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CHAPTER I 
 

 

INTRODUCTION 

 

 Millions of people around the world are affected by diarrheal diseases 

every year.  Shigella flexneri is a gram-negative facultative anaerobic bacillus 

that is the causative agent of shigellosis, a severe form of bacillary dysentery.  

The largest number of cases are found in developing countries due to endemic 

infections by Shigella spp, however, approximately 14,000 cases a year are 

reported in the United States to the Centers for Disease Control and Prevention 

(http://www.cdc.gov/nczved/dfbmd/disease_listing/shigellosis_gi.html).  This 

number is thought to be significantly underestimated, and the actual number may 

be as much as twenty times more since infections with Shigella spp. not required 

to be reported and there are many undiagnosed cases 

(http://www.cdc.gov/nczved/dfbmd/disease_listing/shigellosis_gi.html).  The large 

number of people affected around the world, the many deaths it is responsible for 

and the emergence of antibiotic drug resistant strains have led to increased 

interest in a possible vaccine for Shigella flexneri. 

 



 

2 
 

Historical Review 

 Kiyoshi Shiga was the first to characterize the etiological agent of bacillary 

dysentery while studying the sekiri (dysentery) outbreaks in Japan in 1897 

(Shiga, 1897). While working at the Institute of Infectious Diseases in Japan, he 

isolated bacilli from the stools of thirty-six dysentery patients under observation 

(Shiga, 1897).  This bacillus was gram-negative, a dextrose fermenter, had a 

negative indole reaction and was unable to form acid from mannitol (Niyogi, 

2005).  He found this bacillus also caused diarrhea when it was subcultured and 

fed to dogs (Niyogi, 2005).  While continuing to characterize the organism, Shiga 

first named it Bacillus dysenteriae (Shiga, 1906).  Soon after Shiga’s initial 

observation of Bacillus dysenteriae, other investigators were working to 

characterize this newly discovered organism.  Several of these investigators 

discovered organisms morphologically and biochemically similar to the Bacillus 

dysenteriae reported by Shiga that caused similar disease in patients (Flexner, 

1900) (Kruse, 1900). 

 During the next forty years, the genus Shigella grew to include three 

additional groups of related organisms, S. flexneri, S. boydii, and S. sonnei along 

with S. dysenteria, all named in honor of their lead workers, Flexner, Boyd, 

Sonne and Shiga (Hale, 1991).  The genus Shigella was first named in the 1930 

edition of Bergey’s Manual of Determinative Bacteriology, but was officially 

adopted by the 1952 Congress of the International Association of Microbiologists 

(Shigella Commission) (Niyogi, 2005).  The bacteria Shiga initially discovered 

became known as Shigella dysenteriae type 1 (http://www.about-shigella.com/).  
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The genus Shigella currently includes the four species previously named and 

belongs to the family Enterobacteriaceae.  Biochemical and serological 

differences are the basis of the classification of the four species, with each 

composing a different serogroup, A, B, C and D (Niyogi, 2005). 

 Beginning in the 1950’s, shigellae investigators shifted their focus to 

determining the mechanism of virulence.  The host range of Shigella is small, 

consisting of humans and other higher primates; however, in the 1950s animal 

model was discovered when the corneal epithelium of guinea pigs were infected 

with Shigella spp. (Sereńy test) (Sereńy, 1957).  Not long after in the early 1960s, 

Shigella spp. were shown to possess the ability to grow in cultured mammalian 

cells (Gerber and Watkins, 1961). 

 Into the 1960s, many researchers believed the release of toxins by 

shigellae when adhered to the surface of intestinal epithelial cells was its main 

source of pathogenicity (Watkins, 1960).  However, work done by LaBrec et al. 

established that shigellosis required the invasion of the colonic epithelium 

(LaBrec et al., 1964).  They observed that ulceration and penetration of the 

epithelial cells of the colon and lamina propia resulted when guinea pigs were fed 

virulent strains of S. flexneri (LaBrec et al., 1964). 

 In the 1980s, Sansonetti and his colleagues discovered that a large 

plasmid was the genetic basis for the pathogensis of the shigellae (Sansonetti, 

1981). They showed that a loss of this plasmid made the organism unable to 

invade cultured mammalian cells or induce keratoconjunctivitis, inflammation of 

cornea and conjunctiva, in guinea pigs (Sansonetti, 1981) (Sansonetti, 1982).  
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This large, 200-kb plasmid has been shown to contain the necessary genes 

required for invasion by Shigella and it has been found in all four species 

(Buchrieser et al., 2000).  Currently, many Shigella researchers are focused on 

the characterization of this large plasmid to better understand the genes it 

contains and the proteins it encodes. 

 

Epidemiology and Pathology 

 Shigellosis is a common disease of humans with infection mostly limited to 

the intestinal mucosa (Niyogi, 2005).  Its symptoms include watery diarrhea with 

mucus, fever, malaise, and abdominal cramping (Niyogi, 2005).  Ulceration of the 

mucosa may also result in bloody mucoid stools and/or fembrile diarrhea (Niyogi, 

2005).  The species and the number of organisms ingested determine the 

severity and range of symptoms expressed by an infected person.  It has been 

shown that persons with conditions such as septicemia, bacteremia, dehydration, 

hypoglycemia, uremic and hemolytic syndrome, and toxic megacolon can lead to 

additional complications if they become infected with Shigella spp. (Phalipon and 

Sansonetti, 2007).   

 Worldwide there are more than 164 million cases of shigellosis every year, 

99% of which are in developing countries 

(www.who.int/vaccine_research/disease/shigella/en/).  More than one million of 

these 164 million cases result in death 

(www.who.int/vaccine_research/disease/shigella/en/).  Children under five are at 

the highest risk of fatality because of complications resulting from malnutrition 
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and dehydration, accounting for 61% of all deaths from shigellosis and 69% of 

the total number of Shigella flexneri infections 

(www.who.int/vaccine_research/disease/shigella/en/).  S. flexneri is found most 

commonly in underdeveloped countries while S. sonnei is usually found in 

developed countries (Niyogi, 2005).  S. dysenteriae outbreaks can be found in 

both (Niyogi, 2005).  The fourth species, S. boydii, is rarely found outside the 

Indian subcontinent (Niyogi, 2005). 

 Shigella infections are primarily transmitted though the fecal-oral route 

(DuPont, 1989).  With conditions such as contaminated or uncooked food, water 

supplies contaminated with sewage, poor hygienic practices, and overcrowding 

contribute to epidemics (DuPont, 1989).  Outbreaks that occur in the United 

States and Europe affect certain groups of people more often than others 

(Niyogi, 2005).  Those at higher risk include children in day-care centers, migrant 

workers, travelers to developing countries, workers of custodial institutions and 

homosexual men (Niyogi, 2005).  In the United States S. sonnei is found three 

times more often than S. flexneri but S. flexneri is the species usually found in 

infected homosexual men (Niyogi, 2005).  When associated with human 

immunodeficiency virus (HIV) or acquired immune deficiency syndrome (AIDS), 

S. flexneri can lead to complications including persistent or recurrent intestinal 

disease and bacteremia (Niyogi, 2005).  S. flexneri is commonly associated with 

these infections in developing countries, while epidemic outbreaks are usually 

attributed to S. dysenteriae.  Most fatal cases of shigellosis are the result of 

infection by S. dysenteriae and the production of an efficacious exotoxin (Shiga 
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toxin) (O’Brien et al., 1980).  It is a potent cytotoxin responsible for intestinal 

symptomatology and other major systemic complications, including Hemolytic 

Uremic Sydnrome (HUS) (Phalipon et al., 2008). 

 Shigella flexneri enters a host orally, making its way to the large intestine 

where it invades the colonic epithelium after passing through the upper digestive 

system.  The bacterium easily survives passing through the upper digestive tract 

and small intestine into the colon due to its high acid tolerance (Sur, 2004).  It 

has been shown that Shigella spp. are able to promote their own invasion of the 

colonic epithelium by down regulating certain antimicrobial peptides that are 

released in the gastrointestinal tract, thereby decreasing the host’s innate 

immune response (Islam et al., 2001).  During invasion of the intestinal 

epithelium, Shigella spp. must reach the basolateral side of the epithelial cell 

before they can initiate cell invasion, as they are unable to infect via the apical 

face (Schroeder and Hilbi, 2008).  Once in the large intestine, microfold cells (M 

cells) in the colon ingest S. flexneri in vacuoles via macropinocytosis (Niyogi, 

2005) (Owen, 1986).  It then escapes the vacuole into the cytosol, traveling to 

macrophages associated with M cell-associated lymphoid follicles (Sansonetti et 

al., 1996).  S. flexneri is exposed to the resident macrophage, whose job it is to 

engulf and degrade any incoming material, after being transcytosed into an 

intraepithelial pocket by M cells (Schroeder and Hilbi, 2008).   

 After transcytosis to the intraepithelial pocket and engulfment by 

macrophages, S.flexneri begins initiating apoptosis of those macrophages, via a 

caspase1-dependent pathway, leading to release of  the proinflammatory 
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cytokines interleukin-1β (IL-1β) and IL-18 (Schroeder and Hilbi, 2008) 

(Sansonetti, 2000).  IL-1β is responsible for triggering the major inflammation 

shigellosis causes in the lower intestine; however both cytokines activate acute 

and inflammatory responses (Schroeder and Hilbi, 2008) (Sansonetti, 2000).  IL-

18’s role is not fully understood but it is known that it increases the innate 

immune response by activating natural killer cells and promoting gamma 

interferon production (Schroeder and Hilbi, 2008) (Sansonetti, 2000).  The 

inflammation caused by the infection leads to recruitment of IL-8, which then 

recruits polymorphonuclear leukocytes (PMN) that allow more bacteria to bypass 

the M cells to reach the submucosa via destabilization of the epithelial lining 

(Schroeder and Hilbi, 2008) (Sansonetti, 2000).  S. flexneri also alters the protein 

composition of the tight junctions of epithelial cells to loosen them (Schroeder 

and Hilbi, 2008).  This combination of effects initially facilitates the invasion, 

causing the bloody diarrhea S. flexneri is well known for, until the immune system 

takes over and begins killing the bacteria (Schroeder and Hilbi, 2008). 

 After crossing the epithelial barrier of the colon, S. flexneri can then induce 

its own ingestion by the colonic epithelial cells and it can begin using actin based 

motility (ABM) to move through the cytoplasm to promote entry into neighboring 

epithelial cells laterally (Mounier et al., 1992).  This further contributes to the 

inflammatory process.  Ultimately, the symptoms attributed to shigellosis, 

inflammation and ulceration of the mucosa in the colon, however, are the result 

of the response to infection by the host’s immune system (Wassef et al., 1989) 

(Islam et al., 1997). 
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Invasion via the Basolateral Face 

 After killing subepithelial macrophages, shigellae invade colonic epithelial 

cells from their basolateral face (Sansonetti et al., 1986).  Once inside these 

cells, shigellae must escape from the phagosome into the cytoplasm before they 

can begin replicating and spreading to adjacent colonic epithelial cells 

(Sansonetti et al., 1986).  It was shown that the loss of the 31-kb entry region in 

S. flexneri strains leads to the loss of invasiveness and the ability to escape the 

phagosome.  These functions can be restored by complementation with the 

Sallmonella enteric serovar Typhimurium Sallmonella pathogencity island-1 (SPI-

1) (Paetzold et al., 2007).  Due to the homology of the genes contained in SPI-1 

to the genes on the large virulence plasmid of S. flexneri, complementation is not 

surprising (Paetzold et al., 2007).  One major difference between these two 

bacteria (S. typhimurium and S. flexneri) is that the former can replicate inside 

the phagosome while the latter must escape before it can begin replication 

(Tekouchi, 1967) (Sansonetti et al., 1986).  Complimentation by SPI-1 returns the 

ability to invade and escape the phagosome, even if the 31-kb region is missing 

(Paetzold et al., 2007).  If the entire plasmid is missing, complementation with 

SPI-1 only allows S. flexneri to invade a host cell, but does not restore the ability 

to escape the phagosome (Paetzold et al., 2007).  This suggests that the genes 

required for S. flexneri to escape the phagosome are contained on the virulence 

plasmid but not in the 31-kb entry region (Paetzold et al., 2007).   
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 To induce cytoskeletal rearrangement and phagocytosis into the host cell, 

additional TTSS effectors are secreted by Shigella spp. after the formation and 

insertion of a “translocon pore” into the host cell’s cytoplasmic membrane 

(Menard et al., 1994) (Watarai et al., 1995) (Menard et al., 1996) (Blocker et al., 

1999).  The pathways by which these interactions occur are not fully understood.  

There are five effector proteins most commonly studied with regard to the 

induction of phagocytosis by the host cell, IpaA, IpgB1, IpgB2, IpaC and IpgD.  

IpaA is able to depolymerize actin, and IpgB1 and IpgB2 are able to induce 

membrane ruffling by mimicking RhoG and RhoA, respectively (Alto et al., 2006) 

(Handa et al., 2007).  IpaC has been proposed to interact with Cdc42 and to 

nucleate actin (Terry et al., 2008) (Tran Van Nhieu et al., 1999).  The last of the 

commonly studied effectors is IpgD which is described as a phosphoinositide 4-

phosphate that has the ability to hydrolyze phosphatidylinositol-4,5-biphosphate 

[PtdIna(4,5)P2], thereby disassociating the cytoskeleton from the plasma 

membrane (Hilbi, 2006) (Niebuhr et al., 2002). 

 After S. flexneri escapes the phagosome, it can begin its lateral spread 

through the colonic epithelium.  While S. flexneri is a non-motile bacterium, it can 

use actin-based motility to move within the cytoplasm of the host cell.  The actin 

polymerization is controlled by IcsA (intracellular spread) which localizes to the 

old pole after cell division (Purdy, 2007).  IcsA (also know as VirG) is able to 

interact with host cell N-WASP and Arp2/Arp3, with the help of IcsP and PhoN2, 

which allows the nucleation of actin and movement throughout the cytoplasm 

(Purdy, 2007).  To make a path for S. flexneri movement, another protein, VirA, 
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works at the opposite pole to depolymerize α-tubulin, allowing the bacterium to 

pass through the host cell’s thick intracellular microtubular network (Yoshida et 

al., 2006). 

 The goal of Shigella flexneri is to enter a cell, replicate, then enter another 

cell, replicate, and so on, continuing its lateral spread throughout the colonic 

epithelium.  S. flexneri needs to reach the host cell cytoplasm to replicate and to 

protect itself from the extracellular immune system components (Schroeder and 

Hilbi, 2008).  The replicative niche of S. flexneri is the cytoplasm of epithelial cells 

(Schroeder and Hilbi, 2008).  Once it escapes the vacuole into the cytoplasm it 

must protect itself from intracellular defense autophagy using IcsB to mask IcsA, 

which contains an autophagy-inducing recognition site (Schroeder and Hilbi, 

2008).  Using actin based motility, S. flexneri moves to the tight junctions 

between the host epithelial cells where it can be taken up by the adjoining 

epithelial cell where it resides inside of a double-membrane vacuole (Schroeder 

and Hilbi, 2008).  It then escapes into the new cell’s cytoplasm by lysing the 

vacuole using the TTSS to secrete various effectors.  It then begins the process 

of replication and further lateral spread through the colonic epithelium (Figures 

1.1 and 1.2). 

 

Pathogenic Shigellae 

 Shigella spp. belong to the family Enterobacteriaceae and are closely 

related to members of the genus Escherichia (Kreig and Holt, 1984).  Shigellae  
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Figure 1.1 Schematic of Shigella flexneri Infection 
Shigella flexneri is ingested by the M cells of the colon, exposed to the resident 
macrophages inducing their apoptosis, then moves through the cell to the basal 
face.  It then uses the TTSS to induce its own uptake into the cell where it can 
escape the vacuole into the cytoplasm.  Once in the cytoplasm it can replicate 
and use propulsion from actin polymerization to spread to adjacent epithelial 
cells. (http://www.utmb.edu/gsbs/microbook/ch022.htm) 
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Figure 1.2 Intracellular Movement of Shigella flexneri 
Shigella flexneri utilizes IcsA to form an actin tail allowing it to move throughout 
the cytoplasm and VirA to degrade microtubules allowing the bacteria to 
penetrate the adjoining epithelial cell.  (Schroeder and Hilbi, 2008) 
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are gram-negative gastrointestinal pathogens that cause disease in humans and 

higher primates, as do the other pathogens in its family including Salmonella, 

Yersina, and Escherichia (DuPont et al., 1989).  Similar to its family members, 

these bacteria are facultatively anaerobic, oxidase negative, and they have the 

ability to reduce nitrate and ferment glucose (Kreig and Holt, 1984).  Testing for 

ornithine decarboxylation and manitol and xylose fermentation allows for 

biochemical differentiation between the species (Kreig and Holt, 1984).  Also, the 

species can be differentiated serologically based on the species-specific O-

antigen components that each contains (Kreig and Holt, 1984).  There are four 

serotypes A, B, C and D belonging to the four species S. dysenteriae, S. flexneri, 

S. boydii and S. sonnei, respectively (Niyogi, 2005).   

 Shigella spp. require very few organisms, approximately 10-100, to elicit 

the disease shigellosis, making it extremely infectious and easily spread (DuPont 

et al., 1989).  Poor sanitation and contaminated food or water sources are 

usually the cause of outbreaks of shigellosis.  Infected people who display the 

symptom of diarrhea are most responsible for transmission of the disease 

(Niyogi, 2005).  Shigellosis is usually self-limiting with symptoms lasting five to 

seven days and it can be treated orally with antibiotics (Hueck, 1998).  However, 

infected patients can spread the disease as long as they are excreting the 

organism which can last up to four weeks (Sur, 2004).  This length of time can be 

reduced if properly treated with antibiotics (Sur, 2004). 

 Today, treatment consists mainly of oral antibiotics, including quinolones, 

levofloxacin or norfloxacin and the macrolide azithromycin, but the number of 
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effective antibiotics available for use is constantly decreasing due to the 

emergence of new antibiotic resistant strains (Niyogi, 2005).  Worldwide, strains 

of shigellae have emerged that are resistant to many antibiotics including 

tetracycline, sulfonamides, ampicillin and trimethoprim-sulfamethoxazole (Hueck, 

1998).  To avoid dehydration, an infected person should consume electrolyte 

drinks to replace fluids and restore nutrients lost from diarrhea during treatment 

for shigellosis along with proper antibiotic treatment for the disease 

(http://www.nlm.nih.gov/medlineplus/ency/article/000295.htm). 

 

Genetics of Virulence  

 All Shigella spp. contain a large virulence plasmid.  The genes it encodes, 

along with the genes encoded on the pathogenicity islands located in its 

chromosome, are the basis for shigellae virulence (Schroeder and Hilbi, 2008).  

Virulence factors including antibiotic resistance, iron acquisition and proteases 

can be found encoded on the pathogenicity islands (Schroeder and Hilbi, 2008).  

All the genes for cellular invasion are contained on the large virulence plasmid, 

the most important aspect of shigellae virulence.  This large plasmid is about 

200-kb with approximately 100 genes, but it can vary in size among the four 

species (Maurelli et al., 1985) (Yoshikawa et al., 1988).  The virulence plasmid 

contains genes necessary for the uptake by epithelial cells and dissemination of 

the bacteria throughout the colonic epithelium (Wantanabe, 1990).  The entry 

region of the virulence plasmid, 31-kb in size, encodes a type III secretion system 

(TTSS) that facilitates cellular uptake (Schroeder and Hilbi, 2008).  The plasmid 
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contains other genes that encode proteins used after invasion of a host cell 

(Sansonetti, 1982) (Yoshikawa et al., 1988).  Contained in the 31-kb entry region 

are the mxi-spa operon and ipa-ipg operon which are responsible for encoding 

the type III secretion apparatus (TTSA) and the type III secreted protein 

effectors/translocators IpaA, IpaB, IpaC, IpaD and the molecular chaperone IpgC 

(Espina et al., 2006).  Research has shown that if shigellae lose this large 

plasmid they cannot infect and cause disease (Yoshikawa et al., 1988).   It has 

also been shown that non-pathogenic lab strains of E. coli can become invasive 

after receiving the Shigella virulence plasmid (Sansonetti, 1982). 

 The genes in the entry region can be differentiated into four categories 

based upon their specific functions (Schroeder and Hilbi, 2008).  Proteins 

secreted by the TTSA comprise the first category.  They are mainly the ipa 

(invasion plasmid antigen) genes, whose functions are generally considered to 

be as effector and/or translocator proteins that are directly involved in the 

induction of cytoskeletal rearrangement, cell membrane ruffling and pathogen 

uptake (macropinocytosis) (Espina et al., 2007) (Schroeder and Hilbi, 2008).  The 

second group is composed of the TTSA structural genes.  They are the mxi 

(membrane expression of ipa proteins) and spa (surface presentation of ipa 

antigens) genes (Espina et al., 2007) (Schroeder and Hilbi, 2008).  The TTSS 

apparatus consists of a basal body and needle that are composed of various 

polymers of the Mxi and Spa structural proteins (Espina et al., 2007).  Expression 

of the early and late entry region genes are controlled by different transcriptional 

activators, MxiE and VirB for example, which make up a third group of key TTSS 
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components (Schroeder and Hilbi, 2008).  The last group consists of the 

molecular chaperones, whose function is to maintain effector and translocator 

proteins while they are stored in the bacterial cytoplasm prior to secretion 

(Schroeder and Hilbi, 2008). 

 

Bacterial Secretion Systems 

 All bacteria possess secretion systems as part of their normal function.  In 

addition many gram-negative bacterial pathogens use dedicated secretion 

systems to transport effector molecules or virulence factors into their 

environment or into targeted host cells as a key part of their virulence.  Currently, 

there are six named bacterial secretion systems which have been classified 

based on the numbering system I, II, III, IV, V and VI.  Two of the systems are 

sec-dependent (secretory), types II and V, while types I, III and IV are classified 

as being sec-independent (Russel, 1998) (Harper and Silhavy, 2001).  The two 

sec-dependent secretion systems make use of the machinery of the general 

secretory pathway to translocate proteins across the inner membrane of bacteria 

(Russel, 1998) (Harper and Silhavy, 2001).  They do this by catalyzing and 

translocating the proteins across the bacterium’s inner membrane to its 

periplasmic space via as N-terminal signal peptide that is removed in the process 

(Russel, 1998) (Harper and Silhavy, 2001).  The type VI secretion systems are 

relatively new, being discovered in 2006 in Vibrio cholerae by Stefan Pukatzki et 

al (Pukatzki et al., 2006).  It has since been found in several gram-negative 

bacteria including Psedomonas aeurginosa and Burkholderia cenocepacia, 
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however, this system is not yet very well characterized (Aubert et al., 2008) 

(Zheng and Lewis, 2007) (Pukatzki et al., 2006).  It is thought to be sec-

independent due to the absence of an N-terminal signal sequence on the 

proteins that are secreted (Pukatzki et al., 2006). 

 Type I secretion systems are the simplest of the six, containing only three 

proteins an ABC protein or ATP binding cassette protein, a membrane fusion 

protein and an outer membrane trimeric protein.  Type I secretion systems 

transport proteins in a single step through a continuous channel from the inner 

membrane, through the periplasm, to the outer membrane (Holland et al., 2005).  

Type II secretion systems utilize the sec pathway to transport proteins to the 

periplasm where it then uses a complex of 12-14 protein components to transport 

the proteins from the periplasm to the environment surrounding the cell (Russel, 

1998).  The type III secretion system (already described in part) is made up of a 

basal body that spans the inner and outer membranes and an extracellular 

needle complex which allows the bacteria to directly inject effectors directly into a 

target cell’s cytoplasm.  Type III secretion is an ATPase-driven system and it has 

been termed contact dependent secretion since contact with a host cell is the 

typical signal needed to induce this secretion (Hueck, 1998).  Type IV secretion 

systems were originally thought to be limited to conjugal transfer systems that 

transport bacterial DNA between bacteria to facilitate natural genetic exchange 

(Winans et al., 1996).   It has since been determined that this pilus-like transport 

system can also export monomeric and multisubunit proteins, as well as bacterial 

DNA, into eukaryotic cells (Winans et al., 1996).  There are three kinds of type IV 
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secretion systems: 1) conjugation systems; 2) effector translocator systems; and 

3) DNA release/uptake systems (Alvarez-Martinez and Christie, 2009).  The first 

two of which usually require direct contact with a target cell for activation 

(Alvarez-Martinez and Christie, 2009).  Type V secretion systems are known as 

autotransporters or two-partner secretion systems (Jacob-Dubuisson et al., 2004) 

They utilize the sec pathway for the first step in their function (Jacob-Dubuisson 

et al., 2004).  Type V secretion systems export large proteins possessing an N-

terminal sec-dependent signal domain, the mature portion of the protein, and a 

C-terminal translocation unit that contains three regions, α-, β- and γ- (Jacob-

Dubuisson et al., 2004) (Klauser et al., 1993).  The sec signal domain allows the 

protein to move through the inner membrane and into the periplasm via the 

standard sec pathway machinery (Jacob-Dubuisson et al., 2004) (Klauser et al., 

1993).  The β-region then inserts itself into the bacterium’s outer membrane 

where it forms a pore that has characteristic β-barrel structure (Klauser et al., 

1993).  This pore allows the passage of the remaining regions (often referred to 

as the “cargo” regions) through the outer membrane where they can be cleaved 

by autoproteolysis and released into the extracellular environment (Klauser et al., 

1993).  In some cases the cargo remains attached as a bacterial surface protein 

(Klauser et al., 1993).  The type V system is not as versatile as the other 

secretion systems, such as the type II or type III systems, due to its ability to only 

secrete one molecule of the natural extracellular protein substrate (Jacob-

Dubuisson et al., 2004).  Type VI secretion systems are the least characterized 

and understood with little known about their structure and mechanism.  It has 
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been found in several gram-negative bacteria in addition to the ones previously 

listed (Aubert et al., 2008) (Zheng and Leung, 2007) (Pukatzki et al., 2006). 

 

The Type III Secretion System 

 In order to invade the epithelial cells of the human colon, Shigella spp. 

utilize the TTSS and a set of secreted translocator and effector proteins for 

targeting, penetrating and generally manipulating a host cell.  The TTSA is able 

to directly inject effector proteins into a host cell’s cytoplasm, thereby acting as a 

molecular syringe.  After injection of effectors, cytoskeletal rearrangements and 

ultimately uptake of the bacterium are mediated by the interaction of the effector 

proteins and their target signaling molecules within the host cell (Cornelis, 2006). 

 The TTSA is composed of a basal body that spans the inner and outer 

membrane of the bacterium, and an extracellular needle protruding from the 

bacterium’s outer membrane into the surrounding environment (Schroeder and 

Hilbi, 2008).  The basal body structure is composed of seven rings, while the 

needle is a MxiH polymer approximately 50 nm long, 7 nm wide with an inner 

channel that has a diameter of about 2.5 nm (Epler et al., 2009).  On the 

cytoplasmic face of the bacterium, the TTSA possesses an ATPase that has 

been shown to be involved in protein unfolding, chaperone release and 

transmembrane transport of substrate proteins (Figure 1.3) (Blocker et al., 2001). 
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The Ipa Proteins 

 To gain entry into a target cell and take control of the cytoskeletal proteins 

needed to promote bacterial uptake, Shigella utilizes several secreted effector 

proteins.  At the tip of the MxiH polymer needle is IpaD, which is believed to 

participate in sensing environmental signals and initiating the process of 

secretion induction (Espina et al., 2006).  IpaD is also a major secretion substrate 

in Shigella type III secretion.  IpaD sensing of bile salts in the intestine leads to 

IpaB secretion and recruitment to the TTSA needle tip (Stensrud et al., 2008).  At 

this point, the Shigella TTSS is prepared for full induction of type III secretion.  

After subsequent contact with a host cell, the Shigella TTSS then begins the 

secretion of other effectors that include the final translocator protein IpaC and 

additional effectors that are secreted into the host cell cytoplasm (Epler et al., 

2009) (van der Goot et al., 2004).  Several labs have shown that conditions 

mimicking host cell contact can induce secretion by the TTSA.  The addition of 

small amphipathic dyes, such as Congo red, brilliant orange or Evens blue, 

appear to mimic host cell contact to induce Shigella type III secretion (Parsot et 

al., 1995) (Bahrani et al., 1997).   

 Espina et al. demonstrated that IpaD localizes to the tip and caps the 

MxiH polymer needle of the TTSA (Espina et al., 2006).  The inability of IpaD null 

mutants to invade and their hypersecretion of TTSS effectors into the 

extracellular environment during overnight cultures demonstrate IpaD serves as 

a crucial component of the Shigella TTSS, perhaps as a regulatory component 

controlling type III secretion (Menard et al., 1994) (Picking et al., 2005).  Work 
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Figure 1.3 The Type III Secretion System (TTSS) of Shigella flexneri 
The TTSS of S. flexneri with the membrane spanning basal body and 
extracellular needle protruding from the surface.  This shows the TTSS in contact 
with a host cell and the tip complex assembled along with the translocon inserted 
into the host cell membrane (Schroeder and Hilbi, 2008). 
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done by our group has shown that secretion of IpaB can be induced by the 

presence of bile salts, specifically deoxycholate, which leads to IpaB colocalizing 

with IpaD at the distal tip of the needle (Olive et al., 2007).  IpaB possesses a 

cholesterol binding function that may serve as a priming step that allows the 

needle to recognize bacterial interaction with the host cell (Hayward et al., 2005). 

 Within the cytoplasm of S. flexneri, the molecular chaperone IpgC 

(invasion plasmid gene) binds to IpaB before it is secreted (Birket et al., 2007).  

IpgC prevents the aggregation of IpaB in the bacterial cytoplasm and its 

association with the other translocator protein IpaC (Menard et al., 1994) (Page 

et al., 1999) (Lunelli et al., 2009).  IpaB binding to IpgC is also thought to stabilize 

IpaB in a pre-secretion state prior to its passage through the TTSA needle 

(Menard et al., 1994) (Page et al., 1999).  It was shown by circular dichroism 

(CD) spectroscopy that IpgC has a significant α-helical secondary structure (data 

not shown).  This has been confirmed by the solving of IpgC’s crystal structure 

(Lunelli et al., 2009).  IpaB and IpaC are less ordered (based on CD analysis), 

but the binding of IpgC to IpaC induces significant secondary structural change, 

increasing the amount of α-helical structure, and stabilization (Birket et al., 2007).  

IpgC is believed to have a similar effect on IpaB, but the details of this, such as 

the specific residues or regions involved, have not been determined (Birket et al., 

2007). 

 IpaB is important to study because it has several functions that are key to 

Shigella pathogenesis.  As a secreted effector protein, as a regulator of type III 

secretion and as a structural protein in the formation of the Shigella translocon 
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pore that forms in the host cell membrane (Schroeder and Hilbi, 2008).  To 

escape the macrophage after initially crossing M cells, S. flexneri secretes IpaB 

to induce apoptosis via a caspase1-dependent pathway (Hilbi, 1998).  This 

apoptotic (pyroptotic) pathway results in the massive release of IL-1β, which 

provides the signal for induction of the inflammatory process that give rise to the 

symptoms of shigellosis (Sansonetti, 2000).  IpaB also serves to control effector 

regulation, as does IpaD (Menard et al., 1994).  IpaB null mutants show the same 

overall phenotype as do ipaD null mutants, including non-invasiveness and 

hypersecretion of effectors into the extracellular supernatant of overnight cultures 

(Menard et al., 1994).  IpaB is also one component of the two-part translocon 

pore that becomes inserted into the host cell’s cytoplasmic membrane shortly 

after host cell contact.  The other translocon component is IpaC (Schroeder and 

Hilbi, 2008).  IpaD allows this pore to remain in contact with the TTSA needle tip 

(Schroeder and Hilbi, 2008).  This pore allows formation of a channel through the 

membrane to the host cell’s cytoplasm, thereby allowing direct injection and 

secretion of later effectors directly from the bacterial cytoplasm to the host cell’s 

cytoplasm (Menard et al., 1994) (Zychlinsky et al., 1994) (Blocker et al., 1999). 

 Along with IpaB, the IpgC chaperone binds to the second 

translocator/effector protein, IpaC, keeping it stable in the cytoplasm until it joins 

IpaB as a translocon pore component (Menard et al., 1994) (Page et al., 1999).  

Along with forming the translocon pore, IpaC is also involved in signaling to the 

host cell.  Cdc42 is a small Rho-family GTPase that IpaC has been proposed to 

interact with to induce formation of filopodial extensions (Tran Van Nhieu et al., 
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1999).  Little is known about this interaction, but it has been shown that IpaC can 

nucleate actin (Kueltzo et al., 2003).  Recent findings suggest that the ability for 

IpaC to nucleate actin is much more important than its ability to interact with 

Cdc42 (Terry et al., 2008). 

 

The Molecular Chaperone IpgC 

 Invasion plasmid gene C (IpgC) is the molecular chaperone for IpaB and 

IpaC, both of which are translocator proteins for the Shigella TTSS (Parsot et al., 

2003) (Birket et al., 2007).  There are three classes of molecular chaperones 

used by the TTSS (Parsot et al., 2003) (Birket et al., 2007).  Class I chaperones 

are associated with late effector proteins that are targeted for direct injection into 

the target cell’s cytoplasm (Parsot et al., 2003).  These can be divided into two 

subclasses, IA and IB, depending on whether they bind with one protein, IA, or 

more than one protein, IB (Parsot et al., 2003) (Birket et al., 2007).  The class II 

chaperones associate with the translocator proteins for its cognate TTSS (Parsot 

et al., 2003) (Birket et al., 2007).  The class III chaperones bind with proteins of 

the flagellar TTSS and these are not relevant in Shigella (Parsot et al., 2003) 

(Birket et al., 2007).  Several defining characteristics are common of most TTSS 

chaperones.  They are their small molecular masses and low pIs (Parsot et al., 

2003) (Birket et al., 2007).  Some chaperones are also responsible for regulating 

late gene expression by interacting with transcription factors after initial contact 

with the host cell (Parsot et al., 2004).  IpgC is a class II molecular chaperone 

specific for IpaB and IpaC, all of which are encoded on the ipa/ipg operon of 
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Shigella flexneri (Birket et al., 2007).  IpgC is responsible for complexing with and 

stabilizing the translocators IpaB and IpaC within the bacterial cytoplasm, thus 

preventing their interaction and/or degradation until type III secretion is activated 

(Birket et al., 2007).  IpgC is a small (20 kDa) protein with a very acidic pI of 4.6, 

which is responsible for several roles including acting as a chaperone and acting 

as a  transcription activator within the Shigella TTSS after association with MxiE 

(Cornelis and Van Gijsegem, 2000) (Page et al., 2001) (Birket et al., 2007). 

 IpgC serves as a transcriptional co-activator of virA and ipaH9.8 (Pilonieta 

and Munson, 2008).  Pilonieta and Munson showed that production of VirA and 

IpaH9.8 can be increased when IpgC and MxiE associate which was determined 

trough co-purification experiments (Pilonieta and Munson, 2008).  While originally 

thought to be a transient interaction, Pilonieta and Munson showed that the 

increased transcription of virA and ipaH9.8 is only seen after the release of IpgC 

from both IpaB and IpaC (Pilonieta and Munson, 2008). 

 IpgC’s interaction with IpaB and IpaC is of interest due to its ability to bind 

multiple partners having little or no sequence similarity (Birket et al., 2007).  

IpgC’s effect on IpaC has been investigated by other members of the lab to 

better understand IpaC’s function as a Shigella virulence determinant and IpaC’s 

role in this process.  IpaC is a 42 kDa protein with functions that include the 

ability to disrupt liposomes, interact with actin, and to promote invasion of 

epithelial cells (Picking et al., 2001) (Kueltzo et al., 2003).  It has been shown 

that IpgC’s binding with IpaC induces significant conformational changes within 
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the latter protein while simultaneously stabilizing IpaC’s secondary structure 

(Birket et al., 2007).  No such data are available for the IpgC/IpaB interaction. 

 

Research Focus 

 The research presented here is intended to further our understanding of 

the structure and topography of IpaB, in the presence and absence of binding to 

its chaperone IpgC.  Structural information of IpaB is limited due to its large size, 

(62 kDa) and hydrophobicity, however, several key regions of IpaB have been 

determined based on the predicted secondary structure analysis and structure-

function analyses from mutagenesis studies (Birket et al., 2007).  This study is 

intended to further past structure analyses and to better understand and 

characterize key regions within IpaB and its structure by generating the first 

biophysical and structural data available for this protein.  I hypothesize that IpaB 

is a highly structured protein, with and without its IpgC chaperone, and is more 

thermally stable when bound to IpgC which will be tested using a variety of 

spectroscopic analyses.  These findings will be extended using tryptophan 

scanning mutagenesis to help determine the topology of IpaB, which will perhaps 

allow identification of regions involved in IpaB’s interaction with IpgC. 

 Within the cytoplasm of Shigella flexneri, IpaB is complexed with IpgC until 

it disassociates to become loaded into the needle for export to the TTSA neddle 

tip.  This is why it is important to study the influence IpgC’s binding has on IpaB’s 

structure.  IpaB has two key roles, inducing apoptosis in the macrophage after 

ingestion and interacting with IpaC to form the translocon pore that is inserted 
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into the host cell membrane, both of which are vital steps of S. flexneri infection.  

If IpaB is not secreted, S. flexneri cannot induce apoptosis to escape the 

macrophage.  Without the IpaBC translocon pore, S. flexneri becomes 

noninvasive and it is incapable of causing disease in a host.  Others have studied 

and characterized the IpaBC translocon pore interactions along with IpaC and 

IpgC interactions (Birket et al., 2007).  Some of the same biophysical and 

molecular methods utilized in those studies have been applied in this study to 

better characterize the structure of IpaB, its interactions with IpgC and the 

conformational changes when associated with other protein partners.  I will 

combine tryptophan scanning mutagenesis with Trp fluorescence analysis, 

thermal unfolding scans and Förster resonance energy transfer from Trp to a 

covalently linked extrinsic fluorescent probe.   
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CHAPTER II 
 

 

MATERIALS AND METHODS 

Reagents and Buffers 
 
Coomassie Blue Protein Gel Stain 
250 ml methanol 
1.25 g Coomassie brilliant blue 
75 ml acetic acid 
175 ml diH2O 
 
8X His-Tag Binding Buffer 
2.72 g imidazole 
237 g NaCl 
19.36 g Tris 
Adjust to 1.00 L with diH20 
 
4X His-Tag Charge Buffer 
52.56 g NiSO4 
Adjust to 500 ml with diH2O 
 
4X His-Tag Elution Buffer 
136 g imidazole 
58.44 g NaCl 
4.84 g Tris 
Adjust to 500 ml with diH2O 
pH to 7.9 
 
4X His-Tag Strip Buffer 
74.4 g EDTA 
58.44 g NaCl 
4.84 g Tris 
Adjust volume to 500 ml with diH2O 
pH to 7.9 
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8X His-Tag Wash Buffer 
5.44 g imidazole 
117 g NaCl 
9.68 g Tris 
Adjust volume to 500 ml with diH20 
pH to 7.9 
 
Luria-Bertani Broth (LB) 
25.0 g LB broth 
1.00 L diH2O 
 
Luria-Bertani Agar (LB) 
40.0 g LB agar 
1.00 L diH20 
 
10X Phosphate Buffered Saline (PBS) 
85.0 g NaCl 
10.7 g sodium phosphate, dibasic 
3.90 g sodium phosphate, monobasic 
1.00 L diH2O 
 
10% SDS-PAGE Separating Gel 
4.00 ml diH20 
2.50 ml 1.5 M Tris-HCL, pH 8.8 
100 μl 10% SDS 
3.33 ml 30% Bis:Acrylamide 
 
12% SDS-PAGE Separating Gel 
3.00 ml diH20 
2.50 ml 1.5 M Tris-HCL, pH 8.8 
100 μl 10% SDS 
4.00 ml 30% Bis:Acrylamide 
 
15% SDS-PAGE Separating Gel 
2.50 ml diH20 
2.50 ml 1.5 M Tris-HCL, pH 8.8 
100 μl 10% SDS 
5.00 ml 30% Bis:Acrylamide 
 
5% SDS-PAGE Stacking Gel (2) 
2.85 ml diH2O 
1.25 ml 0.5 M Tris-HCl, pH 6.8 
50.0 μl 10% SDS 
1.00 ml 30% Bis:Acrylamide 
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SDS-PAGE Running Buffer 
2.42 g Tris 
14.41 g glycine 
10.0 ml SDS 
1.00 L diH2O 
 
1X Sodium Phosphate Dialysis Buffer (NaP buffer) 
20 ml .5 M NaP 
8.77g NaCl 
5 mL OPOE 
Adjust to 1 L with 1X PBS 

 

Processes 

 

IpaB Tryptophan Mutant Construction 

 All tryptophan mutations in ipaB were generated using inverse PCR with 

pHS2-IpaB, encoding IpaB, as the template.  Primers were made to possess 

GAGAGA, a restriction site flanking the codon to be mutated and approximately 

18 nucleotides beyond the mutation site.  Primers for Trp mutagenesis are listed 

in Table 2.1.  Inverse PCR produced a linear fragment which was subsequently 

digested with the appropriate restriction endonucleases and intromolecularly 

ligated.  GAGAGA sequences are present at the ends of the fragment to increase 

the efficiency of restriction digestion.  Ligation products were transformed into 

Nova Blue E. coil.  Resulting plasmids were purified using the QIAGEN 

QIAquickTM plasmid purification kit.  Purified plasmids were electroporated into 

the ipaB null Shigella flexneri strain SF620 and placed onto trypticase soy agar 

(TSA) plates containing Congo red and ampicillin.  Ampicillin resistant, red  
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Mutant Primer Name and Sequence 
L79W B88f-GAGAGAGAGGCTAGCTCCCAATGGACGCTTTTAATTGGAAACC 

B89r-GAGAGAGAGGCTAGCATTTAATGACTTTGGTGCTTT 
F119W B90f-GAGAGAGAGCTCGAGTGGTCCGATAAAATTAACAC 

B91r-GAGAGAGAGCTCGAGGTTTTTTTGCTGTCTTG 
L133W B53f-GAGAGAGAGACGCGTGACTATGAAAAACAAATTAATAA 

B54r-GAGAGAGAGACGCGTCCATCCTTCAGTTTCAGATAGAA 
D169W B92f-GAGAGAGAGTGGCCAGAGTCACCAGAAAAG 

B93r-GAGAGAGAGTGGCCAGAGGTTCGATAATCTTGTTTG 
F227W B94f-GAGAGAGAGGCTAGCGCTGAACAGCTATCAAC 

B95r-GAGAGAGAGGCTAGCTGTGTTTGACCATGCAGAAAAAGAGTC 
         TATTT 

F275W B96f-GAGAGAGAGCTTAAGAATGATCTGGCTCTATGGCAGTCTCTC 
         CAAGAATCAA 
B97r-GAGAGAGAGCTTAAGAGATTCTTCATTATTTTTTCCA 

Y293W B110f-GAGAGAGAGTACGTAAAGCAGAAGAACTC 
B99r-GAGAGAGAGTACGTACTTCAGCAGCCCACTCATCAGATTTTC 
         TCTC 

F382W B100f-GAGAGAGAGCTCGAGGGCTTGGGCGTCGATC 
B101r-GAGAGAGAGCTCGAGCATTTTTGTCCATGCATCTGAAAGG 
           AGTTT 

I446W B102f-GAGAGAGAGTGGCCAAAGTTTCTCAAGAATTTT 
B103r-GAGAGAGAGTGGCCAAAGGTCTGTGAGGGTTTTA 

F471W B104f-GAGAGAGAGGCCGGCGATGAAGTAATATCCAAACA 
B105r-GAGAGAGAGGCCGGCTGCACCAAGCCATTTATTTAATCTGGC 
           AACAC 

F514W B106f-GAGAGAGAGGCTAGCGACAAATCTAGCAGACCT 
B107r-GAGAGAGAGGCTAGCGCTGTTCTGCCAAACAGCAGAAGCGA 
           CACT 

I553W B108f-GAGAGAGAGAGATCTATTAGCCTCAATGT 
B109r-GAGAGAGAGAGATCTGCCCATACTTCCTGCAATTGGC 

Table 2.1 Table of Primers 
This table list the primers used with the ΔW template to create the single Trp 
insertion mutants. 
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colonies were chosen for further assays as these contained both the 

electroporated plasmid and the virulence plasmid based on Congo red selection.  

Congo red (CR) selection is based on the fact that Shigella lacking the virulence 

plasmid appear as large white colonies on CR-containing TSA plates.  Virulence 

plasmid containing bacteria appear as smaller, red colonies.  W105F (ΔW) was 

constructed to remove the natural tryptophan residue in IpaB.  This was used as 

a template for subsequent mutants, in which a Trp was introduced at novel sites. 

 

Construction/Production of Recombinant Proteins 

 Mutated ipaB was subcloned from pHS2 into pET15b.  The resulting 

mutant IpaB/pET15b constructs were then transformed into Nova Blue E. coli.  

Transformants were screened with T7 promoter and terminator primers.  Positive 

plasmids were then purified using a QIAGEN QIAquickTM plasmid purification kit 

and then co-transformed with IpgC/pACYC into Tuner (DE3) E. coli.  To select for 

bacteria containing both plasmids, transformations were plated on LB plates 

containing ampicillin and chloramphenicol.  Several colonies were selected and 

frozen as permanent stocks.  A loop of the permanent stock was resuspended in 

50 ml of LB and grown overnight.  The 50 ml culture was then divided evenly 

between 4 L of LB, each containing 100 μg/ml ampicillin and 25 μg/ml 

chloramphenicol. Cultures were grown to mid-log phase (OD600 = 0.6) and the 

protein expression was induced using 0.5 M isopropyl-thio-2-D-

galactopyranoside (IPTG).  Induced cultures were grown for an additional three 

hours.  The bacteria were then collected by centrifugation and resuspended in 40 
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ml/L of culture, with 1X His-tag binding buffer.  The bacterial suspension was 

frozen at –20°C. 

 

Gentamycin Protection Invasion Assay 

 Henle 407 cells were seeded on a 24 well tissue culture plate and 

incubated with minimal essential medium (MEM) with Earle’s salts and 

supplemented with 10% bovine serum in CO2 at 37°C until semi-confluent.  S. 

flexneri strains were grown at 37°C with shaking in 10 ml of TSB to mid-log 

phase (OD600 = 0.6).  One μl of the bacterial culture was added to Henle cells in 

MEM-glucose and centrifuged at 1,000 x g for five minutes to force contact.  The 

plates were incubated for 30 minutes at 37°C in a CO2 incubator.  The cells were 

then washed with MEM-gentamycin (50 grams/L) with 5% bovine serum and 

incubated at 37°C in a CO2 incubator for one hour in MEM-gentamycin to kill any 

extracellular S. flexneri.  After incubation, the MEM-gentamycin was removed by 

aspiration, cells were washed once with MEM-glucose no serum, and overlaid 

with melted agarose in deionized water.  They were then overlaid with melted 2X 

LB agar.  Once the agar solidified, cells were incubated at 37°C overnight.  

Colonies were then counted and invasion was calculated relative to 

complimented S. flexneri strains. 

 

Contact-Mediated Hemolysis 

 S. flexneri strains were grown to mid-log phase at 37°C with shaking in 10 

ml of TSB.  Bacteria were collected by centrifugation at 3,200 x g.  Bacteria were 
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resuspended in 200 μl of 1X PBS.  Sheep erythrocytes were washed at room 

temperature with 1X PBS and resuspended in 1X PBS to the original cell 

concentration.  Fifty μl of red blood cells (RBCs) were aliquoted into a 96 well 

microtiter plate to which 50 μl of the bacterial cell suspension was added per 

well.  Contact was induced by centrifugation at 2500 x g at 22°C for 10 minutes.  

Microtiter plates were then incubated at 37°C for 1 hour.  After incubation, 

RBC/bacterial pellets were vigorously resuspended in ice cold 1X PBS and 

centrifuged at 2,500 x g for 15 minutes at 4°C.  Supernatants were transferred to 

clean, empty wells.  Hemoglobin release was measured by monitoring 

absorbance at 545 nm on a μQuantTM microtiter plate reader. 

 

Ni+ Affinity Protein Purification of His-Tag Containing Proteins 

 Frozen bacterial suspensions were thawed, sonicated and clarified by 

centrifugation for 15 minutes at 10,000 x g.  Three ml of resin were washed with 

five column volumes (CV) of distilled water.  The resin was charged with three 

CV of 1X His-tag charge buffer and then five CV of 1X His-tag binding buffer.   

Clarified supernatants were applied to the column, which was washed with an 

additional five CV of binding buffer.  Non-specifically bound proteins were 

removed with five CV of 1X His-tag wash buffer and bound proteins were then 

eluted in three CV of 1X His-tag elution buffer.  Fractions were collected and 

analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE) gel to check for protein production.  The resin was stripped with three CV 

of 1X His-tag strip buffer and stored at 4°C. 
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Ni+ Affinity Protein Purification of His-Tag Containing Proteins with OPOE 

 Frozen bacterial suspensions were thawed, sonicated and clarified by 

centrifugation for 15 minutes at 10,000 x g.  Three ml of resin were washed with 

five CV of distilled water.  The resin was charged with three CV of 1X His-tag 

charge buffer and then five CV of 1X His-tag binding buffer.  Clarified 

supernatants were applied to the column; three ml of binding buffer plus 1% n-

octyl-poly-oxyethlene (OPOE) was added.  The column was allowed to rock 

overnight in a cold room at 4°C.  Non-specifically bound proteins were removed 

with five CV of 1X His-tag wash buffer with 1% OPOE and bound proteins were 

then eluted in three CV of 1X His-tag elution buffer with 1% OPOE.  Fractions 

were collected and analyzed by SDS-PAGE gel to check for protein production.  

The resin was stripped with three CV of 1X His-tag strip buffer and stored at 4°C 

for future use. 

 

Dialysis of IpaB/IpgC Proteins Following Purification 

 Proteins were placed in dialysis tubing.  All dialysis steps conducted at 

4°C.  IpaB/IpgC dialyzed in five steps.   

1. Against 1X wash buffer for 1 hour. 

2. Against 1X binding buffer for 2 hours. 

3. Against 500mM NaCl PBS overnight. 

4. Against 300mM NaCl PBS for 1 hour. 

5. Against 1X (200mM NaCl) PBS for 1 hour. 
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Purified protein was then removed from dialysis tubing, placed into a 1.5 ml 

eppendorf tube and stored at 4°C for up to two weeks. 

 

Dialysis of IpaB Following Purification 

 Proteins were placed in a Thermo Scientific Slide-A-Lyzer dialysis 

cassette, 3 ml to 12ml volume, with a syringe and 21 gauge needle.  All dialysis 

steps were done at 4°C.  Cassettes were dialyzed against 500 ml of NaP dialysis 

buffer for 30 minutes, then 500 ml of fresh NaP dialysis buffer overnight.  The 

protein was then removed from the cassette and the concentration was 

determined by A280 UV absorbance using the equation  

C (concentration) = (absorbance) / (extinction coefficient) 

with an extinction coefficient=11,460 for IpaB. 

 

Determining the Tryptophan Fluorescence Emission Maximium 

 Fluorescence data were collected using a Fluoromax-4 

Spectrofluorometer scanning fluorescence spectrophotometer.  The machine 

was adjusted with a blank that consisted of 0.6 ml PBS.  Tryptophan (Trp) 

fluorescence emission was scanned at wavelengths from 305 nm to 400 nm 

using an excitation wavelength of 295 nm, which allowed for monitoring of 

changes in tryptophan emission between IpaB/IpgC and IpaB alone, as well as 

allowing the comparison of the environments surrounding each Trp for all the 

mutants and the wildtype.  Other settings included a tolerance of 1°C, an 

equilibration time of three minutes, and a temperature of 20°C.  Three scans 
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were taken for each sample with the resulting graph representing an average of 

the three scans. 

Tryptophan Thermal Unfolding Curves 

 Thermal unfolding data were collected using a Fluoromax-4 

Spectrofluorometer scanning fluorescence spectrophotometer.  The machine 

was adjusted with a blank that consisted of 0.6 ml PBS.  For all the proteins, 

fluorescence emission was scanned at wavelengths from 305 nm to 400 nm 

using an excitation wavelength of 295 nm, which allowed for monitoring changes 

in tryptophan emission between IpaB/IpgC and IpaB alone, as well as allowing 

the comparison of the environments surrounding each Trp for all the mutants and 

the wildtype.  Other settings included an equilibration time of three minutes and a 

temperature range from 10°C to 90°C increasing at increments of 2.5°C, with a 

tolerance of 1°C from 10°C to 57.5°C and 1.5°C from 60°C to 90°C. 

 

IAEDANS Labeling of IpaB 

 Protein concentrations were determined by A280 UV absorbance using the 

equation C (concentration) = (absorbance)/(extinction coefficient), with an 

extinction coefficient=11,460 and MW of 62,000 Da for IpaB.  β-mercaptoethonal 

(BME) was added to the purified protein to a concentration of 25 μM and the 

sample was allowed to sit on ice for one hour.  To remove the BME, the proteins 

were placed in Slide-A-Lyzer cassettes, 3 ml to 12 ml volume, and dialyzed 

against four rounds of 500 ml of NaP buffer for 30 minutes each at 4°C.  The 

sample was removed from dialysis and labeled with 5-[2-[(2-Iodo-1-
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oxoethyl)amino] ethylamino]-1-naphthalenesulfonic acid (IAEDANS).  

Approximately 1 mg of IAEDANS was mixed with 125 μl of dimethyl sulfoxide 

(DMSO) and this was added to the protein, which was allowed to sit for one hour 

on ice.  Protein samples were again purified using the Ni+ affinity 

chromatography with OPOE as previously described.  Fractions were collected 

and SDS-PAGE was used to determine the fractions that contained protein. 

These fractions were pooled and dialyzed against the NaP buffer using four 

rounds of 500ml for 30 minutes each at 4°C in Slide-A-Lyzer cassettes.  Samples 

were then removed form the cassettes and used for scanning in Förster 

resonance energy transfer studies. 

 

Förster Resonance Energy Transfer (FRET) with AEDANS-Labeled IpaB 

 FRET data were collected using the Fluoromax-4 Spectrofluorometer 

scanning fluorescence spectrophotometer.  The machine baseline was set with 

0.6 ml of PBS.  Samples were excited at a wavelength of 290 nm and scanning 

emission wavelengths were collected from 300 nm to 500 nm, with 1°C 

tolerance, three minute equilibration times and a starting temperature of 20°C.  

Samples were scanned separately using the same concentration of unlabeled 

(donor only) and labeled (donor/acceptor) protein.  Graphs shown here are 

average of each after three scans.  The emission maximum intensity of the 

unlabeled protein relative to the intensity of the labeled protein at the same 

wavelength was compared.  The difference between the emission maximum of 

the donor (Trp) only sample and the emission maximum of the donor/acceptor 
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(Cys309+AEDANS) sample at the donor max wavelength allows the amount of 

energy transfer to be calculated. 

 For each mutant and the native strain, the energy transfer efficiency was 

calculated according to the equation:  

E = (1-(Fda/Fd)) 

where Fda = donor/acceptor intensity and Fd = donor intensity.  After determining 

the amount of energy transferred, the distance between the tryptophan and the 

molecule of AEDANS on Cys309 was calculated using the formula:  

E = (Ro
6)/(Ro

6+R6) 

where R is the calculated distance separating the donor and acceptor 

fluorophores.  The published Ro value for this donor-acceptor fluorophore pair is 

22Å, which is the theoretical distance that would give 50% energy transfer 

efficiency (Ro) for this specific FRET pair (Lakowicz, 2006).  When determining 

the Ro value, it was assumed the orientation of donor and acceptor dipoles are 

random (κ2=2/3).  This is a standard assumption. 
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CHAPTER III 
 

 

TRYPTOPHAN SCANNING MUTAGENESIS OF IpaB 

Introduction 

 

 Shigella flexneri uses its type III secretion system (TTSS) to facilitate its 

own uptake in the colonic epithelial cells of the large intestine (Sansonetti et al., 

1982b).  Once the S. flexneri TTSS is activated by contact with a host cell (or 

conditions mimicking host cell contact) it begins to transport effector proteins 

through its extracellular needle apparatus into the host cell’s membrane and 

cytoplasm (or into the extracellular environment).  After secretion activation, IpaB 

is secreted into a position within the host cell membrane followed by IpaC.  

These proteins act as early effectors of Shigella invasion.  These two proteins 

associate within the host cell membrane where they form a translocon pore that 

allows other (later) effector proteins to pass directly into the host cell’s cytoplasm 

where they can contribute to bacterial invasion (Davis et al., 1998) (Blocker et al., 

1999).  Without the translocon pore inserted on the basolateral face, S. flexneri 

cannot enter the host cell (Menard et al., 1993).  To prevent premature secretion 

of its translocators, Shigella stores IpaB and IpaC in the bacterial cytoplasm  
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where they are bound to the chaperone IpgC.  As part of this complex, they are 

stored until the specific signals to be secreted by the TTSS  are received by the 

bacterium (Menard et al., 1993) (Menard et al., 1994) (Page et al., 1999). 

 

IpaB  

 IpaB is a large translocator/effector molecule that possesses multiple 

functions and is secreted by the TTSS of Shigella flexneri.  Its functions include 

directing apoptosis (pyroptosis) in macrophages as a secreted effector and as a 

translocon structural protein through its interaction with IpaC.  The translocon 

pore is inserted into the host cell’s membrane to allow additional effector proteins 

to be directly secreted into the host cell’s cytoplasm (Menard et al., 1994) 

(Zychlinsky et al., 1994) (Blocker et al., 1999).  There is currently no structural 

information available for IpaB and this is mostly due to its large molecular size 

(62 kDa) and hydrophobic nature (Birket et al., 2007).  The entire amino acid 

sequence of IpaB, 580 residues, has been divided into predicted regions based 

on protein structure algorithms, some functional data, and the known structure of 

IpaD to which it has been compared (W.L. Picking unpublished 

observations)(Guichon et al., 2001).  Based on experimental data and predicted 

protein properties, IpaB can be divided into six regions.  These regions include a 

N-terminal helix-turn-helix, two regions that form a dimeric coiled-coil, two 

transmembrane helices and a region predicted to lie on  

the inner face of the host cell membrane (Figure 3.1).  Guichon et al. performed 

structure function analyses of IpaB and determined that protein expression was 



 

42 
 

stopped with the introduction of large deletions within the N-terminus (Guichon et 

al., 2001).  Guichen et al. also determined that expression of IpaB was not 

impaired when large deletions were introduced within the C-terminus, however, a 

significant decrease in (or total loss of) invasiveness, cell cytotoxicity and 

phagosomal escape was seen (Guichon et al., 2001).  They also introduced 

small deletions within the putative transmembrane region, many of which had 

little effect on protein function or expression when compared to the wildtype 

(Guichon et al., 2001).  They did find one deletion that had a significant effect on 

protein function and expression which consisted of amino acids 307-316, and are 

the seven amino acids immediately preceding the transmembrane/hydrophobic 

region and the first three amino acids of the region (Guichon et al., 2001).  When 

expressed in S. flexneri, the mutant 307-316, had significantly less expression of 

IpaB, it was unable to lyse the phagosome or induce macrophage cell death 

(Guichon et al., 2001).  Their results indicated that the binding site for caspase 1 

is contained in the hydrophobic region, as a mutant lacking amino acids 311-580 

was unable to bind caspase 1, however, a mutant with amino acids 307-316 

deleted was able to bind caspase 1 but could not induce macrophage apoptosis 

(Guichon et al., 2001).  The worked performed by Guichon et al. demonstrates 

that IpaB’s N-terminal is necessary for stable expression and function of the 

protein, the hydrophobic region is needed to maintain function of IpaB or to keep 

other domains in a proper confirmation for expression, and that IpaB binding of 

caspase 1 alone is not sufficient to induce macrophage apoptosis but is only the 

first step (Guichon et al., 2001). 
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 Transmembrane Helices 
 Region predicted to lie on the inner face of the host cell membrane 

 

Figure 3.1 Predicted IpaB Organizational Map 
This organizational map is based on the known structure of IpaD (Wendy 
Picking, unpublished).  
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IpaB’s Interaction with IpgC 

 Before IpaB is secreted by the Shigella TTSS, it waits in the bacterial 

cytoplasm bound to its molecular chaperone IpgC (Birket et al., 2007).  IpgC is a 

class two molecular chaperone specific for binding both IpaB and IpaC (Birket et 

al., 2007).  By binding to IpaB and IpaC, IpgC prevents the degradation of the 

two translocator proteins that would result if these two pore components became 

associated while still in the bacterial cytoplasm (prior to secretion).  It is also 

thought that IpgC is responsible for maintaining IpaB in a state of readiness for 

secretion through the TTSS needle apparatus (Page et al., 1999).  After release 

from IpaB and IpaC, IpgC then binds to the transcription activator mxiE to allow 

the expression of later effector proteins that are injected into the host cytoplasm 

following bacterial invasion (Mavris et al., 2002). 

 

Circular Dichrosim Spectroscopic Analysis of IpB/IpgC and IpaB 

 Circular dichrosim (CD) spectroscopy can be used to determine the 

overall secondary structure of a protein.  It uses circularly polarized light and 

measures the differences in the absorption of left and right handed polarized light 

(Whitmore and Wallace, 2004).  CD spectroscopy utilizes the “far-UV” spectral 

region (190-250 nm) to determine information about the global secondary 

structure (Whitmore and Wallace, 2004) (Espina et al., 2007).  Using this 

wavelength region, the peptide bond serves as the chromophore exhibiting 

specific positive and negative signals when its environment is regular and folded 
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(Whitmore and Wallace, 2004).  This method allows the type and amount of 

secondary structure a protein contains to be determined because these different 

secondary structures (including alpha-helix, beta-sheet, and random coil) have a 

characteristic CD spectrum.  This method cannot, however, be used to determine 

the specific residues involved in any of the three aforementioned types of 

secondary structure within a protein.  CD analysis of IpaB/IpgC and IpaB alone 

(performed by N. Darboe) reveals that IpgC has a significant effect on the 

secondary structure of IpaB (Figure 3.2).  Both IpaB/IpgC and IpaB alone have 

significant alpha-helical structure supported by the characteristic minima at 208 

and 223 nm.  While the IpaB/IpgC complex is slightly more structured (more α-

helical) when compared to IpaB alone, IpgC is not necessary for IpaB to matain 

its structure. 

 

Fourier Transform Infrared Spectroscopy 

 Fourier transform infrared spectroscopy (FTIR) can be used to determine 

the types of chemical bonds a sample contains by creating an infrared absorption 

spectrum (Espina et al., 2007).  It does this by measuring the specific 

wavelengths absorbed when a sample is exposed to infrared radiation 

(Gallagher, 2005).  FTIR analysis of IpaB (performed by C. Olsen) displayed a 

characteristic pattern consistent with a protein having a dimeric coiled-coil 

(Figure 3.3).  These data, along with the CD analysis, support the hypothesis that 

IpaB is a highly structured protein.   
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Figure 3.2 CD Spectra of IpaB/IpgC and IpaB 
This CD spectrum shows both IpaB (filled circles) and IpaB/IpgC complex 
(unfilled circles) have significant alpha helical components with characteristic 
minima at 208 nm and 223 nm (performed by N. Darboe). 
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Figure 3.3 Fourier Transform Infrared (FTIR) Spectrum of IpaB 
The IpaB FTIR spectrum has the characteristics of a protein with a dimeric 
coiled-coil (performed by C. Olsen). 
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 In this study, fluorescence spectroscopy was utilized to ascertain the 

effects of IpgC binding on IpaB and to make a first ever attempt at determining a 

topological map for Trp residues within the protein.  Tryptophan scanning 

mutagenesis has been utilized previously to efficiently determine the effect of 

IpgC binding on IpaC.  We have utilized these same techniques to better define 

regions of IpaB that are affected by the binding of IpgC along with its secondary 

structure and topology.  Because so little structural information is available for 

IpaB, this will provide new details on its structure so that can be used for future 

mutagenesis studies. 

 

Results 

 

Construction of Insertion Mutants 

 Previously, members of the lab have used tryptophan scanning 

mutagenesis to characterize the effects on the structure and the 

microenvironments of regions of IpaC following protien binding to liposomes and 

to the IpgC chaperone (Harrington et al., 2006) (Birket et al., 2007).  For proteins 

containing only a single Trp residue, Trp scanning mutagenesis exploits the 

natural environmental sensitivity of the single indole group of the Trp to gain 

information on its local surroundings.  Trp fluorescence is highly sensitive to the 

polarity of the environment immediately around it.  This method allows 

fluorescence differences for a protein in two different states to be analyzed for 

the influence these states have on a single residue within the protein.  In this  
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 Dimeric Coiled Coil 
 Transmembrane Helices 
 Region predicted to lie on the inner face of the host cell membrane 
 
Figure 3.4 Predicted IpaB Organizational Map 
This organizational map based on the known structure of IpaD shows the 
predicted regions of IpaB and the placement of the single Trp insertion mutants 
with the native Trp at residue 105 and the single Cys at residue 309 labeled 
(Wendy Picking, unpublished observations). 
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case, the influence of IpgC binding to IpaB can be used to determine how 

complex formation affects specific regions within IpaB (whereever a Trp residue 

has been inserted). 

 Trp scanning mutagenesis with fluorescence characterization of the 

resulting mutant requires that the protein possess only a single tryptophan.  

Wildtype ipaB contains a single Trp residue residing at position 105 (Figure 3.4).  

In previous studies with IpaC it was convenient that the protein does not have a 

natural Trp so one could simple be inserted any where (Birket et al., 2007).  A 

library of IpaC mutants having only a single Trp were thus made by inserting a 

Trp at perceived key positions (Birket et al., 2007).  The lack of a natural Trp 

made the creation of point mutations in IpaC easy (Birket et al., 2007). 

 The natural Trp of IpaB at residue 105 allowed for the N-terminal region to 

be characterized.  Before other regions could be studied, however, this natural 

Trp needed to be removed.  A knockout mutant was thus created with the natural 

Trp at residue 105 replaced with a phenylalanine (Phe).  The remaining point 

mutations were based on this W105F IpaB mutant template (IpaB ΔW). 

 Site-directed mutagenesis was used to generate 12 mutants that 

contained single Trp residues spanning the length of IpaB.  This allowed the use 

of fluorescence spectroscopy to characterize the entire length of the protein 

(Picking et al., 1996).  In addition to the natural Trp at residue 105, mutants were 

generated that had individual Trp residues introduced at positions 81, 119, 133, 

169, 227, 275, 293, 382, 446, 514, and 553.  Positions 81, 105 and 119 are in 

the predicted N-terminal helix-turn-helix (Fig. 3.1).  Positions 133, 169 and 553  
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Mutant Primer Name and Sequence 
L79W B88f-GAGAGAGAGGCTAGCTCCCAATGGACGCTTTTAATTGGAAACC 

B89r-GAGAGAGAGGCTAGCATTTAATGACTTTGGTGCTTT 
F119W B90f-GAGAGAGAGCTCGAGTGGTCCGATAAAATTAACAC 

B91r-GAGAGAGAGCTCGAGGTTTTTTTGCTGTCTTG 
L133W B53f-GAGAGAGAGACGCGTGACTATGAAAAACAAATTAATAA 

B54r-GAGAGAGAGACGCGTCCATCCTTCAGTTTCAGATAGAA 
D169W B92f-GAGAGAGAGTGGCCAGAGTCACCAGAAAAG 

B93r-GAGAGAGAGTGGCCAGAGGTTCGATAATCTTGTTTG 
F227W B94f-GAGAGAGAGGCTAGCGCTGAACAGCTATCAAC 

B95r-GAGAGAGAGGCTAGCTGTGTTTGACCATGCAGAAAAAGAGTC 
         TATTT 

F275W B96f-GAGAGAGAGCTTAAGAATGATCTGGCTCTATGGCAGTCTCTC 
         CAAGAATCAA 
B97r-GAGAGAGAGCTTAAGAGATTCTTCATTATTTTTTCCA 

Y293W B110f-GAGAGAGAGTACGTAAAGCAGAAGAACTC 
B99r-GAGAGAGAGTACGTACTTCAGCAGCCCACTCATCAGATTTTC 
         TCTC 

F382W B100f-GAGAGAGAGCTCGAGGGCTTGGGCGTCGATC 
B101r-GAGAGAGAGCTCGAGCATTTTTGTCCATGCATCTGAAAGG 
           AGTTT 

I446W B102f-GAGAGAGAGTGGCCAAAGTTTCTCAAGAATTTT 
B103r-GAGAGAGAGTGGCCAAAGGTCTGTGAGGGTTTTA 

F471W B104f-GAGAGAGAGGCCGGCGATGAAGTAATATCCAAACA 
B105r-GAGAGAGAGGCCGGCTGCACCAAGCCATTTATTTAATCTGGC 
           AACAC 

F514W B106f-GAGAGAGAGGCTAGCGACAAATCTAGCAGACCT 
B107r-GAGAGAGAGGCTAGCGCTGTTCTGCCAAACAGCAGAAGCGA 
           CACT 

I553W B108f-GAGAGAGAGAGATCTATTAGCCTCAATGT 
B109r-GAGAGAGAGAGATCTGCCCATACTTCCTGCAATTGGC 

Table 3.1 Table of Primers 
This table list the primers used with the ΔW template to create the single Trp 
insertion mutants. 
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are located in the predicted dimeric coiled-coil.  Positions 227, 275, 293, 446, 

471, and 514 are contained in the predicted transmembrane helices.  The final 

mutant contained a Trp at position 382 which is within the region predicted to lie 

on the inner face of the host cell membrane following insertion of the pore by the 

bacterium.  The specific primers used to generate these mutants are listed in 

Table 3.1.  These were double mutants made using the point mutation W105F as 

a template to ensure each mutant had a lone Trp residue.  In order to minimize 

changes in IpaB’s structure and function, the amino acids most often targeted for 

mutagenesis contained bulky side chains and were non-polar (hydrophobic), 

including leucine, isoleucine, tyrosine and phenylalanine. 

 

Analysis of Trp Replacement Using Invasion and Hemolysis Assays 

 Invasion and contact-mediated hemolysis assays were performed to 

determine the effects of replacing the native Trp and introducing Trp residues 

into other regions within IpaB.  Invasion is a measure of the bacteria’s ability to 

invade a host cell while contact-mediated hemolysis is a measure of the 

bacterium’s ability to form a translocon pore and insert it into the host cell 

membrane.   

 The results for invasion and hemolysis for the S. flexneri strain SF620 

expressing wildtype IpaB were used to provide a baseline of activity for 

comparison with all the mutants created to determine if the specific mutation had 

an effect of the function of IpaB.  As is reported in Table 3.2, the wildtype IpaB 

had a relative invasiveness of 100% and hemolysis of 100%.  Results below 50%  
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Trp Mutant  Relative Invasion, % Contact Hemolysis, % 
IpaB/IpgC 100 100 
IpaB ΔW/IpgC 89 95 
IpaB L79W/IpgC 280 82.20 
IpaB F119W/IpgC 106 89.70 
IpaB L133W/IpgC 0 83.50 
IpaB D169W/IpgC 98 78.90 
IpaB F227W/IpgC 0 65.50 
IpaB F275W/IpgC 0 0 
IpaB Y293W/IpgC 0 0 
IpaB F382W/IpgC 0 1.40 
IpaB I446W/IpgC 17 13. 
IpaB F471W/IpgC 0 37.40 
IpaB F514W/IpgC ND ND 
IpaB I553W/IpgC 0 0 
Table 3.2 Functional Analysis of the IpaB Single Trp Mutants Produced in 
S. flexneri 
A significant change was determined to be less than 50% of the wildtype 
IpaB/IpgC invasiveness and hemolysis results.  All results were within 10-15% of 
the results given in the table.  ND-No data available due to the construct not 
producing the proper size protein 
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of the wildtype IpaB value were determined to be a significant decrease.  IpaB 

ΔW with the native Trp removed, did not show a significant decrease in 

invasiveness or hemolysis, 89% and 95%, respectively.  This shows that the 

removal of the native Trp at residue 105 and its replacement with Phe had little 

negative effect on the function of IpaB.  These results demonstrated that the IpaB 

ΔW mutant could then be used as a template to make other mutants by inserting 

a Trp at different locations. 

 The invasion and hemolysis assays were performed on the twelve 

mutants created (Table 3.2).  Three of the mutants, L79W, F119W and D169W, 

showed no significant decrease in invasiveness, while L79W and F119W showed 

an increase in invasiveness.  Most of the mutants, F227W, F275W, Y293W, 

F382W, I446W, F471W and I553W, showed zero invasiveness with I446W 

having only 17% invasiveness.  The mutants L79W, F119W, L133W, D169W and 

F22W did not have a significant decrease in hemolysis.  The remaining mutants, 

F275W, Y293W, F382W, I446W, F471W and I553 all had significant decreases 

in hemolysis with three mutants, F275W, Y293W and I553W having zero 

hemolysis activity.  These results suggest that some of the mutations in IpaB 

have little to no impact on its function but some of the insertions do have a 

significant impact of the invasiveness and hemolysis of IpaB, however they have 

not significantly changed the overall structure of the protein.  Invasion and 

hemolysis data are not available for F514W due to a problem with the construct 

not producing the proper size protein. 
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 Three of the mutants, F227W, I446W and F514W, had problems with 

transformation and expression based on western blot analysis (data not shown).  

It was determined that there had been a problem in the original transformation as 

the three mutants were not producing protein when the cultures were grown.  

These three mutants were retransformed and thought to produce protein, 

however, after analysis of the sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE) gels, it was determined that the bands on these 

three gels were not the right size to be IpaB (62 kDa).  Thus, it was determined 

that there was again a problem with the expression of these three mutants and 

that any data collected before this problem was identified should be discarded.  It 

was also decided these three mutants would not be used in the fluorescence 

experiments that follow. 

 

Tryptophan Emission Maxima Fluorescence 

 Recombinant IpaB was purified with IpgC as a soluble complex in E. coli 

as was previously done with IpaC/IpgC (Birket et al., 2007).  To better 

characterize key regions within IpaB and determine regions that might undergo a 

significant conformational change upon release from IpgC or which might 

physically interact with IpgC, Trp scanning mutagenesis was performed to allow 

comparison of the emission properties of the IpaB/IpgC complex with IpaB alone 

for the wildtype protein and nine mutants.  For this experiment, the wildtype IpaB 

as well as the nine mutants with His-tag labeled IpaB were grown in 1L cultures 

of E.coli Tuner (DE3) cells to an OD=0.6 at 600 nm.  At this time the cells were 
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inoculated with isopropyl-thio-2-D-galactopyranoside (IPTG) to induce protein 

production (Page et al, 1999).  IPTG is a non-metabolized lac-inducer added to 

cultures to induce recombinant protein expression when the gene is under the 

control of a lac promoter (Page et al., 1999).  This method allows for the 

production of large amounts of protein that can be subsequently harvested and 

purified (Page et al., 1999).  This method utilized the Tuner cells to produce the 

recombinant IpaB protein by inducing co-expression of the IpaB/IpgC complex.  

After induction with IPTG, the cells continued to shake at 37°C for three hours, at 

which time they are removed and collected by centrifugation at 4000 rpm for 15 

minutes.  The supernatant fraction was discarded and the pellet containing the 

bacteria was resuspended in 40 ml of 1X binding buffer.  The suspension was 

placed in a freezer bottle and stored in a -20°C freezer for later use.  After 

freezing overnight, the suspension was removed and placed in a 37°C water bath 

until completely thawed.  The liquid was then transferred to a beaker on ice to 

prevent the protein from overheating during sonication.  The liquid containing the 

bacteria was sonicated for approximately one minute and thirty seconds per liter 

of original culture grown.  After sonication Ni+ affinity column chromatography 

was used to purify the protein.  The IpaB/IpgC complex bound to the column via 

the His-tag on IpaB while everything else passed through.  The IpaB/IpgC 

complex was then eluted from the column and collected in 1.5 ml fractions.  The 

fractions were then run on a SDS-PAGE gel to determine which fractions 

contained the IpaB/IpgC complex (Figure 3.5).  IpgC’s band is much lower on the 

gel than IpaB due to its small size (20 kDa).  The fractions that contained the  
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Figure 3.5 Purified IpaB/IpgC 
Gels of IpaB/IpgC samples display the IpaB band at approximately 64 kDa and 
the IpgC at approximately 20 kDa.  The SDS-PAGE gel (12%) was stained with 
Coomassie blue dye. 
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most IpaB/IpgC complex were pooled to be used for future fluorescence analysis.  

In order to leave as much protein as possible for studying IpaB alone and for 

labeling the Cysteine (Cys) residue in later experiments, only one-fourth of the 

total amount of original culture grown was used for analysis of the IpaB/IpgC 

complex. 

  The remaining three-fourths of the protein preparation was poured over 

the column with the IpaB/IpgC again bound to the Ni+ affinity chromatography 

column.  Before eluting the column, however, binding buffer with 1% OPOE, a 

mild detergent, was added and the column was allowed to sit in a cold room at 

4°C overnight on a rocker plate at half speed.  This was done because the 

IpaB/IpgC complex can be separated in the presence of this detergent (Birket et 

al., 2007).  Hume et al. have shown that IpaB can be purified from IpgC in E. coli 

using a mild detergent (Hume et al., 2003).  After allowing the column to sit 

overnight, it was washed to remove the IpgC that had become separated from 

IpaB.  The column was eluted as before (with imidazole) to collect IpaB fractions.  

This method allowed the collection of IpaB alone due to the His-tag it contains, 

while the free IpgC should pass through the column.  These fractions were also 

run on a SDS-PAGE (12%) gel to determine if the IpgC had been released (Fig. 

3.6).  Theoretically, all the IpgC should be released from the complex and 

contained in the flow through prior to imidazole elution.  A sample of the flow 

through was also run to determine that IpgC had indeed released and was no 

longer complexed with IpaB (data not shown).  After pooling the IpaB only 

fractions, some of it was frozen in a -80°C freezer to be used for later  



 

59 
 

 

      
Molecular 

Marker 
WILDTYPE 

IpaB 
L79W 
IpaB 

F119W 
IpaB 

L133W 
IpaB 

D169W 
IpaB 

      
Molecular 

Marker 
F275W 

IpaB 
Y293W 

IpaB 
F382W 

IpaB 
F471W 

IpaB 
I553W 
IpaB 

 
Figure 3.6 Gels of Purified IpaB After Removal of IpgC 
This Commassie-blue stained SDS-PAGE gel shows that the samples contains 
the IpaB (64 kDa) purified away from IpgC following inoculation with OPOE. 
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fluorescence labeling and energy transfer studies. 

 Emission maxima values for all of the recombinant IpaB proteins (with and 

without IpgC) are shown in Table 3.3.  For these experiments it was determined 

that a significant change was any wavelength shift equal to or greater than 5 nm 

in either direction, red or blue.  A red shift is a shift to a longer wavelength 

indicating the environment around a specific Trp has become hydrophilic and 

more polar (Sams et al., 1977).  A blue shift is a shift to a shorter wavelength 

indicating the environment around a specific Trp has become more hydrophobic 

and less polar (Sams et al., 1977).  A red shift would indicate movement of the 

residue into a less buried or more exposed state while a blue shift would be due 

to a residue becoming more buried within the structure of the protein.  Both shifts 

could be due to a conformational change of the entire protein or within a specific 

region or microenvironment induced by the binding of IpgC.  If comparing the 

IpaB/IpgC wild type to the IpaB/IpgC mutants or the IpaB only wildtype to the 

IpaB only mutants the shifts are likely due to the environment around the specific 

Trp being different than the native Trp105 

 The purified IpaB/IpgC complex and IpaB alone were both scanned on a 

spectrofluorometer.  Sample graphs displaying emission maximum scans of 

wildtype IpaB complexed with IpgC and wildtype IpaB alone are shown in Figures 

3.7 and 3.8, respectively.  The IpaB/IpgC complex displayed an emission 

maximum of 332 nm while IpaB not bound to IpgC displayed an emission 

maximum of 337 nm.  This shift (of 5 nm) is a significant shift, as previously 

defined, indicating that the environment around the Trp at residue 105 becomes 
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more hydrophilic and more polar in the absence of IpgC.  This could be due to 

IpgC contacting this Trp or the binding of IpgC may induce a conformational 

change in the region that buries the Trp within the protein. 

 The results of all emission maxima scans are shown in Table 3.3.  First, 

the emission maximum of the IpaB only mutants will be compared to the wildtype 

IpaB only emission maximum to determine differences in the environments 

around the inserted Trps.  Of the nine IpaB mutants, eight displayed a spectral 

shift compared to IpaB 105W.  Mutants L79, F275, F382, and I553 all displayed a 

blue shift or a shift to a shorter wavelength compared to the wildtype IpaB only.  

This indicates that the environments around these Trp residues became more 

hydrophobic and less polar compared to the wiltype IpaB only.  Mutants L79, 

F275 and F382 displayed significant shifts of 8 nm, 10 nm, and 15 nm, 

respectively.  This indicates that the microenvironments around these Trp 

residues are more buried within the protein than the native Trp.  The mutants 

F119, D169, Y293, and F471 all displayed a red shift or a shift to a longer 

wavelength, indicating that these Trp residues are in a hydrophilic and more 

polar environment than the native Trp of IpaB only.  Only one, D169, displayed a 

significant red shift of 9 nm.  The region containing this residue is significantly 

less buried than the native Trp.  The mutant L133 did not display a spectral shift 

in either direction, meaning its microenvironment is similar too or the same as the 

microenvironment of the native Trp. 

 Second, the emission maximum of the mutants IpaB/IpgC complexes ill be 

compared to the wildtype IpaB/IpgC emissions maximum to again determine 
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differences in the regions surrounding the inserted Trps.  Four of the IpaB only 

Trp mutants, L79, F275, F382, and I553, displayed a blue shift compared to the 

wildtype IpaB/IpgC complex.  This indicates that the area around these Trp 

residues is more hydrophobic and less polar than the native Trp.  Three of the 

mutants, F275, F322 and I553, displayed a significant shift to a shorter 

wavelength, 5 nm, 10 nm and 8 nm, respectively.  This is likely due to these 

regions being more buried within the structure of the folded protein compared tot 

eh wildtype IpaB/IpgC Trp.   The remaining five mutants, F119, L133, D169, 

Y293, and F471, all displayed a red shift or a shift to a longer wavelength, 

indicating these microenvironments are hydrophilic and less buried relative to the 

native Trp of the IpaB/IpgC complex.  Two of the mutants, F119 and D169 

displayed significant red shifts, 11 nm and 13 nm, respectively.  These shifts are 

likely due to these two regions being significantly more exposed or less buried 

with the structure of the protein relative to the wildtype IpaB/IpgC complex. 

 Third, the emission maximum of the IpaB/IpgC complex will be compared 

to IpaB alone, for each mutant.  Of the nine mutants, only two displayed a 

significant spectral shift.  The remaining seven mutants, L81, F119, L133, D169, 

F275, Y293 and F382, did not display a significant spectral shift when not bound 

to IpgC (Table 3.3).  This indicates that the environments around these Trp 

residues are not significantly altered during IpaB binding with IpgC or they do not 

undergo a conformational change that transforms the environment around these 

particular Trp residues which can be detected by this method.  Both, F471 (7 nm) 

and I553 (9 nm) displayed a significant red shift when not bound to IpgC.  As  
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Figure 3.7 Emission Maximum Scan of wildtype IpaB/IpgC Complex  
The wildtype sample was excited at 295 nm and the spectrum collected at a 
scanning range of 305 nm to 400 nm at a rate of 0.1 sec per increment of 1 nm. 
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Figure 3.8 Emission Maximum Scan of wildtype IpaB without IpgC 
The wildtype sample was excited at 295 nm and the spectrum collected at a 
scanning range of 305 nm to 400 nm at a rate of 0.1 sec per increment of 1 nm. 
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Trp Mutant Emission Maximum, nm 
IpaB/IpgC  332 
IpaB 337 
IpaB L79W/IpgC 328 
IpaB L79W 329 
IpaB F119W/IpgC 343 
IpaB F119W 341 
IpaB L133W/IpgC 336 
IpaB L133W 337 
IpaB D169W/IpgC 345 
IpaB D169W 346 
IpaB F275W/IpgC 327 
IpaB F275W 327 
IpaB Y293W/IpgC 335 
IpaB Y293W 339 
IpaB F382W/IpgC 322 
IpaB F382W 322 
IpaB F471W/IpgC 334 
IpaB F471W 341 
IpaB I553W/IpgC  324 
IpaB I553W 333 
Table 3.3 Mutational Characteristics of Single Trp Mutants 
This table lists the emission maximum for each individual sample.  A 
significant shift was considered to be any shift of 5 nm or more in 
either the red or the blue. 
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previously stated the wildtype IpaB (W105) also displayed a significant shift upon 

IpaB binding (5 nm, as shown in Table 3.3).  It is interesting to note that all three 

displayed a red shift upon removal of IpgC, indicating the environment around 

these Trp residues became more polar and hydrophilic.  These data suggest that 

these three residues, or the specific regions containing them, may be either 

directly involved in binding IpgC or the region undergoes a significant and 

detectable conformational change exposing the environments making them 

hydrophilic which results in the observed change in Trp fluorescence.  The 

wildtype IpaB has a Trp at residue 105 and lies in the predicted N-terminal helix-

turn-helix region.  F471 resides in the predicted transmembrane helix nearest the 

C-terminal.  I553 is contained in the second or C-terminal coil of the predicted 

dimeric coiled-coil.  We speculate that IpgC may interact with IpaB at these areas 

to maintain it in a secretion ready state, however, we cannot rule out that these 

regions undergo a conformational change after dissociation from IpgC either to 

pass through the narrow inner channel of the TTSA needle, to prepare for 

binding/interaction with IpaC, or to assume an active effector state. The 

fluorescence method used here is well suited for determining information about 

the environments immediately surrounding Trp residues, but it does not provide a 

global picture of the effects of the binding of a chaperone to its cognate protein.  

 

Thermal Unfolding Analysis of IpaB/IpgC and IpaB 

 To determine the effect of IpgC binding on the thermal stability of the 

various environments surrounding each specific Trp insertion, thermal unfolding  
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analyses were performed.  As with the emission maxima determinations, this 

method does not provide a global picture of the protein’s stability or total protein 

unfolding, but rather the unfolding temperature of the area immediately 

surrounding the single Trp residue.  The proteins used for these experiments 

were from the same samples that were used for the emission maxima scanning 

analyses.  This ensured that the results seen or conclusions made, for these 

experiments, could be compared to the emission maxima data. 

 A sample series of temperature-dependent scans displays a single line for 

each temperature increment (2.5°C/scan) scanned from 305 nm to 400 nm.  The 

temperature range scanned was from 10°C to 90°C (Figure 3.9).  These data 

were then analyzed to determine the wavelength with the highest intensity 

(emission maximum).  This wavelength was then graphed as a function of 

sample temperature (Figure 3.10).   

 The Tm given in this study is not a conventional Tm, as it is not referring to 

the unfolding of the entire protein, but rather the initial temperature at which the 

specific environment directly around a particular Trp residue begins to unfold.  As 

with the emission maxima studies, this method is useful due to the natural 

fluorescent properties of the indole group contained in the Trp, which is directly 

influenced by its environment.  First, the Tm of each IpaB only mutant will be 

compared to the Tm of the wildtype IpaB only Trp to determine difference in 

thermal stability of the regions containing a Trp.  The wildtype 105W, without 

IpgC, has a Tm of 47°C (Table 3.4).  When compared to the mutants without 

IpgC, only one (L133) has a lower Tm, indicating this region of the protein unfolds  



 

68 
 

 

 

 

 

 

Figure 3.9 Initial Thermal Unfolding Graph of wildtype IpaB/IpgC Complex 
These data are analyzed as emission maximum versus temperature in Figure 
3.10. 
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Figure 3.10 Thermal Unfolding Graph of wildtype IpaB/IpgC as a Function 
of Sample Temperature 
The arrow shows the selected “transition” temperature which is considered the 
melting temperature or Tm of the area around a specific resiedue. 
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Trp Mutant Melting Temp.  (Tm), °C ΔTm

a, °C 
IpaB/IpgC  61  
IpaB 47 -14 
IpaB L79W/IpgC 68  
IpaB L79W 54 -14 
IpaB F119W/IpgC 72.5  
IpaB F119W 55 -17.5 
IpaB L133W/IpgC 66  
IpaB L133W 44 -22 
IpaB D169W/IpgC 65  
IpaB D169W 52.5 -12.5 
IpaB F275W/IpgC 55  
IpaB F275W 50 -5 
IpaB Y293W/IpgC 52.5  
IpaB Y293W 52 -0.5 
IpaB F382W/IpgC 70  
IpaB F382W 55 -15 
IpaB F471W/IpgC 65  
IpaB F471W 55 -10 
IpaB I553W/IpgC  54  
IpaB I553W 65 +9 
Table 3.4 Thermal Unfolding of IpaB/IpgC Complex and IpaB Alone 
Tm is not the melting point of the entire protein, but the point at which the 
environment around a specific Trp begins to unfold.  a-Change in Tm of IpaB 
compared to IpaB/IpgC complex 
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before the region containing the native Trp.  The other eight mutants all unfold at 

higher temperatures compared to the wildtype IpaB only, indicating that the area 

around these Trp residues unfolds later than the area around the native Trp. 

 Second the Tm of each mutant IpaB/IpgC complex will be compared to the 

Tm  of the wildtype IpaB/IpgC complex to determine difference in the thermal 

stability of the regions that contain a Trp.  The wildtype 105W IpaB/IpgC complex 

had a Tm of 61°C.  When this result is compared to the IpaB/IpgC mutants, F275, 

Y293 and I553 display a lower Tm, indicating these three regions unfold before 

the region around the native Trp.  The other six mutants displayed higher melting 

temperatures than the wildtype IpaB/IpgC complex, indicating that the regions 

containing those Trp residues unfold later than the region surrounding the native 

Trp.   

 Third, the Tm of the IpaB/IpgC complex will be compared to the Tm of IpaB 

only for each pair.   The higher melting temperature of the wildtype IpaB/IpgC 

complex (61°C) compared to the Tm of the wildtype IpaB only (47°C) indicates 

that the region containing the native Trp in the IpaB/IpgC complex is more 

thermally stable when bound to IpgC than when not bound.  Comparing the Tm of 

each mutant IpaB/IpgC complex to the Tm of its corresponding IpaB only 

mutants, eight had a higher Tm when bound to IpgC (Table 3.4).  This indicates 

that the regions around these eight Trp residues are more stable and unfold at a 

higher temperature when IpaB is bound to IpgC.  These data indicate that the 

overall effect of the binding of IpgC increases the thermal stability of IpaB. 
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 One of the mutants, I553W, was the only sample in which the IpaB/IpgC 

complex was less thermally stable when compared to its corresponding IpaB only 

mutant.  The I553W complex had an initial unfolding temperature of 54°C.  

I553W IpaB only had an initial unfolding temperature of 65°C, 11°C higher than 

its IpaB/IpgC complex.  This Trp resides on the C-terminal coil or the second coil 

of the predicted dimeric coiled-coil.  A possible reason for this decreased Tm is 

that the conformation imposed by the binding of IpgC on this region, which may 

be required for effective binding to IpgC, is less stable than the conformation 

when IpaB is ready to be secreted or interact with IpaC to form the translocon 

pore. 

 Three of the samples, wildtype IpaB, F471W and I553W, that displayed a 

significant temperature change when comparing the Tm of the IpaB/IpgC complex 

to IpaB alone, also displayed a significant shift in emission maximum when 

comparing their IpaB/IpgC complex to IpaB only.  Wildtype IpaB is located in the 

predicted N-terminal helix-turn-helix; F471W is in the predicted transmembrane 

region nearest the C-terminus, while I553W is in the second coil of the dimeric 

coiled-coil.  The large shifts seen at all three of these positions may indicate that 

the area around these three Trp residues might be heavily involved in the binding 

of IpgC, or may undergo a significant conformational change to facilitate the 

binding of IpgC.  It is interesting to note that the two mutants with the largest 

change in initial unfolding temperature (Tm), F119W (-17.5°C) and L133W (-

22°C), did not display a significant emission maximum shift, 2 nm blue shift and 1 

nm red shift, respectively.  These results suggest that these two regions are 
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stabilized by the binding of IpgC but they do not undergo a significant 

conformational change due to binding of IpgC.   

 Overall, the stability of the environments around the individual Trp 

residues is greater when IpaB is bound to its chaperone IpgC.  These results 

were not entirely unexpected, since previous CD studies indicated that the 

IpaB/IpgC and the IpaC/IpgC complexes are more thermally stable compared to 

IpaB or IpaC alone (Birket et al., 2007).  However, CD spectroscopy measures 

global secondary structure while the fluorescence of a single Trp residue 

provides a snapshot of only a small microenvironment within the whole protein.  

In all samples but one, a significant Tm change was seen, which may indicate 

that all of these environments undergo a conformational change when bound to 

IpgC, increasing the amount of α-helices and β-sheets as shown by CD analysis, 

thereby increasing the thermal stability of the area around a single Trp and the 

protein as a whole (Birket et al., 2007). 

 

Förster Resonance Energy Transfer 

 Förster resonance energy transfer (FRET) is the nonradiative transfer of 

energy between a pair of fluorophores.  After determining the amount of energy 

transferred from a donor to an acceptor it is possible to calculate the distance 

between the two fluorophores.  When measuring the fluorescence of a single 

fluorophore, it is excited at a wavelength within its absorbance spectrum and it 

releases the absorbed energy as fluorescent light over a characteristic emission 

spectrum.  If a second fluorophore is present whose absorbance overlaps the 
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emission spectrum of the first (donor) fluorophore, the excitation energy of the 

first can be passed to the second (acceptor) without the release of a photon. This 

is a distance-dependent phenomenon and FRET results in decreased 

(quenched) fluorescence of the donor probe.   

 To properly utilize FRET, it is important to determine the two fluorophores 

that will be used.  The donor fluorophore emission spectrum must overlap with 

the excitation spectrum of the acceptor fluorophore (see Figure 3.11).  The donor 

fluorophore can then be excited at a wavelength specific to it and not the 

acceptor fluorophore.  In the absence of an acceptor probe, the donor will have a 

measurable amount of fluorescence.  The fluorescence of the donor only sample 

is than compared to the fluorescence of the same donor in the presence of the 

acceptor (donor/acceptor sample).  Decreased donor fluorescence intensity 

(quenching) will be seen as an increase in the donor/acceptor spectrum intensity, 

however, it is the donor quenching that is used to quantify FRET. 

 The donor probe in these experiments is the single Trp present in the 

wildtype or the mutant described above.  To introduce an acceptor probe, the 

native single Cysteine (Cys) of IpaB at position 309 was labeled with a sufhydral 

reactive fluorophore.  We chose to use 5-[2-[(2-Iodo-1-oxoethyl)amino] 

ethylamino]-1-naphthalenesulfonic acid (IAEDANS), to label Cys309.  Cys309 is 

located at the end of the predicted first transmembrane helix.  Because we know 

the positions of the newly introduced Trp residues we should be able to use 

FRET to determine a series of intramolecular distances to provide preliminary 

structural information of IpaB. 
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Figure 3.11 Principles of FRET 
The donor emission fluorescence must overlap with the absorbance of the 
acceptor.  This study used Trp as the donor and AEDANS as the acceptor. 
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 Figure 3.12 displays the emission spectrum of wildtype IpaB consisting of 

the IpaB donor only sample (solid blue line) and the IpaB donor/acceptor (dashed 

red line) sample with the difference in FRET marked with an arrow.  Results of all 

FRET spectra are shown in Table 3.5.  To calculate the percent energy 

transferred between FRET pairs, the equation 

(1-Fda/Fd) X 100 

was used, where Fd is the fluorescence emission maximum wavelength of the 

donor only sample and Fda is the fluorescence emission of the donor/acceptor 

sample at the same wavelength as the donor only sample.  To calculate the 

distance between the two fluorophores, we used the equation  

E=Ro
6/(Ro

6 + R6) 

where E equals the amount of energy transferred Ro is the theoretical distance 

that would give 50% FRET (Ro =  22Å for the Trp-AEDANS), and R equals the 

actual distance between the donor and acceptor in Å (Lakowicz, 2006).  The 

distance measured was the distance from the Trp to the AEDANS molecule on 

Cys309, not directly to the Cys which introduces a modest amount of uncertainty 

to these distance calculations. 

 As can be seen in Table 3.5, all but one FRET pair had an amount of 

energy transfer between 50% and 90%.  Only one sample had less than 50% 

energy transfer, IpaB F382W with 10.56%.  F382W is located in the region 

predicted to lie on the inner face of the host cell membrane only 73 residues from 

Cys309.  The data suggest this Trp at 382 is farther from the Cys309 than any of 

the other Trp residues.  The other pairs are located closer together with 
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distances ranging from 15.44Å to 21.93Å.  These data support the hypothesis 

that IpaB is a highly ordered molecule with a compact structure.  We are still 

trying to convert these data into a topological map of IpaB. 
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Figure 3.12  FRET Spectrum of wildtype IpaB 
The emission spectrum of Trp is shown in the absence (solid blue line) and 
presence (dashed red line) of AEDANS acceptor.  The black arrow shows the 
decrease in emission maximum for the IpaB donor/acceptor protein compared to 
the IpaB donor only protein.   
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Protein Energy Transfer (%) Calculated Distance (Å) 
IpaB L79W 87.34 15.95 
IpaB 105W 53.15 21.54 
IpaB F119W 60.67 20.47 
IpaB F133W 78.17 17.79 
IpaB D169W 79.98 17.46 
IpaB F275W 68.66 19.30 
IpaB Y293W 89.32 15.44 
IpaB F382W 10.56 31.41 
IpaB F471W 89.18 15.48 
IpaB I553W 50.49 21.93 
Table 3.5 FRET of IpaB Trp Mutations 
The percent energy transferred and calculated distance for each pair.  The pairs 
consist of the Trp alone and the Trp plus the AEDANS labeled Cys309. 
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CHAPTER 4 

 

DISCUSSION AND FUTURE PLANS 

 

 

 Shigella flexneri is the causative agent of shigellosis, a severe 

gastrointestinal disorder that is also called bacillary dysentery.  It affects millions 

of people around the world every year.  It is transmitted via the fecal-oral route 

and infects humans by invading the colonic epithelium.  Once the bacterium has 

reached the colon, it takes advantage of microfold cells (M cells) that sample the 

environment of the colon to cross the epithelial layer (Owen, 1986).  After entry, 

the bacterium is ingested by macrophages that are then induced to undergo 

apoptosis as S. flexneri secretes IpaB as an effector into their cytoplasm.  S. 

flexneri is then released at the basal side of the epithelium, where it can then use 

its type III secretion system (TTSS) to induce ruffling of the host epithelial cells 

which leads to pathogen uptake by these cells.  Shigella then escapes the 

resulting phagosome and grows in the host cell cytoplasm. 

IpaB is secreted by the Shigella TTSS to act as a structural protein, via 

interactions with IpaC, in the formation of a pore in the host cell membrane 

through which other late effectors can be directly injected into the host cell  
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cytoplasm to induce pathogen entry.  Without IpaB, S. flexneri cannot escape the 

macrophage or form the pore to inject the effectors that induce cell ruffling in 

epithelial cells.  Little research has been done that focuses on IpaB’s structure.  I 

hypothesize that IpaB is a highly structured and complex molecule, with and 

without its secretion chaperone IpgC, and that it is thermally more stable when 

bound to IpgC due to the stabilized conformation induced by its interaction with 

the IpgC chaperone.  Tryptophan (Trp) scanning mutagenesis was used to better 

characterize the influence of IpgC on IpaB’s structure.  This hypothesis is 

supported by the data collected here and by FTIR and CD spectroscopy data that 

were performed elsewhere and generously made available for inclusion in this 

thesis.  These data support the notion that IpaB has an intrinsic (intramolecular) 

dimeric coiled-coil and a significant α-helical structure. 

 This study focused on understanding the interactions of IpaB with its 

molecular chaperone, IpgC, and the structural effects imposed by the binding of 

IpgC by utilizing Trp scanning mutagenesis.  Without its chaperone, IpaB could 

be lost or degraded prior to its secretion from Shigella as an effector or for 

formation of the translocon pore.  This fluorescence study is possible because 

Trp has natural fluorescence properties that are greatly influenced by the 

immediate environment surrounding it.  This approach allows monitoring of the 

microenvironments surrounding strategically-placed Trp residues within IpaB.  By 

creating a library of single Trp containing point mutations we can study multiple 

regions throughout the length of the protein using the fluorescence properties of 

Trp.  Initially, the wildtype IpaB and the twelve mutants were tested for invasion 
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and contact-hemolysis functions to determine if the mutations affected the 

function of the IpaB protein.  The ΔW IpaB had the native Trp at residue 105 

removed and replaced with phenylalanine (Phe).  It showed no significant 

decrease in invasiveness or hemolysis suggesting that replacement of the 

original Trp does not affect the function of the protein.  ΔW IpaB was not used for 

any fluorescence experiments since it lacks any Trp.  The same functional 

assays were performed on all the single Trp mutants to determine the effect of 

the single Trp insertions on the function of the protein.  Some displayed levels 

similar to the wildtype while several others displayed a decrease in virulence 

functions, which suggest that some of the residues replaced are needed for 

proper function of the protein.  Overall these data suggest that the native Trp can 

be replaced and reintroduced in other locations without adversely affecting the 

IpaB’s function.  Insertions between residues 1 and 227 did not display a 

significant decrease in contact-mediated hemolysis while all the insertions past 

residue 227 displayed a significant decrease in hemolysis.  This indicates that 

residues necessary for proper formation of the IpaB part of the translocon pore 

are located between 228 and 580.  A similar result is seen for the invasion of 

cultured cells.  These data may indicate that the portion of IpaB that is necessary 

for proper invasion is located in the transmembrane helices, the region that lies 

on the inner face of the host cell or the C-terminal coil of the dimeric coiled-coil.  

Three of the insertion mutants, F227W, I446W and F514W, were not found to 

express well.  It was therefore decided that these three mutants would not be 
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used in subsequent experiments using purified IpaB.  These three constructs will 

need to be remade in future studies. 

 To examine what is occurring at the protein level for these different IpaB 

mutants, the wildtype and single Trp mutant proteins were co-expressed with 

their IpgC chaperone in E. coli BL21 (DE3).  They were then purified by Ni++ 

affinity chromatography using a His-tag located at the N-terminus of IpaB.  IpaB 

was then separated from its chaperone IpgC using a mild detergent to study the 

effect of IpgC binding on IpaB’s structure and functional properties.  To 

determine areas that might be important for binding/interacting with IpgC the 

emission maximum of the various Trp residues in the IpaB/IpgC complex were 

compared to IpaB alone.  Three comparisons were made, including a) comparing 

the emission maximum of the wildtype IpaB/IpgC complex to IpaB alone, b) the 

mutant IpaB/IpgC complex to the wildtype IpaB/IpgC complex, and c) comparing 

the IpaB only mutants to the IpaB only wildtype.  In many cases, the Trp residues 

displayed a spectral shift to either the red or the blue during these comparisons.  

In some cases they displayed a significant spectral shift or a shift equal to or 

greater than 5 nm.  Blue shifts in Trp residues indicate that the regions containing 

the Trp are becoming more hydrophobic (less polar) than the Trp to which it is 

being compared, possibly meaning the residues are more buried within the 

protein.  Red spectral shifts indicate that the regions have become hydrophilic 

(more polar), possible meaning the residues are less buried or more exposed to 

the surrounding solvent.  The reason for these shifts is likely due to either direct 

interaction with IpgC or these regions undergo a significant conformational 
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change induced by the binding of IpgC.  We know IpgC is one third the size of 

IpaB.  It is likely that IpgC induces IpaB to unfold or become less compact for 

proper binding, thus altering solvent exposure for some of the residues. 

 The emission maxima data also allow us to determine changes in the Trp-

containing regions relative to the native Trp at residue 105.  This includes 

whether these residues become more hydrophobic or hydrophilic (more or less 

polar) and whether they are more or less buried/exposed within the structure of 

IpaB.  Relative to the native Trp105, we are able to say that residue L79 is more 

hydrophobic and more buried, F119 is very hydrophilic and more exposed, L133 

is hydrophilic and more exposed, D169 is very hydrophilic and more exposed, 

F275 is more hydrophobic and less buried, Y293 is hydrophilic and more 

exposed, F382 is very hydrophobic and more buried, F471 is hydrophilic and 

more exposed, and I553 is hydrophobic and more buried with in the structure of 

IpaB.  Most of the residues located near the transition between regions appear to 

be more exposed while the residues that lie in the interior of the predicted 

regions or the interior of the helices are more buried within the protein. 

 Fluorescence thermal unfolding analyses were used to monitor the 

stability of the various microenvironments containing the Trp residues and to 

demonstrate that most of the regions of IpaB are more thermally stable when 

bound to IpgC than when not bound to IpgC.  The lone exception to this turned 

out to be I553W, whose lower Tm when bound to IpgC may be due to the 

conformation imposed on the region by IpgC binding (which may be necessary 

for proper binding to IpgC).  It is possible that either a direct interaction of the Trp 
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or a nearby residue with IpgC causes the region to unfold earlier than when it is 

not bound to IpgC.  There does not appear to be any correlation with the change 

in unfolding of a region and its environment with respect to hydrophobicity or 

hydrophilicity.  Both types of environments display large and small thermal shifts 

in either direction.  It does appear that the closer a residue is to a turn or a region 

joining two helices the larger the shift in thermal stability it displays.  The reason 

for this is likely the same as with the emission maxima, that the region between 

the helices is less constrained and more likely to undergo a conformational 

change.   

 Förster resonance energy transfer studies allowed us to determine the 

amount of energy transferred between a specific Trp and the AEDANS, a probe 

linked to Cys309.  This allowed us to calculate the distance between the donor 

and acceptor probes.  Nine of the ten donor/acceptor pairs displayed 50% or 

more energy transfer indicating these Trp residues are 22Å or less away from 

Cys309.  Only one residue appeared to lie further from Cys309 than 22Å.  

F382W appears to lie approximately 32Å away from Cys309, indicating that the 

region predicted to lie on the inner face of the host cell membrane protrudes from 

the protein unlike any of the other regions.  This makes sense as this region is 

predicted to lie on the inner face of the host cell and it would thus need to 

protrude from the rest of the protein.  Once a topological map of IpaB is 

developed using these data, we will be able to determine if IpaB does indeed fold 

similar to IpaD, another S. flexneri TTSS protein whose structure IpaB has been 

predicted to resemble. 
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 Taken together, these data allow us to identify key regions/areas of IpaB 

induced in interactions with IpgC.  They also lay the groundwork for determining 

the structure of IpaB.  Key regions of IpaB may include the regions containing 

W105, F471 and I553, as each of these mutants displayed a significant spectral 

shift in emission maximum when the wildtype IpaB/IpgC complex was compared 

to the wildtype IpaB alone.  This is expected as the three residues are predicted 

to be located in the loops or turns connecting the helices.  Regions that connect 

helices tend to be more “floppy” or less constrained than the residues located 

within the helices.  All three of these residues also displayed a significant shift in 

thermal stability in response to the binding or interaction with IpgC.  It is 

interesting to note that two of the mutants that displayed a significant shift as a 

result of the binding of IpgC also had a complete loss of invasiveness and 

hemolysis indicating that the regions containing these insertions have undergone 

a change that disrupts the function of the protein.  From the thermal unfolding 

analyses the regions containing F119, D169, Y293, and F382, are likely key 

regions as they undergo the largest shift in thermal stability indicating the binding 

of IpgC may have a greater effect on the conformation of these regions 

compared to the other regions of IpaB. 

 The hypothesis that IpaB is a highly structured and complex molecule that 

is more thermally stable when bound to its chaperone was supported by this 

work.  Future plans would include further mutagenesis of the regions thought to 

be involved in IpgC binding to better characterize these interactions.  The regions 

to be studied include the N-terminal helix-turn-helix between residues 1-78, the 
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N-terminal transmembrane helices between residues 170-227 and 228-274, the 

region predicted to lie on the inner face of the host cell membrane between 

residues 311-381, and the C-terminal coil between residues 554-580, because 

these regions appear to be the most affected by the binding of IpgC.  This would 

increase our knowledge of the effects of IpgC binding on these areas.  Cys 

mutants could be also made at the same locations as the Trp insertions, after 

removing and replacing the native Cys309, to allow complementery studies of 

IpaB by utilizing the same fluorescence experiments and measuring the distance 

between the Cys insertions and the wildtype Trp105 to further develop a 

model/topological map of IpaB. 

 



 

88 
 

REFERENCES 
 

 

Alvarez-Martinez, C. E., and Christie, P. J., Biological Diversity of Prokaryotic 

Type IV Secretion Systems Microbiol Mol Biol Rev 73 (4), 775 (2009). 

 

Alto, N.M., Shao, F., Lazar, C.S., Brost, R.L., Chua, G., Mattoo, S., McMahon, 

S.A., Ghosh, P., Hughes, T.R., Boone, C., and Dixon, J.E., Identification of a 

bacterial type III effector family with G protein mimicry functions Cell 124 (1),133 

(2006). 

 

Aubert, D. F., Flannagan, R. S., and Valvano, M. A., A novel sensor kinase-

response regulator hybrid controls biolfilm formation and type VI secretion 

system activity in Burkholderia cenocepacia Infect Immun 76 (5), 1979 (2008). 

 

Bahrani, F. K., Sansonetti, P. J., and Parsot, C., Secretion of Ipa proteins by 

Shigella flexneri: inducer molecules and kinetics of activation Infect Immun 65 

(10), 4005 (1997). 

 

 



 

89 
 

Birket, S. E., Harrington, A. T., Espina, M., Smith, N. D., Terry, C. M., Darboe, N., 

Markham, A. P., Middaugh, C. R., Picking, W. L., Picking, W. D., Preparation and 

characterization of Translocator/Chaperone complexes and their component 

proteins from Shigella flexneri Biochem 46 (27), 8128 (2007). 

 

Blocker, A., Gounon, P., Larquest, E., Niebuhr, K., Cabiaux, V., Parsot, C., and 

Sansonetti, P. J., The tripartite type III secretion of Shigella flexneri inserts IpaB 

and IpaC into host membranes J Cell Biol 147 (3), 683 (1999). 

 

Blocker, A., Jouihri, N., Larquet, E., Gounon, P., Ebel, F., Parsot, C., Sansonetti, 

P., and Allaoui, A., Structure and composition of the Shigella flexneri "needle 

complex", a part of its type III secreton Mol Microbiol 39 (3), 652 (2001). 

 

Buchrieser, C., Glaser, P., Rusniok, C., Nedjari, H., D'Hauteville, H., Kunst, F., 

Sansonetti, P., and Parsot, C., The virulence plasmid pWR100 and the repertoire 

of proteins secreted by the type III secretion apparatus of Shigella flexneri Mol 

Microbiol 38 (4), 760 (2000). 

 

Cornelis, G. R., The type III secretion injectisome Nat Rev Microbiol 4 (11), 811 

(2006). 

 

Cornelis, G. R., and Van Gijsegem, F., Assembly and function of type III 

secretory systems Annu Rev Microbiol 54, 735 (2000). 

http://www.ncbi.nlm.nih.gov/pubmed/17041629?itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum&ordinalpos=9�


 

90 
 

Davis, R., Marquat, M. E., Lucius, D., and Picking, W. D., Protein-protein 

interactions in the assembly of Shigella flexneri invasion plasmid antigens IpaB 

and IpaC into protein complexes Biochem Biophys Acta 1429 (1), 45 (1998).   

 

DuPont, H. L., Levine, M. M., Hornick, R. B., and Formal, S. B., Inoculum size in 

shigellosis and implication for expected mode of transmission J Infect Dis 159 

(6), 1126 (1989). 

 

Epler, C. R., Dickenson, N. D., Olive, A. J., Picking, W. L., and Picking, W. D., 

Liposomes recruit IpaC to the Shigella flexneri type III secretion apparatus 

needle as a final step in secretion induction Infect Immun 77 (7), 2754 (2009). 

 

Espina, M., Ausar, S.F., Middaugh, C.R., Baxter, M.A., Picking, W.D., Picking, 

W.L., Conformational stability and differential structural analysis of LcrV, PcrV, 

BipD, and SipD from type III secretion systems Protein Sci 16 (4), 704 (2007). 

 

Espina, M., Olive, A. J., Kenjale, R., Moore, D. S., Ausar, S. F., Kaminski, R. W., 

Oaks, E. V., Middaugh, C. R., Picking, W. D., and Picking, W. L., IpaD localizes 

to the tip of the type III secretion system needle of Shigella flexneri Infect Immun 

74 (8), 4391 (2006). 

 

Flexner, S., On the etiology of tropical dysentery Bull Johns Hopkings Hosp 11, 

231 (1900). 



 

91 
 

Gerber, D. F., and Watkins, H. M., Growildtypeh of shigellae in monolayer tissue 

cultures J Bacteriol 82, 815 (1961). 

 

Guichon, A., Hersh, D., Smith, M.R., and Zychlinsky, A., Structure-function 

analysis of the Shigella virulence factor IpaB J Bacteriol 183 (4), 1269 (2001). 

 

Handa, Y., Suzuki, M., Ohya, K., Iwai, H., Ishijima, N., Koleske, A. J., Fukui, Y., 

and Sasakawa, C., Shigella IpgB1 promotes bacterial entry through the ELMO-

Dock180 machinery Nat Cell Biol 9 (1), 121 (2007). 

 

Hale, T. L., Genetic basis of virulence in Shigella species Microbiol Rev 55, 206 

(1991). 

 

Harper, J. R., and Silhavy, T. J., Principles of Bacterial Pathogenesis, edited by 

E. A. Groisman, 1st ed., Adademic Press, New York, NY, 2001. 

 

Harrington, A., Darboe, N., Kenjale, R., Picking, W. L., Middaugh, C. R., Birket, 

S., and Picking, W. D., Characterication of the interaction of single tryptophan 

containing mutant of IpaC from Shigella flexneri with phospholipid membranes 

Biochem 45 (2), 626 (2006). 

 

 

javascript:AL_get(this,%20'jour',%20'J%20Bacteriol.');�


 

92 
 

Hayward, R. D., Cain, R. J., McGhie, E. J., Phillips, N., Garner, M. J., and 

Koronakis, V., Cholesterol binding by the bacterial type III translocon is essential 

for virulence effector delivery into mammalian cells Mol Microbiol 56 (3), 590 

(2005). 

 

Hilbi, H., Modulation of phosphoinositide metabolism by pathogenic bacteria Cell 

Microbiol 8 (11), 1697 (2007). 

 

Hilbi, H., Moss, J. E., Hersh, D., Chen, Y., Arondel, J., Banerjee, S., Flavell, R. 

A., Yuan, J., Sansonetti, P. J., and Zychlinsky, A., Shigella-induced apoptosis is 

dependent on caspase-1 which binds to IpaB J Biol Chem 273 (49), 32895 

(1998). 

 

Holland, I. B., Schmitt, L., and Young, J., Type 1 protein secretion in bacteria, the 

ABC-transporter dependent pathway (review) Mol Membr Biol 22 (1-2), 29 

(2005). 

 

Hueck, C. J., Type III protein secretion systems in bacterial pathogens of animals 

and plants Microbiol Mol Biol Rev 62 (2), 379 (1998). 

 

Hume, P.J., McGhie, E.J., Hayward, R.D., and Koronakis, V., The purified 

Shigella IpaB and Salmonella SipB translocators share biochemical properties 

and membrane topology Mol Microbiol 49 (2), 425 (2003). 

http://www.ncbi.nlm.nih.gov/pubmed/15819617?itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum&ordinalpos=1�
http://www.ncbi.nlm.nih.gov/pubmed/15819617?itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum&ordinalpos=1�
http://www.ncbi.nlm.nih.gov/pubmed/9830039?itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum&ordinalpos=1�
http://www.ncbi.nlm.nih.gov/pubmed/9830039?itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum&ordinalpos=1�


 

93 
 

Islam, D., Bandholtz, L., Nilsson, J., Wigzell, H., Christensson, B., Agerberth, B., 

and Gudmundsson, G., Downregulation of bactericidal peptides in enteric 

infections: a novel immune escape mechanism with bacterial DNA as a potential 

regulator Nat Med 7 (2), 180 (2001). 

 

Islam, D., Veress, B., Bardhan, P.K., Lindberg, A. A., and Christensson, B., In 

situ characterization of inflammatory responses in the rectal mucosae of patients 

with shigellosis Infect Immun 65 (2), 739 (1997). 

 

Jacob-Dubuisson, F., Fernandez, R., and Coutte, L., Protein secretion through 

autotransporter and two-partner pathways Biochim Biophys Acta 1694 (1-3), 235 

(2004). 

 

Klauser, T., Krämer, J., Otzelberger, K., Pohlner, J., and Meyer, T. F,. 

Characterization of the Neisseria Iga beta-core. The essential unit for outer 

membrane targeting and extracellular protein secretion  J Mol Biol 234 (3), 579 

(1993). 

 

Krieg, N. R., and Holt, J. G., Family I. Enterobacteriaceae. Bergey's manual of 

systematic bacteriology  1, 408 (1984). 

 

Kruse, W., Ueberdie Ruhr als Volkskrankheit und ihrer erreger. Dtsch. Med 

Wocherschr 26, 637 (1900). 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Islam%20D%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Veress%20B%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Bardhan%20PK%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Lindberg%20AA%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract�
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Christensson%20B%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract�


 

94 
 

Kueltzo, L. A., Osiecki, J., Barker, J, Picking, W. L., Ersoy, B., Picking, W. D., 

and Middaugh, C. R., Structure-function analysis of invasion plasmid antigen C 

(IpaC) form Shigella Flexneri J Biol Chem 278 (5), 2792 (2003).   

 

Labrec, E.H., Schneider, H., Magnani, T.J., and Formal, S.B., Epithelial Cell 

Penetration as an Essential Step in the Pathogenesis of Bacillary Dysentery J 

Bacteriol 88 (5), 1503 (1964). 

 

Lakowicz, J. R., Principles of Fluorescence Spectroscopy, 3rd ed., Springer, New 

York, NY, 2006. 

 

Lunelli, M., Lokareddy, R. K., Zychlinsky, A., and Kolbe, M., IpaB/IpgC interaction 

defines binding motif for type III secretion translocator Proceed Nat Acdmy Sci 

106 (24), 9661 (2009). 

 

Mavris, M., Page, A.L., Tournebize, R., Demers, B., Sansonetti, P., and Parsot, 

C., Regulation of transcription by the activity of the Shigella flexneri type III 

secretion apparatus Mol Microbiol 43 (6). 1543 (2002). 

 

Maurelli, A. T., Baudry, B., d'Hauteville, H., Hale, T. L., and Sansonetti, P. J., 

Cloning of plasmid DNA sequences involved in invasion of HeLa cells by Shigella 

flexneri Infect Immun 49 (1), 164 (1985). 

 



 

95 
 

Menard, R., Sansonetti, P. J., and Parsot, C., Nonpolar mutagenesis of the ipa 

genes defines IpaB, IpaC, and IpaD as effectores of Shigella flexneri entry into 

epithelial cells J Bacteriol 175 (18), 5899 (1993).  

 

Menard, R., Sansonetti, P., and Parsot, C., The secretion of the Shigella flexneri 

Ipa invasions is activated by epithelial cells and controlled by IpaB and IpaD 

Embo J 13 (22), 5293 (1994). 

 

Menard, R., Sansonetti, P., Parsot, C., and Vasselon, T., Extracellular 

association and cytoplasmic partitioning of the IpaB and IpaC invasions of S. 

flexneri Cell 79 (3), 515 (1994). 

 

Mounier, J., Vasselon, T., Hellio, R., Lesourd, M., and Sansonetti, P. J., Shigella 

flexneri enters human colonic Caco-2 epithelial cells through the basolateral pole 

Infect Immun 60 (1), 237 (1992).   

 

Niebuhr, K. Giuriato, S., Pedron, R., Philpott, D. J., Gaits, F., Sable, J., Sheetz, 

M. P., Parsot, C., Sansonetti, P. J., and Payrastre, B., Conversion of 

PtdIns(4,5)P(2) into PtdIns(5)P by the S. flexneri effector ipgD reorganizes host 

cell morphology Embo J 21 (19), 5069 (2002). 

 

Niyogi, S. K., Shigellosis J Microbiol 43 (2), 133 (2005). 

 



 

96 
 

O'Brien, A. D., LaVeck, G. D., Griffin, D. E., and Thompson, M. R., 

Characterization of Shigella dysenteriae 1 (Shiga) toxin purified by anti-Shiga 

toxin affinity chromatography Infect Immun 30 (1), 170 (1980). 

 

Olive, A. J., Kenjale, R., Espina, M., Moore, D. S., Picking, W. L., and Picking W. 

D., Bile salts stimulate recruitment of IpaB to the Shigella flexneri surface, where 

it colocalizes with IpaD at the tip of the type III secretion needle Infect Immun 75 

(5), 2626 (2007). 

 

Owen, R. L., Pierce, N. F., Apple, R. T., and Cray, W. C. Jr., M cell transport of 

Vibrio cholerae from the intestinal lumen into Peyer's patches: a mechanism for 

antigen sampling and for microbial transepithelial migration J Infect Dis 153 (6), 

1108 (1986). 

 

Paetzold, S., Lourido, S., Raupach, B., and Zychlinsky, A., Shigella flexneri 

phagosomal escape is independent of invasion Infect Immun 75 (10), 4826 

(2007). 

 

Page, A. L., Ohayon, H., Sansonetti, P. J., and Parsot, C., The secreted IpaB 

and IpaC invasions and their cytoplasmic chaperone IpgC are required for 

intercellular dissemination of Shigella flexneri Cell Microbiol 1 (2), 183 (1999). 

 



 

97 
 

Page, A. L., Fromont-Racine, M., Sansonetti, P., Legrain, P., and Parsot, C., 

Characterization of the interaction partners of secreted proteins and chaperones 

of Shigella flexneri Mol Microbiol 42 (4), 1133 (2001). 

 

Parsot, C., Menard, R., Gounon, P., and Sansonetti, P. J., Enhanced secretion 

through the Shigella flexneri Mxi-Spa translocon leads to assemble of 

extracellular proteins into macromolecular structures Mol Microbiol 16 (2), 291 

(1995). 

 

Parsot, C., Hamiaux, C., and Page, A.L., The various and varying roles of 

specific chaperones in type III secretion systems Curr Opin Microbiol 6 (1), 7 

(2003). 

 

Parsot, C., Ageron, E., Penno, C., Mavris, M., Jamoussi, K., d'Hauteville, H., 

Sansonetti, P., and Demers, B., A secreted anti-activator, OspD1, and its 

chaperone, Spa15, are involved in the control of transcription by the type III 

secretion apparatus activity in Shigella flexneri Mol Microbiol 56 (6),1627 (2005). 

 

Phalipon, A., and Sansonetti, P. J., Shigella’s ways of manipulating the host 

intestinal innate and adaptive immune system: a tool box for survival? Immuno 

Cell Biol 85 (2), 119 (2007). 

 



 

98 
 

Phalipon, A., Mulard, L. A., and Sansonetti, P. J., Vaccination against shigellosis: 

is it the path that is difficult or is it the difficult that is the path? Microbes Infect 10 

(9), 1057 (2008). 

 

Picking, W.L., Mertz, J.A., Marquart, M.E., Picking, W.D., Cloning, expression, 

and affinity purification of recombinant Shigella flexneri invasion plasmid antigens 

IpaB and IpaC Protein Expr Purif 8 (4), 401 (1996). 

 

Picking, W.L., Coye, L., Osiecki, J.C., Barnoski Serfis, A., Schaper, E., and 

Picking, W.D., Identification of functional regions within invasion plasmid antigen 

C (IpaC) of Shigella flexneri Mol Microbiol 39 (1), 100 (2001). 

 

Picking, W. L., Nishioka, H., Hearn, P. D., Baxter, M. A., Harrington, A. T., 

Blocker, A., and Picking, W. D., IpaD of Shigella flexneri is independently 

required for regulation of Ipa protein secretion and efficient insertion of IpaB and 

IpaC into host membranes Infect Immun 73 (3), 1432 (2005). 

 

Pilonieta, M.C., and Munson, G.P., The chaperone IpgC copurifies with the 

virulence regulator MxiE J Bacteriol 190 (6), 2249 (2008). 

 

Purdy, G. E., Fisher, C. R., Payne, S. M., IcsA surface presentation in Shigella 

flexneri requires the periplasmic chaperones DegP, Skp, and SurA J Bacteriol 

189 (15), 5566 (2007). 



 

99 
 

Pukatzki, S., Ma, A. T., Sturtevant, D., Krastins, B., Sarracino, D., Nelson, W. C., 

Heidelberg, J. F., and Mekalanos, J. J., Identification of a conserved bacterial 

protein secretion system in Vibrio cholerae using the Dictyostelium host model 

system Proc Natl Acad Sci 103 (5), 1528 (2006). 

 

Russel, M., Macromolecular assembly and secretion across the bacterial cell 

envelope: Type II protein secretion systems J Mol Biol 279, 485 (1998). 

 

Sams, C. F., Friedman, E. B., Burgum, A. A., Yang, D. S., and Matthews, K. S., 

Spectral Studies of Lactose Repressor Protein Modified with Nitrophenol 

Reporter Groups Journ Biological Chem 252 (10), 3153 (1977). 

 

Sansonetti, P. J., Arondel, J., Cantey, R., Prevost, M. C., and Huerre, M., 

Infection of rabbit Peyer’s patches by Shigella flexneri: effect of adhesive or 

invasive bacterial phenotypes on follicle-associated epithelium Infect Immun 64 

(7), 2752 (1996). 

 

Sansonetti, P. J., d’Hauteville, H., Formal, S. B., and Toucas, M., Plasmid-

mediated invasiveness of “Shigella-like” Escherichia coli Ann Microbiol (Paris) 

133 (3), 351 (1982). 

 



 

100 
 

Sansonetti, P. J., Kopecko, D. J., and Formal, S. B., Shigella sonnei plasmids: 

evidence that a large plasmid is necessary for virulence Infect Immun 34 (1), 75 

(1981). 

 

Sansonetti, P. J. Kopecko, D. J., and Formal, S. B., Involvement of a plasmid in 

the invasive ability of Shigella flexneri Infect Immun 35 (3), 852 (1982).  

 

Sansonetti, P. J., Phalipon, A., Arondel, J., Thrumalai, K., Banerjee, S., Akirn, S., 

Takeda, K., and Zychlinsky, A., Caspase-1 activation of IL-1 beta and IL-18 are 

essential for Shigella flexneri-induced inflammation Immunity 12 (5), 581 (2000). 

 

Sansonetti, P.J., Ryter, A., Clerc, P., Maurelli, A.T., and Mounier, J., 

Multiplication of Shigella flexneri within HeLa cells: lysis of the phagocytic 

vacuole and plasmid-mediated contact hemolysis Infect Immun 51 (2), 461 

(1986). 

 

Schroeder, G. N. and Hilbil, H., Molecular pathogenesis of Shigella spp.: 

controlling host cell signaling, invasion, and death by type III secretion Clin 

Microbiol Rev 21 (1), 134 (2008). 

 

Sereńy, B., Experimental keratoconjunctivitis Shigellosa Acta Microbiol Acad Sci 

Hung 4 (4), 367 (1957). 

 



 

101 
 

Shiga, K., Sekiri byogen kenkyu hokoku dia-ichi (first report on etiologic research 

of dysentery) Saikingaku Zasshi 25 (1), 790 (1897). 

 

Shiga, K., Observation on the epidemiology of dysentery in Japan Philippine J of  

Sci 1, 485 (1906). 

 

Stensrud, K.F., Adam, P.R., La Mar, C.D., Olive, A.J., Lushington, G.H., 

Sudharsan, R., Shelton, N.L., Givens, R.S., Picking, W.L., and Picking, W.D., 

Deoxycholate interacts with IpaD of Shigella flexneri in inducing the recruitment 

of IpaB to the type III secretion apparatus needle tip J Biol Chem 283 (27),18646 

(2008). 

 

Sur, D., Ramamurthy, T., Deen, J., and Bhattacharya, S. K., Shigellosis: 

challenges & management issues Indian J Med Res 120, 454 (2004). 

 

Takeuchi, A., Electron microscope studies of experimental Salmonella infection. 

I. Penetration into the intestinal epithelium by Salmonella typhimurium Am J 

Pathol 50 (1), 109 (1967). 

 

Terry, C. M., Picking, W. L., Birket, S. E., Flentie, K., Hoffman, B. M., Barker, J. 

R., and Picking, W.D. The C-terminus of IpaC is required for effector activities 

related to Shigella invasion of host cells Microb Pathog 45 (4), 282 (2008). 

 



 

102 
 

Tran Van Nhieu, G., Caron, E., Hall, A., and Sansonetti, P. J., IpaC induces actin 

polymerization and filopodia formation during Shigella entry into epithelial cells 

Embo J 18 (12), 3249 (1999). 

 

van der Goot, F.G., Tran van Nhieu, G., Allaoui, A., Sansonetti, P., and Lafont, 

F., Rafts can trigger contact-mediated secretion of bacterial effectors via a lipid-

based mechanism J Biol Chem 279 (46), 47792 (2004). 

 

Watanabe, H., Arakawa, E., Ito, K., Kato, J., and Nakamura, A., Genetic analysis 

of an invasion region by use of a Tn3-lac transposon and identification of a 

second positive regulator gene, invE, for cell invasion of Shigella sonnei: 

significant homology of invE with ParB of plasmid P1 J Bacteriol 172 (2), 619 

(1990). 

 

Wassef, J. S., Keren, D. F., and Mailloux, J. L., Role of M cells in initial antigen 

uptake and in ulcer formation in the rabbit intestinal loop model of shigellosis 

Infect Immun 57 (3), 858 (1989). 

 

Watarai, M., Tobe, T., Yoshikawa, M., and Sasakawa, C., Contact of Shigella 

with host cells triggers release of Ipa invasions and is an essential function of 

invasiveness Embo J 14 (11), 2461 (1995). 

 



 

103 
 

Watkins, H. M., Some attributes of virulence in Shigella Ann N Y Acad Sci. 88, 

1167 (1960). 

 

Winans, S. C., Burns, D. L., and Christie, P. J., Adaptation of a conjugal transfer 

system for the export of pathogenic molecules Trends Microbiol 4, 64 (1996). 

 

Yoshida, S., Handa, Y., Suzuki, T., Ogawa, M., Suzuki, M., Tamai, A., Abe, A., 

Katayama, E., and Sasakawa, C., Microtubule-severing activity of Shigella is 

pivotal for intercellular spreading Science 314 (5801), 985 (2006). 

 

Yoshikawa, M., Saskawa, C., Makino, S., Okada, N., Lett, M. C., Sakai, T., 

Yamada, M., Komatsu, K., Kamata, K., Kurata, T., and et al., Molecular genetic 

approaches to the pathogenesis of bacillary dysentery Microbiol Sci 5 (11), 333 

(1988). 

 

Zheng, J., and Leung, K. Y., Dissection of a type VI secretion system in 

Edwardsiella tarda Mol Microbiol 66 (5), 1192 (2007). 

 

Zychlinsky, A., Kenny, B., Menard, R., Prevost, M. C., Hooand, I. B., and 

Sansonetti, P. J., IpaB mediates macrophage apoptosis induced by Shigella 

flexneri Mol Micrbiol 11 (4), 619 (1994). 

 



 

 

VITA 
 

Christopher Michael Sheehan 
 

Candidate for the Degree of 
 

Master of Science 
 
Thesis:    SECONDARY STRUCTURAL ANALYSIS OF SHIGELLA 

FLEXNERIA INVASION PLASMID ANTIGEN B (IPAB) 
 
 
Major Field:  Microbiology 
 
Biographical: 
 

Personal Data:   
 
Christopher Michael Sheehan 
620 S. Broad 
Guthrie, OK 73044 
 
Education: 
 
Completed the requirements for the Master of Science in Microbiology at 
Oklahoma State University, Stillwater, Oklahoma in May, 2010. 

 
Completed the requirements for the Bachelor of Science in Microbiology 
at Oklahoma State University, Stillwater, OK in May 2007. 
 
Experience:   
 
Working with Dr. Wendy Picking on the secondary structure analysis of 

IpaB of Shigella flexneri since June of 2009. 
 
Working with Dr. Anand Sukhan on the molecular and genetic analysis 

of the mechanisms of type III secretion in the bacterial pathogens 
Pseudomonas aeurginosa and Escherichia coli from August 2006 
to May 2006. 

 
Professional Memberships:   
 
America Society for Microbiology 
 

 



 

 
ADVISER’S APPROVAL:   Dr. Wendy Picking 
 
 
 

 

Name: Christopher Michael Sheehan                           Date of Degree: May, 2010 
 
Institution: Oklahoma State University                 Location: Stillwater, Oklahoma 
 
Title of Study: SECONDARY STRUCTURAL ANALYSIS OF SHIGELLA 

FLEXNERIA INVASION PLASMID ANTIGEN B (IPAB) 
 
Pages in Study: 112            Candidate for the Degree of Master of Science 

Major Field: Microbiology 
 
Scope and Method of Study:  
This study focuses on the secondary structure of invasion plasmid antigen B 

(IpaB) of Shigella flexneri and the effects on it by the binding of invasion 
plasmid gene C (IpgC) along with sites of interaction with IpgC.  IpgC is 
the molecular chaperone of IpaB that is responsible for keeping IpaB from 
associating with invasion plasmid antigen C (IpaC) or degrading before it 
is secreted.  A library of single tryptophan containing mutants was created 
by replacing the native tryptophan (Trp) at position 105 with phenylalanine 
(Phe) and using this as a template to make twelve mutants by inserting 
Trp at places throughout the length of the protein.  Fluorescence 
spectroscopy utilizing the naturally fluorescent properties of Trp was used 
to determine areas of interaction with IpgC and the effects of IpgC’s 
binding on IpaB’s secondary structure and topology. 

 
Findings and Conclusions: 
Invasion and hemolysis assays showed that the native Trp at residue 105 could 

be replaced with Phe and used as a template to make single insertion 
mutants.  The same assays showed that several of the mutants had no 
effect on the protein’s function while some of the mutants showed no 
invasiveness or hemolysis but no significant structural changes.  Three 
mutants were determined to be problematic and their use was 
discontinued.  The emission maximum scans showed that many of the 
mutants were not affected by the binding of IpgC.  Two mutants plus the 
wildtype IpaB displayed significant spectral shifts to the red, indicating that 
the environment around that Trp became more polar (more hydrophilic) 
when not bound to IpgC.  The thermal unfolding analysis showed that 
IpaB was more stable when in complex with IpgC than when alone except 
in one case (for the mutant I553W).  The Förster resonance energy 
transfer (FRET) studies provided information to determine the tertiary 
structure features of IpaB.  These data support the hypothesis that IpaB is 
a highly structured and complex molecule that is more thermally stable 
when bound to its chaperone IpgC. 


	SECONDARY STRUCTURAL ANALYSIS OF
	SHIGELLA FLEXNERI INVASION
	PLASMID ANTIGEN B (IPAB)
	By
	Submitted to the Faculty of the
	SECONDARY STRUCTURAL ANALYSIS OF
	SHIGELLA FLEXNERI INVASION
	PLASMID ANTIGEN B (IPAB)
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER I
	INTRODUCTION
	CHAPTER II
	MATERIALS AND METHODS
	CHAPTER III
	TRYPTOPHAN SCANNING MUTAGENESIS OF IpaB
	REFERENCES
	VITA
	Christopher Michael Sheehan
	Candidate for the Degree of
	Thesis:    SECONDARY STRUCTURAL ANALYSIS OF SHIGELLA FLEXNERIA INVASION PLASMID ANTIGEN B (IPAB)
	Major Field:  Microbiology
	Title of Study: SECONDARY STRUCTURAL ANALYSIS OF SHIGELLA FLEXNERIA INVASION PLASMID ANTIGEN B (IPAB)

