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CHAPTER 1 
 

INTRODUCTION 
 

Design is a human activity of configuring an artifact such that the performance of the 

resulting solution meets certain functional and other requirements (Sen & Yang, 1998).   

Biegler and coauthors (1997) depicted design as a creative process of discovering why, 

what, and how an expected system should be devised.   Different design methods have 

been used at different times in history (Beder, 1993).  Modern industrialization has 

catalyzed ever-increasing scientization and mathematization in design.  For most 

engineering systems in particular, the steps and methods of executing a regular design 

have reached a high level of maturity (Suh, 2001; Bieglar et al., 1997).   

 

Since the official emergence in 1987, the concept of “sustainable development” or 

“sustainability” has gone through a dramatic development in a broad variety of 

theoretical and practical contexts.  In the recent 5-10 years, escalating demand surged in 

many industrial/business fields calling for tangible commitment towards sustainability.  

Engineers, along with other practitioners, have been urged to embrace and implement the 

concept of sustainability.  However, two stumbling blocks exist, namely, conceptual 

ambiguity and scientific uncertainty, which, as introduced by Manion (2002), have 

severely hampered sustainability from being put into engineering practice.
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Dissenting opinions exist among engineers in response to those difficulties.  Some 

understand sustainability as a philosophical ideal to be aspired after and a radical part of 

engineering ethics to be apprehended, while the others insisted that sustainability should 

be fully operationalized and incorporated into daily nut-and-bolts practice rather than just 

being valued.  Recent witnesses indicated that the later has gradually become a 

mainstream voice (Sikdar, 2003a; ASCE, 2004; Abraham, 2004).  However, 

implementing sustainability is easier said than done (Frosch, 1999).  As far as 

engineering design is concerned, few designers are assertive about what exactly needs to 

be done, or even where to start, to practically achieve sustainability.  This can be partly 

attributed to the fact that the traditional engineering training and skills are inadequate to 

provide a successful solution to certain new challenges associated with sustainability.  

 

Like many other design problems, three fundamental questions need to be first 

elaborated in this context, which, as just mentioned, are why, what, and how does one 

design for sustainability? 

 

1.1 WHY DOES ONE DESIGN FOR SUSTAINABILITY?  

Heightened anxiety about the “unsustainable” status quo and ubiquitous desire for a 

better living constitute major stimuli for people to take actions in pursuit of sustainability.  

However, limited by humans’ cognitive horizon, it wasn’t until the recent 20 years that 

the motive for sustainability was recognized by the public.  
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1.1.1 A Brief Retrospect 

The report “Our Common Future,” also known as the Brundtland Report, was often 

taken as a starting point of contemporary “sustainability” or “sustainable development.”  

However, like any other ideological breakthrough, there were many conceptual 

precursors as well as landmark events in history that have led to the concept of 

sustainability today.   

 

A wave of environmental movements starting from the 1960s greatly boosted the 

public awareness on the issues of ecosystem deterioration, global pollution, resource 

exhaustion, and so forth.  Those pioneering efforts, represented by the seminal book 

“Silent Spring” by Rachel Carson (1962), culminated in 1972 with the historical United 

Nations Conference on Human Environment in Stockholm, Sweden.  The Stockholm 

Conference initiated a global forum on the issues that link environmental concerns to 

economic development.  More importantly, it marked a major step forward in the 

emergence of modern sustainability (Edwards, 2000).  Almost at the same time, the Club 

of Rome consisting of a group of eminent scientists and concerned citizens issued a 

booked entitled “The Limit to Growth.”  It was concluded in this book that humanity is 

going to exceed most of the major ecological limits and exhaust the planet’s carrying 

capacity in the next foreseeable decades to come (Byrne & Hoffman, 1996).   

 

Numerous ideas and terminologies have evolved since the Stockholm Conference, 

which variously state a similar theme: the concurrency of preserving environment and 

improving life.  Two conceptual breakthroughs emerged in the early 1980s.  The 
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International Union for the Conservation of Nature and Natural Resources in its 1980 

report “World Conservation Strategy” first brought up the issues about “living resource 

conservation for sustainable development,” which transcended the traditional 

conservation of only materials (Mebratu, 1998).  Another breakthrough was the landmark 

publication “Building a Sustainable Society” by Lester Brown (1981).  This book further 

garnered wider public attention to the relevant issues and particularly to the term 

“sustainability.”  Picking up the ideas from the aforementioned cornerstone work, the 

World Commission on Environmental and Development (WCED, 1987) published its 

famous report “Our Common Future,” in which the term “sustainable development” for 

the first time was explicitly stated and formalized.   

 

1.1.2 Recent Trends   

After the WCED, sustainability interest has quickly grown globally, attracting 

people’s attention worldwide at all levels.  Notably, the United Nations Conference on 

Environment and Development (UNCED) in Rio de Janeiro, Brazil and the World 

Summit on Sustainable Development (WSSD) in Johannesburg, South Africa were held 

in 1992 and 2002 respectively.  These two international conferences, also referred to as 

the first and second Earth Summit, raised a great deal of issues (e.g. poverty alleviation, 

environmental preservation, economic growth, etc.) and produced a series of important 

documents and guidelines. 

 

From the 1990s, driven by overwhelming public support, sustainability started to 

bounce beyond political prate and gained its momentum in a wide range of day-to-day 
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human practices.  As a result, many mainstream industrial/business activities were 

increasingly connected to sustainability, which include but are not limited to: 

performance reporting to both regulators and stakeholders; policy or investment analysis; 

technology innovation; risk management; propaganda and public relations; and employee 

training, and so forth (Jin & High, 2004a).  As an example, according to KPMG (2002), 

45% of the Global Fortune Top 250 companies published a separate corporate report on 

sustainability (environmental and social issues), while this number for the 100 top U.S. 

companies was 36% by 2002.  The reporting rate in many process industry sectors, such 

as chemicals and synthetics, mining, pulp and paper, was 100%!  

 

Chemical engineers, for instance, have been under enormous pressure to contribute to 

sustainability, because their practice, perhaps more than any other technical discipline, 

intensively involves such elements (e.g. natural resource and energy consumption, 

ecosystem impact) that are critical to making a reality of the notion of sustainability 

(Sikdar, 2003a; Hammond, 2000).  The American Institute of Chemical Engineers has 

announced sustainability as one of its four strategic growth areas (AICHE, 2001) and 

launched the Institute of Sustainability to initiate and foster future discussion and 

research.  As pointed out by Batterman (2003) who envisioned the challenges facing 

chemical engineering profession in the next 10 years, sustainability essentially 

“encourages us to do differently, instead of stopping us from doing.”  To achieve this 

goal, many issues need to be tackled.  According to the International Council of Chemical 

Associations (ICCA, 2002), one of them is “to evaluate alternative products and 

manufacturing processes, and substituting more sustainable products where appropriate.” 
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1.2 WHAT IS SUSTAINABILITY IN A DESIGN CONTEXT 

 What is sustainability? The answer to this long-standing question has never been 

easy.  On the other hand, the same question remains perplexed in a design context.  Then, 

what is sustainability in the context of a design? 

 

1.2.1 The Concept of Sustainability 

By 1992, only five years since the WCED, some seventy different definitions and 

interpretations of sustainability have circulated (Holmberg, 1992).  In the years that 

follow, there was a huge diversity in defining sustainability (Mebratu, 1998; Edwards, 

2000).   

 

1.2.1.1 Different Views 

Though a large number of disparate semantic explanations exist, various 

interpretations can be essentially sorted into three classes of views.  The first view 

stresses on social justice and distributional equity, which advocates the fairly developed 

well-being of the human society, not only within a same generation (intra-generation) but 

also between different generations (inter-generation).  The representing statement of this 

view is the oft-heard quote from the Brundtland Report, in which sustainable 

development is expressed as “the development that meets the needs of the present 

without compromising the ability of future generations to meet their own needs.”  A 

similar elaboration was adopted in (U.S. Presidential Council on Sustainability 

Development, 1994).  McDaniels (1994) pointed out that this kind of effort that casts 
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sustainability questions in terms of ethics and social justice are of limited help to 

operationalize sustainability, attributed to the complexity in determining what justice is 

and the habitual resistance of changing the status quo.   

 

The other two views, as described by Farrell (Farrell, 1998), are the critical limits 

view and the competing objectives view.  The former gives emphasis to the critical limits 

and/or constraints on development.  Bossel (1999) stated four types of physical 

constraints, namely, 1) natural laws and logic rules; 2) global environment; 3) solar 

energy flow and material resource stocks; and 4) the planet’s carrying capacity.  These 

constraints define important “accessible space,” only within which the successful 

development can be achieved.  This view was adopted by (World Conservation Union, 

United Nations Environmental Programme, and Worldwide Fund for Nature, 1991).   

 

The competing objective view has perhaps received the most support as far as 

implementation is concerned.  This view specifically addresses the conflict arising from 

the high dimensionality of the concept, and is based on the fact that the simultaneous 

realization of a multitude of environmental, economic and social objectives can hardly be 

achieved in the real world.  To this end, sustainability is sometimes referred to as solving 

a “trilemma.”  The Triple Bottom Line Theory (Elkington, 1997), as illustrated in Figure 

1-1, presents a perfect elaboration on those competing goals in pursuit of a “sustainable” 

business in the 21st century.    
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Environmental 
stewardship 

Economic 
growth 

Eco-efficiency 

Social-economic 

Social 
progress 

Social-ecological 

 SUSTAINABILITY

Figure 1-1 Triple Bottom Line of sustainability (revised from (Sikdar, 2003a, b)) 
 

1.2.1.2 Key Characteristics 

Many have expressed growing frustration about divergent understandings and 

ceaseless debates on what sustainability is really about, to cite a few: “arguably overused 

catchword” (Graedel and Klee, 2002), “devalued concept and just a cliche” (Holmberg, 

1992) and “bleeding ground for disagreement” (Daly, 1996).  The incisive remarks 

presented in (Gladwin et al., 1995) pointed out that the concept of sustainability “will 

remain fuzzy, elusive, contestable, ideologically controversial for some time to come.”  It 

is true, given that new semantic interpretation often ends up with extra vagueness arising 

from the ambiguity associated with the diction applied.  As a matter of fact, the growing 

consensus has gradually formed in the sustainability community, which, instead of trying 

to come up with a definition every one would agree on, tends to fully recognize those 

inherent difficulties/characteristics in interpreting and implementing the concept.  As a 

consequence, it is more desired to develop the methods that are suited with accordance to 

those common characteristics, rather than any specific interpretation.   
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Therefore, some common characteristics that most affect the way in which people 

understand and handle sustainability are described below.  They are concluded as 

vagueness, complexity, transdisciplinarity and flexibility, respectively.  

 

Vagueness – Like “democracy” and “liberty,” the term "sustainability" was invented 

and constantly redefined as a means to fulfill certain linguistic needs.  Thus, its meaning 

can never possibly catch up with the preciseness and comprehensiveness that are required 

by an ever-changing world.  In this sense, the semantic uncertainty associated with 

sustainability will infinitely last.  However, fuzziness has to be somehow reduced to the 

lowest extreme, where sustainability evolves from the “qualitative” to the “quantitative” 

regime. 

 

Complexity – How many dimensions does sustainability have?  The answer can be 

partly revealed by the number of different indicators applied, which, however, has 

exhibited dramatic variety.  For instance, a set of sustainability metrics released by the 

Center of Waste Reduction Technology (CWRT) contains 10 metrics (CWRT, 2000), 

while 134 indicators are proposed in (UNCSD, 1996).  Nevertheless, none of them is 

expected to be comprehensive.  The sustainability concerns are so exhaustive that even 

experts could not perfectly enumerate them.  More importantly, the spectrum of 

sustainability varies with one’s value judgement, knowledge horizon and individual 

perspective.   
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Transdisciplinarity – Mihelcic and coworkers (2003) portrayed the emergence of 

sustainability science and engineering as a new metadiscipline, which spans across 

multiple disciplines: physics, chemistry, economics, sociology, ecology and biology, to 

cite but a few.  This has led to the vacancy of an accepted general theoretical foundation 

at least up until today.  Researchers have explored statistics (e.g. fisher information, 

Cabezas, 2002) as well as thermodynamics (e.g. exergy and emergy) theories to work as 

an interdisciplinary platform for sustainability.  However, no single theory has thus far 

worked satisfactorily over the full range of sustainability.  Continuing to search for a 

general theory or giving respective consideration to each different dimension will form 

two distinct routes for studying sustainability in the next couple of years.   

 

Flexibility – The above discussions naturally lead to the fourth characteristic: 

flexibility, which basically reflects the variety in answering the question "what does 

sustainability really mean?"  Obviously, there is no unique correct answer, as 

sustainability could mean very different things to different people.  Various parties whose 

interests and perspectives vary may choose to handle sustainability in their own manner.  

It is noted that flexibility, both ideologically and operationally, is embodied in “width” 

(what is concerned) and “depth” (how sophisticated a concern is).    

 

1.2.2 Sustainability in a Design Context 

As elaborated in Section 1.2.1, sustainability is such a concept that has broad appeal 

yet little specificity (Parris & Kates, 2003), wide acceptance yet diverse interpretations 

(Mebratu, 1998), and rich meanings yet scanty operational tools (Herkert et al., 1995).  
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This has given rise to significant confusion and inconsistency in linking the concept of 

sustainability to a specific design.  An urgent question that needs to be first answered, as 

asked by Munda (2005), is “sustainability of what and whom?” 

 

Let’s take chemical process design as an example.  Depreciated by age, wear, market 

condition change, and new technology innovation, an industrial plant can only have a 

limited lifespan.  Hence, a so-called “sustainable” design, to some extent, is misleading, 

as it does not really mean to keep the manufacturing activity last for a prolonged period 

of time.  Instead, a process is said to be sustainable when it is designed in such a manner 

that certain “factors” essential to sustain the mankind as a whole will not be potentially 

harmed.  But what are those “factors?”   

 

1.2.2.1 Numerous Aspirations 

Humans rely on many things to sustain their lives.  A basic living requires air to 

breathe, water to drink, place to live, food to eat, clothes to wear, vehicle to travel, light 

to see, to cite just a few.  It would cost even more to meliorate the living condition and 

maintain it at a high level.  Figure 1-2 illustrates a possible list of specific concerns one 

may have in designing a sustainable chemical process.  Obviously, some of these 

concerns are environment-related, while the others fall in either economic or social 

aspect.   
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Design for 
sustainability? 

Energy efficiency 
Global warming 

Poverty

Acid rain 

Biodiversity

Renewable energy

Human health 
Eduction 

Ozone depletion 

Water shortage Landscape

Clean air

Job creation Smog 
Ecosystem resilience 

Social walfare Economic development 

Natural resources 

Climate change 

Population growth
Eutrophication  

Figure 1-2 Possible concerns about sustainability in a design 
 

It should be noted that the list in Figure 1-1 is not exhaustive.  New issues may arise.  

As a matter of fact, sustainability has been in a persistent process of broadening its scope 

up until now.  If such a tendency lasts, one possible aftermath could be “anything is 

sustainability.”  This means that anyone does not even have to be farfetched to prove 

his/her work is actually sustainability-related.  After all, there’s really not much left 

besides three fuzzily defined pillars of sustainability (i.e. environmental stewardship, 

economic prosperity, and social welfare).   

 

1.2.2.2 A Pluralistic and Pragmatic Perspective 

On the other hand, not all of concerns in Figure 1-2 are necessarily involved in a 

particular design.  How many and what concerns are considered have to be determined on 

a case-by-case basis.  Consider the following questions: 

� A company developed a new product that has a bigger profit margin than the old 

product.  Is this new product more sustainable? 

� A professor invented a novel technology to generate energy from renewable sources.  

Is this invention more sustainable compared with those technologies using 

unrenewable fossil fuel? 
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� A manufacturing process recently reduced its toxic release by implementing some 

pollution prevention measures.  Is the current process more sustainable?   

 

At first glance, an intuitive answer seems to be “YES” to all three questions, as those 

(i.e. profitable business, renewable energy, and less environmental pollution) are exactly 

what people are talking about with respect to sustainability.  However, a deliberative 

analysis could possibly overthrow the initial verdict, if the following alternative questions 

are asked:   

� Is the profitable new product (or its production process) energy intensive?  

� If the renewable technology (e.g. biomass- or solar-based) is applied in a large-scale, 

is it friendly to the surrounding ecosystem? 

� Is the payoff of pollution prevention investment adequate and prompt?   

 

From the above questions as well as the conceptual discussion in Section 1.2.1, it is 

clear that lots of issues may arise when sustainability is referred to in general.  For 

different practitioners, sustainability means different things.  However, people tend to 

interpret sustainability from a pluralistic perspective, rather than any one fold orientation.  

For instance, to qualify for being “sustainable,” a chemical process needs to tally with 

multiple general criteria, which include: 

� Meeting human needs and aspirations (prosperity, equity, health, security, etc.) 

� Consuming less matters (minerals, forest, landscape, etc.)  

� Consuming less energy (fossil fuel, solar, wind, nuclear, biomass etc.) 

� Producing less impacts on natural systems (air, water, soil, ecosystem) 
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1.3 HOW DOES ONE DESIGN FOR SUSTAINABILITY? 

Over the past years, engineering solutions to achieve sustainability have been flooded 

with all sorts of buzzwords, such as green chemistry, green engineering, cleaner 

production, industrial ecology, life cycle analysis, 3R (recycle, reuse, reduce), 4 or 10 

factors, responsible care, waste minimization, eco-efficiency, eco-design, and a lot more.  

In literature, a myriad of techniques/methods/procedures/tools have been entitled 

“sustainable” by their inventers or supporters and claimed to be capable of leading to a 

somewhat “sustainable” design.  However, are those techniques really sustainable? And 

what is the procedure for conducting a sustainable design?    

 

1.3.1 Example “Sustainable” Techniques  

Many techniques are worth a large discourse by themselves.  Therefore, it is only 

possible in this subsection to present a glimpse of some representative techniques, which 

are selected from a huge body of existing techniques particularly in the area of chemical 

process design.  

 

1.3.1.1 Measuring Sustainability Performance 

Sustainability indicators/metrics is one of the most active research areas during the 

past 15 or so years.  According to IIDS (2000), more than 500 different sets of 

sustainability indicators/metrics have been or are being developed.  Parris and Kates 

(2003) and Azapagic and Perdan (2000) offered insightful overviews on characterizing 

and measuring sustainability. At process level, the American Institute of Chemical 
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Engineers (CWRT, 2000) and the (British) Institute of Chemical Engineers (IChemE, 

2003) have each published a set of sustainability metrics, respectively.  Similar endeavors 

have also been made extensively by industry, academia and governmental agencies, to 

cite just a few, ICI’s environmental burden indices (Wright et al., 1997); BASF’s eco-

efficiency analysis (Sailing & Wall, 2002; Shonnard et al., 2003); USEPA’s TRACI 

(Bare et al., 2003); sustainable process index by Narodoslawsky and Krotscheck (2000); 

and the sustainability metrics by BRIDGES to Sustainability (Beloff et al., 2002; 

Schwarz et al., 2002).  Each of these metrics/indicators can be applied to measure the 

extent to which a target process performs in terms of one interested aspect of 

sustainability (e.g. profit, energy use, material use, land use, various environmental 

impacts etc).  

 

1.3.1.2 Mitigating Environmental Impacts 

By the end of the last century, chemical engineers’ environmental commitments have 

evolved considerably, from the foremost dilution to end-of-the-pipe treatment, and 

further to source reduction.  In process design, numerous “green” or “clean” techniques 

have been developed.  Systematic reviews on different methods can be found in (Cano-

Ruiz & McRae, 1998) and (Yang & Shi, 2000).  Allen & Shonnard (2002) employed the 

title “green engineering” to refer to their collection of environmentally conscious design 

techniques.  Tsoka and coworker (2004) more recently reported 10 valuable tools and 10 

promising technologies for green chemical engineering identified by a panel of European 

senior industrialists.  Some most recognized techniques in this respect include process 

synthesis for waste minimization (Douglas, 1992), green chemistry and reaction pathway 
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design (Marteel et al., 2003), various pollution prevention measures for unit operations 

(Englehardt, 1993; Freeman, 1995), and process integration (Dunn & El-Halwagi, 2003).   

 

1.3.1.3 Conserving Energy and Materials  

Energy and material conservation is ranked the highest priority by many 

sustainability proponents (Hammond, 2000; Huesemann, 2003; Abraham, 2005).  This is 

not only because they may be vulnerable to depletion, but also that a lower consumption 

level usually means the reduced expenditure and environmental damage associated with 

the given energy or material during its entire life cycle.  For chemical process designers, 

energy and material conservation is achieved primarily by promoting efficiency (Arons et 

al., 2004; Hallale, 2001).  In literature, enormous successful techniques have been 

reported, which vary from advanced unit operation technologies, such as highly selective 

catalyst (Choudhary & Mamman, 2000), membrane separation (Feng & Huang, 1997), 

pressure swing adsorption (Mersmanne et al., 2000), to novel process integration tools, 

such as heat/mass exchange networks (HENs/MENs) (Dunn & El-Halwagi, 2003; 

Hallale, 2001), and recycling/reuse (Lange, 2002).  On the other hand, chemical 

engineers have made pioneering contribution to the development of renewable substitutes 

to the current nonrenewable sources of energy/material.  A prominent instance is various 

technologies (combustion, pyrolysis, gasification, fermentation, or liquefaction) of 

converting biomass to energy (Arons et al., 2004; McKendry, 2002).  The next immediate 

request would be to adopt renewable energy and materials in designs wherever available.  
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1.3.2 A Generic Design Process 

 Different goals have been in the spotlight of different design, such as design for 

profit, design for environment, and design for safety.  However, a design, in its prototype, 

often falls short of the designer’s expectation.  Therefore, further assessment and 

improvement are always needed, sometime iteratively, to achieve a final design with 

desired performance.  Figure 1-3 contains a simple flowchart illustrating such a 

procedure that is generic for a wide range of different designs.     
 

BASE CASE DESIGN 

IMPROVEMENT 

ASSESSMENT  

FINAL DESIGN 
Figure 1-3 Flowchart of a generic design procedure 

 
Both assessment and improvement techniques are of critical importance for the 

success of a design.  Clearly, all the techniques introduced in 1.3.1 essentially offer 

various fulfillments to either assessment or improvement in the sustainability context.  

However, are those techniques sufficient to provide a sustainable design? or does the 

generic procedure shown in Figure 1-2 apply to a design for sustainability? Those 

questions will be further explored in Chapter 2. 
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CHAPTER 2 

SUSTAINABLE DESIGN FRAMEWORK AND MULTIPLE CRITERIA 
DECISION ANALYSIS 

 
2.1 SUSTAINABLE DESIGN FRAMEWORK 

Implementing sustainability requires more than wishful thinking and rhetoric 

discourse (Bui, 2000).  Today, practitioners sometimes find themselves in an 

embarrassing situation.  On the one hand, various “sustainable” techniques abound, such 

as those reviewed in 1.3.1.  However, adding up those techniques does not yields an 

appropriate design, because each of them essentially offers a piecemeal solution that is 

based on “individual conviction or motivational case examples” (Paramanathan et al., 

2004).  On the other hand, people are still anxiously searching for a methodological 

framework that could operationalize the concept of sustainability, particularly allowing 

for controversial interpretations and various multidisciplinary details.  To this end, many 

authors have asserted that the biggest predicament for practicing sustainability lies in the 

absence of a widely accepted operational framework (Hall et al., 2000; Bakshi & Fiksel, 

2003).   

 

Figure 1-3 in Chapter 1 illustrated a typical design process from which a final design 

may result.  However, the challenges raised by the complex nature of sustainability 

exceed just assessment and improvement.  A more integrated design procedure is
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illustrated in Figure 2-1.  Contrasted to Figure 1-3, this integrated procedure features two 

additional building blocks, namely, problem framing and decision making.  Those two 

elements are critical parts of the overall infrastructure for achieving true sustainability.  

Unfortunately, they were often neglected or depreciated in the past.    
 

BASE CASE DESIGN 

IMPROVEMENT 
(ALTERNATIVE GENERATION) ASSESSMENT 

FINAL SUSTAINABLE DESIGN 

DECISOIN-MAKING 
(CONFLICT HANDLING)?

PROBLEM FRAMING  
(SYSTEM THINKING) 

Yes 
No 

 
Figure 2-1 Flowchart of an integrated procedure for sustainable design 

2.1.1 Problem Framing with Systems Thinking 

Day-to-day experience shows that the worst frustration often occurs in the earlier 

stage of discovering the nature of a problem.  For a sustainability-oriented design, serious 

efforts are needed to explore the complex nature of the concept of sustainability as well 

as reify the scope and objectives of the intended design.  The key to a successful problem 

framing for sustainability is systems thinking, which, as opposed to reductionist thinking, 

has been increasingly heeded and endorsed by the sustainability community (Bakshi & 

Fiksel, 2003; Stigson, 1999; Fiksel, 2003; Cutcher-Gershenfelf et al., 2004; Cabezas et al, 

2004; Kurzhanski, 2000).  Systems thinking calls for a systems and holistic perspective to 
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comprehend sustainability, which, at least, has twofold meanings in an engineering 

design context.  

 

On the one hand, sustainability depicts a state of a broader system comprising the 

engineering system to be designed, rather than an inherent property of the isolated 

engineering system itself (Bakshi & Fiksel, 2003; Cabezas et al, 2004).  This is not hard 

to understand, because many sustainability concerns are difficult to be interpreted as 

inherent properties of the engineering system.   For instance, as pointed out by Sikdar 

(2003a) and Jenck and coworkers (2004), the social-political dimension cannot be 

achieved by technology alone.  Furthermore, an environmental impact of an engineering 

system usually depends on not only its internal configuration, but also the external 

conditions of the ecosystem.  To this end, sustainability should be understood as a 

characteristic of such an integrated system that consists of different subsystems 

(environmental, economic, and social).  These subsystems contribute synergistically to 

one’s value on sustainability as they are typically interconnected and inseparable from 

each other.  For designers, their task is to devise and adjust the target engineering system 

such that the “sustainable” status of the encompassing bigger system can be achieved or 

approached.  

 

On the other hand, though the parlance of sustainability is relatively recent, most of 

its backbone issues have been long-standing, such as environmental protection, energy 

conservation, social justice, etc.  However, it wasn’t until the emergence of sustainability 

concept that these different issues were brought together.  This joining or bundling, in 
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reverse, has greatly boosted the study of each of its elements.  To this end, sustainability 

should not be equivalent to either environmental consciousness or energy efficiency. 

Holism constitutes the underpinning factor that defines sustainability.  In this sense, 

sustainability is essentially an overarching goal sitting above specific objectives 

(Cutcher-Gershenfeld et al., 2004). 

 

2.1.2. Decision Making via Conflict Handling 

As just mentioned, sustainability is an overarching design goal, which, however, 

involves a broad collection of aspirations.   In reality, the presence of different points of 

view always gives rise to some sort of conflict.  This is particularly true for sustainability, 

as it would not even be an issue, if there is no conflict.  For instance, industrialized 

civilization would have created more abundant substantial wealth, if natural resources can 

be consumed without abstention; or people today would have lived a more enjoyable life, 

if they don’t have to worry about future generations.  McDaniels (1994) stated that 

sustainability is conceptually challenging not because it is “logically flawed or lack 

public support, but because it involves trade offs.”  Cutcher-Gershenfeld and coworkers 

(2004) further discovered that the trade-offs existing between various facets of 

sustainability are “inherent and value-laden.”  In (Dovers & Handmer, 1993), the eight 

most obvious contradictions in sustainability were identified, based on their observation 

of the “deep-seated contradictions, paradoxes, conflict, and tensions.”   

 

More importantly, there is no absolute sustainability (Fiksel, 2003).  Though people 

have portrayed a series of desired characteristics of a sustainable system, like zero 
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emission and renewable energy supply, no convictive standard virtually exists that can 

ultimately distinguish “sustainable” from “unsustainable.”  Therefore, whether the 

overarching goal of sustainability is reached or not has to be always determined by 

human judgement, which, however, is complicated by the existence of inherent conflict.  

 

In light of these evidences, this author argues that sustainability is essentially a 

multiplex state of an integrated system.  The philosophical soul of achieving such a state 

essentially rests on a status of “reconciliation” among multiple (contradictory) interests, 

instead of unilateral pursuit of any individual acme.  Accordingly, design for 

sustainability should not just pursue either most profit or least emission.  On the contrary, 

it should provide a scientific process that is effective for reaching the highest harmony 

among variously defined objectives.  In other words, “conflict handling” or “trade-offs 

resolution” stands central to the success of a sustainable design. 

 

Given the above propositions, Multiple Criteria Decision Analysis (MCDA) 

immediately suggests itself as a logical and operational framework to handle the 

problems of this kind.  Similar opinions have been expressed elsewhere (Herkert et al., 

1995).  Hobbs and Meier (2000) further specified six aspects in which MCDA can be of 

help.  However, what is MCDA?  To answer this question, another opt-seen and closely 

related term – Multiple Criteria Decision Making (MCDM) needs to be first elucidated.  

MCDM, in short, refers to a particular class of decision problems, which feature more 

than one criterion.  Obviously, MCDM may consist of a huge collection of problems with 

various characteristics.  On the other hand, decision analysis, according to (Hwang et al., 
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1995), is a merged discipline from decision theory and systems analysis.  The purpose of 

decision analysis is not to replace judgement, but to help to organize the information and 

provide models which can lead to greater understanding of the situation (Seppala, 2003).  

Hence, the term “Multiple Criteria Decision Analysis” (MCDA) essentially stands for a 

process of using principles and knowledge from decision analysis to perceive, formulate, 

analyze, and finally solve a given MCDM problem.  Since MCDA is a framework instead 

of a single technique, the significance of adopting MCDA is more ideological, which 

calls for explicit, scientific, and systematic efforts to deal with the complexity and 

conflict inherent in essentially all sustainability-oriented designs.   

 
2.2 MULTIPLE CRITERIA DECISION ANALYSIS 

Decision permeates life (French, 1986), though most day-to-day decisions are made 

in a rather routine and subconscious manner.  For many years the only way to make a 

decision was selecting the best alternative with respect to a single figure of merit 

(Tabucanon, 1988).  However, ever since there were decisions to be made people have 

recognized that most important decisions engage multiple values, which are ordinarily in 

conflict (von Winterfeldt & Edwards, 1986).  Some even argued that decisions with 

single criterion should be considered a special case, given the prevalent existence of 

multiple criteria (Croce et al., 2002).  A letter written by Benjamin Franklin back in 1772 

witnessed the harassment that early time decision makers (DM) were confronted with 

under multiple criteria (Yoon & Hwang, 1995).   

 

The presence of multiple conflicting criteria exponentially increases the difficulty 

associated with decision-making.  Today, the problems of this type are widely known as 
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Multiple Criteria Decision Making (MCDM), though other names do exist.  MCDM did 

not receive formal scientific articulation until the World War II (Zeleny, 1982), when the 

inception of the efficient vector concept was set forth by Koopmans (1951) and almost 

simultaneously by Kuhn and Tucker (1951).  In 1972, the historic First International 

Conference on Multiple Criteria Decision Making was held at the University of South 

Carolina (Bana E Costa, et al., 1997; Martel & Price, 2000).  From that point on, research 

on MCDM has undergone an explosive growth (Dyer et al., 1992), especially within the 

discipline of Operations Research/Management Science (OR/MS).   

 

During the past 30 or so years, an impressive amount of literature has been published 

on various issues pertaining to MCDM, which has particularly calls for decisions to be 

made in a “rational” and “informed” fashion.  In the past, two distinct routes of decision 

research existed.  “Descriptive” studies aim to unveil how humans behave when making a 

decision, while “normative” theories/principles tend to capture the norms of such 

behaviors.  Apparently, a scientific conjunction would be necessary to bridge those two.  

This is exactly where enormous efforts have been made under the banner of Multiple 

Criteria Decision Analysis (MCDA) (Keeney & Raiffa, 1976; von Winterfeldt & 

Edwards, 1986; Ballestero & Romero, 1998).  Some good overview books on MCDA 

published in each decade are listed below in Table 2-1.   
Table 2-1 MCDA overview books 

Decades Books 
1970~1980 Keeney & Raiffa, 1976;  Hwang & Masud, 1979 
1980~1990 Hwnag & Yoon, 1981;  Zeleny, 1982;  Yu, 1985;  Steuer, 1986 
1990~2000 Roy, 1996;  Miettinen, 1999,  Gal et al., 1999 
After 2000 Belton & Stewart, 2002;  Ehrgott & Gandibleux, 2002;  Figueira et al., 2005 
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2.2.1 Definitions and Terminology 

A multitude of criteria bring unique properties and extra difficulties, both 

conceptually and technically, to decision-making problems (Croce, et al., 2002).  

However, a clear-cut description of defining characteristics was often hindered by the 

repletion of terms, which have been variously applied and mutually defined (Zeleny, 

1982).   

 

2.2.1.1 Components of a MCDM 

This author adopted from (Yu, 1985) the four basic components of a general MCDM 

problem, however, expressed them somewhat differently in “standard” terminology.  

These four constituents are elaborated below.  

 

� A set of alternatives 

Alternatives, also seen as actions, courses of action, states, feasible solutions, and so 

forth, constitute the candidate set over which decisions are to be made.  Alternatives are 

represented in this work by A = {a1,a2, …,an}, if they are explicitly known by the DM 

and the number of alternatives n is countable.  It is also likely that alternatives are 

implicitly characterized by depicting a set of requirements (e.g. mathematical 

programming) without specifying any individual.  In this case, an alternative can be 

denoted by x ∈ F and x= [x1, x2, …xnx]T, where F represents the feasible solution set, 

while x1, x2, and so on are the variables specifying the desired characteristics of the 

intended solutions.   
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� A set of criteria 

More than one criterion has to be present in a MCDM problem.  A Criterion in 

general is one aspect of interest, against which the DM wants to learn about the 

alternatives.  Bouyssou (1990) expressed criterion as a particular significance axis or 

point of view allowing for comparison of alternatives.  Henig and Buchanan (1996) stated 

that criteria are usually “general, abstract and often ambiguous” and could even be 

“independent of the alternatives.”  To this end, “criterion,” as opposed to “attribute” 

(which will be introduced next) is a more decision maker-sided concept.  

 

� A corresponding set of attributes  

It is critical to be aware of the distinctness and correlation between “attribute” (cited 

elsewhere as consequence, outcome, result, etc.) and “criterion.”  An attribute is usually a 

quantitative (e.g. interval or ratio scale) or qualitative (e.g. verbal, nominal, or ordinal 

scale) measure on the target alternatives, which is selected or devised in such a way that 

it reflects the attainment level of a pre-specified criterion.  Therefore, attribute is an 

alternative-sided concept, which should describe the alternative’s physical existence.  For 

example, “30 miles per gallon gas” and “moderate gas mileage” are quantitative and 

qualitative attributes of an automobile, respectively. However, both attribute reflect a 

car’s performance on the criterion -“gas efficiency.”  Attributes are denoted by a vector z

= [z1,z2, …,zm]T. The performance of alternative i in terms of attribute j is expressed as 

zj(ai).  The generation of alternatives as well as the choice of criteria and attributes for a 

particular problem is by no means a trivia task (Keeney, 1992; Stewart, 1992).  In fact, 

they are an important part of modeling and problem formulation (Sen & Yang, 1998; 
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Stewart, 1992).  This will be further discussed in Chapter 4 in a more specific context of 

sustainability. 

 

� Preference structure of the decision maker (DM) 

A MCDM problem is mathematically “ill-defined”(Vincke et al., 1992), which means 

that in the presence of multiple conflicting attributes, mathematics by itself could not 

isolate one single “optimum” (Fu, 2000).  Croce and coworkers (2002) depicted this 

phenomenon as “the vanishing optimum.”  Eekels (1995) from a broader perspective 

argued that the ideal of value-free science held in high esteem is untenable.  Under this 

circumstance, the human decision maker has to intervene and use his/her value 

judgements to get out of the morass.  Based on the inevitable need of human preference, 

Zeleny (1982) called MCDA “a very human business” and Stewart (1992) vetoed the 

possibility of the complete automation of MCDA.  In practice, tremendous variety exists 

in eliciting and expressing preference.  All these difficulties have made preference 

handling the most dissentious yet fascinating area for MCDA researchers.  

 

2.2.1.2 The Role of Analyst 

Different actors may be involved in a decision-making.  In literature, the decision 

maker, the analyst, the client (Roy, 1996), the stakeholder (Roy, 1999) and the like have 

been mentioned.  Among those, the role of analyst is of particular interest from a MCDA 

perspective.  Past experiences revealed that an unaided decision maker is prone to 

inconsistencies, irrationality and suboptimal choices, especially with conflicting criteria 
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(Kahneman et al., 1982).  To this end, an analyst is the very individual, sometimes maybe 

a more or less computerized figure, who interacts with and provides guidance to the DM.   

 

In a theoretical sense, the analyst and the decision maker can not replace each other 

due to the distinct functions they perform.  However, it may be difficult in a real-world 

case to specify who is the decision maker and who is the analyst.  The quest for the role 

of an analyst originates in part from the suspicion on what make a good decision.  It was 

argued that to base the quality of a decision solely on the DM’s satisfaction is not 

scientific (Henig & Buchanan, 1996).  Hence, von Winterfeldt and Edwards (1986) 

proposed to differentiate a good decision from a good decision outcome.  The later refers 

to the fact that the multi-dimensional performance of the decided alternative satisfies the 

DM.  However, a good decision, on the other hand, essentially is the one produced by a 

quality decision-making process (Seppala et al., 2002).  In pursuit of a scientific and 

quality decision-making, what an analyst needs the most would be a “normative” theory 

or process, which, however, should not violate major findings of “descriptive” behavioral 

research (von Winterfeldt & Edwards, 1986).  

 

2.2.2 Problem Classification 

Significant differences exist among the problems under the general title “Multiple 

Criteria Decision Making.”  Two most useful classification schemes are introduced here.  
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2.2.2.1 MADM vs. MODM 

A dichotomy that received the most consensus splits MCDM into two distinct camps 

according to the alternative domain (Hwang & Masud, 1979).  One is Multiple Attribute 

Decision Making (MADM), which deals with picking the most desired solution from an 

explicit list of finite alternatives.  The other class usually has an implicit (either 

continuous or discrete) alternative domain often containing infinite number of candidate 

elements.  These alternatives all meet certain specified characteristics, for instance, 

defined by a mathematical programming problem.  Such a class in contrast is 

denominated as Multiple Objective Decision Making (MODM).  MODM was also 

referred to as Multiple Objective Programming/Optimization Problem (MOP/MOOP) or 

Vector Maximization Problem (VMP).    

 

This classification scheme also appeared in literature under different terminologies, 

such as “selection” vs. “synthesis” in (Sen & Yang, 1998), and “choice” vs. “design” in 

(Laumanns et al., 2001), respectively.   

 

2.2.2.2 Six Basic Problematics 

By examining how an analyst poses the problem, Roy (1996) categorized four basic 

decision problematics, namely, selection (or choice), sorting (or assignment), ranking (or 

ordering), and description (or cognitive).  Here the term “problematic,” remaining close 

to its French origin, essentially refers to the category of problem.  Two extra 

problematics: design and portfolio were added by Belton and Stewart (2002).  The 

definitions of these problematics are further discussed in Table 2-2.  
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Table 2-2 Six basic decision problematics 

Problematic Definition 
Selection (or choice) Choosing one “best” alternative 
Sorting (or assignment) Placing alternatives in categories 
Ranking (or ordering) Assigning each alternative a rank, either partial or complete 
Description (or cognitive) Discovering, understanding, or evaluating alternatives and their 

attributes. 
Design  Searching for, identifying or creating new alternatives 
Portfolio Choosing a subset of alternatives by considering their attribute and 

interactions. 

A real-world decision problem may be one of the six basic problematics, a sequence 

of two, or a hybrid problematic (Roy, 1996).  However, the type of problematic to a great 

extent influences the specific solution techniques to be applied.  This can be seen from a 

simple hypothetic example in Table 2-3. 
Table 2-3 Admission of international students with three criteria 

The School of Chemical Engineering at Oklahoma State University will be 
admitting 2 international students this year, which need to be selected from 4 
applicants.  Three criteria are applied: GRE score, GPA, and TOEFL score.   

GRE GPA TOEFL 
A 1120 3.94/4.0 612 
B 876 2.50/4.0 614 
C 1050 3.90/4.0 611 
D 998 3.70/4.0 608 

In this example, only candidate A and B are non-dominated (this concept will be 

defined later in Section 3.4).  However, simply choosing them may not be appropriate 

because the dominated applicants C and D, though having slightly lower TOEFL scores, 

outperform B quite a bit in both GRE and GPA.  The bias herein resulted from a 
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mismatch of this sorting problematic (either admitted or non-admitted) to dominance 

check, a method that is supposed to help screening candidates in a choice problematic.   

 

This dissertation, unless otherwise specified, assumes that all the decision problems 

are solved in the manner of a choice problematic.  In other words, one single “best” 

alternative needs to be ultimately determined.  Optimization is regarded a special case of 

choice problematic (Roy, 1996).  

 

2.2.3 Relations among Attributes 

Decision-making can be understood as a process of exploring the relations among a 

particular group of candidates.  In a multiple criteria setting, the interrelations among 

different attributes present important characteristics of a MCDM problem.  In Figure 2-1, 

a MCDM problem with a short list of alternatives (i.e. MADM) is expressed in the form 

of a “decision matrix.”  Typical relations among alternatives as well as attributes are 

marked in Figure 2-2 in two perpendicular directions.  Relations among attributes are 

discussed next in this section. 

 z1 z2 z3 z4
a 1 z1(a 1) z2(a 1) z3 (a 1) z4 (a 1) z(a 1)
a 2 z1(a 2) z2(a 2) z3 (a 2) z4 (a 2) z(a 2)
a 3 z1(a 3) z2(a 3) z3 (a 3) z4 (a 1) z(a 1)
a 4 z1(a 4) z2(a 4) z3 (a 4) z4 (a 4) z(a 4)

z1(A ) z2(A ) z3(A ) z4(A )  
C on flic t

In depen den ce 
In com m en surability 

C om pen sability 

R ela tion s 
O rders 

P referen ce 
D om inan ce 

 
Figure 2-2 Decision matrix of a typical MCDM problem 

 



32

2.2.3.1 Conflict 

Solving a MCDM problem is often mentioned as “conflict resolution.”  A decision 

becomes trivial if there exists an all-around superior candidate.  However, the concept of 

conflict has rarely been defined explicitly, though it does arise in every single case of 

MCDM.  In psychology, conflict refers to a situation in which two or more motives 

partially block each other.  This dissertation differentiates “local,” “global,” and 

“universal” conflicts.  

� Local conflict  

If )()( 2111 azaz f and )()( 1222 azaz f , then the attribute z1 is in local conflict with 

z2 on {a1, a2}.  (Note: as will be seen later in Section 3.5, the sign f stands for 

“strictly preferred to”)  

� Universal conflict  

If local conflict between attributes z1 and z2 holds for any pair of alternatives {ai, aj}

of a given alternative set A, z1 and z2 are in universal conflict on A. 

� Global conflict 

If the respective best performances on attributes z1 and z2 over the entire alternative 

set A do not coincide at the same alternative a*, z1 and z2 are in global conflict on A.  
 

Different conflict relations are illustrated in Figure 2-3, where z1 and z2 are two 

attributes under consideration and assumed “more is better.”  Figure 2-3b illustrates the 

case where z1 and z2 are in both universal and global conflict within the given range of 

alternatives.  However, if z1 is modified to a “less is better” type of attribute, universal 

conflict still holds while global conflict is not satisfied any more.  Figure 2-3c further 
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displays that no global conflict arises as long as z1* and z2* coincide at the same point, no 

matter how much conflict exists elsewhere.  

 
Not global conflict

A

Z

Local conflict

A

Z

Universal and global conflict

A

Z

a1 a2

z1

z2

z1

z2

z1

z2

z2* z1* z2*

z1*

(a) (b) (c)  
Figure 2-3 Illustration of local, global, and universal conflicts 

 

Globally conflicting attributes that exhibit various levels of local conflict are most 

common in MCDM.  Universal conflict does not occur very often in the real world.  In 

addition, though conflict essentially describes an inter-attribute relation, it has to also 

depend on the properties of the specific alternative set, on which the attributes are 

evaluated.  From the above definitions, it is possible that a pair of conflicting attributes 

may become supportive on a different set of alternatives.   

 

2.2.3.2 Independence 

Independence among multiple attributes is usually desirable, which requires that an 

attribute is not predictably related to another by the inherent structure or the formulation 

of the problem (Calpine & Golding, 1976).  The existence of dependency may cause 

extra difficulties in exploring the DM’s value tradeoffs.  Hence, in most cases the 

attributes in a MCDM are independent or assumed to be so.  However, as pointed out by 

Thurston (2001), there is a big misconception which confuses the structural independence 
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in axiomatic design (Suh, 2001) and preference independence in value/utility analysis 

(Keeney & Raiffa, 1976).  The former states that a designer tries to control one attribute 

(functional requirement) without affecting another.  This is exactly the kind of relation 

defined here, which intends to describe certain properties of the reality (or its model).  

The latter, on the other hand, reflects the inter-attribute relation in a cognitive and 

ideological sense, therefore, can only be determined by the DM.  Further discussion on 

independence is given in Chapter 5 where preferential, mutually preferential and 

difference independence are further defined.  

 

2.2.3.3 Compensability 

An entirely satisfactory definition for compensation among attributes does not exist 

(Vincke et al., 1992).  Intuitively, compensation depicts such a situation that the 

disadvantage of one attribute is counterbalanced by the advantage of another.  

 

In some cases, tradeoffs between attributes are not permitted.  This means that an 

unfavorable value in one attribute (e.g. dirty water) cannot be offset by the advantage in 

some other attribute (e.g. clean air).  Noncompensatory attributes occur predominantly in 

the case of limited knowledge and ability (Hwang & Yoon, 1981).  Sometimes the DM 

may avoid considering tradeoffs just for simplicity purpose.  However, as will be seen in 

Chapter 5, noncompensatory methods are often not sufficient to determine the desired 

final alternative.  
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Compensation among attributes is much more prevalent in practice.  In those cases, 

tradeoffs are made in order to seek a satisfied balance among various performance levels 

of different attributes.  The methods adopting a compensatory strategy are cognitively 

more demanding but could lead to more optimal or at least more rational decision 

outcomes, compared with noncompensatory methods (Yoon & Huang, 1995).  

 

2.2.3.4 Incommensurability 

Various attributes are usually quantified in different scales and units.  For instance, 30 

miles/gallon for fuel consumption and $20,000 for retail price of a car.  Therefore, these 

attributes cannot be directly compared or manipulated together.  Normalization needs to 

be conducted in this case, especially for compensatory methods that require inter-attribute 

comparisons.  Through normalization, ratings on different attributes are converted to 

comparable scales and usually dimensionless units.  There exist different normalization 

techniques, such as linear normalization, vector normalization (Yoon & Hwang, 1995) 

and the others (Koski & Silennoinen, 1987; Marler & Arora, 2002).  However, adoption 

of different normalization techniques could sometimes have significant impact on which 

final alternative is decided.  More importantly, as will be seen in Chapter 5, a 

normalization technique may in an implicit manner imply the existence of certain type of 

partial value function.  Hence, caution should be taken in this regard.  

 

Without loss of generality, this author assumes that any pair of attributes in the 

MCDM problems studied in this work are in global conflict, independent, 

incommensurate, and compensatory.   
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2.2.4 Relations among Alternatives 

2.2.4.1 Binary Relations on a Set 

Binary relations on a set have received extensive interest from the decision 

community because essentially any decision is made on a set, which initially consists of 

unordered distinct “objects” (either finite or infinite).  Set theory, an underpinning branch 

of mathematics (Rodgers, 2000; Moschovakis, 1991), is the discipline that is formally 

dedicated to sets as well as binary relations on a set.  In classical set theory, a binary 

relation R on a set A is obtained by performing the Cartesian product A×A and 

essentially results in a collection of ordered pairs of elements of A, which can be 

equivalently denoted by aRb, (a, b)∈R, or R(a, b) with a, b∈A.  

 

Different binary relations may exist on a set.  For instance, “is more expensive than,” 

“has more powerful engine than,” and “is made by the same manufacturer” could be 

example binary relations on a set of cars.  However, different binary relations may exhibit 

various properties that can label their discrepancy and similarity to one another.  A few 

elementary properties are summarized in Table 2-4.  There are more properties to 

characterize binary relations.  Complete description on these properties is given in (Yu, 

1985; Fishburn, 1970; Ozturk et al., 2003).   

 

Relations that have certain properties are named as “order” relations.  There are large 

inconsistencies in denoting and defining order relations in literature (Hanne, 2000). The 
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following definitions given in Table 2-5 are in accordance with those described by 

French (1986):  
Table 2-4 Properties of binary relations 

Properties Definitions Examples 
Reflexive aRa, ∀ a∈A (∀ means for all) “Greater than or equal to” 
Irreflexive not aRa, ∀ a∈A “Greater than” 
Symmetric  aRb ⇒ bRa, ∀ a, b∈A “Is a brother of” 
Asymmetric aRb ⇒ not bRa, ∀ a, b∈A “Greater than” 
Antisymmetric  (aRb, bRa) ⇒ a=b, ∀ a, b∈A “Greater than or equal to” 
Transitive (aRb, bRc) ⇒ aRc,  ∀ a, b, c∈A “Is an ancestor of” 
Total (complete, connected, 
comparable) 

aRb or bRa or both hold, ∀ a, b∈A “Greater than or equal to” 

Table 2-5 Names of special relations 

Names  Definitions 
A preorder (quasiorder)  Transitive and reflexive relation 
A partial order (order)  Transitive, reflexive, and antisymmetric  relation 
A total order (linear, complete)  Transitive, reflexive, and connected relation 
A strict order  Irreflexivity, asymmetric and transitive relation 
A weak order  Transitive and complete relation 
An equivalence   Transitive, reflexive, and symmetric relation 

2.2.4.2 Preference as Binary Relations 

For a general pair of objects {a, b}, four and only four mutually exclusive cases arise, 

which are illustrated in the left column of Table 2-6.  
Table 2-6 General and preference binary relations between two objects 

 General  Preference 
CASE 1 aRb, bRa  a~b (or aIb) “a is indifferent to b” 
CASE 2 aRb, not bRa  af b (or aPb) “a is strictly preferred to b” 
CASE 3 not aRb, bRa  bf a (or bPa) “b is strictly preferred to a” 
CASE 4 not aRb, not bRa  a?b  (or a?b) “a is incomparable to b” 
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In classical preference modeling (Fishburn, 1970; Keeney & Raiffa, 1976; Bouyssou 

& Vincke, 1998), preference is regarded as one particular type of binary relations on a 

target set.  However, differing from the others, preference is supposed to reflect human 

DMs’ inner reflection, and may vary on an individual-by-individual basis.  Extra syntaxes 

are introduced to describe the above four different cases in a preference sense, which is 

shown in the right column of the Table 2-5    

 

Indifference may arise when there is no real difference between objects, while 

incomparability is useful under such situations as the lack of information, uncertainty, 

ambiguity, multi-dimensional and conflict preferences.  In addition to the three 

fundamental building block relations: strict preference, indifference, and incomparability, 

it is sometimes convenient to apply weak preference denoted by f , which essentially 

refers to a combined case in which either af b or a~b holds or perhaps more explicitly “x 

is at least as good as y.”   

 

Difficulties in defining what rationality is and how to attain rationality have attracted 

psychological behavioral scientists to commit themselves to the so-called “descriptive 

theories” of decision making.  The descriptive study has revealed that a rational DM 

should exhibit consistency in his/her preference and this consistency is supposed to be 

embodied by certain characteristics (Simon, 1976).  The properties discussed in Table 2-4 

present an effective language to axiomatize rationality.  The complete axioms and proofs 
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are not presented here, but interested readers may refer to (Fishburn, 1970; Simon, 1976).  

Two useful theorems regarding preference as binary relations are presented below:  

 

� Theorem 2-1 

Weak preference f is a weak order (complete and transitive)  

Strict preference f is a strict order (asymmetric and transitive) 

Indifference ∼ is an equivalence relation (reflexive, symmetric, and transitive) 

� Theorem 2-2 

(a~b, bf c) ⇒ af c,  ∀ a, b, c∈A

(af b, b~c) ⇒ af c,  ∀ a, b, c∈A

Exactly one of the following holds: af b, a~b, ap b, ∀ a, b ∈A

It should be noted that these axioms constitute important “rational” frontiers, only 

within which an “appropriate” decision can be made.  If a preference model disobeys any 

of these axioms, the rationality and consistency of the decision-making process using that 

model is with doubt.  

 

2.2.4.3 Dominance as Binary Relations 

Dominance is often utilized to compare two vectors.  Essentially, it constitutes 

another important binary relation on a set.  But this concept is often restricted to referring 

to an intersection of the n coordinate-wise orderings on a set of points in Euclidean n-

space.  Therefore, a formal definition can be given as: 
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For two vectors a = [a1, a2, …, am]T and b = [b1, b2, …, bm]T, a dominates b iff 

1) ∀ i∈{1,2,…m}, ai is no worse as bi (∀: for all) 

2) ∃ j∈{1,2,…m}, aj is better than bj (∃: at least one) 

 

A vector a dominates another vector b if and only if a is no worse than b in all 

dimensions and better in at least one of them (Voorneveld, 2002; Ben Abdelaziz et al., 

1999).  Such a binary relation is also referred to as weak dominance (denoted by df ) in 

order to be distinguished with strict dominance (denoted by df ), which describes that a

is better than b in all criteria.  In recent years, various “relaxed” or “evolutive” 

dominance relations, such as ε-dominance (Laumanns et al., 2002), constraint-dominance 

(Deb, 2000; Deb et al., 2000), α-dominance (Burke & Landa Silva, 2002), k-dominance 

(Farina & Amato, 2003), have been proposed by different authors to fulfill certain 

specialized purposes.   

 

A dominance check between two vectors may result in three outcomes: 1) one weakly 

dominates the other; 2) one strictly dominates the other; 3) they don’t dominate each 

other.  Recall the binary relation properties depicted in Table 2-4 and consider them 

against the definitions given above, the following conclusions are drawn:    

 

� Theorem 2-3 

Weak dominance df (dominance) is complete and transitive   ⇒ A weak order 

Strict dominance df is asymmetric and transitive ⇒ A strict order 

Non-dominance ~d is reflexive, symmetric, and transitive ⇒ An equivalence relation 
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Theorem 2-3 depicts the important characteristics for dominance as a kind of binary 

relations on a set.  These characteristics turn out to be exactly the same with those 

introduced in Theorem 2-1, which was deduced with respect to preference with a 

“rational” assumption.  Is this a coincidence?  

 

Some interesting facts can be observed when two kinds of binary relations, 

dominance and preference, are put in parallel and compared with each other: 

� First of all, both concepts essentially reflect certain binary relations on a pre-specified 

set.  However, preference can be applied to a set of anything, while the usage of 

dominance is restricted to a set of multi-dimensional vectors.  

� Second, similar properties in Theorem 2-3 and Theorem 2-1 ensure the rationality of 

the possible decisions made from dominance relations (though this rationality may 

not either sufficiently or necessarily lead to the desired single decision).  That also 

provides a compelling theoretical explanation of why so many dominance-based 

multiple criteria methods prevail today.   

� Third, dominance may be treated as a somewhat subset of preference, when both are 

considered on a set of vectors.  Preference, on the other hand, could be seen as a more 

broad-sensed, however, DM-dependent variant of dominance.   

� Fourth, Dominance presents an ordinal, instead of cardinal, description for relative 

characteristics among vectors.  “Vector a dominates b” does not offer any 

information with regard to the extent by which a dominates b. Preference, however, 

in many cases, has to include not only “ordering” but also “strength” information.   
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� Fifth, no across-attribute comparison is needed to determine dominance.  Each 

attribute stands on its own during a dominance check, therefore, dominance-based 

methods are noncompensatory.  Greenwood and coworkers, (1997) believed that this 

fundamentally differentiates dominance from preference, which, on the other hand, 

has to deal with inter-attribute relations on a completely personal basis.   
 

Unlike dominance occurring between a pair of vectors, a nondominance relation is 

usually defined over a collection of vectors.  A nondominated vector, as illustrated in 

Figure 2-4, refers to the one that is not dominated by any vector in a pre-specified group.  

Two points are essential here: 1) a vector, though often not stated explicitly, is non-

dominated only within a given or implied set.  Non-dominance in general does not make 

practical sense; 2) There usually exist a lot or an infinite number of non-dominated 

vectors.  Therefore, dominance-based decision-making can only narrow down the focus 

of the decision to a relatively smaller subset, but could not completely solve the choice 

problematic without extra preference information being taken into account. 

 

Nondominated vectorsNondominated  vectors

f1

f2

Min-Min Min-Max f1

f2
Figure 2-4 Non-dominance relation among two-dimensional vectors 
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2.2.5 SOLUTIONS TO A MCDM 

2.2.5.1 An Optimal Solution 

An optimal solution to a MCDM problem (synonymous with ideal, utopian, perfect, 

or superior in this context), in a strict mathematical sense, is the one that excels over 

every single competitor in all attributes simultaneously.   

 

2.2.5.2 Pareto Optimal Solutions 

The concept of “optimality” for multiple criteria problems emerged in the late 19th 

century.  It was originally proposed by Francis Edgeworth and later generalized by and 

named after Vilfredo Pareto, an Italian economist.  This concept is mentioned differently 

in different disciplines, for instance, nondominated, noninferior, or efficient solutions in 

Operations Research, admissible solutions in statistical decision theory, and Pareto 

optimal solutions in economics (Hwang & Yoon, 1981).   Pareto optimality is adopted in 

this work.  

 

Pareto optimality has a close relationship to the dominance relations defined before.  

In MCDM settings, human’s cognition on alternatives relies solely upon an interested 

collection of attributes.  Therefore, the preference on alternatives, not surprisingly, is 

equivalent to that on corresponding attribute vectors, denoted by: z(ai) df z(aj) ⇔ aif aj

(the same equivalence holds for df and ~d).  Based on this equivalence, a solution 

among a given set of alternatives is said to be Pareto optimal or nondominated when its 

corresponding attribute vector is nondominated.  Mathematically, this is expressed as: 

For A = {a1, a2, …, an}, ai∈A is Pareto optimal in A, iff ¬∃ aj∈A that z(aj) df z(ai)
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2.2.5.3 Satisficing Solutions 

Satisficing solutions are credited for their simplicity and the capacity of screening out 

unacceptable solutions.  Simon (1976) suggested such a concept based on the fact that he 

observed- “human beings satisfice because they have not the wits to maximize.”  

Basically, a set of satisficing solutions is composed of the alternatives that exceed all of 

the aspiration level on each attribute.  Goal programming essentially implements the 

satisficing heuristic (Belton & Stewart, 2002).  However, the original satisficing idea 

didn’t not reflect any consideration of tradeoffs (Yu, 1985), though this was rectified in 

certain later formulations (e.g. weighted goal programming).  Satisficing solutions need 

not to be nondominated (Hwang & Yoon, 1981). 

 

2.2.5.4 A Preferred Solution 

Finding a single preferred solution is the ultimate objective of solving a MCDM 

choice problematic.  A solution that is said to be finally “preferred” is anticipated to have 

three characteristics: 

� Decided by the “rational” decision maker.   

� Produced from a “quality” decision-making process 

� Be Pareto optimal within the target set  

For all the MCDM problems in this study, a preferred solution is always pursued.   

 

To conclude this chapter, the vacuum of an operational framework for implementing 

sustainability in design can be attributed to the difficulty in accommodating problem 
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framing and decision making.  Systems thinking further revealed that sustainability is a 

multiplex status of an integrated system, whose achievement relies upon a satisfied 

reconciliation among conflicting interests.  The problem of this kind is known as Multiple 

Criteria Decision Making (MCDM), which is discussed thoroughly in this chapter.  In the 

next chapters, it is to be shown that Multiple Criteria Decision Analysis (MCDA) 

provides not only “rational” and “informed” handling on conflict, but also a scientific 

platform to incorporate different components that are necessary for practicing the 

integrated design procedure as illustrated in Figure 2-1.   
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CHAPTER 3 
 

FORMULATION OF A DESIGN FOR SUSTAINABILITY 
 

A problem well structured is a problem half solved.  However, a design task in its 

pristine form is usually far from being solvable particularly in the presence of multiple 

goals.  As pointed out by many researchers (Haimes, 1985; Keeney, 1992; Bana E Costa, 

et al., 1997), an adequate and appropriate problem formulation plays a more crucial role 

than solution.  Accordingly, problem formulation is usually harder to deal with in 

practice.  In recent years, the emergence of a large variety of sustainability 

metrics/indicators partly fulfilled the formulation needs of a design task with 

sustainability concerns.  Nevertheless, it is to be shown in this Chapter that metric usage 

accounts for only a small part of problem formulation.  Converting a sustainability-

oriented design into a meaningful MCDM takes a lot more systematic efforts.   

 

3.1 MCDM FORMULATION 
 

Novices or average practitioners are prone to a misunderstanding that Multiple 

Criteria Decision Analysis (MCDA) is a discipline to only solve ready-made MCDM 

problems.  This is not surprising since a vast majority of literature on MCDA addresses 

“solution” rather than “formulation.”  However, where do those MCDMs come from?  

What if an analyst is given a problem that seems deviated from his/her original intention?  

As a matter of fact, most frequently cited failures of a typical MCDM result from the
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problem formulation phase.  Guitouni and Martel (1998) figured that “one of the most 

perplexing aspect of human decision-making is the sensitivity of preference to seemingly 

minor changes in the way a problem is presented.”  To this end, MCDM formulation 

(also seen as structuring, framing, etc) definitely deserves more attention. 

 

The problem formulation of a MCDM is the process of making sense of a “mess” of 

information (e.g. concerns, objects, people, relations, etc.) and somehow accounting for 

them in a soluble construct (Belton & Stewart, 2002; French, et al., 1998).  This making-

sense process may be sometimes informal, but more likely rely upon establishing a

representation or approximation of the reality (Nijkamp et al., 1988).  This, in scientific 

terms, is called modeling (i.e. model construction).  Roy (1996) defined a model as “a 

schema (mental or figurative description) that, for a certain family of questions, is 

considered as a representation of a class of phenomena that an observer has more or less 

carefully removed from their environment to help in an investigation and to facilitate 

communications.”  Models are particularly necessary for probing the systems with 

complex nature (just like sustainability), as they provide tractable approximation or 

predictive simulation of the reality (Laumanns et al., 2001). 

 

Von Winterfeldt (1980) considered formulating a MCDM as an art rather than 

science, which is “left to the intuition and craftsmanship of the individual analyst.”  This 

argument has been predominantly based on the absence of a systematic methodology.  In 

the 25 years that follow, some descriptive and empirical guidelines emerged, such as 

“value-focused thinking” (Keeney, 1992), “habitual domains” (Yu, 1985) along with 
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other notable research on MCDM structuring (Von Winterfeldt & Edwards, 1986; Belton 

& Stewart, 2002; Brugha, 2004).  However, the parlance of “art” still prevails (Belton, 

1999), and the “formally acceptable and manageable format” for MCDM problem 

formulation envisioned in (Von Winterfeldt, 1980) is still lacking.  The reason for this 

has been well recognized today: because there exists no homogeneous foundation of 

human perception and knowledge, on which diverse MCDM problems can all ground on.   

 

So what exactly is expected from formulating a MCDM?  In short, three meaningful 

sets are intended, namely, a set of alternatives, criteria, and attributes (In Chapter 3, those 

are defined as three out of four basic elements of a typical MCDM).  More importantly, 

through the formulation process, the analyst and the DM tend to gain a deeper insight into 

the target problem as well as a clearer understanding of the inter-relationship among 

different elements (i.e. alternatives, criteria, and attributes).  In specific, the following 

tasks are to be accomplished as summarized in Table 3-1.  
Table 3-1 Four tasks to be accomplished in a MCDM formulation 

1 Identify criteria and divide criteria into subcriteria 
2 Develop or identify an attribute that sufficiently reflects the 

attainment level on each criterion/subcriterion 
3 Develop or identify an appropriate measurement system for each 

attribute 
4 Identify or generate alternatives 

With the above tasks clarified, the process of MCDM formulation can be decomposed 

and performed in a divide-and-conquer manner.  In the next section, step-wise discussion 

is deployed on how to formulate a MCDM in a very specific context – sustainability-

oriented design.  
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3.2 FORMULATING A SUSTAINABILITY-ORIENTED DESIGN 

As elaborated in Chapter 1, the innermost kernel of design-for-sustainability, after 

peeling off various exteriors, always rests on pursuing a satisfied compromise among 

competing objectives.  Recognizing the “grand” and “volatile” nature of the sustainability 

concept, the author in this work did not attempt any specific “good” formulation.  

Instead, focus is cast on considering a subset of conflicting environmental concerns 

raised by the output-type interactions (e.g. pollutant release) of a typical chemical 

manufacturing process with its encompassing nature.   This study, on the one hand, can 

hopefully contribute to modeling sustainability in the environmental dimension.  On the 

other hand, it is more desired that the succeeding discussion offers a sound “scientific” 

procedure for aptly formulating a design for sustainability problem into a MCDM, so that 

the abundant MCDA techniques can be applied.  Finally, it should be pointed out that 

other economic, social, input-type environmental concerns (e.g. fossil fuel consumption) 

are of the same importance.  Taking them into consideration requires profound 

knowledge from corresponding disciplines.  However, the procedure introduced below 

can be combined with specific domain knowledge and readily extended to formulating 

various design problems.  

 

3.2.1 Two Strategies  

In literature, two distinct strategies are present in dealing with MCDM formulation: 

top-down and bottom-up (Von Winterfeldt and Edwards, 1986; Buede, 1986; Belton, 

1999).  The top-down strategy is objective-driven, which starts with ascertaining the 
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global goal of decision-making and followed by identifying criteria, subcriteria, until a 

final set of attribute measures are obtained and nicely connected to alternatives.  This 

coincides with the “value-focused thinking” proposed by Keeney (1992).  The other 

strategy is just the opposite.  Bottom-up, also referred to as “alternative-driven” (Buede, 

1986) and “alternative-focused thinking” (Keeney, 1992) advocates an “alternative-

attribute-criteria” sequence of structuring.   

 

Belton (1999) viewed the two strategies as complementary ways of helping the 

decision maker think about the situation and suggested to take on both to yield different 

insights.  As sustainability has been pre-specified as the ultimate goal for design/decision, 

this study follows the top-down strategy, which, according to Keeney (1992), is a more 

creative path to decision-making.  Therefore, the discussion that follows is laid out in the 

order they tends to be actually performed.  

 

3.2.2 Criteria/Subcriteria Identification 

Criteria identification is a crucial but dynamic step in formulation, which usually 

demands high creativity, expertise, and the DM’s value judgements.  Unfortunately, it 

was often ignored in practice or treated like a tacit trivia.  Keeney (1992) offered three 

explanations of this disregard.  In fact, at this stage multiple criteria need to be not only 

identified, but also structured, analyzed, and understood (Sen & Yang, 1998; Stewart, 

1992, Keeney, 1992).  Additionally, almost every serious thought about MCDM criteria 

leads to some sort of hierarchical structure (Keeney & Raiffa, 1976; Stewart, 1992).  This 

resulting hierarchy is known as “value tree,” “criteria tree” or “decision tree.”  However, 
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how does one construct a meaningful value tree? and determine a final set of criteria 

against which a design can be evaluated in term of sustainability? 

 

3.2.2.1 Idea Stimulation and Capture 

A natural starting point with “value-focused thinking” appears to be brainstorming 

and articulating relevant issues.  As a result, lots of concerns more or less pertaining to a 

given context (i.e. sustainability) emerge.  The conceptual discussion on sustainability 

given in Chapter 1 definitely helps to generate initial ideas, which at this stage may look 

messy and unorganized.  Table 3-2 contains some devices proposed by Keeney (1992) 

that could assist stimulating and capturing ideas.  Also, certain helpful “hi-tech” tools are 

introduced in (Belton & Stewart, 2002).  With these operational tools, the DM and the 

analyst can think, discuss, reevaluate, and update the initially emerged ideas in a 

recursive fashion, until a satisfactory collection of unstructured concerns is generated.   
Table 3-2 Keeney’s ten devices to assist criteria identification 

� Making a wish list (checklist) 
� Examining existing or hypothetical alternatives 
� Recognizing problems and shortcomings 
� Identifying consequences and impacts 
� Inspecting standards, constraints and guidelines 
� Varying perspectives 
� Using strategic objectives 
� Using generic objectives 
� Using structuring objectives 
� Using quantifying objectives 

As far as an industrial plant is concerned, many different environmental issues (e.g. 

air pollution, global warming, human toxicity etc.) can be raised.  In recent years, 
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particularly after sustainability gained its popularity in 1990s, almost all the 

environmental concerns have been switching titles to sustainability.  It seemed that 

sustainability is becoming synonymous to a “superset” of essentially all the 

environmental issues.  Is this what people wanted?  In answer to the question, the 

National Academy of Engineering (NAE) and the National Research Council (NRC) 

(1999) accomplished a research, in which a “paradigm shift” from “greening” to 

“sustaining” was depicted.  It called upon sustainability practitioners to execute a series 

of profound conceptual transformations, which are revised and charted in Figure 3-1.    

 Conventional Environmental 
Performance  

Short-term, loca l 
Physica l and  chemica l 

Discrete 
Static 

Expected Environmental 
Sustainability Performance 
Long-term, g loba l (reg iona l) 

Bio log ica l and  ecolog ical 
Systemic 
Dynamic 

Figure 3-1 Conceptual transformations towards environmental sustainability 
 

Figure 3-1 provides valuable insight to what different environmental concerns should 

be addressed in a sustainability context, compared with the environmental impacts in the 

conventional sense.  Generally speaking, the interested performance of an industrial plant 

is going to be more consequential, far-reaching, holistic, obscure and thus harder to 

observe (Jin & High, 2003b).  This can be further expressed as:  

� Considering the potential impact over a longer time span and within a larger 

geographic scope, as opposed to current time and local area. 

� Introducing biological and ecological terms to describe environmental outcomes, as 

opposed to the traditional physical and chemical language. 
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� Handling the interactions between elements within a holistic ecosystem, as opposed 

to treating them in isolation. 

� Tracing time-dependent environmental characteristics, as opposed to taking a 

snapshot of the environment. 

 

3.2.2.2 Criteria Structuring and Subdividing  

The concerns initially brought up are unstructured. Sometime they could be 

overlapping, inclusive, contextual, or simply irrelevant to one another.  Therefore, a 

structuring process is needed to probe the interrelations among them.   Constructing the 

value tree usually commences with a list of key areas of general concerns.  For instance, 

if “minimizing negative environmental effects” is the overall decision goal, the general 

categories of concerns can be defined in several different ways.  For example, “impact on 

air” vs. “impact on water” vs. “impact on organisms,” or “long-term effects” vs. 

“medium-term effects” vs. “short-term effects.”  One possible form of a value tree of 

environmental sustainability is illustrated in Figure 3-2.   

 SUSTAINABILITY

Maximizing 
economic profit

Minimizing impact 
on the environment

Minimizing 
consumption of 
natural resources 

Maximizing 
social benefits

Air OrganismsWater

Ecosystem 
toxicity 

Fish 
toxicity 

Biodiversity Eutrophication Global 
warming 

Ozone 
layer 

Figure 3-2 A possible value tree for sustainability 
 

Some of the initial criteria are too broad for any specific attribute to indicate the 

degree to which they are achieved.  In this situation, it is often necessary to break them 
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down to more specific and precise lower-level subcriteria, as an attribute can be more 

easily found for a less fuzzy criterion (this will be further discussed in the next 

subsection).  Therefore, the subdividing of criteria continues until reasonably good 

attributes are found.  Accordingly, a final set of criteria is said to be identified, when each 

of those criteria characterizes the adjacent higher-level criterion and is well represented 

by an attribute.  Many authors have envisioned desirable properties of the final set of 

criteria for a MCDM.  Keeney and Raiffa (1976) first described them as complete, 

operational, decomposable, non-redundant, and minimal size, which were agreed in 

(Miettinen & Hamalainen, 1997).  Different elaborations on the desirable criteria 

properties in literature are put in parallel in Table 3-3 below.   It is noted that the 

structure, elements, and complexity of a value tree may vary a lot in different 

formulations.  No fixed “template” should/could be followed.  This is also why criteria 

identification should be handled with special care.   
Table 3-3 Properties of MCDM criteria stated by different researchers 

Keeney & Raifa 
1976 

Keeney 
1992 

Belton & Stewart 
2002 

Brugha 
2004 

Complete Essential Value relevance Accessible 
Operational Controllable Understandability Differentiable 
Decomposable Complete Measurability Abstractable 
Nonredundant Measurable Non-redundancy Understandable 
Minimum Size Operational Judgemental independence Verifiable 

 Decomposable Completeness versus conciseness Measurable 
 Nonredundant Operationality Refinable 
 Concise Simplicity versus complexity Usable 
 Understandable  
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3.2.3 Criterion-Attribute and Alternative-Attribute Mappings 

An attribute measures a certain facet of the reality in order to specify the degree to 

which a target criterion is achieved.  Efforts have been made in Chapter 3 to draw a clear 

distinction between an attribute and a criterion.  To give an example, atmospheric 

temperature is an attribute, while coldness is a criterion.  Essentially, attributes constitute 

a critical bridge filling the gulf between the fuzziness of criteria and the tangibility of 

alternatives.  Henig and Buchanan (1996) stated that in pursuit of an apt set of attributes 

two crucial mappings need to be established.  The first is a criterion-attribute mapping, 

through which a corresponding attribute is sought to conceivably reflect the attainment 

level of each criterion.  The second mapping is from alternatives to attributes, which tend 

to come up with a specific measurement system that can express the interested attribute in 

certain scales.   

 

3.2.3.1 Attribute-Criterion Mapping  

At this stage, a typical question to ask is “which attribute is best to measure this given 

criterion, for instance, minimizing tropospheric ozone impact?”  Building a defendable 

attribute-criteria mapping is challenging, as it always requires value judgements of the 

DM (Keeney, 1992).  Significant inconsistency may take place (Nijkamp et al., 1988), 

because, first and foremost, the attribute required by a fuzzy criterion is also fuzzy; 

second, an attribute-criterion mapping may not be a one-to-one relation, for instance, a 

multitude of possible attributes specify the same criterion and/or a same attribute 

influence more than one criterion; third, a conceivable attribute may not be attainable in 

reality (i.e. tough alternative-attribute mapping), or the cost to achieve it exceeds 
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tolerance; last but not least, it is hard to justify the actual “goodness” of an attribute 

without being aware of how many different options can be alternatively used and what 

are the differences between them.   

 

Keeney (1992) defined three types of attributes according to different relations to the 

target criteria as well as how they are obtained:  

� Natural attributes: the attributes that have obvious utilization and a common 

interpretation to everyone, e.g. atmospheric temperature to specify coldness. 

� Constructed attributes: the attributes developed in a specific decision context, which 

often tend to measure more than one aspect of a complex problem, e.g. wind chill 

factor (a devised variable calculated from temperature and wind speed) to specify 

human sensed coldness.  

� Proxy attributes: the attributes that are resorted to when neither natural nor 

constructed attributes are available.  Proxy attributes measure the target criteria in a 

somewhat indirect manner, e.g. the amount and type of clothes that people wear to 

specify coldness. 

 

The selection of a natural attribute seems the most obvious.  Some of the constructed 

attributes, after a long time use with undisputed implication, could become “natural,” 

such as Gross National Product (GNP).  Gaining a natural or “pseudo-natural” attribute 

would be the most ideal way to proceed.  However, for sustainability, explorations in 

many ideological and implemental areas are still underway.  No widely accepted 



57

common ground appears to exist.  To this end, people may have to search for a 

constructed or proxy attribute when a criterion is raised in a sustainability context.  

 

Now let us consider the task with a little bit more detail.  Suppose benzene is emitted 

from a manufacturing plant.  Gaseous benzene may cause a variety of adverse effects to 

human and the ecosystem.  The primary concern here is to minimize the impacts 

originating from forming ground-level ozone, a major air pollution affecting most people 

today.  In reality, the possible attributes for the criterion “minimizing the impacts from 

tropospheric ozone” are diverse.  Hence somehow classifying them becomes an obvious 

choice.  Figure 3-3 presents a simplified illustration of the causal relations of formatting 

tropospheric ozone as well as its associated impacts.  Five different possible attributes are 

labeled accordingly.  The different locations of these attributes essentially offer a 

fundamental mechanism to differentiate them.  

C6H6

Nitrogen 
oxides 

Increased 
concentration of 

C6H6

Increased 
concentration of 

NOx 

Ozone 
formation 

Increased 
concentration of 
ground level O3

Plant  

Human health 

Sunlight 

Heat 

3

5

1

4

2 � Benzene emission rate 

� Incremental benzene 
concentration 

� Reactivity with NOx 

� Incremental O3 concentration 
 
� Human health effects 

Figure 3-3 Five candidate attributes measuring photochemical ozone generation 
 

The author envisages that a multi-level hierarchy could not only visualize the 

diversity, but also further partition different attributes (Jin & High, 2003a; Jin & High, 

2003b).  Some hierarchical frameworks have been previously developed.  In the early 

1990s, the Organization for Economic Cooperation and Development (OECD) started to 

adopt a “Pressure-State-Response” (PSR) framework for environmental reporting at 
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national level (OECD, 1991).  This framework set a foundation of environmental 

indicator typology.  With PSR, its three layers allow for measuring disparate 

environmental attributes for a same performance reporting. These three layers of 

attributes are:  

� Pressure – The original causes that may potentially induce the environmental problem 

of interest, usually emissions from certain human activities such as operating a 

chemical plant,  

� State - The changes in the physical conditions of the environment affected by the 

pressure.  

� Response - The technical or policy reactions made by the society to prevent, mitigate 

or recover the exerted pressure and corresponding state changes. 

 

Many adapted derivatives of PSR framework have been developed and applied by 

different organizations (Jin & High, 2004a).  These derivatives include the “Driving 

force-State-Response” (DSR) by the United Nation Commission on Sustainable 

Development (UNCSD), the “Pressure-State-Impact-Response” (PSIR) by the United 

National Environmental Programme (UNEP) and the Netherlands National Institute of 

Public Health and the Environment (RIVM) as well as the  “Driving force-Pressure-State-

Impact-Response” (DPSIR) by European Union (EU).  

 

Some shortfalls of these existing hierarchies are recognized, such as fuzzy dividing 

lines between certain adjacent levels and lack of sustainability-oriented characteristics.  

This study proposes a new conceptual hierarchy in order to more explicitly categorize 
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attributes with respect to evolutionary causality and better embrace the sustainability 

concept.  This hierarchy consists of five levels, which are elaborated below, respectively.   

� Stressor – The attributes that specify the magnitude of the direct physical pressure 

imposed by a given human activity on the environment (e.g. air pollutant emission, 

petroleum spill).  Stressor attributes are simplest and most widely used in industry.  

Examples include VOC emission and SO2 discharge, etc. 

� Status - The attributes that specify the degree to which the physical or chemical 

state/property change is induced by the given stressor to the directly exerted 

environmental compartment (such as air, water or soil).  Examples include 

incremental concentration of tropospheric ozone and incremental VOC reactivity. 

� Effect – The attributes that specify the resulting impacts caused physically, 

chemically, biologically or ecologically by the stressor and its consequent status 

change.  It is essential that an effect attribute should closely match one aspect of 

interested societal concern.  Examples include global temperature increase, 

Disability-Adjusted Life Years (DALYs) and loss of crop production.    

� Integrality – The attributes that specify the potential influence on the greatest property 

of the overall environment (that is, the ecosystem).  Basically, an integrality attribute 

presents a descriptor of the environment as a whole, regarding its component 

completeness, structural rationality and functionality.  Examples include ecosystem 

health and ecosystem resilience.     

� Well-being - The attributes that specify the extent to which certain damages are 

caused to human welfare by all the prior factors.  Well-being attributes are most 
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straightforward for interpretation of sustainability, but toughest to implement.  

Possible examples of well-being attribute include quality of life, for instance. 

 

Altogether, they compose a hierarchy in the form of “Stressor-Status-Effect-

Integrality-Well-being” (SSEIW), as illustrated in Figure 3-4.  This hierarchy shows the 

extended causality and extra usable attributes compared with its counterparts.  The 

following points should be noted to gain a thorough understanding on the SSEIW 

hierarchy: 

 

First, the hierarchical structure presents a panoramic yet stratified view of the full 

spectrum of measuring environmental sustainability.  Five distinct layers provide 

different types of candidate attributes.  The sequence in which the five levels are arranged 

does not necessarily reflect the absolute priority for their application, nor should it be 

seen as an exact linear causality.  This layout simply indicates that the range of attributes 

for environmental sustainability can be effectively sorted into five different categories.   
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Figure 3-4 SSEIW hierarchy and ozone layer depletion example 
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Second, though efforts have been made to distinguish effect from status attributes 

through delicately tuned descriptions, intersections may occur between the two.  The 

reason is mainly due to the variously defined societal concerns that an effect attribute is 

supposed to embody.  For example, temperature or sea level increase could be an 

indicator at the effect level with respect to global warming.  However, if one’s concern 

doesn’t go that far, “relative heat trapping capacity,” a status attribute by definition, could 

be an effect attribute as well.    

 

Third, sustainability is such a grand concept that it incorporates almost every aspect 

of the environment.  However, even a complete set of attributes from the first three levels 

is not sufficient to measure a holistic environment, because significant cross linkages 

exist between different causal relationships, which were particularly realized after the 

discipline of ecology was formed in 1970s.  However, this interconnectedness was 

ignored in traditional environmental attributes.  Moreover, some characteristics of the 

environment can be discovered only when the wholeness is stressed, such as resilience, 

self-sustaining, and so on.  Many researchers have figured out that sustainability calls for 

the integrated assessment of all the variables and processes that are involved (Pykh et al., 

2000; Kruijf & Vuuren, 1998).  A holistic, integrated approach will outperform in many 

aspects where the reductionistic approaches have failed.  Therefore, even though 

integrality may be regarded as a subset of the environmental effects, it’s actually 

beneficial to have it considered separately.  Integrality attributes were historically 

excluded from industrial environmental assessments because of their obscure cause-effect 

relationships.  However, with scientific progress, sustainability analysts have started to 
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explore how a given industrial behavior affects the capacity of natural systems to 

maintain their vigor, organization and resilience.  

 

Fourth, the square with the dashed border in Figure 3-4 represents the environment.  

Therefore, the status, effect and integrality attributes are essentially different means to 

measure the same environmental degradation.  Each of them holds one part of a bigger 

truth.  However, it is not necessary to use all of them in a single case.  The number and 

type of attributes applied have to depend on the one’s judgement and preference.    

 

3.2.3.2 Alternative-Attribute Mapping 

In the eyes of a decision maker, an alternative is virtually equivalent to the measures 

on the interested collection of attributes, as those are the only sources from which all of 

his/her perception of the alternative comes from.  Therefore, the alternative-attribute 

mapping tends to establish a specific measurement system on the given set of 

alternatives.  From the analyst’s perspective, this measurement system is expected to be 

scientific and precise.  At the same time, it should be convincing and well-understood for 

the DM.  Henig and Buchanan (1996) believed such a mapping is “objective,” since it 

shows “independence of the DM’s preference.”  However, Phillips (1996) argued that 

there’s no way to establish an entirely objective mapping from an alternative to an 

attribute.  Actually, both contentions are partly true, because, on the one hand, an 

alternative-attribute mapping supposedly reflects certain aspect of the reality and there is 

only one truth!  However, on the other hand, some attributes per se are personal, for 
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instance, the aesthetics of a car.  Furthermore, subjectivity arises where choices have to 

be made from a multitude of options that can accomplish a same mapping.   

 

Measurement may aim to systematically specifying not only something in physical 

existence (e.g. length of a box), but also likely anything imaginable (e.g. confidence, 

intelligence).  In practice, many questions have to be answered before a specific measure 

can be identified or established.  These questions include: in what scale the attribute is 

expressed? what variable is formulated or defined to describe the attribute? How is the 

required data obtained?   

 

1. Measurement scales – Table 3-4 contains four types of measurement scales (also 

seen as measurement levels) that are commonly distinguished.  An attribute could be 

expressed in any of those scales, which essentially offer different means to express 

measurement results.  However, which scale to use has to rely on their availability and 

the requirements of a specific problem.  As pointed out in (Nijkamp et al., 1988), a 

perhaps too stringent assumption traditionally taken for granted by many decision 

problems is that a metric measurement system exists for all the involved variables.  

However, measurement in reality is often implemented in non-metric sense.  Here, a 

metric refers to a devised means that provides quantitative measurement on the attributes 

of interest that can not always be directly observed (Ott, 1978; Merkle & Kaupenjohann, 

2000).  The term “metric” in this work is applied interchangeably with “indicator,” 

though “indicator” is used by some for qualitative measures.  In physical science and 

engineering fields, quantitative scales are preferred over qualitative ones.  Hence, in the 



64

discussion that follows, the performance measure expressed in a quantitative scale is 

always pursued where-ever available.  
Table 3-4 Different measurement scales 

Scale Category Explanation Example 
Nominal The scale whose elements stand for different categories Colors 
Ordinal 

Qualitative 
Qualitative The scale whose elements constitute a ranking Age 

Interval The scale whose elements are equidistant cardinal points Temperature (°F) 
Ratio 

Quantitative 
Quantitative Same as interval scale but with a rationale zero point Temperature (K) 

2. Metric identification – As a matter of fact, applying metrics has been a dominant 

practice of measuring sustainability attributes.  In recent years, a great deal of metric sets 

(over 500 sets) (IISD, 2000) have been developed and utilized at various levels, ranging 

from global, national, regional, city, community, site to facility and so forth.  Table 3-5 

presents a list of the alternative metrics to measure different attributes for ground level 

ozone impacts that are labeled in Figure 3-3.   
Table 3-5 Different ozone depletion metrics measuring different attributes 

Attribute # Metric Data Source 
1 Discharged C6H6 per hour  Operation or design data 
1 Discharged C6H6 per unit production  Operation or design data 
2 Incremental C6H6 concentration in atmosphere Environment monitoring data 
3 Photochemical Ozone Creation Potential (POCP) (Derwent & Jenkin, 1991) 
3 Maximum Incremental Reactivity (MIR) (Carter, 1994) 
3 Updated MIR (Carter, 1998) 
3 VOC reactivity (Bergin et al., 1995) 
4 Incremental O3 concentration in atmosphere Environment monitoring data  
5 Disability-Adjusted Life Years (DALYs)  (Murray & Lopez, 1996) 

In the past, metric identification was not much of a problem because, in many cases, 

only one or a very limited number of metrics are known and adopted anyway.  But that 

may not be the case any more, as increasing alternative metrics come to play.  It is 
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necessary to explore some common themes in various approaches of quantifying different 

environmental attributes so as to establish links between different approaches and allow 

users to switch between them according to their specific situation and preference. 

 

In general, environmental metrics can be partitioned into two camps.  One suite of 

metrics aim to assess the environmental performance of a particular human activity (e.g. 

an industrial plant), while the other gauges the condition of the ecosystem.  These two 

classes of metrics were developed by two different cadres of professionals from their own 

perspectives.  Unfortunately, little interaction took place between the two camps in the 

past.  The scarcity of communications has severely impeded the progress of either side 

(Schulze & Frosch, 1999).  In this study, only the former is interested.  

 

The ultimate goal is to predict or estimate the extent to which negative outcomes will 

be or have been caused to the environment.  For a rather long time, simple and crude 

measures (e.g. mass flow) were used, which do not reflect actual environmental effects.  

Today, progress has been made to persistently move closer to revealing the real damage 

caused to the environmental.  In addition, growing inspiration for sustainability further 

stimulated people’s curiosity of exploring what exactly is going to happen in the 

environment.  However, the pursuit of realism is costly, because too many factors 

contribute to it.   

 

First of all, the magnitude of an undesired chemical release to the environment has to 

be primarily considered.  A general experience tells that “more release, more harm.”  A 
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premise for this to hold valid is that the comparison is carried out with respect to two 

different quantities of a same chemical species in identical environmental conditions.  

Obviously, a comparison like this is of little meaning in practice.  Therefore, more factors 

have to be taken into consideration. 

 

Second, the properties of the released chemical essentially affect its environmental 

behaviors.  For example, both carbon dioxide and methane are identified as greenhouse 

gases.  However, their ability to cause greenhouse effects differs.  In other words, the 

same amount of methane and carbon dioxide will result in disparate effects of the so-

called “global warming.”  Chemicals may exhibit a wide range of environment relevant 

properties, such as toxicity, transport, persistency, reactivity, bioaccumulation, heat-

trapping capacity and so on, varying with the environmental problem that is concerned.  

More importantly, investigation of these properties replies closely on specific 

environmental contexts in which they are addressed.    

 

Third, environmental conditions also have significant influence on the potential 

environmental consequence.  Before a chemical causes a concerned damage, it may 

transport, degrade, accumulate, transform or even react with others in the environment.  

All those behaviors rely on environmental conditions, which is often site-specific.  

 

In practice, a contradiction is always present between what should be measured and 

what can be measured.  People are interested in gaining awareness as much as possible to 

the actual environmental effects resulting from a target activity.  Sustainability, over the 
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recent years, has fostered a remarkable raise in the attention given to more consequential 

and less discovered environmental impacts.  However, on the other hand, sustainability 

calls for proactive measurement of obscure environmental effects over an expanded time 

scale.  In this case, chemicals are going to spend more time in the environment. As a 

consequence, specific environmental conditions will likely contribute more to the final 

damage.  As just mentioned, a metric measuring real effects has to involve 

comprehensive considerations of three aspects of information, namely, release quantity, 

chemical properties, and environmental conditions.  This comprehensiveness usually 

leads to a significant increase in complexity, sophistication, and uncertainty, which 

sometimes may exceed people’s tolerance.    

 

3. A proposed metric classification scheme – To specifically help identify different 

metrics, this author presents a classification scheme based on different involvements of 

the factors that influence actual environmental outcomes (Jin & High, 2004b).  The 

scheme consists of four classes, each of which is described below.  Table 3-6 summarizes 

their different characteristics. 

� Class 1: The metrics that only use quantity of releases. 

� Class 2: The metrics that reflect the relative differences among chemicals, but without 

involving any effort to account for environmental conditions. 

� Class 3: The metrics that measure the chemical-specific environmental properties 

using a "generic" or "standard" environmental scenario. 

� Class 4: The metrics that measure the actual environmental effects by taking into 

account "real" environmental conditions. 
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Table 3-6 The proposed 4-class metric classification scheme 
Class Characteristics Suited to Metric Examples 

Class 1 Not chemical-specific 
 Not site-specific 

Comparative 
assessments 

Toxic Release Inventory (TRI) 

Class 2 Chemical-specific 
 No environmental information 

Comparative 
assessments 

Human Toxicity Potential (HTP) 

Class 3 Chemical-specific 
 Generic environmental condition 

Comparative 
assessments 

Photochemical Ozone Creation 
Potential (POCP)  

Class 4 Chemical-specific 
 Site-specific 

Absolution 
assessments 

Human health and ecological risks 

The metrics in classes 1-4 basically cover various efforts that people have typically 

made to measure environmental attributes associated with chemicals.  Since the 1970s, 

the environmental performance metrics have evolved quite a bit from simplicity to 

sophistication, from universality to specificity, and from irreality to realism.  The 

involvement of environmental conditions also received ever-growing attentions.  As a 

consequence, the metrics are getting more sophisticated and complex.  It becomes more 

difficult for an average metric user to establish sufficient insight so as to identify the 

metrics suited to his/her applications.  

 

In the following subsections, detailed discussion is given to the four classes of 

metrics, respectively, with respect to different characteristics and utilization of each class.  

Example metrics for each class are described to help understand their underlying 

distinctions.  

 

Class 1- The metrics of Class 1 use direct inventory data or in variant forms (e.g. 

relative, indexed, aggregated, etc.).  For instance, a waste emission can be expressed as 
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annual emission, emission flowrate, emission vs. baseline value, emission per unit raw 

material, emission per unit product, emission per unit profit, etc.  Historically, this kind 

of metrics dominated most applications in regulatory, business and industrial areas.  

However, due to their inherent deficiencies, they are confined to the scenarios without 

ambitions to measure actual environmental outcomes.  

 

Toxic Release Inventory (TRI) is one very successful Class 1 metric in the United 

States, which was mandated by Emergency Planning and Community Right-to-Know Act 

(EPCRA) of 1986.  Companies are required to annually report the quantity of each of 

their releases of over 600 listed chemicals.  The information of TRI is maintained by 

Environmental Protection Agency (EPA) and publicly accessible.  A typical TRI record 

contains information like “3,957 lb/year ethylene glycol emission from the point sources 

at Mercury Mercruiser facility, Stillwater, Oklahoma.”  

 

Class 2- Modifying inventory data by a factor in whatever titles (e.g. potentials, 

equivalency, characterization factors, potency, etc.) has become a mainstream practice in 

the area of environmental performance measurement.  This factor is used to account for 

chemical specificity via comparing relative significance of potential environmental 

effects caused by different chemicals.  Metrics in both Classes 2 and 3 fall in this group.   

 

In general, chemical-specific properties need to be derived in certain environmental 

conditions. Characterization of specific environmental conditions is often conducted by 
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performing a series of analysis.  Metrics differ in their specific techniques to carry out 

those analysis, which may include:  

� Fate analysis (e.g. degradation, accumulation, persistency, transformation etc.); 

� Transport analysis (within a media or across medias); 

� Exposure analysis (e.g. magnitude, frequency, duration, route of exposure) 

� Effect analysis 

 

In many cases, metric developers did not intentionally devise environmental 

conditions to be applied in their metric derivation, or the "default" environmental 

conditions underlying a metric are unspecified.  This ignorance leads to the difficulties in 

analyzing the extent to which the assessment results will deviate from actual 

environmental outcomes, which supposedly originates from the underlying deviation 

between "actual" and "applied" environmental condition.   Therefore, Class 2 & 3 metrics 

are separated in the proposed scheme, just in order to distinguish whether environmental 

conditions are specified or not. 

 

For Class 2 metrics, chemical-specificity is addressed usually via assigning scores for 

different chemicals.  These scores are derived from experiments and/or model-based 

simulation in such a manner that the chemical's possible behaviors in the environment are 

not accounted for or specified.   

 

Examples of Class 2 metrics can be found in many human toxicity metrics, such as 

Threshold Limit Value (TLV) by American Conference of Governmental Industrial 
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Hygienists (ACGIH) and Permissible Exposure Limit (PEL) by Occupational Safety and 

Health Administration (OSHA).  These metrics focusing on toxicity effects assume that 

chemicals are exposed to human receptors through direct oral, inhalation, or dermal 

contact.  Therefore, they do not incorporate any indication of the effects associated with 

chemical's environmental behaviors.  These metrics, in their original form, though have 

been useful in safety and health assessments, they are not suited for environmental 

performance assessments, especially when sustainability is concerned.  

 

Class 3- Similar to the metrics in Class 2, Class 3 metrics reflect chemical-specific 

properties, ordinarily in the form of certain scoring systems.  Nevertheless, Class 3 

metrics contain readily identified environmental conditions that were devised or specified 

in the metrics' original derivation.  This gives a big advantage to the metrics of Class 3 in 

comparison with those in Class 2, because the transparency of this background 

information, to some extent, allows users to be more convinced about metrics' utilization 

and the degree to which the obtained results should represent actual environmental 

impacts. 

 

The embedded set of environmental conditions in a Class 3 metric is "generic" or 

"standard.”  Unfortunately, "actual" environmental conditions seem always differentiate 

from the "generic" conditions.  Therefore, Class 3 metrics still cannot reflect actual 

effects.  However, as the disparity between actual and generic environmental conditions 

are known, the eventual discrepancy from realism is almost predictable, though 

sometimes implicitly and qualitatively.  It is a daunting task to explicitly state how a 
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metric would perform in terms of its closeness to realism, because in most cases people’s 

perception of actual environmental effects solely relies upon the measurements that they 

conduct.   

 

The examples selected for Class 3 are Human Toxicity Potential (HTP) and 

Photochemical Ozone Creation Potential (POCP).  HTP was developed in the University 

of California, Berkeley and the Lawrence Berkeley National Laboratory (Hertwich et al., 

2001).  The generic environmental conditions are simulated by a multimedia, multiple 

pathway fate and exposure model, CalTOX.  CalTOX determines pollutant 

concentrations in uniformly mixed environmental compartments from 

intercompartmental mass transfer equations.  It models exposure pathways using 

partitioning and biotransfer relationships, and both cancer and noncancer health impacts 

are considered.  POCP was developed in 1990s by European researchers in order to 

identify hydrocarbons that most significantly contribute to forming tropospheric ozone.  

A trajectory model is applied to describe multi-day photochemical behaviors of 

hydrocarbons during long range transport in air parcels across north west Europe towards 

the British Isles (Derwent et al., 1996).  Users should be noted that POCP was made as 

realistic as possible to mimic the conditions in northwest Europe.  If it is applied 

elsewhere, deviations in geophysical conditions will reduce its credibility. 

 

Class 4- Table look-up may constitute the only job for an average metric user to apply 

a chosen metric in Class 2 or 3, since those metrics simply modify inventory data by a 

score accounting for the interested chemical-specific properties.  However, implementing 
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the metrics of Class 4 turns out to be much more complicated, because site-specific 

environmental conditions need to be involved.   

 

Class 4 metrics may differ widely from each other in answering a series of questions; 

what site-specific information is available? how this information is used, and how is the 

final measure devised?  Usually it is difficult to account for widely variant environmental 

behaviors (e.g. fate, transport) with a same environmental model just via switching 

parameters.  Therefore, models in a Class 4 metric sometimes need to be identified or 

even developed by assessors.  This imposes a considerable burden on the assessors 

without expertise.  A metric, in this case, could possess similar degree of sophistication 

and complexity as a full assessment.   

 

Certain methods of risk assessment involving site-specific data can be regarded as 

typical Class 4 metrics.  Class 4 metrics inherently need to be handled in a case-by-case 

fashion, due to its site-specificity.  Also, risk assessments usually come to play as a 

methodological framework, instead of metrics.   

 

3.2.4 Alternative Generation 

Alternatives in a MCDM may be discrete and explicitly listed, such as selection 

among the bidders for a contract, or comparison of several pump models, or they may be 

continuous and implicitly characterized, such as seeking the optimal operating conditions 

subject to within an allowable range of product quality.  Though the rationale for MCDA 

appears to be the evaluation of given alternatives (Belton & Stewart, 2002), several 
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authors have mentioned the danger of settling upon a given set of alternatives too fast 

(Zeleny, 1982).  Consequently, growing consciousness has been raised that a good 

MCDA should also be able to invent new and better alternatives (Henig & Buchanan, 

1996, Keeney, 199).   

 

Admittedly, the issues of alternative generation were very seldom addressed in 

MCDA literature.  Hobbs & Meiser (2000) stressed the motive to have some reasonable 

number of alternatives, which tend to display the meaningful differences in alternative 

types and impacts.  The ingredients of a successful generation of alternatives were 

introduced in (Zeleny, 1982), which are searching for an ideal, breaking self-imposed 

constraints; learning to invent; evolving and unfolding current options.  Yu (1985) argued 

that exploring good decisions is accomplished only through purposefully challenging and 

extending one’s habitual domain.  The perhaps most important contribution came from 

(Keeney, 1992), in which a series of helpful guidelines to aid the search for alternatives 

were discussed in details.  These guidelines are summarized in Table 3-7.  
Table 3-7 Guidelines for generating good alternatives (Keeney, 1992) 

Counteracting cognitive biases 
Using fundamental, means and strategic objectives 
Working on the current alternatives 
 – Focusing on high-value alternatives 
 – Improving good alternatives 
 – Defining generic alternatives 
 – Analyzing coordinated alternatives 
Removing constraints 
Better utilizing resources 
Screening to identify good alternatives 
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As will be seen in Chapter 6, solving a MCDM with an implicit set of alternatives 

(i.e. MODM) relies on properly tackling two tasks: decision and search.  The search sub-

process therein essentially generates alternatives in a recursive manner and within a pre-

defined space.  It is interesting to observe that some ideological similarity may exist 

between various numerical search techniques and those descriptive alternative generation 

guidelines proposed in (Keeney, 1992).   

 

3.3 THREE LAYERS OF MODELS 

Differing from early time designs based on crafts and experience, a modern design 

features intensive models that implement various axioms, theory, algorithms, and even 

heuristics.   Most of those models were derived from years of study and have been 

justified by real-world proof.  For a sustainability-oriented design in particular, three 

different types of models are generally required.  The different models can be arranged in 

a three layer construct as illustrated in Figure 3-5.  It is worth pointing out that inner layer 

models have more straightforward and significant impact on the quality of a target 

design.  Furthermore, the attainment of outer layer models will have to rely on those 

inner layer models.   

 Outer layer: Decision/preference models 
Middle layer: MCDM models 
Inner layer: System models 

Solving MADM

Solving MODM 
Weighted sum 
GP CP 

MAVT AHP 

TOPSIS 

ELECTRE 

ε-constraint 

STEP MOEAs 

Figure 3-5 Three layers of models in design for sustainability 
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First of all, “system models” depict the condition of the target system, which are 

fundamental for designers to understand and execute a design.  In a chemical process 

design, system models have been pretty mature and essentially consist of different unit 

operation models, discipline-wise, including kinetic models, thermodynamic models, 

transport models, hydraulic models, and the like.   

 

Second, building “MCDM models” has just been discussed in this Chapter.  The 

ultimate goal is to achieve a collection of alternatives whose performance is well 

evaluated against multiple identified criteria.  The required models would include the 

metrics to quantify the performance of a candidate design and possibly the cognitive 

models to assist performing value judgements.   

 

Third, the accomplishment of first two layer modeling lays a solid foundation for the 

designer/decision maker to move on to the outmost layer: “decision or preference 

models.”  These models are needed in the solution process of the formulated MCDM that 

leads to the final solution.  The models in this layer will be elaborated in Chapter 5 and 

Chapter 6.  

 

3.4 UNCERTAINTIES IN A SUSTAINABILITY MCDM FORMULATION 

So far in this chapter the formulation issues have been elaborated in a deterministic 

and crisp sense.  However, “nothing is certain except the past.”  Most, if not all, decisions 

are made under uncertainty (Wallace, 2000).  The affliction associated with uncertainties 
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in handling sustainability is expected to be more deeply embedded, given the 

aforementioned nature of the concept (e.g. distant future, debatable meanings, less 

insight).  Therefore, serious considerations are necessitated in this respect.  In practice, 

uncertainty may come from various sources, such as four main uncertainty sources 

defined in (Roy, 1988), and take on a diverse range of different forms, such as statistical 

variation, unsure judgement, physical randomness, discrimination and disagreement, 

simplified approximation, and so forth.  Two types of uncertainties can be roughly 

differentiated: internal uncertainty and external uncertainty (Stewart, 2005) or exogenous 

and endogenous uncertainty (Ozturk et al., 2005).  It should be noted that those terms 

were sometimes cited by different authors in an exactly antithetic manner.  The 

terminology in this study follows Stewart (2005).   

 

According to (Belton & Stewart, 2002; Stewart, 2005), internal uncertainty originates 

from the chaos inherent in human judgement or the imprecision in eliciting and modeling 

judgement.  As far as a sustainability-related MCDM is concerned, internal uncertainty 

may arise from the following areas:  First of all, the conceptual ambiguity and broad 

appeal of the sustainability concept give rise to significant difficulty and disagreement in 

what an appropriate value tree is supposed to be.  To this end, criteria and attributes could 

be “ill-defined.”  Second, societal valuation of sustainability criteria/attribute is 

somewhat young, which leads to a very dynamic judgment of relative significance among 

multiple sustainability attributes that appear to be “orange and apple.”  Therefore, 

arbitrariness associated with eliciting preference is usually significant.  Third, restricted 

by the knowledge horizon of a human decision maker, the course of decision-making 
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often exhibits progressive establishment of the required insight and persistent updates of 

previous recognition.  Fourth, sustainability calls for equity not only within but also 

between generations.  Accordingly, various stakeholders with controversial interests are 

often present as multiple decision makers.  How all these different interests can be taken 

care of in the course of formulation, and how the stakeholders with similar or 

diametrically opposed interests can be treated differently constitute another challenge (Jin 

& High, 2004c).   

 

On the other hand, external uncertainty usually refers to the situation where 

knowledge is insufficient or imprecise to measure the intended attributes.  French (1995) 

and Stewart (2004) both mentioned the distinction between external uncertainties arising 

either from related decision-areas or the environment.  For a sustainability-related 

MCDM, up until today, numerous questions still remain open and their underlying issues 

are not completely understood (e.g. global warming).  Therefore, there are cases where 

the knowledge applied during the formulation is incomplete or flawed, which certainly 

leads to improperly identified/developed attribute measures.  In addition, a major 

hindrance for establishing the aforementioned two mappings lies in the scarcity 

information and data.  As a consequence, attribute measures may end up to be “a mixture 

of quantitative and qualitative, precise and imprecise, subjective and objective data” 

(Hersh, 1999). 
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CHAPTER 4 
 

SOLVING MULTIPLE ATTRIBUTE DECISION MAKING 
 

Once a sustainability-oriented design has been formulated as a MCDM, the next step 

is to solve this MCDM and make a final decision.  However, an indeliberate or ill-

managed process of decision-making may jeopardize all the previous design efforts and 

end up with an “unsustainable” design.  Therefore, the chapter as well as Chapter 6 cast 

focus on solving different MCDMs with intention to explore the scientific basis of 

achieving the reconciliation of conflict, which, once again, is the underpinning kernel of 

sustainability.  

 

4.1 PREFERENCE MODELING 

Multiple Attribute Decision Making (MADM), as introduced in Chapter 3, constitutes 

a subset of MCDM.  Solving a MADM problem aims to single out the most desirable 

solution from an explicit list of candidates against conflicting criteria.  A typical MADM 

can be expressed by a decision matrix, as illustrated in Figure 3-1.   

 

The issues of objectivity and subjectivity have been a persistent philosophical debate 

in MCDA (Buchanan et al, 1998; Stewart, 1992).  Part of the scientific community has 

been questioning its “rigorousness” from time to time.  This is attributed to the fact that a 

MCDM problem is mathematically “ill-defined” (i.e.  it has no single objective solution)
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(Vincke et al., 1992).  As a result, “subjective” inputs known as preference from a human 

decision maker is inevitably required for the sake of successfully resolving the problem.  

 

Since preference is not directly observable by an outsider, it is often desired to 

express or record the DM’s preference in the form of certain “models.”  However, 

modeling preference differs substantially from that of essentially external realities.  The 

actual system models, though impossible to capture all aspects of reality, can be tested 

and validated against the conditions of the real world.  In contrast, people can hardly 

understand what exactly their preferences are, especially at earlier decision stages (Belton 

& Stewart, 2002).  Besides, how “real” different models describe the actual preference 

can barely be evaluated relatively with one another, due to the different type and strength 

of the assumptions made.  To this end, Belton and Stewart (2002) alleged the 

“constructive intention” in a practical effort of modeling preference, which emphasizes 

guiding the DM to establish the required insight to his/her aspiration and preference for 

the contexts of a given problem. 

 

In Chapter 3, binary relations as a classic language to express preference were 

introduced.  Also, certain characteristics have been revealed in order to ensure rationality 

and consistency in eliciting preferences.  However, this language turns out to be rather 

cumbersome when manipulated in a practical decision case, particularly in the presence 

of multiple criteria, because, first of all, even under one single criterion, a few problems 

may be raised from merely using binary relations (Bouyssou & Vincke, 1998), such as 

being purely declarative without observable basis, trouble in handling non-numeric 
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relations, and lack of ability to account for preference strength, credibility, and instability.  

On the other hand, when multiple points of view emerge (i.e. MCDM), further 

mechanisms are mandated to attain a “collective” or “comprehensive” preference from 

multiple concurrent preferences expressed in binary relations.  To this end, a MCDM 

preference model usually contains two primary components (Belton & Stewart, 2002):  

� Single criterion preference model; 

� An aggregation (also, synthesis, amalgamation) model 

 

The first component may appear straightforward, if the attainment level of the 

corresponding criterion is nicely evaluated by a quantitative measure on the identified 

attribute.  However, such a surmise is dangerous, as the DM’s satisfaction/preference is 

not necessarily either linear or proportional to the magnitude of attribute measures (Roger 

et al., 2000; Belton & Stewart, 2002).  Hence, modeling the single criterion preference 

should not completely rely on seemingly “objective” attribute measures, instead, it takes 

serious efforts in exploring the DM’s value judgement.  

 

A wide variety of aggregation models exist, which probably constitute the most 

important demarcating property for different MCDA methods.  According to Roy (2005), 

two types of operational approaches can be distinguished, namely, approaches based on a 

synthesizing criterion and approaches based on a synthesizing preference relational 

system.  Though distinct expressions for this same dichotomy exist in literature (Guitouni 

& Martel, 1998), it is exoterical to refer them as “American school” and “French school” 

(sometimes “European school”) (Geldermann & Rentz, 2000; Dyer, et al., 1992; Siskos 
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and Spyridakos, 1999; Coello Coello et al., 2002).   The two schools of approaches are 

introduced below respectively. 

 

4.2 AMERICAN SCHOOL APPROACHES 

The so-called American school primarily refers to the approaches theoretically 

backed up by value/utility measurement theory.  Those approaches enjoy the most 

widespread applications and the best-shaped axiomatic foundation among all methods.  

Other approaches applying otherwise mechanisms (such as TOPSIS using reference 

point, Yoon & Hwang, 1995) to perform inter-criteria synthesis are not covered in this 

work.  

 

It is intuitively very appealing to associate human preferences with certain numerical 

systems.  Once available, the numerical values of the so-called value function V() on a 

target set A make alternative comparison obvious (Stewart, 1992).  However, a value 

function is entirely decision maker-dependent, which means different decision makers 

may have totally different value functions for a same problem (Miettinen, 1999).    

Though the term “utility” seems own more orthodox historical tradition, this work, 

following (Keeney & Raiffa, 1976; Dyer & Sarin, 1979), reserves “utility” for the cases 

with uncertain or stochastic attributes, while “value” is used for deterministic 

applications.   

 

Value measurement theory essentially comprises a set of axiomatic prerequisites and 

rules for constructing a desired value function so that numbers can be assigned to 
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valuable objects (Keeney & Raiffa, 1976; von Winterfeldt & Edwards, 1986).  When 

multiple attributes are present, it becomes difficult to obtain a holistic value measurement 

(i.e. function) that takes implicit account of all factors relevant to the DM’s overall 

preference.  In this case, multi-attribute value theory (MAVT) extends single-dimensional 

value measurement and tends to tackle this problem in a “divide and conquer” manner.   

MAVT assumes an unknown overall preference function that constitutes an implicit 

function of a set of “marginal” or “partial” value functions vj(), each of which 

corresponds to an individual criterion, as shown in (4.1):  

V(A) = f (v1(A), v2(A), …vm(A))                                           (4.1) 

By doing this, the difficulty task of battling contradictory viewpoints is first decomposed 

into a sequence of relatively easier explorations of value measurement against a single 

criterion.  After each partial value function is established, efforts are made to synthesize 

them back into a unique function on A, but this time in a explicit and justified fashion.  

This synthesis step is sometimes referred to as “weighting,” as opposed to “scoring” 

referring to the aforementioned step of building partial value functions.   

 

4.2.1 Construction of Partial Value Functions (Scoring)  

A partial value function vj() essentially is a score measuring the worth or desirability 

to the DM (Hobbs & Meier, 2000), which can be established either directly from an 

alternative or indirectly via the attribute measures on that alternative.  This study casts 

interest particularly on attaining the partial value function from a quantifiable attribute 

value, as sustainability metrics essentially constitute the required attribute measures.  As 

mentioned before, it may be problematic to directly adopt the value of a quantifiable 
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attribute as the score (i.e. vj(ai) = zj(ai)) to reflect the extent of the DM’s aspiration of that 

attribute.  In other words, nonlinear value function may exist.  For instance, people seem 

to always attach more value to the first millions dollars earned than the second.  In this 

situation, a concave rather than linear partial value function should be more appropriate.   

 

Ordinal and measurable value functions can be distinguished according to the 

different scales in which the expected functional values are interpreted.  The former 

refers to such a value function vj() on a set A that af b if and only if vj(a) > vj(b) for all a 

and b in A.  Such a function preserves the preference ordering and only exists when the 

DM’s preference is a weak order (transitive and comparable) (Belton & Stewart, 2002).  

Therefore, vj(a) = zj(b) offers a viable ordinal value function if the DM’s preferences 

increase monotonically with the value of the attribute measure zj().  However, the 

resulting order-preserving value function vj() is ordinal and does not by any chance 

indicate the strength of preference.   

 

In order to overcome this shortage as well as mitigate ambiguity, a measurable value 

function is more widely used to capture preference intensity, in which the preference 

difference between a and b is greater than that between a and c if and only if vj(a) – vj(b) 

> vj(a) – vj(c).  A value function meeting this requirement preserves the order of the 

difference in preference strength and is therefore in an interval scale.  In practice, a 

measurable value functions could be constructed from direct alternative rating, direct 

comparison or even ratio comparison of preference difference (von Winterfeldt & 

Edwards, 1986; Kirkwood, 1997).  
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4.2.2 Aggregation (Weighting)  

Attributed to its simplicity and robust performance with mild non-linearities (Hobbs 

& Meier, 2000), additive aggregation is most common for constructing an overall value 

function, which can be expressed as:   

 (4.2) 

 m: The number of attributes 

 vj: Partial value function of attribute zj

wj: Weight of attribute zj,

Here, all m partial value functions vj() are standardized to the same scale.  It is vital to 

note that the required properties of partial value functions and the form of aggregation are 

critically interrelated (Belton & Stewart, 2002).  For an additive value function as shown 

in (4.2) to exist, the target set of attributes need to be “mutual preferential independent” 

in the case of ordinal partial value functions.  On the other hand, measurable partial value 

functions demand a condition called “mutually difference independence” to validate an 

additive aggregation.  The relevant definitions are given below in Table 4-1.  

 

The algebra of an additive value function appears to be very simple, but the 

underlying issues regarding its validity and weight derivation are esoteric, especially for 

an unsophisticated user.  If an additive value function is intended, at least two tasks have 

to be properly accomplished: to verify the independence conditions among concerned 

attributes and to justify and assess the weights with the DM.  The former sometimes 

appears inexplicable for the DM to elicit.  Some useful techniques to assist the DM in this 
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regard are introduced in (Keeney & Raiffa, 1976).  The later can be performed in 

different ways varying with properties of partial value functions.  Representative 

weighting techniques include direct weighting (Hobbs & Meier, 2000), swing weights 

(von Winterfeldt & Edwards, 1986), indifference tradeoff weights (Keeney & Raiffa, 

1976), and ratio assessment in AHP (Saaty, 1980).   
Table 4-1 Definitions of independence relations among attributes 

Definition 4-1 
An attribute zi is preferential independent of another attribute zj if the preferences of zi do not depend on 
zj.

Definition 4-2 
A set of attribute {z1,z2,…,zm} is mutually preferential independent of another attribute set { 
zm+1,zm+2,…,zm’} if attributes values in second set do not affect the preferences of attributes in the first 
set and vice versa.  

Definition 4-3 
Mutually preferential independence holds on the set {z1,z2,…,zm} if and only if all its possible subsets 
are mutually preferentially independent of their corresponding complementary sets. 

Definition 4-4 
An attribute zi is difference independent of another attribute zj if ordering of the preferences difference 
on zi does not depend on the value of zj.

Definition 4-5 
Mutually difference independence holds on the set {z1,z2,…,zm} if and only if all its possible subsets are 
mutually deference independent of their corresponding complementary sets. 

Finally, other forms of aggregation do exist in theory, such as the multiplicative form 

shown in (4.3):  

 (4.3) 

 (4.4) 

 (4.5) 

where wj is the weight of a criterion, and λ is a parameter defined such that (4.5) holds.  

Discussion on more non-additive aggregations as well as their theoretical requirements 
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and applicative limitations can be found in (Keeney & Raiffa, 1976).  These non-additive 

aggregations can usually be validated by less restrictive assumptions than those for 

additive synthesis.  However, these models involve extra parameters and are very 

difficult, if not impossible, to be manipulated in reality.   

 

4.2.3 Analytic Hierarchy Process 

The Analytic Hierarchy Process (APH) developed by Saaty (1980) gained perhaps the 

most widespread commercial usage and at the same time extensive harsh criticism for the 

same reason: AHP was devised to offer an easily understood means of making multi-

criteria decisions, however, at the cost of diminution of axiomatic justifiability and 

preciseness.  Though AHP was developed independently in history with different 

thinking compared to MAVT, as Belton (1986) pointed out, it can be viewed as a 

variation of additive value function preference.  Nevertheless, these two methods exhibit 

significant distinctions on many fundamental aspects, which are summarized in Table 4-

2.  More complete introductions and proponent views regarding AHP are presented in 

(Saaty, 1980; Saaty & Vargas, 2001; Saaty, 2005), while the incisive remarks and 

critiques are expressed in (Belton, 1986; Dyer, 1990; Salo & Hamalainen, 1997).  
Table 4-2 Comparison between MAVT and AHP 

 MAVT AHP 

Partial value measure Interval cardinal scale with 
two anchor points specified 

Verbal scale mapped into a 
nominal scale (1-9) which is 
interpreted as a “ratio” 

Weight interpretation Relative worth of swinging 
two partial value difference 

Relative worth of total attribute 
score 

Weight derivation Direct, swing, or indifference 
tradeoff weighting 

Eigenvector and logarithmic or 
geometric least square 
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4.3 FRENCH SCHOOL APPROACHES 

A binary relation referred to as “outranking” stands central to the approaches in 

French school.  An outranking relation can be schematized as follows:  “a outranks b” if 

there exist sufficient arguments to affirm that a is at least as good as b and no compelling 

reason to be the contrary.  Brans and Vincke (1985) described outranking as a non-

excessive and realistic enrichment of the dominance relation.  Various outranking 

approaches essentially coincide in the appeal to pairwise comparison, however, differ in 

the specifics in taking into account problem information as well as the DM’s preference.  

In comparison to MAVT, outranking approaches may, to some extent, constitute an 

advantageous alternative for the following scenarios: allowing for incomparabilities, no 

requirement for preference transitivity, existence of non-quantifiable attribute, difficulties 

in unifying heterogeneous attribute scales, no compensation among attributes (Vincke, 

1999).  On the other hand, serious criticism has been articulated for the outranking 

approaches, particularly on vacant axiomatic basis, non-intuitive inputs, arbitrariness in 

eliciting threshold levels, high operational complexity and cognitive burden on the DM 

(Belton & Stewart, 2002).  

 

An outranking method is employed usually in two phases: the building of the 

outranking relation(s) and the exploitation of the obtained ranking to have the target 

problem solved.  Different methods differ in the way implementing these two steps.   
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4.3.1 ELECTRE 

ELECTRE abbreviates the French phrase “elimination and (et) choice translating 

algorithm.”  This technique was first developed by Bernard Roy and has evolved into a 

whole family consisting of distinct versions (ELECTRE I, II, III, IV, TRI, IS, etc.).  The 

pioneering and pedagogical ELECTRE I is introduced below, in order to showcase the 

basic idea regarding how this class of methods function.  

 

4.3.1.1 Building an Outranking Relation 

The outranking relation is based on evaluating two indices, namely concordance and 

discordance index, on all possible pairs of alternatives.  In ELECTRE I, the concordance 

and discordance index is defined as (4.6) and (4.7), respectively. 

 (4.6) 

 (4.7) 

Where Q(a, b) is the set of attributes for which a is at least as good as b, and R(a, b) is the 

set of attributes for which b is strictly preferred to a.  Such a concordance index is 

interpreted as the proportion of criteria weights allocated to those criteria for which a is 

preferred or equal to b, while the discordance index represents the proportion of the 

maximum weighted value by which b is better than a to the maximum weighted 

difference between any two alternatives on any attribute.  

 

With concordance and discordance indices, a is defined as outranking b if C(a, b) ≥C* 

and D(a, b) < D*, where C* and D* are concordance and discordance (i.e. veto) threshold 

respectively to be specified for a particular outranking relation.  They may vary to give 

∑
∑

=

∈= m
i i

baQi i

w
w

baC
1

),(),(

])()([maxmax
))]()(([max),(

,1

),(
dzczw

azbzwbaD
iiiAdc

m
i

iiibaRi
−

−=
∈=

∈



90

different extents of severity of outranking relations.  An outranking relation becomes 

more severe as C* increases and D* decreases. 

 

Two points should be noted in constructing an outranking relation with ELECTRE I.  

First, an informative and useful outranking relation ultimately depends on the appropriate 

threshold levels (i.e. C* and D*), which, however, are prone to arbitrariness in practice.  

To this end, some kinds of ad hoc sensitivity and robustness investigation are necessary 

(Belton & Stewart, 2002; Vincke, 1999).  Second, given the way it is manipulated, the 

weight of a criterion can be likened as the number of votes for the given criterion in a 

voting procedure.  Rogers and coworkers (2000) provided four different methods of 

assigning weights to criteria.   

 

4.3.1.2 Exploiting the Outranking Relation 

The second step utilizes the obtained outranking relation to identify a best alternative.  

ELECTRE I achieves this goal by determining a subset of alternatives referred to as 

kernel, which is defined by two characteristics: 1) any alternative not in the kernel is 

outranked by at least one element in the kernel; 2) all alternatives in the kernel are 

incomparable.  The identification of the kernel can be conducted with the help of a graph, 

which is discussed in details in (Roger et al., 2000).  

 

4.3.2 Other Outranking Methods 

Many different methods based on the outranking concept exist, which have been 

particularly popular in French speaking countries.  Except for the ELECTRE family, 
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PROMETHEE (Brans & Vincke, 1985), REGIME (Hinloopen et al., 1983), 

QUALIFLEX (Paelinck, 1977), and many other methods provide somewhat alternative 

ways of defining outranking binary relations and building up final recommendations.  

Some peculiar methods have also been developed to handle ordinal or stochastic data.  

For more complete discussions on different methods, (Martel & Matarazzo, 2005; Brans 

& Mareschal, 2005; Vincke, 1999) are good references.  

 

4.4 METHOD SELECTION 

For a discrete MCDM problem, the solution techniques mentioned in this Chapter 

mainly under the banner of American and French school only account for part of the 

plethora of existing methods (Yoon & Huang, 1995; Stewart, 1992; Guitouni and Martel, 

1998).  In practice, though admittedly MCDA method selection relies frequently on the 

affinity and familiarity of a specific method, a dilemma seems always present: procedural 

simplicity and robustness can hardly live in harmony with theoretical soundness and 

elegance (von Winterfeldt and Edwards, 1986).  Hence, method selection itself usually 

constitutes a MADM problem, which was named “the meta decision problem” by Hanne 

(2001).  In literature, this topic has been extensively elaborated and various suggestions 

have been provided, such as Guitouni and Martel’s seven tentative guidelines (1998), 

Hwang and Yoon’s tree diagram (1981), and Hanne’s qualitative criteria (2001).  This 

author taking an engineer’s standpoint highlights two thoughts:  

� It is not always necessary to pursue theoretically justified methods.  Ad hoc or 

empirical methods (e.g. lexicographic order) in some cases provide effective solutions 

at reduced cost.  However, the fundamental hypothesis for any interested method (e.g. 
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preferential independence for additive value function) should be verified or at least 

acknowledged. 

� The ability and habits of both the analyst and the DM play an important role in 

method selection.  Cooperation and interaction are keys.  It should be avoided for one 

party to make unilateral presumption on the other without communications.   

 

4.5 COPING WITH UNCERTAINTIES 

It is evident that the primary motive with uncertainties is to eliminate, if possible, or 

somehow mitigate them, so that the decision maker can make least questionable 

decisions.  If this is not attainable, the second priority is to find a way to work things out 

in the presence of incomprehension or misjudgement.  As introduced in Chapter 4, the 

uncertainties for a particular MCDM problem may arise from diverse origins and exhibit 

widely variant characteristics.  In practice, uncertainty is often undertreated or mistreated 

(Dror, 1988), as most MADM solution methodologies were developed deterministically.  

Uncertainty handling approaches, particularly those capable to systematically tackle 

different kinds of uncertainties, remain an open problem (Stewart, 1992).   

 

In Chapter 3, a dichotomy proposed in (Stewart, 2005; Belton & Stewart, 2002) was 

adopted to distinguish two disparate types of uncertainties in a typical MCDM.  In order 

to tackle internal uncertainties associated with human judegments, fuzzy set (Fuller & 

Carlsson, 1996) and rough set (Greco et al., 1999) theories have been attempted.  

However, these methods using “obscure” languages lead to even greater 

misunderstanding and augmented complexity (Stewart, 1992).   A somewhat obvious 
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mechanism to fundamentally deal with internal uncertainties appears to be iteratively 

formulating and solving an updated deterministic decision problem with hopefully more 

convinced and rational value judgements.  

 

Stewart (2005) reviewed four broad approaches to dealing with external uncertainties 

related to imperfect knowledge concerning attribute measures.  Those approaches are 1) 

multiple attribute utility theory and its extensions; 2) pairwise comparison applying 

stochastic dominance concepts; 3) the use of surrogate risk measures as additional 

decision criteria; 4) scenario planning.  It is observed that all those approaches have been, 

more or less, devised to solve a lottery-like decision problem with risky attributes, which 

occur or are perceived to occur according to a (estimated) probability distribution.  

However, probabilities, essentially representing one’s subjective judgements on degree of 

belief (Kirkwood, 1997), may not necessarily arise in every scenario or are sometimes 

not available.   

 

From the above discussions, specific techniques to overcome uncertainty in practice 

vary with the type and degree of the uncertainties in a given problem.  In this study, 

sensitivity analysis is applied to explore how the internal uncertainties in weight 

assignment affect the ultimate decision.  The details with respect to sensitivity analysis is 

discussed and illustrated with the VOC recovery case study in the next section.  
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4.6 VOC RECOVERY SOLVENT SELECTION CASE STUDY  

4.6.1 Case Description 

This case study investigates a typical decision problem in engineering design.  

Specifically, a solvent for a VOC recovery plant is to be determined against a multiplicity 

of conflicting criteria.  More detailed background information regarding this process is 

provided in Appendix A.  

 

The original work on this process can be found in a series of publications by the 

researchers at Michigan Technological University.  However, their work, from a MCDA 

perspective, laid particular stress on alternative generations (e.g. different absorption or 

adsorption technologies in (Shonnard and Hiew, 2000), solvent comparison in (Chen et 

al., 2001) and operating conditions in (Chen et al., 2002)) and attribute measurements 

(e.g. environmental attributes in (Shonnard and Hiew, 2000), environmental and 

economic attributes in (Chen et al., 2003)).   No serious effort was put into the areas of 

making a meaningful decision.     

 

In this study, the author aims to decide one “best” candidate out of 23 organic 

solvents, which are to be applied in an absorption-based recovery process operated with 

fixed process configurations and operating conditions.  Disparate solvents will potentially 

lead to the designs with different performances.  Four environmental concerns are of 

particular interest in this case study.  They are Fish Toxicity (FT), Global Warming 

(GW), Smog Formation (SF), and Acid Rain (AR).  The attribute measures in the form of 
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environmental indices are directly drawn from (Chen et al., 2001), as listed below in 

Table 4–3.   
Table 4-3    Environmental indices with different solvents 

# Solvents IFT 
(kg/year) 

IGW 
(kg/year) 

ISF 
(kg/year) 

IAR 
(kg/year) 

1 1,2,4-Trichlorobenzene 1.13E+04 5.42E+06 2.45E+01 8.25E+03 
2 1-Bromo-4-ethoxy benzene 5.62E+04 2.21E+06 9.27E+00 3.12E+03 
3 1-Decanol 3.72E+02 2.30E+06 1.47E+01 4.95E+03 
4 1-Methy-naphthalene 1.83E+03 2.14E+06 1.06E+01 3.55E+03 
5 2-Decanol 2.66E+04 3.35E+06 1.58E+01 5.33E+03 
6 4-Chlorobenzotrichloride 9.52E+05 2.42E+06 1.09E+01 3.66E+03 
7 Anethole (trans) 5.78E+04 3.04E+06 1.00E+01 3.38E+03 
8 Butyl benzoate 3.68E+03 1.56E+06 8.62E+00 2.90E+03 
9 Dibenzyl ether 1.29E+03 1.07E+06 7.40E+00 2.49E+03 
10 Diethylene glycol butyl ether acetate 3.30E+03 1.69E+06 9.07E+00 3.05E+03 
11 Diethylene glycol dibutyl ether 3.08E+03 1.60E+06 8.53E+00 2.87E+03 
12 Diethylene glycol monobutyl ether 2.78E+01 1.63E+06 1.04E+01 3.50E+03 
13 Diethylene glycol monoethyl ether 

acetate 
3.62E+03 2.78E+06 1.14E+01 3.82E+03 

14 Dodecane 1.39E+04 6.39E+06 3.32E+01 1.12E+04 
15 Ethyl cinnamate 3.69E+04 1.40E+06 7.84E+00 2.64E+03 
16 Hexadecane 4.58E+04 2.68E+06 1.86E+01 6.25E+03 
17 Nitrobenzene 5.65E+03 2.76E+06 8.77E+00 2.95E+03 
18 o-Bronoanisole 5.13E+04 2.53E+06 8.81E+00 2.96E+03 
19 Octanoic acid 3.99E+02 1.62E+06 9.13E+00 3.07E+03 
20 o-Dibromobenzene 2.06E+04 2.03E+06 8.49E+00 2.86E+03 
21 p-Chlorobenzoyl chloride 1.88E+03 2.55E+06 1.09E+01 3.66E+03 
22 Quinoline 4.20E+03 2.49E+06 1.43E+01 4.80E+03 
23 Tetradecane 2.78E+03 3.36E+06 2.24E+01 7.54E+03 

Obviously, this is a typical MADM problem to be solved as a choice problematic.  

Therefore, the pairwise analysis of dominance binary relations on the alternative set can 

help screen out a rational smaller subset of options.  In this case, only three solvents as 

collected in Table 4-4 remain nondominated, which need to be further decided. 



96

Table 4-4 Nondominated solvents and their environmental indices 

 z1 z2 z3 z4

a9 1.29E+03 1.07E+06 7.40E+00 2.49E+03 
a12 2.78E+01 1.63E+06 1.04E+01 3.50E+03 
a19 3.99E+02 1.62E+06 9.13E+00 3.07E+03 

Decision matrix in Table 4-4 essentially contains quantitative attribute measures 

zj(ai).  Starting with these data, a MAVT method is developed to help construct an overall 

value function through both intra- and inter-attribute operations.  

 

4.6.2 Measurable Partial Value Function Construction 

The objectives of this step are twofold.  The superficial intent appears to be 

converting four heterogeneous attribute measures to a homogeneous interval scale (0-10 

in this case).  However, more importantly, the obtained scores on a particular attribute are 

supposed to reflect the extent to which the DM values the attainment levels on that 

attribute.  Hence, many numerical normalization techniques, though satisfying the first 

objective (i.e. unifying scales), fail to meet the second (i.e. capture the DM’s preference).     

 

The definition of an interval scale usually necessitates two reference points to be 

specified for each individual attribute (often the best and worst attribute values 

corresponding to the two scale extremes respectively).   The intended scale can be 

defined in a either local or global sense (Belton & Stewart, 2002).  The former considers 

only the alternatives at hand.  In the VOC recovery case, only the three nondominated 

alternatives in Table 4-4 are of further interest.  On the other hand, a globally defined 

scale tends to take into consideration a wider set of possible performances on an attribute, 
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which are either conceivable by the analyst or likely to occur in reality.  Accordingly, all 

23 candidate solvents should be involved to build a more general “global” scale.  Table 4-

5 contains the two reference points defined for each attribute in local and global sense, 

respectively.  
Table 4-5 Reference points for different attributes to define an interval scale 

 z1 z2 z3 z4

Local 1.29E+03 (a9) 1.63E+06 (a12) 1.04E+01 (a12) 3.50E+03 (a12)vj=0 
Global 9.52E+05 (a6) 6.39E+06 (a14) 3.32E+01 (a14) 1.12E+04 (a14)
Local 2.78E+01 (a12) 1.07E+06 (a9) 7.40E+00 (a9) 2.49E+03 (a9)vj=10 
Global 2.78E+01 (a12) 1.07E+06 (a9) 7.40E+00 (a9) 2.49E+03 (a9)

Let’s use z2 (global warming index) as an example to illustrate how to derive an apt 

partial value function.  Obviously, the preference here is consistently for lower index 

values that indicate less environmental impact, hence, the intended v2() should decrease 

monotonically with z2 increasing.  However, as mentioned before, v2() is not necessarily 

linear to z2. Many behavioral experiments have indicated that a seemingly intuitive linear 

value function may deviate, sometimes severely, from the DM’s real preference (Stewart, 

1993).  Whether a value function is linear or nonlinear (concave, convex, or with peaks), 

on one hand, depends on an individual DM’s attitude and valuation.  On the other hand, it 

intimately relates to how well an attribute measure reflects the DM’s value concerns.   

 

In general, a partial value function can be assessed through two distinct routes.  First, 

multiple discrete value points are joined together to construct a piecewise linear function.  

Second, a likely mathematical form is first determined or estimated, such as an 

exponential value function, the DM is then involved to further decide the specifics of the 

function (Kirkwood, 1997).  In literature, bisection (von Winterfeldt & Edwards, 1986) 



98

and difference (Watson & Buede, 1987) methods provide different means to assess a 

piecewise linear value function.  This study adopts bisection method, in which the DM is 

asked to identify a midpoint that is halfway in value terms between two specified 

attribute measures.  With two extreme points identified in Table 4-5 for global warming 

index, the question can be asked to the DM like “what attribute measure is of the halfway 

value (i.e. scoring 5) between 1.63x106 kg/year and 1.07x106 kg/year?” or applying the 

mathematical mean (1.35x106) that may be more intelligible to the DM: “is the decrease 

of global warming index from 1.63x106 to 1.35x106 a bigger or smaller increase in value 

than the decrease from 1.35x106 to 1.07x106?”  The second question may need to be 

asked multiple times with the different attribute measures adjusted against the DM’s 

answers.  Once the midpoint of the two extreme points are located, next step is to find 

more value midpoints so that a piecewise linear value function can be sketched more 

accurately.  In general, 5 points (2 extreme and 3 midpoints) are sufficient to enable 

smoothing a value curve (von Winterfeldt & Edwards, 1986; Stewart, 1996).   

 

For the global warming attribute, Table 4-6 (a) and (b) present 5 points identified in 

the case of local and global scale, respectively.  Joining those 5 points leads to a value 

function consisting of four linear line segments, as illustrated in Figure 4-1.  The global 

warming indices listed in Table 4-4 are converted to the value function scale through 

interpolation between two adjacent end points of the corresponding line segment that they 

fall in.  The corresponding Global Warming partial value function values of the three 

nondominated alternatives are summarized in Table 4-7.    
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Table 4-6 (a) Five value points for global warming in local scale 
z2 1.07E+06 1.12E+06 1.23E+06 1.41E+06 1.63E+06 
v2 10.00 7.50 5.00 2.50 0.00 

Table 4-6 (b) Five value points for global warming in global scale 

z2 1.07E+06 1.99E+06 2.97E+06 4.30E+06 6.39E+06 
v2 10.00 7.50 5.00 2.50 0.00 

Figure 4-1 Piecewise linear partial value function for global warming 

 
Table 4-7 GW partial value function values of nondiminated alternatives 

 z2 v2 (local) v2 (global) 
a9 1.07E+06 10.00 10.00 
a12 1.63E+06 0.00 8.48 
a19 1.62E+06 0.11 8.51 

From the above constructed partial value function, it can be concluded that an 

identical unit decrease in global warming index actually worth more for the DM when 

evaluating a better performed alternative than the alternatives with worse performance.  

The partial value function for other attributes, namely, fish toxicity, smog formation, and 

acid rain, can be assessed in a similar manner.  The obtained piecewise linear partial 

value functions are illustrated in Figure 4-2, while the functional values for three 

nondominated alternatives are summarized in Table 4-8.   
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Table 4-8  Partial value function values of three nondominated alternatives 

 Local scale Global scale 
v1 v2 v3 v4 v1 v2 v3 v4

a9 0.00 10.00 10.00 10.00 9.68 10.00 10.00 10.00 
a12 10.00 0.00 0.00 0.00 10.00 8.48 7.30 8.80 
a19 4.40 0.11 0.355 3.8 9.91 8.51 7.935 9.31 
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Figure 4-2  Partial value function plots for FT, SF, and AR 
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4.6.3 Aggregation and Weight Elicitation 

With partial value functions obtained, the simplest additive aggregation should be 

applied wherever possible.  However, the corresponding necessary conditions described 

in 4.2.2 should be satisfied beforehand.  Since measurable partial value functions (i.e. 

interval scale) are used in this case, the condition of “mutually difference independence” 

needs to be verified for the given attribute set.  However, differing from the structural 

independence mentioned in 3.4.2, preference independence relies solely on the DM’s 

insight to the interrelations among the target attributes, which, therefore, can only be 

verified with the DM.  A successful fulfillment of verification in practice takes a lengthy 

and tedious questioning procedure between the analyst and the DM.  In a general sense, 

the four attributes in this case study, namely, z1 (fish toxicity), z2 (global warming), z3

(smog formation), and z4 (acid rain) appear not conceivably relevant whatsoever.  

Therefore, mutually difference independence is assumed here without digging into an 

individual DM’s specific perception on these attributes.  As a consequence, the additive 

synthesis as shown in (4.7) can be applied:  

V(ai) = w1⋅v1(z1(ai)) + w2⋅v2(z2(ai)) + w3⋅v3(z3(ai)) + w4⋅v4(z4(ai))                    (4.7) 

 

Determining weights (w1, w2, w3, and w4) appears to be nothing more than the 

DM’s brainwork.  However, there are considerable practical difficulties in achieving 

meaningful weights particularly for a given preference model.  The oft-heard assertion 

“weights reflect the relative importance of criteria” seems natural, but makes little 

practical sense, as people can hardly perceive “what relative importance really means” in 

a consistent way and their responses may not match the succeeding aggregation (Belton 
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& Gear, 1997; Belton & Stewart, 2002).  As a matter a fact, the debate on the intended 

meaning of “relative importance of criteria” has been scorching and continues to rage 

(Roy & Mousseau, 1996).  Choo and coworkers (1999) concluded an array of 13 

plausible interpretations of “weight” and further pointed out the way of interpreting and 

eliciting weights should not be independent of the specific preference models in which 

weights are manipulated.  The procedures for deriving weights can be characterized by 

whether it is statistical or algebraic, holistic or decomposed, direct or indirect (Weber & 

Borcherding, 1993). 

 

In the case of additive MAVT, weights are more clearly defined compared with other 

preference models such as AHP and ELECTRE.  For instance, in (4.7) fish toxicity 

carries the weight w1 and the weight for global warming is w2. This should be interpreted 

as that one unit of value (for the DM) gained in fish toxicity compensates (w1/w2) units of 

value loss in global warming.  Or, it can be expressed in (4.8) as:  

w1/w2 = [v2(z2(a)) – v2(z2(b))]/[v1(z1(a)) – v1(z1(b))]                                 (4.8) 

 

In this case study, swing weighting (von Winterfeldt & Edwards, 1986) is applied, 

which, according to (Belton & Stewart, 2002), captures both the psychological concept of 

“importance” and the extent to which the measurement scale adopted in practice 

discriminates between alternatives.  Specifically, a swing (or increment) from the worst 

value (i.e. vj = 0) to the better value (i.e. vj = 10) in each attribute is visualized.  The DM 

is then involved to give considerations to comparing one swing to another in terms of the 

extent to which the overall value is consequently increased, both qualitatively and 
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quantitatively.  As far as the four attributes in this case study is concerned, the 

consequent overall value change caused by different swings is evaluated as:  

∆V (v3, max – v3, min) > ∆V (v2, max – v2, min) > ∆V (v4, max – v4, min) > ∆V (v1, max – v1, min)

⇒ w3 > w2 > w4 > w1

And quantitatively, ratio scale is obtained as follows:  

(w3 / w1) = 2.0 

(w2 / w1) = 1.5 

(w4 / w1) = 1.2 

The DM tends to intuitively interpret weights as percentage of a total weight.  Hence, it is 

often useful to normalize the weights to sum to 1.  Therefore:  

w1 + 1.2w1 + 1.5w1 + 2.0w1 = 1

w1 = 0.18 

w2 = 0.25 

w3 = 0.36 

w4 = 0.21 

With these weights as well as the data in Table 4-8, the overall value (preference) can be 

computed from (4.7), which are summarized in Table 4-9.  
Table 4-9 Overall value of the nondominated alternatives 

 Local scale Global scale 
v1

(0.18) 
v2

(0.25) 
v3

(0.36) 
v4

(0.21) V v1
(0.18) 

v2
(0.25) 

v3
(0.36) 

v4
(0.21) V

a9 0.00 10.00 10.00 10.00 8.20 9.68 10.00 10.00 10.00 9.94 
a12 10.00 0.00 0.00 0.00 1.80 10.00 8.48 7.30 8.80 8.40 
a19 4.40 0.11 0.355 3.8 1.75 9.91 8.51 7.935 9.31 8.72 
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Therefore, it is clear from Table 4-9 that the ninth alternative: dibenzyl ether offers a 

most preferred solvent to be applied in the VOC recovery process.   However, what 

matters here is not which alternative is ultimately selected or which criterion happens to 

be more important to the DM.  Instead, the case study tends to draw attention to a 

justifiable manner of decision making against multiple criteria, which is supposedly 

embodied in every single step (e.g. mutually difference independence, interval marginal 

values and ratio judgement on weights) when moving closer to the final decision.   

 

4.6.4 Sensitivity Analysis 

Sensitivity analysis, in its mathematical and statistical essence, aims to ascertaining 

how the output of a quantitative analysis depends on the inputs (Insua, 1999).  It has been 

long applied to multiple criteria decision problems mainly for investigating the 

significance of uncertainties, establishing the insight to different aspects of the model, 

discovering implications and possible inconsistency in the DM’s judgements, or simply 

testing the robustness of the result.  Many researchers have expostulated to view 

sensitivity analysis as a standard ingredient for any MCDA methods (French, 2003; von 

Winterfeldt & Edwards, 1986).   

 

In this case study, sensitivity analysis is used to explore how the uncertainties raised 

by indeterminate value judgements on weights, a particular type of aforementioned 

internal uncertainties, would impact the final decision.  Certainly, an intuitive way to 

conduct sensitivity analysis is to manually make adjustments to the weights that are 

interested, then examine how the results change.  However, altering weights on different 
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criteria simultaneously is error prone and time consuming (Kirkwood, 1997).  More 

importantly, it is hard to identify the contribution of each weight alteration to the 

observed results.  However, on the other hand, manipulating one-dimensional weight 

adjustment has also been criticized as misleading (Butler et al., 1997), due to its 

ignorance of possible interactions among multiple weight changes.  In this case study, 

systematic investigation is performed on manipulating one weight at a time while keeping 

other weights “steady” in such a fashion that makes sense.   

 

A difficulty that may arise is that at least one other weight has to be changed when 

adjusting the interested weight, as all weights must sum to 1.  A solution to this is to keep 

the ratios among the other weights constant while performing the one-dimensional weight 

adjustment (Kirkwood, 1997).  As an example, let’s use the weights assessed in 4.6.2 as a 

base case, in which [w1, w2, w3, w4] = [0.18, 0.25, 0.36, 0.21] respectively.  What other 

weights are supposed to change, if w2 takes on a new value 0.1?  With additive value 

function in (4.7) and the premise that ratios among the other weights hold constant, the 

following equations can be used to compute the corresponding the altered values of w1,

w3, and w4:

w1’ = (1 – w2’) / (1 + w3/w1 + w4/w1)

w3’ = (1 – w2’) / (1 + w1/w3 + w4/w3)

w4’ = (1 – w2’) / (1 + w1/w4 + w3/w4)

The experimental results of repeatedly varying each weight with both local and global 

scale data for partial value functions are contained in Table 4-10(a) and (b).  These results 
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are plotted in the Figure 4-3 and 4-4 to allow for intuitionistic and convenient 

observations.   

 

From the figures, it is easy to conclude that 1) dibenzyl ether (a9) is the most 

preferred solvent regardless of the specific weights on w2 (global warming), w3 (smog 

formation), and w4 (acid rain), therefore, uncertainties on these weights, even though 

high, are not likely to change the final decision.  2) The only chance for not choosing 

dibenzyl ether (a9) is that fish toxicity takes a major portion of the DM’s overall weight.  

Therefore, the weight on fish toxicity needs to be elicited with care. 3) Different scales 

(i.e. local or global) for partial value functions could potentially lead to disparate results, 

but the difference in this case is not obvious, due to the existence of a significantly better 

solution (i.e. a9) for this choice problematic.   

 

In this chapter, an overview of some major techniques of solving MADM is 

presented.  In addition, a MAVT-based method is proposed and demonstrated with a 

chemical engineering case study.  This method, though has some desired advantages, 

such as justified theoretical foundation, friendly elicitation from decision-maker, and 

uncertainty handling, is not possible to be superior to its peers in all cases.  The point 

here is that, in making a multiple attribute decision, the method to be applied has to be 

adapted and justifiable against the specific occasion, including the problem details, the 

habits and ability of the analyst as well as the decision-maker.   
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Table 4-10 (a)     Local scale overall values with varying weights 

w1 w2 w3 w4 V(a9) V(a12) V(a19)
0.00 0.32 0.43 0.26  10.00 0.00 1.16 
0.10 0.29 0.38 0.23  9.00 1.00 1.48 
0.20 0.26 0.34 0.20  8.00 2.00 1.81 
0.30 0.22 0.30 0.18  7.00 3.00 2.13 
0.40 0.19 0.26 0.15  6.00 4.00 2.45 
0.50 0.16 0.21 0.13  5.00 5.00 2.78 
0.60 0.13 0.17 0.10  4.00 6.00 3.10 
0.70 0.10 0.13 0.08  3.00 7.00 3.43 
0.80 0.06 0.09 0.05  2.00 8.00 3.75 
0.90 0.03 0.04 0.03  1.00 9.00 4.08 
1.00 0.00 0.00 0.00  0.00 10.00 4.40 

 
0.24 0.00 0.48 0.29  7.62 2.38 2.30 
0.21 0.10 0.43 0.26  7.86 2.14 2.08 
0.19 0.20 0.38 0.23  8.10 1.90 1.86 
0.17 0.30 0.33 0.20  8.33 1.67 1.64 
0.14 0.40 0.29 0.17  8.57 1.43 1.43 
0.12 0.50 0.24 0.14  8.81 1.19 1.21 
0.10 0.60 0.19 0.11  9.05 0.95 0.99 
0.07 0.70 0.14 0.09  9.29 0.71 0.77 
0.05 0.80 0.10 0.06  9.52 0.48 0.55 
0.02 0.90 0.05 0.03  9.76 0.24 0.33 
0.00 1.00 0.00 0.00  10.00 0.00 0.11 

 
0.27 0.41 0.00 0.32  7.30 2.70 2.47 
0.24 0.36 0.10 0.29  7.57 2.43 2.26 
0.22 0.32 0.20 0.26  7.84 2.16 2.04 
0.19 0.28 0.30 0.23  8.11 1.89 1.83 
0.16 0.24 0.40 0.19  8.38 1.62 1.62 
0.14 0.20 0.50 0.16  8.65 1.35 1.41 
0.11 0.16 0.60 0.13  8.92 1.08 1.20 
0.08 0.12 0.70 0.10  9.19 0.81 0.99 
0.05 0.08 0.80 0.06  9.46 0.54 0.78 
0.03 0.04 0.90 0.03  9.73 0.27 0.57 
0.00 0.00 1.00 0.00  10.00 0.00 0.36 

 
0.22 0.33 0.44 0.00  7.78 2.22 1.17 
0.20 0.30 0.40 0.10  8.00 2.00 1.44 
0.18 0.27 0.36 0.20  8.22 1.78 1.70 
0.16 0.23 0.31 0.30  8.44 1.56 1.96 
0.13 0.20 0.27 0.40  8.67 1.33 2.22 
0.11 0.17 0.22 0.50  8.89 1.11 2.49 
0.09 0.13 0.18 0.60  9.11 0.89 2.75 
0.07 0.10 0.13 0.70  9.33 0.67 3.01 
0.04 0.07 0.09 0.80  9.56 0.44 3.27 
0.02 0.03 0.04 0.90  9.78 0.22 3.54 
0.00 0.00 0.00 1.00  10.00 0.00 3.80 
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Table 4-10 (b)     Global scale overall values with varying weights 
w1 w2 w3 w4 V(a9) V(a12) V(a19)

0.00 0.32 0.43 0.26  10.00 8.06 8.47 
0.10 0.29 0.38 0.23  9.97 8.25 8.61 
0.20 0.26 0.34 0.20  9.94 8.45 8.76 
0.30 0.22 0.30 0.18  9.90 8.64 8.90 
0.40 0.19 0.26 0.15  9.87 8.84 9.05 
0.50 0.16 0.21 0.13  9.84 9.03 9.19 
0.60 0.13 0.17 0.10  9.81 9.22 9.33 
0.70 0.10 0.13 0.08  9.78 9.42 9.48 
0.80 0.06 0.09 0.05  9.74 9.61 9.62 
0.90 0.03 0.04 0.03  9.71 9.81 9.77 
1.00 0.00 0.00 0.00  9.68 10.00 9.91 

 
0.24 0.00 0.48 0.29  9.92 8.37 8.80 
0.21 0.10 0.43 0.26  9.93 8.38 8.77 
0.19 0.20 0.38 0.23  9.94 8.39 8.74 
0.17 0.30 0.33 0.20  9.95 8.40 8.71 
0.14 0.40 0.29 0.17  9.95 8.41 8.68 
0.12 0.50 0.24 0.14  9.96 8.43 8.65 
0.10 0.60 0.19 0.11  9.97 8.44 8.63 
0.07 0.70 0.14 0.09  9.98 8.45 8.60 
0.05 0.80 0.10 0.06  9.98 8.46 8.57 
0.02 0.90 0.05 0.03  9.99 8.47 8.54 
0.00 1.00 0.00 0.00  10.00 8.48 8.51 

 
0.27 0.41 0.00 0.32  9.91 8.99 9.15 
0.24 0.36 0.10 0.29  9.92 8.83 9.03 
0.22 0.32 0.20 0.26  9.93 8.66 8.91 
0.19 0.28 0.30 0.23  9.94 8.49 8.78 
0.16 0.24 0.40 0.19  9.95 8.32 8.66 
0.14 0.20 0.50 0.16  9.96 8.15 8.54 
0.11 0.16 0.60 0.13  9.97 7.98 8.42 
0.08 0.12 0.70 0.10  9.97 7.81 8.30 
0.05 0.08 0.80 0.06  9.98 7.64 8.18 
0.03 0.04 0.90 0.03  9.99 7.47 8.06 
0.00 0.00 1.00 0.00  10.00 7.30 7.94 

 
0.22 0.33 0.44 0.00  9.93 8.29 8.57 
0.20 0.30 0.40 0.10  9.94 8.34 8.64 
0.18 0.27 0.36 0.20  9.94 8.39 8.71 
0.16 0.23 0.31 0.30  9.95 8.45 8.79 
0.13 0.20 0.27 0.40  9.96 8.50 8.86 
0.11 0.17 0.22 0.50  9.96 8.55 8.94 
0.09 0.13 0.18 0.60  9.97 8.60 9.01 
0.07 0.10 0.13 0.70  9.98 8.65 9.09 
0.04 0.07 0.09 0.80  9.99 8.70 9.16 
0.02 0.03 0.04 0.90  9.99 8.75 9.24 
0.00 0.00 0.00 1.00  10.00 8.80 9.31 
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 Figure 4-3(a)~(d)      Sensitivity analysis  for weights in local scale 

V vs. w1 (local scale)
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Figure 4-4(a)~(d)      Sensitivity analysis  for weights in global scale 

V vs. w2 (global scale)
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CHAPTER 5 
 

SOLVING MULTIPLE OBJECTIVE DECISION MAKING 
 

5.1 SOLVING MODM 

A Multiple Objective Decision Making (MODM) problem is also known as Multiple 

Objective Programming (MOP) or Vector Maximum Problem (VMP).  The ultimate goal 

of solving such a problem is to find a single solution x*=[x1*, x2*, …, xnx*]T that satisfies 

all the constraints and possesses the most “preferred” (by the DM) values on the vector 

objective function f(x*)=[f1(x*), f2(x*), …, fnf(x*)]T. Mathematically, a typical MODM 

problem can be represented as:  

Minimize    f (x) f = [f1, f2, …, fnf]T x = [x1, x2, …, xnx]T (5.1) 

 s. t.              x∈F

F = {x| g (x) ≤ 0 g = [g1, g2, …, gng]T;

h (x) = 0 h = [h1, h2, …, hnh]T;

xil ≤ xi ≤ xiu i = 1, 2,…, nx } 

 

There are numerous methods for solving MODM problems.  Many dedicated books 

and monographs have been published, such as (Hwang & Masud, 1979; Sawaragi et al., 

1985; Steuer, 1986; Miettinen, 1999; Collette & Siarry, 2003).  Several points should be 

noted before specific solution methods are presented. 
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First of all, from a decision-making standpoint, infinite alternative space and multiple 

competing objectives are two fundamental difficulties in a MODM.  Accordingly, two 

distinct sub-processes are imperative in solving a MODM.  On the one hand, a search 

mechanism explores the possible solutions by iteratively sampling the alternative space.  

Past studies on optimization have produced abundant techniques for searching a given 

space in a theory-guided, heuristic, patterned, or simply random manner.  On the other 

hand, as addressed in Chapter 3 and 5, a decision method is needed to evaluate a finite 

collection of intermediate solutions against conflicting objectives, which requires the 

human decision maker to be involved sooner or later.   

 

Second, finding the Pareto optimal set (often containing infinite solutions) is 

sometimes considered the mathematical endpoint of a solution process, especially for the 

approaches referred to as “vector optimization.”  However, the problem is still not 

completely solved, because real world applications would always require only one 

solution.  

 

Third, as an infinite number of candidates are to be decided, it is important to 

(theoretically or empirically) ensure that the achieved final solution is globally “optimal” 

or “preferred” (compared with all other possible candidates) rather than just “local” 

(compared with the very limited number of alternatives that are examined during the 

solution process).  However, as a matter of fact, very few algorithms present completely 

satisfactory performance in this regard.  A looser criterion, as mentioned in Chapter 3, is 



112 
 

that an overall preferred solution has to be Pareto optimal.  However, globally Pareto 

optimality is also hard to verify as far as an infinite set is concerned.  

 

5.1.1 Different Solution Strategies 

MODM Solution techniques can be classified in a variety of different ways 

(Miettinen, 1999).  A taxonomy that gained the most recognition was first proposed in 

(Cohen & Marks, 1975) and formulated by Hwang and Masud (1979) into the later 

widespread discourse.  According to this scheme, different methods are sorted by the 

timing for the DM to be involved (i.e. decision sub-process) relative to the search sub-

process.  As a result, three fundamentally different solution strategies can be 

distinguished:   

� A priori preference articulation (decision ⇒ search) 

� A posteriori preference articulation (search ⇒ decision) 

� Progressive preference articulation (search ⇔ decision)   

 

Both search and decision-making have been very active research areas over the past 

years.  However, the simultaneous attainment of both seems not as successful.  On the 

one hand, multiple attribute decision-making (MADM) assuming a “countable” or “easily 

searchable” alternative space has been extensively studied, in which preference is 

handled variously.  On the other hand, many robust algorithms exist capable of searching 

intractably large and complex spaces.  However, their applications to multi-objective 

cases are less reported (Horn, 1997a).  
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5.1.2 “A Priori” Methods 

This traditional class of methods seeks to convert a MODM to a single objective 

programming (SOP) problem (or a sequence of SOPs), so that a large number of long-

standing numerical optimization techniques can be applied.  Though there exist widely 

different ways of constructing a scalar objective function (Ehrgott, 2005; Parsons & 

Scott, 2004; Marler & Arora, 2004), preference from the decision maker is always needed 

(sometimes implicitly) ahead of time.  However, operational difficulties may arise, which 

most likely originate from acquiring legitimate preference and justifying its validity for a 

particular method.  Table 5-1 contains an inexhaustive list of methods sorted according to 

distinct scalarization mechanisms.  Hwang & Masud (1979) and Ehrgott (2005) provide 

more complete surveys.  Several most widespread methods are introduced in brief next. 
Table 5-1  Different methods using a priori preference strategy 

Category Explanation Approaches 
Weighted sum 
Weighted t-th power 

Value function-
based 

Based on the existence of an 
explicit value function that can 
reliably convey the DM’s global 
preference Multiplicative value function 

ε-constraint 
Proper equality constraint 

Constraint-based Reserving one objective function to 
be optimized while converting all 
the others to constraints 

Elastic constraint 

Compromise programming 
Achievement function 
Weighted geometric mean 

Reference point 
(Distance function) 

Minimizing the distance function 
constructed to measure the 
closeness to a reference point 

Goal programming 

Goal-attainment 
Reference direction 

Direction-based Searching along a direction in the 
objective space with a pre-specified 
base point 

Normal boundary intersection 

Benson approach 
Gauge-based 

Other Miscellaneous scalarization 

Min-Max 
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5.1.2.1 Weighted Sum Method 

Minimize                                                       (5.2) 

The scalar objective function is obtained from the simple additive formula as shown 

in (5.2).  This method can be applied when the DM’s value judgement on each attribute is 

linear and his/her preference can be encoded or assumed in an additive form.  As seen in 

Chapter 5, a necessary condition for a value function to be additive is that all the partial 

value functions (i.e. fi) are mutually preferential independent.  The weights wi in (5.2) 

should be interpreted and elicited as marginal rate of substitution (i.e. swing), which 

essentially stands for how many units of decrease in fi compensate one unit of increase in 

another criteria fj. Though this method appears simple, many difficulties, particularly 

those associated with weights, have been recognized.  First, weights in practice are prone 

to misinterpretation, debatable elicitation, and alteration with time (Marler & Arora, 

2004).  Second, though theorems have been proved that positive weights guarantee a 

Pareto optimal solution and vice versa (Miettinen, 1999), this method is impossible to 

find Pareto optimal solutions locating in a non-convex region (Das & Dennis, 1997).  

Third, consistent and continuous variation in weights does not necessarily lead to an even 

distribution of Pareto optimal solutions (Das & Dennis, 1997; Marler & Arora, 2004).  

 

5.1.2.2 ε-Constraint Method 

This method performs the MOP-to-SOP conversion by retaining one objective 

function while treating the others as constraints (Haimes et al., 1971), which is shown in 

(5.3).  

i

nf

i
i fwf ∑

=
=

1
'
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Minimize    fk (5.3) 

 s.t.         fi ≤ εi, i≠ k, i = 1, 2, …, nf 

The solution to (5.3) has been proven “weakly” Pareto optimal if exist and Pareto optimal 

if unique (Miettinen, 1999).  The difficulties primarily arise from selecting the objective 

function as well as an appropriate bound for each constraint.  In addition, this method is 

computationally laborious, as extra calculations often have to be spent on those bound 

values that yield no feasible solution and also on verifying the uniqueness of a solution.  

The increased number of constraints would cost even more computation.  

 

5.1.2.3 Distance Function Methods 

This name actually refers to a school of methods with a common root that lies in the 

construction of a scalar distance (achievement) function, which essentially offers a 

meaningful measure of the closeness to an identified reference point in the objective 

space.  

Minimize or maximize    d (f, r)                              (5.4) 

In literature, different distance metrics and reference points lead to various methods.   

The representing methods for this class include: goal programming (GP) (Charnes & 

Cooper, 1977) and Compromise programming (CP) (also referred to as global criterion or 

weighted metric with slightly different formulations) (Zeleny, 1973).  The conditions for 

these methods to yield Pareto optimal solutions were discussed in (Miettinen, 1999).  

Romero and coworkers (1999) attempted establishing theoretical inter-connection among 

various methods.  The different characteristics of these methods are summarized in Table 

5-2.  
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Table 5-2 Distance function methods for solving a MODM 

Method Reference point Distance metric 

Weighted )(
1

++−
=

− +∑ iii

nf

i
i ww δδ

lexicographic Minimize |δi|
GP Vector of goals on attributes  

Min-max Minimize (max δi+)

Non-weighted p
pnf

i
ii rf /1

1
)(∑

=
−

CP Vector of optimal attribute values 
Weighted p

pnf

i
iii rfw /1

1
)(∑

=
−

5.1.3 “A Posteriori” Methods 

A major criticism on a priori methods lies in that it is very difficult, if not impossible, 

to precisely elicit preference only in terms of criteria (i.e. objective functions) without 

associating them with specific solutions.  This, however, is just the most prominent 

advantage of a posteriori methods.  A posterior methods tend to generate or approximate 

(part of) the Pareto optimal solutions, so that the infinite candidate set can be narrowed 

down to a reasonable finite subset, which, as a consequence, allows the human DM to 

make further decisions.  These methods are criticized for their computational burden in 

generating the entire efficient set and their cognitive burden on the decision maker in 

selecting one solution from a still considerable number of alternatives (Shin & 

Ravindran, 1991). 

 

5.1.3.1 Traditional Generation Techniques 

In a rather long time, the only way of generating multiple Pareto optimal solutions 

seemed to be solving a sequence of SOP iteratively.  An apt SOP formulation can be 

obtained from any a priori method mentioned in the subsection 5.1.2, such as weighted 
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sum, ε-constraint, etc.  However, the tricky part is how to efficiently attain distinct yet 

well representative Pareto optimal solutions (usually depicted by the uniform spread in 

the objective space).  Most methods have questionable ability to fulfill this task in a 

systematic and well-perceived way (Miettinen, 1999).   It is also important to note that 

the traditional methods to a great extent are beholden to the success and efficiency of the 

SOP solver.  

 

5.1.3.2 Multiobjective Evolutionary Algorithms (MOEAs) 

Differing from those generation methods, this class of methods are new and based on 

a totally different philosophy of search.  Research has indicated that MOEAs, depending 

on applications, are able to generate a satisfactory set of solutions (globally Pareto 

optimal and evenly distributed) in a single run (Deb, 2001; Coello Coello et al., 2002).  

The in-depth discussion on MOEAs is provided later.  

 

5.1.4 Interactive Methods 

All MCDA methods are essentially interactive (Stewart, 1999; Korhonen, 2005), 

since the intervention of a DM, though occurring at different timings (in advance, during 

the search, or afterwards), is always requisite.  The term “interactive” is used here in a 

relatively narrower sense referring to the methods in which the DM’s global preference 

structure is evaluated progressively from making local choices.  As a result, the dialogue 

about the current situation between a “consistent” DM and an analyst (who performs the 

search) are iterated during the entire solution process.  A typical interactive procedure is 
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as follows: “initial solution(s) – preference from the DM – update the solution(s) – repeat 

until satisfaction or termination” (Miettinen, 1999).   

 

In literature, most interactive MOP techniques were generally presented rather than 

computationally applied.  Numerical comparative studies that test different methods are 

even less.  This may be partially attributed to: 1) the complicating fact working with real 

decision makers, in particular, the nonequivalence of variously articulated preference; 2) 

the lack of benchmark test MOP problems (Shin & Ravindran, 1991; Miettinen, 1999).  

Shin & Ravindran (1991) in their comprehensive survey differentiated the interactive 

methods into ten categories, while Stewart (1999) and Korhonen (2005) both presented 

different rougher taxonomies.  In this study, two general classes of methods are 

distinguished.    

 

5.1.4.1 Implicit Value Function-Based 

This class of methods assumes the existence of a value function, which can represent 

the DM’s global preference.  However, no effort is made to pursue the explicit form of 

the value function.  Instead, certain mild functional characteristics (e.g. pseudoconcavity) 

are hypothesized and applied in a local sense.  The class includes the methods using 

tradeoff information (Geoffrion et al., 1972) and using direct alternative comparison 

(Zoints & Wallenius, 1976 ; Steuer, 1977).  
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5.1.4.2 None Value Function-Based 

Without value function assumption, most of these methods are conceptually based on 

iteratively adjusting the DM’s aspiration.  Different ways of expressing aspiration as well 

as manipulating adjustment essentially give rise to a variety of distinct methods.  Among 

various methods, STEM (Banayoun et al., 1971), Light Beam Search (Jaszkiewicz & 

Slowinski; 1999), Tchebycheff method (Steuer, 1986), and Reference Point method 

(Wierzbicki, 1980, Wierzbicki, 1998,) are notable representatives. 

 

5.1.5 Interest of This Work 

The behavioral foundation underlying a priori methods appears unrealistic for most of 

the real-world decision contexts, attributed to its demand for an assured global preference 

at the very beginning of a decision process even before any local preference is explored.  

Interactive methods, on the other hand, are conceptually very attractive, mainly because 

of their “learning” capacity, local preference requirement and the adequate involvement 

of the decision maker (Miettinen, 1999; Hwang  et al., 1980).  However, these advantages 

could also be their shortcomings, if examined from a different perspective.  For instance, 

higher burdens are imposed on the DM, not only cognitively (i.e. to keep psychological 

consistency) and physically (e.g. to interact with the analyst at each iteration).  In 

addition, the computerized search algorithm has to pause at each iteration to allow for 

incorporating updated preference.  This further requires a friendly computer-man 

interface and more importantly lowers the efficiency of solution process.  To this end, the 

methods adopting a posterior solution strategy turn out to be practically more desired, as 

it split the rigorous search (which can be efficiently accomplished by a computer) and the 
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interactive human-dependent decision (which may involve rather tedious preference 

elicitation and refining) and perform them in sequence.  The issues on multiple attribute 

decision making have been extensively discussed in Chapter 4.  Hence, the succeeding 

sections cast focus on MOEAs, a recently emerged a posterior method that has been 

claimed to be “well adapted” to tackling the search task in a MODM (Collette & Siarry, 

2003; Chipperfield et al., 1999). 

 

5.2 EVOLUTIONARY ALGORITHMS 

5.2.1 Introduction 

Evolutionary Algorithms (EAs) refer to a class of stochastic search techniques with 

natural evolution and Darwin’s survival-of-the-fittest theory as the underlying inspiration.  

The backbone of EAs consists of genetic algorithms (GAs) (Holland, 1975, Goldberg, 

1989), evolution strategies (ESs) (Rechenberg, 1965), and evolutionary programming 

(EP) (Fogel et al., 1966), which all stemmed in the 1960s and the 1970s and have 

developed almost independently in history.  In recent years, the boundaries between GAs, 

ESs, and EP have broken down considerably (Mitchell, 1996).  The majority of today’s 

EAs exhibit more or less hybrid characteristics and dramatic difference from their 

ancestors.  Therefore, the succeeding discussions are predominantly focused on Genetic 

Algorithms, which are most well known and widespread.  

 

EAs differ in principle from those “traditional” search methods. As a result, some 

difficulties inherent in traditional optimization methods can be easily overcome by EAs.  

Several authors have pointed out the strength of EAs in comparison with traditional 
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optimization methods (Deb, 2001; Goldberg, 1989).  However, some obvious shortfalls 

also exist.  Below listed are several points to which this author attached the most 

importance.  

� EAs evolve a population of solutions at a time, instead of jumping from one 

individual solution to the other.  This is of particular advantage for three cases: 1) to 

attain more than one solution in a single run, for instance, to approximate Pareto 

optimal front, 2) to utilize parallel computation, and 3) to avoid getting stuck in a 

local optimum.   

� EAs apply metaheuristics and therefore require less auxiliary information (such as 

derivatives, Hessian matrix for indirect optimization algorithms).  This makes EAs 

more robust than most conventional deterministic methods, which usually have 

trouble solving such problems with nonlinear, multimodal or even blackbox (no 

analytical expression) objective function(s) as well as discrete or mixed type of 

decision variables (Mixed Integer Linear/Nonlinear Programming). 

� Due to their stochastic nature and absence of solid theoretical foundation, EAs can 

not guarantee that an optimal-enough or even bearable solution is found in each run 

(within finite time).  Also, the computational cost of EAs is usually high.  

 

5.2.2 Construction of a Genetic Algorithm 

As originally formulated by John Holland (1975), GAs work in a parallel and iterative 

fashion by discovering, emphasizing, and recombining the “schemas” (building blocks) 

of good solutions (Mitchell, 1996).  Figure 5-1 presents the flowchart of a generic GA.  

In general, a GA starts with a random population of solutions, if no prior domain 
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knowledge is available.  Each solution is encoded as an artificial chromosome 

(“genotype”) mimicking the natural chromosomes carrying genetic information for 

organisms.  How a particular solution performs in terms of the interested goals of search 

is evaluated in terms of its fitness corresponding to organisms’ biological characteristics 

(“phenotype”).  If the stopping criteria are met, the solution process comes to an end.  

Otherwise, the solutions go through a sequence of genetic operations to hopefully update 

the current population to a better composition.  Various genetic operators have been 

developed and applied.  The majority of them fall in three basic types: 1) selection, 2) 

crossover, and 3) mutation.  Some working steps pivotal to implementing a GA are 

discussed briefly in the following subsections.  

 Initial population 

Terminate?

Selection 

Crossover 

Mutation 

STOP 

t=t+1

Yes 

No 

Fitness evaluation 
t=0 

 
Figure 5-1 Flowchart of a generic GA 

 

5.2.2.1 Representation 

Partly attributed to historical reasons as well as intuitive metaphor of natural 

chromosomes, binary-encoding GAs in which solutions are represented by bit strings 

(length may be fixed or varying with precision) are most common (Mitchell, 1996).  

However, it has been proven that GAs’ effectiveness does not stem from using bit strings 
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(Herrera et al., 1998).  Other encoding methods, such as real-valued encoding (Herrera et 

al., 1998), tree encoding (Koza, 1992), and permutation encoding (Ronald, 1997) are 

more wieldy than binary encoding for some particular problems.  The best philosophy of 

choosing the correct encoding so far seems to be applying the one that is most natural to 

the specific problem under consideration (Davis, 1991).   Robust (Ronald, 1997) and 

adapting encoding (Mitchell, 1996) were also elaborated in literature for complex 

problems.  

 

5.2.2.2 Fitness Evaluation 

Fitness plays a key role in guiding the evolution through future generations.  It is 

essentially a measure of how good a solution is, either relative to the others in the current 

population or according to certain pre-defined universal standards.  Fitness could involve 

mathematical models (e.g. objective and constraint functions), human judgement, or even 

ecology-like process (Goldberg, 2002).  In most mathematical optimization settings, 

either objective function(s) itself or the relevant variations (e.g. sorting, ranking, 

combination) are taken as fitness.   

 

5.2.2.3 Selection 

Selection is an operator emulating survival-of-the-fittest mechanism.  The basic idea 

is to drive the evolution by emphasizing fitter individuals in hopes that their offspring 

will in turn have even higher fitness.  Among a number of selection operators, 

proportionate selection including roulette wheel (Holland, 1975) and stochastic universal 

sampling (Baker, 1987), rank selection (Baker, 1985), tournament selection (Goldberg & 
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Deb, 1991) are widely applied.  The selection pressure of a selection operator needs to be 

balanced with successive crossover and mutation (i.e. exploitation/exploration balance) in 

order to obtain successful behavior of a GA (Blickle & Thiele, 1996).    

 

5.2.2.4 Crossover and Mutation 

Crossover shuffles pieces of fit schemas, which possibly will result in the offspring 

with good or even better combined parental traits.  Mutation, on the other hand, modifies 

a single individual in order to introduce new genes into the current population.  Again, 

there are a variety of ways to accomplish crossover and mutation.  The specific operators 

to be applied depend on many considerations, including encoding strategy, fitness 

function, and other details in a particular GA (Mitchell, 1996).  The existing guidance 

regarding what and how (e.g. probabilities) operators should be utilized is very limited 

and was mostly achieved from empirical studies on small suites of test problems.  

 

5.3 MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS 

5.3.1 Overview 

The transformation of EAs to multiple objective programming (MOP) fields was not 

long ago.  Schaffer (1985) and his vector evaluated GA (VEGA) was widely regarded as 

the first attempt to implement EAs to MOPs in such a different manner that EAs’ 

population-based characteristics were exploited to keep multiple objectives in parallel 

without scalarization.  Based on Schaffer’s pioneering work, non-dominated sorting 

proposed by Goldberg (1989) further laid the foundation of dominance-based fitness 

assignment and selection, which stay central to most MOEAs developed thereafter.  



125 
 

A large number of MOEAs emerged in the 1990s.  Some notable representatives are 

multi-objective GAs (MOGAs) (Fonseca & Fleming, 1993), niched Pareto GAs (NPGAs) 

(Horn et al., 1994), non-dominated sorting GAs (NSGAs) (Srinivas & Deb, 1994), 

Strength Pareto EAs (SPEAs) (Zitzler & Thiele, 1998a), and Rank-Density-Based GAs 

(RDGAs) (Lu & Yen, 2002).  Some of them have been developed to newer versions and 

multiple variations.  These methods differ in the mechanism of fitness assignment, 

diversity preservation, as well as elitism strategy. Good overview books and survey 

articles on MOEAs include (Deb, 2001), (Coello et al., 2002), (Fonseca & Fleming, 

1995a), (Coello Coello, 2000a), (Van Veldhuizen & Lamont, 2000), (Tan et al., 2002).   

 

Coello and coauthors (2002) stated that the classification scheme described in 5.1.1 

(i.e. a priori, a posteriori, progressive) also apply to MOEAs.  In addition, the majority of 

MOEAs fall in the “a posteriori” class.  This was justified by the survey by Van 

Veldhuizen & Lamont (2000).  As pointed out in (Lu & Yen, 2002), the intention of “a 

posteriori” MOEAs is to find a uniformly distributed set of samples of a near-complete 

and near-optimal Pareto front.  Deb (2001) argued that finding multiple Pareto optimal 

solutions is motivated by the fact that the DM’s definite preference among criteria is 

unavailable.  Therefore, from a perspective of MCDA, a MOEA itself cannot completely 

solve a MOP problem (locating a single “best” solution) and must require extra 

preference information to tackle the conflict among criteria.  However, as stated in 3.5.3, 

a preferred solution to a choice problematic has to be one of Pareto optimal solutions.  To 

this end, MOEAs, particularly those adopting dominance-based fitness assignment, 



126 
 

played an important role in solving MOP.  They help to reduce significantly the size of 

the interested set of solutions in a rational way and without a risk of choosing non-Pareto-

optimal solutions.  Hence, the following discussions on implementation issues are 

restricted to those MOEAs applying dominance-based fitness assignment. 

 

5.3.2 Fitness Assignment 

Determining the fitness of an individual is not straightforward in the presence of 

multiple criteria.  The concept of dominance was first applied by Goldberg (1989) to 

fitness assignment.  Various fitness assignment methods have emerged in the past decade 

based on the similar philosophy, which assigns non-dominated solutions more desirable 

fitness (i.e. rank) than dominated ones in the population.  Three categories can be loosely 

defined to sort different methods (Zitzler, 2002; Raghuwanshi & Kakde, 2004):  

� Dominance rank: The fitness of an individual is related to the number of individuals 

by which it is dominated. 

� Dominance count: the fitness of an individual is related to the number of individuals 

it dominates. 

� Dominance depth:  the fitness of an individual is related to which front it belongs to 

(the current population is divided into several fronts by non-dominated sorting).  

 

Table 5-3 contains a list of different fitness assignment methods adopted in several 

popular MOEAs.  There is no clear evidence that could favor any of those methods over 

the others in a general sense.  The mathematical complexity of several methods was 

analyzed in (Van Veldhuizen & Lamont, 2000).  
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Table 5-3 Different fitness assignment techniques in several popular MOEAs 
MOEA Classification Fitness assignment technique 

MOGA Dominance rank Rank-based fitness assignment 
rank(xi, t)=1+pi(t) 
xi: The individual to be considered at generation t  
pi(t): The number of individuals that dominate xi

NPGA Dominance rank Pareto domination tournaments  

NSGA Dominance depth Non-dominated sorting 
Iteratively assign increased rank to non-dominated individuals 
and extract them from unclassified solutions. 

NSGA-II Dominance depth Fast non-dominated sorting 
Same mechanism as that in NSGA, but with a better book-
keeping strategy to accelerate calculation. 

SPEA Dominance count & rank ∑
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xj: The individual in the population at generation t 
F(xj, t):    Fitness of xj at generation t 

ix : The ith (i=1,2,…pj(t))  archive member dominates xj
pj(t):        The number of archive members that dominate xj

S( ix , t):  Strength of ix at generation t 
ni: The number of population members ix dominates 
N:            The size of the current population 

SPEA-II Dominance count & rank 
R(xj, t) =∑
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S(xi, t) = Number of individuals xi dominates at generation t 
xj: The individual to be considered at generation t 
R(xj, t):   Raw fitness of xj at generation t 
xi: The ith (i=1,2,…pj(t)) individual that dominates xj
pj(t):       The number of individuals that dominate xj
S(xi, t):   Strength of xi at generation t 

RDGA Dominance count & rank Automatic Accumulated Ranking Strategy (AARS) 

Rank(xj, t)=1+ ),(
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1
txrank

t
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=
xj: The individual to be considered at generation t  
xi: The ith (i=1,2,…pj(t)) individual that dominates xj
Pj(t): The number of individuals that dominate xj
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Figure 5-2 illustrates a two-dimensional objective space containing nine distinct 

solutions whose fitness are to be determined.  The fitness of these points yielded from the 

selected MOEAs are summarized in Table 5-4.   
 f1

f2

1

2

3

4
5

6

7

8
9

Min-min

Figure 5-2 Determining the fitness for a population of solutions 
 

Table 5-4 Fitness assigned by different methods 

 Non-dominated 
individual 

 Dominated individual 

#1 #3 #8  #2 #4 #5 #6 #7 #9 
MOEA 1 1 1  2 2 5 2 7 2
NSGA 1 1 1  2 2 3 2 4 2

NSGA-II 1 1 1  2 2 3 2 4 2
SPEA-II 0 0 0  3 4 11 4 14 2 
RDGA 1 1 1  2 3 7 2 13 2 

5.3.3 Diversity Preservation 

Using EAs to solve optimization problems, particularly those with vector-valued or 

multi-modal objective function, has been suffering from the so-called “genetic drift” 

(losing genes due to stochastic selection on a finite-size population) as well as “premature 

convergence” (trapped at a single solution).  Researchers have developed a variety of 

techniques to combat these negative effects. Most of them are based on maintaining 

diversity in the population (Coello et al., 2002; Landa Silva & Burke, 2004).  These 

diversity preservation methods were loosely distinguished as either niching (Goldberg, 
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1989; Sareni & Krahenbuhl, 1998) /speciation (Darwen & Yao, 1996) or non-niching 

methods. 

 

From the observation of natural evolution within an environmental niche (a portion of 

ecosystems to sustain competing species), Goldberg and Richardson (1987) proposed a 

niching technique named sharing, which was perhaps most widely applied (Deb and 

Goldberg, 1989; Mahfoud, 1995; Horn, 1997b).  This technique works analogous to 

natural species exploiting and sharing a same resource.  An individual’s shared fitness 

(f’) is equal to its original fitness (f) divided by its niche count (nci), which is the sum of 

sharing function (sh) values between the individual and every individual (including itself) 

in the population:  

)5.6()),(()()('
1
∑

=
==

n

j
i

i
jidshncnc

ifif

sh (d(i,j)) = 1 -(d (i,j)/σ sha re)α , if d <σ sha re 
0 ,                       o th erw ise  

d(i,j) stands for a distance measure between solution i and j.  Sharing tends to encourage 

the proliferation of solutions in unexplored regions by reducing the payoff of densely 

populated individuals.  There are many fitness sharing variants differing from one 

another in many aspects, such as distance metrics applied, genotypic or phenotypic 

sharing, restricted or non-restricted sharing, etc.  Though fitness sharing methods enjoyed 

the most success (Mahfoud, 1995), particularly in solving multimodal problems, they 

have been criticized for their perplexity in determining an appropriate dissimilarity 



130 
 

threshold σshare as well as high cost in computing niche count (Sareni & Krahenbuhl, 

1998).  

 

More recently, measures of crowding and/or density have been applied as an auxiliary 

meter for comparing the individuals with identical fitness.  This class includes crowding 

distance (size of largest cuboid enclosing the individual without including any other 

individual) in NSGA-II (Deb et al, 2000); density (an individual’s distance to k-nearest 

neighbor) in SPEA-II (Zitzler et al., 2002), and adaptive density (a revised cell density 

estimation) in RDGA (Lu & Yen, 2002).  Table 5-5 summarizes the diversity 

preservation methods used in several major MOEAs. 
 Table 5-5 Different diversity preservation techniques in several popular MOEAs 

MOEAs Classification Diversity preservation technique 
MOGA Niching & non-niching Fitness sharing in objective space  

Mating restriction 

NPGA Niching Equivalent class sharing (fitness sharing) in objective space  

NSGA Niching Fitness sharing in decision space  

NSGA-II Niching Crowding distance comparison  

SPEA Niching Average linkage clustering  

SPEA-II Niching Density (k-nearest neighbor) in objective space 
D(xi) = 1/(σik+2)   k= NN +
D(xi): Density of individual i 
σik: Distance to the k-th nearest neighbor 
N: Population size 
N : Archive size 

RDGA Niching Adaptive cell density in objective space 
D(xi) = Number of individuals located in the same cell [ ] jjXxjXx

Kxfxfjd /)(min)(max)(
∈∈

−=
D(xi): Density of individual i 
d(j):    Cell size in j-th dimension 
fj(x) :   Fitness function 
Kj: Number of cells in j-th dimension 
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The most frequently used non-niching method is restricted mating (Goldberg, 1989). 

Through this mechanism, the recombination of the individuals that do not satisfy 

predefined criteria is prevented.  Usually, restrictions are imposed on the pair of 

genotypic or phenotypic similarity.  In literature, various implementations exist (Kumar 

& Rockett, 2002; Loughlin & Ranjithan, 1997).  However, at least two questions still 

remain open: first, no rationale holds for determining the threshold value σmate that 

kindles the mating restriction, though a common practice seems to be adopting 

σmate=σshare. Second, extensive arguments exist on the actual benefits of performing such 

an action (Zitzler & Thiele, 1998b; Coello Coello et al., 2002).   

 

In order to overcome the possible deterioration of convergence ability resulting from 

pursuing a good spread, Laumanns and coworks (2002) applied ε-dominance that aims to 

achieving a combined convergence and diversity.  Lu and Yen (2002) as well as Affolo 

and Benini (2003) both proposed to treat diversity as an extra objective to be maximized 

in parallel with maximizing the fitness.   

 

5.3.4 Elitism 

Elitism is a mechanism that helps to improve search convergence and effectiveness 

by ensuring that the maximum fitness never deteriorates as the evolution goes along.  To 

achieve this goal, the highly fit member(s) are passed on to the next generation without 

being altered.  As many authors have pointed out (Laumanns et al., 2000; Deb, 2001), 

there is a great variety in the implementation of elitism to EAs.  (Deb, 2001) introduced 
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several different versions of popular elitist MOEAs, for instance, SPEA by Zitzler and 

Thiele (1998) and PAES by Knowles and Corne (1999).  As a result, the evaluation of the 

effects of elitism should not be independent with the way it is applied.  Specifically, in 

the multi-objective case, the following considerations need to be taken.  Some of these 

questions remain open to date and require extensive further exploration: 

� How to define elite solutions with conflicting objectives? 

� What is the appropriate intensity of elitism (i.e. proportion of elites)? 

� How to effectively incorporate elites into search?  

� What are the real effects of elitism on different algorithms? 

� How does a given elitist strategy perform on different problems? 

 

5.4 MOEA ISSUES IN CHEMICAL PROCESS DESIGN 

5.4.1 Difficulties 

Chemical engineers have, since a long time ago, realized the necessity to take into 

account various design goals beyond just profit, to cite a few, operability and reliability 

(Umeda et al., 1980), controllability (Vasbinder & Hoo, 2003), safety (Kim et al., 2004), 

environmental risk (Thurston & Srinivasan, 2003; Chen & Shonnard, 2004; Fu, 2000), 

and more recently sustainability (Jin & High, 2004a; Jin & High, 2005).  However, 

restricted by algorithmic and computing capacity, virtually all the chemical process 

optimizations were conducted with a single scalar objective before the 1980s.  There 

were only two comprehensive reviews on multiobjective optimization in the areas of 

chemical engineering (Bhaskar et al., 2000; Clark & Westerberg, 1983).  From (Bhaskar 

et al., 2000), it can be seen that ε-constraint, goal programming, and surrogate trade-offs 
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are among the solution techniques of the widest utilization.  MOEAs appeared to gain 

growing popularity from the later half of the 1990s.  

 

However, the applications of EAs in general and MOEAs in particular were relatively 

less reported in chemical engineering fields, compared with other engineering disciplines, 

such as mechanical, industrial, and electrical engineering (Miettinen et al., 1999; 

Dasgupta & Michalewicz, 1997a).  This phenomenon may be explained by the following 

reasons.   

 

First, a chemical process typically consists of a number of interconnected equipment 

(i.e. unit operations), each of which is modeled in a different way.  Rigorous models of 

these operating units (kinetic and thermodynamic models in particular) often contain high 

nonlinearity.  All together, the overall process model often ends up to be very complex, 

large-scaled and highly nonlinear (Biegler et al., 1997; Edgar & Himmelblau, 2001).  

Lowery and coworkers (1993) reported the optimization of a bisphenol-A plant model 

that involves 41147 variables, 37641 equality constraints, 212 inequality constraints, and 

289 plant measurements.  To solve the problems of such high complexity, MOEAs 

require an improved computational capacity due to their population-based inherency. 

 

Second, attributed to their heuristics-based nature, the EAs and MOEAs developed 

over the past years exhibit enormous variety.  Each algorithm was tailored and tested 

against the purpose of solving a particular type of problems (e.g. single or multiple 

objectives; unconstrained or constrained).   As a consequence, a non-expert chemical 
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engineer may experience a hard time trying to find such an algorithm that could be 

capable for solving a range of different problems.   

 

Third, chemical process models are highly constrained.  There usually exist a large 

number of equations (algebraic, ordinary differential, and partial differential).  Some 

equations ensure that fundamental mass, energy and momentum conservation laws are 

not violated, while the others describe the process behavior under either steady-state or 

dynamic conditions.  Attaining roots to a nonlinear system of equations (i.e. a feasible 

solution) per se is numerically very challenging (Dennis & Schnabel, 1996; Nocedal & 

Wright, 1999).  In an optimization setting, the presence of equations essentially gives rise 

to equality constraints.  Those nonlinear equality constraints may result in rare, disjoint, 

intricately scattered, or even the worst case: void feasible solutions.  Evolutionary 

algorithms have no default mechanism to handle constraints, as they were originally 

developed as a sort of non-constrained search technique.  Though various constraint 

handling methods have been developed recently (Michalewicz, 1995a; Coello Coello, 

2002), not a single robust technique virtually exists.  As a matter of fact, the majority of 

EA or MOEA test problems exclude equality constraints, because one of the philosophic 

pillars of solving constrained EAs rests on relaxing equality constraints and converting 

them to inequality constraints.  However, the extent to which an equality constraint can 

be loosened, from a design perspective, is extremely limited.  

 

From the above discussion, it can be concluded that the biggest challenge of applying 

MOEAs to chemical process design lies in effective incorporation of constraint handling 
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into a robust algorithmic searching framework.  Certainly, computational efficiency is 

important, but it can be eventually overcome by improved computing capacity.  

Therefore, in the next subsections, focus is cast on constraint handling in MOEAs, with 

intention to accommodate chemical engineers’ practical needs.    

 

5.4.2 Constraint Handling 

Real-world optimization problems are hardly free from constraints.  Consequently, 

growing efforts has been made to remedy the shortage in constraint handling of those 

EAs developed aforetime.  In literature, an extensive variety of techniques have been 

proposed, which were surveyed in (Michalewicz, 1995a), (Michalewicz & Schoenauer, 

1996) and (Ceollo Coello, 2002).  For a typical constrained MOP in (5.1), the presence of 

equality and/or inequality constraints splits the search space S into two distinct regions, 

namely, feasible region F and infeasible region I. Violating one or many constraints 

leads to an infeasible solution, though whose extent of infeasibility may vary.   

 

5.4.2.1 Approaches Using Penalized Objective Functions 

The popularity of penalty functions in constrained EAs was obviously inherited from 

its success in conventional optimization fields.  In penalty function methods (only 

referring to “exterior” kind of penalties by default in this dissertation), the objective 

function value of an infeasible solution is modified by a penalty term, so that a 

constrained problem can be converted to and solved as an unconstrained problem.  

Hence, the constrained MOP given in (5.1) can be converted to:  
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Minimize fp(x)           fp (x) = [fp,1, fp,2,…, fp,nf]T x = [x1, x2,…, xnx]T (5.6) 

 
fp (x) = f (x),                      if x∈ F

f (x) + penalty,      if x∈ I

fp(x) : Penalized objective functions  

 

A penalty can be constructed in a variety of ways.  There are at least three different 

schemes of devising a penalty function (Dasgupta & Michalewicz, 1997b; Coello Coello, 

2002):  

� An infeasible individual is penalized anyway just for violating the constraints 

� Penalty is related to the degree of constraint violation 

� Penalty is related to the cost of repairing a solution (i.e. force it into F). 

 

Over the past years, many heuristics on penalty function design have been suggested, 

for instance, the guidelines formulated in (Richardson et al., 1989) and minimal penalty 

rule in (Le Riche et al., 1995).  However, difficulties were often encountered in 

implementing those heuristics, owing to diverse and sometimes even unknown 

characteristics of specific problems.  

 

1. Death Penalty – This heuristic simply rejects infeasible individuals.  Therefore, in a 

strict sense, it should not be classified as a penalty method.  However, this naive 

algorithm offers acceptable performance when the feasible region is convex and takes a 

reasonable portion of the entire search space (Dasgupta & Michalewicz, 1997b).  
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Nevertheless, this method has serious limitations on both efficiency and effectiveness, 

especially in the case of very low ratio of feasible individuals (Venkatraman, 2004).   

 

2. Static Penalty – Under this strategy, the penalty depends on the degree of constraint 

violation.  Moreover, how the original objective function is penalized does not change as 

the algorithm proceeds.  A typical statically penalized objective function may be seen as 

either one of the following forms:  
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 ri,j: Penalty parameter of the jth constraint for the ith objective function 

 ri: Penalty parameter for the ith objective function 

 Ω: Overall measure of feasibility 

 cvj: Violation of the j constraint  

 

Many authors have applied different metrics for measuring constraint violation as 

well as one or more fixed penalty parameters (also seen as factors, coefficients) in 

formulating penalized objective functions (Homaifa et al., 1994; Michalewicz, 1995b).  

Difficulties in determining and tuning the optimal penalty parameter(s) constitute one 

major weakness for static penalty methods.  This can be attributed to a dilemma 

(Runarsson & Yao, 2000):  a large ri favors finding a feasible solution but discourages the 

exploration of infeasible region; while a small ri may result in large computational 
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resources spent on evolving infeasible solutions.  The solution to such a dilemma has to 

be problem dependent.   

 

3. Dynamic/Adaptive Penalty – This class involves those methods in which the 

penalty parameters are updated constantly during the search process, based on either 

generation number or certain information detected from the previous and/or current 

population.  The noted representatives for this class include (Joines & Houck, 1994), 

(Kazarlis & Petridis, 1998), (Hadj-Alouane & Bean, 1997) and (Smith & Tate, 1993).  

Through introducing extra sophisticated parameters, an algorithm may gain an improved 

response to varying situations during the search process.  Certain test results, though 

limited, were cited as proof of the superiority of dynamic/adaptive over stationary 

penalties.  However, those parameters themselves are sometimes hard to be obtained.  In 

addition, the pursuit of instantaneous population information will severely reduce the 

efficiency of the algorithm.  

 

5.4.2.2 Approaches Using Augmented Objective Functions 

Seeking a feasible solution in many real world problems constitutes a challenging 

task.  In a MOP setting, it presents a simultaneous goal besides optimizing objective 

functions.  Hence, it is conceptually attractive that feasibility can be treated as extra 

objective function(s) in parallel with original objective functions.  This has been made 

realizable particularly after the recent development of MOEAs.  Therefore, the MOP 

problem in (5.1) can be augmented and solved as follows: 

 Minimize          fa(x) (5.8) 
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fa = [f1, f2,…, fnf, Ω]T or fa = [f1, f2,…, fnf, cv1,cv2,…cvng+nh]T

x = [x1, x2,…, xnx]T

fa: Augmented objective functions 

 cvj: Violation of the constraint j 

 Ω: Overall measure of infeasibility                  

 

Surry and Radcliffe (1997) proposed an approach called COMOGA, in which Pareto 

ranking and VEGA were used to handle constraints.  In this method, part of the solutions 

is selected based on their ranked objective functions, while the others are based on 

constraint violation.  Credible evidences for this algorithm’s steady good performance are 

lack even in its authors’ tests (Surry & Radcliffe, 1997).  Ray and coworker (2001) 

proposed a more sophisticated constraint handling technique.  In this method, each 

constraint stands on its own without combination and selection is performed using 

carefully designed heuristics with three different non-dominated ranks, namely, 

constraint violation rank, objective rank, and a rank for combined objective functions and 

constraint violations.  This technique was studied and compared in (Deb et al., 2001) 

along with other techniques.  Mezura-Montes (2004) performed numerical experiments 

on four multiobjective-based constraint handling techniques with an expanded set of 

single objective test problems.  His results further revealed some major difficulties facing 

essentially all constraint handling techniques, which include large feasible regions, low 

percentage of feasible solutions, and existence of nonlinear equality constraints.  
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5.4.2.3 Approaches Using Heuristics on Different Solutions  

This class of techniques is based on an assumption that feasible solutions are superior 

over infeasible ones.  Powell and Skolnick (1993) proposed a penalty-like method that 

incorporates the heuristic rule suggested in (Richardson et al., 1989).  Through distinct 

mapping schemes applied to feasible and infeasible solutions, the feasible solutions 

always possess higher fitness than infeasible solutions.  Deb (2000) proposed a 

tournament selection method with pairwise comparison using a new binary relation 

“constrain dominance.”  This method makes explicit use of some customized heuristics 

that favor feasible solutions. However, as pointed out in (Coello Coello, 2002), this 

technique would fail in the cases when the ratio between feasible region and the entire 

search space is very low.  

 

5.4.2.4 Other Approaches 

There exists a large body of different constraint handling techniques for EAs other 

than those mentioned above.  Some of them originate from classical numerical 

optimization, such as Lagrangian multipliers.  The others are either nature inspired, such 

as co-evolution and immune systems, or based on special representation and operators, 

such as decoders. 

 

5.5 AN ORDINAL RANKING-BASED GENETIC ALGORITHM 

5.5.1 An ORGA Framework 

Placing a MOEA in a general framework of MCDM helps to establish the insight to 

its essence.  The solution course of a MOEA can be dissected in a generation-by-
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generation manner and examined closely at each generation.  Apparently, a Multi-

Attribute Decision Making (MADM) problem is faced at every generation.  As illustrated 

in Figure 5-3, solutions need to be decided not only against multiple objective functions, 

but also with respect to their feasibility and diversity.  However, what decisions need to 

be made on this finite set consisting of n (population size) individuals? Is this a choice, 

sorting, or ranking problematic (see section 3.3)? EAs’ analog to natural evolution clearly 

indicates that relative “fitness” or survival capacity is to be determined within the given 

collection of candidates.  

f1 f2 … fnf Ω ∆
x1 f1(x1) f2(x1) …(x1) fnf(x1) Ω (x1) ∆ (x1)
x2 f1(x2) f2(x2) …(x2) fnf(x2) Ω (x2) ∆ (x2)
… f1(…) f2(…) …(…) fnf(…) Ω (…) ∆ (…)
xn f1(xn) f2(xn) …(xn) fnf(xn) Ω (xn) ∆ (xn)

Figure 5-3 Multiple attribute decision making at each generation of MOEAs 
 

A simple elitism GA framework developed in this study is summarized in Box 5-1.  

The underlying idea is straightforward: At each generation, a one-to-one correspondence 

is somehow established between the n individuals and the first n natural numbers.  The 

consequent rank of each individual represents its comprehensive quality (usually assessed 

with respect to a wealth of criteria).  Tournament selection is performed iteratively on the 

current population until the mating pool is filled.  The first nelite (number of eiltes) highest 

ranked individuals are preserved, while all the others are replaced by the new individuals 

produced from a series of genetic operations (parent selection, crossover, mutation).  
 

Obviously, how to come up with an ordinal ranking at every updated generation is 

most crucial.  This rank is expected to be consecutive and complete, which means that 



142 
 

any individual could only be ranked between 1 to n.  No “tie” (i.e. equally good) is 

allowed.  However, achieving such a rank is difficult, particularly with multi-dimensional 

ranking criteria such as multiple objective functions f = [f1, f2,…, fnf]T, feasibility (Ω), 

diversity (∆), and so forth.  Ordinal ranking will be further discussed in the next 

subsection.  This proposed GA algorithmic framework was predominantly motivated by  

the following considerations: 
Box 5-1  Algorithmic framework of the proposed Ordinal Ranking-based GA 

 GENERATE INITIAL POPULATION 
 g = 0

p0 = [p1
0, p2

0, …, pn
0]T

DO 
 PERFORM ORDINAL RANKING 
 R = [R(p1

g), R(p2
g), …, R(pn

g)]T R ∈ (1, 2, …, n) 
 
IF (stopping criteria satisfied) EXIT  
 CREATE MATING POOL 
 Set tournament size ntournament

g

Randomly pick ntournament
g individuals from the current population 

 Highest ranked individual � mating pool 
 

PRESERVE ELITES 
 Do i = 1, n  
 If (R(pi

g) ≤ nelite
g) then 

 pi
g � elite  

 End if 
 End do 
 

VARIANCE 
 Random parent selection from the mating pool 
 Crossover 
 Mutation 
 Replacement 
 

g = g + 1
END DO 
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First, such a framework is robust for essentially any problem.  The ordinal ranking, 

once available, is virtually an ordering of the overall “goodness” of alternatives.  

Therefore, it offers an ordinal fitness instead of oft-seen cardinal one.  To this end, no 

matter what problems are confronted (single or multiple objectives, constrained or not), 

this GA can be applied as long as an ordinal rank is attainable.  On the other hand, this 

1~n rank makes the MADM problem at each generation straightforward, because the 

higher ranked, the better. 

 

Second, an ordinal order is intuitively more accordant with human’s cognitive nature 

when facing the MADM problem at each generation of MOEA.  In addition, ordering, in 

contrast with cardinal fitness measures, is practically more attainable.  In many decision-

making scenarios, people may not be able to quantify how good an individual performs 

or the extent by which one outperforms the other, especially under conflicting criteria.  

However, qualitative pair-wise comparisons or some sort of ordinal sequence turns out to 

be relatively easier.  Therefore, adopting ordinal ranking potentially paved a smoother 

way for a human decision maker to interfere, if needed by any chance.  

 

Third, certain selection operators for GAs, such as roulette wheel selection, are 

sensitive to the specific scale of fitness function.  The tournament selection applied in this 

study works perfectly under this formulation, as it requires nothing more than relative 

comparison among alternatives.  The ordinal ranking of alternatives, on the other hand, 

makes the implementation of tournament selection extraordinarily simple. 
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Last, but not the least, in the presence of multiple criteria, the dominance-based 

ranking often results in identical fitness among different individuals.  For instance, all 

non-dominated solutions are ranked 0 or 1.  This has given rise to the inconvenience in 

elitist preservation.  As an example, in SPEA-II, an extra truncation operator was applied 

to break the tie among solutions with the same fitness (Zitzler et al., 2002).  A complete 

ordinal ranking definitely eliminates the trouble in this regard.  

 

5.5.2 Ordinal Ranking for Multi-Objective Problems 

Like most MOEAs, ORGA aims to obtaining a collection of feasible and globally 

nondominated solutions that are evenly distributed.   These simultaneous search goals 

give rise to three aspects of concerns in assessing the comprehensive quality of any 

solution: feasibility (Ω), objective functions (f), and diversity (∆).   

 

Feasibility (i.e. constraint violation) in this algorithm is measured using a scalar 

function Ω:

)()(
1

i

ngnh

j
ji xcvx ∑+

=
=Ω (5.9) 

 
cvj (xi) =

Max(gj(xi), 0),                   for inequality constraints
Max(|hj(xi)|-hj,threshold, 0),  for equality constraints 

gj: Inequality constraint 

 hj: Equality constraint 

 hj, threshold: Threshold value for an equality constraint  

 cvj: Violation of each constraint 
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Ω: Total constraint violation 

The threshold value hthreshold sets a limit for each equality constraint, beyond which (i.e. 

|h|>hthreshold) the constraint is considered violated.  In a strict sense, the threshold for each 

individual equality constraint should be assessed with respect to its physical meaning.  

This study adopts hthreshold=0.001 for all equality constraints.  As a result, the solutions 

with a total violation of all constraints that is less than 0.001 is regarded feasible and 

assigned a zero-valued Ω. The Ω value for infeasible solutions varies with their specific 

extent of infeasibility.  

 

The diversity measure of an arbitrary solution xi is the arithmetic mean of the 

distances from this solution to its k-th first nearest neighbors.  Therefore, the diversity 

measure can be calculated with the formula shown in (5.10).   

 k
jiD

x
k
j

i
∑ ==∆ 1 ),(

)( (5.10) 

 D(i,j):  Distance of xi to its j-th closest neighbor, j=1,2,…,k 

 k:        Parameter, k= n , n is the population size 

 ∆: Diversity measure 

Obviously, a ranking MADM (see section 3.3 and Figure 5-3) is faced at each 

generation of ORGA.  Solving this MADM tends to derive a complete alternative 

permutation from a typical decision matrix.  However, achieving a complete and 

meaningful ordinal ranking is not easy because cross-attribute conflicts arise.  

Discussions in previous chapters vetoed the possibility of making any multi-criteria 

decision (including ranking) in a hundred-percent absence of human judgements.  It is not 



146 
 

hard to observe that these attributes F, Ω, and ∆ are neither compensatory nor of equal 

priority.  Therefore, based on these observations, an ordinal ranking mechanism is 

proposed below, as illustrated in Figure 5-4.     

Figure 5-4 Derivation of an ordinal ranking from a decision matrix 
 

Two techniques essentially form the cornerstones of this proposed ranking scheme.  

First, the concept of “constrain-dominance” suggested by Deb (2000) is applied to 

generate a constrained-objective ranking rΩF. This binary relation virtually extends the 

dominance relations to constrained cases.  An alternative xi is said to constrain-dominate 

another alternative xj, if any of the following conditions is met: 

� xi is feasible and xj is infeasible. 

� xi and xj are both feasible, and xi (weakly) dominates xj with respect to objective 

functions. 

� xi and xj are both infeasible, and xi has a less extent of constraint violation. 

 

f1 f2 … fnf Ω ∆
x1 f1(x1) f2(x1) … (x1) fnf(x1) Ω (x1) ∆ (x1)
x2 f1(x2) f2(x2) … (x2) fnf(x2) Ω (x2) ∆ (x2)
… f1(… ) f2(… ) … (… ) fnf(… ) Ω (… ) ∆ (… )
xn f1(xn) f2(xn) … (xn) fnf(xn) Ω (xn) ∆ (xn)

rΩF ∆
x1 rΩF (x1) ∆ (x1)
x2 rΩF (x2) ∆ (x2)
… rΩF (… ) ∆ (… )
xn rΩF (xn) ∆ (xn)

1 2 3 4 5 … n
x3 x7 x5 x1 x4 x2
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Box 5-2 contains the pseudocode of deriving rΩF from pairwise comparison using the 

constrain-dominance relation, where rΩF(xi) is defined as the number of solutions that 

“constrain-dominate” xi.

Box 5-2  Pseudocode for obtaing constrained objective ranking rΩΩΩΩF

rΩF (x1:n) =0 
 Do i = 1, n-1 
 Do j = i+1, n 
 If (Ω(xi)=0 and Ω(xj)≠0)  
 rΩF(xj) = rΩF(xj) + 1 
 Else if (Ω(xi)≠0 and Ω(xj)=0)  
 rΩF(xi) = rΩF(xi) + 1

Else if (Ω(xi)=0 and Ω(xj)=0)  
 If (f(xi) df f(xj))  
 rΩF(xj) = rΩF(xj) + 1

Else if (f(xj) df f(xi)) 
 rΩF(xi) = rΩF(xi) + 1

End if 
 Else  
 If (Ω(xi) > Ω(xj))  
 rΩF(xj) = rΩF(xj) + 1

Else if (Ω(xi) < Ω(xj)) 
 rΩF(xi) = rΩF(xi) + 1

End if 
 End if 
 End do 
 End do 

The second cornerstone technique is lexicographic method (Yoon & Hwang, 1995), a 

noncompensatory technique of multi-attribute decision making.  Through this method, for 

any pair of alternatives (xi, xj), multiple attributes are evaluated sequentially in the order 

of descent importance until one alternative is chosen over the other.  Specifically for the 

MADM in Figure 5-4, if xi ranks higher on rΩF than xj, then xi is better.  However, if they 

tie, comparison moves on to the next attribute ∆, the one with greater diversity gets 

selected.  The overall ordinal ranking R(xi) is obtained by counting the number of 
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individuals in the population that outperform xi in terms of the two attributes in the 

aforementioned lexicographic ordering.  The pseudocode implementing the above 

algorithm is illustrated in Box 5-3.   
Box 5-3 Pseudocode for constructing ordinal ranking with lexicographic method 

 R(x1:n) =0 
 Do i = 1, n-1 
 Do j = i+1, n 
 If (rΩF(xi) < rΩF(xj))  
 R(xj) = R(xj) + 1

Else if (rΩF(xi) > rΩF(xj))  
 R(xi) = R(xi) + 1

Else  
 If (∆(xi) > ∆(xj))  
 R(xj) = R(xj) + 1

Else if (∆(xj) > ∆(xi)) 
 R(xi) = R(xi) + 1

End if 
 End if 
 End do 
 End do 

It is evident that the proposed mechanism of constructing a MOEA is unique.  This 

can be seen in contrast to the Table 5-3 and Table 5-5.  More importantly, the proposed 

ORGA is robust for both unconstrained and constrained problems.  The algorithm shown 

in Box 5-2 and 5-3 can be applied to most problems without modification.  In 

unconstrained cases, the way in which the ordinal ranking is derived virtually coincides 

with that in most traditional MOEAs, in which the dominance-based fitness is 

complemented by diversity or density measures.  On the other hand, for constrained 

problems, constraints are handled through the heuristics implied in the definition of 

constrain-dominance.  This technique has proven effective on a wide range of problems 

(Deb, 2000; Deb et al., 2001).   
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5.5.3 Implementation Details 

Real-valued encoding – The real-valued representation is intuitively straight-forward 

to tackle optimization with real variables.  In this study, vectors of floating point numbers 

are applied as artificial chromosomes to encode real decision (genotype) variables in an 

optimization problem.  

 

Population size – Except for certain problems that require more points to display the 

complete shape of a geometrically complicated Pareto front, the population size is fixed 

at 100.  However, a smaller population size should be used in practice wherever 

sufficient, as that will significantly reduce the computational time.  

 

Stopping criteria – The proposed algorithm is run for 1000 generations for all 

problems, though for certain problems much less number of generations may be 

sufficient to converge to the true Pareto front.  

 

Elitist preservation – The first nelite highest ranked individuals at each generation are 

identified as elitists and carried over intact to the next generation.  In this implementation, 

the last nelite seats (xn-nelite+1~xn) are reserved to retain the elites, which, however, are 

updated at each generation.  The elitsim size nelite in this study is fixed at n/10 (n: size of 

population).  Doing that is empirical: as too many elites are likely to cause loosing the 

evolutionary driving force and jeopardize the search in either going nowhere or 

premature convergence.  On the other hand, genetic drift or poor preservation effect will 
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occur in the case that the portion of elites is too low with respect to the total number of 

population.  

 

Tournament selection – Mating pool is created by selecting individuals from the 

current population (including both elite and regular members) via tournament selection.  

Tournament selection is theoretically simple: Randomly pick ntournament individuals from 

the current population.  The one with highest rank wins the tournament and enters the 

mating pool.  The selection pressure is controllable by adjusting the tournament size.  

Tournament size is set at 5 in solving most test problems.  

 

BLX-α crossover – BLX-α crossover was first suggested in (Eshelman & Schaffer, 

1993).  Herrera and coworkers (1998) performed a systematic study on various genetic 

operators and identified the BLX-α as one of the superior crossover operators in real-

coded applications.  In this study, the only parameter α is set at 0.5, while the crossover 

rate remains 1. The BLX-α is operated as summarized in Box 5-4: 

Box 5-4     BLX-αααα crossover operator 
 cmax(i) = MAX(offspring1(i), offspring2(i)) 

cmin(i) = MIN(offspring1(i), offspring2(i)) 
q(i) = cmax(i) – cmin(i) 
l(i) = MAX(cmin(i) – q(i)* α, xl(i)) 
u(i) = MIN(cmax(i)+q(i)* α, xu(i)) 
offspring1(i) = (u(i) – l(i))*rannum1(i) + l(i) 
offspring2(i) = (u(i) – l(i))*rannum2(i) + l(i) 
i = 1,2,…n 
 
xl(i), xu(i): lower and upper bound of x(i) 
rannum1, rannum2: random numbers 
α: parameter 
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Random mutation –This study uses a fixed mutation rate of 0.1.  Every time mutation 

is activated, only one random dimension i of the given offspring takes on a new value 

randomly generated between the range [xl(i), xu(i)].  

 

5.5.4 Solving Test Problems 

In order to evaluate the performance of the proposed ORGA, this algorithm is applied 

to solve a series of test problems. The selected test problems essentially fall in three 

classes: unconstrained MOPs (UNMOPs), side-constrained MOPs (SCMOPs), and 

equality constrained MOPs (ECMOPs).  Detailed descriptions on those problems are 

provided in Appendix B.  The selected test problems offer a wide coverage of various 

difficult characteristics, which is summarized in Table 5-6.  
Table 5-6 Characteristics of the test problems 

 nf nx ng nh Feature 
UCMOP-1 2 30 0 0 Convex Pareto optimal front 
UCMOP-2 2 30 0 0 Non-convex Pareto optimal front 
UCMOP-3 2 30 0 0 Multiple discontinuous Pareto optimal fronts 
UCMOP-4 2 10 0 0 Non-convex Pareto optimal front and non-uniform search space 
UCMOP-5 2 1 0 0 Historical, Large search space 
UCMOP-6 2 3 0 0 Non-convex Pareto optimal front, independence of optimum 

odimensionality.UCMOP-7 2 2 0 0 Non-convex and disconnected Pareto fronts and convoluted mapping 
UCMOP-8 2 3 0 0 Three disconnected Pareto fronts and convoluted mapping 
UCMOP-9 3 2 0 0 Convoluted three dimensional Pareto fronts 
SCMOP-1 2 2 2 0 Convex Pareto front 
SCMOP-2 2 2 2 0 Straight line Pareto front 
SCMOP-3 2 2 2 0 Discontinuous and concave Pareto optimal sets 
SCMOP-4 2 6 6 0 Pareto front is a concatenation of five connected line segments 
SCMOP-5 2 2 2 0 Convex Pareto optimal front 
ECMOP-1 2 2 0 1 Low feasible ratio and unknown Pareto optimal front 
ECMOP-2 2 5 0 3 Low feasible ratio and unknown Pareto optimal front 
ECMOP-3 2 4 2 3 Low feasible ratio and unknown Pareto optimal front 
ECMOP-4 2 12 0 8 Low feasible ratio and unknown Pareto optimal front 
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5.5.4.1 Unconstrained MOPs  

Nine unconstrained test MOPs are solved in this study.  All these problems are 

classical, which have been extensively studied and widely applied in various algorithmic 

researches (Deb, 2001, Coello Coello et al., 2002).   The difficulties associated with those 

problems vary from high dimensionality to concave, discontinuous, convoluted Pareto 

front.  The nondominated solutions to each problem generated from the ORGA are 

plotted in Figure 5-5 ~ Figure 5-13.  They are further compared to the true Pareto fronts 

to visualize how the proposed algorithm performs.  

 

Figure 5-5a   True Pareto optimal front of 
UCMOP-1 (Deb, 2001) 
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Figure 5-5b   The Pareto optimal front of 

UCMOP-1obtained from ORGA 
 

Figure 5-6a   True Pareto optimal front of 
UCMOP-2 (Deb, 2001) 
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Figure 5-6b   The Pareto optimal front of 

UCMOP-2 obtained from ORGA 
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Figure 5-7a   True Pareto optimal front of 
UCMOP-3 (Deb, 2001) 
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Figure 5-7b   The Pareto optimal front of 
UCMOP-3 obtained from ORGA 

 

Figure 5-8a   True Pareto optimal front of 
UCMOP-4 (Deb, 2001) 
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Figure 5-8b   The Pareto optimal front of 

UCMOP-4 obtained from ORGA 
 

Figure 5-9a   True Pareto optimal front of 
UCMOP-5 (Deb, 2001) 
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Figure 5-9b   The Pareto optimal front of 

UCMOP-5 obtained from ORGA 
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Figure 5-10a   True Pareto optimal front of 
UCMOP-6 (Deb, 2001) 
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Figure 5-10b   The Pareto optimal front 
of UCMOP-6 obtained from ORGA 

 

Figure 5-11a   True Pareto optimal front of 
UCMOP-7 (Deb, 2001) 
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Figure 5-11b   The Pareto optimal 
front of UCMOP-7 obtained from 

ORGA 
 

Figure 5-12a   True Pareto optimal front of 
UCMOP-8 (Deb, 2001) 
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Figure 5-12b   The Pareto optimal 
front of UCMOP-8 obtained from 

ORGA 
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Figure 5-13a,b,c,d True Pareto optimal front of 
UCMOP-9 (Deb, 2001) 
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Figure 5-13e,f,g,h   The Pareto optimal 

front of UCMOP-9 obtained from ORGA 
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5.5.4.2 Side-Constrained MOPs 
 

“Side-constrained” here means only inequality constraints exist.  Five problems are 

selected from (Deb, 2001) and (Coello Coello et al., 2002).  The nondominated solutions 

to each problem obtained from the proposed ORGA are plotted and compared to the true 

Pareto front in Figure 5-14~Figure 5-18. 
 

Figure 5-14a   True Pareto optimal front of 
SCMOP-1 (Deb, 2001) 
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Figure 5-14b   The Pareto optimal 
front of SCMOP-1 obtained from 

ORGA 
 

Figure 5-15a   True Pareto optimal front of 
SCMOP-2 (Deb, 2001) 
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Figure 5-15b   The Pareto optimal 
front of SCMOP-2 obtained from 

ORGA 
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Figure 5-16a   True Pareto optimal front of 
SCMOP-3 (Deb, 2001) 
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Figure 5-16b   The Pareto optimal 
front of SCMOP-3 obtained from 

ORGA 
 

Figure 5-17a   True Pareto optimal front of 
SCMOP-4 (Deb, 2001) 
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Figure 5-17b   The Pareto optimal 
front of SCMOP-4 obtained from 

ORGA 
 

Figure 5-18a   True Pareto optimal front of 
SCMOP-5 (Deb, 2001) 

0
5

10
15
20
25
30
35
40
45
50

0.0 50.0 100.0 150.0
f1

f2

 
Figure 5-18b   The Pareto optimal 
front of SCMOP-5 obtained from 

ORGA 
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5.5.4.3 Equality Constrained MOPs 

Unfortunately, equality constrained MOPs are not as often seen in numerical studies 

as they occur in reality.   Standard MOEA test suites always exclude equality constraints.  

This has led to very rare, if not inexistent, equality constrained MOP test problems, 

particularly those with a number of highly nonlinear equality constraints.  In this study 

three equality constrained SOP problems from (Runarsson & Yao, 2000) and the classical 

Williams-Otto SOP (a classical chemical engineering problem) are revised into MOP 

problems to test ORGA’s performance on these problems.  These test problems are given 

in Appendix B.  The background and derivation of the Williams-Otto model is further 

elaborated in Appendix C.  All those self-made test problems have some difficulties in 

common: 1) At least one nonlinear equality constraint is present. 2) Feasible solutions 

take very low portion over the whole search space. (0.0000% according to feasible ratio 

defined in (Koziel & Michalewicz, 1999)). 3) No information is available regarding 

either feasible or true Pareto optimal solutions.   

 

In Figure 5-19~Figure 5-21, the feasible as well as nondominated solutions generated 

from the proposed ORGA are plotted respectively.  It should be noted that for ECMOP-2 

and ECMOP-3, ORGA was iteratively applied instead of a single run in order to achieve 

multiple feasible solutions.  For ECMOP-4, not a single feasible solution was obtained 

even after the pre-specified stopping criteria is met (1000 generations). 
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Figure 5-19a   Feasible solutions to ECMOP-1 in 
the decision space 
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Figure 5-19b   Feasible and Pareto optimal 

solutions to ECMOP-1 obtained from ORGA 
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Figure 5-20 Feasible and Pareto optimal solutions to 

ECMOP-2 in the objective space obtained from ORGA 
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Figure 5-21  Feasible and Pareto optimal solutions to 

ECMOP-3 in the objective space obtained from ORGA 
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5.5.4.4 Discussions 

The test problems solved in this study are able to offer a large coverage of the 

problems of different categories and different levels of difficulties.  To gain a more 

concrete and convincing evaluation of this new algorithm, further in-depth tests are 

needed, which include comparative studies with peer algorithms, like the experiments in 

(Lu & Yen, 2002) as well as intense numerical and statistical studies with sophisticated 

metrics as described in (Deb, 2001; Coello Coello et al., 2002).   Unfortunately, due to 

time limitation, those tasks could not be accomplished in this particular study.   

 

By examining the Pareto front plots obtained, two assured conclusions can be drawn 

regarding ORGA’s performance on unconstrained and side-constrained MOPs.  First, this 

algorithm has a satisfactory capacity of achieving a close-enough, near-complete and 

evenly distributed set of nondominated solutions in a single run.  In other words, the 

ORGA performs fairly well on all three aspects of intended search goals, namely, 

convergence, coverage, and distribution.  Second, the proposed ORGA is robust for a 

wide range of different problems, both side-constrained and unconstrained.   

 

However, for nonlinear equality constrained problems, the proposed ORGA didn’t 

yield completely satisfactory results.  In this study, ORGA succeeded in finding the 

Pareto front in a single run for ECMOP-1 which has only one nonlinear equality 

constraint.  However, for the second and third test problems with multiple nonlinear 

equality constraints, the algorithm got stuck in one isolated feasible region and always 
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converged to a set of locally nondominated feasible solutions.  Within the finite 

simulation time, the algorithm could not even find just one feasible solution for ECMOP-

4.  These results can be attributed to the extremely low feasible ratio as well as the 

absence of relevancy from one feasible solution to the other.  Also, the proposed 

algorithm, unlike many SOP solvers searching for a single optimum, always tends to seek 

a balance among multiple objectives.  Therefore, the failure of the proposed algorithm in 

certain equality constrained problems should be explained by the level of difficulty as 

well as the particularity of those self-made ECMOPs.  As a matter of fact, even today’s 

most successful MOEAs are lack of tests on various equality-constrained MOP problems.  

In literature, no algorithm has been reported that could consistently offer satisfied 

performance on simultaneous obtainment of the entire Pareto front under multiple 

nonlinear equality constraints.   

 

Therefore, for harder equality constrained problems to be solved, the way in which 

ORGA is implemented needs to be modified.  Specifically, the ORGA is applied 

iteratively, instead of just once, to locate different feasible solutions.  Doing this is 

equivalent to using ORGA to solve a nonlinear system of equations.  Due to its stochastic 

nature, the ORGA is able to find diverse feasible solutions in multiple runs, if exist.  

Figure 5-20 and 5-21 illustrated the feasible solutions obtained from iterative execution 

of the ORGA.  When sufficient and hopefully widely scattered feasible solutions are 

found, pairwise dominance check can readily identify those solutions that are 

nondominated among the located feasible solutions.  
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CHAPTER 6 
 

CONCLUSION 
 

6.1 ENDING REMARKS 

The idea of sustainability has been taken very seriously by more and more people 

today.  However, tremendous controversies still exist regarding sustainability definition 

and attainment.   Certainly, the way sustainability is implemented relies on the perception 

of this concept, which varies with one’s perspective and background.  Engineers are 

typically not as enthusiastic as scientists or ethicists for the philosophical dispute about 

sustainability.  Instead, they are more interested in making concrete and tangible 

commitments, such as building a cost-effective house or designing a combustor that 

reduces the fuel consumption by a specific percentage.   

 

Such contributions are definitely very much needed.  However, if different engineers 

all break down sustainability and picks only one fragment that best caters to his/her 

individual motivation, sustainability, in itself, then is nothing more than a rallying slogan.  

With this concern, the author investigated the conceptual and practical evolvement of the 

concept.  Numerous evidences clearly indicate that it makes better sense to base 

sustainability on the synergy of various relevant issues, rather than each individual issue 

in isolation. 
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To this end, a sustainability-oriented design would require a different design 

procedure (see Figure 2-1 and Figure 1-3), which, in addition to regular design steps, 

needs to take care of the inherent conflict arising from the complex nature of 

sustainability.  Sustainability-conscious engineers not only need an energy-saving 

technology or a novel environmental metric.  More importantly, they need some sort of 

operational framework that could help perform different design steps systematically 

(particularly, systems thinking and conflict handling).  This is exactly where Multiple 

Criteria Decision Analysis (MCDA) comes to their rescue. 

 

Two points are essential for understanding MCDA.  First of all, MCDA studies a 

series of systematic efforts (e.g. perception, formulation, analysis, solution) that are 

necessary for solving a MCDM, not only the brainwork of an individual decision maker.  

Secondly, MCDA is virtually a discipline, or a large collection of relevant techniques 

rather than any single method.  Therefore, implementing MCDA in a sustainability-

oriented design requires specific techniques to be developed or applied to accomplish 

different tasks.   

 

Chapter 3 through 5 in this dissertation presents detailed discussion on how to design 

for sustainability with the framework of MCDA.  Different techniques are developed to 

perform some key steps in MCDA, which are illustrated in Figure 6-1 and summarized in 

Table 6-1.  Though various alternative techniques abound, it is critical for engineers to 

keep in mind that no technique works for all problems.  Which technique to be applied 

has to be decided by carefully considering the specific scenario, including objectives and 
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constraints, hypothesis and assumptions, interactions between the DM and the analyst, 

and uncertainties.  Engineers tend to pursue the maximal objectivity and accuracy in their 

power, and sometimes think little of human judgement.  However, the lesson learned 

from this study tells that people are always the most determinant factor in many value-

laden engineering practices and this is particularly true for sustainability!   

 

DECISION-MAKING 
(CONFLICT HANDLING) 

MCDM SOLUTION 
 

BASE CASE DESIGN 

IMPROVEMENT ASSESSMENT 

FINAL SUSTAINABLE DESIGN 

PROBLEM FRAMING 

Yes

No 

MCDM FORMULATION 
 
1. Criteria/subcriteria identification 
 Paradigm shift to sustainability
2. Criteria-attribute mapping 
 “Stressor-Status-Effect-Integrality-Well-being” hierarchy
3. Alternative-attribute mapping 
 4-class metric classification
4. Alternative generation 

• Increasing productivity/profitability 
 Process intensification 

• Mitigating environmental impacts 
 Process synthesis for waste minimization 
 Unit operation pollution prevention 
 Green chemistry and reaction pathway 
 Process integration 

• Conserving natural resources 
 Advanced unit operation technologies 
 Process integration 
 Recycle and reuse 
 Renewable energy and materials 

• Mathematic optimization 

BASE CASE DESIGN 

ALTERNATIVE 
SPACE?

SOLVING MADM 
 

American school 
 A MAVT-based technique
European school 

SOLVING MODM 
 

A priori solution strategy 
 Progressive solution strategy
A posteriori solution strategy

Ordinal Ranking-based GA

Explicitly 
given 

Implicitly
characterized

Desired Sustainable Design Procedure MCDA Implementation

FINAL SUSTAINABLE DESIGN 
Figure 6-1 Implementing sustainability in design with multiple criteria decision analysis 
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Table 6-1  MCDA implementation of a sustainable design and the proposed techniques 
Design Steps   Steps in MCDA  Technique proposed 

Criteria identification  None Systems thinking 
 Criteria-attribute mapping  “Stress-Status-Effect-Integrality-Well-being”  

Assessment  Alternative-attribute mapping  4-class metric classification 
Improvement  Alternative generation  None 
Conflict handling  MADM solution  A MAVT-base technique 
 MODM solution  Ordinal Ranking based Genetic Algorithm 

6.2 SUMMARY OF CONTRIBUTIONS 

 First of all, it was elaborated in this work that sustainability is neither an alluring 

catchword nor an alternate expression for environmental consciousness.  In order to make 

a reality of sustainability in engineering practice, the key is to properly handle its 

complex nature and deeply rooted conflict.   

 

Second, Multiple Criteria Decision Analysis (MCDA) was proposed as an overall 

methodological framework for conducting a sustainability-oriented design.  In this study, 

MCDA has been proven ideal for filling the vacuum of a general operational framework 

for sustainability.  

 

Third, a four-step procedure for formulating a sustainability-oriented design into a 

MCDM was proposed.  Based on this proposed procedure, an attribute hierarchy 

“Stressor-Status-Effect-Integrality-Well-being” and a 4-class metric classification scheme 

were developed to help engineers in identifying appropriate environmental sustainability 

metrics. 
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Fourth, a MAVT-based technique was developed to make decisions from a discrete 

set of alternatives.  This technique offers at least three advantages for making a 

sustainability-oriented decision: 1) well-shaped axiomatic foundation; 2) explicit and 

defendable processes to derive measurable partial value functions and weights; 3) 

uncertainty handling by sensitivity analysis. 

 

Fifth, an Ordinal Ranking-based Genetic Algorithm (ORGA) was proposed to 

provide such a searching tool that could consistently produce well-distributed samples of 

globally Pareto optimal solutions in a single run.  The proposed ORGA exhibits 

robustness in solving a variety of selcted test problems and performed excitingly well on 

unconstrained and side-constrained MOP problems. 

 

6.3 RECOMMENDED FUTURE RESEARCH AREAS 

 Due to the limited time, the research for this particular project had to be ceased.  

However, the explorative work carried out in this study ignited the sparks of more 

promising research topics, which include but are not limited to: 

 

� Model development for different case studies 

As mentioned before, the proposed MCDA framework allows different techniques 

that meet the users’ specific needs to fit in.  The entire process can be essentially 

viewed as constructing three layers of models (system, MCDM, and 

decision/preference models).  Therefore, it would be interesting to find out the 

extent to which this framework can help in exploring suitable models, such as 
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identifying an apt set of sustainability metrics or customizing a model that reflects 

the DM’s real preference.    

 

� Develop or identify “best practice” sustainability metrics 

With no doubt, any attempt to produce “best practice” metrics in a sustainability 

context would be debatable.  This coincides with the ambiguous nature of the 

concept.  However, for very specific occasions, for instance, assessing the 

sustainability performance of chemical manufacturing plants, there is a possibility 

to establish a set of metrics that are widely accepted by its particular group of 

users or audiences.  A lesson can be learned from the existing efforts, such as the 

sustainability metrics developed by AICHE (CWRT, 1998) and IChemE 

(IChemE, 2001).  Those metrics are obviously lack of convincing scientific 

elaboration and broad participation.  Therefore, their acceptance was limited.  

 

� Handle different uncertainties 

In this study, the prevalence and significance of the uncertainties in a 

sustainability-oriented design were elaborated.  However, only the internal 

uncertainty arising in weight elicitation was handled in this research.  Other 

uncertainties definitely require the same attention.  Uncertainty handling 

techniques vary with different sources and characteristics.  That is also why the 

related topics are so complicated and therefore deserve further exploration.   
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� Handle preference in MOEAs 

The application of the noncompensatory binary relations – dominance allows the 

MOEAs to proceed without specifying preference.  However, preference still 

needs to be tackled after the nondomindated set are obtained.  Therefore, efforts 

to incorporate preference into MOEAs have never stopped (Fonseca & Fleming, 

1993; Coello Coello, 2000b).  At least two benefits are expected from doing this: 

1) the decision maker gets more involved; 2) the time for reaching a “preferred” 

solution can be reduced.  Many existing researches, such as (Greenwood et al., 

1997) (Cvetkovic & Parmee, 2002) (Branke & Deb, 2004), offered a good starting 

point for further exploration on this topic. 

 

� Handle nonlinear equality constraints 

This is a tough mission! Varying with specific problems, the presence of 

nonlinear equality constraints could bring various difficulties, such as low feasible 

solution ratio, discrete feasible regions, even no solution (ill-conditioned).  For 

certain equality constrained MOPs, MOEAs may not be a good choice.  Further 

research could be focused on what ECMOP difficulties that MOEAs suffered the 

most or maybe the guidelines for the equality-constrained problems to which 

MOEAs should or should not be applied.   
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APPENDICES 
 

APPENDIX A  VOC RECOVERY PROCESSES 
 

A 170 °F and 1 atm gaseous waste flow originating from the drying step in a cello-

phane manufacturing plant contains equal mass percentage toluene and ethyl acetate.  

These Volatile Organic Compounds (VOCs) take 0.5% of the total volumetric flowrate 

(12,000 standard cubic feet per minute) of the waste stream, while the remainder is 

nitrogen.  The chemical process under consideration aims to recover the VOCs from the 

given waste stream.  Either adsorption- or absorption-based processes can perform 

recovery of the VOCs (Shonnard & Hiew, 2000).  A simplified process flow diagram 

(PFD) of an absorption-based VOC recovery process is given in Figure A-1.   

 

Waste
stream 

Pre-cooler

Absorber Distillation
collum

Recycle solvent
Makeup solvent

Nitrogen
remover

Figure A-1    Process Flow Diagram of an absorption-based VOC recovery process 
 

In Table A-1, five different technologies are summarized.  Those technologies differ 

significantly in the magnitude of chemical releases and consequently in the potential
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environmental impacts.  This can be seen from Table A-2.  The major sources of 

emission include equipment vents, utility consumptions, and fugitive emissions. 
Table A-1 Different technologies of VOC recovery 

Process Features Type 
1 Steam stripping regeneration Adsorption 
2 Pressure swing regeneration Adsorption 
3 n-C23 solvent, no heat integration Absorption 
4 n-C14 solvent, no heat integration Absorption 
5 n-C14 solvent, with heat integration Absorption 

Table A-2 Emission rate and environmental indices of five alternative processes 

 Emission rate (kg/h)  Environmental risk index 
# CO2 CO Ethyl 

acetate 
SOx NOx Toluene  IGW ISF IAR IING IINH IFT 

1 101 0.05 2.83 0.29 0.83 1.3  123 8.1 1.0 313 12.9 2.2 
2 129 0.08 3.48 1.09 0.55 1.29  163 8.7 1.5 384 16.6 2.7 
3 40914 10.61 13.68 322.59 42.45 0.22  15967 8.6 131.8 563 215.5 3.9 
4 3096 0.80 8.19 42.45 3.21 0.09  3256 8.4 26.7 901 67.3 6.2 
5 1602 0.42 7.99 0.22 1.66 0.08  1698 7.7 13.8 879 47.2 6.1 

The solvent selection problem for VOC recovery was originally presented in (Chen et 

al., 2001).  The process adopts an absorption-based technology as shown in Figure A-1.  

The gaseous waste stream entering the process is cooled in order to enhance the 

absorption.  The VOCs are absorbed within the countercurrent absorption column with 

the solvent feeding on the top.  The mixture of the solvent and the VOCs, after 

exchanging heat with the recycled solvent stream, is separated in the distillation column.  

The solvent is recycled back to the absorption column.  A small stream of make-up 

solvent is added to compensate for emission loss from the absorption column.  The 

distillation column top product – toluene/ethyl mixture is stored in a cone-shape fixed 
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roof storage tank prior to recycling to the original process.  The only decision variable 

that is allowed to change in this case study is the type of solvent.  23 different solvents 

were evaluated under the same operating conditions, including solvent flowrate and 

temperature that varied in other case studies, in order to determine the degree to which 

the selection of solvent influence the interested economic and environmental 

characteristics. 
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APPENDIX B  MOP TEST PROBLEMS 
 

UCMOP-1 
Origin: Test function T1 in (Zitzler, et al., 2000) 
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UCMOP-2 
Origin: Test function T2 in (Zitzler, et al., 2000) 
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UCMOP-3 
Origin: Test function T3 in (Zitzler, et al., 2000) 
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UCMOP-4 
Origin: Test function T6 in (Zitzler, et al., 2000) 
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UCMOP-5 
Origin: 1st function in (Schaffer, 1984) 
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Origin: 2nd MOP in (Fonseca and Fleming, 1995b) 
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UCMOP-7 
Origin: (Poloni et al., 2000) 
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UCMOP-8 
Origin: (Kursawe, 1990) 
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UCMOP-9 
Origin: (Viennet, 1996) 
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SCMOP-1 
Origin: (Deb, 2001) 
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SCMOP-2 
Origin: (Chankong & Haimes, 1983) (Srinivas & Deb, 1994) 
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SCMOP-3 
Origin: (Tanaka, 1995) 
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SCMOP-4 
Origin: (Osyczka & Kundu, 1995) 
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SCMOP-5 
Origin: 2nd MOP in (Binh & Korn, 1997) 
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ECMOP-1 
Revised from g11 in (Runarsson & Yao, 2000) 
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ECMOP-2 
Revised from g13 in (Runarsson & Yao, 2000) 
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Revised from g05 in (Runarsson & Yao, 2000) 
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ECMOP-4 
Reformulated from (DiBella & Stevens, 1965) 
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Notes: All the objective functions in the above test problems are expressed in the form of 
“to-be-minimized.” 
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APPENDIX C  WILLIAMS-OTTO PROCESS 
 

C.1 Process Description 

Figure C-1 illustrates a simplified Process Flow Diagram (PFD) of the so-called 

Williams-Otto process.  The plant manufactures a chemical P at certain capacity and is 

operated 8400 hours (350 days) per year.   
 

CSTR 

HX 

Decanter 
Distillation 
Column 

FRA
FRB 
FRC
FRE 
FRP 
FG FRFB

FA

FP

FD

FG

Discharge 

FR

Figure C-1    Williams-Otto Process Flow Diagram 
 

The process, in series, consists of:   

1. Continueously-stirred tank reactor (CSTR) - Reactants A and B entering the reactor 

in pure form are converted to the desired product P in the CSTR.  Three second-order 

irreversible reactions are involved:  

GCP
EPBC

CBA

K

K

K

→+
+→+

→+

3

2

1

Intermediates C and E have no sales value but may be used as plant fuels.  G is a heavy 

and oily byproducts that has to be disposed as a wsate material.  The reaction coefficients 

k can be expressed in the Arrhenius form: 

)/exp( TBAk iii −=

The values of A and B are listed in Table C-1. 
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Table C-1    Parameters for reaction coefficients 
i Ai (hr) (weight fraction) Bi (οοοοR) 
1 5.9755x109 12000 
2 2.5962x1012 15000 
3 9.6283x1015 20000 

2. Heat exchanger - The reator outflow is cooled to a sufficently low temperature that 

allows complete separation of G in the decanter.  

 

3. Decanter - The complete separation of the byproduct G is performed.  

 

4. Distillation column - P forms an azeotrope with E, in which P’s composition at 

azeotropic points amounts to 10% by weight.  The desired product P is obtained as the 

overhead product from distillation column. A portion of the column bottom product is 

recycled back to the CSTR, while the  remainder is sent out of the process boundry.  

 

The density of the reaction mixture ρ is taken as constant at 50lb/ft3. The molecular 

weight of each pure substance is assumed as follows in Table C-2: 
Table C-2 Molecular weights of pure substances 

Components Molecular weights 
A 100 
B 100 
C 200 
E 200 
G 300 
P 100 

C.2 Single Objective Optimization in Literature 

This process model was developed by the Monsanto Chemical Company and first 

presented in (Williams & Otto, 1960) as a generalized model basis for the comparison of 
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different computer controls on chemical processes.  DiBella and Stevens (1965) modified 

the model and clearly formulated into a constrained single objective optimization 

problem as shown below.   
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The annual rate of return on the investment (ROI) was taken as the objective function, 

which is calculated from the data in Table C-3.  The steady state material balance 

essentially constitutes the equality constraints. As pointed out by several authors, the 9th 

equality constraint is redundant (Christensen, 1970; Jung et al., 1971).   
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Table C-3 Monetary data for calculation of return on investment 
Income (0.3FP+0.0068FD)/hr 
Expenses  

Raw material cost (0.02FA+0.03FB)/hr 
 Waste disposal cost 0.01FG/hr 
 Utilities cost 2.22FR/yr 
 Sales, Administration, and Research expenses 12.4% of sales 
 Plant fixed charge 10% of the plant investment per year 
Plant investment 600Vρ

The Williams-Otto process, perhaps the most popular nonlinear model for chemical 

process optimization, has been widely studied in the settings of single objective 

programming (SOP) (Christensen, 1970; Jung et al., 1971; Adelman & Steven, 1972; 

Luus & Jaakola, 1973; Ray & Szekely, 1973; Findley, 1974; Rijckaert & Martens, 1974; 

Vinante & Valladares, 1985; Vasantharajan & Biegler, 1988; Biegler, 1987; Biegler et 

al., 1997).  The popularity can be attributed to its three attributes.  First, this single 

process model involves reaction, heat exchange, multiple separate steps, and recycle 

streams.  This is why the WO process is widely regarded to be sufficiently close to a real 

typical chemical process (Ray and Szekely, 1973; Rijckaert and Marten, 1974).  Second, 

the model’s mathematical definition is explicit and somewhat simple, hence different 

algorithms have been applied even without thorough understanding of the chemical 

process itself.  Third, the model is general and does not require the exact nature of the 

chemicals, equipment configuration, as well as detailed operating conditions.  This 

generality allows for the considerable freedom to interpret or revise the original model in 

a user-specific manner.   

 

Slightly different SOP formulations of the WO process exist in literature.  The major 

differences lie in different handling of the product flowrate FP and the reactor volume V, 
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while the equality constraints keep the same.  Three different formulations are 

demonstrated in Table C-4.  
Table C-4 Different SOP formulations of the WO model 

# FP V Previous work 
1 ≥ 0 ≥ 0 (Luus & Jaakola, 1973) 
2 = 4762 ≥ 0 (Dibella and Stevens, 1965) (Adelman and 

Stevens, 1972) (Luus and Jaakola, 1973) 
3 4762 ≥ FP ≥ 0 = 60 (Jung et al., 1971) (Ray and Szekely, 1973) 

(Vinante and Valladares, 1985) 

In literature, a range of different SOP algorithms have been applied, for instance, 

complex method (Adelman & Steven, 1972), geometric programming (Rijckaert & 

Martens, 1974), Multipliers method (Vinante & Valladares, 1985), and many more.  

Among those, the performance of some so-called “locally convergent” algorithms to a 

great extent relies upon a “good” (close to the target local optimum) initial point.  

 

C.3 New Multi-Objective Formulation 

In this study, the classical William-Otto plant model is reformulated into a multi-

objective problem.  This is done by changing the stream G, which is delivered to disposal 

in previous formulations, as being discharged to the environment.  This revision 

introduces the second environmental objective function - minimizing environmental 

impact resulting from the stream G release.  The original economic objective function - 

maximizing return on investment (ROI) is still applied, but with a different expression, as 

the disposal cost does not occur any more.  These two objectives are optimized within the 

feasible region defined by 8 equality constraints, which are essentially the material 

balance of the process.  This formulation follows (Ray & Szekely, 1973) to fix the reactor 

volume at 60 ft3. All the variables are listed in Table C-5.  Among them, FP is expected 
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to vary between 3571-4762 lb/hr, while the other variables, including 10 flowrates and 

reactor temperature, are allowed to vary within the -5%~+5% range around their design 

condition values, which is the “optimal” solution in (diBella & Stevens, 1965).  
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Table C-5 Variables involved in the new WO process model 
Variable x Description 

FA 1 Flowrate of component A in reactor feed  
FB 2 Flowrate of component B in reactor feed 
FD 3 Total flowrate of distillation column bottom runoff  
FG 4 Flowrate of component G from decanter bottom 
FRA 5 Flowrate of component A in reactor outflow 
FRB 6 Flowrate of component B in reactor outflow 
FRC 7 Flowrate of component C in reactor outflow 
FRE 8 Flowrate of component E in reactor outflow 
FR 9 Total flowrate of reactor outflow 
FRP 10 Flowrate of component P in reactor outflow 
T 11 Temperature of the reactor 
FP 12 Flowrate of component P in column overhead product  
V - Reactor volume (fixed at 60 ft3)
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The values of the two objective and twelve decision variables at the design condition 

are given below.  The ROI at the design condition is 89.58%, while the flowrate of the 

discharge waste is 3609 lb/hr, respectively.  
Table C-6 Variable values under design conditions 

 

Design condition Lower bound Upper bound 
FA (lb/hr) 13546 12869 14223 
FB (lb/hr) 31523 29947 33099 
FD (lb/hr) 36697 34862 38532 
FG (lb/hr) 3609 3429 3789 
FRA (lb/hr) 18187 17278 19096 
FRB (lb/hr) 60915 57869 63961 
FRC (lb/hr) 3331 3164 3498 
FRE (lb/hr) 60542 57515 63569 
FR (lb/hr) 157391 149522 165261 
FRP (lb/hr) 10817 10276 11358 
T (oR) 656 623 689 
f1 (%) 89.58   
f2 (lb/hr) 3609   
Ω 250.82   
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APPENDIX D  FORTRAN CODE OF ORGA 
 

PROGRAM main 
!=============================================================== 
! Ordinal Ranking-based Genetic Algorithms (version 1.0) 
! As of 6/10/2005 
! By XUN JIN 
!
!
! This algorithm is a Multi-Objective Evolutioary Algorithm (MOEA), which offers the   
! searching capacity when a Multiple Objective Programming (MOP) problem is solved   
! with “a posteriori” preference articulation.  The result obtained from using this               
! algorithm is a set of evenly distributed solutions that are globally Pareto optimal within 
! the feasible space of the given MOP.  
!
! For details regarding this algorithm, please refer to: 
! “Xun Jin, Approaching Sustainability in Engineering Design with Multiple Criteria Decision Analysis.    
! Ph.D. Dissertation, December, 2005, Oklahoma State University.” 
!
!============================================================== 
 
USE dfport 
 
IMPLICIT NONE 
 
INTEGER n, nf, ng, nh, model_n, p, i, j, gen, p_elite, r_div(pmax), r(pmax), 
r_conobj(pmax) 
INTEGER, PARAMETER:: nmax=200, pmax=500, fmax=10, hmax=100, gmax=100, 
p_elite_max=100 
REAL x(nmax,pmax), f(fmax,pmax), h(hmax,pmax), g(gmax,pmax), xu(nmax,pmax), 
xl(nmax,pmax), mating_pool_x(nmax,pmax), cv(pmax), mutation_rate, crossover_rate 
CHARACTER(8):: now 
! n:                           Number of decision variables (x1,x2,...xn) 
! nf:                     Number of objective functions 
! ng:                                   Number of inequality constraints 
! nh:                                   Number of equality constraints 
! model_n:                         Identification number of the problem to be solved 
! p:                      Number of individuals in the Population 
! gen:                   Number of generation 
! p_elite:               Number of elites 
! x(i,j):                Value of xi of the jth solution 
! f(i,j):                 Value of objective function i of the jth solution 
! h(i,j):                Value of equality constraint I of the jth solution 
! g(i,j):                Value of inequality constraint I of the jth solution 
! xu(i,j):               Upper bound on xi  
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! xl(i,j):               Lower bound on xi 
! mating_pool_x(i,j):  Value of xi of the jth solution in mating pool 
! cv(i)       Constraint violation of ith solution 
! now:                           Present time 
! r_div(i)           diversity rank of ith solution 
! r_conobj(i):                Constrained-objective ranking of the ith solution 
! r:                      Overall ranking of the ith solution 
 
OPEN (UNIT=10, FILE="MOP_303.txt", STATUS="REPLACE", 
ACTION="WRITE",POSITION="REWIND") 
 
mutation_rate=0.1      ! set mutation rate 
crossover_rate=1       ! set crossover rate 
model_n=303            ! input the number of the problem to be solved 
p=100                   ! set the number of population 
p_elite=p/10           ! set the number of elite  
 
WRITE ( 10, '(/)' )  
WRITE ( 10, '(A,i3,A)') "SOLVING THE PROBLEM # ", model_n, " WITH ORGA" 
WRITE ( 10, '(3/)' )    
CALL TIME(now)        ! get the present time 
WRITE (10,*) " THE PROGRAM STARTS AT ", now   
! output the starting time of the program 
WRITE (10,*) "* * * * * * * * * * * * * * * * * * * * * * * * * *" 
WRITE ( 10, '(2/)' ) 
 
gen=1                    
CALL models(model_n,n,nf,nh,ng)  
! get the info of the target problem 
CALL initialize (model_n,n,p,x,xu,xl)  
! generate random initial population 
 
DO  
 WRITE (10,*) 
 WRITE (10,'(5X,"============= ",I10.5,5X," =================")') gen  
 ! output generation number 
 WRITE (10,*) 
 
CALL objective_functions(model_n,n,nf,p,x,f)    

 ! calculate objective function values 
 CALL equality_constraints(model_n,n,nh,p,x,h)   
 ! calculate equality constraints 
 CALL inequality_constraints(model_n,n,x,ng,p,g) 
 ! calculate inequality constraints 
 CALL feasibility_ranking(p,h,g,nh,ng,cv,r_fea,n_fea)  
 ! calculate constraint violations 
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CALL diversity_ranking(nf,f,p,r_div)  
 ! calcuate diversity  
 CALL constrained_objective_ranking(p,cv,nf,f,r_conobj) 
 ! calculate constrained-objective rank 
 CALL ordinal_ranking(p,r_conobj,r_div,r,r_fea,r_obj) 
 ! perform ordinal ranking on the current population 
 IF (gen==1.or. REAL(gen/1000)==REAL(gen)/REAL(1000)) THEN ! 
 CALL output(p,nf,f,cv,r_obj,r_div,r_fea,r_conobj,r) 
 ! output result to monitor the program 
 END IF 
IF (gen>1000) EXIT ! set stopping criterion as 1000 generation 
 CALL mating_pool(p,n,x,r,mating_pool_x,gen) 
 ! create mating pool by tournament selection 
 CALL environmental_selection (p,p_elite,n,x,r) 
 ! select elite based on individual' ordinal rank 
 CALL variation(crossover_rate, mutation_rate,p,p_elite,n,x,xl,xu,mating_pool_x,gen) 
 ! select parents and perform crossover and mutation to produce offsprings 
 gen=gen+1   ! increase generation number by one 
END DO 
 
CALL output_x(n,p,x)  ! output x values of the final generation 
CALL feasible_pareto(x,n,p,nf,f,r_conobj,r_fea) 
! screen out feasible and Pareto optimal solutions and output them 
 

CALL TIME (now) ! get the present time 
WRITE ( 10, '(2/)' )  
WRITE (10,*) "++++++++++++++++++++++++++++++++++++++++++++” 
WRITE ( 10, * ) " THE PROGRAM ENDS AT ", now  
! output the ending time of the program 
 
END PROGRAM main 
 

!------------------------------------------------------------------------- 
SUBROUTINE models(model_n,n,nf,nh,ng) 
! this subroutine contains the information of the problems to be solved 
! 101-110:  unconstrained MOP 
! 201-205:  side-constrained MOP 
! 301-304:  equality-constrained MOP 
! 401:      williams-otto MOP 
 
INTEGER model_n,n,nf,ng,nh 
 
IF (model_n==101) THEN   ! info about unconstrained test problem 1 
! ZDT 1  
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nf=2 
n=30 
nh=0 
ng=0 
ELSE IF (model_n==102) THEN  ! info about unconstrained test problem 2 
! ZDT 2  
nf=2 
n=30 
nh=0 
ng=0 
ELSE IF (model_n==103) THEN  ! info about unconstrained test problem 3 
! ZDT 3  
nf=2 
n=30 
nh=0 
ng=0 
ELSE IF (model_n==104) THEN  ! info about unconstrained test problem 4 
! ZDT 4  
nf=2 
n=10 
nh=0 
ng=0 
ELSE IF (model_n==105) THEN  ! info about unconstrained test problem 5 
! ZDT 6 (F3 in Lu&Yen, 2003) 
nf=2 
n=10 
nh=0 
ng=0 
ELSE IF (model_n==106) THEN  ! info about unconstrained test problem 6 
! SCH  
nf=2 
n=1 
nh=0 
ng=0 
ELSE IF (model_n==107) THEN  ! info about unconstrained test problem 7 
! FON 
nf=2 
n=3 
nh=0 
ng=0 
ELSE IF (model_n==108) THEN  ! info about unconstrained test problem 8 
! POL 
nf=2 
n=2 
nh=0 
ng=0 
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ELSE IF (model_n==109) THEN  ! info about unconstrained test problem 9 
! KUR 
nf=2 
n=3 
nh=0 
ng=0 
ELSE IF (model_n==110) THEN  ! info about unconstrained test problem 10 
! VNT 
nf=3 
n=2 
nh=0 
ng=0 
ELSE IF(model_n==201) THEN  ! info about side-constrained test problem 1 
! (Deb,2001) p.276 
n=2 
nf=2 
ng=2 
nh=0 
ELSE IF (model_n==202) THEN  ! info about side-constrained test problem 2 
! SRN constrained bi-objective 
n=2 
nf=2 
ng=2 
nh=0 
ELSE IF (model_n==203) THEN  ! info about side-constrained test problem 3 
! TNK  constrained bi-objective 
n=2 
nf=2 
ng=2 
nh=0 
ELSE IF (model_n==204) THEN  ! info about side-constrained test problem 4 
! OSY (Osyczka&Kundu,1995)  
nf=2 
n=6 
nh=0 
ng=6 
ELSE IF (model_n==205) THEN  ! info about side-constrained test problem 5 
! BNH (Binh & Korn,1997) 
nf=2 
n=2 
nh=0 
ng=2 
ELSE IF (model_n==301) THEN  ! info about equality-constrained test problem 1 
! revised from g11 in (Philip&Yao, 2000) 
n=2 
nf=2 
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ng=0 
nh=1 
ELSE IF (model_n==302) THEN  ! info about equality-constrained test problem 2 
! revised from g13 in (Philip&Yao, 2000) 
n=5 
nf=2 
ng=0 
nh=3 
ELSE IF (model_n==303) THEN  ! info about equality-constrained test problem 3 
! revised from g05 in (Philip&Yao, 2000) 
n=4 
nf=2 
ng=2 
nh=3 
ELSE IF (model_n==304) THEN  ! info about equality-constrained test problem 4 
! revised from g03 in (Philip&Yao, 2000) 
n=10 
nf=2 
ng=0 
nh=1 
ELSE IF (model_n==401) THEN  ! into about the williams-otto problem 
! WO problem  
n=12 
nf=2 
ng=1 
nh=8 
END IF 
 
RETURN 
END 
 

!------------------------------------------------------------------------- 
SUBROUTINE bounds(model_n,n,p,xu,xl) 
! get all the bounds on variables in different problems 
 
INTEGER model_n,n,p 
REAL xu(n), xl(n) 
 
IF (model_n==101.OR.model_n==102.OR.model_n==103.OR.model_n==105) THEN 
xl(1:n)=0 
xu(1:n)=1 
ELSE IF (model_n==104) THEN 
xl(1)=0 
xu(1)=1 
xl(2:n)=-5 
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xu(2:n)=5 
ELSE IF (model_n==106) THEN 
xl(1:n)=-1000 
xu(1:n)=1000 
ELSE IF (model_n==107) THEN 
xl(1:n)=-4 
xu(1:n)=4 
ELSE IF (model_n==108) THEN 
xl(1:n)=-3.1415926 
xu(1:n)=3.1415926 
ELSE IF (model_n==109) THEN 
xl(1:n)=-5 
xu(1:n)=5 
ELSE IF (model_n==110) THEN 
xl(1:n)=-3!0 
xu(1:n)=3!0 
ELSE IF (model_n==201) THEN 
xl(1)=0.1 
xl(2)=0 
xu(1)=1 
xu(2)=5 
ELSE IF (model_n==202) THEN 
xl(1)=-20 
xu(1)=20 
xl(2)=-20 
xu(2)=20 
ELSE IF (model_n==203) THEN 
xl(1)=0 
xu(1)=3.1415926 
xl(2)=0 
xu(2)=3.1415926 
ELSE IF (model_n==204) THEN 
xl(1)=0 
xu(1)=10 
xl(2)=0 
xu(2)=10 
xl(6)=0 
xu(6)=10 
xl(3)=1 
xu(3)=5 
xl(5)=1 
xu(5)=5 
xl(4)=0 
xu(4)=6 
ELSE IF (model_n==205) THEN 
xl(1:2)=0 
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xu(1)=5 
xu(2)=3 
ELSE IF (model_n==301) THEN 
xl(1:2)=-1 
xu(1:2)=1 
ELSE IF (model_n==302) THEN 
xl(1:2)=-2.3 
xu(1:2)=2.3 
xl(3:5)=-3.2 
xu(3:5)=3.2 
ELSE IF (model_n==303) THEN 
xl(1:2)=0 
xu(1:2)=1200 
xl(3:4)=-0.55 
xu(3:4)=0.55 
ELSE IF (model_n==304) THEN 
xl(1:10)=0 
xu(1:10)=1 
ELSE IF (model_n==401) THEN 
 xl(1)=12622.59*0.95 
 xu(1)=12622.59*1.05 
 xl(2)=28271.65*0.95 
 xu(2)=28271.65*1.05 
 xl(3)=32960.27*0.95 
 xu(3)=32960.27*1.05 
 xl(4)=3171.97*0.95 
 xu(4)=3171.97*1.05 
 xl(5)=36910.35*0.95 
 xu(5)=36910.35*1.05 
 xl(6)=115647.04*0.95 
 xu(6)=115647.04*1.05 
 xl(7)=6865.02*0.95 
 xu(7)=6865.02*1.05 
 xl(8)=136775.93*0.95 
 xu(8)=136775.93*1.05 
 xl(9)=317809.90*0.95 
 xu(9)=317809.90*1.05 
 xl(10)=18439.59*0.95 
 xu(10)=18439.59*1.05 
 xl(11)=656.36*0.95 
 xu(11)=656.36*1.05 
 xl(12)=4762.00 
 xu(12)=3571.00 
END IF 
 
RETURN 
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END SUBROUTINE bounds 
 

!------------------------------------------------------------------------- 
SUBROUTINE initialize (model_n,n,p,x,xu,xl) 
! create random initial population 
 
INTEGER n,model_n,p,q 
REAL x(n,p),xu(n),xl(n) 
INTEGER ms(8),curr_time(1) 
REAL rannum(n+1,p+1)     
 
CALL bounds(model_n,n,p,xu,xl) 
 
CALL DATE_AND_TIME (VALUES=ms) 
q=ABS(TIME()) 
curr_time(1)=q/(2*ms(8)) 
CALL RANDOM_SEED (PUT=curr_time) 
CALL RANDOM_NUMBER (rannum)  
! use the current time as the seed for random number generation 
 
DO j=1,p 
 DO i=1,n 
 x(i,j)=(xu(i)-xl(i))*rannum(i+1,j+1)+xl(i) 
 END DO 
END DO 
 
DO j=1,p 
 write (10,28) j,x(1:n,j) ! output initial population 
28  FORMAT("p",i3,100f15.5) 
END DO 
 
RETURN 
END 
 

!------------------------------------------------------------------------- 
SUBROUTINE objective_functions(model_n,n,nf,p,x,f) 
! calculate objective function values 
 
INTEGER model_n, nf, n,p,j,m 
REAL f(nf,p), x(n,p),g(p),h(p),sigma,multiply 
 
IF (model_n==101) THEN 
 DO j=1,p 
 f(1,j)=x(1,j) 
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sigma=0 
 DO i=2,n 
 sigma=sigma+x(i,j) 
 END DO 
 g(j)=1+9*sigma/(n-1) 
 h(j)=1-SQRT(f(1,j)/g(j)) 
 f(2,j)=g(j)*h(j) 
 END DO 
ELSE IF (model_n==102) THEN 
 DO j=1,p 
 f(1,j)=x(1,j) 
 sigma=0 
 DO i=2,n 
 sigma=sigma+x(i,j) 
 END DO 
 g(j)=1+9*sigma/(n-1) 
 h(j)=1-(f(1,j)/g(j))**2 
 f(2,j)=g(j)*h(j) 
 END DO 
ELSE IF (model_n==103) THEN 
 DO j=1,p 
 f(1,j)=x(1,j) 
 sigma=0 
 DO i=2,n 
 sigma=sigma+x(i,j) 
 END DO 
 g(j)=1+9*sigma/(n-1) 
 h(j)=1-SQRT(f(1,j)/g(j))-(f(1,j)/g(j))*SIN(10*3.1415926*f(1,j)) 
 f(2,j)=g(j)*h(j) 
 END DO 
ELSE IF (model_n==104) THEN 
 DO j=1,p 
 f(1,j)=x(1,j) 
 sigma=0 
 DO i=2,n 
 sigma=sigma+(x(i,j)**2-10*COS(4*3.1415926*x(i,j))) 
 END DO 
 g(j)=1+10*(n-1)+sigma 
 h(j)=1-SQRT(f(1,j)/g(j)) 
 f(2,j)=g(j)*h(j) 
 write (10,*) j, "f1=",f(1,j),"f2=", f(2,j) 
 END DO 
ELSE IF (model_n==105) THEN 
 DO j=1,p 
 f(1,j)=1-exp(-4*x(1,j))*SIN(6*3.1415926*x(1,j))**6 
 sigma=0 
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DO i=2,n 
 sigma=sigma+x(i,j) 
 END DO 
 g(j)=1+9*(sigma/(n-1))**0.25 
 h(j)=1-(f(1,j)/g(j))**2 
 f(2,j)=g(j)*h(j) 
 END DO 
ELSE IF (model_n==106) THEN 
 DO j=1,p 
 f(1,j)=x(1,j)**2 
 f(2,j)=(x(1,j)-2)**2 
 END DO 
ELSE IF (model_n==107) THEN 
 DO j=1,p 
 f(1,j)=1-EXP(-((x(1,j)-1/SQRT(3.0))**2+(x(2,j)-1/SQRT(3.0))**2+(x(3,j)-
1/SQRT(3.0))**2)) 
 f(2,j)=1-EXP(-
((x(1,j)+1/SQRT(3.0))**2+(x(2,j)+1/SQRT(3.0))**2+(x(3,j)+1/SQRT(3.0))**2)) 
 END DO 
ELSE IF (model_n==108) THEN 
 a1=0.5*SIN(1.0)-2*COS(1.0)+SIN(2.0)-1.5*COS(2.0) 
 a2=1.5*SIN(1.0)-COS(1.0)+2*SIN(2.0)-0.5*COS(2.0) 
 DO j=1,p 
 b1=0.5*SIN(x(1,j))-2*COS(x(1,j))+SIN(x(2,j))-1.5*COS(x(2,j)) 
 b2=1.5*SIN(x(1,j))-COS(x(1,j))+2*SIN(x(2,j))-0.5*COS(x(2,j)) 
 f(1,j)=(1+(a1-b1)**2+(a2-b2)**2) 
 f(2,j)=((x(1,j)+3)**2+(x(2,j)+1)**2) 
 END DO 
ELSE IF (model_n==109) THEN 
 DO j=1,p 
 sigma1=0 
 sigma2=0 
 DO i=1,n-1 
 sigma1=sigma1+(-10*EXP(-0.2*SQRT(x(i,j)**2+x(i+1,j)**2))) 
 END DO 
 DO i=1,n 
 sigma2=sigma2+(ABS(x(i,j))**0.8+5*SIN(x(i,j)**3)) 
 END DO 
 f(1,j)=sigma1 
 f(2,j)=sigma2 
 END DO 
ELSE IF (model_n==110) THEN 
 DO j=1,p 
 f(1,j)=0.5*(x(1,j)**2+x(2,j)**2)+SIN(x(1,j)**2+x(2,j)**2) 
 f(2,j)=(3*x(1,j)-2*x(2,j)+4)**2/8+(x(1,j)-x(2,j)+1)**2/27+15 
 f(3,j)=1/(x(1,j)**2+x(2,j)**2+1)-1.1*EXP(-x(1,j)**2-x(2,j)**2) 
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END DO 
ELSE IF (model_n==201) THEN 
 DO j=1,p 
 f(1,j)=x(1,j) 
 f(2,j)=(1+x(2,j))/x(1,j) 
 END DO 
ELSE IF (model_n==202) THEN 
 DO j=1,p 
 f(1,j)=2+(x(1,j)-2)**2+(x(2,j)-1)**2 
 f(2,j)=9*x(1,j)-(x(2,j)-1)**2 
 END DO 
ELSE IF (model_n==203) THEN 
 DO j=1,p 
 f(1,j)=x(1,j) 
 f(2,j)=x(2,j) 
 END DO 
ELSE IF (model_n==204) THEN 
 DO j=1,p 
 f(1,j)=-(25*(x(1,j)-2)**2+(x(2,j)-2)**2+(x(3,j)-1)**2+(x(4,j)-4)**2+(x(5,j)-1)**2) 
 f(2,j)=x(1,j)**2+x(2,j)**2+x(3,j)**2+x(4,j)**2+x(5,j)**2+x(6,j)**2 
 END DO 
ELSE IF (model_n==205) THEN 
 DO j=1,p 
 f(1,j)=4*x(1,j)**2+4*x(2,j)**2 
 f(2,j)=(x(1,j)-5)**2+(x(2,j)-5)**2 
 END DO 
ELSE IF (model_n==301) THEN 
 DO j=1,p 
 f(1,j)=x(1,j)**2+(x(2,j)-1)**2 
 f(2,j)=x(1,j)-x(2,j) 
 END DO 
ELSE IF (model_n==302) THEN 
 DO j=1,p 
 f(1,j)=exp(x(1,j)*x(2,j)*x(3,j)*x(4,j)*x(5,j)) 
 f(2,j)=x(1,j)+x(2,j)+x(3,j)+x(4,j)+x(5,j) 
 END DO 
ELSE IF (model_n==303) THEN 
 DO j=1,p 
 f(1,j)=3*x(1,j)+0.000001*x(1,j)**3+2*x(2,j)+(0.000002/3)*x(2,j)**3 
 f(2,j)=x(1,j)*x(3,j)+x(2,j)*x(4,j) 
 END DO 
ELSE IF (model_n==304) THEN 
 DO j=1,p 
 f(1,j)=-
SQRT(REAL(n))**n*(x(1,j)*x(2,j)*x(3,j)*x(4,j)*x(5,j)*x(6,j)*x(7,j)*x(8,j)*x(9,j)*x(10,j
)) 
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f(2,j)=x(1,j)*x(3,j)*x(5,j)*x(7,j)*x(9,j) 
 END DO 
ELSE IF (model_n==401) THEN 
 DO j=1,p 
 f(1,j)=-100*(8400*(0.3*x(12,j)+0.0068*x(3,j)-0.02*x(1,j)-0.03*x(2,j))-2.22*x(9,j)-
0.124*8400*(0.3*x(12,j)+0.0068*x(3,j))-3000*60)/(30000*60) 
 f(2,j)=x(4,j) 
 END DO 
END IF 
 
RETURN 
END SUBROUTINE objective_functions 
 

!------------------------------------------------------------------------- 
SUBROUTINE equality_constraints(model_n,n,nh,p,x,h) 
! calculate equality constraints 
 
INTEGER model_n,nh,n,p 
REAL h(nh,p), x(n,p) 
 
IF (model_n==301) THEN 
 DO j=1,p 
 h(1,j)=x(2,j)-x(1,j)**2 
 END DO 
ELSE IF (model_n==302) THEN 
 DO j=1,p 
 h(1,j)=x(1,j)**2+x(2,j)**2+x(3,j)**2+x(4,j)**2+x(5,j)**2-10 
 h(2,j)=x(2,j)*x(3,j)-5*x(4,j)*x(5,j) 
 h(3,j)=x(1,j)**3+x(2,j)**3+1 
 END DO 
ELSE IF (model_n==303) THEN 
 DO j=1,p 
 h(1,j)=1000*SIN(-x(3,j)-0.25)+1000*SIN(-x(4,j)-0.25)+894.8-x(1,j) 
 h(2,j)=1000*SIN(x(3,j)-0.25)+1000*SIN(x(3,j)-x(4,j)-0.25)+894.8-x(2,j) 
 h(3,j)=1000*SIN(x(4,j)-0.25)+1000*SIN(x(4,j)-x(3,j)-0.25)+1294.8 
 END DO 
ELSE IF (model_n==304) THEN 
 DO j=1,p 
 
h(1,j)=(x(1,j)**2+x(2,j)**2+x(3,j)**2+x(4,j)**2+x(5,j)**2+x(6,j)**2+x(7,j)**2+x(8,j)*
*2+x(9,j)**2+x(10,j)**2)-1 
 END DO 
ELSE IF (model_n==401) THEN 
 DO j=1,p 
 h(1,j)=x(10,j)-0.1*x(8,j)-x(12,j) 
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h(2,j)=x(3,j)*x(8,j)/(x(9,j)-x(4,j)-x(12,j))-2*(2.5962e12)*exp(-
15000/x(11,j))*x(6,j)*x(7,j)*50*60/(x(9,j)*x(9,j)) 
 h(3,j)=2.5962e12*exp(-15000/x(11,j))*x(6,j)*x(7,j)*50*60/(x(9,j)*x(9,j))-
0.5*9.6283e15*exp(-20000/x(11,j))*x(7,j)*x(10,j)*50& 
 *60/(x(9,j)*x(9,j))-(x(10,j)-x(12,j))*x(3,j)/(x(9,j)-x(4,j)-x(12,j))-x(12,j) 
 h(4,j)=x(1,j)-5.9755e9*exp(-12000/x(11,j))*x(5,j)*x(6,j)*50*60/(x(9,j)*x(9,j))-
x(5,j)*x(3,j)/(x(9,j)-x(4,j)-x(12,j)) 
 h(5,j)=x(2,j)-5.9755e9*exp(-12000/x(11,j))*x(5,j)*x(6,j)*50*60/(x(9,j)*x(9,j))-
2.5962e12*exp(-15000/x(11,j))*x(6,j)*x(7,j)*50*60& 
 /(x(9,j)*x(9,j))-x(6,j)*x(3,j)/(x(9,j)-x(4,j)-x(12,j)) 
 h(6,j)=2*(5.9755e9*exp(-12000/x(11,j))*x(5,j)*x(6,j)*50*60/(x(9,j)*x(9,j))-
2.5962e12*exp(-15000/x(11,j))*x(6,j)*x(7,j)*50*60& 
 /(x(9,j)*x(9,j)))-9.6283e15*exp(-20000/x(11,j))*x(7,j)*x(10,j)*50*60/(x(9,j)*x(9,j))-
x(7,j)*x(3,j)/(x(9,j)-x(4,j)-x(12,j)) 
 h(7,j)=1.5*9.6283e15*exp(-20000/x(11,j))*x(7,j)*x(10,j)*50*60/(x(9,j)*x(9,j))-x(4,j) 
 h(8,j)=x(9,j)-x(5,j)-x(6,j)-x(7,j)-x(8,j)-x(10,j)-x(4,j) 
 END DO 
END IF 
 
RETURN 
END SUBROUTINE equality_constraints 
 

!------------------------------------------------------------------------- 
SUBROUTINE inequality_constraints(model_n,n,x,ng,p,g) 
! calculate inequality constraints 
! all equality constraints are of the "g(x)<=0" type 
 
INTEGER model_n, n, ng,p,j 
REAL x(n,p), g(ng,p) 
 
IF (model_n==201) THEN 
 DO j=1,p 
 g(1,j)=6-x(2,j)-9*x(1,j)   
 g(2,j)=1+x(2,j)-9*x(1,j) 
 END DO 
ELSE IF (model_n==202) THEN 
 DO j=1,p 
 g(1,j)=x(1,j)**2+x(2,j)**2-225 
 g(2,j)=x(1,j)-3*x(2,j)+10 
 END DO 
ELSE IF (model_n==203) THEN 
 tanaka=1 
 IF (tanaka==1) THEN 
 a=0.1 
 b=16 
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ELSE IF (tanaka==2) THEN 
 a=0.1 
 b=32 
 ELSE IF (tanaka==3) THEN 
 a=0.1 
 b=32 
 ELSE IF (tanaka==4) THEN 
 a=0.1 
 b=32 
 END IF   
 DO j=1,p 
 g(1,j)=-(x(1,j)**2+x(2,j)**2-1-a*COS(b*ATAN(x(2,j)/x(1,j)))) 
 g(2,j)=(x(1,j)-0.5)**2+(x(2,j)-0.5)**2-0.5 
 END DO 
ELSE IF (model_n==204) THEN 
 DO j=1,p 
 g(1,j)=-(x(1,j)+x(2,j)-2) 
 g(2,j)=-(6-x(1,j)-x(2,j)) 
 g(3,j)=-(2-x(2,j)+x(1,j)) 
 g(4,j)=-(2-x(1,j)+3*x(2,j)) 
 g(5,j)=-(4-(x(3,j)-3)**2-x(4,j)) 
 g(6,j)=-((x(5,j)-3)**2+x(6,j)-4) 
 END DO 
ELSE IF (model_n==205) THEN 
 DO i=1,p 
 g(1,j)=(x(1,j)-5)**2+x(2,j)**2-25 
 g(2,j)=-((x(1,j)-8)**2+(x(2,j)-3)**2-7.7) 
 END DO  
ELSE IF (model_n==303) THEN 
 DO i=1,p 
 g(1,j)=-x(4,j)+x(3,j)-0.55 
 g(2,j)=-x(3,j)+x(4,j)-0.55 
 END DO   
ELSE IF (model_n==401) THEN 
 DO j=1,p 
 g(1,j)=-(8400*(0.3*x(12,j)+0.0068*x(3,j)-0.02*x(1,j)-0.03*x(2,j))-2.22*x(9,j)-
0.124*8400*(0.3*x(12,j)+0.0068*x(3,j))-3000*60) 
 END DO 
END IF 
 
RETURN 
END SUBROUTINE inequality_constraints 
 

!------------------------------------------------------------------------- 
SUBROUTINE feasibility_ranking(p,h,g,nh,ng,cv,r_fea,n_fea) 
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! calculate feasibility measures for the current population 
 
INTEGER p,ng,nh,nc,counter, r_fea(p),n_fea 
REAL h(nh,p),g(ng,p),c(nh+ng,p),cv(p), h_threshold(nh) 
REAL max_c(ng+nh), min_c(ng+nh), norm_c(nh+ng,p) 
 
nc=nh+ng  ! nc is total number of equality and inequality constraints 
h_threshold(1:nh)=0.01 ! set threshold value for equality constraints 
 
DO j=1,p   
 DO i=1,nh 
 c(i,j)=MAX(ABS(h(i,j))-h_threshold(i),0.0) 
 ! calculate constraint violation for equality constraints 
 END DO 
 DO i=1,ng 
 c(nh+i,j)=MAX(0.0,g(i,j)) 
 ! calculate constraint violation for ineqaulity constraints 
 END DO 
END DO 
 
cv=SUM(c,DIM=1) ! feasibility measure uses the total violation 
n_fea=0 
 
DO j=1,p 
 IF (cv(j)==0) THEN 
 r_fea(j)=0 
 n_fea=n_fea+1 
 ELSE 
 r_fea(j)=1 
 END IF 
END DO 
 
DO i=1,p-1 
 DO j=i+1,p 
 IF (cv(i)/=0 .AND.cv(j)/=0) THEN 
 IF (cv(i)>cv(j)) THEN 
 r_fea(i)=r_fea(i)+1 
 ELSE IF (cv(i)<cv(j)) THEN 
 r_fea(j)=r_fea(j)+1 
 END IF 
 END IF 
 END DO 
END DO 
 
RETURN 
END 
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!------------------------------------------------------------------------- 
SUBROUTINE distance_check(n_dimension,point,p,distance) 
! calculate the distance between each pair of individuals 
 
INTEGER n_dimension,p 
REAL point(n_dimension,p), normalized_point(n_dimension,p),distance(p,p), 
delta_point(n_dimension),squaresum_delta_point 
REAL max_point(n_dimension),min_point(n_dimension) 
 
max_point(1:n_dimension)=-1000000000 
min_point(1:n_dimension)=1000000000 
 
DO i=1,n_dimension 
 DO j=1,p 
 IF (point(i,j)>max_point(i)) THEN 
 max_point(i)=point(i,j)  
 ! identify the highest valued point in each dimension 
 END IF 
 IF (point(i,j)<min_point(i)) THEN 
 min_point(i)=point(i,j) 
 ! identify the lowest valued point in each dimension 
 END IF 
 END DO 
END DO 
 
DO i=1,n_dimension 
 DO j=1,p 
 normalized_point(i,j)=(point(i,j)-min_point(i))/(max_point(i)-min_point(i)) 
 ! normalize the individuals in each dimension before distance calculation  
 END DO 
END DO 
 
DO j=1,p-1 
 DO k=j+1,p 
 squaresum_delta_point=0 
 DO i=1,n_dimension 
 delta_point(i)=normalized_point(i,j)-normalized_point(i,k) 
 squaresum_delta_point=squaresum_delta_point+delta_point(i)**2 
 END DO 
 distance(j,k)=SQRT(squaresum_delta_point) 
 ! the distance from j to k is the square root of the sum of their differences in each 
dimension 
 END DO 
END DO 
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DO j=p,2,-1 
 DO k=j-1,1,-1 
 distance(j,k)=distance(k,j) 
 ! the distanace from j to k equals the distance from k to j 
 END DO 
END DO 
 
DO j=1,p 
 distance(j,j)=0 
 ! the distance from an individual to itself is zero 
END DO 
 
RETURN 
END 
 

!------------------------------------------------------------------------- 
SUBROUTINE diversity_ranking(n_dimension,point,p,r_div) 
! calculate diversity measures for the current population 
 
INTEGER p,  n_dimension,distance_rank(p,p),kth,average_k_distance_rank(p),r_div(p) 
REAL point(n_dimension), distance(p,p), ranked_distance(p,p) 
REAL k_distance_sum,average_k_distance(p) 
 
CALL distance_check(n_dimension,point,p,distance) 
! calculate the distance between each pair of individuals 
 
DO i=1,p 
 distance_rank(i,1:p)=1 
 DO j=1,p-1 
 DO k=j+1,p 
 IF (distance(i,j)<distance(i,k)) THEN 
 distance_rank(i,k)=distance_rank(i,k)+1 
 ELSE IF (distance(i,j)>distance(i,k)) THEN 
 distance_rank(i,j)=distance_rank(i,j)+1 
 END IF 
 END DO 
 END DO 
END DO 
! For each individual, rank the entire population based on the distance to it. 
 
DO i=1,p 
 DO j=1,p 
 ranked_distance(i,distance_rank(i,j))=distance(i,j) 
 END DO 
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END DO 
 
kth=INT(SQRT(REAL(p))) 
! k equals the square root of the number of the individuals in the population 
 
DO i=1,p 
 k_distance_sum=0 
 DO j=1,kth 
 k_distance_sum=k_distance_sum+ranked_distance(i,j) 
 END DO 
 average_k_distance(i)=k_distance_sum/kth 
END DO 
! for each individual, calculate the average distance to its kth nearest neighbor 
 
r_div(1:p)=1 
DO j=1,p-1 
 DO k=j+1,p 
 IF (average_k_distance(j)>average_k_distance(k)) THEN 
 r_div(k)=r_div(k)+1 
 ELSE IF(average_k_distance(j)<average_k_distance(k)) THEN 
 r_div(j)=r_div(j)+1 
 END IF 
 END DO 
END DO 
! the diversity measure of an individual equals its average distance to its kth nearest 
neighbors  
 
RETURN 
END 
 

!------------------------------------------------------------------------- 
SUBROUTINE 
twop_weak_dominance(point1,point2,p,n_vector,vector,counter_point1,counter_point2) 
! check weak dominance relation between two points 
 
INTEGER counter_point1,counter_point2,n_vector, point1,point2 
REAL vector(n_vector,p) 
counter_point1=0 
counter_point2=0 
 
DO i=1,n_vector 
 IF (vector(i,point1)-vector(i,point2)<0) THEN 
 counter_point1=counter_point1+1 
 ELSE IF (vector(i,point1)-vector(i,point2)==0) THEN 
 counter_point1=counter_point1+1 
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counter_point2=counter_point2+1 
 ELSE IF (vector(i,point1)-vector(i,point2)>0) THEN 
 counter_point2=counter_point2+1 
END IF 
END DO 
 
RETURN 
END 
 

!------------------------------------------------------------------------- 
SUBROUTINE constrained_objective_ranking(p,cv,nf,f,r_conobj) 
! perform a so-called constrained-objective ranking on the current population 
! using constrain dominance in (Deb, 2001) 
 
INTEGER i,j,nf,p,binary_cv(p,p), binary_f(p,p), binary(p,p), r_conobj(p) 
INTEGER counter_point1, counter_point2 
REAL cv(p), f(nf,p) 
 
r_conobj(1:p)=0 
 
DO i=1,p-1 
 DO j=i+1,p 
 binary_cv(i,j)=0 
 binary_f(i,j)=0 
 binary(i,j)=0 
 

IF (cv(i)<cv(j)) THEN 
 binary_cv(i,j)=1 
 ELSE IF (cv(i)>cv(j)) THEN 
 binary_cv(i,j)=-1 
 END IF 
 ! compare the individials i and j in terms of their constraint violation 
 

CALL  twop_weak_dominance(i,j,p,nf,f,counter_point1,counter_point2) 
 IF (counter_point1==nf .and. counter_point2<nf) THEN 
 binary_f(i,j)=1 
 ELSE IF ((counter_point2==nf .and. counter_point1<nf)) THEN 
 binary_f(i,j)=-1 
 END IF 
 ! perform dominance check between the individual i and j in terms of their vector 
objective function values 
 

! below is the definition of constrain-dominance 
 IF (cv(i)>0.AND.cv(j)>0) THEN 
 binary(i,j)=binary_cv(i,j) 
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! if both infeasible, the one with less constraint violation is better 
 ELSE IF (cv(i)==0.AND.cv(j)==0) THEN 
 binary(i,j)=binary_f(i,j) 
 ! if both feasible, look at the dominance check results 
 ELSE IF (cv(i)==0.AND.cv(j)>0) THEN 
 binary(i,j)=1 
 ELSE IF (cv(i)>0.AND.cv(j)==0) THEN 
 binary(i,j)=-1 
 ! if one is feasible and the other is not, then feasible one is better 
 END IF 
 

IF (binary(i,j)==1) THEN  
 r_conobj(j)=r_conobj(j)+1 
 ELSE IF (binary(i,j)==-1) THEN  
 r_conobj(i)=r_conobj(i)+1 
 END IF 
 ! one's the constrained-objective rank equals the number of individuals that constrain-
dominate it 
 END DO 
END DO 
 
RETURN 
END 
 

!------------------------------------------------------------------------- 
SUBROUTINE ordinal_ranking(p,r_conobj,r_div,r) 
! perform ordinal ranking on the current population 
 
INTEGER i,j 
INTEGER p,r_conobj(p),r_div(p), r(p) 
 
r(1:p)=1 
 
DO i=1,p-1 
 DO j=i+1,p 
 IF (r_conobj(i)>r_conobj(j)) THEN 
 r(i)=r(i)+1 
 ELSE IF (r_conobj(i)<r_conobj(j)) THEN 
 r(j)=r(j)+1 
 ELSE  
 IF (r_div(i)<r_div(j)) THEN 
 r(j)=r(j)+1 
 ELSE IF (r_div(j)<r_div(i)) THEN 
 r(i)=r(i)+1 
 END IF 
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END IF 
 END DO 
END DO 
 
RETURN 
END 
 

!------------------------------------------------------------------------- 
SUBROUTINE output(p,nf,f,cv,r_obj,r_div,r_fea,r_conobj,r) 
! this subroutine output the objective function values, constraint violation values  
! and various ranks in the desired format  
 
INTEGER nf,p,r_obj(p),r_fea(p),r_div(p),r(p),r_conobj(p) 
REAL f(nf,p),cv(p) 
 
write (10,*) 
write (10,*) "    "," ------cv------ "," -------------f-------------- ", " r_fea ", "r_conobj ", " 
r_div "," r " 
DO j=1,p 
 write (10,26) j,cv(j),f(1:nf,j),r_fea(j),r_conobj(j),r_div(j),r(j) 
END DO 
26 FORMAT (i3,e10.3,6x,2f10.3,12x,i4,3x,i4,3x,i4,3x,i4) 
 
RETURN  
END 
 

!------------------------------------------------------------------------- 
SUBROUTINE output_x(n,p,x)   
! this subroutine output x values in the desire format 
 
INTEGER n,p 
REAL x(n,p) 
 
write (10,*)  

 DO j=1,p 
 write (10,33) j,x(1:n,j) 
33  FORMAT("p",i3,100f12.3) 
 END DO 
 write (10,*) 
 
RETURN 
END 
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!------------------------------------------------------------------------- 
SUBROUTINE mating_pool(p,n,x,r,mating_pool_x,gen) 
! perform tournament selection on the current population until the mating pool is created 
 
INTEGER, PARAMETER:: tournament_size=5 
INTEGER n,p, ms(8),q,curr_time(1),athlete(tournament_size),r(p),lowest_r,champ,gen 
REAL x(n,p),rannum1(tournament_size,p), mating_pool_x(n,p) 
 
! use random number generator 
CALL DATE_AND_TIME (VALUES=ms) 
q=ABS(TIME()) 
curr_time(1)=q+(8*ms(8))+gen 
CALL RANDOM_SEED (PUT=curr_time) 
CALL RANDOM_NUMBER (rannum1) 
 
DO j=1,p 
 DO i=1,tournament_size 
 athlete(i)=1+INT(p*rannum1(i,j)) 
 ! randomly select tournament_size individuals from the population 
 END DO 
 lowest_r=1000000 
 DO i=1, tournament_size 
 IF (r(athlete(i))<=lowest_r) THEN 
 lowest_r=r(athlete(i)) 
 END IF 
 END DO 
 ! rank selected individuals in terms of their ordinal rank 
 
DO i=1, tournament_size 

 IF (r(athlete(i))==lowest_r) THEN 
 champ=athlete(i) 
 END IF 
 END DO 
 ! lowest ranked individual wins the tournament 
 
DO i=1,n 

 mating_pool_x(i,j)=x(i,champ) 
 END DO 
 ! copy the winner the send it to the mating pool 
END DO 
 
RETURN 
END 
 

!------------------------------------------------------------------------- 
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SUBROUTINE environmental_selection (p,p_elite,n,x,r) 
! select the first p_elite ranked individuals and save them as elites 
! elites in this case is always preseved in the last p_elite seats of the population 
 
INTEGER p,p_elite,n,r(p) 
REAL  ascent_r_x(n,p),x(n,p) 
 
DO j=1,p 
 DO i=1,n 
 ascent_r_x(i,r(j))=x(i,j) 
 END DO 
END DO 
 
DO j=1,p_elite 
 DO i=1,n 
 x(i,p-j+1)=ascent_r_x(i,j) 
 END DO 
END DO 
 
RETURN 
END 
 

!------------------------------------------------------------------------- 
SUBROUTINE variation(crossover_rate, 
mutation_rate,p,p_elite,n,x,xl,xu,mating_pool_x,gen) 
! perform genetic operations to update the current population 
 
INTEGER n,p,p_elite, ms(8), o,curr_time(1), identity, identity1,identity2,gen 
REAL crossover_rate, mutation_rate, x(n,p), parent1(n), 
parent2(n),offspring1(n),offspring2(n) 
REAL rannum2(2,p), rannum3(2,n,p), rannum4(2,p), 
rannum5(2,p),rannum6(2,p),rannum7(n,p),rannum8(n,p),rannum9(n,p) 
REAL xl(n),xu(n),cmin(n),cmax(n),q(n),l(n),u(n),alfa,temp,mating_pool_x(n,p) 
 
k=1 ! replacement counter 
 
! generate the required random numbers 
CALL DATE_AND_TIME (VALUES=ms) 
o=ABS(TIME()) 
curr_time(1)=o-(2*ms(8))+gen 
CALL RANDOM_SEED (PUT=curr_time) 
CALL RANDOM_NUMBER (rannum2) 
CALL RANDOM_NUMBER (rannum3) 
CALL RANDOM_NUMBER (rannum4) 
CALL RANDOM_NUMBER (rannum5) 
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CALL RANDOM_NUMBER (rannum6) 
CALL RANDOM_NUMBER (rannum7) 
CALL RANDOM_NUMBER (rannum8) 
CALL RANDOM_NUMBER (rannum9) 
 
DO 
 n1=1+INT((p-1)*rannum2(1,k)) 
 n2=1+INT((p-1)*rannum2(2,k+1)) 
 DO i=1,n 
 parent1(i)=mating_pool_x(i,n1) 
 parent2(i)=mating_pool_x(i,n2) 
 END DO 
 ! select two random individuals from the mating pool as the parents 
 
DO i=1,n 

 offspring1(i)=parent1(i) 
 offspring2(i)=parent2(i) 
 END DO 
 ! copy both parents as two offsprings 
 
identity=0 

 DO i=1,n 
 IF (offspring1(i)==offspring2(i)) THEN 
 identity=identity+1 
 END IF 
 END DO 
 

IF (identity==n) THEN 
 DO i=1,n 
 offspring2(i)=(xu(i)-xl(i))*rannum7(i,k)+xl(i) 
 END DO 
 ! if the two offsprings happen to be the same, change the second offspring to a new 
random value 
 END IF 
 

IF (rannum4(1,k)<crossover_rate) THEN 
 ! if crossover is activated (by a given possibility) 
 ! perform BLX-alfa crossover 
 alfa=0.5 ! set the parameter alfa 
 DO i=1,n 
 cmax(i)=max(offspring1(i),offspring2(i)) 
 cmin(i)=min(offspring1(i),offspring2(i)) 
 q(i)=cmax(i)-cmin(i) 
 l(i)=max(cmin(i)-q(i)*alfa,xl(i)) 
 u(i)=min(cmax(i)+q(i)*alfa,xu(i)) 
 offspring1(i)=(u(i)-l(i))*rannum3(1,i,k)+l(i) 
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offspring2(i)=(u(i)-l(i))*rannum3(2,i,k)+l(i) 
 END DO 
 END IF 
 
100 CONTINUE  

 
IF (rannum4(2,k)<mutation_rate) THEN 

 ! if mutation is activated (by a given possiblity) 
 ! perform random mutation 
 offspring1(INT((n-1)*rannum5(1,k)+1))=(xu(INT((n-1)*rannum5(1,k)+1))-xl(INT((n-
1)*rannum5(1,k)+1)))*rannum6(1,k)+xl(INT((n-1)*rannum5(1,k)+1)) 
 offspring2(INT((n-1)*rannum5(2,k)+1))=(xu(INT((n-1)*rannum5(2,k)+1))-xl(INT((n-
1)*rannum5(2,k)+1)))*rannum6(2,k)+xl(INT((n-1)*rannum5(2,k)+1)) 
 END IF 
 
DO j=p-p_elite+2-k,p 

 identity1=0 
 DO i=1,n 
 IF (offspring1(i)==x(i,j)) THEN 
 identity1=identity1+1 
 END IF 
 END DO  
 IF (identity1==n) THEN 
 WRITE (10,*) "find a clone! --1, same as ", j, "th individual" 
 END IF 
 GO TO 131 
 END DO 
 
131 CONTINUE 
 
DO j=p-p_elite+2-k,p 

 identity2=0 
 DO i=1,n 
 IF (offspring2(i)==x(i,j)) THEN 
 identity2=identity2+1 
 END IF 
 END DO  
 IF (identity2==n) THEN 
 WRITE (10,*) "find a clone! --2,same as ", j, "th individual" 
 END IF 
 GO TO 141 
 END DO 
 
141 CONTINUE  
 

IF (identity1==n) THEN 
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DO i=1,n 
 offspring1(i)=(xu(i)-xl(i))*rannum8(i,k)+xl(i) 
 END DO 
 write (10,*) "clone 1 mutated!" 
 END IF 
 IF (identity2==n) THEN 
 DO i=1,n 
 offspring2(i)=(xu(i)-xl(i))*rannum9(i,k)+xl(i) 
 END DO 
 write (10,*) "clone 2 mutated!" 
 END IF 
 
DO i=1,n 

 x(i,k)=offspring1(i) 
 END DO 
 IF (k<p-p_elite) THEN 
 DO i=1,n 
 x(i,k+1)=offspring2(i) 
 END DO 
 k=k+1 
 END IF 
 ! update the current population until all the non-elite (first p-p_elite individuals)  
 ! are replaced by newly produced individuals 
IF (k>=p-p_elite) EXIT  
k=k+1 
END DO 
 
RETURN 
END 
 

!------------------------------------------------------------------------- 
SUBROUTINE feasible_pareto(x,n,p,nf,f,r_conobj,r_fea) 
! this subroutine identify the feasible and Pareto optimal solutions in the population 
 
INTEGER n,p,nf,r_conobj(p),k,r_fea(p) 
REAL x(n,p),f(nf,p),feasible_pareto_x(n,p),feasible_pareto_f(nf,p) 
 
k=0 
DO j=1,p 
 IF (r_conobj(j)==0.and.r_fea(j)==0) THEN  
 k=k+1 
 DO i=1,n 
 feasible_pareto_x(i,k)=x(i,j) 
 END DO 
 DO i=1,nf 
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feasible_pareto_f(i,k)=f(i,j) 
 END DO 
 END IF 
END DO 
! if a solution is feasible and Pareto optimal, send it to the designated set 
 
DO i=1,n 
 WRITE (10,*) "feasible_pareto_x",i,"=" 
 DO j=1,k 
 WRITE (10,*) feasible_pareto_x(i,j) 
 END DO 
END DO 
 
DO i=1,nf 
 WRITE (10,*) "feasible_pareto_f",i,"=" 
 DO j=1,k 
 WRITE (10,*) feasible_pareto_f(i,j) 
 END DO 
END DO 
! output these feasible and Pareto optimal solutions 
RETURN 
END
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