part of the input pattern. Based on a training set of data, the neural network is often able to generalize, 

recognizing patterns that we might not have explicit rules or formulas to describe. From the network's 

standpoint, it does not necessarily know that the pattern it is analyzing is a future event, it just knows that, 

for example, given specific environmental conditions, the S&P 500 is likely to be at a specific level. 



From an unsupervised learning standpoint, neural networks can be trained to, for example, recognize 

three-dimensional objects using sonar and echolocation (Dror, Zagaeski, and Moss, 1995) 
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Lawrence ( 1991 a) suggested that because of their nature, neural networks are not good at 

mathematical precision, serial logic, deduction or logical thinking. In contrast, rule based ex"Pert systems 

are very good at deduction and serial logic, but bad at generalization and error tolerance. Neural networks 

would not be good at learning operations that involve discrete steps. For example, while a neural network 

could recognize whether a list of ingredients is likely to make a good cake, it would be unlikely to be able 

to describe the steps used in making the cake. 

Cognitive vs. Non-Cognitive Basis for 

Neural Network Research 

Current interest in Neural Networks originates primarily from the area of Cognitive Psychology 

through the work of David Rumelhart,. Geoffrey Hinton and Ronald Williams at the University of 

California at San Diego (Kimmel, 1991). Often they and other colleagues are collectively called the 

Parallel Distributed Processing group (or the PDP group), after the title of a series of books of the same 

name that they edited beginning in 1986. Early pioneers laying foundations for neural networks include 

Hebb (1949) who first modeled learning processes on the computer. The general concept of 

mathematically modeling neurons was put forward by Rosenblatt (1958). However, research in the field 

significantly slowed during the mid 1960 when Marvin Minsk1 and Seymor Papert (1988, expanded 

edition), showed that the Neural models being built at that time could not solve the "exclusive/or" 

problem. The work of Rumelhart, Hinton and Williams (and others of the PDP group) sparked renewed 

interest when they showed that the use of a nonlinear transfer function and the use of multiple layers 

would correct the problems pointed out by Minsky and Papert. 

The use of neural networks can be loosely broken into two distinct areas. One area consists of 

those seeking to use neural networks as a modeling tool to explain human cognitive behavior. The other 

area consists of those using neural networks as an engineering tool for analysis of data. With those using 

neural networks as a modeling tool, there are several different academic areas of interest. One group is 



9 

focusing on using neural networks in modeling brain functions in an attempt to understanding how 

learning and thinking are accomplished. For example, Norris ( 1990) used neural networks to help 

validate possible psychological explanations for idiot savants (individuals with limited general intellectual 

abilities, who also display exceptional skills in one narrow area of cognitive performance). In another 

area Plunkett and Marchman (1991) have used neural networks to help validate conflicting theories of 

how children learn language. This group uses neural networks as a cognitive research tool to verify 

philological theories of how the brain functions. This cognitive psychology group is concerned that the 

neural network input/output rules and learning algorithms used in computers also mimic biological 

functions of neurons in the brain. 

With those using neural networks as an engineering tool, there are several different areas of 

interest. Researchers in this area seem to view neural networks as a new statistical tool, analogous to 

multiple regression, Fourier analysis, or discriminate analysis (Lapedes and Farber, 1987). Neural 

networks are good at pattern matching activities. The pattern matching ability of neural networks can be 

used in very diverse applications. These applications include cognitive applications such as language 

acquisition (Plaut and Hinton, 1987; Bottou, Soulie, Blanchet & Lienard, 1990; Kammerer and Kupper, 

1990; Plunkett and Marchman, 1991). In addition to the cognitive applications, neural Networks are also 

used other fields such as signal processing (Lapedes aµd Farber, 1987), image processing -- especially 

those that use Fourier methods (Silverman and Noetzel, 1991), image compression (Rosenfield and Kak, 

1982; Barsley and Sloan, 1988; Mougeot, Azencott & Angeniol, 1991), discriminate analysis (Rosenblatt, 

1958; Silverman and Noetzel, 1990; Webb and Lowe, 1990; Yao, Freeman, Burke & Yang, 1991; 

Barschdorff, Monostori, Ndenge & Wostenkujler, 1991), multiple regression analysis (Stone, 1986; 

White, 1990; Chance, MacLin, and Lykins, 1993), financial analysis and forecasting (Stein, 1991); and 

statistical process control (Pugh, 1989; 1991). From a statistical standpoint, this group's concern is not 

that the networks model human neurological functions, but that the neural network learning algorithms 

are efficient, robust, and consistent. 
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Categories of Data Analysis 

Much of this discussion is based on Kerlinger (1986). The discussion concerning problems 

suitable for Neural Network data analysis is based both on the objectives of the research being conducted, 

and on a definition of the word theory. From a scientific perspective, a theory is defined as "a set of 

interrelated constructs (concepts), definitions, and propositions that present a systematic view of . 

phenomena by specifying relations among variables, with the purpose of explaining and predicting the 

phenomena." (Kerlinger, 1985, p 9). From a layman's perspective, a theory might be described as a 

plausible explanation of how something works, a rule-of-thumb. When looking at theory from a scientific 

standpoint, the usefulness of a theory is based upon its ability to successfully predict; "very nature of the 

theory lies in its explanation of observed phenomena" (Kerlinger, 1985, p 9). When looking at theory 

from a layperson standpoint, the usefulness of a theory is based on its ability to be successfully 

implemented.· Each definition of theory implies different methods for use in practical applications. 

Academic Status of Neural Network Research 

Roger Ratcliff (1990) suggests that we are currently in a transition between stages of a process 

that introduces new ideas to academia. With regards at least to the cognitive focus of Neural Networks, 

Ratcliff suggests that we are reaching maturity in the first stage called exploration. During this 

exploration stage, the criteria used to evaluate an application is necessarily loose because one is interested 

in gathering as much data as possible in as many different circumstances as possible, from a large range 

of models, exploring in which domains a model is best suited. During this first stage, the emphasis is on 

accounting for major findings within various domains of knowledge. · Ratcliff suggests that we need to 

enter a second stage where we expand our focus by explaining the reasons for the failures, examining the 

limitations of the various models, and identifying phenomena that are not explained by these models. 

During this second stage, models compete with each other within their theoretical framework, and are 

evaluated according to more stringent criteria. The foci in the second stage changes from one of "let's try 

this model with that variation and see what happens" to one of "what are the strengths and weaknesses of 

this model." 
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Definitions of Scholarship 

Boyer (1990) has argued that the American professoriate is in the middle of a societal paradigm 

shift that will require an expanding definition of scholarship. It is suggested that where the original 

purpose of the professoriate was to expand the frontiers of knowledge (pure research), that society is now 

expecting the professoriate to perform scholarly activities. According to Boyer there are four components 

to scholarship, the Scholarship of Discovery, the Scholarship of Integration, the Scholarship of 

Application, and the Scholarship of Teaching. Boyer defines four components to scholarship: 

* Scholarship of Discovery-the advancement of knowledge, the confrontation and investigation of 

the unknown, the seeking of understanding for its own sake (traditional basic research). 

* Scholarship of Integration-giving meaning to isolated facts, linking concepts across disciplines in 

an authenticating process, synthesizing knowledge by placing specialties in larger context, 

educating nonspecialists 

* Scholarship of Application-applying knowledge to consequential problems, determining how 

knowledge can be helpful to individuals and institutions 

* Scholarship of Teaching- identifying pedagogical procedures that directly relate to the subject 

being taught, the education and enticement of future scholars, the transformation, extending, and 

transmitting of knowledge to others 

The scholarship of discovery often uses analytical processes. A part of the process of establishing 

that a theory is an expression of reality, is being able to express the theory in mathematical terms, and 

showing that no part of the quantitative description contradicts what we observe in the real world. Van 

Dalen (1979) notes that sometimes the theory comes first (deduction) and a mathematical model is built to 

predict how a phenomenon will react given the environment. Then, evidence is gathered and compared to 

the model to support or refute the theoretical relationships. Other times, when analyzing a phenomenon, 

certain relationships are observed (induction), which leads to the creation of a mathematical model, which 

leads to the development of a theory to explain the model. 
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Aristotle developed a deductive argument (syllogism) to provide a means of testing predictions or 

conclusions. A valid syllogism contains three parts: a major premise ( or statement of reality) and a minor 

premise are used to provide evidence for the third part, a conclusion. The premises are stated in a way 

that relate them to the conclusion such that if the premises are true, then it follows that the conclusion is 

also true. Deductive reasoning assumes an existing body of knowledge (premises), and e'-.iends that body 

of knowledge by deducing new relationships between premises. Additionally, the conclusion of a 

deductive argument does not extend beyond what is already known and stated in the premises. 

The existing body of knowledge is often initially established using inductive reasoning. In 

inductive reasoning, one makes observations of specific relationships in reality, and general conclusions 

are drawn from these specific observations. Van Dalen (1979) suggests that these general conclusions 

that are arrived at by induction may be used as premises for deductive inferences. Additionally, it is 

through inductive reasoning that the body of knowledge is extended by arriving at conclusions of varying 

degrees of probability. 

This paper is based on aspects of the Scholarship of Integration (it looks at how neural networks 

are used in a variety of disciplines) and the Scholarship of Application (how can what has been learned be 

used to solve specific problems.) 

Method of Research 

The focus of this study is methodological insofar as it seeks answers to the problem of objective 

evaluation of research data using a neural network as a quasi statistical technique. Procedures for 

methodological research are similar to that of historical research. Methodological Research as defined by 

Kerlinger (1986) "is controlled investigation of the theoretical and applied aspects of measurement, 

mathematics and statistics, and ways of obtaining and analyzing data" (p 622). 

Historical Research, as defined by Key (1990) is "employed by researchers who are interested in 

reporting events and/or conditions that occurred in the past. An attempt is made to establish facts in order 

to arrive at conclusions concerning past events or to predict future events" (p. 118). Insofar as this study 

could also be classified as Scholarship of Application (Boyer, 1990), where basic knowledge previously 



discovered in one academic area is applied to another academic area, this study is similar to historical 

research. 
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Van Dalen (1979) seems to allude to historical research being able to be used as a pattern for the 

scholarship of application by noting that historical research can be used to "appraise the past facts 

encountered in everyday life" (p 350). Van Dalen suggests that the following steps be used in a historical 

study; formulating the problem, collecting the source materials, criticizing source materials, formulating 

hypotheses to explain events or conditions, and interpreting and reporting the findings. 

Source Materials 

Source materials for this study are articles published in research journals. In answering the three 

basic questions of the study, a review of literature was conducted and a synthesis of concepts performed. 

The review of literature was based on literature review searches from Dissertation Abstracts, ERIC, 

PsychLit, and Business Periodical's Index. Key word searches on the Internet using Lycos, Alta Vista, and 

Excite were also performed. 

Literature Review and Synthesis 

Database searches using ERIC, PsychLit, the Wilsonline series, and Dissertation Abstracts were 

made using the keywords of "Neural Network" and "back propagation." Several hundred "hits" were 

examined for insights in applying neural networks to the data analyses problem. The Review of Literature 

section contains summaries of articles from various disciplines relating to the use of back propagation 

neural networks. The purpose of the reviewwas to take concepts of data analysis and interpretation that 

were found useful in one academic area and apply them to solving business problems. 

Problems Suitable for Neural Network Data Analysis 

It is suggested that the first step in deciding if to use a neural network for data analysis is to 

examine the problem and determine what traditional statistical methods would be appropriate. Neural 

networks tend to use pattern matching techniques to discover similarities in data. While neural networks 
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may be used to analyze many different types of problems, when using networks as a tool for data analysis 

the problem must be able to be described by an analytical equation. Based on the Review of Literature, 

back propagation neural networks as a data analysis tool have been found to be at least equivalent or 

sometimes better that traditional statistics in the following cases 

• Fourier methods (Kohonen, 1984; Lapedes and Farber, 1987) 

• Nonlinear transfer function models (Lapedes and Farber, 1987) 

• Discriminant analysis (Rosenblatt, 1958; Lippmann, 1987; Silverman and Noetzel, 1990; 

Webb and Lowe, 1990; Yao, Freeman, Burke & Yang, 1991; Barschdorff, Monostori, 

Ndenge & Wostenkujler, 1991) without the need to make parametric assumptions 

concerning the underlying population distribution (Weiss and Kulikowski, 1991) 

• Regression (Stone 1986; Webb and Lowe, 1990) without the need for parametric 

assumptions of the population (White, 1990) 

• Box-Jenkins Techniques (Tang, de Almeida, and Fishwick, 1990; Varfis and Versino 1990; 

Sharda and Patil 1990; Reynolds, Mellichamp and Smith, 1995) 

• Maximum Redundancy Analysis (Sarle, 1995b) 

• Principal Component Analysis (Kohonen, 1984) 

• Financial analysis and forecasting (Stein, 1991) 

• Statistical process control (Pugh, 1989; 1991) 

Once it has been determined that neural networks are appropriate for the problem under study, 

the next step is to choose the network architecture-how neurodes will be interconnected. 

Nature of the Problem 

Traditional statistical techniques used as tools for decision making are logic oriented and work 

well when programmed on digital computers. Allman (1989) suggests that neural networks are both 

better in some areas as predictors of the human mind, and more useful as an aid in decision making. The 

problem is that because neural networks are a new technology, there is confusion surrounding how data 

should be organized as inputs to neural networks, and uncertainty in the interpretation of both measures of 



significance and how these measures relate to classic statistics, leading to a lack of confidence in the use 

of neural networks for non-cognitive research. 

Self Learning Svstem Characteristics. 
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When analyzing artificial neural networks, Sarle ( 1994b) notes that it is important to distinguish 

between neural network models and the algorithms used in learning (adjusting interconnecting weights 

between neurodes). Sarle suggests that many neural network models are "similar or identical to popular 

statistical techniques such as generalized linear models, polynomial regression, nonparametric regression 

and discriminant analysis, projection pursuit regression, principal component and cluster analysis" (p. 1). 

However, Sarle also notes that many neural network researchers are engineers, neurophysiologists, or 

computer scientists "who know little about statistics and nonlinear optimization" (p. 1). 

Kolen and Goel (1991), drawing on the earlier work of Samuel (1967) and Minsky and Papert 

(1988) suggest that an information processing system capable of learning must have several interrelated 

abilities. White (1990) added a fifth dimension. Abilities ofleaming systems include: 

1. Representational Adequacy (internal representation of what was learned) 

2. Credit Assignment (able to identify why an incorrect response was given) 

3. Generalization (the ability to take what is learned from specific examples and generalize to 

generic abstractions) 

4. Computational Complexity (learn in a reasonable amount of time) 

5. Reliability (ability to yield the same basic results with the same examples trained on neural 

networks under the same conditions) 

Van Dalen (1979) suggests that when determining confidence in a statistical research tool, 

validity, reliability, objectivity, and suitability should be considered. Many aspects of statistical validity 

are covered by Kolen & Goel's definition of generalizability, and many aspects of suitability are covered 

by the definition of representational adequacy. However, the topics ofreliability and objectivity do not 

seem to be addressed by any of the suggested learning system evaluation criteria of Kolen & Goel. It is 

therefore suggested that the criteria of reliability (ability to yield the same results when the same 



exemplars are trained on networks under the same conditions) and objectivity (ability to obtain the same 

results when computer program is run on different machines). 

Roy, Govil and Miranda (1995) define the problem in terms of the need for a Robust and 

Efficient Learning theory, and list the following criteria: 
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1) Perform network design task: learning methods must be able to design an appropriate network for 

a given problem without the need for external input in the form of a predesigned structure 

2) Robustness in learning: should not have local minima problems, problems of oscillation, and 

catastrophic forgetting. 

3) Quickness in learning 

4) Efficiency in learning: when provided with a finite number of training examples, should be 

computationally efficient 

5) Generalization in learning: must be able to generalize reasonably well so only a small amount of 

network resources would be needed. 

A problem identified as a result of this study was that there is a need to assess procedures for 

organizing data for use with neural networks in modeling business problems. As Sarel (1994b) noted 

"Few published works provide much insight into the relationship between statistics and neural networks" 

(p 1). 

Purpose and Type of the Research 

The purpose of this study was to assess literature with regards to the use of back propagation 

based neural networks using supervised learning design for data analysis. Definitions of Scholarship are 

first presented to provide a framework for the analysis. The methodology described in this chapter was 

designed to address the following questions concerned with using neural network in solving business 

problems based on the Review of Literature of the previous chapter. 

1. What are the characteristics of a problem that make it suitable for investigation using neural 

networks? (Problems Suitable for Neural Network Data Analysis) 
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2. Given the problem, how should the neural network model be designed? (Intellligent System 

Design Methodology) 

3. Given the problem and chosen network design, how should data be prepared for presentation 

to a neural network for modeling? (Neural Network Data Preparation) 

The research falls under Scholarship of Application as defined by Boyer (1990). The type of 

research is Methodological Research as defined by Kerlinger (1986) using a Historical Research 

framework. Literature concerning the application of back propagation neural networks from many 

academic areas was reviewed to see if application techniques valid for one academic discipline could be 

applied in the business area. Based on the information presented in the Review Literature, conclusions 

are drawn on how to prepare data for model analysis using back propagation neural networks and apply 

them to solving business problems. 

Research Question 

This study attempts to answer the following research question: 

Can Back propagation Neural Networks be used in Research to establish causality between 

variables? 

Definitions and Terms 

Neural Network Related 

Artificial Intelligence (AI): a term coined in 1956 by John McCarthy as the theme of a 

Dartmouth College Conference to describe computers with the ability to mimic or duplicate functions of 

the brain (Stair, 1992). The concept of artificial Intelligence has evolved to include the concept of what 

computers can "do" that mimic human functions (Hutchinson and Sawyer, 1992). What AI "does" 

includes: 

Robotics -- an automatic device that performs functions normally ascribed to humans 

(unintelligent robots), or that operates with what appears to be almost human intelligence 

(perceptron robots). 



Natural Language Processing -- to enable the computer to communicate with the user in the 

user's native language, or translating text from one language to another. 
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Expert System -- solves problems that require ex1>ertise to understand. Weiss and Kulikowski 

(1991) suggest that expert systems are designed to capture an expert's knowledge by codifying 

"rules of thumb" in situations where the complexity of the problem makes automatic learning 

difficult. Because many experts do not logically step through their decision making process (they 

make decisions automatically based on based on the information at hand), this process of 

knowledge acquisition is facilitated by knowledge engineers who are trained in capturing this 

knowledge in the form of a set of decision rules or other representational elements. This 

knowledge is then made available to non-experts for their use in solving similar problems. 

Virtual Reality -- allows the user to experience being inside~ computer-generated environment 

that some call cyberspace. Rucker, Sims, and Mu, (1992) define VirtualReality as a technology 

that creates the illusion of being immersed in an artificial world (synthetic experience), or of 

being present in a remote location in the physical world (remote control). The highest 

development of Interactive Multi-media technology creates a simulation that becomes a virtual 

reality. 

Back propagation: a method that enables a neural network to learn to discriminate between 

classes of patterns that are not linearly separable (Rumelhart, Hinton, and Williams, 1986). Based on the 

Least Mean Square rule (also called the Delta Rule), back propagation operates in a two step sequence to 

optimize interconnecting weights in a way that minimizes sum of the errors squared. For each example 

presented to a neural network there is a "forward pass through the network to determine the network's 

current options, followed by a backward pass to determine, based on the difference between these 

[calculated] outputs and the correct ones, how [interconnecting] weights should be changed" (Smith, 

1993, p 23). It is estimated that 80% of current neural network projects use back propagation because 

they are "simple to implement, solve most problems correctly, and are 'unfuzzy' about how they are used" 

(Caudill and Butler, 1992, p 173) 
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Cluster Analysis: the statistical equivalent to the neural network concepts of competitive learning 

or adaptive vector quantization (Sarle, 1994b). 

Data: facts, images, or sounds that are the raw materials used to be processed by information 

systems in the creation of information and knowledge (Capron, 1995) 

Data Reduction: the statistical equivalent to the neural network concepts of unsupervised 

learning, encoding, or autoassociation (Sarle, 1994b). 

Discriminant Analysis or Regression: a statistical tool that is the equivalent to the neural network 

concepts of supervised learning or heteroassociation (Sarle, 1994b). 

Error Function or Cost Function: the neural network equivalent to the statistical concept of an 

estimation criterion (Sarle, 1994b). 

Error Surface: a graphical representation of the error of a model with respects to actual data. In 

a linear model (y = ho + h 1x) an error surface would be represented by a three-dimensional model with 

the "height of each point on this error surface represents the error on a certain set of examples of one 

particular linear model-the model whose parameters correspond to that point's h0 and h 1 coordinates. 

The optimal weights are the pair corresponding to the lowest point on the error surface. The best model is 

the one that produces the least error" (Smith, 1993, p 60). In statistical terms, the error term is called a 

residual. 

Estimation: the statistical equivalent to a neural network concept of training, learning, adaptation 

or self-organization (Sarle, 1994b). 

Estimation Criterion: the statistical equivalent to the neural network concepts of error function or 

cost function (Sarle, 1994b). 

Features: the neural network equivalent to the statistical concept of variables (Sarle, 1994b). 

Generalization: concerning neural networks and in terms of useful model responses, "after some 

amount of training, to novel (unlearned) inputs" (Peterson and Hartman, 1989, p 481). (See also Self 

Learning Systems) 

Gradient Descent: a procedure for modifying a network of weights by evaluating a point's current 

position in error space. At a point in error space, the slope of the error surface is computed. Weights are 
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changed in the direction in which the error surface has the steepest decrease. Using new weights, 

calculate the new point in error space and repeat the process iteratively until the values of the weights 

approach the lowest point in the error surface. (Smith, 1993). 

Input: the neural network equivalent in statistics to an independent variable (Sarle, 1994b). 

Information: Data organized in a way that is useful to an individual in their decision making 

process (Capron, 1995). 

Interactions: the statistical concept equivalent to a neural network's higher-order neurons (Sarle, 

1994b). 

Knowledge: a combination of instincts, ideas, rules, and procedures that guide actions and 

decisions (Miller, 1985). One purpose of Artificial Intelligence is to increase the efficiency and 

effectiveness of knowledge development. 

Learning: with respect to neural networks, learning is a process "designed to find the coefficients 

or weights that provide the best fit between the mapping function and data consisting of examples of the 

target function" (Smith, 1993, p 59). (See also Self Learning Systems). The neural network term used 

describe the concept of statistical estimation (Sarle, 1994b ). 

Supervised Learning: A control system in which the difference between a desired state (defined 

with a prioir information, usually given to the system as a training set) and a calculated state is 

iteratively measured as an error, which is used in a feedback loop to modify the algorithm used in 

calculation. The procedure is repeated until the error reaches a specified level. Learning is 

therefore the memorization of a given sequence of controls (Borghese & Arbib 1995). 

Reinforcement Learning: With no a prioir information available, learning is a system's self

discovery of a sequence of algorithms and states that will accomplish a specified task. The credit 

assignment problem is the function used to describe which sequence increases or decreases the 

overall performance of the system. Reinforcement learning approaches include back propagation 

through time, minimum principle, and dynamic programming (Borghese & Arbib 1995). 

Local Minima: a lumpy error surface may have several valley's that are not the lowest in the 

global error surface. These valley's are called local minima. While an interesting theoretical problem, in 



practice "there is almost no risk that a model's performance would be seriously impaired because the 

system was trapped in local minimum that could not be avoided by adding more hidden units" (Smith, 

1993, p 62). 
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Mapping: the result of an equation produced by statistical modeling whereby a dependent 

variable is mapped in the space of the independent variables. The mapping of a linear equation in two 

dimensions ( one independent and one dependent variable) produces a straight line. The mapping of a 

non-linear equation in two dimensions produces a curved line. The mapping of a linear equation in three 

dimensions (two independent and one dependent variable) produces a plane. Mapping of any number of 

variables can occur, but can not be visualized beyond three dimensions. (Smith, 1993) 

Monotonic Learning: occurs when an agent may not learn any knowledge that contradicts what 

it already knows. Monotonic learning greatly simplifies artificial learning systems in environments 

assumed to be constant. An agent is said to learn non-monotonically when it replaces old knowledge with 

new knowledge when it believes there is sufficient reason to do so (Wray, Phillips, Rogers, and Walsh, 

1994). 

Neural Network: "a highly interconnected group of neurons that process information in parallel" 

(Lawrence, 1991a, p 3). 

Neurode: the processing element of neural networks which are the computer equivalent to 

biological neural cells or neurons in the brain. Each neurode typically receives many signals over its 

incoming connections; some from other neurodes, others from the outside world. Each neurode produces 

one output signal which may be transmitted to several other neurodes, or to an end device (Caudill & 

Butler, 1992). All neurodes·fundamentally operate in the same manner; they sum weight-adjusted inputs, 

possibly add a bias value, and finally pass the results through a transfer (or activation) function to produce 

an output that is offered for other neurodes to use (Kempka, 1994a). 

Noise: One of two primary sources of modeling error. "Noise is the effect of missing (or 

inaccurate) information about the world" (Smith, 1993, 17). The concept of noise includes inaccuracies in 

the data and in the measuring instrument. Inaccuracies may also be due to the fact that the independent 

variables do not contain all the information needed to determine the dependent variable. Noise is not an 



inherent randomness, lack of causality, or inaccuracy in the mapping function (which may not have the 

same form as the target function.) 
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Observation: the statistical equivalent to the neural network concepts of patterns or training pairs 

(Sarle, 1994b ). 

Output: the neural network equivalent to a statistical predicted value (Sarle, 1994b). 

Overfitting: because neural networks are universal approximators in most cases, given enough 

time and enough nodes, a neural network can model any data set to any degree of accuracy required. 

However, we usually want neural network models to learn something about the past that can be 

generalized into the future. Overfitting is said to occur when the network "models noise in addition to the 

underlying function" (Smith, 1993, p 113) thereby making the model too specific for generalized 

prediction. 

Patterns or training pairs: the neural network equivalent to the statistical concept of observations 

(Sarle, 1994b). 

Parameter estimates: are the statistical equivalent to the neural network's (synaptic) weights 

(Sarle, 1994b). 

Residual: a statistical term equivalent to errors in neural networks (Sarle, 1994b). 

Regression or Discriminant Analysis: a statistical tool that is the equivalent to a type of neural 

network, supervised learning or heteroassociation (Sarle, 1994b). 

Self Learning Systems describe "how" a class of AI applications perform their functions. One of 

the attractive features of a Neural Network is that it is a self learning system. Kolen and Goel ( 1991 ), 

drawing on the earlier work of Samuel (1967) and Minsky and Papers (1988) suggest that an information 

processing system capable of learning must have several interrelated abilities of representational 

adequacy, credit assignment, generalization, and computational complexity. Van Dalen (1979) suggests 

that when determining confidence in a statistical research tool, reliability, objectivity should be also be 

considered. Roy, Govil and Miranda (1995) suggest that quickness in learning and the ability to 

automatically perform network design should be considered. (See also Learning) 
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Representational Adequacy: the system must be able to internally represent what it knows and 

what is needed to be learned. This concept could be ex1Janded to include the statistical concepts 

of suitability (Van Dalen, 1979) -- the system must be capable of analyzing the problem under 

question. This concept seems to be similar to concept-learnability issues suggested by Haussler 

(1989) and Kolen & Goel (1991). 

Credit Assignment: once implemented, when incorrect performance has been identified, the 

system must be able to identify its structural components that are responsible for incorrect 

performance, and must be able to make modifications so that correct performance can be 

achieved. 

Perform Network Design: distantly related to credit assignment, a network learning method 

should be able to design an appropriate network for a given problem without the need for 

external input or predefined structures (Roy, Govil and Miranda, 1995) 

Generalization: what the system learns from specific examples must be generalizable to general 

abstractions that are needed to perform specific tasks. Generalization directly concerns itself 

with the statistical concept of external validity. Because of the training rather than programming 

nature of neural networks, one could also argue that generalization is also concerned with 

internal and instrument validity. Kempka (1.994b) suggests generalization is the ability to "infer 

from incomplete data or the success of acting upon data not included during training" (p 42). 

Similar to the Generalized Learning of Roy, Govil and Miranda (1995). 

Computational Complexity: the system must be computationally efficient so that learning can 

occur in a reasonable amount of time (Kolen and Goel, 1991). Similar to the Efficiency in 

learning of Roy, Govil and Miranda (1995). 

Reliability: the system must be able to yield the same basic results with the same exemplars are 

trained on networks under the same conditions. White ( 1990) called this statistical consistency 

in his evaluation of neural networks performing nonparametric regression functions. A 

procedure is consistent if the approximation error of the forecast approaches zero as the sample 

size approaches infinity. Procedures that are not consistent will make errors in classification, 
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recognition, or forecasting. Procedures that are consistent will only make errors due to the 

inherent randomness of fuzziness of the true relation between independent and dependent 

variables. Similar to the Robustness in Learning of Roy, Govil and Miranda (1995) 

Objectivity: the system must yield the same findings regardless of the equipment used to run the 

computer program, or who administers or records the findings (Van Dalen, 1979). 

Statistical Modeling: the development of equations that approximate the general pattern of a 

relationship of a dependent variable with one or more independent variables. Modeling techniques, such 

as linear and non-linear regression, develop mapping functions that approximate the shape of the real 

world data. (Smith, 1993) 

Squashing function: a type of activation function that is designed to give outputs that are 

bounded, often Oto 1 or -1 to +l. (Sarle, 1994b) 

Supervised Learning: Uses both independent (network input) and dependent (network output) 

data as a unit, the network seeks to "learn" the relationships between the patterns described by the 

variables, such that when an input pattern is presented the appropriate output patterns is generated by the 

network. Based on these cases, generalizations are formed. 

Target or Training Variable: a neural network equivalent to a statistical dependent variable 

(Sarle, 1994b). 

Theory: "a set of interrelated constructs (concepts). definitions, and propositions that present a 

systematic view of phenomena by specifying relations among variables, with the purpose of explaining 

and predicting the phenomena." (Kerlinger, 1985, p 9) 

Training: a neural network concept of learning that is the equivalent to statistical estimation 

(Sarle, 1994b). 

Universal Approximator: A mapping function that is flexible enough to take any form the data 

requires. A model that is mathematically proven to approximate any function to any desired degree of 

accuracy. Multi layered feed forward Neural Networks using back propagation have been proven to be 

universal approximators (Hornik, Stinchcombe, and White. 1990). 
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However, Wray and Green (1995) suggest that because networks are simulated on computers 

inherently have rounding errors in computations, neural networks when implemented on computers may 

not be universal approximators. 

Unsupervised Learning: The use of dependent data for both input and output in a network. With 

unsupervised learning, data patterns are discovered based on logical characterizations of the regularities 

(Decker and Focardi, 1995) 

Variable: a statistical concept that is the equivalent to a neural network feature. Independent 

variables are neural network inputs, predicted values are called outputs, and dependent variables are 

called neural network targets or training values (Sarle, 1994b). 

Population Distributions 

A list of all possible outcomes of an event (A) and their corresponding outcomes is a probability 

distribution. Many events may be modeled on distribution functions. 

The normal distribution uses estimates of the population's mean and variance to create a bell 

shaped curve that has been shown to model many different types of continuous random variables. The 

standard normal distribution is defined as a normal distribution with a mean of zero and a variance of 

one. A standardized normal random variable (Z) is one that has been subtracted from the mean and 

divided by the standard deviation of the population. 

1 [ J -- 1 2 • ~ exp - - ( x- JiJ 
V2m:r 2cr 2 

(1-1) 

X-µ z = ---- (1-2) 

where: µ = mean of population 

u = standard deviation of population 

x = sample observation 

Z = standardized normal variable 

The binomial distribution is a symmetric distribution in which the elements are discrete, and may 

be split into two classes. These classes may be called success or failure. Assuming a probability of 50%, 

as population samples exceed 100, the binomial distribution approaches the normal distribution. 



26 

P(X) 
n! X n-X 

p (1-p) 
(1-3) where: 

X!(n-X)! = the number of trials 

= the probability of success on a single trial 

X = the number of successes in the n trials 

µ np (1-4) µ = binomial population mean 

O' = binomial population standard deviation 

cr =V n p ( 1 - p) 
(1-5) 

The Poisson distribution is a nonsymmetric distribution in which the mean equals the variance. 

The Poisson distribution has been found to closely model events that occur randomly over a period of 

time. It has been found useful in modeling the number of times a particular event occurs over a period of 

time, or the number of times an event occurs over a specific area or volume (such as a manufacturing 

defect). 

X -;\. 
'A e 

P(X)= ----

X! 

(1-6) 

where· A = average number of successes per unit of time 

e = base of the natural logarrthmic system (2.71828 .. ) 

X = designated number of successes 

note: both the mean and the variance of the poisson random variable are equal t~ 

The exponential distribution is a continuous distribution. Where the Poisson is a distribution 

representing the number of arrivals over a specific period of time, the exponential distribution models the 

time between successive arrivals. The exponential distribution has been found useful in modeling 

situations in which subjects wait in a line. 

P(X) 
-(1/'A) 

e (1-7) 

where: 01/ A = time between successes 

e = base of the natural logarithmic system (2. 71828. 

note: the exponential random variable's mean and standard deviation equals 1tl 

The !-distribution is similar to the normal distribution in that it is symmetric to zero, however, its 

shape is dependent specifically on the degrees of freedom (given the result, the number of sample values 

that are free to vary to obtain the result), or generally on the number of items in the sample. When one 

substitutes the sample variance for the population variance in normalizing items, the sample normalized 

items follow the t-distribution, rather than the normal distribution. For sample sizes greater than 30, 

there is little difference between the t-distribution and the normal distribution. The t-distribution is often 

used in establishing confidence intervals and for determining whether differences in the means of two 

samples are probably based on natural variations in sampling, or whether there is a real difference. The t-

distribution is used when the population is normally distributed, the mean of the population is known, 
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and the standard deviation of the population is unknown and replaced by the standard deviation of the 

sample. Given these requirements, the t-distribution is used as a method of testing and constructing 

confidence intervals for the mean of sample populations. 

The chi-square distribution (c2) is a nonsymmetrical, skewed right distribution that is derived by 

sampling the distributions of the sum of squares of independent, normally distributed variables, that is 

dependent only on the degrees of freedom of the sample. c2 is used to construct confidence intervals or 

perform hypothesis testing on the standard deviations or variances of sample populations. Keppel ( 1982, 

p 46) suggests that degrees of freedom (df) can be thought of as: 

df = [ 
numberof J _ [ J _ number of 

independent . 
restraints 

observations 

or (1-8) 

The F-distribution is a nonsymmetrical, skewed right distribution that resembles chi-square. The 

F-distribution is used to test normally distributed populations with the equal variances to see if their 

means are equal or different. The F-statistic is used in the social sciences to determine the effect of an 

intervention on the population. Typically, a sample of the total population is divided into groups and at 

least one group is exposed to some treatment or experience that is designed to make the treated group 

behave differently from the non-treated group. The F-statistic is used to test whether any differences 

between the groups are due to random error or due to the treatment. The difference between actual 

behavior and average behavior is called error. Total error can be defined as consisting of error attributed 

to the intervention (variance between the sample means) and error that is randomly genera~ed (variance 

within the samples). The F ratio can be defined as: 

variance between the sample means 
F - ------------------------ or 

random error + treatment effect 
(1-9) 

variance within the samples random error 

Organization of the Study 

Chapter I introduces the study, presents the problem, purposes and objectives, assumptions, 

limitations. This section also includes definitions to clarify terms used in this study. Chapter II describes 

the literature concerning the historical development of neural networks in general as well as some 
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refinements to the back propagation design. Chapter III describes literature concerning non-parametric 

statistics and back propagation. Chapter IV describes literature concerning back propagation design 

considerations. Chapter V describes literature concerning data preparation and design considerations for 

back propagation neural networks. Chapter VI provides a summary, conclusions and recommendations. 

Limitations of the Study 

The limitations of this study are: 

1. The focus of the study is limited to feed forward neural networks using back propagation 

algorithms for learning (weight adjustment), and supervised learning designs. 

2. The study is limited to examining neural networks used as data analysis tools and not as either 

models of biological systems or real-time adaptive signal processors or controllers. 

3. The recommendations have not been tested as a unit. 



CHAPTER II 

NETURAL NETWORKS BACK PROPAGATION 

The Review of Literature is divided into several basic components: a review of the Evolution of 

Neural Networks, a review of Non-Parametric Statistical Concepts, Traditional Statistical Classification 

Methods and their Relation to Neural Networks, a review of generalized Neural Network Learning 

techniques and specific back propagation based techniques that could be used in data analysis, and a 

review existing literature describing how data should be prepared for .use with back propagation neural 

networks. 

Technology's Impact on Knowledge 

Computers are changing the way we deal with knowledge. The technologies used by systems 

to store and disseminate knowledge is evolving. A knowledge system may be described by two 

dimensions, how-knowledge is stored and how knowledge is controlled (Kroenke, 1989). Knowledge 

has traditionally been stored alpha-numerically, in books stored in libraries. Technology is making 

computer storage of knowledge viable in databases accessible electronically. Knowledge has 

traditionally been controlled by humans, who select books to read and manually scanning pages of text, 

typically sequentially. Technology is making computer searches of databases viable, allowing for 

information to be both searched for and presented in nonsequential methods. Figure 1 presents a model 

describing a relationship between the way knowledge is stored and how the knowledge is controlled. 

Books and publications tend to store knowledge sequentially. Hypertexi, interactive multi

media and virtual reality tend to store knowledge in non-sequential formats. Computers have 

traditionally focused on the storage and manipulation of data and information (data organized in a 
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way that makes it useful in decision making). The components of artificial intelligence are being used 

to interact with knowledge (a combination of instincts, ideas, rules and procedures that guide actions 

and decisions) in ways we are just beginning to be demonstrated. 

Artificial Intelligence 

While one might think of neural networks as a component of artificial intelligence, there is 

evidence that the concept has not yet been generally accepted by academia. A non-statistically based 

survey of eleven popular introductory-Information Systems texts showed that, while all had sections on 

Artificial Intelligence, eight did not mention Neural Networks (Alter, 1992; Hutchinson and Sawyer, 

1992; Schulethes, Sumner and Bock, 1992; Stair, 1992; Ahituv and Neumann, 1990; Lucas, 1990; 

McLeod, 1990; Senn, 1990). Only three of the reviewed tex1s mentioned neural networks, with 
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discussions ranging from a few sentences to an entire section (Laudon and Laudon, 1992; O'Brian, 1990; 

Parker, 1989). To understand possible reasons for this omission, we will first look at the general topic 

of Artificial Intelligence. 

Artificial Intelligence (Al) is a term that was coined in 1956 by John McCarthy. The term was 

used for the theme of a Dartmouth College conference to describe. computers with the ability to mimic or 
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duplicate the functions of the human brain (Stair, 1992). Today, some say that AI is commonly defined 

as "the effort to develop computer-based systems (both hardware and software) that behave as humans" 

(Landon and Laudon, 1991, p 662). Others suggest that existing definitions of AI are contradictory with 

some experts saying that "AI is the science of making machines do things that would require intelligence 

if done by a person. Others state that if we can imagine a computer that can collect, assemble, choose 

among, understand, perceive, and know, then we have artificial intelligence" (Hutchinson and Sawyer, 

1992, p 486). 

One reason that Neural Networks may not be specifically recognized as being a primary 

component of Artificial Intelligence is that many define Artificial Intelligence by "what it does." Neural 

networks do not fall neatly into a "to do" classification of robotics, natural language processing, expert 

systems, or virtual reality (Hutchinson and Sawyer, 1992). However, neural networks can be used to 

facilitate all of these "to do" classifications, but not in the traditional ways. To do dassifications of AI 

include Robotics, Natural Language Processing, Expert Systems and Virtual Reality. 

Ahituv and Neumann (1990) suggest that the whole area of artificial intelligence can be 

subdivided into two main branches, the engineering-analysis approach and the biological modeling 

approach, each with divergent objectives. In the engineering-analysis approach, the objective is to 

create a system that accomplishes tasks efficiently and reliably, regardless of whether the methods used 

are similar to those used by human biological and/or cognitive functions. Examples of this approach are 

pattern recognition tasks (reading characters or voice recognition), translating texts from one language to 

another, composing music, or optimizing network distributions. 

In the biological modeling approach, the objective is to try to gain an understanding of the 

inside mechanisms of a real-life biological system, thereby enabling one to explain and predict behavior. 

Specifically, cognitive psychologists saw neural networks as a tool for modeling such brain functions as 

automatic response. recognition, learning, problem solving, etc. From a power and validity standpoint, 

when researchers use neural networks as a validation tool for various psychological and learning 

theories, it is important that the computer based neural network mimic biological functions. To the 
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extent that computer based models do not mimic biological functions, one may argue that any differences 

uncovered are the result of these mechanical differences and not the intervention of the experiment. 

Interest in the concept of neural networks can be traced to the works of McCulloch and Pitts 

(1943) and Rosenblatt (1958). Interest reached a peak until 1969 when Minsky and Papert (Expanded 

1988 edition) identified a major weakness in existing neural network designs (they could not model the 

X/OR problem, described in the section: Hidden Layers, the Solution to the XIOR Problem). The X/OR 

problem was not solved until McClelland and Rumelhart ( 1986) lead a group of cognitive psychology 

researchers in an attempt to refine neural networks as a model of biological functions. 

Currently, within the connectionist community (those interested in neural networks), there 

seems to be two developing groups (Allman, 1989). The biological modeling group, primarily based in 

cognitive psychology and neuro-physiology, has as an objective, the modeling of biological neurodes on 

the computer. The engineering-analysis groups look at neural networks as another tool, similar to 

traditional statistics, that may be used in both data and systems analysis. Within the engineering 

analysis group, interest in artificial neural networks can be grouped by those who use networks either as 

real-time adaptive signal processors or controllers, or as data analysis tools (Sarel, 1994b). 

Each group has differing objectives for the design and use of neural networks. To the 

biological modeling group, it is very important from a validity standpoint that the neural networks model 

biological systems. To the engineering-analysis group, what is important is neural networks (any 

design of neural network) can be used as a tool in analyzing and modeling systems of any kind. A focus 

of this paper will be the engineering "to do" approach rather than the modeling approach to neural 

networks. We will look at how neural networks may be used in data analysis for business related 

problems. 

Evolution of Neural Networks 

Early research in Neural Networks focused on modeling an individual biological neurode on a 

digital computer (Kimmel, 1991). Biological neurodes interact with other neurodes across synapses. An 

activated neurode releases neural transmitter chemicals that in turn stimulate a target neurode. Several 

activated neurodes may be stimulating either a single target neurode or multiple target neurodes. When 



the stimulation of the target neurode reaches a critical level, the target neurode is activated, releasing 

neural transmitters to other target neurode(s). 
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In describing the developmental evolution of neural networks, it is useful to categorize work 

before 1969 (focusing on the interaction of individual neurodes) from work after 1986 (focusing on the 

interaction of a multidimensional system of neurodes.) The year 1969 is significant because that is the 

year Minsky and Papert published their book describing what neural networks could and could not do. 

The book was a consequential event for two interrelated reasons. First Minsky and Papert identified a 

primary problem with single level neural networks of the time-they could not solve the exclusive/or 

problem (X/OR)-when there is a choice between two alternatives and there is an equal preference for 

either one or the other, but not both. Second, they suggested that this inability to solve the exclusive/or 

problem was a major stumbling block in developing neural networks as a form of artificial intelligence. 

Work on neural networks significantly slowed until 1986 when cognitive psychologists Rumelhart, Hinton 

and Williams, and others collectively known as the PDP Research Group at the University of California -

San Diego, showed how multi layered neural networks could solve .the exclusive/or problem. 

Additionally, in 1986 Patricia Churchland, also at San Diego, provided a philosophical basis for neural 

networks in her book Neurophilosophy: Towards a Unified Science of the Mind-Brain. 

Early Work (pre 1986)Interaction of 

Individual Neurodes 

In 1936 Turing proposed the architecture of a logical machine that was the foundation for 

modem Automata Theory. Automation represents a formalization of rules for computation, studied as a 

branch of mathematics, and is the foundation for building digital computers. The Turing machine 

considered time to be discrete elements in which the computer performed tasks in a logical sequence. 

McCulloch and Pitts in 1943 suggested that neurodes in the brain could be described as working 

like on/off switches. They offered a mathematical description of these processes and concluded that the 

brain worked like a Turing machine. The McCulloch and Pitts model of the neurode (Figure 2) has 

become the standard model used today. The input values are adjusted by weights (w; ) that are typically 



between -1 and 1. The adjusted inputs are then (in its simplest form) combined to produce an output 

value. The learning of a neural network is accomplished by iteratively adjusting the input weights until 

an output value (or goal) is achieved. 

Output (y) 

Figure 2. McCulloch-Pitts Neurode 
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In 1945 von Neumann established the basic design principles for digital computers. The design 

was for a single central processing unit for each computer that executed one processing command at a 

time in a serial manor. Later, von Neumann also proposed the design for a digital computer that stored 

memory programs in memory. Previously, a computer was programmed by making hand adjustments to 

the components of the system. 

In 1956 Marvin Minsky, John McCarthy, Nathaniel Rochester and Claude Shannon organized 

what is recognized to be the first international conference to discuss the potential use of computers in the 

simulation of learning and intelligence. It was for this conference, sponsored by the Rockefeller 

Foundation, that John McCarthy coined the term Artificial Intelligence, which researchers then used to 

describe the new academic field that included neural computing. (Stair, 1992). 
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Perceptron. In 1958 Rosenblatt took the McCulloch-Pitts neurode and added to it an algorithm 

that would adjust the weights based on the success of predicting how to separate patterns into two 

categories. The model, called a perceptron, became the first trainable neural network. 

The simplest perception is a device that decides whether a case belongs to one of two classes. It 

is the neural network equivalent to a linear discriminate. The general form of the single output unit 

perceptron is known as the threshold logic unit or Adaline (Widrow and Hoff, 1960) discussed in the nex1 

section. The objective of a perceptron based neural network is to determine (or learn) the proper weights 

that will produce the least error in determining the classification of presented cases. This is the same 

objective as we find with the statistical tool of discriminant analysis (discussed later.) 

The perceptron uses an error-correcting procedure that attempts to totally eliminate all 

misclassifications. The output of the perceptron is either O or 1 and is either correct or not correct, 

nothing in-between. The consequence of modeling the perceptron's output this way is that the classes in 

the population must be linearly separable for the network to converge ( determine weights that produce no 

errors). Many real world applications, such as problems requiring optimization, and problems involving 

growth, do not have populations that are linearly separable. 

w. =w +pyx. 
/new iold I 

(2-1) where: •; = inputi 

w; = weight of input i 

y = output of neurode 

_ { +1 if y is correct 
- -1 if y is incorrect 

For example, when looking at Figure 3, The number of inputs (xn) corresponds to the number of 

variables for a specific application. The individual inputs are multiplied by weights (Wn)· The sum of 

the weighted inputs are added to a constant (Q). The activation function of Widrow and Hoff's perceptron 

is a function that produces an output of either O or 1 to indicate membership in one of two classes. When 

the sum is greater than 0, the neuroid is said to be activated, and the output is 1. When the sum is less 

than 0, the output is 0. 



Output 

where output {
= 1 if L W X +e > 0 

n n 
n 

= 0 otherwise 

Inputs 

Figure 3. General Form of Single Layer - Single Output Perception 

The constant (Q) in a neural network's output node is called the threshold or bias. As with 
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discriminant analysis, it geometrically represents the x intercepts of a discriminant line. In the operation 

of the network, it represents a hurdle rate, above which the sum of the weighted inputs must exceed for the 

neurode to fire, or present a I as an output. 

Other activation functions to determine the value of y (the output) include: 

Step Function: y = 

Signum: y= 

[
1,ifx>O 

0, ifx ~ 0 

[
1,ifx > 0 

0, ifx ~ 0 

SignumO: y = O, if x = 0 [
1,ifx>O 

-1,ifx<O 

(2-2) 

(2-3) 

(2-4) 

Perceptron: y = [ X, ifX > 0 

0, ifx ~ 0 

Exponential: y= e X 

where: y = output 

x = input to node 

(2-5) 

(2-6) 

Source: NeuralWare Advanced Reference Guide, 1993 

A perceptron with a linear activation function is the equivalent of a linear regression model; with 

multiple inputs and outputs the equivalent to multivariate multiple linear regression. A perceptron with a 

non-linear (or logistic) activation function is the equivalent of a non-linear regression model. A 

perceptron with a threshold activation function is a linear discriminant function (Sarle, 1994b). 

The perceptron has a very simple algorithm for finding optimum weights (or learning). Based on 

an initial random setting of the weights (usually between O and 1), each case containing both features and 

their correct classification is presented to the perception. Errors (variations between the perceptron 
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classification calculation and the true calculation) are corrected by adjusting weights after each inaccurate 

output. If there is an error in one of the cases, all cases are presented again. This epoch of case 

presentations continues until no errors are made. 

When an adjustment is necessary, the new weights will be calculated by adding to the old weight 

an adjustment factor. In the classic perceptron, adjustments to the weights and to the bias (q) are 

calculated based on the errors. The adjustment factor for each weight is calculated by multiplying the 

input by the difference between the true answer with the old calculated answer. 

= wi(t) + Dwi(t) 
= (T-Y) I; 
= Q(t) + DQ(t) 
=(T-Y) 

(2-7) 
(2-8) 
(2-9) 
(2-10) 

where: w; = weight for Input i 
T = true or correct answer 
I; = Input of Characteristic for case i 
Y = perceptron output 
Q = Bias 

The advantage to the perceptron' s learning algorithm is that it, unlike classic 

discriminant analysis, requires no assumptions concerning the normality of the population's 

distribution. The perceptron based neural network is nonparametric in nature (Widrow and Hoff, 

1960; Rumelhart, Hinton, Williams, 1986a; White, 1990; Weiss and Kulikowski, 1991). 

The neural network Rosenblatt used was a grid of 400 photocells (inputs) arranged to 

resemble the eye's retina. These photocells were randomly connected to 512 neurodes, that were in 

turn connected to a set ofoutput units. When a letter: of the alphabet (e.g., s or v) was displayed to the 

photocell array, a set of photocells would activate. These photocells would then activate the neurode 

like units, which would intern activate an output unit that indicated whether the pattern fell into an s 

or av category. By manually adjusting weights between neurodes, Rosenblatt was able to get his 

network to recognize all letters of the alphabet. 

Adaline. In 1960, Widrow and Hoff modified Rosenblatt's algorithm and created a machine 

they called ada/ine (Figure 4), that used a network of adaptable neurodes to recognize patterns. The 

adaline was the first practicable example of what is known as supervised learning, training a network 

based on known correct responses. The adaline provided the framework for automated telephone 

switching equipment. The network's weights were modified using what has become known as the 

Delta Rule, or the Least Mean Square Rule (discussed in section: Least Mean Square Rule). 
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The Delta Rule is: 

t1 w = ..!I.!:..!.. (2-11) 

Where: w = weights 

2 
2:X; 

e = error [true (T) - calculated M output] 
x = inputs 

TJ = Learning Constant 

Source: Caudill & Butler, 1992a, p 54 

Source: Caudill and Butler, 1992a, p. 54. 

Figure 4. Adaline 

The classic delta rule looked at the response of the perceptron. For a specific case (pattern of 

inputs x1, x2 ... ), the calculated output of the perceptron is measured with the known correct value. If 

the case's output is different from the true value, the delta rule is initiated, the weights are adjusted, 

and the next case is tried. If the next case's calculated output matches the correct value, then the next 

case is tried. If the next case's calculated output is different from the true value, then the delta rule is 

initiated, etc. 

Neural Networks Modeling Biological Activities. By the middle part of the 20th century, it 

was thought that biological learning was the result of varying the strengths of synaptic connections. 

Early researchers built models of these synaptic connections on computers using mathematical 

functions to emulate the stimulation of neurodes. In 1949 Hebb proposed that if one neurode sends 

many signals that are stimulating another neurode, then the synaptic connection between the two 

neurodes is strengthened. The conclusion to this theory is that with every new incident experienced, 

the brain slightly rewires itself. This Hebbian learning has a psychological counterpart in conditioned 

response described by Pavlov. As researchers started implementing Hebb's law on computers, they 
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found several problems. For example, the classic formulation does not specify how much learning 

should increase or decrease, nor how two neurodes interact. 

In 1969, Grossberg provided a mathematical theory of classical conditioning model described 

by Pavlov. Grossberg defined a neo-Hebbian learning model consisting of two sets of dynamic 

differential equations, "one governing the activity change of an arbitrary network at a given instant in 

time and the other governing the weight changes of an arbitrary connection in the network at any 

instant in time" (Caudill and Butler, 1992a, p 61). Grossberg's model provided some elementary decay 

characteristics. 

(2-12) where: x = input patterns 

w = weights 

11 = learning rate 

5 = decay rate paramater 

Grossberg also suggested the use of a sigmoid output function and contributed to the Cohen-

Grossberg theorem which suggests that the response to any external input, a neural networks' weights 

will eventually converge to an equilibrium. 

Clark and Rvishanker (1990) proved a convergence theorem for Grossberg's learning rule 

. when the learning rate converges. They also showed that the Grossberg learning rule computed the 

probabilistic centroid of the training set. 

Teuvo Kohonen of Helsinki Technical University in Finland made two important 

contributions to the field of neural computing in the 1970's. One ofKohonen's contributions concems 

adaptive and associative learning (an extension ofHebbian learning), in which rules of network weight 

modification depend only on the previous weight values and the values of neurode input and outputs. 

These adaptation rules include memories defined by an auto-correlation matrix. Special cases of these 

rules include the Linear Associator and the Brain-State-in-a-Box. 

The second ofKohonen's contributions is the principle of competitive learning (also called 

Self-Organizing Maps) in which neurode connecting weights are determined by a competition with 

other connectors, with the winner adapting itself to respond more strongly to a stimulus. Competitive 

learning is a non-supervised form of learning, with weight modifications determined only by input to 

the network. Competitive learning is an attempt to model the lateral interactions of neighboring 



groups ofneurodes in the brain. (Competitive learning is discussed further in this dissertation's section 

on Types of Neural Network Learning.) 

Mathematical Foundation of Computer Based Neural Networks. In 1982, Hopfield provided 

the mathematical theory that describes the operation of computer based neural networks. The process 

of training neural networks involves modifying the interconnecting weights between network neural 

nodes. Previously, these weights were modified largely on a trial and error basis. Hopfield suggested 

that the process of optimizing interconnecting weights be thought of as a system whose energy is 

represented by the error found when comparing patterns at the input and output .nodes. According to 

Hopfield, as the system moves from high energy (little correlation between input and output nodes) to 

low energy (high correlation between inputs and outputs), it did so not according to fixed rules of 

logic, but gradually settling on the right combination of weights that minimizes energy (or error). 

One significant consequence of Hopfield's concept is that it suggests that a digital computer 

and a neural network "think" in very different ways. A typical computer and its programs operate in a 

very sequential, methodical, hierarchical, and logical way, passing information from one stage to 

another in the process. Information is received at the beginning of the sequence, processed, and passed 

along to the next higher stage, where it is processed and compared with other information and passed 

on to still higher stages. By the time the information has sequenced its way through the hierarchical 

chain, all the available information has been examined and a conclusion is reached. This type of 

hierarchical information processing is well suited for tasks involving precise details and exact answers, 

such as bookkeeping or high-level mathematics. 

However, in a neural network information flows simultaneously, back and forth between 

different elements of the system. An analogy to the way neural networks work would be a town 

meeting where each person informs others how they feel about a topic. As the discussion continues, 

people will change the strength of how they feel about the topic. Gradually the group reaches a 

decision that minimizes the groups dissatisfaction, through either consensus or a form of majority rule. 

This type of freewheeling information processing seems to be better at pattern matching or "optimizing 
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problems where incoming infonnation is often slightly inaccurate or incomplete and a choice must be 

made from many alternatives" (Allman, 1989, p 94). 

Boltzman machine of Hinton and Sejnowski (1984) was based on Hopfield's suggestion that 

when a network operates, it seeks to find the relationships that represent the lowest energy level of that 

network. This design became the first self-learning neural network. 

Hidden Layers, the Solution to the X/OR Problem. The exclusive/or (X/OR) problem arises 

when there is a choice between two alternatives, and there is equal preference for one or the other, but 

not both. From a neural network standpoint, Minsky and Papert (1988 expanded edition) showed that 

it was mathematically impossible for a single-layer network to be trained to simulate the problem. 

Allman (1989) explained the X/OR problem by describing a situation where the happiness of a young 

man (Patrick) at a party was contingent on only·one of his two girl friends (Pam or Sue) were present. 

Ifboth Pam and Sue were at the party, Patrick would be miserable. In designing a neural network to 

model the problem, the inputs (Pam and Sue) would have a value of 1 if they were at the party or O if 

they were away from the party. The output (Patrick) would have a value of 1 if he were happy or O if 

he were unhappy. Patrick's value would be calculated based on values of the input and weights 

connecting the inputs to the output node. In terms of the Allman's example, what Minsky and Papers 

showed what that it was impossible to calculate the correct value for Patrick (unhappy) when both of 

his girlfriends were attending the party (see Figure 5). 

Neural networks using a single hidden layer can solve the X/OR problem. For example, when 

either Pam or Sue are present (input are either O andl or 1 and 0), then Patrick is happy (output= 1). 

When both Pam and Sue are present (inputs are 1 and 1) then Patrick is unhappy (output= 0), as 

shown in Figure 6. In fact, adding hidden layers solves most of the problems Minsky and Paper 

identified in their 1969 analysis of the state of neural networks. 
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If Pam is present and Sue is away, then Patrick is happy 
1 + 0 1 

If Pam is away and Sue is present, then Patrick is happy 
0 + 1 = 1 

If Pam is away and Sue is away, then Patrick is unhappy 
0 + 0 = 0 

If Pam is present and Sue is present, then Patrick is unhappy 

+ ??? 

Figure 5. Single Layer and the X/OR Problem 

/+1 
1 I -A 
~ 

I 

If Pam is present and Sue is present, then Patrick is unhappy 

Hidden 

Layer 

Input 

Layer 

1 + 1 0 

Figure 6. Hidden Layer and the X/OR Problem 
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Hidden units are an important advancement because they allow neural networks to form 

representations of real world systems-representations that can then be used to make complex 

decisions (Allman, 1989). For example, assume a situation where John is an investment advisor who 

makes recommendations on investment decisions based on various economic indicators. Figure 7 is a 

representation of how inputs (economic indicators) and outputs (investment decisions) may be related. 
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Input Output 
Inventory Levels 

Capacity Utilization 

Capital Spending 

Employment Level 

Interest Rates 

Housing Starts 

Net New Stock Issues 

Odd-Lot Trading 

Short Interest Ratio 

Mutual Fund Cash Ratio 

S&P 500 Stock Index 

Dow Jones lnduststrials 

Figure 7. Simple Neural Network 

Go Long 

Focus on High Tech 

Focus on NYSE Stocks 

Focus on OTC Stocks 

Focus on Public Utilities 

Focus on Bonds 

Maintain Liquidity 

Sell Short 

One could also construct a network that uses hidden units between the input and output. (See 

Figure 8). Note that the Simple Neural Network uses many more connections than the network with 

hidden units. Also note that the hidden units each represent something in the outside world. While in 

reality one may not specifically be able to design hidden to perform specific tasks, in this case we can 

see that they become representations of a Bull Market. a Neutral Market or a Bear Market. 
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Input 
Inventory Levels 

Capacity Utilization 

Capital Spending 

Employment Level 

Interest Rates 

Housing Starts 

Net New Stock Issues 

Odd-Lot Trading 

Short Interest Ratio 

Mutual Fund Cash Ratio 

S&P 500 Stock Index 

Dow Jones lnduststrials 

Hidden Units Output 

Go Long 

Focus on High Tech 

Focus on NYSE Stocks 

Focus on OTC Stocks 

Focus on Public Utilities 

Focus on Bonds 

Maintain Liquidity 

Sell Short 

Figure 8. Neural Network with Hidden Units 

This ability to form implicit representations gives neural networks their power. Hidden units 

allow for networks to represent high level concepts, in addition to being able to perform more complex 

computations. McClelland suggests that "They represent what has to be represented to solve a problem. 

They represent meanings." (Allman, 1989, p 126) The meanings they represent are different kinds of 
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symmetry in the patterns that the networks are representing. When a neural network is training, it uses as 

many hidden units as necessary to model the different kinds of symmetry of what is being modeled. If the 

network does not need a particular hidden unit, its weights tend toward zero and it effectively is 

eliminated from the network. (Allman, 1989, 127) 

In another example of the power of hidden layers, Hinton ( 1987) used neural networks to identify 

relationships between two separate families, one English and the other Italian. He trained the network by 

listing examples of relationships within the families, such as Sophia's mother is Lucia, or Lucia's mother 

is Maria, or James's spouse is Victoria. Once the networks were trained, it was able to recall 

relationships, and make inferences about relationship it had seen. For example, it could infer that Sophia 

is Maria's granddaughter, without the explicit relationship being stated. 

Even though the training provided no information to distinguish the two families, a person's sex, 

or relative age. But because in the family trees, Italians are only related to other Italians, and English are 



related to other English, the network was able to make these distinctions. After training, hidden units 

were examined, it was noticed that the pattern of activation across the units could be found to represent 

these attributes. 

Current Work (post 1986) Interaction of a Multidimensional 

System ofNeurodes 
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The year 1986 proved to be a watershed year for work in neural networks because of work done 

at the University of California - San Diego. The spark for renewed interest in neural networks did not 

come from the statistical/mathematical fields, but in the areas of philosophy and cognitive psychology. 

While Parker and Werbos (1985) independently introduced an algorithm similar to back propagation (a 

back propagation neural network learning algorithm) at about the same time, the paper seems to have 

been largely ignored. In 1987, Lapedes and Farber working at Los Alamos, began a foundation for using 

back propagation neural networks as a statistical tool by showing that back propagation could be used to 

model nonlinear transfer functions, and could predict chaotic behavior in systems better than traditional 

statistical systems. 

Philosophical Foundation of Neural Networks. IIi 1986 Churchland provided a philosophical 

basis for the use of neural networks. She did that by "questioning whether a philosopher could investigate 

the qualities of the mind without paying attention to the mechanics of the brain" (Allman, 1989, p 40). 

The study of philosophy can be divided into Metaphysics (the study of what is real), Epistemology (the 

study of what is truth), Ethics (the study of the right behavior) and Aesthetics (the study of what is 

beautiful, and good). Typically, philosophers have approached epistemology as an exercise of pure logic 

and reason by searching for the a priori foundations of human knowledge, unconcerned about the 

biological function of the human brain. This approach has lead to philosophy's general approach of 

modeling the mind's thought processes by using a system of symbols. These symbols are manipulated by 

rules of logic that are assumed to represent the basic thought processes that are common to all humanity. 

It therefore followed that if the mind works by manipulating universal symbols with a universal set of 

rules, then one could focus on examining those rules without regard to the biological functions of the 



brain. Logical Empiricism studied these symbols and rules, and provided a theoretical framework that 

could be used in an attempt to program computers that would mimic human thought processes. 

However, it can be argued that Logical Empiricism is a failed philosophical doctrine because 

there is evidence that the mind does not work with symbols that are manipulated by logical rules. 

According to Paul Churchland, "If there were a distinction between software and hardware in the brain, 

then the approach was a good one... But there isn't this clear dissection, so the basic assumption of the 

whole approach is screwy" (Allman, 1989, p 52). 

From a cognitive psychology standpoint, this realization is similar to what Kuhn (1970) calls a 

paradigm shift. According to Patricia Churchland: 
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A neurobiological understanding of the mind will cause us to rethink our old presumptions about 

who we are: what it is to have a self, what it is to have a soul, what it is to be responsible, to 

think, to introspect, and to have free will. It may have tremendous implications for morals, too .... 

Our decision making is much more complicated and messy and sophisticated -- and powerful -

than logic ... Our decision making may tum out to be much more like the way neural networks 

function: The neurodes in the network interact with each other, and the system as a whole 

evolves to an answer. Then introspectively, we say to ourselves: "I've decided." (Allman, 1989, 

p 55) 

Psychological - Cognitive Foundation of Neural Networks. Interest in today's neural networks 

increased in 1986 both when Churchland provided a philosophical basis for neural networks and when 

psychologists Rumelhart, Hinton and Williams showed that a multi layered neural network could solve the 

exclusive/or problem. It was also in 1986 that psychologists McClelland and Rumelhart edited a two

volume book entitled Parallel Distributed Processing: Explorations in the Microstructure of Cognition 

that some think would have become the definitive book on the subject if technology in the area were not 

moving so fast. 

James McClelland, a cognitive psychologist, provided a key in understanding how a neural 

network could mimic cognitive recognition and representation processes. McClelland was interested in 

how words are recognized. According to traditional logical empiricism theory, it was thought that one 
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recognizes letters first, then put the letters together to recognize a word. The problem McClelland 

identified with that theory can be described by reading looking at Figure 9. The first letter may be either 

an Rora P. The second letter may be an E or a F. The third letter could be a Bora D. In spite of the 

ambiguity in letters, most people can recognize the word as being RED, contrary to traditional theory. 

[ 
Source: Allman, 1989, p 102 

Source: Altman, 1989, p. 102. 

Figure 9. Recognition - Representation 

McClelland suggested that the mind works instead by having a mechanism that indicates its 

degree of confidence in the different possibilities of each letter, and sends that information to another level 

that indicates its degree of confidence in the different word combinations that could be made from the 

possible letters. In our mind, a word detector for RED is activated because of its high degree of 

confidence. 

Rumelhart, trained in mathematics, was working in the cognitive area of determining how people 

use memory packages to fill in missing information about stories they hear.· For example, when a tourist 

in Manhattan asks a police officer "Do you know where the Empire State Building is?" Why does the 

police officer usually not just answer "Yes," but also gives directions? Rumelhart suggested this behavior 

indicates a mechanism that uses a degree of confidence in determining the real question being asked, and 

lead to a theory of filling in missing information. 

McClelland's concept of cognitive levels of thinking lead to the concept of having neural 

networks constructed in layers, which enabled neural networks to perform the exclusive/or problem 
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identified by Minsky and Papert. These intermediate layers of a neural network are called hidden layers 

because they receive no direct input, and provide no direct output to the outside world~ 

Neural Networks as a Statistical Tool. Kohonen (1984) suggest that discriminant analysis using 

Fourier methods is comparable to linear neural networks. In 1987, Lapedes and Farber working at Los 

Alamos, showed that hierarchical neural networks using back propagation (see section: Error-Correcting 

Learning [Supervised]) could be used to model nonlinear transfer functions, and could predict chaotic 

behavior in systems better than statistical systems. They showed the Least Mean Squares algorithm (see 

section: Least Mean Squares - Delta Rule) "works for the Garbor Polynomial Method with virtually no 

change in implementation" (p 7), and suggest that for large systems, neural networks may prove to be a 

better alternative. Their paper, written in the context of signal processing, identified the ability of neural 

networks to infer algorithms and to perform generalizations as being "nothing more that real values 

function interpolation" (p 23). They also showed the process of training a back propagation hierarchical 

neural network is "in essence, constructing a discrete Fourier series ... with the number of adjustable 

frequencies determined by the miniber of neurodes in the hidden layer" (p 26). 

According to a mathematical theorem proved by Andrle Komogorov in the late 1950's (and 

restated for neural networks by Robert Hecht-Nelson in the late 1980's) "the network will always 

eventually figure out how to make perfect forecasts of the data on which the neural network is being 

trained'' (Coats and Fant, 1991, p 12). 

Neural Networks as a Universal Approximator. Hornik, Stinchcombe, and White (1990) 

demonstrated that a hierarchical neural network using back propagation could be used to approximate any 

mathematical function, and that the "it is not the specific choice of the activation function, but rather the 

multilayer feedforward architecture itself which gives neural networks the potential of being universal 

learning machines" (p 252). They also showed that neural networks can be used to discriminate nonlinear 

separable classes and that they have universal approximator properties. 

However, Wray and Green (1995) suggest that because ofrounding error and other limitations of 

digital computers, neural networks run on computers may be Best Approximators rather than universal 



approximators. This suggests that not all problems may be solvable when neural networks are 

implemented on digital computers. 
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Gaynier and Downs (1995) have noted that networks with non-monotonic transfer functions tend 

to have infinite Vapnki-Chervonenkis (VC) dimensions which means that they can not be e>..l)ected to 

arrive at a general solution to a problem when presented with only a training set of the total population. 

They note that networks with high VC dimensions may perform well on training data, but perform poorly 

on test data. Testing data is usually a component of cross-wise validation techniques. 

Neurode Operation 

All neurodes fundamentally operate in the same manner; they sum weight-adjusted inputs, 

possibly add a bias value, and finally pass the results through a transfer (or activation) function to produce 

an output that is offered for other neurodes to use. After the weighted sums of the inputs are computed at 

each neurode, the activation (or transfer) function is used to activate the neurode's output to a non-zero 

value, transferring the internally generated sum to an output value. 

Cichocko and Unbehauen (1992) suggest that the proper choice of criterion that should be 

used in the selection of an activation function depends on partly on the specific applications and greatly 

on the distribution of errors in the sample data. 

Activation (Transfer) Function 

Activation functions evaluate the inputs to a neurode and produce a single output of the 

neurode. Activation functions are also used to introduce non-linearity into the network; a feature that 

provides neural networks a modeling advantage over traditional linear techniques. There are four 

basic types of activation functions classically used in neurodes: Logistic or Sigmodal, Linear, Linear 

Threshold, and Hard Limiter or Binary. 

Hard Limiter: (or threshold) a binary type function that is either all on or all off. The 

Hopfield net, the McCulloch Pitts neurode, and the perceptron all include a hard limiter activation. It 

provides a basic nonlinear function required to obtain complex behaviors expected in neural networks. 
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Values are either O or 1. Will provide the fastest training times in networks designed to operate 

logically, such as an X/OR problem (K.empka, 1994b). 

A perceptron with a threshold activation function is the equivalent in statistics to a 

discriminant function. If there is only one output in the system, the network is known as an Adaline 

(Sarel, 1994b). 

Linear: where the output is the sum of the inputs, merely passing the weighted-sum value to 

the next level. Kempka (1994a) suggests that network output neurodes should exclusively use the 

linear function, due to the linear function's mathematical properties. A linear function is defined as: 

y=r X (2-18) Ill/here: y = output 

x = input to node 

Linear activation functions should be found exclusively at the output neurodes of a neural network due 

to the mathematical properties of linear functions. Sarel ( 1994) suggests that if the output variables 

are assumed to be unbounded, a linear activation is appropriate. However, if the variables are positive 

but have no upper bounds, an exponential output activation function is recommended. 

A perceptron with a linear activation function is the equivalent to a linear regression model. 

A network with multiple inputs and outputs is the equivalent to a multivariate multiple linear 

regression (Sarle, 1994b). 

In a multi-layered neural network, the output layer should contain a linear activation function. 

Blum and Li ( 1991) have constructed a proof that a neural network with two hidden layers and a linear 

output are universal approximators. 

Logistic: The logistic activation function is the de facto standard used in the clear majority of 

neural network systems (Caudill and Butler, 1992a; Smith 1993; Kempka, 1994a). The logistic 

function is sigmodal, continuous differentiable function that provides the non-linear characteristic that 

provides neural networks their unique abilities. The logistic function transforms values to either O and 

I or -1 and +l. 



for values 
y=-

between O & 1 (2-13) -x 
+ e where: y = output 

for values 
x = input to node 

y = tanh (x) 
between -1 & 1 (2-14) 

The logistic function may not be the best choice when run-time efficiency is an issue (Kempka, 1994a). 

A sigmodal logistic function is defined as: 

-x • g -1 
y=(1 +e ) (2-15) 

where: y = output 

g = gain 

x = input to node 

Ito (1991) proved that a sigmoid function can, under certain circumstances, become universal 

approximators. Sontag and Sussmann ( 1991) showed that with linearly separable data, neural 

networks with no hidden neurodes, using back propagation gradient descent with sigmodal activation 

functions will find a global minimum from any initial weight configuration in a finite time. 

Klimasauska~ (1991a) suggests th.at sigmodal functions work best when the problem involves 

learning about "average" behavior. However, if learning involves "deviations" from the average it is 

suggested that Hyperbolic Tangent should be used. 

The Hyperbolic Tangent is a continuous, monotonic mapping of the sum of the inputs (similar 

to Sigmoid) into a value between -1.0 and 1.0. The increased magnitude and a much greater slope 

give a different error space from the related logistic function. 

i = X * g 

i - i 
e - e 

y=--i-=-i-
e + e 

(2-16) where: 

(2-17) 

y = output 

g = gain 

.. x = input to node 
i = modified input characteristic 

Klimasauskas (1991a) suggests that hyperbolic tangent functions work best when the problem 

involves identifying "exceptional" situations. 

A perceptron with a non-linear (or logistic) activation function is the statistical equivalent to a 

non-linear regression model (Sarle, 1994b). 

Linear Threshold: a type of hybrid function that is very similar to a logistic function and can 

be used as a replacement to estimate a sigmodal function when computer processing time is at a 

premium (Kempka, 1994a). In terms of generalization, the linear threshold will perform about 10% 

less than a logistic function, but may be a better choice when offset with its reduced computer 
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overhead. Because of its constant slope, the linear threshold may be a better choice than logistic when 

output values are expected to be in the range of .5 (or the center of the sigmoid). However, when using 

linear threshold, the possibility of a zero slope will stop back propagation and require an algorithm 

other than gradient descent (such as MLO) (Kempka, 1994b). 

Other Components of an Activation Function 

(Squashing, Bias. Gain, etc.) 

Squashing: transforming an output of unlimited range to an output of a specific range, 

generally either O to 1 or -1 to + 1. The choice of range will influence the training of any neural 

network. Differences in magnitude (one vs. two units) and the steepness of the slope of the function 

will give different error surfaces. 

Bias: One way oflooking at neural networks is to think of them as modeling a hyperplain 

through N-dimensional space. The weights between neurodes determine where the hyperplain is in 

input space, with the plane passing through the origin of the hyperspace as defined by the inputs. A 

bias (Q) is a mathematical term that allows the plain to be moved somewhere else. If a neural 

network has many neurodes in a layer, all neurodes share the same input space; without a bias term, 

all would also be constrained to pass through the origin (Prechelt, 1995). 

In mathematical terms, bias (Q) can be thought of as the point at which the a function crosses 

they axes. For example, an activation function of the form y = j{Q + gx1) with a bias of 0, the logistic 

function with a maximum of 1 and a minimum of 0, would crosses they axes at .5. By increasing the 

bias weight from Oto 1, the function is shifted to the left, thereby increasing (or raising) they

intercept. 

When used in neural network activation functions. bias may be used to set hurdle rates for 

neurode activation. See also the gain, which may be used to change the slope of the function, thereby 

also effecting the function's y-intercept. In the operation of the network, the constant (Q) is a bias, or 

threshold, represents a hurdle rate, above which the sum of the weighted inputs must exceed for the 

neurode to fire, (present a 1 as an output). In the case of a single neurode with one input and one 
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weight, the bias is the equivalent to they-intercept in an equation of a line. Kempka ( 1994a) notes 

that "bias values add a clear benefit to training, and using them increases the training efficiency" 

(p 35). It is also noted that in the case of networks with a large number ofneurodes and no assigned 

bias, a separate neurode may evolve into a bias device.. When used with the Hyperbolic Tangent 

Activation function (with values between -1.0 and +1.0), bias is recommended if the training set 

contains an instance in which an important input vector is zero when a non-zero output is needed. 

Gain: In mathematical terms, gain (g) can be thought of as a weight that adjusts the slope of 

a function. For example, consider an activation function of the form y = j(Q + gx1) with again (g) of 

1. If the function is a logistic function with a maximum of land a minimum of 0, increasing the gain 

weight from 1 to 2 would create a line more closely tracks the y axes with the slope of the curve at the 

boundary changing from .25 to .5. Decreasing the gain from 1 to .1 would flatten out the line. 

Adaptive Gain:Where Gain is defined as a multiplicative adjustment to the inputs of a node, 

and its implementation can be thought of as a continuous modulator of the error propagated to the 

weights during training. Adaptive gain is an indication of how much the node participates in 

representing the input and the exient to which the node participates in learning. 

The gain of a node in a hierarchical back propagation neural network is a multiplicative 

constant that either amplifies or attenuates the inputs to a node. The concept of gain in activation 

functions was first introduced independently by Movellan (1987) and Tawel (1989). Kruschke and 

Movellan ( 1991) have shown that learning is enhanced using gradient descent and an adaptive gain 

factor. An additional benefit of gain is that it; in effect, normalizes weight vectors of neurodes. (See 

the following section on normalization.) Adaptive gain is used in the place of a momentum factor in 

back propagation gradient descent calculations. When gain is used, it can be calculated using the 
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chain rule of the gradient descent procedure by modifying equations, as shown below: 

A 9,· = - 'Y ~ g. s .. 
j I lj 

- k ~ T.iJ ARMSE ( 't - 1 ) 
i=O 

'Y( 't) = 

RMSE('t) 

(2-19) 

(2-20) 

(2-21) 

where: y = output 

g = gain 

w = weights 

x = input to node 

r = competition rate 

s = lateral connection strength 

k = competiton rate modulator constant 
m = exponential average constant 

RMSE = square root of the mean squared error 

In the above equations, k is a non-negative constant of proportionality called the competition 

rate modulator (typically around 2), and represents the degree of competition to be used in evaluating 

hidden nodes. A value of k that is too large will result in a network that is overgeneralized, and will 

typically operate with high error rates. The other constant, v, is a positive constant governing the 

weighting of the exponential average (typically set about 0.7) 

Kruschke and Movellan ( 1991) suggest that adaptive gain enhances the learning process by 

modifying the magnitude, and not the direction, of a weight change. Early in the training process 

when a successful direction has not beeri found, weights and gain factors are small. Once a successful 

direction is found, weights and gain increase. 

Adaptive gain can also be used to elitninate hidden layer neurodes from participating in the 

neural network. Kruschke and Movellan (1991) have suggested that "a given hidden node participates 

in representing the input if and only if its activation changes for some change of input." (p 276). It is 

also suggested that gain may be thought of as the reciprocal of a Boltzman machines temperature 

parameter. 

For those interested that neural networks model human biological functions, there is evidence 

suggesting that the nervous system has mechanisms that modulate the neural response function in a 

manner sitnilar to gain. Servan-Schreiber, Printz, and Cohen (1990) proposed that a gain parameter 

helps explain the effect of biogenic monoatnines, a type of neurotranstnitter associated with neural 

responsiveness modulation. They successfully used the gain parameter in back propagation networks 

to simulate phenomena associated with catecholamine manipulatio11.s. 
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Types of Neural Network Learning (Adjusting Weights) 

The concept of learning is a very broad topic. Learning systems are often defined in terms of 

classification or prediction. From a cognitive standpoint, classification is often associated with pattern 

recognition. From a statistical standpoint, a classification problem is sometimes called a prediction 

problem. From a computer system standpoint, classification and prediction is sometimes called 

concept learning. From a neural network standpoint, learning is the process of adjusting the weights 

to connecting neurodes that make up a system that describes a natural phenomenon. 

From an empirical standpoint, the goal of learning is to "e>.iract a decision rule from sample 

data that will be applicable to new data: A typical learning system is designed to work with 

some general model, such as a decision tree, a discriminant function or a neural net. 

'Leaming' consists of choosing or adapting parameters within the model structure that work 

best on the samples at hand and others like them." (Weiss and Kulikowski, 1991, p 4) 

From a neural network standpoint, there are several different ways of classifying learning 

rules. Matheus and Hohensee (1982) suggests that there are three basic classes oflearning rules, 

Error-correcting rules, correctional rules, and unsupervised learning rules. 

Unsupervised Learning 

Unsupervised learning occurs as a self-adaptation process to detect regularities in the input 

space without direct feedback from a teacher or supervisor, with the resulting network called an auto

associative network. Weiss and Kulikowski (1991) suggest that the goal here is to identify clusters of 

patterns in the data that are similar. The assumption is that these similar clusters will be categories or 

classes that may be used in solving problems. The ability of neural networks to solve and find 

solutions using unsupervised learning is limited to the degree that the data are mutually exclusive. If 

the data are not mutually exclusive, structure (or constraints) will need to be added into the basic 

classification representation. Establishing this structure usually requires insight and an understanding 

of the application area. 
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Sarle (1994b) suggests that the goal of most fonns of unsupervised learning is "to construct 

feature variables from which the observed variables, which are really both input and target variables, 

can be predicted" (p 6). From a neural network standpoint, this means that dependent data is used for 

both network inputs and network outputs. When the data is presented as an input, the network (which 

has at least one hidden layer with a smaller number of neurodes than is in the input and output layers) 

seeks to extract patterns that will recreate the input pattern as an output. 

Networks using this type of learning paradigm are also called self-organizing. Competitive 

learning is a variation of unsupervised learning that is used in Kohonen feature maps. This concept of 

competitive learning is based on characteristics of the brain called lateral inhibition. A Kohonen 

network uses neurodes connected in the layers above and below, and also connections to other 

neurodes within the layer. Within each layer, the connections are positive when connecting to 

neurodes close by, and negative when cortnection to neurodes farther away. These internal connections 

within layers tend to create a competition between neurod,es within the layer whose purpose is to 

determine which neurode within the layer ~as the strongest response and eliminate all other neurodes 

within the layer. 

Each neurode acts independently, without a global measure of a layer maximum performance. 

Once the Kohonen layer has stabilized, the output from the layer is a + 1 from the winning neurode, 

and no response from others in the layer. The training rule used by the network can be expressed by: 

(2-22) where: ~ = learning constant or gain 
x; = input signal 
w;= weight 

A Kohonen feature map is very versatile, either used on its own, or existing as a layer within 

a larger network. When being used on its own, the feature map is a two-layer network in which the 

input layer is fully connected to the Kohonen layer, distributing the entire input pattern to each of the 

neurodes in the Kohonen layer. The Kohonen layer neurodes act as the output layer and transmit their 

outputs to the outside world. A critical part of the Kohonen layer's self-organizing property is a result 

of a large number of additional connections that lirtk the neurodes within the layer to each other. 
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When using unsupervised learning techniques one should measure the homogeneity of the 

population (Decker and Focardi, 1995). A group is homogeneous if all members are similar according 

to some characteristic. 

Correlation Learning 

Correlation learning rules are those in which individual weight changes are solely based on the 

levels of activity between connected units. Initially, connections between units are randomly set, and 

then modified as the network comes closer to solving the problem. The closer to the proper solution, 

the closer the units are to a workable arrangement. Models proposed by Hebb (1949) and Hopfield 

(1982) are non-statistical networks that are examples of correlation learning (Sarle, 1994b). 

A variant of correlation learning is called reinforcement learning, where an external source 

indicates whether the response to an input is good or bad (Sutton and Barto, 1981). 

Error-Correcting Learning (Supervised) 

Error-Correcting rules (also called supervised learning rules) depend on external feedback 

about the desired signals of the output units. Examples are models developed by Widrow and Hoff 

(1960) and Rumelhart, Hinton, and Williams (1986a). With supervised learning, the data is presented 

in the form of samples observations or cases, with a corresponding correct classification designation. 

The resulting network is called a hetero-associative network. If the input data is the same as th~ output 

data, then the resulting network is called an auto-associative network. The neural network adjusts its 

internal weights in an attempt to find a general way of relating specific patterns of observations to the 

specified correct class. The process of the neural network adjusting its internal weights in an attempt to 

find a generalized relationship between the cases and classes is called training or learning. The 

objective of the learning task is to find and identify some pattern that is not too specific between the 

observations and their corresponding classes. The goal of the neural network is to predict new 

observations, not to discriminate based on old cases. 
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There are several techniques that can be used by the neural network to adjust internal weights 

in an attempt to identify a pattern between observations and corresponding classes. Reinforcement 

learning, first modeled on the computer by Hebb (1949), occurs when two neurodes contribute to a 

correct response, and the weight between the neurodes is increased. Back Propagation is a supervised 

learning technique independently developed by Rumelhart Hinton, and Williams (1985) and Parker and 

Werbos (1985). Back propagation could be thought of as an extension ofreinforcement learning where 

in addition to information about how close it is to solving the task, the network is also given 

information about errors for use in adjusting the collllections between layers of neurodes to improve 

performance. 

Back propagation tends to be much faster at training multilayered neural networks than 

unsupervised or reinforcement methods. However, it is doubtful that the brain actually uses a form of 

back propagation in learning. And it seems to be on this point that there is a division in how neural 

networks should be used-either as a model of human cognitive function or as an engineering tool for 

statistical analysis. 

There are many techniques that are being used in the Neural Network's "guessing" process. 

Back propagation is one of these techniques. In back propagation, both input factors and the actual 

results are presented to the network. A connection·ma.trix, that describes the relationship between input 

and output variables, is iteratively adjusted until the predicted results are close to the historic results. 

Kimmel ( 1991) suggests that this type of supervised learning using back propagation can be used to 

predict almost any phenomenon provided there is enough input data linked to their corresponding 

results. 

Least Mean Square Learning (Delta Rule) To overcome the requirement of using linearly 

separable data with perceptions, Widrow and Hoff (1960) developed an algorithm to describe how 

weights should be updated. Their algorithm is now sometimes called the Least Mean Square rule, and 

sometimes called the Delta Rule. The classic Least Mean Square method does not limit the output to 

being either O or 1: the activated output may fall in a continuous range between O and 1. 
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Output=. S Wj Ii+ Q > 0 
l 

(2-23) where: wi = weight for Input i 
I; = Input of Characteristic for case i 
Q = Bias 

Instead of using an error-correcting procedure where error correction is based on the absolute 

correctness of the calculated output to the true output, the Least Mean Square method tries to minimize 

the difference between the calculated output with the true output. 

(2-24) where: T = true or correct answer 
Y = perceptron output 
p = specific input pattern 

The goal of the Least Mean Square procedure is to minimize the average squared distance from 

the true answer to the calculated answer. The training procedure is the same as for the perceptron. 

While both the perceptron and the Least Mean Square procedure attempt to derive a linear 

separator from the data, Least Mean Square does not focus on directly reducing the error rate. Instead it 

focuses on reducing the distance between the calculated output and the true answer. This means that 

the Least Mean Square does not require data to be linearly separable or mutually exclusive. 

Cickocki and Unbehauen (1992) suggest that the proper choice of function depends on the 

specific applications and the distribution of error. The standard least squares criterion is optimal for a 

Gaussian distribution. With outliers, a reweighted least squares or least absolute value criterion can be 

used. 

The iterative technique used to update weights is knows as gradient descent. The weights are 

updated in the direction (positive or negative) that we expect to reduce error. A typical problem of the 

gradient descent method is that it may oscillate around minimums and not converge. Another problem 

is that there may be local minimums (not the true global minimum) in the error space, into which it 

may converge. Convergence to the true minimum is guaranteed only when a very small value for the 

learning rate (h) is used. The downside is that the smaller the learning rate, the longer it will take for 

convergence. 

White (1990) has shown that hierarchical neural network with one hidden layer and one 

output, using back propagation has the statistical property of consistency which means that as network 

experience accumulates, the probability of network approximation errors tend toward zero. White 
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suggested that this property could be generalized to other more complex neural network designs. This 

meets the self-learning systems' fifth requirement of Repeatability discussed in the first chapter (page 

18). 

Back propagation. The development of multi-layered networks to solve the exclusive/ or 

problem also lead to a generalized form of Least Mean Square training called back propagation. The 

method was first presented by Rumelhart, Hinton, and Williams (1986a) in a book on Parallel 

Distributed Processing, and later in a paper published in Nature (1986b). They noted that the problem 

with the classic perceptron was that, while there could be feature analyzers between the input and output 

units, they were not true hidden units because their input connections were fixed by hand. Therefore, 

no learning could take place. 

With single layer perceptron networks, once the weighted sum was computed, the activation of 

the unit was discrete and determined by the neurode's bias value-if the sum exceeded the threshold, the 

output was 1, otherwise the output was 0. With single layer networks using Least Mean Square, 

activation still required a positive number, but the output was continuous and linear. Multi-layered 

networks allow for the modeling of non-linear phenomena, and provide for multiple inputs of neurodes 

(Figure 10). To take full advantage of a multi-layered network's capabilities, the neurode's activation 

(also called "transfer") function needs to be a non-linear, continuously differentiable function. A 

commonly used activation function is a logistic model. A logistic activation function would be 

expressed as in the equations below. 

N·=Sw··Y·+Q· 
i'j I] I J 

I 
y. - ----------

} I+ e -NJ 

(2-25) where: wij = weight for Input ij 
Q· = Bias ofneurodej 
Y,. = output (activation) of neurode 

(2-26) ~ = Net Input , the sum of all inputs to neurode j 

Basically, the input value to the neurode is the sum of the weighted outputs from the neurodes 

on the lower level, plus the bias factor. For cases using a logistic activation (or transfer) function, the 

output of the neurode is computed by applying a logistic function to the net input value. 



Output Layer 

Note: The general form of neural networks 

Hidden Layer 

may have multiple layers (more than 

one hidden layer) and also have 

multiple neurodes in each layer. The 

output layer is not limited to one neurode. 

Note: Logistic Activation functions are shown. 

Input Layer 

Figure 10. Two Layer .Neural Network for the X/OR Problem 

The training procedure involves making adjustments_to the weights (W ;_j) connecting each 

neurode to the bias (~) of each neurode in an attempt to minimize global error. In back propagation, 

these adjustments are based on a proportional the product of the learning rate (h), 

Outderj = Yj (1-Yj) (Tr Yj) 

Errderj = Yj (1-Yj) (TrYj) (S frrderk) wjk) 

· DwijCt+ 1) = w;_j(t) + h * Errd~i:i * Yj 

D~(t=l) = ~ + h * Errde9 

(2-27) where: 

(2-28). 

(2-29) 

(2-30) 

'!J = Calculated output for j 
Tj = True output for j 

wk = weights from inputs to j 
Outder = Output unit error derivative 
Errder = Hidden unit error derivative 

h = Leaming Rate Constant 
~ =Bias 

an error derivative, and the net input to the neurode. The calculation of the error derivative is based on 

the difference between the calculated and true values, and differs slightly for the output neurodes and 

the hidden neurodes. 

Back propagation is a recursive, two step procedure that provides a form offeedback to the 

network during the learning phase. In the first step, all current weights are propagated ( or used to 
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calculate neurode outputs) from the input layer, through the hidden layer(s) and to the output layer. In 

the second step, working backwards, the error derivatives are calculated and adjustments are made to 

the interconnecting weights and the neurodes' bias. 

In the classic back propagation model ofRumelhart, Hinton, and Williams (1986b), direct 

connections between the input and output layers were forbidden. There could be any number of 

intermediate layers, which may or may not be fully connected. The calculations for units within a layer 

were determined in parallel, .with calculations for different layers set sequentially, starting at the bottom 

and working upwards. Weights were adjusted to minimize total error using a gradient descent 

algorithm. 

This type oflearning is also known as the Delta Rule. Popular extensions of the Delta Rule as 

used by the NeuralWare Neural Network computer program include the Cumulative Delta Rule (which 

accumulates weight changes over several examples) and the Normalized Cumulative Delta Rule 

(Klimasauskas, 1991a). A third extension, the Delta-Bar~Delta is discussed in a later section of this 

paper. 

Gori and Tesi (1992) showed that classic gradient descent back propagation (weights updated 

in a batch mode) leads to an absolute minimum if the network has only one hidden layer, if the output 

layer has as many neurodes as there are classes in the population, and if the network is fully connected. 

Webb and Lowe (1990) suggest that the discriminatory ability of hierarchical neural networks 

. . . 
is partly due to the activation function of the feed-forward network performing a specific nonlinear 

transformation of the input data in a way that should make discrimination easier. 

Caudill (1992) notes that back propagation is the preferred method used in neural networks. 

She speculates that there are two reasons for this preference. First, back propagation is based on least 

mean square error techniques, a technique with which many people are already familiar and which 

allow for relatively simple mathematical proofs. The other advantage is that it allows for supervised 

learning, which means that the designer can dictate results, and measure the network's performance 

against the desired results. 



Cichocko and Unbehauen (1992) suggest that the standard least squares criterion is optimal 

for a Gaussian distribution of the noise, it is noted that the assumption of a Gaussian error distribution 

is frequently unrealistic because data errors usually are not isolated to a single source. There may be 

instrument errors, modeling errors, sampling errors and human errors. Additionally, data may contain 

large errors (outliers) or wild (spiky) noise. In order to reduce the influence of the outliers, the more 

robust iteratively reweighted least squares technique can be used. In the presence of outliers (and/or 

wild noise) an alternative approach is to use the least absolute value criterion. 

Learning Rates (h). As a network goes through its learning cycles, intuitively we would expect 

the perceptron to get closer than answer and to make less drastic revisions to weights. The learning 

rate parameter (h) is a correction factor that modifies calculated weight corrections such that (h) * 

(Dw;m)- The selection of a learning rate will have significant impact on the neural network. With 

back propagation, on one hand, the smaller the learning rate, the slower the progress in finding an 

optimum solution. On the other hand, the larger the learning rate, the more oscillations there are and 

the greater the possibility of skipping over a minimum solution. One popular form for the learning rate 

(h) is to make it inversely proportional to the time spent on learning (1/t). Weiss and Kulikowski 

(1991, p 101) suggest a learning rate ofh = 0.5 as being typical. 

Kung and Hwang (1988) in applying the algebraic projection analysis to back propagation, 

developed a formula to estimate the optimum learning rate: 
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(2-31) where: P = the number of hidden neurodes T] = ----

P+1 

The estimation of the learning rate assumes that the algebraic projection relaxation parameter (lambda) 

is set to one. 

In analyzing the effect of the learning rate Ratcliff (1990) trained a neural network with four 

vectors, A, B, C, and D using various learning rates and trials. Ratcliff found that for low learning rates 

and few learning trials, the system learns to reproduce an average or prototype of the four cases. With 

large number of trials and/or high learning rates, the network trained to one of the four patterns not an 
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average prototype. Ratcliff also found that high learning rates gave rise to extreme values of activation 

values (near either O or 1). 

Tollenaere (1990) suggests that there is an optimal learning rate for which learning is fast and 

the procedure remains stable. for a 10-10-10 network h = .25 has been found to be optimal, for a 10-5-2 

network, h = 1.0 has found to be optimal. 

Reyneri and Filippi (1991) suggest an algorithm that may be used to find the optimal learning 

parameter that is based on the number .of inputs, and may be different for various layers of the network. 

where: 

(2-32) 

11 = learning rate 

p = normalized steepness of activation function 

N = number of input units 

x max = maximum input value to any neurode in layer 

y max = iaximum output of any neurode in layer 

Reyneri and Filippi (1991) note that the performance of back propagation depends heavily on 

the value of the learning parameter, especially when inputs have varying dimensions. Almedia and 

Silva (1990) note that continuous adaptation of the value of the learning rate during the learning phase 

usually increases performance. 

Momentum (a) Momentum is a mathematical term added to the weight update algorithm that 

includes a percentage of the previous weight adjustment in the current weight adjustment. Back 

propagation tries to minimize the mean squared error of the system by using a technique called gradient 

descent to move down an error curve. The error curve of a data set is. not necessarily smooth, and may 

contain minor peaks and valleys into which the system may become trapped. Momentum is a 

mathematical device used to keep the network moving on the downhill error surface, even when 

localized minimums are reached. 

When momentum is added to the learning procedure, weights are revised by combining part of 

the indicated new weight revision, Dw u(t+ I), with part of the previous weight revision Dw u(t). This 

makes the equation similar to an e:,,.'])onential smoothing form of statistical forecasting. Note that a 

momentum of a = 0 will eliminate the term from the equation. Weiss and Kulikowski (1991, p 101) 
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suggest a momentum term of a = 0. 9 as being typical. 

Dw~/t+ 1) = wij(t) + (h * Errdeij *Yi)+ (a* Dwij(t)) (2-33) 

Because of the learning algorithm used in back propagation, it is possible for the total error of 

a training set to stop decreasing and stalls at some value higher than the acceptable level. The network 

is then said to be stuck in a local minimum. Caudill and Butler (1992a) provide an explanation on how 

a momentum term helps avoid local minimums: 

To see the effect of the momentum term on the weight change, suppose the first term suddenly 

became zero. In that case, the new weight change is just a times the previous weight change. 

In other words, the weight vector continues to move in the same direction as it moved in the 

last time it was changed, so the momentum.term does act just like a physical momentum in 

that it tends to keep the weight vector moving in the same direction unless forcefully nudged in 

a different direction. This means that... the change to the weight vector has a term that tends 

to keep the weight vector moving so that it does not get trapped easily in a local minimum. 

(pp. 197-198) 

Tollenaere (1990) suggests that there is an inverse relationship between an optimum learning 

rate and momentum. Some have reported not being able to train networks with momentum factors (a)> 

0.5, while others report success with a= 0.9. Tollenaere suggests that the contradictory claims could be 

explained by the different learning rates used. The following suggestions concerning momentum are 

made: 

* the optimum learning rate (h) decreases as momentum (a) increases. 

* using little momentum results in a wider distribution of learning times 

* the use of momentum speeds up learning-in most cases a speedup factor of 2 to 3 can be 

expected 

* the use of very high momentum does not result in instability, provided that step sizes are 

sufficiently small. 

Networks without hidden layers tend to use the delta rule with a momentum term. Networks 

with hidden layers tend to use back propagation (Vogl, Mangis, Rigler, Zink and Alkin, 1988). 



Delta-Bar-Delta Rule. A modification to Rumelhart et al. (1986a) back propagation rule was 

developed by Jacobs (1988), called the delta-bar-delta rule. Under Rumelhart's model, weights were 

updated layer by layer, with each neurode in a layer obtaining the same weight modification. Jacobs 

proposed a series of heuristics for increasing the rate of convergence 

* every weight should have its own individual step size 

* step sizes should be allowed to vary over time to accommodate error surfaces that have 

different properties along different regions 

* when the derivative of a weight posses the same sign for consecutive steps, the learning rate 

for the weight should be increased 

* when the derivative of a weight posses a different sign for consecutive steps, the learning 

rate for the weight should be decreased 

Tveter (1991) describes the basic implications of the Delta-Bar-Delta rule on the learning rate, 

and also describes minor changes to the weight change and output layer activation function. 

Learning Rate (TJ) is modified when slope of error function is: 

a) negative for two iterations Tl = Tl + K (2-34) 

b) positive for one iteration TJ=TJ*q> (2-35) 

where: $= decay rate (between zero & one) 

K = increase constant 

~ ; learning rate 

The effect of Jacobs' delta-bar-delta rule is that learning rates decrease exponentially when it 

appears that a minimum error region has been reached (positive slope of error function), and increase 

linearly when one is on a steeper region of the error space and learning is still taking place (negative 

slope of error function). Using this rule, the probability of skipping over a global minimum is 

significantly decreased. 

Tveter (1991) reports some success with the Delta-Bar-Delta rule. However, he also reports 

that when using the X/OR problem as a benchmark, the technique provided the worst results when 

compared with standard back propagation. 

Devos and Orban (1988) independently developed a self-adapting back propagation strategy 

that conforms to Jacobs' delta-bar-delta rule. Tollenaere ( 1990) added momentum to the self-adapting 

back propagation strategy and called it SuperSAB. 
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Refinements to Back Propagation 

Three refinements to traditional back propagation are presented. Cascading Neural Networks 

represent an attempt at applying systems-analysis problem solving techniques to neural network 

formulation (Hillman, 1991). Probabilistic neural networks basically look at using a priori knowledge 

in the construction of a network. Fuzzy neural networks use Fuzzy logic, in which the law of the 

excluded middle is relaxed. 

Probabilistic Neural Networks 

The probabilistic neural network (Figure 11) is a partially connected neural network, first 

designed by Specht (1990), that attempts to approximate Bayesian decisions under conditions of 

imperfectly known probabilities. The probabilistic neural network categorizes patterns by estimating 

their probability distribution functions and classifies patterns in a way that minimizes expected risk. 

The probabilistic neural network consists of four layers. The first layer (the input layer) is fully 

connected to the next layer and distributes patterns to every neurode in that layer. The second layer (the 

pattern layer) contains one neurode for each pattern represented in the training set and is fully 

connected to the input layer. The pattern layer neurodes performs a weighted sum of incoming signals 

and applies a nonlinear activation to determine the neurodes output. The pattern layer is not fully 

connected .to the third layer, sending only one signal to that layer, and weights connecting the pattern 

layer to the next layer are fixed at 1.0. The third layer (the summation layer) contains as many 

neurodes as there are categories and merely adds the outputs from all the pattern layer neurodes. The 

pattern neurodes are connected to their corresponding category neurode in the summation layer. The 

fourth layer (the output layer) receives totals from the summation layer and generates the network's 

category choice. 
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Output Layer 

Summation Layer 

Pattern Layer 

Input Layer 

(All Input Neurodes are Fully Connected) 

Figure 11. Probabilistic Neural Network 

The probabilistic neural network uses an exponential activation (transfer) function rather than 

the traditional sigmoid activation function used by back propagation. 2-49 

[
"f,xj -1] 

y. =exp ---, s 2 
(2-48) 

where: y = output 

x j :::: net weighted input to neurode 

s = smoothing constant (establishes the non
linear shape of the decision surface) 
typically between 0.5 and 10.0 

"The reason this exponential activation function is used is that it is a simplification of an estimator of a 

Bayesian decision surface. Using a Bayesian estimator function in the pattern layer neurodes of the 

probabilistic neural network provides the network with a near-Bayesian performance in categorizing 

patterns. " (Caudill and Baker, 1992, p 223) 

The activation (transfer) function in the output layer contains the a priori likelihood of a 

pattern being classified in a particular category, and the loss associated with misidentifying a pattern. 
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Fuzzy Neural Networks 

A discussion of Fuzzy Neural Networks needs to begin with an understanding of its underlying 

conceptual foundation, Fuzzy Logic. In a changing environment, Fuzzy Logic can be used to get a 

further handle on uncertainty. Kosko and Isaka (1993) note that traditional digital computers 

manipulate precise facts that are either true of false. Humans, on the other hand, can "reason" using 

uncertainties or value judgments (i. e., too cold or very beautiful). Fuzzy logic helps computers 

manipulate uncertain information in situations that can not be described by specific algorithms by using 

commonsense rules. Where .possible, rules will be described by e,q,erts. However, when no expert can 

give rules, fuzzy logic systems learn rules by observing how the systems are regulated. 

When using traditional logic, the law of the excluded middle applies-an object either belongs 

to a set or it does not belong to a set; there is no middle or gray area; and an object can not belong to 

both sets. However, with fuzzy logic, the law of the excluded middle is broken to some degree-items 

may belong to more than one set. Were the boundaries of the standard .sets are exact, the boundaries of 

a fuzzy set are curved, and this curvature may create partial contradictions. For example, for categories 

of warm or cold, a temperature ofF55 may be classified in one or the other, depending on the person, 

the location of the temperature, or the season of the year. To a person in San Diego, F55 would 

probably seem coid any time of the year. However, to a person in Nome, Alaska, a temperature ofF55 

might seem very warm in January. Note that there is a certain probability that the F55 would be 

classified in one or the other categories, and that its classification is not based on the number itself, but 

how a person perceives the temperature measurement. Because people perceive things through their 

experience, and in context, different groups of people will categorize measurements differently. 

Nevertheless, the probability that a measurement will be categorized in a specific category can be 

determined. Then, a fuzzy set contains not members, but probabilities. 

Fuzzy logic is then useful whenever measurements are imprecise, or their interpretation 

depends on conte}l.1. or opinion. Fuzzy logic is a different way of expressing reality that uses perception 

in the place of objective measurements. Fuzzy logic conveys a different type of information than has 

been traditionally used in establishing the foundations for many logical and mathematical procedures. 
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Fuzzy logic looks at classifying patterns, not in terms of certainties, but in terms of 

probabilities. The membership of a fuzzy set depends, not on the actual pattern being classified, but the 

pattern's relationship with its environment (on context or on human opinion). Fuzzy sets uses not 

objective measurements, but seeks to capture human perceptions. With fuzzy logic, the law of the 

excluded middle is broken to some degree, allowing items to belong to more than one set. 

Fuzzy logic is typically applied to neural networks in one of two ways. Input may be 

preprocessed with a "fuzzi:fier" or output may be converted into a series of fuzzy categories using 

probabilities. 

Cascading Neural Networks (Svstems-Analysis) 

A variation on the approach of starting with zero hidden units, called Cascade Learning, was 

developed in 1990 by Scott Fahlman and Christian Lebiere of Carnegie Mellon University (NeuralWare, 

1993, p. NC-74). The model consists of logistic activation functions in the interior neurodes and linear 

activated output neurodes (Kempka, 1994b). 

A Cascade neural network (Figure 12) uses an algorithm that both accomplishes training and 

also dynamically builds the network architecture. Initially, only the number of input and output units 

are specified, there are no hidden units. During training, hidden units are added layer by layer, with a 

single hidden unit in each layer. The inputs are directly connected to the outputs, initially without 

hidden nodes. After each iteration, a hidden node is added to the network with each hidden node 

receiving inputs from all prior hidden nodes as well as all input nodes. 
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Output Layer 

Hidden Layer 

(nodes added in stages) 

Input Layer 

Figure 12. Cascade Neural Network 

With each hidden unit added, the network is retrained in a two phase process. In the first 

phase, only the new hidden unit is trained in such a way that its output covaries with the errors made by 

the current network. Fahlman's (1988) quickprop algorithm is used in this phase. Once accomplished, 

the new hidden unit's weights are frozen. In the second phase, the all weights to the output node 

(including the weight from the new hidden unit) are optimized to maximize the correlation of its output 

with the error signal previously existing in the network (or minimize network error) according to the 

formula: 

(2-50) 

Because the new hidden node is trained to covary with the existing network's error, its.addition 

should decrease total network error. Gradient assent, rather than descent, is used because the objective 

is to maximize covariance to find the optimal hidden node weights. (Smith, 1993) 

Hillman (1991) expanded the concept of cascade learning at the network level to a system of 

problem solving that uses neural networks as a tool for one of the problem solving steps. While 

traditional neural networks are useful in classification and process control type problems, suggests that 

this approach may prove limiting in systems-analysis problems. Hillman defined systems-analysis 

problems as being those that attempt to ex'trapolate conclusions that attempt to describe the nature or 
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behavior of the total system from a limited set of data characterized as what, who, where, when and 

how. Hillman goes on further: 

Many systems-analysis problems try to derive a "big picture" from a relatively small set of 

data, which might tell you who is involved, when and where it happened, what kind it is, or 

how it took place. It is up to the observer to "fit" the data into some pattern that makes sense. 

This process is often done by determining what parts or who is available and fitting the parts 

together to determine function at subsystem and system levels (p 47). 

When analyzing a problem from a systems basis, Hillman describes three steps: data collection 

(gathering facts), assessment (map what is known about a problem to a solution), and augmentation 

(identify data that would increase confidence in the assessment). Data collection is accomplished by 

traditional methods. Augmentation is typically based on rule-based systems that are designed to 

identify data based on belief values, correlating the proposed solution with other data that may improve 

the solution's validity. Assessment lends itself to the use of multiple cascading neural networks of 

varying degrees of complexity. 

Because knowledge domains tend to be large and complex, they are often decomposed into 

smaller subcomponents that are easier to manage. The process is similar to large expert systems using 

subgoals within rule subsets, or using the concept of children or in inheritance hierarchies. When using 

cascading neural networks, the problem is divided into relatively self-contained subsystems that are 

easier to model and test. Once the subsystem are trained, the larger system is then tested. Outputs can 

then be traced into other networks. 

When deciding whether to use the systems approach of cascading neural networks, Hillman 

(1991, p 50) offers the following rules: 

Rule 1 : If the entire input and output data set represents similar kinds of data such as a signal 

intensity level, a single neural network representation may be adequate. 
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Rule 2: If input and output data represent a domain's physically or functionally discernible parts, 

consider breaking the larger network into two or more networks ... according to the following criteria: 

* . The domain knowledge should decompose into logical, subordinate chunks of knowledge 
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* Each chunk should be complex (such as three or more neural-net input variables mapped to 

one or more output) 

* The mapping of a single network (inputs to outputs) is based solely on that network 

The integration of the subsystems requires neural network software capable of perfonning the 

tasks, bridges between the subnetworks in the cascade, and a control mechanism to manage the 

execution of neural networks to process data. Hillman ( 1991) suggests using expert systems for pre-

and post-processing data for the neural networks. 

Smith (1993) suggests that cascade networks train very rapidly. However, the covariance 

function tends to have many local minima and the "network is inclined to produce input-output 

' ' 

mapping with very sharp transitions or boundaries'? (p 188). Smith concludes that Cascade networks 

are better at discriminating between classes that do not overlap rather than for estimating continuously 

varying quantities. 



CHAPTER III 

NON-PARAMETRIC STATISTICS AND BACK PROPAGATION 

The Review of Literature is divided into several basic components: a review of the Evolution 

of Neural Networks, a review of Non-Parametric Statistical Concepts, Traditional Statistical 

Classification Methods and their Relation to Neural Networks, a review of generalized Neural Network 

Learning techniques and specific back propagation based techniques that could be used in data 

analysis, and a review existing literature describing how data should be prepared for use with back 

propagation neural networks. 

Neural Networks, Non-Parametric and Probability Concepts 

The following presents statistical concepts, and shows how back propagation neural networks 

relate to the statistical concepts. "Statistics is the science comprising rules and procedures for 

collecting, describing, analyzing, and interpreting numerical data" (Kvanli, Guynes, and Pavur, 1989, 

p 1). 

Inferential and Descriptive Statistics 

Statistics can be divided into two parts: descriptive statistics and inferential statistics. The 

process of collecting and describing sample data is called descriptive statistics. The process of drawing 

conclusions about a population based on the results of a sample is called inferential statistics. The 

basic measures that describe data are the measures of central tendency (mean, median, midrange, and 

mode), measures of dispersion (range, mean absolute deviation, variance, standard deviation, and 

coefficient of variation), measures of position (percentile, Z score, skewness, and krutosis), measures 

of relation ( coefficient of correlation, rank-order coefficient of correlation, coefficient of multiple 
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correlation). One infers based on an analysis of differences or significance (F statistic, T statistic, 

analysis of variance), multivariate analysis (multiple regression, canconical correlation, discriminant 

analysis, factor analysis, path analysis, analysis of covariance structures). 

In other words, statistics is concerned with the analysis of data. From a neural network 

standpoint, the concept of statistical inference can be translated to means learning to generalize form a 

noisy set of data (Prechelt, 1995). While those neural network designed to model biological sysiems 

have little to do with statistics, most neural networks can learn to generalize noisy data in ways that 

are similar to statistical methods. 

Standard Error The overall objective of a Neural Network is to modify its internal weights to 

represent relationships learned from samples, arid generalize those relationships to new cases. The 

performance of a Neural Network is usually measured in terms of the error rate, or the ratio of the 

number of errors to the number of cases. Weiss and Kulikowski (1991) define the true error rate as 

"the error rate of the classifier [neural network] on an asymptotically large number of new cases that 

converge in the limit to the actual population distribution" (p 17). The true error rate may be 

estimated by the error rate calculated from the sample. 

number of errors 
E - ----------- (3-1) where: E = erronate 

n n = number of cases 

The error rate described above can also be thought of as an apparent error rate, based on the 

sample cases. To assure that the apparent error rate is an approximation of the true error rate, cases 

should be selected randomly. This means that cases "should not be preselected in any way. This 

means that the investigator should not make any decisions about selecting representative samples" (p 

26). However Hommertzheim et. al. (1991) note that a neural network needs to have a sufficient 

number of cases identifying boundary conditions for learning to occur. 

The apparent error rate may or may not be representative of the true error rate of the total 

population. One reason why the apparent and true error rates may be different is that in training the 

neural network to classify sample data with few errors, the relationships developed may be too specific 

to the sample data, and may not be generalizable to the total population. In these cases, the neural 



network is said to have been overfitted, overspecialized or overtrained to the training cases, and the 

error rate of the samples is not a good approximator of the true error rate. 

Another reason why the apparent and true error rates may be different is that there are too few 

sample sets of cases to provide a good representation of the total population. The accuracy of the 

estimated error rate in estimating the true error rate is based on the number of cases in the sample in 

relation to the total population. A measure of how far the error rate will deviate from the true error 

rate is the Standard Error or Standard Deviation. The standard error is derived from the binomial 

distribution, and can be expressed as: 

SE=~ 

(3-2) Where: SE= Standard Error 

In the above equation, E is the error rate based on n randomly drawn independent test cases. 

We shall see that neural networks learn how to classify cases by dividing a population sample into test 

sets and training sets. 

Error rates are useful in estimating the performance of neural networks on future data, 

assuming that the samples used to train the network will be representative of future samples. Error 

rate estimation techniques are also useful in optimizing learning systems by providing an objective 

basis of comparison between neural networks using different structures. However, while one may be 

tempted to choose a neural network that has the smallest error rate without overtraining the network to 

the data, one should also remember that the more complex the learning system design, the more 

degrees of freedom there are to contend with, and the more divergence between the apparent and true 

errors. In Figure 13, when we reach a complexity measure of 12, we are overtraining the network. 

Sarel (1994) suggests that for linear models. the MSE (mean squared error, defined as the 

ratio of the Sum of the Squared Errors and the Degrees of Freedom for Error) is an unbiased estimate 

of error variance. He also suggests that for nonlinear models, the MSE is biased, but not as biased as 

the average squared error. 
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Figure 13. Complexity vs. Classifier Fit 

The Coefficient of Determination (Pearson's R Coefficient) or R~ statistic is often used to 

assess the accuracy of a model 's prediction. The statistic is basically a ratio of explained variation and 

total variation. When applied to neural networks. Burke (1993) uses the following formula: 

R 2 1 - _!~-~-~}--~-~-~------- (3-3) 

( n - p - 1) SST 

Where: SSE = Sum of the Squared Errors 

SST = Sum of the Squared Deviations from the Mean 

r. = Number of Training Set Examples 

p = number of input nodes (paramaters) 
(or number of independent variables) 

0 ::._ R2 ::._ 1 

Correlation Coefficient. The process of postulating relationships between variables begins 

with calculating correlation coefficients for variables to give an indication of the strength of the 

relationship between them. Correlation plots may be used to give insight to the type of relationship 

(quadratic. exponential, etc.) High correlations between a rejected input variable and a models errors 

may indicate additional explanatory power in the variable. When there are two highly correlated 

variables. it is often desirable to eliminate one of them. thereby reducing the weights of the neural 

network. 
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The correlation coefficient (r) measures strength of the relationships between two variables; 

which can be shown by 

I: [( X- µx) 6-' 

CT X 

p= 
n 

-~ J cr Y 
(3-4) 

where: X = independent variable observation 

Y = dependent variable observation 

n = number of observations (sample size) 

µ = mean of observations 

cr = standard deviation of observations 

While correlation is not causation, and a non linear relationship may exist between items. 

Covariance If two (or more) independent variables are correlated with each other, the 

predictability of the model is brought into question. Correlated inputs make models (either neural 

network or traditional statistical models) more sensitive to any statistical peculiarities of the sample 

data. Testing covariance using neural networks is problematic because back propagation is able to 

model complex relationships between variables. "The only way to measure the contribution that an 

additional variable would make-beyond the contribution of a previously selected set of variables-is 

to train two networks, one with and one without the new variable" (Smith, 1993, p 144). The basic 

tool for examining covariation between two variables is crosstabulation. The chi-square test, which is 

based on crosstabulation, is a useful statistical tool, but the level of significance is set arbitrarily. 

!-Statistic A !-test is used for many things, among them to compare the means of two 

groups. If two sample means are far enough apart, the t-test will yield a significant difference, 

suggesting that the populations from which the samples were taken probably have different means. 

From a neural network standpoint, t-tests have been used to estimate whether or not a variable should 

be included in a network. Least squares regression can be used to test linear significance of a 

candidate variable. Stein (1993) suggests that any variable with a students' !-statistic exceeding 1.98 

indicate that the variable is significant for large samples. 

Probability 

When focusing on inferential statistics, one typically wishes to infer something about a 

population based on a sample of that population. To make an inference that the sample is 
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representative of the population, we use probability to describe the accuracy of the sample results. 

When we deal with uncertainty, we use probability to help describe that uncertainty. 

Kerlinger (1986) suggests that there are two broad definitions of probability, a priori and 

posteriori, based on the knowledge one initially has concerning the population. The a priori 

definition, first formulated by Simon Laplace around 1795, defined the probability of an event as "the 

number of favorable cases divided by the total number of (equally possible) cases" (Kerlinger, 1986, p 

90), and assumed that we can determine the probabilities of events before the event is empirically 

analyzed. The posterior definition suggests that "in-an actual series of tests, probability is the ratio of 

the number of times an event occurs to the total number of trials" (p 90), and suggests that probability 

can be determined only after an event is empirically analyzed. Kerlinger suggests that both definitions 

of probability complement each other and both are needed in the pursuit of knowledge. 

Using either a priori and posteriori definitions of probability, to calculate the probability of 

any outcome, one needs to first determine the total number of possible outcomes. The sample space is 

the set of all possible outcomes. Sample space under an a priori assumption is the universe of all 

possible outcomes. Sample space under a posteriori assumption includes the possible outcomes of an 

experiment being analyzed. The components of a sample space are called elements or sample points. 

Probability is always a non-negative number, and the probability of all points in a sample 

space must add up to one. In other words, the probability for the sample space is one, and the 

probabilities for the various classes or events that make up the sample space add up to one. Probability 

is expressed as a weight that is assigned to each class or event that make up the sample space, and 

must add up to one. 

Sometimes we may wish to study the relation between two separate events, we wish to know 

the probability of two separate events occurring at the same time. "A compound event is the co

occurrence of two or more single (or compound) events" (Kerlinger, 1986, p 96) In analyzing the 

relationship between separate events, we may wonder if the occurrence of event A precludes or 

otherwise influences the occurrence of event B, or if they are unrelated? If events are exhaustive, then 
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the occurrence of each event uses up all points in the sample space. Events are mutually exclusive 

when they are disjoint, or when a specific event has no points in common with other events. 

p (AUB)=p (A) +p (B) (3-5) where: p (A U B) = probability of either A or B 

Independent Events Events are said to be independent when the probability of events 

occurring at the same time is equal to the probability of one event times the probability of other events. 

p ( A I B ) = p ( A ) * p( B ) (3-6) where: p ( A 'J B) = probability of A and B 

In much of the world, the relationship between events is not statistically independent. Much 

research in social sciences is based on finding the causal relationships between events. When events 

are not independent of each other, the analysis of probability must compensate for this bias. 

Conditional probability is a term used to describe probabilities that are conditional on prior knowledge 

or facts. The formula for conditional probability involving two events is: 

p(A1B) 
p < A I s ) = --,;--,sT ___ _ (3-7) where: p ( A I B ) = probability of A given B 

In effect, conditional probability alters the sample space. Through knowledge, the sample space has 

been decreased to the space ofevent B. With independence, the conditional probability of A given B is 

the probability of A. Without independence, the relationship becomes more complex. 

When dealing with a priori probability assumptions, independence requires that the sample 

being used is representative of the total population. Specifically, from a research standpoint, 

representative means "that the sample has approximately the characteristics of the population relevant 

to the research in question" (Kerlinger, 1986, p 111). 

Linear Independence Linear independence can be described as a situation in which there is 

no combination of positive or negative real numbers that any two vectors (a one-dimensional array) 

can be multiplied by to produce a third vector. In other words, any set of vectors for which at least one 

cannot be written as a linear combination of the others is linearly independent. In one, two, and three 

dimensional space, vectors that form linearly independent sets lie at right angles to one another. 

Because we have a hard time visualizing in more than three dimensions, a more general term is needed 

to convey the concept of right angle. In spaces of any dimensionally, linearly independent vectors are 



said to be orthogonal. The concept of the inner, or dot product of two vectors provides a natural way to 

define orthogonality. 

Representative Sample A technique that helps in the assurance that a sample is 

representative of a population is called random sampling. Random sampling is a method of drawing a 

sample of a population such that all possible samples have the same probability of being selected. 

(Kerlinger, 1986, p 110) There are two variations on random sampling. One variation is sampling 

with replacement where the selected item is put back in the population and may be selected again. The 

other variation is sampling without replacement, where an item may be selected only once. 

Representative Population Size A primary question to be answered is how large does a 

sample need to be to be assured that the sample is representative of the total population. 

The central limit theorem says_ that when using variables drawn randomly from a population, 

the resulting sample mean has a normal population distribution with a mean of m and standard 

deviation of s I { n. "This is true for any sample size, n, if the underlying population is normally 

distributed, and is approximately true for large sample sizes (generally n > 30) obtained from any 

population" (Kvanli, Guynes, and Pavur, 1989, p 212). 

Degrees of Freedom 

When analyzing data, one needs to be cognizant of bias that may be introduced as a part of 

the analysis. Hanke and Reitsch (1992) define the term degrees of freedom by noting that it: 

is used to indicate the number of data items that are free of each other in the sense that they 

cannot be deduced from each other and can therefore carry uniqµe pieces of information. For 

example, suppose the following four statements are made: 

* I am thinking of the number 5 
* I am thinking of the number 7 

* The sum of the two numbers 
I am thinking of is 12 

At first glance there are three pieces of information presented here. However, if any two of 

these three statements are known, the other one can be deduced. It could be said that there 
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are only two unique pieces of information in the three statements above, or to use the 

statistical term, there are only two degrees of freedom. (p 15) 

When studying a sample of the total population, a calculation of means and standard deviations may be 

biased to the extent that the sample mean and standard deviation is different from the total population 

mean and standard deviation. The degrees of freedom may be used to help adjust for that situation. 

Sampling Techniques 

When the available sample size is limited, resampling methods can be used to provide better 

estimation of the true error rate, We will discuss three related techniques that may be used, depending 

on the sample size; 

Train-and-Test Sample Size. The requirements for any unbiased sample error is that the 

sample data are drawn randomly from the parent population. Because one of our objectives with 

neural networks is to determine classification parameters based on test cases, and use the parameters to 

classify new cases. If the samples are biased, or not representative of the total population, one will not 

be able to generalize the sample based parameters to the general population. 

An additional complication is brought about because many times we do not have an unlimited 

population from which to draw our samples. In fact, in the real world, one usually uses a sample from 

a single population, not a sample form all possible populations. Additionally, to test the proficiency of 

the classification scheme developed by the neural network, we need to divide the sample into two 

different sets, one for training the network and the other for testing. The training set is used to design 

the classification parameters. We can assume that the cases in the test set will be representative of new 

cases, and can therefore use the test cases as a measure of the sample error. The error rate of the 

trained neural network on the test case is the test sample error rate. 

Baum and Haussler (1989) have written concerning the relation of the network size to the 

number of training examples that need to be presented to assure statistical validity. They summarize 

their results in a rule of thumb that says the appropriate number of training examples is approximately 

the number of weights between nodes of the network, times the inverse of the accuracy parameter e. 
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For exampl~, ifwe desired an accuracy level of95%, which corresponds toe= 0.05, we would need 

100/5 or 20 times as many training examples as there are weights in the network. 

Smith (1993) suggests that "back propagation does not require a larger sample size than 

linear regression" (p 136). As a practical matter, as the sample size decreases the number of hidden 

nodes can be decreased. A network with no hidden nodes would approximate a linear regression 

model with "the same number of degrees of freedom, [ and would be] no more inclined to overfit that 

the linear model" (p 136). The accuracy of both neural network and regression models is determined 

by the noise in the data and the extent to which the target function approximates the underlying causal 

relationships. 

The test size used for the train-and-test paradigm needs to be large enough for the test cases to 

be a good estimator of the true error, and the training size needs to be large enough to provide the 

neural network with a representative sample of the population to ascertain classification criteria. The 

usual proportions are to divide the sample population, 2/3 into a training set and 1/3 into a testing set, 

provided that once the test cases exceed 1,000, a greater .number can be allocated to the training set 

(Weiss and Kulikowski, 1991, p 30). 

Based on Figure 14, the training set error approaches the actual error when the training set 

cases exceed 1,000. Based on a 2/3 training, 1/3 test partition, we would need 3,000 cases in our 

sample population for an unbiased error estimate. 

Assuming that there are sufficient samples for statistical validation, Smith (1.993) suggests 

that "on balance, increasing sample size does not increase training time. Larger samples require fewer 

training epochs" (p 136). 

Leaving-One-Out A special case of Cross-Validation that is very computationally intensive. 

For a given sample size, n, the neural network is trained on (n-1) cases, and tested on the remaining 

case. This process is repeated n times, each time using a different case for the test item. The error rate 

is the average of errors on the single test cases. Although Leave-One-Out can be used with sample 

sizes numbering in the 1 OOs, because of its computationally intensity Weiss and Kulikowski ( 1991) 

suggest that should be used for sample sizes of less than 100 cases. 
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Figure 14. Number of Test Cases Needed for Prediction 

Cross-Validation In a k-fold Cross-Validation (Stone, 1974), cases are randomly divided into 

k mutually exclusive testing partitions of approximately equa~ size. For a given epoch of network 

training, a test partition is selected and the remaining cases are used for training the network. Once 

the train-and-test epoch is completed for one set of data, a different testing partition is selected as the 

test set. The new set of remaining cases is used for training the network. The process is repeated for k 

epochs. The average error rates over all k epochs are the cross-validated error rate. Weiss and 

Kulikowski. (1991) suggest that a IO-fold cross-validation is adequate and accurate for most cases of 

greater than 100 cases. 

Cross Validation has an additional advantage when considering the problem of 

overgeneralization. Cross validation may be used as a tool to indicate the optimum number of hidden 

nodes. A portion of the data is trained using networks with different numbers of hidden layers. Each 

network is run on a validation test data set. The alternative with the lowest test error is assumed to be 

the optimum alternative. Validation test errors sequences that do not increase are an indication that 

the original number of hidden units are insufficient for generalization to occur and that additional 

hidden nodes are needed. 
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Cross validation may also be used to indicate if training should be stopped before convergence 

is reached. Periodically the network is stopped and tested using a validation test data set. As the 

network learns, the error on the test set should decrease. When overgeneralization is said to occur 

when the test error increases. 

There are no statistical proofs that cross-validation will produce optimal results. However, 

Smith (1993) notes that: 

There is no guarantee that cross-validation will produce the optimal model. The smaller the 

validation sample and the higher the noise level, the more likely it is that cross-validation will 

fall short of this i'deal. Despite this theoretical risk, cross-validation has been utilized for a 

long time in statistics and is a valuable practical tool. It is all the more valuable because there 

is little alternative (p 120). 

Traditional Statistical Classification Methods 

and Their Relation to Neural Networks 

Many neural networks can learn to generalize from noisy data in ways that are similar to 

traditional statistical methods. For example (Prechelt, 1995): 

• Feedforward nets with no hidden layers are basically generalized linear models 

• Feedforward nets with multiple hidden layer are closely related to nonlinear regression and 

discrimination models (the methods commonly used for fitting nonlinear models, such as 

Levenbert-Marquardt and conjugate gradientalgorithms, can also be used to train 

feedforward neural networks. 

• Probabilistic neural nets (discussed later) are identical to kernel discriminant analysis 

• Kohonen nets for adaptive vector quantization are very similar to k-means cluster analysis 

• Hebbian learning is closely related to component analysis 

• Reinforcement learning is treated in the operations research literature as being similar to 

Markov decision processes 
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In order to understand how neural networks might be used as a statistical tool, we will first 

review selected statistical tools. Many of the operations of a back propagation neural network using 

gradient descent are similar to standard statistical methods. In this section, we will identify some of 

those similarities. 

Moving Average - Exponential Smoothing 

A moving average is a series of averages of n values, each average being placed at the 

chronological end ( or at the chronological center for a centered moving average) of these consecutive 

values. Moving averages are often used to remove the effects of random variation on series data. In a 

weighted moving average, each element of the series is assigned a weight (typically the most recent 

items have the largest weight) in the averaging process. 

Exponential Smoothing is a special case of a weighted moving average used in forecasting. It 

is a procedure for continually revising an estimate in light of the most recent experiences, and is of the 

form: 

New Forecast= a • (new observation) + (1 - a) • (Old Forecast) (3-8a) where~= smoothing constant (O<tt < 1 ) 

or 
= • (Old Forecast) + • fx(new observation) - (Old Forecast)] (3,8b) 

The old forecast can be thought of as a weighted average of all post observations with weights 

that decrease exponentially with the age of the data. The degree of decrease is determined by a, with 

values close to 1 decreasing more. 

Component Models 

The goal of the component model is to first decompose time series data by isolating the 

components that characterize the data. Next, future values are projected based on the individual 

components, assuming the components will repeat themselves in the future. Finally the individual 

component forecasts are combined for a forecast. The general mathematical representation for the 

component model is: 

(3-9) 



87 

X is the time series at period t. T is the trend component, describing long-term behavior. C is the 

cyclic component and may be defined as either a smooth fluctuation around the trend, or as being 

dependent on another factor ( ex. plumbing sales are dependent on housing starts and therefore cycle 

with the construction industry). Sis the seasonal component that predictably recurs within fixed 

intervals, usually a year. I is the Irregular component that can be identified, but is not expected to be 

repeated (ex. no sales due to strike). Eis the residual or random component. 

Since each component has a specific definition, the behavior of the original series can be 

explained by combining the effects of each component. The functional relationship of some time series 

may be additive, others may be multiplicative. 

Discriminant Analysis 

In discriminant analysis, an equation is used to separate or discriminate cases into classes 

(Figure 15). When the equation used is linear in form, it is said to be a linear discriminant. For 

problems with two characteristics, a line will be sufficient tci discriminate between classes. For 

problems with three characteristics, the discriminant equation will be that of a plane. 

For more complex situations, nonlinear discriminant (a curve, rather than a linear line) and 

piecewise linear discriminant (multiple lines or planes) many be used to separate classes. In situation 

where classes are not mutually exclusive (they overlap) there will always be some error in trying to 

separate cases into appropriate classes. 

The general form of the linear discriminant equation is given below, where ed are vectors of 

observed features, dis the number of features, and wd are constants (weights) that must be estimated. 

Note that in a two feature analysis, wo is a constant that is graphically represented by the x intercept of 

the discriminant line, such that when the result is positive, the case is classified in one group, when 

negative, classified in the other. 

(3-10) where: wi = weights 
ei = vector of characteristics 
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Figure 15. Idealized Class Separated by Line 

A linear discriminant can be thought of as the weighted sum of the values of a cases' 

characteristics. If each class has the same variance and is normally distributed, then the analysis can 

be in the form of a single threshold rule. A threshold value or score is calculated. If a cases' weighted 

score is above the threshold, it is classified in one group. If the score is below a threshold, the case is 

classified in the other group. · The task of discriminant analysis ~s to determine the weights to be used 

in the scoring equation. 

However, if the variances ·Of the two classes are different, more than one threshold will be 

needed. Additional problems will surface if the acn¢ population is not normally distributed or if the 

variables are not continuous (a normal distribution implies that the variable is continuous over the 

variable's limits. 

It has been recognized for that feed forward neural network have very similar structures to 

discriminant function based pattern classifiers (Lippmann, 1987). The blocks used in discriminant 

functions are similar to nodes in a feed forward network. According to Weiss and Kulikowski (1991, p 

82) many neural networks turn out to be variations of piecewise linear classifiers without the need to 

make parametric assumptions concerning the underlying population distribution. 

Silverman and Noetzel (1990) suggest that neural networks are superior to discriminant 

analysis in retrospective accuracy. Networks tend to be somewhat superior to discriminant analysis in 

terms of recognition of unknown cases. In their experiment, they noted that predictive accuracy seems 
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to have plateaued or decreased after 2000 passes, while retrospective accuracy increased indefinitely. 

They suggest that as retrospective accuracy increases, the ability to classify unknowns decreases, 

suggesting that the network becomes more and more like the nearest neighbor classifier with 

individual cases are being memorized by the network. 

Neural networks have been successfully applied in business applications in discriminate 

analysis. Kimoto, Asakawa, Yoda and Takeoka (1990) produced a neural network that would suggest 

timing for buying and selling of stocks. Odom and Sharda ( 1990) used neural networks to predict 

bankruptcies form various financial indicators. Yoon and Swales (1991) used neural networks to 

predict the stock performance for various companies. 

Webb and Lowe (1990), in analyzing a neural network with nonlinear input activation 

(transfer) functions and linear activation functions for other }ayers, proved that a nonlinear activation 

function allowed a back propagation neural .networks to perform nonlinear discriminant analysis. The 

nonlinear activation function acts as a nonlinear transfonnation of the input data. "In the special case 

of a totally linear network with one hidden layer, the solution which maximizes the network 

discriminant function also maximizes the ratio of determinants of the between-class and total 

covariance matrices." (p 3 7 4) 

Regression 

Regression analysis is used to test the relationship between a dependent variable and one or 

more independent variables. Least squared regression attempts to do what a neural network using 

back propagation attempts to do, minimize the sum of the squared error. In fact, when comparing a 

back propagation network, with no hidden units, and linear activation ( or transform) function, with 

least squares regression, one will find approximately the same ( coefficients or) weights for a given data 

set (Burke, 1993). 

Regression procedures can be categorized as being either univariate or multivariate. One of 

the most common forms of univariate regression is in time series forecasting with time as the 

independent variable. Univariate autoregressive time series forecasting makes no attempt at 
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discovering underlying causal factors -- its use as a forecasting tool rests with the primacy assumption 

that the past is a good predictor ofthe future. Univariate methods are appropriate when the objective 

of the analysis is to forecast rather than analyze the causal effects affecting the data. Other types of 

univariate statistical procedures include exponential smoothing, component models, and the Box

Jenkins autoregressive integrated moving average (ARIMA) process. 

Gallinari, Thiria, and Fogelman-Soulie (1988) showed that for a neural network performing a 

one-from-N classification, the weights used in the optimum network design which minimize total 

mean squared error of the output error, also maximized the ration of determinants of the between

class and total covariance matrices. 

In attempting to analyze how neural networks worked, Webb and Lowe (1990) simplified the 

model ofRumelhart et al. (1986) by assuming a neural network with nonlinear input transformation 

and linear hidden layer transformation functions. In doing so, tp.ey showed how this modified neural 

network had equivalent results to those used in linear regression theory. They concluded that the 

discriminatory ability of neural networks stem from the input layer's nonlinear transformation of data 

into a form that makes linear discrimination easier in later layers of the network. They also concluded 

that the final linear transformation used in the network "could be replaced by a more sophisticated 

statistical pattern analysis method" (p 370). 

White (1990) in is analysis of the statistical consistency ofback propagation neural networks 

also established the nonparametric regression capability of the neural network model. Stone ( 1986) 

has shown that multiple regression analysis is similar to hierarchical neural networks. 

Bayes Theory 

Many times one will need to calculate the probability of an event based on its original 

probability and new information. Bayes Theory provides a procedure for incorporating a priori 

information as well as for accounting for new information. Bayes Theory is also the basis for 

statistical pattern recognition, and "provides a unified approach to the well known classification 

algorithms, including linear and quadratic discriminant analysis (Patuwo, Hu, and Hung, 1993, 827). 
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A disadvantage of Bayes theory is that one must have information of the prior distributions for 

the parameters. When the distributions are not known or can not be expressed algebraically, 

nonparametric methods such ask-nearest-neighbor or linear programming models tnust be used. 

The base of Bayes Theory is the Bayesian Inversion Formula: 

P(ylx) P(x) 
P(xly)=---

P(y) 

(3-11) 

which says that for an event x [with a known probability P(x)], the probability of "event x given event 

y" can be computed by factoring in the likelihood ofy's occurring, given that x has occurred, and the 

overall likelihood that y will occur at all. The Bayes formula also provides the basis of a method of 

categorizing patterns. In this interpretation, x is interpreted as a possible category into which a pattern 

might be placed, and y is interpreted as the pattern itself. A decision function can be associated with 

each possible category (all values of x). Generally, the decision functions are simple relations of 

P(xly) in which the potential loss if an incorrect decision is made is factored into the probabilities. If 

the loss is the same no matter what error occurs, the decision functions reduces to P(xly). 

The problem with Bayesian analysis is that real world problems rarely have perfectly known 

probabilities. As best we can hope to estimate or approximate such Bayesian decisions. The analysis 

is simplified if a Parametric model of normalcy is assumed. The normal or Gaussian distribution has 

been the basis of a large part of statistical theory, not only because it models many natural event 

distributions exactly, but even more because it is particularly good at representing the properties of 

aggregated and cumulative phenomena. 

Weiss and Kulikowski ( 1991) suggest that from the perspective of minimizing average error 

rates all learning systems can be seen as approximations of the Bayes rule. 

The simple empirical implementation of the Bayes rule is equivalent to the direct lookup of a 

new case in a table containing a huge sample of cases, each with the correct class noted. The 

minimum error answer is then simply the class that occurs most frequently for the given 

pattern.... The objective of the learning system is to find a set of rules that covers the cases of 

a particular class without covering the cases in the other classes, or at least minimizing the 
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number of errors that are made. The hope is that not all features need to obtain coverage. For 

example, we might be given a sample of cases with two classes: the class of wealthy people 

and those that are not. We also might be given data with many features, such as age, sex, 

income, net worth, height, and weight. If the true classifications were assigned strictly on the 

basis of net worth above $1,000,000, then a learning system could readily cover all the cases 

using this single feature. While the Bayes rule would find the correct answer, all the useless 

features would also be considered in the lookup table. (Weiss and Kulikowski, 1991, p 116) 

Thacker and Mayhew (1990) suggest that hierarchical neural networks using the least squares 

method of learning and normalized data is equivalent to the method used in the Bayesian classifier. 

Patuwo, et. al. (1993) suggest that neural networks are comparable to Bayesian methods in terms of 

classification rates in training samples but not intest samples. 

Gaussian Classifier 

Barschdorff, Monostori, Ndenge, and Wostenkujler (1991) suggest that the most frequently 

used traditional Parametric pattern recognition technique is a derivation of the Bayes classifier for 

Gaussian data. This derivation is called the Gaussian Classifier. The Gaussian classifier can be used 

with features that are non-Gaussian or even discrete valued, and the covariance matrix and mean 

vectors are usually estimated as averages taken over the sample set. 

Yau and Manry (1990) showed that the Gaussian classifier is isomorphic to the Sigma-Pi two 

layer neural network (Rumelhart et al., 1986a). 

Box-Jenkins 

Tang, de Almeida, and Fishwick (1990) reported on forecasting using Box-Jenkins methods 

vs. back propagation neural networks. The analysis involved airline passenger data, domestic car 

sales, and foreign car sales. They found that where Box-Jenkins does not work well with short series 

of input data, neural networks worked reasonably well, and considered this an advantage of neural 

networks. As the number of forecast periods increased, the relative performance of neural networks 
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increased -- Box-Jenkins tends to nicely reproduce the details of the original series, while neural 

networks tend to generalize, ignoring the details. As the number of input variables increased, the 

forecasting performance of the neural network improved. 

Varfis and Versino (1990) applied neural networks and Box-Jenkins models using two series 

of data, and found neural networks to compare favorably. Sharda and Patil (1990) compared neural 

networks with the Box-Jenkins model and found neural networks to compare favorably. Reynolds, 

Mellichamp and Smith (1995) showed that a three-layer back propagation neural network is a better 

method of identifying Box-Jenkins models for univariate seasonal time series. 

Decision Tree 

A decision tree consists of nodes and branches. Each node represents a decision point, with 

the starting node called the root node. In a binary decision tree, a decision of true or false will direct 

the tree to branch either to the right (false) or to the left (true). Atthe end of the decision tree, a 

decision has been made at the terminal node. If the decision tree can be thought of as a collection of 

rules, then the terminal node will correspond to a specific decision rule. Non-binary decision trees will 

have more than two branches leaving a node. All paths in a decision tree are mutually exclusive. For 

any new case, there is one and only one path that will lead to a satisfactory conclusion. 

An inductive logic process is used to optimize the structure of a decision tree. Using this 

method, nodes are split into two or more classes on either a random or an arbitrary basis. One way the 

node becomes a terminal node is when all data points are members of one class. The node may also be 

classified as terminal when the number of cases assigned fall below some minimum threshold and the 

node is assigned the class having the greatest frequency. As the number of nodes increase, the 

apparent classification error approaches zero. 

Weiss and Kulikowski (1991, p 121) note that there are several functions that can be used to 

determine whether a node should be split, and that no overwhelming case can be made for any single 

function. The best function seems to be based on the expected nature of the decision tree. The 

underlying concept for most decision tree evaluation functions is based on evaluating at a specific 
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node, the likelihood of the split producing a better tree, without testing possible splits of successor 

nodes. The objective of these evaluation functions is to reduce the degree of randomness of classes 

within the current node. Two popular evaluation functions are the entropy and the gini functions. 

entropy i - - LP .log p . (3-12) where· p = probability of each class 
J J 

J = classes within the node 

gini i = 1 - L p ~ (3-13) i = impurity 
J 

Using either the entropy or gini functions for evaluating the impurity of a node, one calculates 

the reduction in impurity based on the expected value of the cases from the parent node that take that 

branch. The impurities of all immediate branches of a parent node are summed, and the reduction is 

found by subtracting the impurities of the children branch nodes from the impurities of the parent 

node. 

(3-14) where: p = probability of each class 
· in = impurity in current node 

Many different splits are examined, and the number of splits of the parent node is the one 

with the greatest reduction in impurities. Chi-square can be used to compare the distribution of classes 

at the node with the classe~ at the resultant split node. When the statistical test indicates that further 

splitting will not be significant, then the process is stopped. A problem with this approach is that it 

does not look ahead beyond the current step. 

The inherent weakness in this method is that the use of continuous data is problematic (how 

does one know where the best split should be made?), splits for every variable in the sample will need 

to be considered. Categorical variables work well with binary trees and may either be automatically 

mapped into true or false splits, or split into one attribute specific group with all others in another 

group. 

Because the induction process typically continues until all terminal nodes contain only 

members from the sample of a single class, the apparent error rate will approach zero. This tends to 

lead to overtraining, and the actual error rate for new data may be significantly different from the 

apparent error rate for test data. 



To help overcome this overtraining problem, pruning techniques are used to remove branches 

from a fully expanded tree. Working backwards, the weakest branches are removed until no weak 

branch remains. There are several heuristics for the pruning of decision trees. 
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CHAPTER IV 

BACK PROPAGATION DESIGN CONSIDERATIONS 

The Review of Literature will be divided into several basic components: a review of the Evolution 

of Neural Networks, a review of Non-Parametric Statistical Concepts, Traditional Statistical Classification 

Methods and their Relation to Neural Networks, a review of generalized Neural Network Learning 

techniques and specific back propagation based techniques that could be used in data analysis, and a 

review existing literature describing how data should be prepared for use with back propagation neural 

networks. 

Intelligent Systems Design Methodology 

As discussed in Chapters one and two, drawing on the works of Samuel (1967), Van Dalen 

(1979), Minsky and Papert (1988), Kolen and Goel (1991), and Roy, Govil and Miranda (1995), one can 

identify major characteristics that describe Self-Leaming Systems such as Neural Networks when used in 

experimental design. The characteristics include Objectivity, Credit Assignment, Reliability, 

Generalization, Computational Complexity, and Representational Adequacy. In designing experiments 

using Neural Networks, one should be cognizant of the characteristics. 

Objectivity 

The system must yield the same findings regardless of the equipment used to run the computer 

program, or who administers or records the findings (Van Dalen, 1979). This is a concern especially 

when developing systems based on custom algorithm using UNIX type operating systems. It is common 

knowledge that UNIX operating systems are not identical across various computer equipment platforms. 
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Additionally the various software houses (Novel, Microsoft, Santa Cruse Operating Systems, IBM, etc.) 

each have versions of UNIX that are not 100% compatible with each other. 

97 

The problem of objectivity is not of great concern when using commercial available software, 

such as NeuralWare. Commercial organizations have a vested interest in writing software at a level that 

will operate identically on different platforms. 

Credit Assignment 

Once implemented, when incorrect performance has been identified, the system must be able to 

identify its structural components that are responsible for incorrect performance, and must be able to make 

modifications so that correct performance can be achieved. This characteristic is typically a feature of the 

Neural Network systems man-machine interface. 

Reliability 

The system must be able to yield the same basic results with the same exemplars are trained on 

networks under the same conditions. White (1990) called this statistical consistency in his evaluation of 

neural networks performing nonparametric regression functions. Roy, Govil and Miranda (1995) called 

this characteristic Robustness of Learning. A procedure is consistent it the approximation error of the 

forecast approaches zero as the sample size approaches infinity. Procedures that are not consistent will 

make errors in classification, recognition, or forecasting. Procedures that are consistent will only make 

errors due to the inherent randomness of fuzziness of the true relation between independent and dependent 

variables. A back propagation neural network, given the same initial weights assigned to the neurode 

connections, will produce the same results (adjusted for computer rounding error) each time the network 

is run. However, when neural network is initiated with random weight settings within a set range, for a 

given stopping criteria, the network may converge on local optimum point that produces a slightly 

different result. 
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Generalization 

Peterson and Hartman (1989) defined generalization concerning neural networks as "the 

response of a network, after some amount of training, to novel (unlearned) inputs" (p 481). 

Generalization is what the system learns from specific examples must be generalizable to general 

abstractions that are needed to perform specific tasks. Generalization directly concerns itself with the 

statistical concept of external validity. Because of the training rather than programming nature of neural 

networks, one could also argue that generalization is also concerned with internal and instrument validity. 

Kempka (1994b) suggests generalization is the ability to "infer from incomplete data or the success of 

acting upon data not included during training" (p 42). 

The ability of a neural network to generalize is sensitive to the number of hidden units in the 

network. If the number is too small, then the network is overconstrained and there is not enough structure 

for all the needed abstractions. The number is too great, then the network tends to memorize the features 

ofa specific data set (Chandrasekaran and Goel, 1988; Kruschke and Movellan, 1991). Peterson and 

Hartman (1989) suggest two basic ways to test generalization: 

1. Continuous Learning - uses the entire training set. Each time the network is presented with a 

case, it is first tested for generalization on that pattern. The disadvantage here it that there is not a clear 

distinction between learning and generalization. 

2. Fixed Training - Cases are separated into learning and training sets. After learning the 

training set, the network is tested on a set of cases that the network has not seen before. 

Perform Network Design 

Distantly related to the concept of credit assignment, a network learning method should be able 

to design an appropriate network for a given problem, without the need for external input or predefined 

structures (Roy, Govil and Miranda, 1995). To the extent that network design may not be totally 

performed by the learning method, the characteristic of computational complexity becomes increasingly 

important. 
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Computational Complexity 

The system must be computationally efficient so that learning can occur in a reasonable amount 

of time (Kolen and Goel, 1991). Roy Govil and Miranda (1995) called this characteristic the Efficiency in 

Learning. When evaluating computational complexity, considerations should be made in the areas of the 

Epoch size, the initial random weight settings, the activation function, and the learning (weight change) 

algorithm: 

Epoch Size. Back propagation error derivatives may be calculated either on a case by case basis 

or on an echoic basis. In the epoch method, the error derivative is the sum of the error derivatives for 

each case presented. Weiss and Kulikowski (1991, p 99) have found that the case by case approach yields 

superior results in terms of small mean squared errors. Determining epoch size can be an iterative 

process, depending in part on the amount of noise in the data set. Klimasauskas (1991a) recommends the 

following procedure: 

1. Pick an initial yalue (16 seems to be a good number) 

2. Train the network for a pre-established number (perhaps 10,000) of iterations 

3. Test the network for accuracy, or calculate R2. 

4. Repeat the process for additional epoch sizes, graph the results. The point at which the 

network peaked is the optimum size for the network and data set. 

Initial Weight Settings. Significant differences in learning rates can be caused by the initial 

random selection of the connection weights. They also noticed a sharp increase in the non convergence 

rate with weights greater than two, and at weights near the origin. Based on their results, they also 

concluded that the learning rate (h) and momentum (a) have little effect on the percentage of non 

convergent initial weight states. (Kolen and Pollack, 1990; Kolen and Goel, 1991). 

When setting initial weights, Smith (1993) suggests that if a priori knowledge is not available, 



then an initial midrange node output is best. Smith recommends the following in setting weights: 

1. Hidden Layer Nodes: set to small random numbers distributed evenly around zero, with the 

average absolute value of the weights set by the following formula: 

s 
Jwl=- (4-1) where: Jwl = average absolute value of weights 

i = number of system neurodes 

S = maximum input value 
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2. Output-Layer Node: set one half with 1 and the other half with -1; the weighted sum of weights 

should be close to zero. 

Ye, Wang, and Robert (1990) suggest that partially connected neural networks should be used 

where a priori knowledge is available. Partially connected networks may be constructed to extract time-

varying features. 

Activation Function. The activation function (sometimes called the transfer function) is the part 

of the neurode that produces an output. The choice ofa non-linear activation function in hidden 

neurodes will allow the network to model non-linear functions. The multi-layered structure of a back 

propagation network (and not the choice of activation function) is the feature that allows the network to 

be a universal approximator (Hornik, Stinchcombe, and White, 1990). 

In general, all output neurodes should contain linear activation functions (Kempka, 1994a). The 

choice of hidden unit activation functions depends partly on the distribution of errors in the sample data 

and partly on the specific application (Cichocko and Unbehauen, 1992). For given traditional statistical 

design techniques, Sarle (1994b) suggests following network designs and activation functions: 

• Linear Discriminant Function - Single Layer with a threshold activation function at the output 

layer 

• Non-linear Principal Component - Three hidden layers with the first and third hidden layers 

containing more units that there are input units with non-linear activation, and the second 

hidden layer containing fewer units that there are inputs with linear activation. Linear 

activation on the output layer. 

• Multivariate Linear Regression - Single Layer with linear activation function at the output layer 
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• Multivariate non-Linear Regression - Either Single Layer with non-linear activation function at 

the output layer (usually logistic), or multi-layered with non-linear activation on the hidden 

neurodes and linear activation on the output neurodes. Note: multi-layered will tend to give 

better generalizations are universal approximators. 

• Linear Maximum Redundancy Analysis- One hidden layer with fewer units that there are 

inputs, linear activation on both hidden and output layers. 

• Non-linear Maximum Redundancy Analysis - Two hidden layers with the first hidden layer 

containing more units that there are input units with non-linear activation, and the second 

hidden layer containing fewer units that there are inputs with linear activation. Linear 

activation on the output layer. 

Considerations in selecting the appropriate hidden unit activation function include: 

Squashing: transforming an output of unlimited range to an output of a specific range, generally 

either O to 1 or -1 to + 1. The choice of range will influence the training of any neural network. 

Differences in magnitude (one vs. two units) and the steepness of the slope of the function will give 

different error surfaces. Using a -1 to+ 1 range may generate unwanted zero values unless bias is also 

used. 

Bias: In mathematical terms, bias (Q) can be thought of as the point at which the a function 

crosses the y axes. In neural networks bias may be used to set hurdle rates for neurode activation. (See 

gain, which may be used to change the slope of the activation function) 

Gain: In mathematical terms, gain (g) can be thought of as a weight that adjusts the slope of a 

function. If the activation function is a logistic function with a maximum of 1 and a minimum of 0, 

increasing the gain weight from 1 to 2 would create a line more closely tracks the y axes with the slope of 

the curve at the boundary changing from.25 to .5. Decreasing the gain from 1 to .1 would flatten out the 

line. An additional benefit of gain is that it, in effect, normalizes weight vectors of neurodes. Adaptive 

gain is an algorithm that speeds learning by automatically changing values as the slope of the error curve 

changes and can be used in the place of a momentum (a) factor in back propagation gradient descent 
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calculations. Adaptive gain can also be used to eliminate unnecessary hidden layer neurodes from a 

neural network (Kruschke and Movellan, 1991). 

Learning (Weight Change) Algorithm. The algorithm used to describe how weights should be 

updated was developed by Widrow and Hoff (1960), and is now sometimes called the Least Mean Square 

rule, and sometimes called the Delta Rule. Using the algorithm does not require linearly separable data. 

The development of multi-layered networks to solve the exclusive/or problem also lead to a generalized 

form of Least Mean Square training called back propagation, first presented by Rumelhart, Hinton, and 

Williams (1986a). Parameters that affect back propagation include: 

Learning Rates (h). The learning rate parameter (h) is a correction factor that modifies 

calculated weight corrections such that (h) * (Dwi(t))· With back propagation, the smaller the learning 

rate, the slower the progress in finding an optimum solution. The larger the learning rate, the more 

oscillations there are and the greater the possibility of skipping over a minimum solution. Weiss and 

Kulikowski (1991, p 101) suggest a learning rate ofh = 0.5 as being typical. Tollenaere (1990) suggests 

that there is an optimal learning rate for which learning is fast arid the procedure remains stable. for a 10-

10-10 network h = .25 has been found to be optimal, for a 10-5-2 network, h = 1.0 has found to be 

optimal. Reyneri and Filippi (1991) suggest an algorithm that may be used to find the optimal learning 

parameter that is based on the number of inputs, and may be different for various layers of the network. 

Kung and Hwang (1988) in applying the algebraic projection analysis to back propagation, developed a 

formula to estimate the optimum learning rate: 

72 
(4-2) where: P = the number of hidden neurodes 11 = 

P+1 

Momentum (a). Momentum is a mathematical term added to the weight update algorithm that 

includes a percentage of the previous weight adjustment in the current weight adjustment; it is a 

mathematical device used to keep the network moving on the downhill error surface, even when localized 

minimums are reached. Tollenaere (1990) suggests that there is an inverse relationship between an 

optimum learning rate and momentum. Some have reported not being able to train networks with 



momentum factors (a)> 0.5, while others report success with a= 0.9. Tollenaere suggests that the 

contradictory claims could be explained by the different learning rates used. The following suggestions 

concerning momentum are made: 

• the optimum learning rate (h) decreases as momentum (a) increases. 
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• the use of very high momentum does not result in instability, provided that step sizes are sufficiently 

small. 

Representational Adequacy 

Representational Adequacy can be.defined as the ability of the system to internally represent 

what it known and what it is to learned. The concept also includes the statistical concept of suitability -

the system must be capable of analyzing the problem under question. 

Stein (1993) has suggested that the. most important decision one makes in approaching a 

modeling project i~ in choosing the independent variables assumed to effect the dependent variable. After 

a preliminary list of candidate variables has been chosen, standard statistical analysis can be used to 

narrow the field. Stein suggests that the "goal of any modeler should be parsimony: to find the simplest 

explanation of the facts using the fewest variables" (p 44 ). 

One may view the problem of representational adequacy in three perspectives: Statistical 

Sufficiency. Logical Suitability, and Data Representation. One looks at representational adequacy from 

the perspective of the structure of the neural network-is the structure of the neural network conducive to 

solving the problem under question? The other looks at representational adequacy from the perspective 

· the training sets-is the data presented to the network representative of the problem under question? 

Statistical Sufficiency. A back propagation hierarchical neural network is discrete Fourier series 

with the number of adjustable frequencies determined by the number of neurodes in the hidden layer 

(Lapedes and Farber, 1987). According to a mathematical theorem proved by Andrle Komogorov in the 

late 1950's (and restated for neural networks by Robert Hecht-Nelson in the late 1980's) "the network will 

always eventually figure out how to make perfect forecasts of the data on which the neural network is 
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being trained" (Coats and Fant, 1991, p 12). Hornik, Stinchcombe, and White (1990) demonstrated that 

a hierarchical neural network using back propagation could be used to approximate any mathematical 

function. Ito (1991) proved that a sigmoid function can, under certain circumstances, become universal 

approximators. 

The perceptron based neural network is nonparametric in nature (Widrow and Hoff, 1960; 

Rumelhart, Hinton, Williams, 1986a; White, 1990; Weiss and Kulikowski, 1991). The Least Mean 

Square (or the Delta) rule that is the foundation of back propagation does not require data to be linearly 

separable or mutually exclusive (Widrow and Hoff, 1960). Neural networks seem to be variations of 

piecewise linear classifiers without the need to make parametric assumptions concerning the underlying 

population distribution. (Weiss and Kulikowski, 1991). Webb and Lowe (1990), in analyzing a neural 

network with nonlinear input activation functions and linear activation functions for other layers, proved 

that a nonlinear activation function allowed a back propagation neural networks to perform nonlinear 

discriminant analysis. White (1990) in his analysis of the statistical consistency of back propagation 

neural networks also established the nonparametric regression capability of the neural network model. 

Stone ( 1986) has shown that multiple regression analysis is similar to hierarchical neural networks. 

Webb and Lowe (1990) assuming a neural network with nonlinear input transformation and linear hidden 

layer transformation functions showed this had equivalent results to those used in linear regression theory. 

Least squared regression attempts to do what a neural network using back propagation attempts to do, 

minimize the sum of the squared error (Burke 1993). 

Logical Suitability. The system must be able to internally represent what it knows and what is 

needed to be learned. This concept could be expanded to include the statistical concepts of suitability 

(Van Dalen, 1979)-the system must be capable of analyzing the problem under question. This concept 

seems to be similar to concept-leamability issues suggested by Haussler (1989) and Kolen and Goel 

(1991). 

Multi-layered feedforward Neural Networks using back propagation have been proven to be 

universal approximators (Hornik, Stinchcombe, and White, 1990). Many researchers have shown that a 

neural network with a single hidden layer (two layer) can arbitrarily approximate any polynomial function 
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(Hornik, Stinchcombe and White, 1990, Kammerer and Kupper (1990), Baldi and Hornik (1989). 

Funahashi (1989) showed that any continuous mapping can be approximated by a back propagation neural 

network with at least one hidden layer with sigmoid output functions. However, from a problem solving 

standpoint, a single hidden layer may not be enough to define a problem space. Blum and Li (1991) have 

constructed a proof that a neural network with two hidden layers and a linear output are universal 

approximators. They theorize that the first layer will divide the classification region by lines and the 

second layer will identify regions separated by the lines; if a task is of the type that may be solved by a 

single layer neural network, adding additional layers will not provide additional discriminatory power. 

From a discriminant analysis standpoint, a single layer neural network can form two decision 

regions separated by a hyperplane. A two layer network, with one layer of hidden units, typically form 

open or closed convex decision surfaces, and thus can separate the inputs of the exclusive/or problem. 

The decision regions of a two layer neural network are formed from the intersections of regions defined by 

each node of the second layer. They note that a three layer neural network ii, required to approximate 

complex decision regions. (Bars~hdorff, Monostori, Ndenge, and Wostenkujler, 1991) 

Kolen and Goel (1991) suggest that traditionally constructed neural networks are not capable of 

performing high level abstractions. They suggest that without the high-level abstractions, a network can 

only learned to mimic the situation--specific respon~es. The network could not generalize to the high

level abstractions. They concluded that high-level abstractions can be a major source of power for 

learning in back propagation neurai networks. They suggest that much of the success of neural networks 

is due to the "programming" of these high~level abstractions in the networks in "compiled" form, either by 

arbitrarily setting initial weights, or by not fully connecting the network. These abstractions are useful 

because they provide a domain model to the network, which decomposes the learning space into smaller 

and simpler spaces, and guides the network in navigating these spaces. 

Data Representation. One major consideration when deciding how data should be represented to 

a neural network is the consideration of whether to describe information as one of a set of exclusively 

categorized items (a nondistributed representation or a class of variables), or as a set of qualities that may 

be used to describe several different items (a distributed representation or quantitative variables). In 
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neural networks, the representation of discrete class type variables may be significantly different from the 

representation of quantitative variables. Because a reasonably sized network can store only a few unique 

patterns, neural networks tend to do best with distributed information. 

Nominal Numbers - are labels that happen to use numbers as identifiers, they do not reflect any 

specific sequence or order. Crooks (1992) recommends that an input neurode be assigned for every 

possible value. For example, if there are three cities Tulsa, Enid, and Dallas, each city would be assigned 

a specific input neurode, and the input sequence for Enid would be O 1 0. 

Class variables can be problematic because networks can not generalize between classes (Smith, 

1993). One solution is to group data by class; and randomly select training cases within each class. 

Ordinal Numbers - Ordinal numbers imply a ranking or an ordering, but not magnitude. With 

ordinal numbers, one input neurode is usually needed per class of information. However, when there are 

several options within a class of data, a thermometer code may be a useful way of representing the data. 

Interval (Continuous) Variables have values that can be any number within a range. Networks 

tend to be biased towards large magnetite numbers. To overc;:omethis bias, inputs are typically scaled (or 

normalized) so that all inputs correspond to roughly the same input values, typically between O and 1 or -1 

and + 1. Assuming no a priori knowledge, dependent variable data should be scaled to equal variances; a 

variable with twice the variance of another variable has approximately twice the influence on training 

(Sarel, 1994). 

In general, non-linear data should be transformed to linear data (Smith, 1993). While a back 

propagation neural network with non-linear activation function may model non-linear data, with non

linear data there is an increased risk of overfitting that would prevent the network from generalizing to 

new data. 

Limitations of Neural Networks 

Kolen and Goel ( 1991) suggest three interrelated issues that are limitations to the use of neural 
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networks as a form of artificial intelligence: 

1. Back Propagation neural networks have a poor capacity in representing knowledge in that the 

network has difficulty in learning higher-order abstractions. 

2. Neural networks make relatively little use of domain knowledge that exists in reality. 

3. Neural networks do not reflect the structure of the task they address. Back propagation as a 

learning tool is task-neutral that does not make use of constraints that may be beneficial in 

decomposing the learning space into smaller and simpler regions. 

Representational Adequacy Limitations. Kolen and Goel (1991) suggest three interrelated issues 

that are limitations to the use of neural networks as a form of artificial intelligence: 

1. Back Propagation neural networks have a poor capacity in representing knowledge in that the 

network has difficulty in learning higher-order abstractions. 

2. Neural networks make relatively little use of domain knowledge that exists in reality. 

3. Neural networks do notreflect the structure of the task they address. Back propagation as a 

learning tool is task-neu~ that ~oes not make use of constraints that may be beneficial in 

decomposing the learning space into smaller and simpler regions. 

From the standpoint of artificial. intelligence, the problems being addressed seem to be related to 

the problem of Representational Adequacy: The system must be able to internally represent what it 

known and what it is to learned. The idea also includes the statistical idea of suitability -- the system must 

be capable of analyzing the problem under question. 

One may view the problem of representational adequacy in two perspectives. One looks at 

representational adequacy from the perspective of the structure of the.neural network -- is the structure of 

the neural network conducive to solving the problem under question? The other looks at representational 

adequacy from the perspective the training sets-is the data presented to the network representative of the 

problem under question? We will discuss aspects of each question in sequence, after which we will 

discuss statistical measures that may be used to compare representational adequacy between networks. 
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Is the structure of the neural network conducive to solving the problem under question? 

Some problems are not representable in traditional neural network form -- structured learning, etc. Is the 

data presented to the network representative of the problem under question? 

Variations in Optimum Network Component Design 

Setting up a neural network is, at this time, largely a trial and error task. The following are 

conclusions others have draw from their neural network research concerning how best to set up a neural 

network. 

Learning by Case or Epoch 

Back propagation error derivatives may be calculated either on a case by case basis or on an 

epoch basis-after all error derivatives have been computed for all cases presented. In the epoch method, 

the error derivative is the sum of the error derivatives for each case presented. Weiss and Kulikowski 

(1991, p 99) have found that the case by case approach yields superior results in terms of small mean 

squared errors. 

There are two schools of thought in choosing an epoch size. If the epoch size is set to the size of 

the training set,_ the RMS error will be an indicator_ whether the network is more often right than wrong. 

In this case, a RMS error of 0.5 or greater indicates that the network is not learning. As the number of 

output units increase, the level of significance hurdle point decre~ses according to the formula: 

(Garavaglia, 1993). 

1 
E =---

n 

(4-3) where: n = number of output neurodes 

Determining epoch size can also be an iterative process, depending in part on the amount of 

noise in the data set. Klimasauskas (1991a) recommends the following procedure: 

1. Pick an initial value (16 seems to be a good number) 

2. Train the network for a pre-established number (perhaps 10,000) of iterations 



3. Test the network for accuracy, or calculate R2. 

4. Repeat the process for additional epoch sizes, graph the results. The point at which the 

network peaked is the optimum size for the network and data set. 

Randomization of Starting Weights 

109 

Symmetry Breaking was first described by Rumelhart, Hinton and Williams (1986a) and refers to 

the fact that if weights start with equal values in a network, modifications to those weights will be the 

same because hidden units will all receive the same error signal back from the output layer. To overcome 

the problem, small random unequal values are assigned as the initial values to the weights. 

Neural networks typically begin with randomized settings for interconnecting weights. (Weiss 

and Kulikowski, 1991, p 100) suggest that the random numbers typically range from -.5 to .5. Repeating 

the training of a set of data with different starting points will typically produce slightly different answers, 

owing to starting at a different place in the error space, and to a stopping rule that is satisfied with error 

reaches a pre-specified minimum number, not zero. 

Kolen and Goel (1991) conducted a simulation of the X/OR problem using the standard back 

propagation algorithms ofRumelhart et al. (1986a). In analyzing the simulations, they noticed significant 

differences in learning rates and concluded that the differences lie in the initial random selection of the 

connection weights. They also noticed a sharp increase in the non convergence rate with weights greater 

than two, and at weights near the origin. Based on their results, they also concluded that the learning rate 

(h) and momentum (a) have little effect on the percentage of non convergent initial weight states. Kolen 

and Pollack ( 1990) report on additional e,qJerimental results in support of this conclusion. 

When setting initial weights, Smith (1993) suggests that when using a sigmoid activation 

function, if a priori knowledge is not available, then an initial midrange node output is best. Smith 

recommends the following in setting weights: 

1. Set the hidden node weights (and the weights on direct links from inputs to outputs, if they exist) 

to small random numbers distributed evenly around zero. "If there are 1000 inputs and the 
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largest input value is 1, then the absolute value of each initial weights should be less than O.01" 

(Smith, 1993, p 96). 

2. Initialize half of each output-node's weights with values of 1 and the other half with -1; if there 

is an odd number, initialize the bias weight at zero. While we would want the weighted sum of 

weights close to zero, small weights would mean small derivatives, which would mean small 

weight changes and a long training time. 

Sarel (1994a) notes that while generalization can be improved in linear models with small 

weights, there can be an adverse effect in Neural Networks using sigmodal activation functions. If the 

weights feeding a sigmodal activation function are sufficiently small and the activation region for the 

training cases lie in the central, almost linear, region of the activation function curve, the neurode may 

behave as if it has a linear activation function. If a network contains many small weights, the effective 

number of hidden units may be much less than the actual number of hidden units. 

Optimum Number of Hidden Units 

The optimum nurriber of hidden units that should be used in a i:i,eural network is a matter of 

usually determined by trial and error. Chandrasekaran and Goel .( 1988) note that the ability of a neural 

network to generalize is sensitive to the number of hidden units in the network. If the number is too 

small, then the network is overconstrained and there is not enough structure for all the needed 

abstractions. Kruschke and Movellan (1991) suggest that the reason for.improved generalizati~n in 

reducing the number of hidden units is intuitively clear: "A small hidden layer forces the input patterns to 

be mapped through a low-dimensional space, enforcing proximities between hidden-layer representations 

that were not necessarily present in the input-pattern representation. Only the differences between 

patterns that are most important for decreasing error will be preserved as large distances between hidden, 

layer patterns" (p 276). 

The complexity of a network can be varied by changing the number of hidden units and the 

number of hidden layers. Sarle ( 1994b) notes that with a small number of hidden units, the network is 

similar to a parametric regression model. With a moderate number of hidden units, the network is similar 
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to a projection pursuit regression. As the number of hidden nodes increase, the network's ability to model 

ever increasingly complex functions also increase. 

Neurodes of a hidden layer tend to have specific logical functions that can often be correlated to 

real world causal identifiers. Kung and Hwang (1988) suggest that the optimum number of hidden 

neurodes should be one less than the patterns in the population. Volper and Hampon (1990) suggest that 

when modeling quadratic equations, d( d+ 1 )/2 cross terms as well as the linear terms are distinct features 

represented by hidden nodes. 

There are many approaches that can be used in determining the optimum number of hidden 

units. Fujita (1991) proposed the Orthogonal Complement Method as a means to optimize the number of 

internal units in a binary network. It has been suggested that the optimum number of hidden notes can be 

calculated by (clog n). 

Garavaglia (1993) suggests that by examining the weights of individual neurodes, one can 

estimate significance -- with weights above 0.5 indicating class membership. In networks with multiple 

neurodes in the output layer, the unit with the highest value represents the class predicted by the network. 

If one of the hidden layer neurodes contains a value close to 1. 0, and others have values close to O. 0, one 

can conclude that the network has achieved a high level of discrimination among classes. If values of the 

output units and_the percentage of correct classifications do not decrease together monotonically, a higher 

degree of nonlinearity is indicated. 

Smith (1993) suggests that functions that approximate reoccurring wave functions can be 

optimally modeled using networks with five hidden nodes. 

There have been two basic dynamic procedures suggested for determining optimum node 

number. Either start with zero hidden units and expand, or start with many hidden units and contract. 

Start With Zero Hidden Units. Another approach by Weiss and Kulikowski (1991) is to start 

with zero hidden units and gradually add hidden units. With a single layer of hidden units, this provides 

a direct route to finding the complexity fit in terms of numbers of hidden units. 
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For a solution to be consistent with an accurate analysis, the following patterns should emerge: 

* Error distances on the training sets, which are usually correlated with the error rates, 

should decrease with the addition of hidden units until the distance.reaches (almost) zero. 

* Error rates on the test set should follow the classic pattern of first decreasing, then 

flattening out, and finally increasing again. 

* Error distances on replication of the training session, but with different initial random 

starting states, should be reasonably close (as measured by standard deviations from the 

mean). 

If inconsistencies are noted, it is probably an indication of local minima, and it may be necessary 

to revise learning parameters. This is particularly true if the inconsistencies remain even after 

the replicated runs are averages or the best training solution is selected. (p 106-107). 

Network Pruning. Sietsma and Dow (1991) have been studying the question of effective network 

size. They note that if a network can be trained with a small number of units in the first processing layer, 

these units must be extracting features of the classes which can be interpreted by higher layers. To have 

many units in a layer can allow a network to become overspeci:fic, approximating a look-up table, 

particularly in the extreme where the number of units in the first processing layer is equal to the number 

of cases in the training set. It is suggested that one way of producing a network would be to train the 

network with minimum number of hidden units, and then add ex1ra layers, having the network relearning 

the task. 

Sietsma and Dow ( 1991) proposed a methodology for determining optimum network size based 

on pruning. Their method has two .stages of pruning. Stage one is removing hidden units that can be 

consid~red not contributing to the solution. Stage two is removing units that give information not 

required at the next layer. Noncontributing units are those which either have a relatively constant output, 

or have outputs that are either positively or negatively redundant. Unnecessary units are those that are 

independent of other units in the layer but give information not required at the next layer. However, it 

should be noted that removing units which contribute unnecessary information to the next layer may lead 



to the output of the next layer being linearly inseparable. In other words, removing a unit may be the 

equivalent of creating an exclusive/or problem, which can not be done in a single layer. 
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When a layer has been pruned, the remaining outputs are tested for linear separability with 

respect to the classes imposed by the next layer. If outputs are not linearly separable, a small sub-network 

is trained to take the outputs of the pruned layer as inputs and reproduce the outputs of the layer above. 

This small sub-network enables the building of narrow, many-layered networks. 

Conflicting Data. When two or more similar input patterns have entirely different outputs, a 

condition of conflicting data is said to exist. A neural network has difficulty learning when not enough 

fields are included in the model to distinguish adequately between two output categories. Versaggi (1995) 

suggests that conflicting data should not be eliminated, but the network model should be reexamined, 

increasing the number of inputs as required to eliminate the problem. 

Optimum Number of Layers 

The number of hidden layers that should be used in a neural network seems to be a problem 

specific. There are several proofs discussed later that show neural networks with one hidden layer and 

enough hidden layers are universal approximators, However, from a problem solving standpoint, a single 

hidden layer may not be enough to define a problem space . 

. Single Hidden Layer. Many researchers have shown that a neural network with a single 'hidden 

layer can arbitrarily approximate any polynomial function (Hornik, Stinchcombe and White, 1990, 

Kammerer and Kupper (1990), Baldi and Hornik (1989). These networks can also approximate functions 

that are not differentiable in the classical sense, but possess only a generalized derivative. Funahashi 

(1989) showed that any continuous mapping can be approximated by a back propagation neural network 

with at least one hidden layer with sigmoid output functions. Silverman and Noetzel (1990) suggest that 

networks with one hidden layer are best at generalization or identifying previously unknown items, and 

that two hidden layers work better at classifying previously known items. 
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White (1990) has shown that hierarchical neural network with one hidden layer and one output, 

using back propagation have the statistical property of consistency which means that has network 

experience accumulates, the probability of network approximation errors tends toward zero. White 

suggested that this property could be generalized to other more complex neural network designs. This 

meets the fifth requirement of Repeatability discussed in the first chapter. 

Multiple Hidden Layers. Multi-layered networks allow for the modeling of non-linear 

phenomena, and provide for multiple inputs of neurodes. To take full advantage of a multi-layered 

network's capabilities, the neurode's activation (transfer) function needs to be a non-linear, continuously 

differentiable function. Two commonly used activation functions are known as logistic and sigmodal. 

Blum and Li (1991) have constructed a proof that a neural network with two hidden layers and a 

linear output are universal approximators. They theorize that the first layer will divide the classification 

region by lines and the second layer will identify regions separated by the lines. 

If a task is of the type that may be solved by a single layer neural network, adding additional 

layers will not provide additional discriminatory power. Adding additional layers when not needed may 

even prove to be disadvantageous because of the additional parameters that need adjusting. A two layer 

network can carry out both the task of identity (symmetric case) and selection (antisymmetric case.) 

Multiple layers in neural networks could be beneficial in at least two contexts. The different 

layers of a neural network could represent descriptions of different layers of abstractions. In another form 

of representation, the first layer might be used for feature recognition and the next layers for recognition 

. of groups offeatures, and other layers providing object representation. Thacker and Mayhew (1990) 

suggest that feedback mechanisms may be used to enforce contextual descriptions. When classifying 

order independent patterns, it suggested that a complete epoch be completed before passing information to 

the next layer so that a neurode is not overwhelmed by noise. If information is passed before the epoch is 

completed, a winner-take-all situation may develop that conveys no information about how well the 

pattern is described by a neurode in preference to any other. 

From a discriminant analysis standpoint, a single layer neural network, as exemplified by 

Rosenblatt's (1958) perceptron, can form two decision regions separated by a hyperplane. A two layer 
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network, with one layer of hidden units, typically form open or closed convex decision surfaces, and thus 

can separate the inputs of the exclusive/or problem. As e>..'Plained by Barschdorff, Monostori, Ndenge, 

and Wostenkujler ( 1991 ), the decision regions of a two layer neural network are formed from the 

intersections ofregions defined by each node of the second layer (Figure 16). They note that a three 

layer neural network is required to approximate complex decision regions. 

Two Layer Neural Network Three Layer Neural Network 

X X fe\ X 

X ~X 

X 
X 

Figure 16. Network Layers in Defining Decision Regions 

Geometrically, a two-layer network, with one layer of hidden units, can implement most decision 

surfaces, and can closely approximate any decision surface. A three-layer network, with two 

layers of hidden units, can implement any separating decision surface with sufficient hidden units 

are represented in the two layers. Thus, while it may be more convenient and efficient to specify 

more than one layer of hidden units, additional layers do not add any representational powers to 

the discrimination. (Weiss and Kulikowski, 1991, p 94) 

There is empirical evidence that generalization to novel input patterns is improved by using 

hidden layers with small number of nodes. However, if one uses too few nodes, then the network has 



116 

trouble learning. Adaptive gain can be used OT make hidden nodes compete for the right to participate 

in the network representation of the data. 

Thacker and Mayhew (1990) suggest that one reason that hierarchical neural networks have 

been shown to be well suited at pattern recognition is that network learning algorithms are "in most 

respects identical to the nearest-neighbor classifiers, such ask-means clustering, used in conventional 

pattern recognition" (p 291). Barschdorff and Bothe (1991) introduced a neural network model based 

on the nearest neighbor classification. Their network had three layers, with hidden layer nodes 

performing quadratic features, and simple nodes performing logical/or operations in the output layer. 

Language Recognition and Layers. Ye, Wang, and Robert (1990) suggest that speech 

recognition problems cannot be solved by general purpose hierarchical back propagation neural networks 

because the network structure is not well suited to processing higher order information. As a solution to 

the problem, they propose using partially connected neural networks where a priori knowledge is 

available. Partially connected networks may be constructed to extract time-varying features 

Plunkett and Marchman ( 1991) performed neural network language acquisition research in the 

form of how regular and irregular past tense forms are acquired. They noted that there seemed to be two 

distinct mechanisms involved: 

1. the abstraction of family resemblance clusters of phonologically similarity 

2. higher-level lexical representations manipulated by the past tense rule regardless of their 

lower-level phonological character. 

They show that previous work in the area (Rumelhart et al., 1986a) incorporated only the first 

mechanism, and that the single-layer network that they used can not solve the overall mapping problem 

described above. In applying a multi-layered network to the problem, Plunkett and Marchman (1991) 

noted that networks learned the mapping of regular verbs better than the mapping of irregular verbs. 

They suggest that the difference in learning can be understood in terms of the degree to which a set of 

examples constitutes a single homogeneous class, with irregular verbs being thought of one of several 
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subclasses. When training different classes there is a "clear competition effect that is not directly 

predictable from the ability of the network to perform the mappings in isolation" (p 64). From a training 

standpoint, class size plays an important role in determining the degree to which other subclass 

characteristics leak into the target class, and therefore the performance of the network. They concluded 

that "In general, the larger the irregular class, the greater the likelihood ofan irregular stem [verb] 

resembling and thus interfering with the mapping ofa regular stem" (p 74). 

Kammerer and Kupper (1990), researching language recognition, note that from a neural 

network standpoint, there are two basic approaches to classification that may be used. One approach is 

direct classification, where a single large network is sued to discriminate one class from all other classes. 

Another approach is hierarchical classification, where the first level of the hierarchy consists of networks 

which are able to distinguish pairs of classes, and subsequent levels select the proper class based on 

outputs of lower levels. 

Direct classification schemes require no assumptions about the partitioning of the problem into 

subtasks. · If the problem allows for subtasks, it is assumed that multiple layers will be able to learn to 

assign certain subtasks to different layers. Hierarchical classification allows one to design parts of a 

whole system independently of each other. Kammerer and Kupper (1990) suggest a hierarchical 

classification scheme that involves two specific task levels. The first level is one of identifying patterns 

with a sub-network trained for pairwise class discrimination. The nex1 level is one of selecting patterns 

for membership in specific classes based on .the input pattern. 

Complex Task Modeling (Idiot Savant). Dennis Norris (1990) attempted to construct a neural 

network that would model an idiot savant's ability to calculate on what. day of the week any given date 

would fall. The network used to model this ability contained inputs of 31 day units, 12 month units, and 

15 year units. There were 509 hidden units and seven output units, one for each day of the week. After 

1000 iterations, the network could only accurately predict 73% of the test dates, and 17% of new dates. 

With a chance probability of 14.3% in guessing new dates, it would seem that the neural network was, in 

effect, trying to construct a look-up table. 
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To explain the failure, Norris noted that the task could be divided into three sections: learning 

about days, learning about months, ·and learning about years. Norris then devised a three step algorithm 

that could be used to predict the day of the week. For example, if the task was to find the day of the week 

that March 10, 1975 fell, one would: 

1. From a.base year (say 1951) determine the day of the week that the specific date would fall in 

the first month. For example, January 10, 1951 was a Wednesday. 

2. From the output of step one, determine a date offset based on the specific month had the year 

been the base year. For example, the March offset for 1951 is three days. 

3. Determine a date offset taking into account the difference between.the base year (1951) and 

the target year (1975), and add that to the offsets calculated in steps one and two. For March 

1975, the offset is two days. Therefore the total offset is five days (three days from step 2, and 

two days from step 3). Add the five day offset to the Wednesday calculated in step 1, and the 

March 10, 1975 fell on a Monday. 

Norris notes that while a multilayered neural network could, in theory, solve the problem by 

allocating a separate layer to each stage, there is no guarantee that back propagation would be able to 

learn the task in a trial-and-error procedure. "The real problem with back propagation is that it has no 

way of imposing structure on the last learning. There is no way that back propagation can discover that 

a [multi-step task] is best performed by breaking the task into steps" (p 282). 

When Norris created three subnetworks that were individually trained on the subtasks, the 

network performed substantially better. The subnetwork for the first two tasks performed perfectly. The 

third layer was able to match training set 90% of the time, with the majority of the errors being linked to 

leap years. Based on his analysis, Norris concluded that part of the problem was that there were 

relatively few examples of leap years in the 15 year training set. From the network's standpoint, the 

addition of an extra day on one month once every four years, did not seem that important. 

Norris noted that the important human contribution to the learning effort was not the 

understanding of the detailed structure of the date task, but was telling the network that "its input 

changed from experiences of dates in a month to experiences of months in the year" (p 286). Once the 
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network was shown this feature, regularities in mapping between dates in a month and days of the week 

were preserved. These regularities were then used in the task of mapping between dates in the year and 

days in the week.· 

Norris also noted that although the network knows about days and dates, "it has no explicit 

knowledge of calendrical information. The net has no explicit representation of facts about leap years, or 

how often the calendar repeats itself. It is not simply that the net does not have the ability to interrogate 

its own internal representations, but rather that the net has not had to encode such information directly in 

order to perform the task" (p 286). 

High Level Abstractions (Tic-Tac-Toe Simulation). Kolen and Goel (1991) suggest that 

traditionally constructed neural networks are not Cllpable of performing high level abstractions. They 

come to this conclusion after reviewing an earlier report by Rumelhart, Smolensky, McClelland and 

Hinton ( 1986) concerning their success at training a neural network to play tic-tac-toe. Kolen and Goel 

concluded that the success of Rumelhart et al. ( 1986a) was due to the inadvertent preprogramming of 

high level abstractions. The preprogramming was done through organizing a large number of hidden 

units in a way that they correspond to the eight ways in which an entire row, column or diagonal can be 

captured. Kolen and Goel devised a variation of the miginal problem in which symbolic abstractions 

were not preprogrammed. As the opponent, a symbolic algorithm was used that, because of the nature of 

the heuristic, could after a sequence of moves, be beaten. The neural network won one game out of 

10,000. The number of hidden units did not seem to have any influence on the ability of the neural 

network to learn the game. 

Kolen and Goel ( 1991) draw two conclusions from the results of their attempts to model Tic

Tac-Toe games, taken together with the ex'])erimental results ofRumelhart et al. (1986a). First, without 

the high-level abstractions, their network only learned to mimic the situation--specific responses. The 

network could not generalize to the high-level abstractions needed to win against the opponent. The 

success of a similar study by Rumelhart et al. ( 1986a) is linked to their inadvertently giving the needed 

abstractions to the network in its formulation. With the high-level abstractions, the network appears to 

have learned the strategy for playing and winning tic-tac-toe. Therefore, one can conclude that the 



content of what is learned by the method of back propagation is strongly dependent on the initial 

abstractions presented in the network. 
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The second conclusion is that these high-level abstractions are a major source of power for 

learning in back propagation neural networks. They suggest that much of the success of neural networks 

is due to the "programming" of these high-level abstractions in the networks in "compiled" form, either 

by arbitrarily setting initial weights, or by not fully connecting the network. These abstractions are 

useful because they provide a domain model to the network, which decomposes the learning space into 

smaller and simpler spaces, and· guides the network in navigating these spaces. 

Overfitting 

Because back propagation neural networks are universal approximators in most cases, given 

enough time and enough hidden nodes, we can train a neural network to fit any data set. At this point 

one may question whether the neural network model is useful as a real world representation. Smith 

(1993) provides an example concerning a graph relating the number of people attending a dinner club to 

the number ofreservations (Figure 17) for each of the last 10 years: 

Attendance 

• 
• 

• • 
• 
• 

• 
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Advance Reservations 

• 

Figure 17. Scatter Diagram, Attendance vs. Reservations 

• 
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We would expect the relationship of attendance to reservations to be roughly linear (Figure 17), 

and the data presented could be approximated by a straight line. Attendance usually runs 85% of 

reservations, but is higher in some years and lower in others. Reasons for the variation away from a 

straight line might include weather or competition from other special events - causal factors not taken 

into account in the model. Variations also may be due to inaccurate information or mistakes in recording 

data. 

However, if one uses 10 years of data to train a neural network with 16 hidden notes, the 

network will converge after 450,000 epochs of training. A graphical representation of the trained 

network output is in Figure 18. 

Attendance 

Advance Reservations 

Figure 18. Overfitting, Attendance vs. Reservations 

Chances are that this. mapping of a network will not be a· good predictor of attendance given the 

number of reservations. Although the model fits the training data with minimum error, it probably will 

not generalize very well. A network with these characteristics is said to be over.fitted by modeling noise 

specific to the situation in addition to actual causal factors. Smith (1993) notes that the problem of 

overfitting may be addressed in one of three ways: 



* 

* 

* 

reducing the number of hidden nodes, thereby limiting the number of factors that may be 

mapped 

discouraging the network from using large weights 

limiting the number of training epochs 
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Sarel ( 1994c) notes that the ability of artificial neural networks to generalize is similar to that of 

other statistical models and suggests that networks do well at interpolation with adequate data available 

for sufficient training. However, because of the non-linear nature of artificial neural networks, 

extrapolation is risky. 

Stopped Training 

Sarle (1995c) suggests that the most popular method of preventing overfitting of the data by an 

artificial neural network is a method called stopped training, or early stopping, or optimal stopping. The 

stopped training method has the following steps: 

1. Divide the available data into two separate data sets, one for training and the other for 

validation 

2. Use a large number ofhidden units 

3. Use small random initial values 

4. Use a small learning rate 

5. Compute the validation error periodically during training 

6. Stop training when validation error increases 

Sarle (1995c) notes that this stopped training method with a sufficiently small learning rate is 

similar to ridge regression, has an advantage of being fast, and can be successfully applied to networks 

with interconnecting weights far exceeding the number of observations (a greaterthan 300 to one ratio). 

A disadvantage to this procedure is that usual statistical theory does not apply. Sarel also notes that even 

thought it is widely accepted, there has been very little research on the subject. 
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Models of Neural Networks and their Statistical Equivalents 

Sarle (1994b) notes that the efficiency of neural networks largely depends on the learning 

algorithms used in training the networks (adjusting interconnecting weights) and suggests that in many 

cases standard statistical techniques may be more efficient. One reason that standard learning 

algorithms are inefficient is that they are designed to be used on massively parallel computers, but are in 

fact usually implemented on serial computers. Another reason for inefficiency is that neural networks 

are designed for a real-time environment with transient data, where standard statistics are designed for 

stored data that is repeatedly accessible. However; apart from the efficiency issue, different models of 

neural networks (neurode activation functions, hidden units, etc.) have different statistical properties. 

The rest of this section is adapted from Sarle's ( 1994b) analysis of the structure of neural networks and 

their statistical equivalents. 

Single Layer Networks A simple perceptron calculated a the sum of the inputs and then an 

activation function is applied to the net inputs to p:i:oduce an output. When the activation function is a 

threshold type function, the network acts as a discriminant function, as show in Figure 19. If there is 

only one input, the system is called an Adaline. 

Input Output Target 

Neural Network Model: Perceptron 

·····EJ Neural Network Structure: Single Layer 

Activation Function: Threshold 

Statistical Equivalent: Multiple Discriminant Function 

Independent Predicted Binary Class 

Variables Variables Variables 

Figure 19. Perceptron (threshold) = Linear Discriminant Function 
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A simple perceptron with a linear activation function using a back propagation learning algorithm seeks 

to minimize the sum of the squared errors, which is the equivalent to a linear regression model. With 

multiple inputs and outputs, the model may be of a multivariate multiple linear regression, as in Figure 

20. 
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Independent 
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Predicted 
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Neural Network Model: Simple Linear Perceptron 

Neural Network Structure: Single Layer 

Activation Function: Linear 

Statistical Equivalent: Multivariate Multiple Linear Regression 

Figure 20. Simple Linear Perceptron = Multivariate Multiple Linear Regression 

A simple perceptron using a non-linear activation function (usually, but not necessarily logistic) may 

produce a bounded output. Bounded activation functions are sometimes called squashing functions and 

have ranges of either O to 1 or -1 to + 1. A perceptron with a logistic activation function is the equivalent 

to a logistic regression function, as in Figure 21. 
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Input Output Target 

--------------E] 
Neural Network Model: Simple Non-Linear Perceptron 

Neural Network Structure: Single Layer 

Activation Function: Non-Linear (usually logistic) 

--------------EJ Statistical Equivalent: Multivariate Multiple Non-Linear Regressio 

Independent 

Variables 

Predicted 

Variables 

Dependent 

Variables 

Figure 21. Simple Nonlinear Perceptron = Multivariate Multiple Logistic Regression 

Multiple Layer Networks. With the addition of multiple layers with nQn-linear activation 

functions, the network model has nonlinear parameters. The complexity of a network model can be 

varied by the number of either layers or hidden units or both. When a hidden layer's activation function 

is a polynomial term and the input weights are a constant I, the model is said to be a Functional Link 

Network, as in Figure 22, and are used primarily in image processing tasks. 

Functional 
Input (Hidden) Output Target Neural Network Model: 

Layer 
Functional Link 

Neural Network Structure: 
Multiple Layer 

----------GJ Activation Function: 
Polynomial with input weights = 

Statistical Equivalent: 

Polynomial Regression 
Independent Polynomial Predicted Dependent 

Variables Terms Variables Variables 

Figure 22. - Functional Link Network = Polynomial Regression 
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A multilayered perceptron with a non-linear activation function on the hidden units and a linear 

activation function on the output units are the equivalent of non-linear regression models as shown in 

Figure 23. A multilayered system can have any number of inputs, outputs, and hidden units, as required 

to approximate virtually any function to any degree of accuracy-these systems are universal 

approximators (Hornik, Stinchcombe, and White; 1990). 

Hidden 
Input Layer Output Target Neural Network Model: 

Simple Non-Linear Perceptron 

Neural Network Structure: 
Single Layer 

Activation Function: 
Non-Linear (usually logistic) 

Statistical Equivalent: 

Multivariate Multiple Non-Linear Regression 
Independent Predicted Dependent 

Variables ?? Variables Variables 

Figure 23. Multilayer Perceptron = Simple Nonlinear Regression 

A variation is to allow direct connection from the input to the output layer, which is similar to the 

statistical concepts of main effects. 

When the hidden layer uses a linear activation function, and the hidden layer has fewer units 

than the input layer, then the hidden layer acts as a bottleneck that accomplishes a dimensional 

reduction, as seen in Figure 24. This dimensional reduction is a form of generalization. 

Principal component analysis is a form of dimension reduction that uses unsupervised learning 

in that the dependent variable is both input and output to the system (sometimes called autoassociation or 

encoding networks). 
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Input 
Output Target Neural Network Model: 

Linear Maximum Redundancy Hidden Layer 

Neural Network Structure: 

-----[SJ Multiple Layer 

----------5] 
Activation Function: 

Linear 

---------~ Statistical Equivalent: 

With Independent and Dependent Variables: 

Linear Maximum Redundancy Redundancy 

Components With Dependent Variables as both Inputs and Outputs: 
Independent Predicted 

Variables Variables 

Dependent 

Variables 
Principal Component Analysis 

Figure 24. Maximum Redundancy Analysis 

A nonlinear implementation of Maximum Redundancy Analysis may be created by adding an 

additional hidden layer, between the input and redundancy components, with a non-linear activation 

function, as seen in Figure 25. 



Input Hidden Layers 

Independent nonlinear 
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Neural Network Model: 

Non-Linear Maximum Redundancy 

Neural Network Structure: 
Multiple Layer 

Activation Function: 
Non-Linear (ex. logistic) Hidden laye 

Linear Output Layer 

Statistical Equivalent: 

Non-Linear Maximum Redundancy 

Figure 25. Non-Linear Maximum Redundancy Analysis 

A non-linear equivalent to principal component analysis.may be generated by adding an 

additional non-linear hidden layer between the output layer and the Redundancy Component layer, as in 

Figure 26. 

Input Hidden Layers 

Redundancy 
Independent Components 

Variables nonlinear 
transforms 

Output Target Neural Network Model: 

Non-Linear Principal Component 

Neural Network Structure: 

····5J 
. 5J 
·5J 

Predicted Dependent 

Variables Variables 

Multiple Layer 

Activation Function: 
Mixed 

Statistical Equivalent: 

Non-Linear Principal Component 

Figure 26. Non-Linear Principal Component 



CHAPTER V 

DATA DESIGN CONSIDERATIONS 

The Review of Literature will be divided into several basic components: a review of the 

Evolution of Neural Networks, a review of Non-Parametric Statistical Concepts, Traditional Statistical 

Classification Methods and their Relation to Neural Networks, a review of generalized Neural Network 

Learning techniques and specific back propagation based techniques that could be used in data analysis, 

and a review existing literature desctibing how data should be prepared for use with back propagation 

neural networks. 

Data Preparation for Neural Networks 

This paper has discussed several types of neural networks (feedforward, feedback, competition, 

etc.), several types of learning algorithms used (Hebbian, Back Propagation, etc.), different activation 

functions that may be used (sigmoid, linear, etc.), and a variety of other modifications to the network. 

The options used largely depend on the application. Regardless of the model used, how the data 

represents cases being used to train the neural network will have a significant role in the ability of the 

neural network to model the environment. While neural networks can be used as a new way of analyzing 

data, many of the traditional statistical concepts are still relevant when making judgments concerning 

validity, consistency, and representative sampling. 

Data Classification 

Data can be classified as either discrete (has gaps between possible values) or continuous (any 

value over a specific range is possible). Data can also be classified according to their level of 

measurement, such as: nominal (labels such as male-female. cat-dog, or the percentage of an item in 
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categories), ordinal (arranged in an order from best to worst, but with no statement as to the magnitude 

of difference), interval (difference between values does have meaning), and ratio (interval data with a 

definite zero starting point). The difference between interval and ratio data is often determined by the 

scale being used. For example temperature measured in Kelvin units would be ratio (there is no 

temperature below 0°K), but temperature measured in Fahrenheit would be interval. In another way of 

looking at the difference, four acres is twice the land area of two acres, therefore this measure is ratio. 

Data Representation in Neural Networks 

The way data are represented at the input nodes of a neural network has a major impact on the 

training of the network and of the ability of the resulting model to both discriminate and generalize. 

One major consideration when deciding how data should be represented to a neural network is the 

consideration of whether to describe information as one of a set of exclusively categorized items (a 

nondistribued representation or a class of variables), or as a set of qualities that may be used to describe 

several different items (a distributed representation or quantitative variables). In neural networks, the 

representation of discrete class type variables may be significantly different from the representation of 

quantitative variables. Because a reasonably sized network can store only a few unique patterns, neural 

networks tend to do best with distributed information. As described by Lawrence (1991b, p 36) 

Information is deemed distributed when the qualities defining unique patterns are spread out 

over many pieces of information. For example, a purple object can be thought of as being half 

red and half blue. By using three primary color inputs (red, blue, and yellow), many possible 

color combinations can be represented without adding neurodes. 

Data used by neural networks may be either continuous or binary in nature. Binary numbers in 

nature would be represented by nominal numbers and may represent class type variables. Continuous, 

quantitative numbers in nature would be represented by Interval (Real) and Ordinal Numbers. 

Nominal Numbers - are labels that happen to use numbers as identifiers, they do not reflect any 

specific sequence or order. Crooks (1992) recommends that an input neurode be assigned for every 

possible value. For example, if there are three cities (Tulsa= 1, Enid= 2, Dallas= 3) being represented 
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in a survey by tpeir respective numbers, the neural network would be designed such that there were three 

specific input neurodes to represent each city ( other input neurodes would represent other information. 

In the series, Tulsa would be represented by I O 0, Enid by O 1 0, etc. When there are many possible 

values, Crooks suggests combining categories, such as East, West, North and South for the states of the 

United States. By combining data into categories, one reduces the weights (and degrees of freedom) in 

the network, thereby increasing its power. 

Class variables can be problematic because networks can not generalize between classes. Smith 

(1993, p 154) makes the following recommendations concerning the use of classes in neural networks: 

First, classes that do not have a statistically reliable number of examples (given the noise level 

in the data) should probably be consolidated rather than represented separately. A small class 

can be consolidated with a larger class that it resembles in some relevant way. 

Second, as the number of variables and the number of values per variable increase, the possible 

combinations of values increase exponentially-and the sample size needed to achieve a given 

level of accuracy increases at roughly the same rate. 

A related problem ( discussed later) concerns procedures for random selection of data vs. manual 

selection to assure that there are sufficient training cases at the boarder between two groups for the 

network to establish a clear demarcation. One solution is to group data by class, and randomly select 

training cases within each class. 

Ordinal Numbers - Ordinal numbers imply a ranking or an ordering, but .not magnitude. One 

can not sensibly perform arithmetic operations with ordinal numbers and produce meaningful results. 

With ordinal numbers, one input neurode is usually needed per class of information. However, when 

there are several options within a class of data, a thermometer code (Figure 27) may be a useful way of 

representing the data. When used in a neural network, a thermometer code is a set of binary input nodes, 

that as a group represent multiple states of nature. Smith (1993) uses the example of coding the results 

of a horse race by recording Win, Place, Show or out of the money. 



Win 

Place 

Show 
Out 

Node 
1 2 3 

••• 
••o 
eoo 
000 

Figure 27. Thermometer Code 

This type of coding does not allow for a horse :finishing in 2.5 place. Thermometer coding 
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represents what ordinal variables mean, no more and no less. This type of coding allows for incremental 

credit to be assigned to the win position. Smith (1993) notes that this type of coding also facilitates 

appropriate discrimination and generation for ordinal variables. 

Interval (Continuous) Variables have values that can be any number within a range. Interval 

numbers are continuous and able to determine not only which one of two number is greater, but also by 

how much. One may sensibly perform arithmetic operations with Interval numbers and produce 

meaningful results. 

Neural networks pay attention to the absolute magnitude of interval and ordinal numbers. 

Because of the nature of the way networks handle neurode weights, fluctuations in nodes caused by 

values with small magnitudes (range 1 to 10) tend to be swamped by fluctuations in nodes caused by 

values with large magnitudes (range 1 to 100,000,000). To overcome this problem, inputs are typically 

scaled ( or normalized) so that all inputs correspond to roughly the same input values, typically between 

zero and one. 
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Interpolation Representation 

With interval (continuous) numbers, one input neurode is usually needed per class of 

information. However, to the extent that it is known that relationships are not linear, and that modeling 

requires several hidden nodes, these factors may also limit the ability of the network to generalize. In 

these cases interpolation representation may be used (Hutchinson, 1987). When using interpolation 

representation, multiple nodes are used to represent the various ranges of the input variable. For 

example, when looking at a range from -30 to 50, we might use four input variables to represent specific 

numbers: node 1 for -20, node 2 for 0, node 3 for 20, and node 4 for 40. When the independent variable 

is equal to the number represented by the node, the nodes value is 1. If the variable is 18, for example, it 

is represented by values of .1 for node 2 (because 18 is one-tenth of the way from 20 to 0) and . 9 for 

node 3 (because 18 is nine-tenths of the way from Oto 20). 

Smith (1993) suggests that interpolation representation is attractive in neural networks for 

continuous variables because, since no precision in the value of the variable is lost, it permits whatever 

discrimination that is appropriate. Because ranges can be treated separately, it may permit a greater 

degree of generalization. Additionally, the use of interpolation representation to localize the effects of 

continuous value variables may decrease training time. "When the effect of each example is only local, 

the network doesn't have to seek a global solution .... ·It is not unusual for an interpolation representation 

to reduce the number of training epochs of training by two orders of magnitude" (p 157). · 

Minimum Number of Exemplars 

The minimum number of observations pairs (exemplars) in a neural network depends on the 

architecture of the network. The more complex the architecture, the greater the number of exemplars 

needed to adequately train the network. The number of weights and biases of the network's neurodes and 

the number of hidden layers determines the number of undetermined parameters ( or degrees of freedom) 

associated with the neural network. Equation 2-49 describes the optimum number of exemplars required 

for a neural network with one hidden layer. 



where: 

N= ~ [J(l+1)+K(J+1)] (5-1) 

N = minimum number of exemplars 

I = number of input nodes 

J = number of hidden layer nodes 

K = number of output nodes 

~ = overdetermination constant 

A neural network with one input node (I), one output node (K), four nodes on a single hidden layer (J) 

and an overdetermination constant (x) of 1.2, would need a minimum of 16 (exactly 15.6) exemplars 

(or observations) to adequately train the network. Were this network to be trained with less than 16 

exemplars, the network would be susceptible to overtraining. 

The overdetermination constant is generally a number between 1 and 2. With an 

overdetermination constant less than one, the number of exemplars is less than the networks degrees of 
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freedom. With a overdetermination constant of 1, the equation would indicate the minimum number of 

exemplars necessary for the neural network to adequately capture the basic characteristics of the data 

with the recognition that the network is susceptibleto overtraining (when the network memorizes the 

data and the results are not necessarily generalizable). With an overdetermination constant of 2 or 

greater, the model is said to be overdetermined and therefore not susceptible to overtraining. Carpenter 

and Hoffman (1995) suggest that having an overdetermination constant between 1.2 and 1.5 will usually 

provide the neural network with enough training pairs to develop a good approximation of the 

phenomenon being modeled without the network being susceptible to overtraining. 

Transformation of Data 

Neural networks riot only pay attention to the magnitude of variables, but also to the variability 

·of the values. In general data for neural networks are to.either make relationships appear linear 

(logarithm, exponential, etc.) or to compensate for magnitude differences (normalization). Sare! (1994) 

suggests that the standardization of data tends to improve the training of neural networks by ensuring 

that certain parameters involved in initialization and termination of training are appropriate. He also 

notes that for linear models, standardization will produce results that are invariant or equivariant under 
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certain conditions. Considerations regarding standardizing data include: 

• If the output layer activation function assumes a bounded range (0 to 1 or -1 to + 1 ), the data for 

the dependent variables should fall in the same range, and an output layer bounded activation 

function should be used. (If dependent variables are not bounded, an unbounded activation 

function, such as exponential, should be used.) 

• Dependent variables should be scaled to values less than the bounded range ( ex. .1 and . 9 for a 0 

to 1 range -- traditional training methods can be very slow in giving good predictions using 

values of O and 1.) 

• Multiple dependent variables that are measured in noncomparable units (such as miles and feet) 

must be standardized 

• assuming no a priori knowledge, dependent variable data should be scaled to equal variances; a 

variable with twice the variance of another variable has approximately twice the influence on 

training 

• Scaling dependent data should not be perf~rmed if the results are to be interpreted in the same 

units as the original units of measure-scale estimates apply to the standardized values, not the 

original values. 

• Standardizing inputs has less effect than standardizing outputs-a change in scale of an input 

can be absorbed by a reciprocal change in corresponding weights and biases. However, scaling 

inputs can affect initialization and some training methods. With back. propagation, a properly 

chosen Momentum (a.) factor will overcome minor errors in selecting proper scaling factors. 

Normalization. Normalizing the data will make information independent of the units of 

measure. Crooks (1993) notes that "for continuous values, this method not only maps inputs to roughly 

equivalent magnitudes, but it tends to give equal value to variations of equal rareness, regardless of the 

absolute magnitude of the valuation" (p 40). 
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Stein (1993) notes that most neural networks perform better with normally distributed data. In 

general data with skewness coefficients between -.05 and +0.5 and kurtosis coefficients between -1.0 and 

+ 1. 0 are considered normally distributed. 

Weiss and Kulikowski (1991) suggest that the relative scale of variables may influence network 

performance. Some inputs may assume values measures in the thousands, while others may all be small 

integers. They found performance can often be improved by normalizing the data before training so that, 

for example, all input variables fall within the range from O to 1. 

Reyneri and Filippi (1991) found that the results of training neural networks can be influenced 

by the magnitude of variables used. This is especially true in digital computer systems, where magnitude 

differences between variables can cause either overflow problems in computer registers, or rounding 

errors. They found that by normalizing data, performance of the learning rule improved. They report 

improvement of back propagation learning by normalizing inputs to a layer based on the number of 

neurodes in that layer. 

Sutton and Barto (1981) suggest that one advantage of normalization is that it maintains the 

weight values within bounds. Kruschke (1989) found that normalization can also be used to facilitate 

comparison between nodes. Reyneri and Filippi (1991) report that adding a normalization factor to an 

activation function improves network performance. . 

Yao, Freeman, Burke and Yang (1991) suggest that prototype patterns can be created for 

training purposes. They suggest two approaches, a statistical and geometric approach. The statistical 

approach is used if the features are normally distributed and the number of training cases are large 

enough to determine the means and the standard deviations, the following be used for normalizing data: 

1. Normalizing: for all training cases, find the mean and the standard deviation of each feature. 

Then all data is converted into normalized data based (often called z-scores) on the 

transformation: 

z = (x - mean) I (standard deviation) 

2. Averaging: find the center points for each of the classes into which cases belong. 

3. Binarization: based on the normalized data, cases are classified into appropriate classes 
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A nonparametric procedure, called the geometric approach, can be used that basically eliminates the first 

step of normalization. These prototype patterns can then be used as centroid for a direct classification 

network. 

Crooks (1993) notes two precautions that must be recognized with working with z-scores: 

1. The mean and standard deviation used is an estimate of the population mean and standard 

deviation. Different samples from the same population may show different sample mean and 

standard deviations. This may result in significant differences when more than one training 

set is used. 

2. Some neural network neurodes are not designed to accept negative numbers. Some are not 

designed to accept numbers greater than 1.0. The process of normalizing data may produce 

either numbers greater than 1.0 or negative numbers~ 

Transformations for Linearity. Logathrmic transformations may be used to make data appear 

relatively linear. While a neural network is perfectly capable of modeling non-linear data provided 

enough hidden nodes exist, realistically, it is "almost certain that before the network found these 

statistical anomalies in the data it would have found many other features that do not generalize" (Smith, 

1993, p 143). In data preparation we have two choices. One may use a priori information, and when 

indicated transform the data, thereby speeding up the process of convergence. As an alternative, one can 

let the neural network model non-linear information recognizing that there would be an increased risk of 

overfitting that would prevent the network from generalizing to new data. 

Sequential or Random Presentation 

Cases may be presented to the neural network in a sequential or random manor. In random 

presentation, the order of cases presented is changed for each epoch. Weiss and Kulikowski (1991, p 99) 

have found that for non-time sensitive data, random presentations tend to produce better results. 

Ratcliff ( 1991) noted that "items encoded into groups are significantly more resistant to 

forgetting then items learned individually" (p 291). 
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Adding Noise 

Non-linear systems, whose output is not proportional to the input -- no output below a certain 

threshold, have been found to benefit from stochastic resonance, or random noise. The degree to which 

a system can benefit depends heavily on the signal-to-noise ratio. If too little noise is added, the system 

is not effected. If too much noise is added, the noise overwhelms the system. 

Stochastic resonance has been shown to exist in biological sensing neurodes of crayfish and 

other squids (Moss and Wiesenfeld, 1995). It has also been found that slightly noisy data will tend to 

decrease the network's training time. Caudill (1991a) suggests that this benefit of noisy data is due to 

noisy data forcing the neural network to generalize relationships rather than memorize a particular 

combination of input patterns. If the network memorizes a training set, it may be able to replicate the 

input and output relationships for the specific data set, but not be able to predict with data with which it 

was not trained. Adding noise will also tend to make the network more robust to noisy inputs after 

training. 

There are two basic ways noise can be added to the training set For non-time sensitive data one 

may randomize the order the data is presented to the network, ensuring that the network never sees the 

same input pattern more than once. For time sensitive data, the actual input data may be slightly 

modified by adding (or subtracting) a small value. 

Baba ( 1989) proposed a method of adding noise to the initial weights of Rumelhart et al. ( 1986) 

back propagation method for finding optimum weights in a multi layered neural network. Based on 

modifications to the Random Optimization Method of Matyas (1965), under certain conditions Baba 

proposed added a Gaussian random vector to the input vector of a neurode. It was noted that by adding 

this Gaussian noise, the network reached optimum weights faster than back propagation without the 

noise. It was also noted that the selection of the learning rate (h) and the variance to the Gaussian 

distribution had a significant effect on the learning speed. 

Sietsma and Dow (1991) have found that adding noise to the training set has been shown to 

improve the performance of neural networks. Noise seeins to cause more hidden units to be used in the 

network. They also found cases where a neural network ·with the fewest hidden units needed to 
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classifying the training set degraded the ability of the network to generalize, indicating that in some 

situations, networks with more hidden units generalize better than networks with few hidden units. 

Sietsma and Down concluded that "adding noise to the training set created more stable, robust networks 

which use more of the available units. Networks rarely use all units independently. Training with noise 

has the surprising effect of improving the ability of the network to correctly classify phases which were 

not in the training set, as well as improving the classification of noise corrupted inputs." (p 77). 

Random Selection vs. Training at the Boundaries 

Hommertzheim, Huffman, and Sabuncuoglu ( 1991) looked at using neural networks to fly an 

aircraft simulation of the pure pursuit maneuver against a target. It was thought that neural networks 

could be used to simulate pilot response and that the network could be embedded in an analytical 

simulation model. The training set chooses did not have many observations of the plane close to the 

target. When the pursuer was close to converging on the target, there were no examples for the network 

to have learned from, and the network model failed. 

One conclusion Hommertzheim et al. drew from this study was that "Users cannot blindly train 

the network with a set of training examples without thinking about the characteristics of their problem. 

Very careful consideration must be given to determine the training set or the resulting network may not 

be trained for the problem that the user thinks for which it is trained for (p 347). They also made three 

suggestions concerning training set selection: (p 351) 

1. sufficient cases should be included in the training set to capture the input-output 

transformation that is the subject of the study. Randomly generated training sets tend to produce 

superior results. While carefully selected non-random sets may work better in some cases, it is easy to 

bias the network if the training set is not properly selected. 

2. functions with discontinuities and steep gradients are difficult to model with the neural 

network. When modeling higher order functions, these problems may not be obvious. 

3. the number of connections should be large enough to properly model the mapping, but not so 

large that it cannot generalize. 
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Neural Network Data Preparation 

Representative Population Size 

A primary question to be answered is how large does a sample need to be to be assured that the 

sample is representative of the total population. 

Train-and-Test Sample Size. The requirements for any unbiased sample error is that the 

sample data are drawn randomly from the parent population. Because one of our objectives with neural 

networks is to determine classification parameters based on test cases, and use the parameters to classify 

new cases. If the samples are biased, or not representative of the total population, one will not be able to 

generalize the sample based parameters to the general population. 

The usual proportions are to divide the sample population, 2/3 into a training set and 1/3 into a 

testing set, provided that once the test cases exceed 1,000, a greater number can be allocated to the 

training set (Weiss and Kulikowski, 1991, p 30). 

Cross-Validation In a k-fold Cross-Validation (Stone, 1974), cases are randomly divided into k 

mutually exclusive testing partitions of approximately equal size. For a given epoch of network training, 

a test partition is selected and the remaining cases are used for training the network. Once the train-and

test epoch is completed for one set of data, a different testing partition is selected as the test set. The new 

set of remaining cases are used for training the network. The process is repeated for k epochs. The 

average error rates over all k epochs is the cross-validated error rate. Weiss and Kulikowski (1991) 

suggest that a 10-fold cross-validation is adequate and accurate for most cases of greater than 100 cases. 

Cross Validation has an additional advantage when considering the problem of 

overgeneralization. Cross validation may be used as a tool to indicate the optimum number of hidden 

nodes or hidden layers by comparing the results of a validation test on a trained network-the alternative 

with the lowest test error is assumed to be the optimum alternative. Validation test errors sequences that 

do not increase are an indication that the original number of hidden units are insufficient for 

generalization to occur and that additional hidden nodes are needed. 
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Cross validation may also be used to indicate if training should be stopped before convergence is 

reached. Periodically the network is stopped and tested using a validation test data set. As the network 

learns, the error on the test set should decrease. Overgeneralization is said to occur when the test error 

again increases. 

While there are no statistical proofs that cross-validation will produce optimal results, there are 

few other practical tools that may be used (Smith, 1993). 

Leaving-One-Out. A special case of Cross-Validation that is very computationally intensive. 

For a given sample size, n, the neural network is trained on (n-1) cases, and tested on the remaining 

case. This process is repeated n times, each time using a different case for the test item. The error rate is 

the average of errors on the single test cases. Although Leave-One-Out can be used with sample sizes 

numbering in the 100s, because of its computationally intensity Weiss and Kulikowski (1991) suggest 

that should be used for sample sizes of less than 100 cases. 

Procedures for Setting Up Training 

Weiss and Kulikowski (1991, p 106) suggest the following procedures be used to ensure proper 

learning and to avoid local minima. 

1. Replicate the training sessions several times on the complete sample. If results are 

inconsistent, it is likely that a local minimum has been found, and one should decrease the 

learning rate and/or increase the momentum. 

2. Replicate the training sessions several times with test and training sets in an attempt to 

determine the optimum number of hidden neurodes and layers. In general, the larger the 

number of hidden units, the longer for training, and the greater the chance of overtraining the 

neural network. For an equal number of hidden units, two layers will train faster than one layer 

because of the fewer weights. 

3. Once satisfactory training conditions have been established for the complete data, 

resampling techniques and the Train-and-Test paradigm should be used. For most cases a IO

fold cross-validation will provide reasonable results. Each cycle of the cross-validation training 



sets be trained at least five times using different starting states to avoid concerns about local 

minima and the effects of random starting variables. Resampling must be repeated for each 

size network tested. 

Encoding a priori Information 

As a possible solution to the problem of Representational Adequacy, Joerding and Meador 

(1991) suggest that it may be beneficial to encode a priori information in feed forward neural networks. 

They note three basic benefits in doing this (p 848) 

1. it may prevent the network from making impossible or implausible predictions 
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2. it may improve the ability of the network to generalize arising from the constraints 

themselves, independent of the informational content. Examples can be seen from Kruschke 

(1989) who used dynamic distributed bottlenecks. 

3. it may increase the efficiency of training. 

Joerding and Meador (1991) suggested two general approaches for incorporating a priori 

knowledge into specific network constraints: 

1. Architecture Constraint - determines a class of feedforward network that satisfy some 

hypothesis regardless of weight values and independent of training. When using this 

constraint, since every variation on the network produces a network that satisfies the desired 

condition, no additional training procedures need to be considered. 

2. Weight Constraint - training algorithms are modified by changing the associated output error 

function in such a way that it optimizes a subset of the desired hypothesis. This occurs when 

the initial network does not satisfy the desired hypothesis, so constraints are imposed during 

training. 

Joerding and Meador (1991) suggest that prior constraints may be needed in situations of 

montonicity and concavity. A monotonic function is one whose slope does not change sign, and a 

concave (or convex) function has a slope that decreases (increases) as the function argument increases. 

Economists use concave ( convex) functions to describe production functions, diminishing returns, etc. 
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A quasi-convexity cmve is similar to a growth curve, convex to a point, and then concave. They also 

note that: 

In certain circumstances it is desirable for a feedforward network to approximate both a function 

and its gradient. For a firm maximizing profits, the gradient of the production function equals 

the relative price of the inputs. In a control problem, it can be crucial that the network closely 

approximate both the position and the velocity of the process. The Hornik, Stinchcombe, and 

White (1990) results show that feedforward networks are good candidates for this problem since 

they can approximate both the surface and the gradient of continuous functions to any desired 

degree of accuracy. If data on the surface and the gradient are available for training then there 

is a network architecture that uses all this data and yet has more weights to be estimated. (p 

854) 

Considerations in Training the Network 

Validation of the results of a neural network simulation is necessary for many reasons. As the 

number of connections and nodes in a network increase, the ability of the network to model the data 

increases, but the number of degrees-of-freedom also increases. Part of the process of validating results 

involves analyzing the tradeoffs between modeling ability and repeatability. The following are useful 

tools: 

Pearson's R2 

As discussed in the Review of Literature Section, the Pearson's R Coefficient (R2) statistic is 

often used to assess the accuracy of a model's prediction. The statistic is basically a ratio of explained 

variation and total variation. When applied to neural networks, Burke (1993) uses the following formula: 

R 2 - 1 • .~~~.~~.: •• !!. ..... . (5-2) 

SST (n • p • 1) 

Where: SSE = Sum of the Squared Errors 

SST= Sum of the Squared Deviations from the Mean 

n = Number of Training Set Examples 

p = number of input nodes (paramaters) 



Benchmarking 

Benchmarking is used with neural networks to judge the efficiency of various alternative 

network designs. In general, the same data is run under different network configurations to see which 

design has the lowest error or fastest time to convergence. Tollenaere (1990) suggests that at present, 

there does not seem to be any consensus on how to benchmark the performance of various training 

algorithms. Some researchers base their training algorithms purely on theoretical analysis, making 

nontrivial assumptions about the shape of the error space (Jacobs, 1988). Others run a few simulations 

on a small number of problems, and subsequently draw their conclusions (Schmidhuber, 1988). Both 

number and relevance of the benchmark problems, and so the validity of the conclusions are 

questionable. 

144 

Even if the most frequently used problems are indeed valid benchmarks, the fact that every 

author seems to use different parameter values or different variants of the basic algorithm, often 

without mentioning what values actually have been used, makes it very difficult and even 

dangerous to compare one's results with others. (Tollenaere, 1990, p 572) 

Tollenaere (1990) also suggests that while there is not any consensus on how to benchmark the 

performance of various types of training algorithms, there are two basic categories being used. Some 

benchmarks involve using purely theoretical data for training sets, making major assumptions 

concerning population characteristics. Others run a few simulations on a small number of problems, 

subsequently drawing conclusions from the results. 

A commonly used theoretical algorithm used is the X/OR parity with a network of one output 

node that indicates whether an input pattern is even or odd. Tollenaere suggests that if the goal of most 

neural networks is to develop training algorithms that classify patterns and generalize tasks, these parity 

problems may not be best suited for testing. Parity problems typically have input patterns that differ by 

only one bit, and tend to be not generalizable. It is suggested that the an auto-association problem in 

which the input is the same as the output are the best suited for back propagation. 



CHAPTER VI 

CONCLUSION AND RECOMMENDATIONS 

The purpose of this study was to assess the literature with regards to the use of backpropagation 

based neural networks using supervised learning design for data analysis. Definitions of Scholarship are 

first presented to provide a framework for the analysis. 

We have identified a paradigm shift in the way neural network analysis is viewed. We noted 

that Ratcliff (1990) suggested that the analysis of Neural Networks should advance from an exploration 

stage focusing. on sifting through data to find relationships, to an explanation stage focusing on 

competing theoretical frameworks and e}.."'J)laining reasons for experimental failures. Ratcliff seems to be 

suggesting that neural network analysis needs to evolve from an inductive approach to a deductive 

framework for analysis. 

In accomplishing an explanation stage analysis using neural networks, J.t has been suggested 

that Aristotle's deductive argument (a syllogism) be used as a foundation framework for deductive 

analysis. There are three major components to a syllogism: 

1) Major Premise - a statement of reality. 

2). Minor Premise - a observation of new facts that are assumed to support a statement of 

reality. 

3) Conclusion - the suggestion of a theoretical basis for a new relationship between existing 

statement of facts and a new understanding between existing and proposed statements of reality. The 

premises are stated in such a way that if the Major and Minor Premises are true, then it follows that the 

conclusion is also true. 

The experimental design is established to test the validity of the minor premise and its relationship to the 

major premise. 
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The methodology described in this chapter are designed to address the following questions 

concerned with using neural network in solving business problems based the use of Neural Networks in 

an explanation stage analysis. The analysis follows the Review of Literature of the previous chapter: 

1. What are the characteristics of a problem that make it suitable for investigation using 

neural networks? (Problems Suitable for Neural Network Data Analysis) 

2. Given the problem, how should the neural network model be designed? (Intelligent System 

Design Methodology) 

3. Given the problem and chosen network design, how should data be prepared for 

presentation to a neural network for modeling? (Neural Network Data Preparation) 

4. How should one proceed with the analysis? (Recommendations) 

Each of the questions will be addressed separately. Within each section previously discussed 

methodologies will be summarized. 

Problems Suitable for Neural Network 

(Explanation Stage) Data Analysis 

We have seen that at a fundamental level, neural networks are good at predicting future events 

based on past patterns. Additionally, neural networks are good approximators, if not actual imitators of 

non-linear regressions, discriminate analysis, and other statistical techniques. However, because of the 

"black box" mechanisms of neural networks they are not in-and-of themselves especially good at 

establishing causality. A neural network with several inputs and several outputs may exhibit and predict 

a relationship between variables, but may not necessarily establish the validity of why that relationship 

exists. Hence, the methodology used in the research method becomes important in explaining results. 

For the purposes of this discussion we will categorize the task of data analysis in two broad 

categories: 1) Causal Research Analysis-the analysis of data to uncover new cause and effect 

relationships that may extend the leading edge of an academic discipline's knowledge frontier; and 

2) Operational Decision Investigation-the use of data to identify patterns that may be useful in 

identifying the best course of action in an uncertain environment. The idea for this categorization may 
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be traced to Conant's discussions in Science and Common Sense (1951) where Causal Research Analysis 

would be close to Conant's definition of Science, and Operational Decision Analysis would be close to 

his definition of Common Sense. This type of categorization is important because each category has 

different purposes in the analysis of data and different assumptions used in the preparation of data for 

analysis. 

Causal Research Analysis is similar to the traditional scientific methods of research which 

focuses on an understanding of a theoretical solution to a research problem. The theoretical structures ( or 

schema) are built upon congruent facts. These structures are systematically tested for internal 

consistency, and external validity to be sure that there is no contradiction between fact and theory that 

may invalidate the theoretical structure. These theories are tested and re-tested in laboratory and field 

conditions designed to substantiate the cause and effect relationships the theory assumes to exist. 

Through the use of controlled experiments,. one attempts to systematically rule out. variables that are not 

part of a hypothesized theory as possible causes of a phenomenon under investigation. When attempting 

to establish causality, the experimental process used is extremely important-a hypothesis is developed 

and then the deduced implications of the hypothesis are tested. The focus of Causal Research Analysis is 

on things that may be observed and tested; the fundamental legitimacy of the results are based upon the 

processes used to arrive at the conclusions. The basic.aim of research is the development ofa 

generalized theoretical explanation for the way things are. 

Operational Decision Investigation is similar to the development of a systemic rule-of-thumb 

that works within an existing paradigm. While this type of decision investigation uses theory, 

assumptions are made concerning internal consistency and external validity that may be valid under 

some conditions, and may be invalid under other conditions. The testing of these rules-of-thumb occurs 

in a selective fashion, with one being concerned with "what works" and what "does not work" in specific 

situations. Stereotyping would be an example of an Operational Decision Investigation tool that would 

not be considered a valid Causal Research Analysis tool-one tends to accept preconceptions as a 

component of the existing paradigm. These theories or rules-of-thumb are often expressed in 

metaphysical terms that are difficult to test. The fundamental legitimacy of Operational Decision 
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Investigation is based upon the accuracy of the results rather than the processes used to develop the 

results. The basic aim of decision analysis is the development of processes to predict future events. The 

primary focus of Operational Decision Investigation is to uncover relationships (which may or may no be 

causal) by looking for patterns that will suggest the outcome of specific behaviors. When attempting to 

identify potential areas of causality, data is examined to see if patterns exist, and a hypothesis is 

presented to explain relationships (this only suggests and does not verify causality). 

Neural Networks may be a good choice in an analytical tool when dealing with Operational 

Decision Investigation problems where results are the primary focus. When using neural networks as a 

tool for Operational Decision Investigation problems, an inductive reasoning approach may be 

legitimately used, since it is the result and not the cause that is important. However, because the process 

of analysis is of major important in Causal Research Analysis, Neural Networks must be used with 

caution. Because of a neural network's black-box approach to data analysis, when using neural networks 

to establish causality; a deductive approach must be used. This means that the problem must be defined 

explicitly in terms of a model upon which the neural network will be constructed to test the hypothesis 

presented. 

Intelligent System Design Methodology 

When using Neural Networks in the process of either an operational or causal analysis, several a 

priori implementation decisions need to be made with regards to how the neural network model should 

be constructed and how the network should interact with the data. Some of these network design 

decisions may in effect encode a priori information that may bias the results. In an operational analysis, 

the a priori information may not be a significant factor. However, in a causal analysis, unless the a 

priori information is explicitly stated in the description of the problem, results are tainted. 

The following are several neural network design parameters that should be examined carefully 

and an assessment made as to their significance before the analysis of data has started: 
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Number of Network Nodes 

The greater the number of nodes, the greater the number of connections between the nodes. We 

have seen that the number of connections between nodes in a neural network can be related to degrees

of-freedom, which in turn effect the assumption of statistical validity of the neural model. Baum and 

Haussler (1989) suggest a rule-of-thumb that says the appropriate number of training examples is 

approximately the number of weights between nodes of the network, times the inverse of the accuracy 

parameters. For example, ifwe desired an accuracy level of95%, which corresponds to s = 0.05, we 

would need 100/5 or 20 times as many training examples as there are weights in the network. 

Sequential or Random Data 

Selection and Presentation 

Traditional statistics suggests that, unless there is a compelling reason otherwise, a random 

selection of exemplars is desired to guard against bias and to help insure generalizability. Logically, the 

use of time series data represents one compelling reason for an ordered presentation of data, but the 

selection of the sequenced data may still be random within each time frame. Weiss and Kulikowski 

(1991, p 99) have found that for non-time sensitive data, random presentations tend to produce better 

results. 

However, in situations where neural networks are used with conflicting data, Ratcliff (1991) 

noted that "items encoded into groups are significantly more resistant to forgetting then items learned 

individually" (p 291), suggesting that this difference is due to what amounts to structural differences in 

how the network is organized. It would seem that Ratcliff is suggesting that by encoding items into 

groups, because of the way back propagation assigns weights, the network trains as if it were a quasi 

probabilistic network. This would also suggest that for complex problems, when using sequential 

presentation, multiple layers on the network would perform better than networks with a single hidden 

layer. 



We have seen that Hommertzheim, Huffman, and Sabuncuoglu ( 1991) have suggested that 

"Users cannot blindly train the network with a set of training examples without thinking about the 

characteristics of their problem. Very careful consideration must be given to determine the training set 

or the resulting network may not be trained for the problem that the user thinks that it is trained for." 

(p 347). They also made three suggestions concerning training set selection: (p 351) 

1. sufficient cases should be included in the training set to capture the input-output 

transformation that is the subject of the study. Randomly generated training sets tend to produce 

superior results. While carefully selected non-random sets may work better in some cases, it is easy to 

bias the network if the training set is not properly selected. 

2. functions with discontinuities and steep gradients are difficult to model with the neural 

network. When modeling higher order functions, these problems may not be obvious. 
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3. the number of connections should be large enough to properly model the mapping, but not so 

large that it cannot generalize. 

While the Hommertzheim, Huffman, and Sabuncuoglu technique may be acceptable in 

situations of Operational Decision Investigation, there are clear problems of bias when being applied to 

Causal Research Analysis situations. For causal analysis, it is suggested that stratified data sets be used 

to establish an adequate number of exemplars at the d~cision boundary areas. This means that the 

decision problem will need to be stated in such a way that these boundary areas are identified a priori, 

and that sufficient logical support are provided for this identification. To avoid the problem of bias, a 

random selection of exemplars within the stratified data set should be conducted. If a non-random 

presentation of exemplars is required, a justification should be provided before the analysis is conducted. 

Optimum Number of Network Layers 

The optimum number of hidden layers that should be used in a neural network seems to be 

problem specific and therefore of concern in causal research analysis. There are several proofs that 

suggest various constructions of neural networks are universal approximators to varying degrees (Blum 



and Li, 1991; Hornik, Stinchcombe and White, 1990; Kammerer and Kupper, 1990; Baldi and Hornik, 

1989); and suggest that neural networks should be constructed with as few hidden layers as possible. 
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However, multiple layers in a neural network are required to approximate complex decision 

regions (Weiss and Kulikowski, 1991). In addition, Kolen and Goel ( 1991) have shown that traditional 

neural networks are not capable of performing high level abstractions. This means that neural networks 

can learn to mimic situation-specific responses, but have difficulty generalizing those responses. Since 

most data analysis used sample data, the problem of generalizability is of concern (discussed further in 

the section on Testing for Generalizing). 

Kolen and Goel also have shown how using a priori information, a neural network may be 

constructed to perform high level abstractions through a form of pre-compiling the network design to 

match a pre-conceived notion of reality. While this technique may be acceptable in situations of 

Operational Decision Investigation, there are clear problems of bias when being applied to Causal 

Research Analysis situations. 

In situations of causal analysis, it is therefore suggested that when using a neural network with 

more than one hidden layer, especially if the layers are partially connected, that extensive analysis be 

devoted to a justification for the a priori design and how it related to the problem definition. It is 

suggested that lack of attention to this explanation may lead to unexpected bias and an inability to 

generalize the results from a sample to the whole population. 

Overfitting 

Overfitting is a problem specific to the nature of neural networks that is generally not a concern 

when using traditional statistics. Overfitting is a problem that is of concern for both operational and 

causal analysis methodologies. Overfitting is said to occur when the neural network tries to account for 

random events in a systematic way. Because back propagation neural networks are universal 

approximators in most cases, given enough time and enough hidden nodes, a network may be trained to 

fit any data set. Overfitting occurs when a model fits the training data with minimum error, but will not 

fit newly provided data from the same source-there is poor generalization. 
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Sarle (1995c) suggests a stopped training method to prevent overfitting of data. In the stopped 

training method, neural network training is periodically stopped (and network weights frozen) so that the 

network may be tested with a different data set. Validation errors are measured. Under normal network 

training, validation errors should decrease as the network better models the data set. Training is stopped 

with validation errors start increasing, suggesting that overfitting is occurring. A disadvantage to this 

procedure when applying neural networks to Causal Research Analysis situations is that traditional 

statistical theory does not apply. 

Local Minima 

The problem of Local Minima is another problem specific to the nature of neural networks. 

Local Minima is a problem that is of concern for both operational and causal analysis methodologies. A 

neural network is said to have reached an optimum state when error space defined by the network model 

is at a minimum-when random adjustments to weights connecting network nodes have little effect on 

the output of the network. As an analogy, one may visualize the result of the network model of all 

possible combinations of the connecting weights as a mountain range with peaks and valleys. The 

objective is to find the combination of weights that produces the lowest valley (least error, most accurate 

representation). A Local Minima is said to occur when the neural network model is in a valley, but the 

valley is not as low as one over the next range. A network modeling a localized minima may 

adequately model the sample data, but may not generalize to the general population. 

Testing for Generalization 

It has been suggested that there may be occasions where neural networks require a sequential 

presentation of exemplars, and more than one hidden layer in the network design. The problem of 

overfitting has also been identified as a possible obstacle to generalization. These situations may result in 

unexpected bias and an inability to generalize the results to a total population. We have seen that 

Peterson and Hartman (1989) define generalization ·with regards to neural networks as "the response ofa 
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network, after some amount of training, to novel (unlearned) inputs" (p 481). They go on to suggest two 

basic ways to test generalization: 

1. Continuous Learning - uses the entire training set. Each time the network is presented with a 

case, it is first tested for generalization on that pattern. The disadvantage here it that there is 

not a cleat distinction between learning and generalization. 

2. Fixed Training - Cases are separated into learning and training sets. After learning the 

training set, the network is tested on a set of cases that the network has not seen before. 

Using Self-Learning System over Time 

As a self learning system, neural networks may have an advantage over traditional statistical 

systems. When using traditional statistics, there is a basic assumption that the causal events of the past 

will be the same causal events in the future-the objective of the statistical study is to understand those 

causal events within the event paradigm. The choice of tests of neural network generalization depends 

partly on the event paradigm. Fixed training cases are appropriate when it is assumed that there are no 

paradigm shifts, i.e., that the causal events of the past will be the same in both the present and the future. 

Because ofa Neural Network's pattern matching ability, they may be more useful than traditional 

statistics in identifying changing causal relationships caused by paradigm shifts in the external 

environment. 

Procedures for Conducting Neural 

Network Training 

When have seen that Weiss and Kulikowski (1991; p 106) suggest the following procedures be 

used to ensure proper learning, help insure generalization, and to avoid local minima. 

1. Replicate the training sessions several times on the complete sample. If results are 

inconsistent, it is likely that a local minimum has been found, and one should decrease the 

learning rate and/or increase the momentum. 



2. Replicate the training sessions several times with test and training sets in an attempt to 

determine the optimum number of hidden neurodes and layers. In general, the larger the 

number of hidden units, the longer the training, and the greater the chance of overtraining 

the neural network. For an equal number of hidden units, two layers will train faster than 

one layer because of the fewer weights. 
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3. Once satisfactory training conditions have been established for the complete data, 

resampling techniques and the Train-and-Test paradigm should be used. For most cases a 

IO-fold cross-validation will provide reasonable results. Each cycle of the cross-validation 

training sets should be trained at least five times using different starting states to avoid 

concerns about local minima and the effects of random starting variables. Resampling must 

be repeated for each size network tested. 

Neural Network Data Preparation 

When analyzing data, the use of Neural Networks establish a different set of problems than the 

use of traditional statistics. For example, we have seen that Neural Networks work best when there are 

many exemplars in boundary areas (the more exemplars the less fuzzy the decision area.) However, one 

of the principles of the process ofresearch is the elimination of bias through the random sampling of 

exemplars. Another problem in the implementation of Neural Networks involves degrees of freedom -

the more network nodes used, the better the modeling ability of the neural network, the more the degrees 

of freedom, and the larger the data set required to compensate for the increase in degrees of freedom. 

When using Neural Networks in the process of analysis, several a priori implementation 

decisions need to be made concerning how data is to be prepared for use by the neural network tool. 

Because of the binary nature of Neural Networks, for optimum performance, data format requirements 

for Neural Network tools are different from data format requirements for traditional statistical tools. 

Within the Review of Literature is a review of concepts of Back propagation based Neural Network data 

analysis and interpretation that were found useful in a wide variety of academic disciplines. 

Considering the information presented in the Review of Literature, conclusions are drawn on how to 



prepare data for model analysis using back propagation neural networks and apply them to solving 

business problems. 
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Use of Binary Data 

In neural networks the representation of discrete class type variables may be significantly 

different from the representation of quantitative variables. Because the power of a neural network is its 

ability to recognize patterns, and because a reasonably sized network can store only a few patterns, 

neural networks tend to do better when quantitative data is transformed into distributed data (a set of 

qualities that may be used to represent several different items). For example, with nominal numbers, 

Crooks (1992) suggests that an input node should be assigned for every possible value. Since ordinal 

numbers imply a ranking or ordering, not a magnitude, a thermometer code type of classification is a 

useful way of representing data. Since Neural Networks have a bias towards large numbers, Sarel, 

(1994) suggests that interval (continuous) variables should be normalized or scaled. Smith (1993) 

suggests that non-linear data should be transformed to linear data. 

A disadvantage of using binary data representations is that high precision requires a large 

number of input nodes, which leads to a large number of connections and degrees of freedom. For 

research data sets not containing a large number of observations (where degrees of freedom may even 

exceed the number of observation) the validity of the results may be seriously questioned. 

Normalization of Data 

Some inputs may assume values measured in the thousands, while others may all be small 

integers. Several have found performance can often be improved by normalizing the data before training 

so that, for example, all input variables fall within the range from Oto 1. (Sutton and Barto, 1981; 

Kruschke, 1989; Weiss and Kulikowski, 1991; Reyneri and Filippi, 1991) 
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Adding Noise to the Training Set 

Many have found that adding noise to the training set has been show to improve the 

performance of modeling systems in general, (Matyas, 1965) and neural networks in particular (Baba, 

1989; Sietsma and Dow, 1991). It has been noted that the selection of the learning rate (11) and the 

variance to the Gaussian distribution had a significant effect on the learning speed. Noise seems to cause 

more hidden units to be used in the networ~: Networks rarely use all units independently. By using 

more of the available units, the neural network will be more stable and robust network. Training with 

noise has the effect of improving the ability of the network to correctly classify phases that were not in 

the training set, as well as improving the classification of noise corrupted inputs. Training without noise 

in a network with many hidden units will tend to produce non-generalizable results. 

While this technique may be acceptable in situations of Operational Decision Investigation, 

there are clear problems of bias when being applied to Causal Research Analysis situations. In causal 

research models, the practice of adding noise to the training set should be clearly stated and included in 

as a fundamental component of the problem formulation. 

Conflicting Data 

When two or more input patterns have entirely different outputs, a condition of conflicting data 

is said to exist. Versaggi (1995) suggests that conflicting data should not be eliminated, but that the 

number of inputs should be increased to account for the problem. However, the greater the number of 

inputs, the more the network will pattern match specific examples, rather than generalize. 

Recommendations 

The nature of academic research (as opposed to practical applications) is the domain of Causal 

Research Analysis. When using Neural Networks in the process of analysis, several a priori 

implementation decisions need to be made with regards to how the neural network model should be 

constructed (network modeling) as well as how the network should interact with the data and how the 
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data should be presented to the network (data preparation). We will make recommendations in each of 

these areas, as well as for the general experiment. 

Network Modeling 

Because a principal of Causal Research Analysis is that the appropriate method should be 

followed to avoid the possibility of bias, the use of a priori decisions in Causal Research Analysis 

situations should be used with caution. Because the benefit of an Operational Decision Investigation is 

the success of the prediction, the use of a priori decisions in these non-scientific areas of inquiry are 

allowed, to the extent that they are successful. 

Neural Networks are good at pattern recognition and pattern matching. While Neural Networks 

are good at recognizing relationships, they are not particularly useful in situations where causality needs 

to be either determined or verified. Because Neural Networks perform better using either binary or 

nominal numbers, the use of neural networks in statistical analysis requires much data preparation to 

transform data into a format that is usable by the neural network. 

Because of the black-box nature of the operation of neural networks, when they are being used 

for establishing causality, deductive research methodologies should be used. Additionally, a priori 

conditions need to be examined for potential threats to bias and generalizability assumptions. 

Specifically: 

1) for the equivalent of an .05 level of confidence, there needs to be about 20 times more 

training exemplars than there are weights connecting nodes in the network. 

2) the problem identification should include a discussion of how data may be stratified around 

theoretical decision points, with sufficient exemplars provided to provide the network a clear 

demarcation of the decision space. 

3) the problem identification should also include a theoretical discussion of reasons for 

conflicting data, and such conflicting data should be presented in a stratified format. 
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4) problem identification should be approached from the standpoint of identifying complex 

decision regions or areas where the performance of high level abstractions are required; these should 

be modeled a priori using multiple hidden layers and/or partially connected network nodes. 

5) design methodology should include steps to assure overfitting and local minima problems 

do not compromise generalizability of the results. 

Data Preparation 

It may therefore be suggested that the advisability of using Neural Networks for analysis 

depends in part on the purpose of the analysis and the amount of data available. Many Causal Research 

Analysis situations are limited by both the amount of data available and the form in which the data is 

available. Because effective use of neural networks in modeling often requires JJ1ultiple nodes, which 

also increase the degrees of freedom, To the exient that binary or nominal number representations also 

increases the number of input nodes, the degrees of freedom also increase. The degree of freedom issue 

tends to suggest that Neural Networks may require more data than traditional statistics to maintain an 

equal level of statistical validity. 

An Operational Decision Investigation, on the other hand, does not have the strict 

methodological requirements of a Causal Research Analysis. Many of the statistical tools in time series 

analysis, such as moving average and linear trends, do not require the establishment of causality. 

Additionally, many organizations maintain large historical databases (knowledge warehousing) that will 

provide sufficiently large amounts of data to overcome the degrees of freedom problems of smaller 

databases. 

These factors tend to suggest that neural networks .as a stand-alone analysis tool will be best 

suited for Operational Decision Investigation situations and have limited use in Causal Research 

Analysis situations where the establishment of cause and effect relationships are important. In a research 

environment, Neural Networks may be useful in areas where inductive reasoning is accepted, typically 

new areas where massive amounts of data needs to be sifted and the determination of a possible 
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relationships with events are more important that the determination of a causal link between a variable 

and an event. 

Specifically, with data preparation, a priori conditions need to be examined for potential threats to bias 

and generalizability assumptions: 

1) where possible, binary data should be used; recognizing that there may be a trade off 

between the use of binary data and degrees-of-freedom of the network. Where possible, thermometer 

type codes should be used to classify data representations 

2) interval (continuous) data should be :Q.Ormalized, non-linear data should be transformed into 

linear data. 

3) noise should be added to the training set, but a detailed analysis should also be presented a 

priori in the description of the experimental design. 

Using Neural Networks in Causal Research 

Because of the fundamental differences between traditional statistics and neural network as tools 

. ·~ .. ,. . ,• 

for research, it is suggested that, to avoid the appearance of bias, many of the existing generally accepted 

protocols currently used with traditional academic experimental design and methodology may need 

modifications when used with neural networks. To the extent that academic research requires a 

statement of causation, deductive methodologies should be used. 

Causal research using Neural Networks should only be done using deductive methodologies that 

will also assure that the results are generalizable. Because neural networks recognize patterns and 

predict relationships between data objects similar to parametric statistics, 

Because neural networks have non-traditional threats to bias and generalization assumptions, 

(sequential vs. random data selection and presentation, number of hidden layers, uncollected nodes, 

overfitting, and local minima, to name a few) it is highly recommended that the test and train paradigm 

be repeated more extensively on new data sets to assure generalization. The new data set should not 

have been used in any previous analysis endeavors. 



Summary of Findings 

This study attempts to answer the following question: 

Can Back propagation Neural Networks be used in Research to establish causality between 

variables? 
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While the use of Back propagation Neural Networks have inherent problems in establishing 

causality, it is suggested, by using the experimental design methodologies that are based upon deductive 

reasoning as described in this section, that Back propagation Neural Networks can be used as a tool to 

establish causality in some cases. However, clear hypothesis and comprehensive experimental design 

structures need to be established before analyzing the results of a network to avoid threats to assumptions 

of bias and generalizability. 

Recommendations for Future Research 

Because of the fundamental differences between traditional statistics and neural network as tools 

for research, it is suggested that many of the existing generally accepted protocols currently used with 

traditional academic experimental design and methodology may need modifications when used with 

neural networks. Specifically additional research needs to be performed in areas that may introduce bias 

in the results-procedures need to be developed for 4ealing with: 

1) outliers and other errors in the data set. Because neural networks are significantly 

influenced by variance and magnitude of the data set, outliers may have a·larger effect in neural networks 

than when using traditional statistics. To avoid bias, traditional statistics suggests that outliers not be 

removed from data sets. When using neural networks, it may be necessary to use other logical 

assurances that bias is not introduced and remove the outliers. The nature of these logical assurances 

needs to be developed. 

2) random selection of data exemplars. The self-learning nature of Neural Networks involves 

pattern recognition at the boundaries. For the network to be able to model changes of state, a significant 

number of exemplars need to be available to model the boundary areas. With small data sets, this may 

mean that an insignificant number of exemplars may be available at the boundaiy, leaving the modeling 
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of the boundary area fuzzy and unpredictable. Methodologies that will allow for a significant number of 

boundary exemplars to be specified while maintaining an unbiased data sample need to be developed. 

Recommendations in the Network Modeling and Data Preparation sections are based on a 

synthesis of experimental conclusions across several disciplines. It is not know how robust these 

recommendations are when taken as a complete unit with respects to threats to bias, validity, and 

generalizability assumptions. 
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