
    

 

 

EXPLORING DOMAIN SPECIFIC APPROACHES TO 

SOFTWARE MODEL CHECKING  

 

 

 

 

   By 

   MINAL V. WAD 

   Bachelor of Science  

   Mumbai University 

   Maharashtra, India 

   2004 

 

 

 

   Submitted to the Faculty of the 
   Graduate College of the 

   Oklahoma State University 
   in partial fulfillment of 

   the requirements for 
   the Degree of 

   MASTER OF SCIENCE 
   December 2006  



    

 

 

EXPLORING DOMAIN SPECIFIC APPROACHES TO  

SOFTWARE MODEL CHECKING 

 
 
 
 
 

Thesis Approved: 
 
 
 

Dr. M. H. Samadzadeh 

Thesis Adviser 
 

Dr. J. P. Chandler 
 
 

Dr. N. Park 
 
 

Dr. Gordon Emslie 
Dean of the Graduate College 

 ii



 

 

 

PREFACE 

 

Model checking has proven to be an effective technology for verification and 

debugging in hardware domains and more recently in software domains. The major 

challenges in the application of model checking to software systems are: the mapping of 

software executables to model checker’s input language and the intrinsic complexity of 

the ever growing software systems. This thesis explores the domain specific model 

checking approaches to large systems in order to optimize the state space storage for 

specific domains.  

Bogor [Bogor 2003] is an extensible, customizable, and highly modular model 

checking framework that supports general as well as domain specific software model 

checking. As a part of the thesis, domain specific extensions to Bogor’s input language, 

called Bandera Intermediate Representation (BIR), were implemented by providing a 

plugin for Eclipse [Eclipse 2004]. Eclipse is a universal platform for tool integration and 

its plugin development environment facilitates addition of new plugins to the existing 

ones. Eclipse’s extension mechanism is exploited by Bogor. Bogor was installed as an 

Eclipse plugin and with the help of Eclipse’s Plugin Development Environment (PDE), 

new data types were integrated with the existing Bogor framework. 

Two case studies (‘postfix calculator’ using stack extension and ‘resource 

allocation’ using multiset extension) were investigated. Various metrics such as number 

 iii



of states, transitions, and maximum depth were analyzed. The complexity of the test 

cases was increased gradually to test the extensions for feasibility and scalability. The 

thesis also involves a comprehensive study of some of the well-known model checkers 

and their features, degree of automation, and input languages. 

It was observed that customizing the model checker as per domain specifications 

helped in achieving space reduction.  The space reduction is prominent, especially in 

large domains where it contributes towards state space explosion solution. Although 

development of extensions is achievable, it requires a working knowledge of Eclipse and 

specific knowledge of model checking. In conclusion, a domain specific approach for 

software model checking was demonstrated to be a promising technology. Language 

extensions to BIR were successfully built and tested for accuracy and scalability.   

 

 iv



 

 

 

ACKNOWLEDGEMENTS 

 

 I would like to express my gratitude to all those who gave me the hope and 

encouragement to complete this thesis. I would like to extend my sincere appreciation to 

Dr. M. H. Samadzadeh for being a perfect mentor, assisting me with his wisdom, 

encouragement, and patience throughout my graduate studies at Oklahoma State 

University. My special gratitude is also extended to Dr. N. Park and Dr. J. Chandler for 

their valuable help while serving on my committee. 

 My appreciation goes to the soul of my late grandmother whose blessings 

accompany me wherever I go. My special thanks are due to my parents and brother 

Charudatta for their love and support. I would like to extend my special gratitude to my 

fiancé, Siddharth for being patient and understanding throughout my research.  

  

 v



 

 

 

TABLE OF CONTENTS 

 
Chapter          Page 
 
I. INTRODUCTION......................................................................................................1 

 
 1.1 Importance of Software Model Checking..........................................................1 
 1.2 Domain Specific Approach to Software Model Checking ................................2 
 1.3 Related Work and the Scope of Thesis ..............................................................2 
 
II. REVIEW OF LITERATURE....................................................................................4 
  
 2.1 Model Checking - Background..........................................................................4 

 2.1.1 Kripke Structure.....................................................................................5 
 2.1.2 Temporal Logics ....................................................................................7 

 2.2 State Space Explosion........................................................................................7 
 2.3 Trends in Software Model Checking .................................................................8 
 2.4 Drawbacks of Most Existing Model Checkers ..................................................9 
 
III. BOGOR AND ECLIPSE .......................................................................................11 
 
 3.1 Bogor Model Checker......................................................................................11 

 3.1.1 Bogor Model Checking Framework ....................................................12 
 3.1.2 BIR Modeling Language......................................................................14 
 3.1.3 Customizing Bogor to a Domain .........................................................16 

 3.2 Using Eclipse for Simulation ...........................................................................17 
 
IV. CASE STUDY, RESULTS, AND COMPARISONS ...........................................18 
 
 4.1 Case Study - Postfix Calculator (Stack Extension)..........................................19 
 4.1.1 Extension Syntax .................................................................................20 
 4.1.2 Implementation Semantics...................................................................21 
 4.1.3 Implementation and Experimental Results ..........................................24 
 4.1.4 Observations ........................................................................................28 
  
 4.2 Case Study - Resource Allocation/Deallocation (Multiset Extension)............28 
 4.2.1 Extension Syntax .................................................................................30 

 4.2.2 Implementation Semantics...................................................................31 
 4.1.3 Implementation and Experimental Results ..........................................31 

 vi



Chapter          Page 
 
V.  SUMMARY AND FUTURE WORK ...................................................................37 
 
 5.1 Summary ..........................................................................................................37 
 5.2 Future Work .....................................................................................................38 
 
REFERENCES ............................................................................................................39 
 
APPENDICES .............................................................................................................43 
 

APPENDIX A - GLOSSARY ...............................................................................44 
 

APPENDIX B - LIST OF SOME OF THE POPULAR MODEL CHECKERS...46 
 

APPENDIX C - PROGRAMS FOR CASE STUDY - POSTFIX CALCULATOR 
(STACK EXTENSION) .......................................................................................49 

 
APPENDIX D - PROGRAMS FOR CASE STUDY - RESOURCE 
ALLOCATION/DEALLOCATION (MULTISET EXTENSION) ......................67

 vii



 

 

 

LIST OF FIGURES 

 
Figure           Page 

 

1. The Process of Model Checking ................................................................................5 

2. A Kripke Structure.....................................................................................................6 

3. A Computation Tree ..................................................................................................6 
 
4. Bogor Architecture [Robby et al. 2003b] ................................................................12 
 
5. BIR Example [Bogor 2003] .....................................................................................15 
 
6. An Extension Definition ..........................................................................................16 
 
7. Extension Definition for Stack.................................................................................21 
 
8. Required Methods of IModule Interface..................................................................22 
 
9. Required Methods of INonPrimitiveExtValue Interface .........................................23 
 
10. BIR Excerpt for the Postfix Calculator Model ......................................................24 
 
11. Model Checking Result of the Postfix Calculator .................................................25 
 
12. The Postfix Calculator Model with Assertions......................................................26 
 
13. Comparison of Resource Requirements.................................................................27 
 
14. Resource Allocation Process..................................................................................29 
 
15. Extension Definition for Multiset ..........................................................................30 
 
16. BIR excerpt for the Resource Contention model...................................................32 
 
17. Model Checking Result of Resource Contention...................................................33 
 

 viii



Figure           Page 
 

18. Resource Contention Model with Deadlock Scenario ...........................................34 
 
19. Screen Shot of Bogor Counter-Example in Eclipse...............................................35 
 
20. Resource Contention Model with Assertions ........................................................36 
 
 

 

 

 ix



 

 

 

LIST OF TABLES 

 
Table           Page 
 

Table I. Experimental Results......................................................................................27 

Table II. Experimental Data for Resource Contention ................................................33 

  

 

 x



 

 

 

CHAPTER I 

 

INTRODUCTION 

 

1.1 Importance of Software Model Checking 

There is hardly any aspect of our day to day life where software does not play a 

crucial role. The increasing involvement of software in safety critical systems has made it 

imperative to validate them rigorously before deployment. With the advent of a formal 

verification method called model checking [Clarke et al. 1999], the process of validation 

is made exhaustive and automatic to some extent. Model checking has been successfully 

used in the past for validation and debugging in hardware [Clarke and Mishra 1983] and 

more recently in software domains. Due to the escalating complexity in software artifacts, 

the growth of software model checking industry has been somewhat hampered. Despite 

intensive research on general techniques to reduce the complexity of model checking, 

state space explosion and scalability remain the major obstacles to its adoption. While 

general reduction strategies are employed to enable space reductions [Schuppan and 

Biere 2004], it has been observed that, by applying explicit knowledge of a domain, one 

can replace large portions of a state space with smaller structures, thus allowing greater 

degree of state space reduction [Hoosier et al. 2004].  

 

 1



1.2 Domain Specific Approach to Software Model Checking 

Domain specific approaches to model checking represent the model with fewer 

variables, thus potentially reducing the size of the state space. Experts in different 

software domains have significant knowledge about the semantics and properties of their 

respective domains. Cost effective domain specific model checkers can be built with the 

help of such domain experts. Domain specific models can be built from scratch [Brat et 

al. 2000] [Godefroid 1997] or by instantiating and targeting the existing extensible model 

checkers [Chan et al. 2001] [Demartini et al. 1999]. This thesis discusses, studies, and 

uses Bogor [Bogor 2003] which is a novel model checker that supports customization and 

extensibility and is easily embedded or encapsulated in larger development tools. 

  

1.3 Related Work and the Scope of Thesis 

 Domain customization is seen in real-time applications [Hoosier et al. 2004], 

where Bogor is customized for checking properties of avionics design. New Bogor ADT 

(Abstract Data Type), new scheduler, new state vector representation and new Bogor 

internal modules were developed to capture the real-time behavior. Bogor architecture 

can be modified [Robby et al. 2004] to check JML specifications of sequential and 

concurrent Java programs. A similar approach can be used to tailor the Bogor model 

checker [Robby et al. 2006] to efficiently analyze the adaptive behaviors of multiagent 

systems [DeLoach and Matson 2004] and to determine their properties such as flexibility, 

fault-tolerance, and cost-efficiency. Bogor tutorial on developing extensions [Dwyer et 

al. 2005] explores extension development and provides pedagogical material useful for 

customizing Bogor’s input language. 

 2



 This thesis work advocates domain specific approaches for software model 

checking in order to enhance memory reduction. Reduction of both the number of 

program states that are stored and the size of those states are presented. Empirical data 

supporting the effectiveness of these memory reductions on a collection of realistic 

examples is presented. Domain customization is achieved by providing extension to 

Bogor’s input language BIR (Bandera Intermediate Representation) using Eclipse’s PDE 

(Plugin Development Environment). 

 

  

 

 3



 

 

 

CHAPTER II 

 

REVIEW OF LITERATURE 

 

2.1 Model Checking - Background 

Model checking is an automatic technique for verifying finite state concurrent 

systems [Clarke et al. 1999]. In this approach the system to be verified is represented as a 

finite state transition system [Zohar and Amir 1992] and the properties are expressed in 

temporal logic [Eleftherakis and Kefalas 2001]. Using model checking, one can 

determine if a given system satisfies the required specification and behaves appropriately 

in a given circumstance.  

Not only is model checking largely automatic and comprehensive, but it also 

generates useful feedback in the form of counter-examples. The counter-examples 

describe the states of a system at every significant transition. By following the hints, a 

user can debug a faulty program or can just manipulate the specifications if the logic of 

the program seems to be correct. By iterating the verification process, the sources of the 

errors can be located without using traditional testing methods or theorem proving 

principles. Also, since model checking is comprehensive, most of the potential behaviors 

are tested, thus reducing the probability of inadequate or missed behavior.  

 4



In the past couple of decades since model checking has emerged, there has been a 

lot of research on software model checking. Various kinds of temporal logics [Emerson 

1990] have been extensively studied and efficient model checking algorithms [Clarke et 

al. 1986] [Queille and Sifakis 1982] have been designed.  

The model checking process consists of three steps: modeling, specification, and 

verification. The output of modeling combined with the output of specification is given as 

input to verification. Verification is generally an iterative phase; it is repeated till a 

desired model is obtained. 

 

 
Figure 1. The Process of Model Checking 

 

2.1.1 Kripke Structure 

A Kripke Structure can be viewed as a transition diagram that captures the 

intuition about the behavior of reactive systems. A Kripke Structure consists of a finite 

set of initial states, a set of transitions between states, and a function that labels each state 

 5



with a set of properties that are true in that state [Clarke et al. 1999]. A Kripke Structure 

is often represented as a forest of computation trees. For each initial state, a computation 

tree can be constructed by unraveling the Kripke Structure into an infinite tree. Figures 2 

and 3 [Clarke et al. 1999] show the Kripke Structure of a system and the corresponding 

computation tree that is obtained by unwinding the Kripke Structure.  

 

 

Figure 2. A Kripke Structure     Figure 3. A Computation Tree 

 

Each state in a Kripke Structure essentially contains one value for each state 

variable. A transition denotes a change in the value of one or more state variables. A 

Kripke Structure is unfolded and converted into an infinite tree, where each path in the 

tree indicates a possible execution or behavior of the system. 

Let AP be the set of Atomic propositions. A Kripke Structure M over AP is a four tuple 

M = (S, So, R, L) where 

 6



S is a finite set of states, 

So, a subset of S, is the set of initial states, 

R, a subset of S × S, is a transition relation that must be total, that is, for every state s in S 

there is a state s' in S such that (s, s') is in R, and 

L: S → 2AP is a function that labels each state with the set of atomic propositions true in 

that state. 

 

2.1.2 Temporal Logics 

The properties of state transition systems or Kripke Structures are described using 

temporal logic. Temporal logic is associated with time along with atomic properties. 

Temporal logic makes use of Boolean connectives such as conjunction, disjunction, and 

negation to describe the properties of a system. Although time is associated with temporal 

logic, the relationship is not explicit. In temporal logic, qualifiers such as ‘eventually’ and 

‘never’ are used to describe time constraints associated with predicates. 

CTL* (Computational Tree Logic) is a logic that combines both branching-time 

and linear-time operators. CTL* formulas are composed of path quantifier and temporal 

operators. CTL* is described by using computation trees. A computation tree is a tree, 

with an initial state as its root, which is then unwound into an infinite tree. All possible 

executions are covered in a computation tree. 

 

2.2 State Space Explosion 

One of the problems with model checking is state space explosion. This problem 

occurs in systems with many components that can interact with each other, or in systems 

 7



with data structures that can assume many different values. In such cases, the number of 

global states can be enormous. If a system consists of many components that can make 

transitions in parallel, then it is difficult to verify such a system. In such systems, the 

number of global states may grow exponentially with the number of processes [Clarke et 

al. 1999].  Such systems pose the problem of state space explosion. However, researchers 

have come up with techniques based on Automata Theory and Symbolic Structures 

[McMillan 1992] to reduce the size of transition systems. 

 

2.3 Trends in Software Model Checking 

Traditional methods, e.g., simulation and testing, have long been in use for 

software verification and validation [Visser et al. 2000]. While relatively successful, 

these traditional methods become increasingly difficult to utilize as the complexity of 

software increases. Interpreting the interleaving and the control flow of concurrent 

programs and the debugging of multithreaded programs is non-trivial. The computing 

world, thus felt a need for automatic verification of programs. 

Software model checking is generally difficult to implement because of the 

potentially enormous state space. Recently, considerable progress has been made to 

mitigate the problem of state explosion. Some of the successful techniques that deal with 

the problem of state space explosion are partial order reduction [Godefroid and Pirottin 

1993], symbolic model checking [Burch et al. 1994], bounded model checking [Biere et 

al. 1999], compositional reasoning [Clarke et al. 1989], and abstraction [Clarke et al. 

1994]. 

 8



A number of model checkers are readily available and some of them are in 

widespread use. Most of these existing model checkers are designed to support a 

predetermined input language and a fixed platform. Some of the well-known model 

checkers are SPIN, NuSMV, Bandera, BLAST, and Verisoft. Part of this thesis work 

involved a detailed study of the widely known model checkers based on their features, 

degree of automation, input language, use of GUI, and working platform. 

 

2.4 Drawbacks of Most Existing Model Checkers 

Despite an appreciable amount of progress, most of the existing model checkers 

exhibit the following deficiencies. 

1. Inadequate Mapping of a System into a Model Checker’s Input Language: Modeling 

a system, which is mostly represented in the form of code segments or state diagrams, 

into a formalism that is understood by a model checker, is a significant step in the 

process of model checking. Generally, a model checker’s input language has a fixed 

set of syntax rules and constructs that act as restrictions for replicating the exact 

behavior of a system. The stereotyped behavior of most of the input languages causes 

complications and may result in accurate representation of concurrent systems or 

systems involving dynamic creation of states. 

2. Standardized Architecture: Most of the model checkers have a fixed pattern for state 

encodings, search algorithms, and reduction strategies [Robby et al. 2003b]. Each 

system has a collection of components, properties, and data pertaining to its domain. 

A domain specific approach leverages a scope for efficient encoding of system states, 

and further enhances the state space reductions without incurring unnecessary 

 9



overhead. Depending on the nature of the system, it is desirable to configure the 

search algorithms such as a stateless search [Godefroid 1997] or a less heuristic 

search for defect detection [Edelkamp et al. 2001] [Groce and Visser 2002].  

 

Thus, there is a need for model checking tools that support customization and 

extensibility and that are easily embedded or encapsulated in larger development tools. 

 

 

 10



 

 

 

CHAPTER III 

 

BOGOR AND ECLIPSE 

 

3.1 Bogor Model Checker 

 Bogor [Bogor 2003] is a novel model checking framework that has been 

developed by the SAnToS group (Specification, Analysis, and Transformation of 

Software) at Kansas State University and the ESQuaReD group (laboratory for 

Empirically-based Software Quality Research and Development) at University of 

Nebraska, Lincoln. Bogor is designed to support the analysis of a wide variety of 

software artifacts related to modern, dynamic, and concurrent software systems. The 

extensible framework of Bogor allows domain experts, who are not necessarily model 

checking experts, apply model checking without the need to build their own model 

checkers or having to pour over the details of an existing model checker implementation 

while carrying out substantial modifications. 

 Figure 4 below shows the architecture of Bogor. The architecture is divided into 

two parts: Front End and Model Checking Components. Bogor has a modular 

architecture with nine prime bogor components each of which is implemented using a 

plugin. The arrowheads show the interdependencies between modules, e.g., the 

IActionTaker model uses the IBacktrackingInfo module. 

 11



 The front end builds the abstract syntax tree (AST) from the input model, checks 

the well-formedness of the model by type checking, and performs extensions interface 

checking. Bogor model checker components contain three major modules: i) Search 

Module, ii) Scheduling Module, and iii) State Manager Module, as well as other modules 

that manage backtracking and extensions [Robby et al. 2003b]. 

 

 
  Front End | Model Checking Components 
   |       
   |       
   |       
   |       
   |       
   |       
   |       
   |       
   |       
   |       
   |       
   |       
   |       
   | 

Lexer 

Parser 

Type Checking 

Semantics 
Analyses 

IActionTaker IStateMgr IBacktrackInfo 

IExpEval ITransformer ISearcher 

IStateFactory ISchedulingSt

rategy 
IValueFactory 

 

(.config and .bir are the inputs to the model checker consisting of the configuration and 

intermitiate representation files) 

Figure 4: Bogor Architecture [Robby et al. 2003b] 

 

3.1.1 Bogor Model Checking Framework 

Bogor [Bogor 2003] is an extensible software model checking framework that has 

been designed to support general purpose model checking as well as domain specific 

software model checking. Bogor’s model checking algorithms, user interface, and other 

 12



features apparently make it more adaptable than most of the existing model checkers. 

Some of the features of Bogor are listed below. 

• Modeling Language Supporting Object-Oriented Features: Bandera Intermediate 

Representation language (BIR) not only provides basic constructs (that are normally 

found in most modern programming languages) but also includes the dynamic 

creation of objects and threads, garbage collection, and exception handling [Dwyer et 

al. 2005]. This bridges the gap between translation of a software artifact that uses a 

modern, modular, and object-oriented methodology, into a Bogor compatible model. 

• An Extensible Modeling Language: Bogor’s modeling language, BIR, can be 

extended to a particular domain (such as multi-agent systems, avionics, or security 

protocols) or with respect to a particular level of abstraction (such as design models, 

source code, or byte code). BIR can include new primitive types, expressions, and 

commands [Dwyer et al. 2005]. 

• Open Modular Architecture That Facilitates Encapsulation: Bogor’s well-organized 

modular structure allows Bogor’s default model checking algorithms to be replaced 

by new algorithms and new optimizations. Bogor has adapted and extended the 

optimization/reduction strategies such as heap and thread symmetry [Robby et al. 

2003a], collapse compression [Holzmann 1997], and partial order reductions. Bogor’s 

open architecture extends its encapsulation into a domain specific environment with 

less difficulty than most of the existing model checkers. 

• Robust Graphical Interface: The feature-rich user interface of Eclipse provides a 

variety of visualization and navigation facilities [Dwyer et al. 2005]. The robustness 

of Eclipse’s GUI can be utilized by installing Bogor as a plugin for Eclipse. 

 13



3.1.2 BIR Modeling Language 

Bandera Intermediate Representation (BIR) is a modeling language of the Bogor 

model checker [Robby et al. 2003b]. BIR supports the object-oriented paradigm, hence it 

could be considered a pragmatic modeling language for expressing concurrent systems. 

BIR’s support for modeling software artifacts ranges from languages such as Java 

and C#, and design levels such as transition diagrams and state charts, to abstractions of 

software layers as in Common Object Request Broker Architecture (CORBA) 

middleware services [Hoosier et al. 2004] and communication mechanisms. 

BIR’s primitive types include boolean, integer, subranges, and enumerated types 

and its non-primitive types include record, array, and lock. BIR also provides support for 

abstract data types (ADT), polymorphic functions, and dynamic creation of both thread 

and heap objects [Robby et al. 2003b]. 

Figure 5 below represents BIR model of two concurrent processes. 

TwoDiningPhilosopher.bir is an implementation of the classic problem of 5 Dining 

philosophers. In this example, two philosophers think and eat without doing any talking. 

There is a bowl of spaghetti in the center of the table along with and two plates and two 

forks. Each philosopher requires 2 forks to eat. Philosopher 1 (P1) would like to grab 

fork1 (right fork) and then fork2 (left fork), and start eating. On the other end, 

philosopher 2 (P2) would like to lift fork 2 then fork 1 (in that order), and start eating. 

There is a possibility that this system could reach a deadlock if both philosophers are 

holding a fork in one hand and waiting on the other philosopher to free the other fork.  

For each philosopher there is a thread created in the BIR model as shown below in Figure 

5.   

  

 14



 

 
system TwoDiningPhilosophers  
{ 
 

 boolean fork1 := false; 
  boolean fork2 := false; 
   
   active thread Philosopher1()  

  { 
    loc loc0: live {} // take first fork 
      when !fork1 do { fork1 := true; } 
      goto loc1; 
 
    loc loc1: live {} // take second fork  
      when !fork2 do { fork2 := true; } 
      goto loc2; 
 
    loc loc2: live {} // put second fork down  
      do { fork2 := false; } 
      goto loc3; 
 
    loc loc3: live {} // put first fork down 
      do { fork1 := false; } 
      goto loc0; 
  } 
 
  active thread Philosopher2()  
  { 
    loc loc0: live {} // take second fork 
      when !fork2 do { fork2 := true; } 
      goto loc1; 
 
    loc loc1: live {} // take first fork 
      when !fork1 do { fork1 := true; } 
      goto loc2; 
 
    loc loc2: live {} // put first fork down 
      do { fork1 := false; } 
      goto loc3; 
 
    loc loc3: live {} // put second fork down 
      do { fork2 := false; } 
      goto loc0; 
  } 
 
}         

 

Figure 5. BIR Example [Bogor 2003] 

 

 

 15



3.1.3 Customizing Bogor to a Domain 

 Bogor has an extensible architecture that allows adding new data types to BIR and 

swapping the existing search strategies with new domain specific strategies. This feature 

can be exploited to build a customized model checker. It turns out that often times there 

are certain components of a software system that could have a significant number of 

states that are irrelevant to the properties being checked. By introducing new and 

encapsulated BIR native data types, together with operations to manipulate them, the 

code complexity can be pushed into the model checker’s runtime environment instead of 

into the model itself. 

 Extensions do not change or extend the grammar of BIR, hence the built-in parser 

or syntactic symbols need not be changed as is the case in some other model checkers 

such as SPIN [Holzmann 1997] that require parser modification. Extensions make use of 

the already existing Bogor model checker components and the newly developed Java 

packages and classes. Bogor recognizes new extensions by a block of extension 

definition code as shown in Figure 6. 

extension extension_name for MyPackage.MyModule 

{ 

// Type definition 

typedef type<’a> 

// Action definition and expression definition 

functions 

} 
  

Figure 6. An Extension Definition 

 16



The extension definition code has the keyword ‘extension’ followed by the name 

of the extension, followed by the name of the java class that implements the action 

definition and expression definition functions.  

The idea of extension development is to let the Java package (i.e., the one that 

implements the extension) hold the state associated with the complex component and 

only expose as much of it as is relevant at the BIR level, rather than maintaining a 

complete implementation of a software component using BIR's variables [Bogor 2003]. 

The plugin development environment (PDE) of Eclipse [Eclipse 2004] can be used to 

provide extensions to Bogor’s input language BIR.  

 

3.2 Using Eclipse for Simulation 

Eclipse is a Java Integrated Developing Environment (IDE). Its framework can be 

extended by a developer to integrate new functions [Eclipse 2004]. Eclipse provides a 

plugin facility via which one can add more features. Bogor is implemented as an Eclipse 

plugin and, using the plugin development environment (PDE) of Eclipse, one can 

implement extensions and replacement strategies for Bogor modules. Eclipse’s extension 

point mechanism, which allows new plugins to contribute functionality to the existing 

ones, helps in testing, debugging, and running of the extensions before they are deployed.    

 17



 

 

 

CHAPTER IV 

 

CASE STUDY, RESULT, AND COMPARISON 

 

This chapter describes the creation and implementation of BIR language 

extensions Stack and Multiset. These extensions were developed using the plugin 

development environment (PDE) of Eclipse 3.0 and were debugged in the Eclipse’s 

extension point environment by instantiating a new Eclipse environment. Two BIR 

models (postfix calculator and resource contention) were used as test cases to test 

different operations on the abstract data type extensions.  Furthermore, both examples 

were tested for accuracy, operational capability, generation of counter example, etc., to 

show their functional potential as well the working of the Bogor model checker. 

Sections 4.1 and 4.2 cover two specific cases describing data types, design, basic 

operations, implementation of the extension, and excerpts of code. Subsections 4.1.3, 

4.1.4, 4.2.3, and 4.2.4 describe the observations and Bogor trail files for both case 

studies, and they also cover the results and a discussion of the results. 

 

 

 

 

 18



4.1 Case Study - Postfix Calculator (Stack Extension) 

 Postfix calculators employ reverse polish notation. To evaluate an expression in 

postfix, we need to express it without any parenthesis or precedence, e.g., ((3 + 4) * 5) + 

1 will be expressed as   3 4 + 5 * 1 +  

The expression is then evaluated from left to right using a stack by going through the 

following steps. 

• push when encountering an operand  

• pop two operands and evaluate the value when encountering an operation 

• push the result 

 

Thus the abstract data type ‘Stack’ is most suited for postfix evaluation. Stack is 

not a native BIR construct, though it can be implemented using BIR Arrays. If the code is 

to be written using arrays, then the coder has to write an extra piece of code to make an 

array behave like a stack, i.e., in LIFO fashion, checking for emptiness, etc. Basic 

operations such as PUSH ( ), POP ( ), and isEmpty ( ) are to be implemented using 

functions.  

Two models of the Postfix Calculator were developed: one model uses the classic 

approach of using arrays as stack, whereas the other model adopts an extension 

mechanism by using the ‘Stack’ extension to Bogor. The Stack extension was developed 

using Eclipse’s PDE and the extensible architecture of Bogor. The methodology of 

extension development and implementation of the postfix calculator using the stack 

extension are described below. 

 

 19



4.1.1 Extension Syntax 

 In order to implement the stack extension, the following operations on stack were 

required to be defined.   

 

List of Operations: 

 Create ( )  - Create a stack with the given data type for the elements  

 Push ( )  - Push an element on top of the stack 

 Pop ( )   - Pop the top element of the stack 

 IsEmpty ( )  - Return a boolean 

 getTop ( )  - Get the element at the top of the stack without popping it 

 Size ( )  - Return the size of the stack 

 

The following code segment informs the Bogor language recognizer about the 

new extension type. The keyword ‘extension’ is followed by extension name ‘Stack’, 

followed by java class ‘myStackModule’. The type of this extension is kept generic and 

can be instantiated to any data type at the time of declaration. (e.g., Stack.type<int> 

MyStack; declares an integer stack).  

 

 20



 
extension Stack for bogor.MyStack.myStackModule 
  

{   
  typedef type<'a>;   
 
  expdef boolean isEmpty<'a>(Stack.type<'a>);  
 
  expdef Stack.type <'a> create <'a> ('a); 
 
  expdef int size<'a>(Stack.type<'a>); 
 
  expdef 'a getTop<'a>(Stack.type<'a>);   
 
  actiondef push<'a>(Stack.type<'a>, 'a);   
 
  actiondef pop<'a>(Stack.type<'a>); 
 }      

 

Figure 7. Extension Definition for Stack  

 

4.1.2 Implementation Semantics 

 Once the extension definition is constructed, the focus is shifted to the java class 

that actually implements the functionality of the extension. Every language extension 

java class has to implement the IModule interface that is provided by the Bogor 

framework [Bogor 2003] along with its required methods (see Figure 8 below). 

The Connect ( ) method establishes connection with the main Bogor model 

checking components. The getCopyrightNotice ( ) and setOptions ( ) methods are 

sometimes used to display legal messages and configure advanced options. Along with 

the required methods, java class ‘myStackModule.java’ also implements each of the 

operations (create, push, pop, etc.) as stated in the extension definition. 

 21



 

 
package bogor.MyStack; 
 
public class myStackModule implements IModule  
{ 
 

public IMessageStore connect(IBogorConfiguration bc)  
{ 

   tf = bc.getSymbolTable().getTypeFactory(); 
        ee = bc.getExpEvaluator(); 
        ss = bc.getSchedulingStrategist(); 
        vf = bc.getValueFactory(); 
        bf = bc.getBacktrackingInfoFactory(); 
        return new DefaultMessageStore(); 
 } 
 
 public String getCopyrightNotice()  

{ 
  return null; 
 } 
 
 public IMessageStore setOptions(String arg0, Properties 
arg1)  

{ 
  return new DefaultMessageStore(); 
 } 
 
 public void dispose()  

{ 
   tf = null; 
        ee = null; 
        ss = null; 
        vf = null; 
        bf = null; 
 
 } 
} 

Figure 8. Required Methods of IModule Interface 

 

All value classes in Bogor must implement the IValue interface. Since stack is a 

non-primitive data type, it has to implement a descendent of IValue called 

INonPrimitiveValue interface. The required methods of INonPrimitiveValue interface are 

as shown in Figure 9 below.  

 22



 

public interface INonPrimitiveExtValue extends 
                 INonPrimitiveValue, Serializable 
{ 

// Methods required directly 
    

Field[] getFields(); 
 
byte[][] linearize(int bitsPerNonPrimitiveValue, 
                   ObjectIntTable<INonPrimitiveValue> 

                         nonPrimitiveValueIdMap, 
                         int bitsPerThreadId, 
                         IntIntTable threadOrderMap); 
 
     void visit(IValueComparator vc, 
                 boolean depthFirst, 
                 Set<IValue> seen, 
                 LinkedList<IValue> workList, 
                 IValueVisitorAction vva); 
     
     // Methods required by INonPrimitiveValue 
     
     int getReferenceId(); 
     
     // Methods required by IValue 
     
     Type getType(); 
 
     int getTypeId(); 
     
    INonPrimitiveExtValue clone(Map<Object,Object> 
                                            cloneMap); 
 
     void validate(IBogorConfiguration bc); 
     
     public boolean equals(Object o); 
     
     public int compareTo(IValue o); 
} 

Figure 9. Required Methods of INonPrimitiveValue Interface 

 

The linearize ( ) method encodes a state into a bit sequence that uniquely 

represents a state in the state space. The Visit ( ) and getFields ( ) methods are used by 

Bogor for several analytical purposes. The complete stack implementation is presented in 

Appendix C. 

 23



4.1.3 Implementation and Experimental Results 

 The first step in model checking is to represent a system as a model. The Postfix 

Calculator system was represented using Bogor’s input language BIR. The model uses 

the ADT Stack extension that was developed as a part of this thesis. A BIR excerpt of the 

implementation of the Postfix Calculator appears below in Figure 10. 

 

 
extension Stack for bogor.MyStack.myStackModule 
{ 

. . . 
} 
 
Stack.type<int> operands; 
 
main thread MAIN() 
{ 

// READ THE POSTFIX EXPRESSION 
GetExpression(); 

 
 

// CREATE STACK USING EXTENSIONS 
operands := Stack.create<int>(1); 

 
 

// EVALUATE POSTFIX EXPRESSION 
Evaluate(); 

 
 

function Evaluate() returns int 
{ 

. . . 
 
if (c == Operand)  
do 
// Pop 2 elements, operate, and push the result 

op2 := Stack.pop<int>(operands); 
op1 := Stack.pop<int>(operands); 
Stack.push<int>(operands, result); 

 
else do 
// PUSH THE ELEMENT 

Stack.push<int>(operands, c); 
} 

Figure 10. BIR Excerpt for the Postfix Calculator Model 

 24



To ensure the proper functioning of the system, a simple postfix expression was 

fed as an input to the model. The model was checked for the accuracy of the result, 

working of basic operations (push, pop, etc., for stack extension), and the working of the 

extension mechanism.  

 The trial runs were conducted on Windows XP and Solaris 9.0 operating systems. 

Bogor was run on a Java 2 Platform and the results were observed on Eclipse 3.2.0. The 

Postfix Calculator model ran successfully and the result of the model checking is given in 

Figure 11 below.  

 

 
Bogor v.1.2 (build 1.2.20060510.0) 
(c) Copyright by Kansas State University 
 
Web: http://bogor.projects.cis.ksu.edu 
 
Transitions: 257, States: 258 
Total memory before search: 6,713,808 bytes (6.4 Mb) 
Total memory after search: 6,519,840 bytes (6.22 Mb) 
Total search time: 150 ms (0:0:0) 
States count: 258 
Matched states count: 0 
Max depth: 257 

 

 
Size of seen set # states already 

in the seen set 

Done! 
 

(Seen set stores states that are explored in a computation tree, to avoid revisiting them.) 

Deepest stack 
depth reached 
during search 

Figure 11. Model Checking Result of the Postfix Calculator 

 

The next step in Model Checking is to add the specifications that the system needs 

to check. At no point of time one would want to pop up elements from an empty stack. 

 25



Also, when an operand is encountered, at least two elements are to be present in the 

stack. Assertions are inserted at proper points in the model to check for these properties. 

An assertion is a boolean that checks to determine if a condition holds true, and it flags an 

error if the condition is not satisfied. 

 
if (c == Operand) do 

 
 //CHECKS IF STACK HAS AT LEAST TWO ELEMENTS    
  assert (Stack.size<int>(resources)>= 2); 
 
 
 //POP 2 ELEMENTS, OPERATE, AND PUSH THE RESULT 
 
 
 //ASSERT TO AVOID POPPING FROM AN EMPTY STACK 
  assert (!Stack.isEmpty<int>(resources)); 
  op2 := Stack.pop<int>(operands); 
 
 //ASSERT TO AVOID POPPING FROM AN EMPTY STACK 
  assert (!Stack.isEmpty<int>(resources)); 
  op1 := Stack.pop<int>(operands); 
  Stack.push<int>(operands, result);   
    

else do . . .  

Figure 12. The Postfix Calculator Model with Assertions 

 

The model was again tested to check if it meets the specifications. There were no 

assertion violations and this verifies the proper functioning of the model using the 

extensions. 

Another model of the Postfix Calculator was developed in BIR using an array (a 

non primitive data type in BIR) as a stack, unlike the first model that used the ‘Stack’ 

ADT extension. A comparison was made in terms of memory usage and the time to 

search the state space. The complexity of the system is gradually increased by feeding it 

more complex postfix expressions. Table I describes the experimental results of two 

 26



models showing number of transitions, number of states, memory used (in megabytes), 

and time (in milliseconds). Figure 13 shows the comparison of state space sizes for model 

using arrays as stack versus model using stack extension. 

TABLE I. Experimental Results 

 Postfix Expression Time

(ms)

Memory

(Mb) 

No. of 

Transitions 

No. of 

States 

Max. Depth

Stack Extension 100 10.07 106 107 106 Exp A 

 Array as Stack 20 21.12 115 116 115 

Stack Extension 711 11.75 394 395 394 Exp B 

Array as Stack 1312 21.85 411 412 411 

Stack Extension 3375 11.63 751 752 751 Exp C 

 Array as Stack 7771 20.69 778 779 778 

 

Exp A = 2 3 + 

Exp B = 6 3 / 4 3 * + 2 + 8 - 

Exp C = 6 3 / 4 3 * + 20 + 8 9 * 3 / - 6 9 * + 12 – 

0

20

40

60

80

100

120

140

Memory Transitions States Maximum Depth

Stack Extension

Array as Stack

 
(The highlighted values from TABLE I are used to plot this graph.) 

Figure 13. Comparison of Resource Requirements 

 27



4.1.4 Observations 

The experimental results show that there is an evident overhead in terms of 

memory usage when an array is used to represent a stack. However, there is no overhead 

in terms of time when functions are called, probably because the functions are local to the 

model. Thus, using an array to simulate a stack is possible but it would inflate the state 

space and would cause runtime penalty in terms of memory requirements, especially in 

larger systems. By introducing a new, encapsulated BIR native data type stack, the code 

complexity can be pushed into the model checker’s runtime environment, thus reducing 

the state space.   

 

4.2 Case Study - Resource Allocation/Deallocation (Multiset Extension) 

Resource allocation is the process of allocating a resource from the pool of 

available resources. Once the resource is used by a process, it is put back in the pool for 

other processes to use.  

A straightforward representation of a resource pool is a set. Set is not a native BIR 

construct, though it can implemented using BIR arrays. If arrays were to be used as sets, 

care has to be taken to ensure element uniqueness. Sets are unordered and the basic 

operations on them are: membership, add an element, remove an element, isEmpty, etc.  

Bogor describes [Bogor 2003] an implementation of resource pool using a set. 

However, a better representation of a resource pool would be a multiset. A multiset 

differs from a set in that each member has a multiplicity, which determines how many 

times an element occurs in the multiset, e.g., multiset (1, 4, 4) has element 1 with 

multiplicity 1, represented as (1 , 1), and element 4 with multiplicity 2, represented as (4 , 

 28



2). A resource pool represented as a multiset can have more than one instance of a 

resource, unlike a set representation where duplicate membership is not permitted.  

One of the goals of this case study was to study multiple threads that have 

concurrent executions. A multiset extension was developed as a part of this thesis work 

and the methodology for the same is described below. 

 

Resources
 

 

Figure 14. Resource Allocation Process 

 

 
 
 
 
 
 

 
 
 
      Free  In use 
 
 
 
 
 
 
  request  

R1 R2 

R3 

Resource allocation 
strategy 

(Selects a resource 
randomly)

 
     grant 
 
 
 
 
    

Processes  

P1 P2 Pn 

 29



4.2.1 Extension Syntax 

 In order to implement the multiset extension, the following operations on multiset 

are required to be defined.   

List of Operations: 

 Create ( ) - Create a multiset with the given values 

 isMember() – Determine if the given element is in the multiset 

 Add ( ) - Add an element to the multiset 

 Remove ( ) - Remove an element from the multiset 

 isEmpty ( ) - Return a boolean if the set is empty 

 frequency ( ) - Return the frequency or multiplicity of the given element 

 

The following code segment informs the Bogor language recognizer about the new 

extension type. 

extension Multiset for bogor.multiset.MultisetModule 
  

{ 
  typedef type <'a>; 
   
  expdef Multiset.type <'a> create <'a> ('a ...); 
   
  expdef boolean isEmpty <'a> (Multiset.type <'a>); 
   
  expdef 'a selectElement<'a>(Multiset.type<'a>); 
 
  expdef int frequency<'a>(Multiset.type<'a>, 'a); 
     
  actiondef add<'a>(Multiset.type<'a>, 'a); 
   
  actiondef remove<'a>(Multiset.type<'a>, 'a); 
   
 } 

 

Figure 15. Extension Definition for Multiset 

 30



The keyword ‘extension’ is followed by extension name ‘Multiset’, followed by 

java class ‘MultisetModule’. The type of this extension is kept generic and can be 

instantiated to any data type at the time of declaration, e.g., Multiset.type<int> 

MyMultiSet declares a Multiset of integers.  

 

4.2.2 Implementation Semantics 

 The implementation semantics of multiset is similar to what was shown in the 

case study Section 4.1. The complete implementation of the multiset extension is 

presented in Appendix D. 

 

4.2.3 Implementation and Experimental Results 

 The resource contention system was built as a BIR model to make it 

comprehendible to Bogor. This system uses the multiset extension described above to 

implement a collection of resources (a resource pool). Figure 16 shows the BIR excerpt 

for the same. 

The model was tested against a given scenario where there are two Disks and one 

Display in the resource pool. There are two processes that are executed simultaneously 

and they have access to a common resource pool. These processes request a resource, 

acquire it (only if it is available), use it, and then put it back into the resource pool. The 

model was checked for the accuracy of the result, the working of the basic operations 

(add, remove, etc., for the multiset extension), and the working of extension mechanism.  

 

 31



 

 extension Multiset for bogor.multiset.MultisetModule 
 { 
  . . . 
 } 
 
 enum ResourceState { FREE, IN_USE } 
 record Resource { ResourceState state; } 
 Multiset.type<Resource> resources; 
  . . . 
    
 main thread MAIN() 
 { 
  . . .   
 resources :=Multiset.create<Resource>(DISK, DISPLAY, DISK); 
 start Process(); 
 start Process(); 

} 
 
Thread Process 
{ 
 Invoke ManageResources(); 
} 
 
function ManageResources() 

 { 
  Resource resource; 
   
  !Multiset.isEmpty<Resource>(resources)  

do{ 
  //SELECT A RESOURCE RANDOMLY 
  resource :=Multiset.selectElement<Resource>(resources); 
  
  //REMOVE THE RESOURCE FROM THE POOL OF RESOURCES  

Multiset.remove<Resource>(resources, resource);} 
 

//USE THE RESOURCE 
 

//FREE THE RESOURCE AND ADD IT BACK TO THE POOL 
Multiset.add<Resource>(resources, resource); 

 } 

Figure 16. BIR Excerpt for the Resource Contention Model 

 

 The trial runs were conducted on Windows XP and Solaris 9.0 operating systems. 

Bogor was run on the Java 2 Platform and the results were observed on Eclipse SDK 

 32



3.2.0. The Resource Contention model ran successfully and the result of the model 

checking is given in Figure 17 below.  

Bogor v.1.2 (build 1.2.20060510.0) 
(c) Copyright by Kansas State University 
 
Web: http://bogor.projects.cis.ksu.edu 
 
 
Total memory before search: 7,481,880 bytes (7.14 Mb) 
Total memory after search: 7,582,304 bytes (7.23 Mb) 
Total search time: 170 ms (0:0:0) 
States count: 119 
Matched states count: 137 
Max depth: 69 
Done! 

 

Figure 17. Model Checking Result of Resource Contention 

 

 The complexity of the resource contention model was gradually increased to test 

it for scalability. Table II shows the results that were obtained by varying the number of 

concurrent threads and the available resources.  

 

TABLE II. Experimental Data for Resource Contention 

No. of 
Processes 

No. of 
Resources 

Time 
(ms) 

Memory 
(Mb) 

No. of 
Transitions 

No. of 
States 

Matched 
States 

Max. Depth 

2 2 210 9.35 183 87 97 59 

3 2 421 9.54 1465 487 979 248 

3 3 711 9.57 3196 1005 2192 487 

4 2 1312 9.80 8921 2321 6601 817 

4 3 3375 10.50 27029 6555 20476 2474 

4 4 7771 11.81 64141 14964 48178 5694 

 33



No. of 
Processes 

No. of 
Resources 

Time 
(ms) 

Memory 
(Mb) 

No. of 
Transitions 

No. of 
States 

Matched 
States 

Max. Depth 

5 2 6159 11.04 46541 10037 36505 2257 

5 3 23745 15.51 180236 36014 144223 9327 

5 4 76049 28.33 568581 108002 460580 33748 

5 5 181120 63.14 97629 50147 47833 45523 

 

 A deadlock may occur if there is a leakage in the resource pool, wherein a 

process after using a resource fails to put it back in the resource pool. Eventually, all the 

resources in the resource pool would deplete, and all the processes will end up waiting for 

the other processes to free the resource. Such a condition where two or more processes 

are waiting for resources, which are not going to be made available, is a circular chain 

that will result in deadlock. The above behavior was replicated in the BIR model by 

adding a code segment as shown in Figure 18, where a thread chooses an execution path 

provided in the code. By choosing path A, a thread returns the resource to the resource 

pool and path B causes leakage of resources. 

 //ADD RESOURCE TO THE RESOURCE POOL
{ 
 

  //PATH A 
  do 
  { 
   Multiset.add<Resource>(resources, resource); 
  } 
 
  //OR PATH B 
 
  do 
  { 

// BUG: leak resource by not replacing it 
  } 
 } 

 

Figure 18. Resource Contention Model with Deadlock Scenario  

 34



 The model was checked to test how it reacted to the possibility of deadlocks. 

Bogor was able to point out the deadlock caused by resource leakage. A counter-example 

was generated in the form of a trail file. The Eclipse platform was used to view the trail 

file and do a step-by-step analysis of the counter-example (see Figure 19).  

To ensure the proper functioning of the system, a few other assertions were 

added. Care was taken to avoid a condition where the same resource is randomly selected 

by more than one process. A code fragment was added to the existing code that ensures 

the process of selecting and removing a resource from the resource pool is atomic (as 

given in Figure 20). An assertion was added to determine if a resource exists before it is 

removed. The model was again tested to check if it meets the specifications. There were 

no assertion violations and this verifies the proper functioning of the resource contention 

model using the multiset extension. 

 
Figure 19. Screen Shot of Bogor Counter-Example in Eclipse 

 35



  
when !Multiset.isEmpty<Resource>(resources) do 
{ 
 // SELECTION AND REMOVAL OF A RESOURCE IS MADE ATOMIC 
 

atomic //start of atomic statement 
 
resource := 

Multiset.selectElement<Resource>(resources); 
  
 //CHECK IF A RESOURCE EXISTS BEFORE REMOVING IT 
 assert 
(Multiset.isMember<Resource>(resources,resource); 
 

Multiset.remove<Resource>(resources, resource); 
  

End // End of atomic statement 
} 

    

Figure 20. Resource Contention Model with Assertions 

 

 

 

 

 

 

 

 36



 

 

 

CHAPTER V 

 

SUMMARY AND FUTURE WORK 

 

5.1 Summary 

 The crux of this thesis was to study and experiment with domain specific 

approaches to software model checking.  

Chapter I introduced the importance of software model checking and the scope of 

the thesis. Chapter II reviewed the literature of model checking and the basic problem of 

state space explosion. It Chapter II also described the general trends in model checking 

and commented briefly on the drawbacks of most of the existing model checkers.  

In Chapter III, Bogor was introduced as a novel model checker with an extensible 

framework. The focus of Chapter III then shifted towards customization of Bogor with 

the help of Eclipse’s PDE.  

  Chapter IV detailed the implementation of the extensions that are part of this 

thesis work. The first part of the chapter discussed the need for of an extension and its 

potential use in a number of applications. This chapter described two case studies using 

extensions stack and multiset. The later part of the chapter presented the test results and 

the trail files for debugging for both of the cases. The complexity of the applications was 

gradually increased to test for scalability and applicability. 

 37



Customizing the model checker as per domain specifications helped in achieving 

space reduction.  The space reduction appears to be significant, especially in large 

domains where it contributes towards the solution of the state space explosion problem. 

Although development of extensions is achievable, it requires a working knowledge of 

Eclipse and specific knowledge of model checking.   

In conclusion, a domain specific approach for software model checking has been 

demonstrated to be a promising methodology. Language extensions to BIR were 

successfully built and tested for accuracy and scalability.   

 

5.2 Future Work 

 The extensions developed and reported in this thesis are fundamental with the 

intent of handling smaller application, but there is a lot of potential for integrating these 

extensions to check larger systems. However, with the successful implementation of 

extensions, it is evident that there is a large scope of research in the area of domain 

specific approach to model checking. A possible future area of work in this field would 

be building an entire library of basic extensions that would be supplementary to the 

model checker.  

 

 38



 

 

 

REFERENCES 

 
[Biere et al. 1999] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu, 

“Symbolic Model Checking without BDDs”, Lecture Notes in Computer Science, 
No. 1579, pp. 193-207, Springer Verlag, 1999. 

 
[Bogor 2003] Bogor: Software model checking framework, 

http://bogor.projects.cis.ksu.edu, date created: 2003, date accessed: May 2005. 
 
[Brat et al. 2000] G. Brat, K. Havelund, S. Park, and W. Visser, “Java PathFinder – A 

Second Generation of a Java Model Checker”, Proceedings of the Workshop on 
Advances in Verification, pp. 130-135, Chicago, Illinois, July 2000. 

 
[Burch et al. 1994] J. R. Burch, E. M. Clarke, D. E. Long, K. L. MacMillan, and D. L. 

Dill, “Symbolic Model Checking for Sequential Circuit Verification”, IEEE 
Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 
13, No. 4, pp. 401-424, April 1994. 

 
[Chan et al. 2001] W. Chan, R. J. Anderson, P. Beame, D. H. Jones, D. Notkin, and W. E. 

Warner, “Optimizing Symbolic Model Checking for Statecharts”, IEEE 
Transactions on Software Engineering, Vol. 27, No. 2, pp. 170-190, February 
2001. 

 
[Clarke et al. 1999] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled, Model 

Checking, MIT Press, Cambridge, Massachusetts, 1999. 
 
[Clarke et al. 1986] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic 

Verification of Finite-State Concurrent Systems Using Temporal Logic 
Specifications”, ACM Transactions on Programming Languages and System 
(TOPLAS), Vol. 8, No. 2, pp. 244-263, April 1986.  

 
[Clarke et al. 1989] E. M. Clarke, D. Long, and K. McMillan, “Compositional Model 

Checking”, Proceedings of the Fourth Annual Symposium on Logic in Computer 
Science, pp. 353-362, Pacific Grove, California, June 1989. 

 
[Clarke et al. 1994] E. M. Clarke, O. Grumberg, and D. E. Long, “Model Checking and 

Abstraction”, ACM Transactions on Programming Languages and Systems 
(TOPLAS), Vol. 16, No. 5, pp. 1512-1542, September 1994. 

 

 39

http://bogor.projects.cis.ksu.edu/


[Clarke and Mishra 1983] E. Clarke and B. Mishra, “Automatic Verification of 
Asynchronous Circuits”, Proceedings of Logic of Programs, pp. 101-115, 
Pittsburgh, PA, June 1983. 

 
[DeLoach and Matson 2004] S. A. DeLoach, and E. Matson, “An Organizational Model 

for Designing Adaptive Multiagent Systems”, Proceedings of the AAAI-04 
Workshop on Agent Organizations: Theory and Practice, San Jose, California, 
July 2004. 

 
[Demartini et al. 1999] C. Demartini, R. Iosif, and R. Sisto, “dSPIN: A Dynamic 

Extension of SPIN” Proceedings of the 6th International SPIN Workshop, Vol. 
1680 of Lecture Notes in Computer Science, pp. 261–276, Springer-Verlag, 
September 1999. 

 
 [Dwyer et al. 2005] Matthew B. Dwyer, John Hatcliff, Matthew Hoosier, and Robby, 

“Building Your Own Software Model Checker Using the Bogor Extensible Model 
Checking Framework”, Proceedings of the 17th Conference on Computer-Aided 
Verification (CAV 2005), Edinburgh, Scotland, UK, July 2005.  

 
[Eclipse 2004] Eclipse: Platform for tools integration, 

http://www.eclipse.org/, date created: 2004, date accessed: October 2005. 
 
[Emerson 1990] E. A. Emerson, “Temporal and Modal Logic”, Handbook of Theoretical 

Computer Science, Volume B: Formal Models and Sematics, Elsevier Science 
Publishers B.V., pp. 997-1072, 1990. 

 
[Eleftherakis and Kefalas 2001] G. Eleftherakis and P. Kefalas, “Towards Model 

Checking of Finite State Machines Extended with Memory through Refinement”, 
Advances in Signal Processing and Computer Technologies, pp. 321-326. World 
Scientific and Engineering Society Press, July 2001.  

 
[Edelkamp et al. 2001] S. Edelkamp, A. L. Lafuente, and S. Leue, “Directed Explicit 

Model Checking with hsf-spin”, Proceedings of the 8th International SPIN 
Workshop, Vol. 2057 of Lecture Notes in Computer Science, pp. 57-79, Toronto, 
Canada, May 2001. 

 
[Godefroid 1997] P. Godefroid, “Model Checking for Programming Languages Using 

Verisoft”, Proceedings of the 24th ACM Symposium on Principles of 
Programming Languages, (POPL’97), pp. 174-186, Paris, France, January 1997. 

 
[Godefroid and Pirottin 1993] P. Godefroid and D. Pirottin, “Refining Dependencies 

Improves Partial-Order Verification Methods”, Proceedings of the 5th Conference 
on Computer-Aided Verification, Lecture Notes in Computer Science 697, pp. 
438-449, Elounda, Greece, June 1993. 

 

 40

http://www.eclipse.org/


[Groce and Visser 2002] A. Groce and W. Visser, “Model Checking Java Programs 
Using Structural Heuristics”, Proceedings of the International Symposium on 
Software Testing and Analysis, pp. 12-21, Rome, Italy, July 2002. 

 
[Holzmann 1997] G. J. Holzmann, “The Model Checker SPIN”, IEEE Transactions on 

Software Engineering, Vol. 23, No. 5, pp. 279-294, Boston, Massachusetts, May 
1997. 

 
[Hoosier et al. 2004] Matthew Hoosier, John Hatcliff, Robby, and Matthew B. Dwyer, “A 

Case Study in Domain Customized Model Checking for Real-Time Component 
Software”, Proceedings of the 1st International Symposium on Leveraging 
Applications of Formal Method (ISoLA ), Paphos, Cyprus , November 2004. 

 
[Manna and Pnueli 1992]  Zohar Manna and Amir Pnueli, The Temporal Logic of 

Reactive and Concurrent Systems: Specification, Springer-Verlag, New York, 
NY, 1992. 

 
[McMillan 1992] K. L. McMillan, “Symbolic Model Checking: An Approach to the State 

Explosion Problem”, Ph.D. Thesis, Computer Science Department, Carnegie 
Mellon University, CMU-CS-92-131, 1992. 

 
[Queille and Sifakis 1982] Jean Pierre Queille and Joseph Sifakis, “Specification and 

Verification of Concurrent Systems in CESAR”, Proceedings of the Fifth 
International Symposium in Programming, Vol. 137 of Lecture Notes in 
Computer Science, pp. 337-351, New York, NY, April 1982. 

  
[Robby et al. 2003a] Robby, Matthew B. Dwyer, J. Hatcliff, and R. Iosif, “Space 

Reduction Strategies for Model Checking Dynamic Systems”, Proceedings of the 
2003 Workshop on Software Model Checking, Boulder, Colorado, July 2003. 

   
 [Robby et al. 2003b] Robby, Matthew B. Dwyer, and John Hatcliff, “Bogor: An 

Extensible and Highly Modular Software Model Checking Framework”, 
Proceedings of the 9th European Software Engineering Conference held jointly 
with the 11th ACM SIGSOFT Symposium on the Foundations of Software 
Engineering, pp. 267-276, Helsinki, Finland, September 2003. 

 
[Robby et al. 2004] Robby, E. Rodrguez, M. Dwyer, and J. Hatcliff, “Checking Strong 

Specifications Using an Extensible Software Model Checking Framework”, 
Proceedings of Tools and Algorithms for the Construction and Analysis of 
Systems, pp. 404-420, Barcelona, Spain, January 2004. 

 
[Robby et al. 2006] Robby, Scott A. DeLoach, and Valeriy A. Kolesnikov, “Using 

Design Metrics for Predicting System Flexibility”, Proceedings of the 2006 
International Conference on Fundamental Approaches to Software Engineering 
(FASE), Vienna, Austria, March 2006. 

 

 41



[Schuppan and Biere 2004] V. Schuppan, and A. Biere, “Efficient Reduction of Finite 
State Model Checking to Reachability Analysis”, International Journal on 
Software Tools on Technology Transfer (STTT), pp. 185-204, May 2004. 

 
[Visser et al. 2000] W. Visser, K. Havelund, G. Brat, and S. Park, “Model Checking 

Programs”, Proceedings of the International Conference on Automated Software 
Engineering, pp. 3-12, Grenoble, France, September 2000. 

 

 

 

 

 

 

 

 

 

 

 42



 

 

 

 

 

 

 

 

 

 

 

APPENDICES 

 43



 

 

 

APPENDIX A 

 

GLOSSARY 

 

ADT Abstract Data Type is a specification of a set of data and the set of 
operations that can be performed on the data. 
 

API Application Program Interface is a set of routines, protocols, and 
tools for building applications. 
 

BIR Bandera Intermediate Representation is a language used by the 
Bogor model checker to represent models of concurrent object-
oriented systems. 
 

Computation Tree A tree is formed by unwinding the Kripke Structure from the 
initial state. The computation tree shows all possible executions 
starting from the initial state. 
 

Concurrent Program A program that is made up of several processes/task/threads 
whose execution can be multiplexed and/or done in parallel. 
 

CORBA Common Object Request Broker Architecture is a standard 
defined by the Object Management Group (OMG) that enables 
software components written in multiple computer languages and 
running on multiple computers to interoperate. 
 

CTL* Computation Tree Logic describes properties of computation 
trees. The sublogics of CTL* are branching time logic and linear 
time logic. 
 

Eclipse An extensible development platform for building software. 
 

Extensible 
Framework 

A framework that provides facilities for adding new features. 
 

 44



GUI Graphical User Interface refers to a front-end that provides an 
attractive and easy-to-use interface for interacting with an 
application. 
 

IDE Integrated Development Environment is a type of computer 
software that assists computer programmers in developing 
software. 
 

JRE/JDK/JVM Java Runtime Environment (JRE) is a subset of Java 
Development Kit (JDK) that contains the core executables and 
files that constitute the standard Java platform. JRE includes Java 
Virtual Machine (JVM), core classes, and supporting files. 
 

Model Checking An automatic technique for verifying finite state concurrent 
systems. 
 

Path Quantifier Path Quantifiers ‘A’ (for all paths) and ‘E’ (for some paths) are 
used to describe the branching structure in a computation tree.  
 

PDE Plug-in Development Environment provides tools to create, 
develop, test, debug, build, and deploy Eclipse plug-ins, 
fragments, and features. 
 

Reactive System A system that changes its actions, outputs, and states in response 
to stimuli from within or from outside. It is an event driven or 
control driven system continuously having to react to external 
and/or internal stimuli. 
 

Temporal Logic A formalism used to describe a system in terms of propositions 
and temporal qualifiers.  
 

Transition Diagram A graphical structure indicating possible states of a system and 
transitions from one state to another. 
 

 
 

 

 45



 

 

 

 

APPENDIX B 

 

LIST OF SOME OF THE POPULAR MODEL CHECKERS AND THEIR   

FEATURES, INPUT LANGUAGE, GRAPHICAL INTERFACE, AND PLATFORMS 

 

Model 

Checker 
Features Input Language 

Graphical 

Interface 
Platform 

SPIN System is seen as a synchronized 

Extended Finite State Machine 

(EFSM). Used for modeling for 

communication protocol and 

LTL model. 

Promela  

Yes 

Unix, Solaris, and 

Linux machines, on 

most flavors of 

Windows PCs, and 

on Macs 

NuSMV BDD based CTL and LTL model 

checkers (under fairness), 

bounded model checking with 

LTL. Used for verifying digital 

circuits 

 

Symbolic Model 

Verifier (SMV) 

input language, a 

simple circuit 

description 

language 

 

Yes MS Windows XP 

Linux RedHat 9.0. 

 

Verisoft A tool for software developers 

and testers of 

concurrent/reactive/real-time 

systems 

C, C++, Tcl Yes Solaris/Sparc and 

Linux  

MAGIC Checks conformance between 

component specifications and 

their implementations 

C No RedHat 

7.1, 

RedHat 

8.0 and 

Windo

ws 2K 

 46



 

Java Path 

Finder 

Verifies executable Java 

bytecode programs. 

Java No Windows, Unix 

related 

CBMC Bounded Model Checker for C 

(CBMC) is used for embedded 

software, and supports dynamic 

memory allocation 

ANSI-C, SMV, 

Verilog, and 

netlists 

Yes Windows, Unix 

related 

BLAST (Berkeley Lazy Abstraction 

Software Verification Tool) 

BLAST model checks C 

programs and uses automatic 

abstraction to construct models. 

C No Windows, Unix 

related 

MOCHA MOCHA is an interactive 

software environment for system 

specification and verification that 

exploits design structure in 

automatic verification. 

Reactive modules Yes Windows, Unix 

related 

UPPAAL It stands for UPP (Uppsala 

University) +  AAL (Aalborg  

University). Uppaal is an 

integrated tool environment for 

modeling, validation and 

verification of real-time systems 

modeled as networks of timed 

automata. 

Automata Yes Windows, Unix 

related 

CADP Construction and Analysis of 

Distributed Processes (CADP) is 

a toolbox for the design of 

communication protocols and 

distributed systems 

C Yes Windows, Unix 

related 

Bandera Bandera tool set is used for 

model checking concurrent Java 

software 

Java Yes Windows, Unix 

related 

Cadence 

SMV 

SMV can be used as a learning 

tool to introduce the general 

principles of model checking and 

refinement verification. 

 

Extended SMV, 

Verilog 

Yes Windows, Unix 

related 

 47



 

Bogor Bogor is an extensible software 

model checking framework with 

state of the art software model 

checking algorithms, 

visualizations, and user interface 

BIR Yes Unix related 

 

 

  
 

 

 48



 

 

 

 

APPENDIX C 

 

PROGRAMS FOR CASE STUDY - POSTFIX CALCULATOR  

(STACK EXTENSION) 

 

This appendix contains the following six code listings showing the BIR representation of 
the Postfix Calculator system using stack extension, using array as stack, and the java 
classes that implement the stack extension.  
 
 
a) Algorithm for the Postfix Calculator 
b) Postfix Calculator using stack extension 
c) Postfix Calculator using array as stack 
d) MyStackModule.java  
e) MyIStackValue.java  
f) MyDefaultStackValue.java   
 
 
a) Algorithm for the Postfix Calculator: 
 
// Exp is a postfix expression of length n  
// Start 
//  for i = 1 to n begin  
//   if isoperand( Exp(i) )   

then push(value of Exp(i) ) 
//   else  
//       if isoperator( Exp(i) ) then begin  
//          op2 = pop  
//          op1 = pop  
//          and push result (note the order)  
//       end  
//   end  
//  x = pop  
//  return x  
// end.    
 
 
b) Postfix Calculator using stack extension 
 

system TestStackArray 
{ 
 

 49



 

 
 extension Stack for bogor.MyStack.myStackModule 
 {   
  typedef type<'a>;   
  expdef boolean isEmpty<'a>(Stack.type<'a>);  
  expdef Stack.type <'a> create <'a> ('a); 
  expdef int size<'a>(Stack.type<'a>);   
  expdef 'a getTop<'a>(Stack.type<'a>);   
  actiondef push<'a>(Stack.type<'a>, 'a);   
  actiondef pop<'a>(Stack.type<'a>); 
 }       
  
  
  
 Stack.type<int> resources; 
 boolean initialized; 
 int t; 
  

int[] Exp; 
int length; 
int c; 
int i; 
int result; 

  
 function GetExpression () 
 { 
  loc loc0: 
  do 
  { 
   Exp := new int[50]; 
   length := 3; 
   Exp[0]:= 2; Exp[1]:=3; Exp[2]:='+'; */   
  } 
  return; 
 } 
 
    
 main thread MAIN() 
 { 
  //read the Postfix Expression 
  loc loc0: live {} 
    invoke GetExpression()    
  goto loc1; 
   
  //create Stack using extensions 
  loc loc1: live{} 
  do 
  { 
  resources := Stack.create<int>(-1);  
  } 
  goto loc2; 
   
  //evaluate Postfix expression 
  loc loc2: live{} 
  invoke Evaluate()   
  return; 
 } 

 50



 

  
   
 function Evaluate() returns int 
 { 
  int op1; 
  int op2; 
   
  i := 0; 
  while i < length do 
   c:= Exp[i];  
   i := i + 1;     
   if (c == '*'||c == '+'||c == '/'||c == '-') do 
   //check if stack is empty 
   assert (!Stack.isEmpty<int>(resources)); 
 
   //pop two elements, operate and push the result 
   op2 := Stack.getTop<int>(resources); 
   Stack.pop<int>(resources); 
   op1 := Stack.getTop<int>(resources); 
   Stack.pop<int>(resources); 
    
   if (c == '*') do     
    result := op1 * op2; 
   end 
   if (c == '+') do     
    result := op1 + op2; 
   end 
   if (c == '/') do     
    result := op1 / op2; 
   end 
   if (c == '-') do     
    result := op1 - op2; 
   end    
   Stack.push<int>(resources, result);   
   else do 
   //push the element 
   Stack.push<int>(resources, c);   
  
   end //end of ‘if’ statement 
  end // end of ‘while do’ statement 
   
  return result; 
    
 }  
} 
 

c) Postfix Calculator using array as stack 
  

system PostfixCalc 
{ 

int[] Exp; 
int length; 
int[] Stack; 
int Top; 
int c; 
int result; 
int i; 

 51



 

 /*This function creates an expression */  
function CreateExp () 
{ 

  loc loc0: 
  do 
  { 
   Exp := new int[50]; 
   length := 3; 
   Exp[0]:= 2; Exp[1]:=3; Exp[2]:='+';  
  } 
  return; 

} 
     
 /*This function creates a stack of the given size */ 
    function Create (int size) 
    { 
     loc loc0: 
     do 
     { 
      Stack := new int[size]; 
      Top:= 0;       
     } 
     return;  
    } 
     
 /*This function pushes a given element into the stack */ 
    function Push (int element) 
    { 
     loc loc0: 
     do 
     { 
      Stack[Top] := element; 
      Top := Top + 1; 
     } 
     return; 
    } 
     
 /*This function pops the top elemnt of the stack*/ 
    function Pop () returns int 
    { 
     int TopElement; 
     loc loc0: 
     do 
     { 
      Top:= Top -1; 
      TopElement:= Stack[Top]; 
       
     } 
     return TopElement; 
    } 
      
      /*This function returns the top of the stack */ 
    function GetTop() returns int 
    { 
     int TopElement; 
     loc loc0: 
     do 

 52



 

     { 
      TopElement:= Stack[Top]; 
     } 
     return TopElement; 
    } 
     
 /*This function returns true value if the stack is empty*/ 
    function IsEmpty() returns boolean 
    { 
     boolean empty; 
     loc loc0: 
     do 
     { 
      empty := Top == 0; 
     } 
     return empty;  
    } 
 
 /*This function returns the size of the stack*/ 
    function Size() returns int 
    { 
     int size; 
     loc loc0: 
     do 
     { 
      size := Top + 1;  
     } 
     return size; 
    } 
 

active thread MAIN() 
 { 
  CreateExp(); 
  Create(50); 
  Evaluate(); 
  return; 
 } 
   
 /*This function evaluates the postfix expression*/ 

function Evaluate() returns int 
 { 
  i := 0; j:= 0;     
  while i < length do 
   c:= Exp[i];  
   i := i + 1;     
   if (c == '*'||c == '+'|| c == '/'||c == '-') do 
   OP();// := invoke Push() return; 
   else do 
   Push(c); 
   end 
  end 
 
  return result; 
 } 
  
 /*This function is invoked if an operand is encountered*/ 
 function OP() 

 53



 

 { 
  int op1; 
  int op2; 
  op2 := Pop(); 
  op1 := Pop(); 
  if (c == '*') do     
   result := op1 * op2; 
  end 
  if (c == '+') do     
   result := op1 + op2; 
  end 
  if (c == '/') do     
   result := op1 / op2; 
  end 
  if (c == '-') do     
   result := op1 - op2; 
  end  
  Push(result); 
  return; 

} 
   
} 

 
 
d) myStackModule.java 
 

package bogor.MyStack; 
 
import java.util.Map; 
import java.util.Properties; 
import edu.ksu.cis.projects.bogor.IBogorConfiguration; 
import edu.ksu.cis.projects.bogor.ast.Action; 
import edu.ksu.cis.projects.bogor.ast.Node; 
import edu.ksu.cis.projects.bogor.module.DefaultMessageStore; 
import 
edu.ksu.cis.projects.bogor.module.IBacktrackingInfoFactory; 
import edu.ksu.cis.projects.bogor.module.IExpEvaluator; 
import edu.ksu.cis.projects.bogor.module.IExtArguments; 
import edu.ksu.cis.projects.bogor.module.IMessageStore; 
import edu.ksu.cis.projects.bogor.module.IModule; 
import edu.ksu.cis.projects.bogor.module.ISchedulingStrategist; 
import 
edu.ksu.cis.projects.bogor.module.ISchedulingStrategyContext; 
import edu.ksu.cis.projects.bogor.module.ISchedulingStrategyInfo; 
import edu.ksu.cis.projects.bogor.module.IValueFactory; 
import 
edu.ksu.cis.projects.bogor.backtrack.IActionBacktrackingInfo; 
import 
edu.projects.bogor.backtrack.ITransformationBacktrackingInfo; 
import edu.ksu.cis.projects.bogor.module.state.IState; 
import 
edu.ksu.cis.projects.bogor.throwable.NullPointerBogorException; 
import edu.ksu.cis.projects.bogor.module.value.IIntValue; 
import edu.ksu.cis.projects.bogor.module.value.INullValue; 
import edu.ksu.cis.projects.bogor.module.value.IValue; 
import edu.ksu.cis.projects.bogor.type.NonPrimitiveExtType; 
import edu.ksu.cis.projects.bogor.type.TypeFactory; 

 54



 

import edu.ksu.cis.projects.bogor.type.Type; 
 
 
public class myStackModule implements IModule { 
 
 
    protected TypeFactory tf; 
 
    protected IExpEvaluator ee; 
 
    protected IValueFactory vf; 
 
    protected IBacktrackingInfoFactory bf; 
 
    protected ISchedulingStrategist ss; 
     
 public IMessageStore connect(IBogorConfiguration bc) { 
  tf = bc.getSymbolTable().getTypeFactory(); 
         ee = bc.getExpEvaluator(); 
         ss = bc.getSchedulingStrategist(); 
         vf = bc.getValueFactory(); 
         bf = bc.getBacktrackingInfoFactory(); 
         return new DefaultMessageStore(); 
 } 
 
 public String getCopyrightNotice() { 
  return null; 
 } 
 
 public IMessageStore setOptions 

(String arg0, Properties arg1) { 
  return new DefaultMessageStore(); 
 } 
 
 public void dispose() { 
  tf = null; 
         ee = null; 
         ss = null; 
         vf = null; 
         bf = null; 
 } 
 
 public myIStackValue create(IExtArguments arg) 
 { 
  Type stackType = arg.getExpType(); 
   
  myIStackValue result = new 

                           myDefaultStackValue(vf,(NonPrimitiveExtType) 
                                       stackType, vf.newReferenceId()); 

  return result; 
 }  
 

public IIntValue isEmpty(IExtArguments arg) 
     { 
        //gets the stack 
        if (arg.getArgument(0) instanceof INullValue) 
        { 

 55



 

            throw new NullPointerBogorException(); 
        } 
        myIStackValue stack = (myIStackValue) arg.getArgument(0); 
 
        //returns a boolean depending on emptiness 
        return getBooleanValue(stack.isEmpty()); 
     } 
 
     protected IIntValue getBooleanValue(boolean b) 
    { 
         return vf.newIntValue(tf.getBooleanType(), b ? 1 : 0); 
     } 
 public IValue getTop (IExtArguments arg) 
 { 
  //gets the Stack 
  if (arg.getArgument(0) instanceof INullValue) 
        { 
            throw new NullPointerBogorException(); 
        } 
  myIStackValue stack=myIStackValue)arg.getArgument(0); 
  IValue top_element = stack.getTop(); 
   
  return (top_element); 
 } 
  
 //push operation 
 public IActionBacktrackingInfo push (IExtArguments arg) 
 { 
  //gets the Stack 
  if (arg.getArgument(0) instanceof INullValue) 
         { 
            throw new NullPointerBogorException(); 
         } 
  myIStackValue stack= 

(myIStackValue)arg.getArgument(0); 
 
  //get the element to be pushed 
  IValue element = (IValue) arg.getArgument(1); 
  ISchedulingStrategyContext ssc = 

 arg.getSchedulingStrategyContext(); 
  stack.push(element); 
  //create the backtracking info 
  return new StackPushBacktrackingInfo( 
                arg.getContainingTransition(), 
                stack, 
                element, 
                arg.getNode(), 
                ssc.getStateId(), 
                ssc.getThreadId(), 
                arg.getSchedulingStrategyInfo()); 
     
 } 
 
 public IActionBacktrackingInfo pop (IExtArguments arg) 
 { 
  //get the Stack 
  if (arg.getArgument(0) instanceof INullValue) 

 56



 

         { 
            throw new NullPointerBogorException(); 
         } 
  myIStackValue stack=(myIStackValue) 

arg.getArgument(0); 
  ISchedulingStrategyContext ssc = 

 arg.getSchedulingStrategyContext(); 
   
  if (!stack.isEmpty()) 
  { 
   IValue element = (IValue)stack.pop();  
  
   return new StackPopBacktrackingInfo( 
                 arg.getContainingTransition(), 
                 stack, 
                 element, 
                 arg.getNode(), 
                 ssc.getStateId(), 
                 ssc.getThreadId(), 
                 arg.getSchedulingStrategyInfo()); 
  } 
  else 
  { 
  //Create no change BacktrackingInfo 
  return bf.createNoChangeBacktrackingInfo(arg 
                 .getContainingTransition(), (Action)  
    arg.getNode(), arg 
                 .getSchedulingStrategyInfo()); 
  } 
 } 
  
 public static interface IStackPushBacktrackingInfo 
        extends IActionBacktrackingInfo 
     { 
     } 
 
 public static interface IStackPopBacktrackingInfo 
    extends IActionBacktrackingInfo 
     { 
     } 
 
 protected static class StackPushBacktrackingInfo 
    implements IStackPushBacktrackingInfo 

{ 
     ITransformationBacktrackingInfo parent; 

 
      myIStackValue stack; 
 
      IValue element; 
 
      Node node; 
 
      int stateId; 
 
      int threadId; 
 
      ISchedulingStrategyInfo ssi; 

 57



 

    
      /** 
       * Public constructor 
       */ 
    public StackPushBacktrackingInfo( 
        final ITransformationBacktrackingInfo parent, 
        final myIStackValue stack, 
        final IValue element, 
        final Node node, 
        final int stateId, 
        final int threadId, 
        final ISchedulingStrategyInfo ssi) 
     { 
        this.parent = parent; 
        this.stack = stack; 
        this.element = element; 
        this.node = node; 
        this.stateId = stateId; 
        this.threadId = threadId; 
        this.ssi = ssi; 
     } 
 
     /** 
      * Cloning constructor 
      */ 
     private StackPushBacktrackingInfo() 
     { 
     } 
 
     public ITransformationBacktrackingInfo getParent() 
     { 
        return parent; 
     } 
 
     public Node getNode() 
     { 
        return node; 
     } 
 
     public ISchedulingStrategyInfo getSchedulingStrategyInfo() 
     { 
        return ssi; 
     } 
 
    public int getStateId() 
    { 
        return stateId; 
    } 
 
    public int getThreadId() 
    { 
        return threadId; 
    } 
 
    public void backtrack(IState state) 
    { 
     stack.pop(); 

 58



 

    } 
 
public IActionBacktrackingInfo clone(Map<Object, Object> 

 cloneMap) 
    { 

 StackPushBacktrackingInfo bi = (StackPushBacktrackingInfo) 
cloneMap 

            .get(this); 
 
        if (bi != null) 
        { 
            return bi; 
        } 
 
        bi = new StackPushBacktrackingInfo(); 
        cloneMap.put(this, bi); 
 
        bi.element = element.clone(cloneMap); 
        bi.node = node; 
        bi.parent = parent.clone(cloneMap); 
        bi.stack = stack.clone(cloneMap); 
        bi.ssi = ssi.clone(cloneMap); 
        bi.stateId = stateId; 
        bi.threadId = threadId; 
 
        return bi; 
     } 
 
     public void dispose() 
     { 
     } 
} 
 

protected static class StackPopBacktrackingInfo 
        implements IStackPopBacktrackingInfo 

{ 
      ITransformationBacktrackingInfo parent; 
 
      myIStackValue stack; 
 
      Node node; 
     
      IValue element; 
     
      int stateId; 
 
      int threadId; 
 
      ISchedulingStrategyInfo ssi; 
 
      /** 
       * Public constructor 
       */ 
     public StackPopBacktrackingInfo( 
        final ITransformationBacktrackingInfo parent, 
        final myIStackValue stack, 
        final IValue element, 

 59



 

        final Node node, 
        final int stateId, 
        final int threadId, 
        final ISchedulingStrategyInfo ssi) 
     { 
        this.parent = parent; 
        this.stack = stack; 
        this.element = element; 
        this.node = node; 
        this.stateId = stateId; 
        this.threadId = threadId; 
        this.ssi = ssi; 
     } 
 
    /** 
      * Cloning constructor 
      */ 
     private StackPopBacktrackingInfo() 
     { 
     } 
 
     public ITransformationBacktrackingInfo getParent() 
     { 
        return parent; 
     } 
 
     public Node getNode() 
     { 
       return node; 
     } 
 
     public ISchedulingStrategyInfo getSchedulingStrategyInfo() 
     { 
        return ssi; 
     } 
 
     public int getStateId() 
     { 
        return stateId; 
     } 
 
     public int getThreadId() 
     { 
        return threadId; 
     } 
 
     public void backtrack(IState state) 
     { 
        stack.push(element); 
     } 
 

public IActionBacktrackingInfo clone(Map<Object, Object> 
cloneMap) 

     { 
        StackPopBacktrackingInfo bi =  

(StackPopBacktrackingInfo) cloneMap 
            .get(this); 

 60



 

        if (bi != null) 
        { 
            return bi; 
        } 
        bi = new StackPopBacktrackingInfo(); 
        cloneMap.put(this, bi); 
        bi.element = element.clone(cloneMap); 
        bi.node = node; 
        bi.parent = parent.clone(cloneMap); 
        bi.stack = stack.clone(cloneMap); 
        bi.ssi = ssi.clone(cloneMap); 
        bi.stateId = stateId; 
        bi.threadId = threadId; 
        return bi; 
     } 
 
     public void dispose() 
     { 
     } 

} 
} 
 

e) myIStackValue.java 
 

 
package bogor.MyStack; 
 
import java.util.Map; 
import edu.ksu.cis.projects.bogor.value.INonPrimitiveExtValue; 
import edu.ksu.cis.projects.bogor.module.value.IValue; 
 
public interface myIStackValue 
extends INonPrimitiveExtValue 
{ 
  
    //push an element 
    void push(IValue v); 
 
    //pop an element 
    IValue pop(); 
     
    //determine whether this stack is empty 
    boolean isEmpty(); 
     
    //get the top element of this stack 
    IValue getTop(); 
     
    //determine the size of the stack 
    void size(); 
     
    // specialize return type of clone 
    myIStackValue clone(Map<Object, Object> cloneMap); 
} 

 
 
f) myDefaultStackValue.java 

 61



 

 
 

package bogor.MyStack; 
 
import java.util.Arrays; 
import java.util.Comparator; 
import java.util.LinkedList; 
import java.util.Map; 
import java.util.Set; 
import java.util.Stack; 
import edu.ksu.cis.projects.bogor.IBogorConfiguration; 
import edu.ksu.cis.projects.bogor.module.IValueFactory; 
import 
edu.ksu.cis.projects.bogor.module.value.INonPrimitiveValue; 
import edu.ksu.cis.projects.bogor.module.value.IValue; 
import edu.ksu.cis.projects.bogor.module.value.IValueComparator; 
import 
edu.ksu.cis.projects.bogor.module.value.IValueVisitorAction; 
import edu.ksu.cis.projects.bogor.type.NonPrimitiveExtType; 
import edu.ksu.cis.projects.bogor.type.Type; 
import edu.ksu.cis.projects.bogor.util.BitBuffer; 
import edu.ksu.cis.projects.bogor.util.Util; 
import edu.ksu.cis.projects.trove.custom.IntIntTable; 
import edu.ksu.cis.projects.trove.custom.ObjectIntTable; 
 
 
public class myDefaultStackValue implements myIStackValue { 
 
 protected IValueFactory vf; 
 
     protected NonPrimitiveExtType type; 
 
     protected int referenceId; 
     
 protected Stack<IValue> stack = new Stack<IValue>(); 
  
 //constructor 
 public myDefaultStackValue( 
         IValueFactory vf, 
         NonPrimitiveExtType type, 
         int referenceId) 
     { 
         this.vf = vf; 
         this.type = type; 
         this.referenceId = referenceId; 
     } 
 
  
 //push an element 
     public void push(IValue v) 
     { 
      stack.push(v); 
     } 
     
  //pop an element 
     public IValue pop() 
     { 

 62



 

      return stack.pop(); 
     } 
     
     //determine whether this stack is empty 
     public boolean isEmpty() 
     { 
      return stack.empty(); 
     } 
     
     //get the top element of this stack 
     public IValue getTop() 
     { 
      return stack.peek(); 
     } 
     
     public IValue[] elements() 
     { 
        IValue[] elements = stack.toArray(new 
IValue[stack.size()]); 
        orderValues(elements); 
 
        return elements; 
     } 
     
     
 public myIStackValue clone(Map<Object, Object> cloneMap) { 

  myDefaultStackValue result = 
(myDefaultStackValue) cloneMap.get(this); 

 
        if (result != null) 
        { 
            return result; 
        } 
 
        result = new myDefaultStackValue(vf, type, referenceId); 
        cloneMap.put(this, result); 
 
        for (IValue elem : stack) 
        { 
            result.push(elem); 
        } 
 
        return result; 
 } 
 
 public int getReferenceId() { 
  return referenceId; 
 } 
 
 public Type getType() { 

return type; 
 } 
 
 public int getTypeId() { 
  return type.getTypeId(); 
 } 
 

 63



 

 public void validate(IBogorConfiguration bc) { 
  type = (NonPrimitiveExtType) bc 
        .getSymbolTable() 
        .getTypeIdTypeTable() 
        .get(type.getTypeId()); 
 
     vf = bc.getValueFactory(); 

} 
 
 protected void orderValues(IValue[] values) 
     { 
        Arrays.sort(values, new Comparator<IValue>() 
            { 
                public int compare(IValue o1, IValue o2) 
                { 
                    return o1.compareTo(o2); 
                } 
 
                public boolean equals(Object obj) 
                { 
                    return this == obj; 
                } 
            }); 
     } 
  
 public void dispose() { 
  if (stack != null) 
         { 
             stack.clear(); 
             stack = null; 
         } 
 
         this.vf = null; 
 } 
 
 public int compareTo(IValue o) { 
  if (o == null) 
         { 
             throw new NullPointerException(); 
         } 
 
         // all IValue's are "less than" other objects 
         if (!(o instanceof IValue)) 
         { 
             return -1; 
         } 
 
         // compare based on type id 
         int typeComp = Util.compare 

(getTypeId(), ((IValue) o).getTypeId()); 
 
         if (typeComp != 0) 
         { 
             return typeComp; 
         } 
 

 64



 

         myDefaultStackValue other = (myDefaultStackValue) 
o; 
 
         return Util.compare 

(getReferenceId(), other.getReferenceId()); 
     } 
 
 public byte[][] linearize( 
         int bitsPerNonPrimitiveValue, 
         ObjectIntTable<INonPrimitiveValue> 

 nonPrimitiveValueIdMap, 
         int bitsPerThreadId, 
         IntIntTable threadOrderMap) 
     { 
         BitBuffer bb = new BitBuffer(); 
 
         IValue[] sortedElements = elements(); 
 
         vf.newVariedValueArray(sortedElements).linearize( 
             false, 
             bitsPerNonPrimitiveValue, 
             nonPrimitiveValueIdMap, 
             bitsPerThreadId, 
             threadOrderMap, 
             null, 
             bb); 
 
         return new byte[][] 
             { 
                 bb.toByteArray() 
             }; 
     } 
 
 public void visit(final IValueComparator vc, 
         boolean depthFirst, 
         Set<IValue> seen, 
         LinkedList<IValue> workList, 
         IValueVisitorAction vva) 
     { 
         IValue[] elements = elements(); 
 
         if (depthFirst) 
         { 
             for (int i = elements.length - 1; i >= 0; i--) 
             { 
                 workList.addFirst(elements[i]); 
             } 
         } 
         else 
         { 
             for (int i = 0; i < elements.length; i++) 
             { 
                 workList.add(elements[i]); 
             } 
         } 
     } 
 

 65



 

 public Field[] getFields() 
     { 
        int size = stack.size(); 
        Field[] result = new Field[size]; 
        int j = 0; 
 
        for (final IValue stackElem : stack) 
         { 
            result[j++] = new Field() 
                { 
                    public String getName() 
                    { 
                        return "element"; 
                    } 
 
                    public IValue getValue() 
                    { 
                        return stackElem; 
                    } 
                }; 
         } 
 
        return result; 
     } 
 
} 

 
  
 

 66



 

 

 

 

APPENDIX D 

 

PROGRAMS FOR CASE STUDY - RESOURCE ALLOCATION/DEALLOCATION 

(MULTISET EXTENSION) 

 
This appendix contains the following four code listings showing the BIR representation 
of the Resource Contention system and the java classes that implement the multiset 
extension.  
 
a) ResourceContension.bir 
b) MultisetModule.java 
c) IMultisetValue.java 
d) DefaultMultisetValue.java 
 
 
a) ResourceContension.bir 
 

system TestMultiset 
{ 
 extension Multiset for bogor.multiset.MultisetModule 
 { 
  typedef type <'a>; 
   
  expdef Multiset.type <'a> create <'a> ('a ...); 
   
  expdef boolean isEmpty <'a> (Multiset.type <'a>); 
   
  expdef 'a selectElement<'a>(Multiset.type<'a>); 
   
  expdef int frequency<'a>(Multiset.type<'a>, 'a); 
     
  actiondef add<'a>(Multiset.type<'a>, 'a); 
   
  actiondef remove<'a>(Multiset.type<'a>, 'a); 
   
 } 
   
 enum ResourceState { FREE, IN_USE } 
  
 record Resource { ResourceState state; } 
 
 record Disk extends Resource { } 
  

 67



 

 record Display extends Resource { } 
  
 Resource DISK; 
 Resource DISPLAY; 
  
  
 Multiset.type<Resource> resources; 
 main thread MAIN() 
 { 
  loc loc0: live {} 
   do 
   { 
    DISK := new Resource; 
    DISPLAY := new Resource; 
    Disk_f:=0; 
    Display_f:=0; 
    resources := Multiset.create<Resource> 

(DISPLAY, DISK,DISPLAY, DISK, DISK); 
    start Process(); 
    start Process(); 
     
   } 
   return; 
 } 
  
 thread Process() 
 { 
  loc loc0: live {} 
   invoke run() 
   return; 
 } 
  
 function run() 
 { 
  Resource resource; 
  loc loc0: live { resource } 
   when !Multiset.isEmpty<Resource>(resources) do 
   { 
    resource:= Multiset.selectElement 

<Resource>(resources); 
    Multiset.remove<Resource> 

(resources, resource); 
     
   } 
   goto loc2; 
    
  loc loc2: live { resource } 
   do 
   { 
    resource.state := ResourceState.IN_USE; 
   } 
   goto loc3; 
    
  loc loc3: live { resource } 
   do 
   { 
    resource.state := ResourceState.FREE; 

 68



 

   } 
   goto loc4; 
    
  loc loc4: live {} 
   do 
   { 
    Multiset.add<Resource> 

(resources, resource); 
   } 
   goto loc0; 
    
 } 
} 

 
b) MultisetModule.java 
 

package bogor.multiset; 
import java.util.Map; 
import java.util.Properties; 
import edu.ksu.cis.projects.bogor.IBogorConfiguration; 
import edu.ksu.cis.projects.bogor.ast.Action; 
import edu.ksu.cis.projects.bogor.ast.Node; 
import edu.ksu.cis.projects.bogor.module.DefaultMessageStore; 
import edu.ksu.cis.projects.bogor.module.IBacktrackingInfoFactory; 
import edu.ksu.cis.projects.bogor.module.IExpEvaluator; 
import edu.ksu.cis.projects.bogor.module.IExtArguments; 
import edu.ksu.cis.projects.bogor.module.IMessageStore; 
import edu.ksu.cis.projects.bogor.module.IModule; 
import edu.ksu.cis.projects.bogor.module.ISchedulingStrategist; 
import edu.ksu.cis.projects.bogor.module.ISchedulingStrategyContext; 
import edu.ksu.cis.projects.bogor.module.ISchedulingStrategyInfo; 
import edu.ksu.cis.projects.bogor.module.IValueFactory; 
import edu.ksu.cis.projects.bogor.backtrack.IActionBacktrackingInfo; 
import edu.projects.bogor.backtrack.ITransformationBacktrackingInfo; 
import edu.ksu.cis.projects.bogor.module.state.IState; 
import edu.ksu.projects.bogor.throwable.NullPointerBogorException; 
import edu.ksu.cis.projects.bogor.module.value.IIntValue; 
import edu.ksu.cis.projects.bogor.module.value.INullValue; 
import edu.ksu.cis.projects.bogor.module.value.IValue; 
import edu.ksu.cis.projects.bogor.type.NonPrimitiveExtType; 
import edu.ksu.cis.projects.bogor.type.Type; 
import edu.ksu.cis.projects.bogor.type.TypeFactory; 
 
public class MultisetModule implements IModule { 
 
//  ~ Instance variables 
  
    protected TypeFactory tf; 
 
    protected IExpEvaluator ee; 
 
    protected IValueFactory vf; 
 
    protected IBacktrackingInfoFactory bf; 
 
    protected ISchedulingStrategist ss; 
 

 69



 

  public IMessageStore connect(IBogorConfiguration bc) { 
      tf = bc.getSymbolTable().getTypeFactory(); 
        ee = bc.getExpEvaluator(); 
        ss = bc.getSchedulingStrategist(); 
        vf = bc.getValueFactory(); 
        bf = bc.getBacktrackingInfoFactory(); 
 
        return new DefaultMessageStore(); 
 } 
 
 public String getCopyrightNotice() { 
      return null; 
 } 
 
 public IMessageStore setOptions(String arg0, Properties arg1) { 
      return new DefaultMessageStore(); 
 } 
 
 public void dispose() { 
      tf = null; 
        ee = null; 
        ss = null; 
        vf = null; 
        bf = null; 
 } 
 
   public IMultisetValue create(IExtArguments arg) 
    { 
        Type multisetType = arg.getExpType(); 
 
        //build value object to be returned 
        IMultisetValue result = new DefaultMultisetValue( 
            vf, 
            (NonPrimitiveExtType) multisetType, 
            vf.newReferenceId()); 
 
        // add the arguments to the set 
        int size = arg.getArgumentCount(); 
 
        for (int i = 0; i < size; i++) 
        { 
            result.add(arg.getArgument(i)); 
        } 
 
        return result; 
    } 
 
    public IIntValue frequency(IExtArguments arg) 
    { 
        //gets the set 
        if (arg.getArgument(0) instanceof INullValue) 
        { 
            throw new NullPointerBogorException(); 
        } 
        IMultisetValue multiset = (IMultisetValue) 

arg.getArgument(0); 
        //get the element to be added 

 70



 

        IValue element = arg.getArgument(1); 
 
 
        //returns a boolean depending on the emptiness of the set 
        return multiset.count(element); 
    } 
     
 public IIntValue isEmpty(IExtArguments arg) 
    { 
        //gets the set 
        if (arg.getArgument(0) instanceof INullValue) 
        { 
            throw new NullPointerBogorException(); 
        } 
        IMultisetValue set = (IMultisetValue) arg.getArgument(0); 
        
 
        //returns a boolean depending on the emptiness of the set 
        return getBooleanValue(set.isEmpty()); 
    } 
 
 public IValue selectElement(IExtArguments arg) 
    { 
        //gets the elements of the set 
        if (arg.getArgument(0) instanceof INullValue) 
        { 
            throw new NullPointerBogorException(); 
        } 
        IMultisetValue multiset = (IMultisetValue) 

arg.getArgument(0); 
        IValue[] elements = multiset.elements(); 
 
        //ask the scheduler which one should be picked now 
        int index = ss.advise 
            (arg.getExtDesc(), arg.getNode(), elements, arg 
            .getSchedulingStrategyInfo()); 
 
        //returns the one picked by the scheduler 
        return elements[index]; 
    } 
     
    protected IIntValue getBooleanValue(boolean b) 
    { 
        return vf.newIntValue(tf.getBooleanType(), b ? 1 : 0); 
    } 
     
    public IActionBacktrackingInfo add(IExtArguments arg) 
    { 
        //get the multiset 
        if (arg.getArgument(0) instanceof INullValue) 
        { 
            throw new NullPointerBogorException(); 
        } 
        IMultisetValue multiset = (IMultisetValue)                   
                                  arg.getArgument(0); 
 
        // get the element to be added 

 71



 

        IValue element = arg.getArgument(1); 
 
        ISchedulingStrategyContext ssc= 
                     arg.getSchedulingStrategyContext(); 
 
        //add the element 
        multiset.add(element); 
 
        //create the backtracking infos 
        return new MultisetAdditionBacktrackingInfo(arg 
                .getContainingTransition(),  
                 multiset, element, arg.getNode(), ssc 
                .getStateId(), ssc.getThreadId(), arg 
                .getSchedulingStrategyInfo()); 
    } 
     
 public IActionBacktrackingInfo remove(IExtArguments arg) 
    { 
        //get the set 
        if (arg.getArgument(0) instanceof INullValue) 
        { 
            throw new NullPointerBogorException(); 
        } 
        IMultisetValue multiset = (IMultisetValue) 

arg.getArgument(0); 
 
        //get the element to be removed 
        IValue element = (IValue) arg.getArgument(1); 
 
        ISchedulingStrategyContext ssc = 
                                 arg.getSchedulingStrategyContext(); 
 
        if (multiset.contains(element)) 
        { 
            //remove the element 
            multiset.remove(element); 
 
            //create the backtracking information 
            return new MultisetRemovalBacktrackingInfo( 
                arg.getContainingTransition(), 
                multiset, 
                element, 
                arg.getNode(), 
                ssc.getStateId(), 
                ssc.getThreadId(), 
                arg.getSchedulingStrategyInfo()); 
        } 
        else 
        { 
          //do nothing, so create no change backtracking information 
            return bf.createNoChangeBacktrackingInfo(arg 
                .getContainingTransition(),  
                                 (Action) arg.getNode(), arg 
                .getSchedulingStrategyInfo()); 
        } 
    } 
 

 72



 

 
    public static interface IMultisetAdditionBacktrackingInfo 
    extends IActionBacktrackingInfo 
 { 
 } 
 
 public static interface IMultisetRemovalBacktrackingInfo 
    extends IActionBacktrackingInfo 
 { 
 } 
 
 protected static class MultisetAdditionBacktrackingInfo 
    implements IMultisetAdditionBacktrackingInfo 
 { 
    ITransformationBacktrackingInfo parent; 
 
    IMultisetValue multiset; 
 
    IValue element; 
 
    Node node; 
 
    int stateId; 
 
    int threadId; 
 
    ISchedulingStrategyInfo ssi; 
 
    /** 
     * Public constructor 
     */ 
    public MultisetAdditionBacktrackingInfo( 
        final ITransformationBacktrackingInfo parent, 
        final IMultisetValue multiset, 
        final IValue element, 
        final Node node, 
        final int stateId, 
        final int threadId, 
        final ISchedulingStrategyInfo ssi) 
    { 
        this.parent = parent; 
        this.multiset = multiset; 
        this.element = element; 
        this.node = node; 
        this.stateId = stateId; 
        this.threadId = threadId; 
        this.ssi = ssi; 
    } 
 
    /** 
     * Cloning constructor 
     */ 
    private MultisetAdditionBacktrackingInfo() 
    { 
    } 
 
    public ITransformationBacktrackingInfo getParent() 

 73



 

    { 
        return parent; 
    } 
 
    public Node getNode() 
    { 
        return node; 
    } 
 
    public ISchedulingStrategyInfo getSchedulingStrategyInfo() 
    { 
        return ssi; 
    } 
 
    public int getStateId() 
    { 
        return stateId; 
    } 
 
    public int getThreadId() 
    { 
        return threadId; 
    } 
 
    public void backtrack(IState state) 
    { 
        multiset.remove(element); 
    } 
 
    public IActionBacktrackingInfo clone(Map<Object, Object> 

cloneMap) 
    { 
        MultisetAdditionBacktrackingInfo bi = 

(MultisetAdditionBacktrackingInfo) cloneMap 
            .get(this); 
 
        if (bi != null) 
        { 
            return bi; 
        } 
 
        bi = new MultisetAdditionBacktrackingInfo(); 
        cloneMap.put(this, bi); 
 
        bi.element = element.clone(cloneMap); 
        bi.node = node; 
        bi.parent = parent.clone(cloneMap); 
        bi.multiset = multiset.clone(cloneMap); 
        bi.ssi = ssi.clone(cloneMap); 
        bi.stateId = stateId; 
        bi.threadId = threadId; 
 
        return bi; 
    } 
 
    public void dispose() 
    { 

 74



 

    } 
 } 
 
 protected static class MultisetRemovalBacktrackingInfo 
    implements IMultisetRemovalBacktrackingInfo 
 { 
    ITransformationBacktrackingInfo parent; 
 
    IMultisetValue multiset; 
 
    IValue element; 
 
    Node node; 
 
    int stateId; 
 
    int threadId; 
 
    ISchedulingStrategyInfo ssi; 
 
    /** 
     * Public constructor 
     */ 
    public MultisetRemovalBacktrackingInfo( 
        final ITransformationBacktrackingInfo parent, 
        final IMultisetValue multiset, 
        final IValue element, 
        final Node node, 
        final int stateId, 
        final int threadId, 
        final ISchedulingStrategyInfo ssi) 
    { 
        this.parent = parent; 
        this.multiset = multiset; 
        this.element = element; 
        this.node = node; 
        this.stateId = stateId; 
        this.threadId = threadId; 
        this.ssi = ssi; 
    } 
 
    /** 
     * Cloning constructor 
     */ 
    private MultisetRemovalBacktrackingInfo() 
    { 
    } 
 
    public ITransformationBacktrackingInfo getParent() 
    { 
        return parent; 
    } 
 
    public Node getNode() 
    { 
        return node; 
    } 

 75



 

 
    public ISchedulingStrategyInfo getSchedulingStrategyInfo() 
    { 
        return ssi; 
    } 
 
    public int getStateId() 
    { 
        return stateId; 
    } 
 
    public int getThreadId() 
    { 
        return threadId; 
    } 
 
    public void backtrack(IState state) 
    { 
        multiset.add(element); 
    } 
 
    public IActionBacktrackingInfo clone(Map<Object, Object> 

cloneMap) 
    { 
        MultisetRemovalBacktrackingInfo bi = 

(MultisetRemovalBacktrackingInfo) cloneMap 
            .get(this); 
 
        if (bi != null) 
        { 
            return bi; 
        } 
 
        bi = new MultisetRemovalBacktrackingInfo(); 
        cloneMap.put(this, bi); 
 
        bi.element = element.clone(cloneMap); 
        bi.node = node; 
        bi.parent = parent.clone(cloneMap); 
        bi.multiset = multiset.clone(cloneMap); 
        bi.ssi = ssi.clone(cloneMap); 
        bi.stateId = stateId; 
        bi.threadId = threadId; 
 
        return bi; 
    } 
 
    public void dispose() 
    { 
    } 
} 
     
 

 
c) IMultisetValue.java 
 

package bogor.multiset; 

 76



 

import java.util.Map; 
import edu.cis.projects.bogor.module.value.INonPrimitiveExtValue; 
import edu.ksu.cis.projects.bogor.module.value.IIntValue; 
import edu.ksu.cis.projects.bogor.module.value.IValue; 
public interface IMultisetValue  
extends INonPrimitiveExtValue { 
 
 // add an element 
    void add(IValue v); 
 
    // determine whether a value is a member of this set 
    boolean contains(IValue v); 
 
    IValue[] elements(); 
 
    // determine whether this set is empty 
    boolean isEmpty(); 
     
    //determine the frequency of the element 
    IIntValue count(IValue v); 
     
    // remove an element 
    void remove(IValue v); 
 
    // specialize return type of clone 
    IMultisetValue clone(Map<Object, Object> cloneMap); 
} 

 
 
d) DefaultMultisetValue.java 

 
package bogor.multiset; 
 
import java.util.Arrays; 
import java.util.Comparator; 
import java.util.HashSet; 
import java.util.HashMap; 
import java.util.LinkedList; 
import java.util.Map; 
import java.util.Iterator; 
import java.util.Collection; 
import java.util.Set; 
import edu.ksu.cis.projects.bogor.IBogorConfiguration; 
import edu.ksu.cis.projects.bogor.module.IValueFactory; 
import 
edu.ksu.cis.projects.bogor.module.value.INonPrimitiveValue; 
import edu.ksu.cis.projects.bogor.module.value.IValue; 
import edu.ksu.cis.projects.bogor.module.value.IIntValue; 
import edu.ksu.cis.projects.bogor.module.value.IValueComparator; 
import 
edu.ksu.cis.projects.bogor.module.value.IValueVisitorAction; 
import 
edu.ksu.cis.projects.bogor.value.INonPrimitiveExtValue.Field; 
import edu.ksu.cis.projects.bogor.type.NonPrimitiveExtType; 
import edu.ksu.cis.projects.bogor.type.Type; 
import edu.ksu.cis.projects.bogor.util.BitBuffer; 
import edu.ksu.cis.projects.bogor.util.Util; 

 77



 

import edu.ksu.cis.projects.trove.custom.IntIntTable; 
import edu.ksu.cis.projects.trove.custom.ObjectIntTable; 
 
public class DefaultMultisetValue implements IMultisetValue 
{ 
   protected IValueFactory vf; 
   protected NonPrimitiveExtType type; 
   protected int referenceId; 
   protected Map<IValue,IIntValue> multiset = new  
   HashMap<IValue,IIntValue>(); 
     
public DefaultMultisetValue(IValueFactory vf, 
                  NonPrimitiveExtType type,int referenceId) 
{ 
       this.vf = vf; 
       this.type = type; 
       this.referenceId = referenceId; 
} 
   // add an element 
    public void add(IValue v) 
    { 
    if (!contains(v)) 
        { 
            multiset.put(v,vf.newIntValue(1)); 
        } 
        else 
        { 
            IIntValue val = multiset.get(v); 
            int prev = val.getInteger(); 
            int cur = prev + 1; 
            multiset.put(v, vf.newIntValue(cur)); 
        } 
 
    } 
 
    // determine whether a value is a member of this set 
    public boolean contains(IValue v) 
    { 
       return multiset.containsKey(v); 
    } 
 
    //detemine the frequency 
    public IIntValue count(IValue v) 
    { 
     
       if (!contains(v)) 
         { 
             return vf.newIntValue(0); 
         } 
         IIntValue val = multiset.get(v); 
         return val; 
    } 
     
    public IValue[] elements() 
    { 
    Set<IValue> set = multiset.keySet(); 
    IValue[] elements = set.toArray(new IValue[multiset.size()]); 

 78



 

    return elements; 
   } 
 
    // determine whether this set is empty 
    public boolean isEmpty() 
    { 
     return multiset.isEmpty(); 
    } 
 
    // remove an element 
    public void remove(IValue v) 
    { 
         IIntValue val = multiset.get(v); 
         int prev = val.getInteger(); 
         int cur = prev - 1; 
         if (cur >= 1) 
         { 
             multiset.put(v, vf.newIntValue(cur)); 
         } 
         else 
         { 
             multiset.remove(v); 
         } 
          
    } 
 
    public IMultisetValue clone(Map<Object, Object> cloneMap) 
    { 
        DefaultMultisetValue result = 
               (DefaultMultisetValue) cloneMap.get(this); 
 
        if (result != null) 
        { 
            return result; 
        } 
 
        Collection val = multiset.values(); 
        result = new DefaultMultisetValue(vf, type, referenceId); 
        cloneMap.put(this, result); 
 
        for (Iterator i=val.iterator(); i.hasNext( ); )  
        {  
          IValue element = (IValue)i.next( );  
          result.add(element); 
        } 
        return result; 
    } 
     
    public void dispose() 
    { 
        if (multiset != null) 
        { 
        multiset.clear(); 
            multiset = null; 
        } 
 
        this.vf = null; 

 79



 

    } 
 
    public int getReferenceId() 
    { 
        return referenceId; 
    } 
 
    public Type getType() 
    { 
        return type; 
    } 
 
    public int getTypeId() 
    { 
        return type.getTypeId(); 
    } 
 
    public byte[][] linearize( 
            int bitsPerNonPrimitiveValue, 
            ObjectIntTable<INonPrimitiveValue>   
            nonPrimitiveValueIdMap, 
            int bitsPerThreadId, 
            IntIntTable threadOrderMap) 
        { 
            BitBuffer bb = new BitBuffer(); 
 
            IValue[] sortedElements = elements(); 
 
            vf.newVariedValueArray(sortedElements).linearize( 
                false, 
                bitsPerNonPrimitiveValue, 
                nonPrimitiveValueIdMap, 
                bitsPerThreadId, 
                threadOrderMap, 
                null, 
                bb); 
 
            return new byte[][] 
                { 
                    bb.toByteArray() 
                }; 
        } 
     
    public void visit( 
            final IValueComparator vc, 
            boolean depthFirst, 
            Set<IValue> seen, 
            LinkedList<IValue> workList, 
            IValueVisitorAction vva) 
        { 
            IValue[] elements = elements(); 
 
            if (depthFirst) 
            { 
                for (int i = elements.length - 1; i >= 0; i--) 
                { 
                    workList.addFirst(elements[i]); 

 80



 

                } 
            } 
            else 
            { 
                for (int i = 0; i < elements.length; i++) 
                { 
                    workList.add(elements[i]); 
                } 
            } 
        } 
 
    public void validate(IBogorConfiguration bc) 
    { 
        type = (NonPrimitiveExtType) bc 
            .getSymbolTable() 
            .getTypeIdTypeTable() 
            .get(type.getTypeId()); 
 
        vf = bc.getValueFactory(); 
    } 
 
   public Field[] getFields() 
    { 
        
    Set<Map.Entry<IValue, IIntValue>> set1 = multiset.entrySet(); 
    int size = set1.size(); 
         Field[] result = new Field[size]; 
         int j = 0; 
 
         for (final Map.Entry<IValue, IIntValue> setElem : set1) 
         { 
             result[j++] = new Field() 
                 { 
                     public String getName() 
                     { 
                         return "element"; 
                     } 
 
                     public IValue getValue() 
                     { 
                         return setElem.getKey(); 
                     } 
                 }; 
         } 
 
         return result; 
     
    } 
 
    public int hashCode() 
    { 
        return getReferenceId(); 
    } 
     
    public int compareTo(IValue o) 
    { 
        if (o == null) 

 81



 

        { 
            throw new NullPointerException(); 
        } 
 
        // all IValue's are "less than" other objects 
        if (!(o instanceof IValue)) 
        { 
            return -1; 
        } 
 
        // compare based on type id 
        int typeComp = Util.compare 
              (getTypeId(), ((IValue) o).getTypeId()); 
 
        if (typeComp != 0) 
        { 
            return typeComp; 
        } 
        DefaultMultisetValue other = (DefaultMultisetValue) o; 
 
        return Util.compare(getReferenceId(), 
other.getReferenceId()); 
    } 
}

 82



 
 
 

VITA 
 

Minal Wad 
 

Candidate for the Degree of 
 

Master of Science 
 
 
Thesis: EXPLORING DOMAIN SPECIFIC APPROACHES TO 

SOFTWARE MODEL CHECKING 
 
Major Field:  Computer Science 
 
Biographical: 
 

Personal Data: Born in India on June 8, 1981, daughter of Vishweshwar 
Mahadeo Wad and Pournima Wad. 

 
Education: Received Bachelor of Science Degree in Computer Engineering 

from Mumbai University in June 2004; completed the requirements for 
the Degree of Master of Science at the Computer Science Department at 
Oklahoma State University in December 2006. 

 
Experience: Employed at Motorola, Inc. as an intern from May 2005 to August 

2005 and from May 2006 to August 2006; graduate research assistant 
and teaching assistant at the Computer Science Department of Oklahoma 
State University from August 2004 to December 2006. 

  



Name: Minal Wad                              Date of Degree: December 2006 
 
Institution: Oklahoma State University                      Location: Stillwater, Oklahoma 
 
Title of Study: EXPLORING DOMAIN SPECIFIC APPROACHES TO SOFTWARE 

MODEL CHECKING 
 
Pages in Study: 82                       Candidate for the Degree of Master of Science 

Major Field: Computer Science 
 
Scope and Method of Study: Model checking has proven to be an effective technology 

for verification and debugging in hardware domains and more recently in 
software domains. The major challenges in the application of model checking to 
software systems are: the mapping of software executables to model checker’s 
input language and the intrinsic complexity of the ever growing software systems. 
This thesis explores the domain specific model checking approaches to large 
systems in order to optimize the state space storage for specific domains. Bogor 
[Bogor 2003] is an extensible, customizable, and highly modular model checking 
framework that supports general as well as domain specific software model 
checking. As a part of the thesis, domain specific extensions to Bogor’s input 
language, called Bandera Intermediate Representation (BIR), were implemented 
by providing a plugin for Eclipse [Eclipse 2004]. Eclipse is a universal platform 
for tool integration and its plugin development environment facilitates addition of 
new plugins to the existing ones. Eclipse’s extension mechanism is exploited by 
Bogor. Bogor was installed as an Eclipse plugin and with the help of Eclipse’s 
Plugin Development Environment (PDE), new data types were integrated with the 
existing Bogor framework. 

 
Findings and Conclusions: Two case studies (‘postfix calculator’ using stack extension 

and ‘resource allocation’ using multiset extension) were investigated. Various 
metrics such as number of states, transitions, and maximum depth were analyzed. 
The complexity of the test cases was increased gradually to test the extensions for 
feasibility and scalability. The thesis also involves a comprehensive study of some 
of the well-known model checkers and their features, degree of automation, and 
input languages. It was observed that customizing the model checker as per 
domain specifications helped in achieving space reduction.  The space reduction 
is prominent, especially in large domains where it contributes towards state space 
explosion solution. Although development of extensions is achievable, it requires 
a working knowledge of Eclipse and specific knowledge of model checking. In 
conclusion, a domain specific approach for software model checking was 
demonstrated to be a promising technology. Language extensions to BIR were 
successfully built and tested for accuracy and scalability.   

 
 
ADVISER’S APPROVAL: M. H. Samadzadeh   


