
IMPLEMENTATION OF A FAMILY OF 2-3-4 TREES 

IN THE HYPERCUBE 

By 

ABDULKADER A. J~L-FANTOOKH 

Bachelor of Science in computer Science 

King Saud University 

Riyadh, Saudi Arabia 

1988 

Submitted to the Faculty of 
the Graduate College of the 

Oklahoma State University 
in partial fulfillment of 

the requirements for 
the Degree of 

MASTER OF SCIENCE 
May, 1992 





IMPLEMENTATION OF A FAMILY OF 2-3-4 TREES 

IN THE HYPERCUBE 

Thesis Approved: 

1/ 

D of the Graduate College 

ii 



ACKNOWLEDGEMENT 

I would like to express my utmost thanks to Dr. K. M. 

George, my advisor. I appreciate not only his time spent on 

my thesis but also his encouragement ,and advice throughout 

my graduate study. I would also like to extend my special 

thanks to Dr. D. D. Fisher for his invaluable suggestions 

and comments. A special thanks and appreciations go to Dr. 

K. A. Teague for his suggestions and facilitating the needed 

hardware for me. 

I thank M. Abdulkareem, my friend, for his valuable 

discussions. Last but not least, I would like to thank my 

parents for their love and support. 

iii 



TABLE OF CONTENTS 

Chapter Page 

I. INTRODUCTION 1 

II. MAPPING THE 2-3-4 TREE TO THE HYPERCUBE ...••........ 4 

External Binary Search Tree •....••.•......•... 4 

Ephemeral 2-3-4 Trees . • . . . . . . . . . . . . . . . . . . . . . . . 5 

Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
A Mapping of a 2-3-4 Tree to the 

Hypercube Architecture •.•.••...•.•••..•.•.... 8 
Communication Among Processors ......•••....... 11 

III. OPERATIONS OF THE DISTRIBUTED 2-3-4 TREE •....•.•... 13 

Bottom-Up Updating . . . . . • . . . . . . . . • . . . . • . . . . . . . . 13 
Top-Down Updating . . . . . • • . . . . . • • • . . . . • . . . . . . • . 13 
The Tree Manipulation Operations •..•....•..... 14 

Definitions ••.....•........••. ~ .•..•... 15 
Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 
Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
Deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

Pipelining of the Operations ....•......•.•.... 22 
Performance Analysis .......................... 22 

IV. FINGER DISTRIBUTED 2-3-4 TREE ........•.•......•.... 27 

Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 
Ephemeral Finger Search Tree ..•........•...... 28 
Methods of Implementing Fingers 

in a Single Processor .........•.•....•.••... 28 
Heterogeneous Finger Search Tree ....... 29 
Homogeneous Finger Search Tree ......... 29 
Level-Linked FINGER 2-3 Tree •....••.... 30 
Red-Black Finger Tree •....•.•...•.••... 31 

Methods of Implementing Fingers in 
Distributed Memory System .................•.. 32 

Two-Fingers Implementation ..•...•...•.• 33 
Multi-Finger Implementation ...•.•...... 39 
Safety and Integrity ............•....•. 44 
Finger Initialization ....••••...•..•... 45 
Finger Updating . . . . . . . . . . . . . . . . . . . . . . . . 45 

Performance Analysis .........................• 46 

iv 



Chapter Page 

V. PERSISTENT TREE STRUCTURES ...••.•••.•.......••..... 53 

Methods of Making a Tree 
Structure Persistent ....•••..••............. 53 

Copying the Entire Tree .•.••.•...•..... 53 
Path Copying . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 
Time Stamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 
Limited Node Copying ..••....•.••..•.••. 55 

Persistent Distributed 2-3-4 Tree 
Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 

The Distributed 2-3-4 Tree 
Persistent Operations ....•••.....•.. 56 

Search . . . . . . . . . . . . . . . . . . . . . . . . 58 
Insertion ....•.......••••.•••.• 59 
Deletion . . . . . . . . . . . . . . . . . . . . . . 62 

Persistent Multi-Finger 2-3-4 Tree •.•......... 64 
Performance Analysis • • . . . . . . . . . • • • • . . . • • . . . . . . 67 

VI. CONCLUSION ............•....••••.•.....•....•....•. 69 

REFERENCES • • • • • • • • • • • . • . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 71 

APPENDIXES 

APPENDIX A - HOST AND NODE PROGRAM GENERAL 
ALGORITHMS . • • • • • • . • • • • . • • • • • • • • • • • • • 7 5 

APPENDIX B- CAREY AND THOMPSON ALGORITHM •..••.•• 79 

APPENDIX C- SOURCE CODE FOR THE HOST PROGRAM .•.. 83 

APPENDIX D- SOURCE CODE OF THE NODES' PROGRAM ... 101 

v 



LIST OF TABLES 

Table Page 

1. Theoretical and Empirical times for Three 
Cases of Insertion Operation Using 4 Processors. 25 

2. The Average Elapsed Time For Search Through 
Fingers Versus From the Root with P = 32 ••••••• 48 

3. The Average Elapsed Time For Search Through 
Fingers Versus From the Root with P = 16 .•••.•• 48 

4. The Average Elapsed Time For Search Through 
Fingers Versus From the Root with P = 8 ......•. 48 

5. The Average Elapsed Time For Insertion through 
Fingers Versus From the Root with P = 32 .•••••• 49 

6. The Average Elapsed Time For Search Through 
Fingers Versus From the Root with P = 16 ..•.••• 49 

7. The Average Elapsed Time For Insertion Through 
Fingers Versus From the Root with P = 8 .......• 50 

8. The Average Elapsed Time For Deletion Through 
Fingers Versus From the Root with P = ~2 ..•..•. 50 

9. The Average Elapsed Time For Deletion Through 
Fingers Versus From the Root with P = 16 ..••••. 51 

10. The Average Elapsed Time For Deletion Through 
Fingers Versus From the Root with P = 8 •••••••• 51 

vi 



LIST OF FIGURES 

Figure Page 

1. Level to Processor Mapping of the 2-3-4 Tree 
to the Hypercube Architecture ....................• 9 

2. Level to Processor Wrap Around Mapping of the 
2-3-4 Tree to the Hypercube Architecture .....•••• 10 

3. Three Dimensional Hypercube •...................••••• 12 

4. Insertion Transformation .........................•.. 18 

5. Deletion Transformation I ........................•.. 20 

6. Deletion Transformation II ....................•••••• 21 

7. Theoretical Result Against Empirical Result .....•... 25 

8. Heterogeneous Finger Search Tree ...............•••.. 29 

9. Homogeneous Finger Search Tree ...................... 30 

10. Level-Linked 2-3 Finger Tree ...................•••.• 31 

11. Red-Black Finger Tree •••.•..•.....................•. 32 

12. Two-Finger Distributed 2-3-4 Tree .............•..... 35 

13. Multi-Finger Distributed 2-3-4 Tree ............••••• 40 

14. Insertion Example Through Multi-Fingers .........•.•• 42 

15. 2-3-4 Tree Update Operations ......................•. 58 

16. Insertion Persistent Transformation I ........••••••• 61 

17. Insertion Persistent Transformation II .......••.••.. 62 

18. Deletion Persistent Transformation ...............••• 64 

19. Persistent Multi-Finger 2-3-4 Tree .................. 68 

vii 



CHAPTER I 

INTRODUCTION 

Currently there are several proposed and actual 

parallel computers with a number of different architectures. 

Traditionally, data structures and algorithms assume single 

processor machines that facilitate sequential programming. 

The availability of parallel computers makes 1t possible to 

implement divide and conquer approaches and reduces the time 

complexity of algorithms. Much work has already been done 

in parallelizing algorithms. But mapp1ng of data structures 

to multiprocessor architectures, especially distributed 

processors, has only received limited attent1on. The 

problem needs to be addressed because more and more 

massively parallel distributed machines are being marketed 

and they do not have the problems of shared memory 

architectures such as memory contention and bottleneck. 

The overall objective of this research is to explore 

techniques for mapping data structures and algorithms onto a 

parallel processing architecture. However, the scope of 

this work is limited to the implementation of various forms 

of 2-3-4 trees on the iPSC/2 hypercube arch1tecture. In 

Chapter II, basic definitions of the external b1nary search 

tree and the 2-3-4 tree will be given. Then we will discuss 

different ways of mapping data structures to multiprocessor 

1 



2 

systems. Our method of distributing the 2-3-4 tree nodes 

among the hypercube processors is also presented in Chapter 

II. In Chapter III, we discuss top-down updating and we 

explain the distributed 2-3-4 tree operations. Also, some 

required transformations to achieve top-down updating are 

described. Usually a tree structure is traversed starting 

from the root node. Intuitively, if we initiate more than 

one process to traverse different nodes of the tree in 

parallel, we can as a result obtain shorter traverse time. 

Such methods can be associated with finger search trees. 

Fingers serve as starting points for an operat1on. In 

Chapter IV, we present two approaches of making fingers in 

distributed 2-3-4 trees. The number of fingers used may 

vary. While the two fingers method is better than the 

conventional method of traversing in some appl1cations, the 

multi-fingers method is the best in all cases. Theoretical 

and empirical results are presented to show the efficiency 

of the multi-finger approach. 

Ordinary data structures are ephemeral which do not 

maintain the old structures at update operations. In some 

applications, we need to maintain multiple vers1ons of the 

structure. Some examples of this kind of applications are 

text and file editing, and computational geometry [21]. In 

Chapter V, we discuss several methods of making a structure 

persistent. A method of making distributed 2-3-4 trees 

persistent along with the time and space eff1ciencies is 

also given. According to the hypercube term1nologies, 

processors are called nodes, but because we are dealing with 



3 

tree structures, we will use throughout this thesis the word 

'node' to refer to the tree node and 'processor' to refer to 

the hypercube node. 



CHAPTER II 

MAPPING 2-3-4 TREES TO 

HYPERCUBE ARCHITECTURE 

There are several techniques to store large data 

structures in the main memory of a parallel computer, [3, 4, 

6, 8, 17, 26]. This thesis is concerned w1th search trees 

and their mappings to distributed memory mach1nes. The 

specific search tree in this thesis is a 2-3-4 tree. Before 

discussing the different mapping approaches, it is important 

to provide the definitions for the external b1nary search 

tree and the 2-3-4 tree. 

External Binary Search Tree 

An external binary search tree [16] is a tree structure that 

can be used to represent a subset of data items selected 

from a totally ordered set of data items. It is a binary 

tree containing the items of the set in its external nodes, 

one item per an external node. The items are arranged in 

ascending order from left to right in the tree. Each 

internal node contains a unique item, called a key which is 

used to discriminate the data items, such that all keys in 

the left subtree of the node are less than or equal to the 

key at the root; and all keys in the r1ght subtree are 

4 



5 

greater than the key at the root. An item in the tree can 

be accessed in time proportional to the depth of the tree by 

starting at the root and searching down along the search 

path. At an internal node, the key is compared w1th the key 

of desired item to decide whether to branch to the left or 

to the right. If the key of the search item 1s less than or 

equal to the key, a branch is taken to the left child~ 

otherwise, the branch is to the right child. When an 

external node is reached, either this node conta1ns the 

desired item or it is not in the set. 

Ephemeral 2-3-4 Trees 

Uniform height trees are those trees that guarantee a 

maximum length search path from the root node to any leaf 

node. All paths starting at an internal node and ending at 

an external node have the same length. A 2-3-4 tree is a 

uniform height external search tree where two, three, or 

four pointers and one, two, or three search keys, 

respectively, appear in internal (index) nodes, and all data 

items appear in external (leaf) nodes. A 2-3-4 tree is a 

special case of the B-tree. B-trees that have less 

constraints are called (a,b)-trees. Our 2-3-4 tree is an 

(a,b)-tree with a equal to 2 and b is equal to 4. Some 

researchers also call it a 2-4 tree. 

Previous Work 

In this section we will discuss several schemes 

available in the literature for maintaining a balanced 



6 

search tree in multiprocessor systems. Much of the work in 

parallel data structures has been targeted to shared memory 

multiprocessor systems. This can be attributed to their 

earlier development and availability. In shared memory 

architectures, the data structure is held ~n a global 

memory. Each processor can access that global memory in 

0(1) time. 

Ellis[lO] proposed an algorithm for allowing concurrent 

search and insertion in AVL search trees. A locking 

protocol has been designed to ensure consistency of the 

structure. 

Dekel[7] implemented algorithms which can be applied to 

fixed size of K processors, K<N, where N is the number of 

nodes in the tree. His algorithms have complexity of 

O(N/K). To search for a specific element in an ordered set 

of N elements, O(log2K) time is needed to transmit the key 

being searche? to the K processors, and the search can be 

conducted in logkN parallel steps. After each step, the 

search location for the 'search step is transm~tted among the 

processors. Each search step will require O(log2K) 

communication overhead. Thus the overall time complexity of 

a search is (log2K)*(logkN) = O(log2N). 

In this thesis, we will restrict our attention to the 

distributed memory systems, where the data structures are 

partitioned among the local memories of the processors. 

O'Gorman[l7] presents a way of distributing the binary tree 

nodes among processors in an array. In h~s method each 

element is mapped onto a processing element. He deals with 



7 

array processors, so the position of the P.E. 1n the array, 

determines the position of the element in the tree. The 

children and the parent of each node can be known easily. 

The children of element N are given by 2N and 2N+1, and the 

parent is the integer N/2. In this mapping, changing the 

tree size is difficult because it requires a rearrangement 

of the keys, and the use of the processing elements is 

inefficient. O(N) processors is needed, where N is the 

number of the elements of the tree. This scheme can handle 

a large variety of search operations, includ1ng "partial 

match" queries. 

Another scheme was proposed by Fisher[11]. He 

developed an architecture based on the Trie structure. In 

his design, the number of processors is proport1onal to the 

length of the maximum key. 

Carey and Thompson[3] proposed a pipeline architecture 

and implement a 2-3-4 search tree of N nodes 1n a linear 

array of log2N + 1 processing elements. Each processor 

holds a level of the tree structure in a local memory and 

the last processor, P[logN+1], stores the actual data items. 

The scheme allows insertions, deletions, exact-match 

searches, and range queries. Each operation completes after 

O(log2N) delay and as many as (log2N + 1]/2 operations may 

be at varying stages of execution. Their algor1thm is given 

in Appendix B. In their design, when the number of tree 

elements becomes larger than N, the algorithm cannot be 

used. 

In the next section, a method to map 2-3-4 trees to the 



hypercube architecture is outlined. 

A Mapping of a 2-3-4 Tree to 

the Hypercube Architecture 

8 

In our mapping of the 2-3-4 tree onto the hypercube, 

we have followed the work of Carey and Thompson[3] in their 

mapping of the tree to an array-processor. Every level of 

the tree is stored in one processor of the hypercube. A 2-

3-4 tree of N nodes has at most log2N + 1 levels, so we have 

to have at least log2N+l working processors to accommodate 

the N nodes. For example, the root of the tree is located 

in the first processor. If a node, say p, 1s located in 

processor i, then its children, if it has any, are located 

in processor i+l. The last level of the 2-3-4 tree will 

only consist of external nodes. Therefore, all external 

nodes are stored in one processor. Processor 1 contains 

internal nodes, when i is less than log2N+l. Processor i 

contains external nodes, when i is equal to log2N+l. The 

external nodes are fixed in the leaf processor, and the 2-3-

4 tree grows up in case of split. The ith processor stores 

a maximum of 41" 1 nodes and a minimum of 21- 1 nodes in its 

local memory. Figure 1 represents a mapping of a 2-3-4 tree 

to the hypercube. 



0 

1 

3 

-
lgN+1 0 00 -- 0 0 0 

Leaf 
processor 

Figure 1. Level to processor mapping of the 2-3-4 tree 

to the hypercube architecture. 

Although this mapping is considered an efficient one, 

it has a major drawback. When the number of the tree nodes 

becomes larger than N, where log2N+l is the number of 

processors, this mapping cannot work. When the current 

processor splits a node into two new nodes, their parent 

will be stored 1n the predecessor processor. But when the 

current processor is the root processor, the parent of the 

newly created node cannot be stored. So the algorithm 

fails. In order to overcome this problem, the mapping may 

wrap around the processors, i.e. when the root processor 

9 

needs to split a node into two new nodes, the new root will 

be stored in the leaf processor. Therefore, the levels of 

the 2-3-4 tree w1ll be wrapped around the processors. If a 

node is stored in the current processor {CURR-PROC), its 



10 

parent is stored in processor ( CURR-PROC + P) MOD (P+1), 

and its children are stored in processor (CURR-PROC + 1) MOD 

(P+1), where Pis the number of working processors. 

Figure 2 illustrates the wrap around mapping of a 2-3-4 

tree to the processors of the hypercube. In Figure 2, the 2-

3-4 tree in (a) is mapped to the 3 hypercube processors in 

(b). After the split, the root node is stored in processors 

P2. In this method, the nodes of the tree are distributed 

symmetrically among the processors. 

(11) f!t. 2-:J-.!1 trc:e w1th .flevch 

HOST 

(b) The root of the tree 1s 1hc node w1th the key 5 which is stored 
m proc~s-sor p2. The roo1 is po1ntmg 1o l and 8 

Figure 2. (a) The original 2-3-4 tree. (b) After 

wrap around mapping of the tree to 3 processors 

hypercube. 



11 

Communication Among Processors 

Besides the processors' communication w1th the host, 

all other events of communication are only between 

neighbors. So processor i communicates only with processor 

i-1 and processor i+1. However, sending a message from 

processor i to processor i+1 might cause more than one hop 

because it is not guaranteed that processor 1 and processor 

i+1 are neighbors. If the mapping of the 2-3-4 tree levels 

to the hypercube processors in the way that level one of the 

tree is stored in processor one and level two is stored in 

processor two, etc, which results in a less than optimum 

assignment for communication among neighbors. The nodes of 

the hypercube are assigned unique addresses as shown in 

Figure 3. The addresses of any two nearest ne1ghboring 

processors differ in one bit position. The communication 

channel number between two processors is determ1ned by 

taking the exclusive-or of the two processors' addresses. 

In order to achieve maximum communication speed between 

processors, neighbors are selected according to the gray 

code sequence: o, 1, 3, 2, 6, 7, 5, 4, etc. In this scheme, 

the communication between two levels takes only one hop. 

Our algorithms for insertion and deletion operations 

are based upon the top-down node-splitt1ngjmerg1ng scheme 

presented by Guibas and Sedgewick[12]. In this scheme, the 

rebalancing transformations are applied on the way down the 

tree during an update operation. Thus, when an insertion 

search encounters an external node, the key being inserted 



12 

can be attached right there, and the operation is complete. 

111 

000 

Figure 3. Three Dimensional Hypercube 

This scheme of mapping a tree to the hypercube 

architecture is suitable for most tree types although it is 

presented here to the 2-3-4 tree. However, the balanced 

trees that involve rotation transformations are excluded 

because for making a rotation of the nodes, the nodes in the 

subtrees of the rotated nodes need to be transferred from 

one processor to another. For example, a single rotation of 

a red-black tree with n keys, costs O(n). 

In the next Chapter, the different updating schemes for 

a 2-3-4 tree and the different tree manipulation operations 

are described. 



CHAPTER III 

OPERATIONS OF THE DISTRIBUTED 2-3-4 TREE 

We call a 2-3-4 tree with nodes distributed among 

several processors, a distributed 2-3-4 tree. The 

definitions of the external binary search tree and the 2-3-4 

tree are as given in the Chapter II. 

Before discussing the tree operat1ons, in detail, brief 

descriptions of the bottom-up and the top-down updating 

methods are provided. 

Bottom-up Updating 

In the 2-3-4 tree bottom-up updat1ng, we start from 

the root and go down along the access path. When we reach 

the desired node or location, we perform the operation and 

go back up from that location to the root making the 

necessary transformations to maintain the structure. 

Top-down Updating 

The 2-3-4 tree top-down updating proceeds from the root 

down along the access path, maintaining the invariant that 

the current internal node has less than four children in the 

case of insertion and has more than two children in the case 

of deletion. The invariant is maintained by means of the 

transformations described in the following sections. When 

13 



14 

we reach the desired node or location, the update operation 

is performed without propagating the transformations upward 

along the access path. When the operation is complete, the 

path need not be traversed back. 

In this thesis, we follow the work of Guibas and 

Sedgewick[l2] and the work of Tarjan[23] in their top-down 

updating. The top-down approach is more preferable than the 

bottom-up one because of the following advantages associated 

to the top-down approach: 

updating is done in a single pass; 

- there is no need for parent pointers or a stack to 

store the access path nodes; 

- concurrent operations are applicable and efficient 

because there is no need to lock the entire access 

path. 

The Tree Manipulation Operations 

In this section, we define"the various distributed 2-3-

4 tree manipulation operations as performed in the 

Hypercube. While each processor stores one level of the 

tree in its local memory, the host keeps the address of the 

root node of the tree, which is stored in the root 

processor. Although, the scheme is presented for 2-3-4 

trees, it can be generalized for any 2P" 2 - 2P tree, where 

the integer p>= 3 [6]. When we increase p, the storage 

requirement will also increase; in contrast, the required 

number of processors will be less. 



Definitions 

Working processors are the processors of a multiprocessor 

architecture that have been selected to participate in the 

execution of the program. 

The working processors are classified as follows: 

• index processors which store internal index nodes; 

. leaf predecessor processor which stores the lowest 

level of index nodes; and 

• leaf processor which stores the data nodes. 

There is one leaf processor and one leaf predecessor 

processor. All working processors are linearly ordered by 

level numbers. 

Current Processor 1s the processor that receives a message 

of an operation. 

15 

Node Structure: Each node in the 2-3-4 tree has space for 

three keys and four pointers. The structure of a node 

follows. 

kl k2 1 k3 

pl p2 p3 1 p4 

kl, k2, and k3 are the three keys of the node, and pl, p2, 

p3, and p4 are the addresses of children of this node. The 

physical addresses of the children are 1n the successor 

processor. 

Search 

The search operation for the distributed 2-3-4 tree is 



16 

initiated by the host. The host sends a SEARCH(p, k) 

message to the root processor carrying p and k, the address 

of the root node and the key being searched respectively. 

When the root processor receives the SEARCH(p, k) message, 

it compares k with the keys in the index node whose address 

is given by p and then decides which pointer to follow. 

After selecting a pointer q, the current processor, if it is 

not the leaf processor, sends a SEARCH(q, k) message 

recursively to the successor processor carrying q and k. 

When the leaf processor receives the SEARCH(p, k) 

message, it checks the pointer p. If it points to a data 

node contain1ng the key k, then the desired key is found, 

but if the pointer p is NULL or points to a key not equal to 

k, the desired key is not found. As the last step, the leaf 

processor sends the result to the host directly. 

Insertion 

The insertion operation for the 2-3-4 tree is a 

parallel version of the top-down node-splitting insertion 

algorithm given by Guibas and Sedgewick[12]. The host sends 

an INSERT(p, k) message to the root processor carrying the 

address of the 1ndex node, p, and the key value, k, to be 

added. To simplify the presentation, p will be used to 

designate "the node pointed by p" hereafter. The root 

processor, or in general the current processor i which 

receives INSERT(p, k) message from its predecessor i-1, 

works according to one of the following three cases. 



CASE I: Current Processor is an 

Index Processor: 

17 

The current processor i, which received the INSERT(p, 

k) message from its predecessor, compares the given k with 

the index keys in the node p and selects the appropriate 

pointer p' from the node p. The pointer p' provides the 

access to the next node on the access path. If k is less 

than or equal to the first key in the node, then processor i 

selects the first pointer as p' and so on. Before processor 

i sends INSERT(p', k) message to i~s successor, it sends 

INSERT-TRANSFORM(p',k) message to its successor to perform 

insertion transformation if applicable. When the successor 

processor of i receives this message, it performs the 

insertion transformation if it is full, having four 

pointers. The insertion transformation as shown in Figure 4 

is to split the full node into two new nodes each having one 

key and two pointers • Actually, this transformation does 

not create two nodes besides the old one. Instead, it 

creates one more node, transfers two pointers to the new 

node with one key, and promotes the middle key. After 

performing the transformation if it is applicable, the 

successor processor sends a reply to the current processor 

with its old middle key. The current processor will update 

its current index node. The insertion transformation is 

applied to ensure that future node spl1tting will not 

propagate upwards in the direction of the root of the tree. 

Now, the current processor i uses the key k to select the 



appropriate path as pointed to by p'. Then it sends 

INSERT(p', k) message with k and p' to the successor 

processor. 

Figure 4. Insertion Transformation. 

18 

The node with four successors is split into two 

nodes each with two successors, and the middle key 

is promoted to the predecessor node. 

CASE II; current Processor is 

a Leaf-Predecessor Processor; 

The processor compares the given key k with the index 

keys in its local memory and selects the appropriate pointer 

p'. Then, it sends an INSERT(p', k) message with p' and k 

to the leaf processor. If the key does not exist, the leaf 

processor inserts the key and sends a reply message to its 

predecessor containing the address of the newly inserted 

node p": otherwise, it sends a null indicating that k is a 

duplicate key. The current processor inserts the incoming 

address p" into its current index node. 



CASE III: Current Processor is 

a Leaf Processor: 

19 

If the incoming key k does not exist in the given 

address p then a new data node p' is created and the new key 

k is inserted in node p'. The address of p' is sent to its 

predecessor, and a 'success' message is sent to the host. 

But if the coming key k is a duplicate then a null pointer 

is sent to its predecessor, and a 'fail' message is sent to 

the host. 

Deletion 

The deletion operation for the 2-3-4 tree is a parallel 

version of the top-down deletion algorithm of Guibas and 

Sedgewick[12]. When the host sends a DELETE(p, k) message 

to the root processor carrying the address of the index 

node, p, and the key value, k, to be deleted, the root 

processor or in general the current processor i which 

receives the DELETE(p, k) message from its predecessor i-1, 

works according to one the following three cases. 

CASE I: Current Processor is 

an Index Processor: 

The current processor i compares the given key k with 

the index keys of the node p and selects the appropriate 

pointer p' on the access path. If k is less than or equal 

to the first key in the node, then processor i selects the 

first pointer as p' and so on. Before processor i sends a 



20 

DELETE(p', k) message to its successor, it sends a DELETE­

TRANSFORM(s,p',p") message to its successor to perform a 

deletion transformation if applicable, where p" is the 

adjacent pointer for p', and sis the splitting key of p' 

and p". When the successor processor of processor i 

receives this message, it performs a deletion transformation 

if it has only two pointers. When the node has only two 

pointers and if its adjacent node has two pointers, they are 

merged as shown in Figure 5. The merging process is done by 

adding the information portion of the second node p" to the 

first one p', and then freeing the second node. But if its 

adjacent node p" has three or four pointers, then one of 

them is moved to p' as in Figure 6. After performing the 

transformation if it is applicable, the successor processor 

sends a reply to the current processor with the new 

information. 

index node. 

The current processor updates its current 

The deletion transformation is applied to 

ensure that future node merging will not propagate. 

Now, the current processor i uses the key k to select 

the appropriate path p' as we explained above. Then it 

sends DELETE(p', k) message to the successor processor. 

Figure 5. Deletion Transformation I 



Figure 6. Deletion Transformation II 

CASE II: Current Processor is 

a Leaf-Predecessor Processor: 

21 

The current node i compares the given key k with the 

index keys and selects the appropriate po1nter p 1 • If k is 

less than or equal to the first key in the node, then 

processor i selects the first pointer as p' and so on. It 

sends a DELETE(p', k) message to the leaf processor. The 

leaf processor attempts to delete the key and send as a 

reply a message to its predecessor indicating the status of 

the operation (either fail or success.) The current 

processor deletes the pointer p' from its current index 

node if the delete operation succeeds. 

CASE III: Current Processor is 

a Leaf Processor: 

The leaf processor checks if the key k exists in the 

given address p. If the key exists, then node p is deleted 

and a •no error• message is sent to its predecessor. Also, 

a •success• message is sent to the host. If the k does not 



exist or p is NULL, then an 'error' message is sent to its 

predecessor, and a 'fail' message is sent to the host. 

Pipelining the Operations 

22 

The tree operation pipelining was proposed by Carey and 

Thompson[3]. Our implementation of the top-down updating 

allows operations' pipelining. In order to enable 

pipelined operations, the current processor blocks the 

incoming SEARCH, INSERT, and DELETE messages from its 

predecessor processor until it finishes the required 

transformation with its successor processor. This blocking 

is to ensure the correctness of the operations. 

Performance Analysis 

In the distributed 2-3-4 tree, the tree traversal cost 

mainly depends on how many levels need to be traversed. A 

tree of N elements, has as maximum log2N levels stored in 

log2N processors. A distributed 2-3-4 tree operations start 

from the root, so the search, insertion, and deletion 

operations cost O(log2N) time. 

As we discussed in the previous section, our scheme of 

top-down updating of the distributed 2-3-4 tree supports 

pipelining the operations. The top-down updat1ng is done in 

a single pass, so a processor finishes its task in a current 

operation when it passes the operation to its successor. 

The processors do not respond to another updating operation 

until they finish their communication with their successors 

and pass the operation to their successors. As a result, 



23 

every two processors are working exclusively in a single 

stage of an operation. Therefore, the number of pipelined 

operations is half of the number of working processors. We 

can achieve p/2 level of concurrence, where p is the number 

of processors. Thus, an operation on a distributed 2-3-4 

tree completes after every 2 time units if we allow O(log2N) 

concurrence on all operations, where N is the number of keys 

in the tree. 

The space required for each node of the distributed 2-

3-4 tree is {3*sk + 4*sp) words of a processor storage, 

where sk is the size of a key and sp is the size of a 

pointer. As described in Chapter II, every level of the 

2-3-4 tree is mapped to a processor. So that the root of 

the tree is mapped to the processor PR which needs to store 

only one node of the tree, while processor PR+1 needs to 

store from 2 nodes to 4 nodes. In general processor PR+l 

stores as maximum as 41" 1 nodes. 

In order to estimate the complexity of the various 

operations, the elapsed time is used. The root processor 

keeps track of elapsed time for all operations. As an 

illustration of the performance of the mapping, theoretical 

and empirical times were computed and compared for three 

cases: 

Case 1: Insertion before the smallest key. 

Case 2: Insertion after the largest key. 

Case 3: Insertion with one application of the insertion 

transformation. 

The theoretical time is computed according to the published 



24 

performance of the 386 iPSC/2 hypercube processors release 

3.3. 356 micro-seconds (~s) is the given time for sending a 

64 bytes message with one hop latency, and 375 ~s is the 

given time for sending a 100 bytes message with one hop 

latency. The message size in the cases listed above is 40 

bytes. So we have to calculate the slope to get the sending 

time "t" for a message of 40 bytes. 

375 - 356 

100 - 64 

0.53 

= 

= 

So, t = 343.2 ~s. 

375 - t 

100 - 40 

375 - t 

60 

For an update operation similar to the above three cases, 

three messages to propagate the operation, five messages to 

perform the required transactions, and two messages to 

calculate the time are needed when working in four hypercube 

processors. So the processors need to send a total of 10 

messages. Therefore the total time for sending 10 messages 

is 3432 ~s. The communication overhead is 3.43 ms. The 

time for computation is 1.2 ms, 2.4 ms, and 2.67 ms for case 

1, case 2, and case 3 respectively. The timings are 

summarized in Table 1. 



TABLE 1 

THEORETICAL AND EMPIRICAL TIMES FOR THREE 
CASES OF INSERTION OPERATION 

USING 4 PROCESSORS 

I N S E R T 

Insert Theoretical Empirical 
mse mse 

Case 1 4.63 5 
Case 2 5.83 6 
Case 3 6.10 7 

In Figure 7 a comparison between the two timings is 

presented. 

7~--------------------------------------~.-----~ 

6.6 

I 
E 

6 

c 
G) 

~ 5.5 

5 

4.s~------.----------------.----------------.-----~ 
Case1 Case2 

Operation Type 
Case3 

1-- Theoretical time --+-.Empirical time 

Figure 7. Theoretical result against Empirical result. 

25 



26 

It can be noticed that there is a difference between 

the theoretical result and the empirical one. One of the 

reasons for that difference is that the operating system 

running on the processors is involved in many tasks, so 

extra overhead increases the empirical time. Another reason 

is that when the iPSC/2 Direct-Connect Module (DCM) channels 

receive more than one message for one processor, the 

messages is delayed. A third reason relates to the 

calculation of the theoretical time. Maybe the calculation 

of the theoretical time was not so efficient to correspond 

exactly to the empirical one. 

The operations outlined in this Chapter assume that 

transactions always start at the root of the tree. As 

mentioned earlier, if transactions start at nodes other than 

the root, depending on the tree, transaction processing time 

can be reduced. In the next Chapter, one such method is 

addressed. The idea is to start transactions at nodes 

pointed by "fingers". This allows searches to proceed in 

parallel. 



CHAPTER IV 

FINGER DISTRIBUTED 2-3-4 TREES 

Definition 

We have seen in Chapter II how access in search trees 

usually begins at the point we called the root of the tree. 

This approach usually leads to efficient algorithms. But 

sometimes, due to the peculiarities of applications, we may 

want to start the search at external or leaf nodes. A 

"finger" into a tree is a pointer to an element of the tree. 

Fingers are usually used to indicate points of high activity 

in the tree and are used to minimize the cost due to such 

activity localized around the finger. 

A finger search tree supports the following operations 

(20], among others: 

1 - access(x,t,f) : find the node ( if it exists ) whose 

key value is x in tree t starting the search from the 

finger f; 

2 - insert(x,t,f) insert a node with key value x into 

tree t starting the search from the finger f; 

3 - delete(x,t,f) delete the node whose key value is x 

from the tree t starting the search from the finger t. 

27 



28 

Ephemeral Finger Search Trees 

An ephemeral finger search tree is a data structure 

that allows efficient execution of the three operations 

insertion, deletion, and access described in the previous 

section. The finger search trees discussed here contain 

only two fingers. As observed by Kosaraju[15], the number 

of fingers in the tree can be increased as needed. But two 

fingers are sufficient to minimize the time for the type of 

operations that commonly occur. 

In some algorithms, an explicit reference to a finger 

could be used as in the above description of operations, but 

this usually is not done. Instead, the algorithm should be 

optimized to use the finger that performs better [20]. In 

binary search tree algorithms, it is usual to have the two 

fingers pointing to the minimum and maximum elements of the 

tree. The time complexity that one would like to achieve is 

O(log2d), where dis defined as the minimum linear distance 

between any finger and the desired node. 

Methods of Implementing Fingers in 

a Single Processor 

There are four methods available in the literature for 

implementing the finger search tree, [24,2,20]. They are 

presented in the following subsections. 



29 

Heterogeneous Finger Search Tree 

This method is presented by Tarjan[24]. In an ordinary 

binary search tree, each node points to its two children. 

Tarjan converted such a tree into a heterogeneous finger 

search tree by making each node along the left path point 

to its parent instead of its left child, and each node 

along the right path point to its parent instead of its 

right child. Access to the tree is by two fingers 

pointing to the leftmost and rightmost external nodes. 

Tarjan obtained 0(1 + log( min{d,n-d} + 1) ) time complexity 

for an n-item heterogeneous search tree, and he obtained 

0(1 + log(min{d,n-d}+1) ) amortized time for insertion or 

deletion of an item d positions from either end. Tarjan 

used a red black tree as a basis for his work. The 

structure of the heterogeneous finger search tree is shown 

in Figure 8. 

Figure 8. Heterogeneous Finger Search Tree 

Homogeneous Finger Search Tree 

Tarjan[24] also presented another method of 



30 

implementing a finger search tree. Each node in the tree 

points to its two children and to its parent. Each black 

node also points to its left and right neighbors. The 

structure of the homogeneous finger search tree is shown in 

Figure 9. The level links support searching for a given key 

starting from an arbitrary node in the tree. The 

performance of search was shown to be O(l+log(min{d,n-d}+l) 

time, where d is the number of keys between the two given 

keys, and n is the number of the keys in the tree. 

Figure 9. Homogeneous finger search tree 

Level-Linked 2-3 Finger Tree 

Brown [2] implemented a finger search tree using two 

fingers pointing to the internal terminal nodes of the tree. 

His tree's fingers do not point to external nodes because in 

his tree structure there is no upward link from the external 

nodes. He used a level-linked 2-3 tree in which the 

internal nodes are traversable upwards as well as downwards, 

and the internal nodes are linked horizontally. Brown 



31 

obtained an O(log2d) time to search for a key which is d 

keys away from a finger; and 0(1+s) steps for inserting a 

new external node, where s is the number of node splitting 

caused by the insertion. The structure of the level linked 

2-3 finger tree is shown in Figure 10. The arrows point to 

the fingers. 

Figure 10. Level-Linked 2-3 Finger Tree 

Red-Black Finger Tree 

Sarnak [20] presented a complicated but efficient and 

interesting method. His method basically maintains a binary 

search tree with two fingers pointing to the extremes of the 

list order. The two ribs, which are the left most and right 

most access paths of the tree, do not have the same 

constraints imposed upon them as the rest of the tree. A 

balanced binary tree hangs from each node of these ribs, 

while the entire tree may not be considered balanced because 

of imbalances in the ribs. Each update to the tree starts 

at the bottom of a rib, and while moving up the rib, 

performs whatever rebalancing is necessary to ensure the 

logarithmic access time. The structure of the red-black 



finger tree is shown in Figure 11. 

finger 

Figure 11. Red-Black Finger Tree 

Methods of Implementing Fingers in 

a Distributed Memory system 

32 

To my knowledge, there is no work reported in the open 

literature about fingers on a multiprocessor environment. 

If we want to implement a finger search tree on a shared 

memory system, we do not have to make major changes to the 

finger implementations described in the previous section 

because the complete structure can be stored in a shared 

memory. However, to implement the finger search tree on a 

distributed memory system, new algorithms should be 

developed to suit the nature of the distributed memory 

system. In this thesis, we are concerned with the 

implementation of 2-3-4 finger trees in an iPSC/2 

environment. Several implementation schemes are developed. 



To facilitate the description of the new methods, we 

need the following definitions. 

1. Tree ribs are the left most and right most paths of the 

tree starting from the root and ending at the external 

nodes. 

2. A Subtending-node ( Turning-node) is a node which is 

located on one of the ribs of the tree, and it should be a 

predecessor for the desired key. 

33 

3. Safe-nodes are the nodes that have less than four 

pointers in the case of insertion and except possibly for 

the root, more than two pointers in the case of deletion. 

4. Busy-Processors are the processors that are currently 

searching for the desired key or location. They ignore any 

message carrying commands coming from their predecessors 

because they have already started the search themselves and 

they complete their searches before their predecessors. In 

the following sections, various implementation scheme are 

discussed. 

Two Fingers Implementation 

In our implementation of the distributed 2-3-4 tree, 

the host maintains the address of the root node of the tree 

as in Chapter II. To perform any operation, the host 

directs the requested operation to the root processor to 

start the operation. 

In order to develop a distributed 2-3-4 finger tree, 

the distributed 2-3-4 tree implementation must be modified. 

Fingers are added and adapted to the distributed memory 



34 

system. In the new scheme, the host maintains a data 

structure which contains the two fingers and the processor's 

"id" which has the finger nodes. The structure of the host 

header is the following: 

LEFT FINGER ROOT RIGHT FINGER 

ADR I PROC ADR I PROC ADR I PROC 

we define our two fingers, left and right, to point to 

the smallest key and the largest key nodes in the leaf 

predecessor processor respectively. The left and right 

fingers always reside in the leaf-predecessor processor. 

This is one of the invariant of the implementation schemes, 

i.e. the rebalancing operations guarantee that the fingers 

reside in the leaf-predecessor processor. If we insert a 

key with a smaller value than the left finger, the left 

finger will be updated to point to the node storing the new 

inserted key. On the other hand, if we insert a key with a 

larger value than the right finger, then the right finger 

will be updated to point to the node storing the new key. 

Figure 12 shows a representation of a two-fingers 

distributed 2-3-4 tree. 



PO 

Pl 

P2 

. . . . . 
F1 

! 

35 

. . . . . 
F2 

l 
P(lyN] A 
PJiqN)+l •• !\.: 

. . . 

:~.t. • • I I 

e : INDEX NODE 
• : EXTERNAL NODE 

Figure 12. Two-Finger distributed 2-3-4 tree 

Usually in performing top-down operations on the 2-3-4 

tree, insertion for example, we start from the root. If the 

root is full (having four pointers,) we split the root into 

two nodes having one parent, which is the new root. This 

process increases the height of the tree by one more level. 

Suppose that we want to start from a non-root node, for 

example a finger node. If the starting node is full, having 

four pointers, a split might propagate to the upper levels 

contradicting the main idea of the top-down algorithm which 

is not to propagate splitting upwards followed by an 

insertion. The same thing is going to happen if we are 

performing deletion operation. If the start node has only 

two pointers, a merge in this case is needed. That causes 

upwardly propagated merging which should not happen in a 



36 

top-down algorithm. 

The above discussion leads to the following proposition 

( for trees with two fingers as defined earlier:) 

PROPOSITION 1 

In a top-down algorithm, the starting node other than 

the root must subtend the desired key and should be a safe 

node. 

Proof. 

By the definition of subtending node, it is obvious 

that the desired key can be reached only by a traversal path 

which includes the subtending node. Therefore, the search 

can be initiated only at a subtending node. 

If we start from an unsafe node, it might involve an 

upwardly propagating merge or split which contradicts the 

principle of the top-down updating, so we have to start from 

a safe node. 

In order to make the two fingers work concurrently, 

all the processors at the cube initialization will create a 

new process, meaning that each processor has two working 

processes, a parent process and a child one. In each 

processor, both processes wait for a finger search. The 

parent process may perform other tasks besides the finger 

search, while the child process is restricted to help in the 

search process. 

Before explaining the technique of implementing two 

fingers to the distributed 2-3-4 tree, it is necessary to 

define the FINGER-ACCESS{F, k) message. 



FINGER-ACCESS( F, k ): FINGER-ACCESS is a message where F 

is a finger and k is the desired key. This message can be 

sent from host to the leaf-predecessor processor or from a 

processor to its predecessor. At the beginning, this 

message is sent from the host to the leaf predecessor 

processor, which has the two fingers, to start the desired 

operation. If the given finger F in the leaf-predecessor 

processor does not subtend k or is not safe, it sends the 

message to its predecessor processor. 

37 

When an operation - searching, insertion, or deletion­

is needed by the user, the host and the nodes will do the 

following: 

Actions performed by the host processor: 

1 - Sends a FINGER-ACCESS(Fl, k) message with the 

finger Fl and the key k to the parent process in 

leaf predecessor processor. 

2 - Sends a FINGER-ACCESS(F2, k) message with the 

finger F2 and the key k to the child process in 

leaf predecessor processor. 

3 - Waits to receive the turning node, which 

subtends the needed key, and the processor 

number which has the turning node. This 

information can be sent from either process in 

any processor. 

4 - Sends a message with the desired operation with 

the parameters key value and turning node to the 

parent process in the processor having the 

turning node to perform the desired operation as 



38 

discussed in Chapter III. 

5 Waits to receive the response, either fail or 

success, for the given operation. 

Actions performed by the index and the leaf predecessor 

processors: 

A. The Parent process: 

- Receives FINGER-ACCESS(pl, k) message, where pl is the 

address of the current node and k is the desired key. 

- If the current node,pl, is safe and subtends k, i.e. 

the largest key in it is larger than k, 

then 

send to the host a message indicating that the 

turning node, pl, of the desired Key is 

found. 

else 

- endif 

Send a FINGER-ACCESS(pl.parent, k) message with 

the address of the current node parent and the 

key k to the parent process in the predecessor 

processor. 

B. The Child process: 

- Receives FINGER-ACCESS(p2, k) message, where p2 is the 

address of the current node and k the desired key. 

- If the current node, p2, is safe and subtends k, i.e. 

the smallest key in it is smaller than k, 

then 

send to the host a message indicating that the 

turning node of the desired key is found. 



39 

else 

- endif 

Send a FINGER-ACCESS(p2.parent, k) message with 

the address of the current parent and k. 

We can notice from the above algorithm, that only one 

processor will be able to find the turning node and send it 

the host. 

As we described above, the distributed 2-3-4 tree has 

two fingers, and an operation starts from the leaf­

predecessor processor instead of the root processor in the 

ordinary case. In the next section, we describe the 

implementation of a scheme which allows multiple fingers to 

access the tree asynchronously. 

Multi-Finger Implementation 

In the above process of accessing a node in a 

distributed 2-3-4 tree by using two fingers, we noticed that 

it is necessary to go up in the tree starting from the 

finger until we reach a suitable starting node. Then from 

the starting or the turning node, the search proceeds down 

until the desired key or location is found. 

In this section we describe a method for making 

multiple fingers to the tree that takes advantage of the 

asynchronous processing environment. The basic idea is to 

use two fingers in each level of the 2-3-4 tree except for 

the leaf level. Every level of the tree as we described 

earlier in Chapter II is stored in one processor. If we 

have p working processors, then we will be having 2(p-l) 



40 

fingers to the tree. Because we have many fingers in this 

case, it is difficult to store them in the host, so the 

fingers are stored in the associated processors. If we 

store the fingers in the host as we did in the two fingers 

implementation, the host needs to send p different messages 

to the working processors. Therefore, we need O(p) time to 

activate the asynchronous searching, where p is the number 

of working processors. On the other hand, if we store every 

two fingers in the associated processor, the activation of 

the search process takes only 0(1) because the host can 

broadcast identical messages to all processors at once. In 

both cases the space needed for storing fingers is O(p). 

Figure 13 represents the multi-finger distributed 2-3-4 

tree. 

PO 

Pl 

P2 

. . . . . . . . . . . 
F2 Fl 

! ! 
I"'[I!JN] ~ 

P(lqNl+l •• !).: 
. . . . 

:~.t. • • I I 

e : INDEX NODE 
-: EXTERNAL NODE 

Figure 13. Multi-Finger distributed 2-3-4 tree 



Before describing how multiple fingers work, let us 

define the following message: 

41 

MULTI-FINGER-ACCESS( Op-code, k ): where Op-code is the 

desired operation, and k is the search key to be inserted or 

deleted. The host simultaneously sends this message to all 

working processors. When a processor receives this message, 

it performs the multi-finger access operation. Algorithm 

4.1 describes this process. 

Let us now describe how these fingers work 

simultaneously. When the host wants to perform an 

operation, it sends a MULTI-FINGER-ACCESS(Op-code, k) 

message to all working processors at the same time. The 

message contains the type of requested operation and the 

desired key. Asynchronously, every processor, as described 

in algorithm 4.1, checks if one of its finger nodes subtends 

the given key and if the node is a safe node. If these two 

conditions are satisfied, then mark the processor as a busy 

processor and mark that finger as a starting node. Each 

busy processor performs the desired operation, indicated by 

Op-code, as discussed earlier in Chapter III, and saves 

every structure as an old structure before modifying it. 

When the operation is passed to a free successor processor, 

it is performed as in the predecessor processor. But when 

the operation is sent to a busy successor processor, the 

sender needs to stop and restore its original structure 

because in that case, a lower level processor is also 

performing the same operation. The lower level processor 

performs the operation faster than the upper level 



42 

processors because the distance between the lower level 

processor and the external data nodes is shorter than the 

distance between the upper level processor and the external 

nodes. Figure 14 provides an illustration of insertion of a 

key (key 2) using multiple fingers to an existing 2-3-4 

tree. 

ROOT 
Pr 

Pr+l 

Pr+2 

Pr+3 
' 

I 

Pr+4 

(a) Before inserting the key 2. 

ROOT 
Pr 

.... , .... , .••.•... , .•...... , ......•.•.......•••...... ~.~ sy 

Pr-tl 

Pr+? 

Pr-t3 

Pr+4 
(b) After inserting the key 2, 

Figure 14. Insertion Example Through Multi_Fingers. 

In Figure 14, the right subtree is not shown because 



43 

the insertion will take place in the left subtree. In Figure 

14.a illustrates the states of processors while they compare 

the incoming key against their fingers. The processors 

storing the first level, the second level, and the fourth 

level of the tree will declare themselves as busy processors 

because their fingers subtend the key 2 to be inserted and 

also are safe nodes. But the finger of the third level of 

the tree is not safe even though it subtends the key 2. The 

lowest level busy processor is the one that stores the 

fourth level of the tree. So it performs the insertion 

operation. 

Algorithm 4.1 

multi_fin_access() 
{ 
busy_pro <-- o ; 
if I am ROOT processor 

then get the starting time; 

if I am not leaf processor 
then 

J* check the left finger (fl) for this processor */ 
if(incoming key<=fl.key AND /* if fl subtends the 

desired key*/ 

else 

( insert apr AND fl has < 4 pointers OR 
delete apr AND fl has > 2 pointers OR 
search apr ) ) 
then assign adr to the address of fl; /* fl 

succeeds*/ 

/* check the right finger (f2) 
if(incoming key<=f2.key AND /* 

for this processor */ 
if f2 subtends the 
desired key*/ 

( insert apr AND f2 has < 
delete apr AND f2 has > 
search apr ) ) 
then assign adr to the 

4 pointers OR 
2 pointers OR 

address of f2; /* f2 

if one 
then 

succeeds*/ 
of the two fingers of this processor has succeeded 

busy _pro 
switch of 

<-- 1; 
apr { 

/* busy */ 



1: call search( adr ); 
2 :call insert( adr ); 
3 :call delete( adr ); 

} /* switch */ 
} /* non leaf processors */ 

Post asynchronous MULTI-FIN-ACCESS message. 
} /* end multi_fin_access */ 

Safety and Integrity 

44 

In this section, we will discuss the integrity of the 

data structure after an update operation. Since multiple 

asynchronous processors take part in the operations, it may 

seem that there exists the possibility of corruption of 

data. The following propositions guarantee data integrity 

and correctness of the operations. 

PROPOSITION 2 

When the multi-finger algorithm is applied, only one 

busy processor performs the desired operation. 

Proof. ( By induction) 

Induction basis: When we have only one processor, 

obviously it performs the operation alone. 

Inductive hypothesis: If we have n busy processors, we 

assume only one of them will complete the operation. 

Inductive Step: Based on the given hypothesis, if we 

add one more busy processor to the n busy processors, either 

it will be the lowest level one or not. If it is not the 

lowest processor, that means it is going to quit the 

operation because it will find at least one lower busy 

processor. On the other hand, if it is the lowest level 

processor, all the upper level processors will quit the 



45 

operation because all of them will pass the transaction down 

until it reaches the lower level processor. Because it is 

busy, all of them will quit as described in the algorithm. 

PROPOSITION 3 

By applying the multi-finger algorithm, only the lowest 

level busy processor successfully completes the operation. 

The lowest finger is the quickest finger to perform any 

operation. 

Proof. 

As discussed in the algorithm, if a busy processor 

discovers that it has a busy successor processor, it will 

quit the operation. The lowest level finger will complete 

the operation because it is the only node which does not 

have a successor processor. 

The tree traversal cost mainly depends on how many 

levels need to be traversed. The lowest finger traverses 

the smallest number of levels, so it provides the quickest 

path to reach the desired external node or location. 

Finger Initialization: To utilize the fingers of the 

distributed 2-3-4 tree effectively, they need to be 

maintained carefully. At initialization time of the 

distributed 2-3-4 tree, every processor stores only one 

node. Both the left and the right fingers of that level are 

assigned to that node. 

Finger Updating: The process of updating fingers is 

done only after the corresponding transformations. The 



46 

transformations that might affect the fingers are splitting 

and merging. 

When we make a split, the newly created node is set to 

the right of the old full node, meaning that we are 

expanding that level of the tree to the right. As an 

observation, the left finger will not be affected by the 

split, but the right finger might be affected. If the right 

finger is pointing to the old node because it is the right 

most node in that level, then it should be changed to point 

to the new node because it becomes the right most node of 

that level. 

In like manner, when we make a merge operation, a node 

will be merged to its left sibling. If that node is the 

right finger, then the right finger is changed to the 

sibling. 

The implementations of the split and merge operations 

are done by a mechanism that expands the 2-3-4 tree to the 

right, and contracts the tree to the left; consequently, the 

left fingers of all levels of the 2-3-4 tree do not need to 

be changed because the left side of the tree is fixed. 

Performance Analysis 

In the two fingers implementation of the distributed 2-

3-4 tree, the access time to a key through either finger 

depends on the linear distance between the nearest finger 

and the desired key. Therefore, the cost of any operation 

on a distributed finger 2-3-4 tree is O(log2d), where dis 

the distance between the desired key and the nearest finger. 



While in the ordinary distributed 2-3-4 tree, the cost is 

O(log2N) time, where N is the number of keys in the tree. 

This two-finger implementation performs better if the 

47 

accessed key is in the vicinity of either fingers. 

However, the time to perform an operation using the 

multi-fingers approach is expected to be much shorter than 

the one when the operation starts_from_ the roo~ of the tree. 

~~~~ performance analysi~ of this section is based on 

experiments run with different tree sizes. Execution time 

for various operations are measured. To compute the time 

- ·c~mplexity~,we employed the root processor to calculate the 

elapsed time for the desired operations both by using 

fingers and by starting from the root. Tables, 2 - 10, show 

the average elapsed time for performing the tree operations: 

search, insertion, and deletion using 32, 16, and 8 

processors for each operation. In each table, the 

operations are performed for 5 different sizes of the 2-3-4 

tree. The selected number of keys is proportional to the 

number of working iPSC/2 processors., The average elapsed -~ 
.f" - '"- ~ p --- - - '_,,- ... ( 

time is taken for 10 random operations in each case. From 

the 9 tables, it can be observed that in all cases 

performing the distributed 2-3-4 tree operations through 

fingers yields better results than performing them starting 

from the root of the tree. The elapsed time to perform an 

operation through fingers depends mainly on the height of 

the 2-3-4 tree, while the elapsed time to perform an 

operation starting from the root of the tree depends on the 

number of working processors. As the number of processors 



48 

is constant, the time to perform an operation from the root 

stays almost constant. 

TABLE 2 

THE AVERAGE ELAPSED TIME FOR SEARCH THROUGH 
FINGERS VERSUS FROM ROOT WITH P = 32 

# of Keys Fingers Root 
sec msec 

256 3.6 23.0 
1024 4.2 22.8 
4096 4.6 22.6 

16384 5.4 22.8 
65536 5.6 23.2 

TABLE 3 

THE AVERAGE ELAPSED TIME FOR SEARCH THROUGH 
FINGERS VERSUS FROM ROOT WITH P = 16 

# of Keys Fingers Root 
msec msec 

128 3.4 11.0 
512 4.0 11.2 

2048 4.4 10.6 
8192 4.8 11.0 

32768 5.4 11.0 



TABLE 4 

THE AVERAGE ELAPSED TIME FOR SEARCH THROUGH 
FINGERS VERSUS FROM ROOT WITH P = 8 

# of Keys Fingers Root 
mse mse 

8 2.2 5.4 
16 2.6 5.4 
32 2.6 5.2 
64 2.4 5.6 

128 2.8 5.6 

TABLE 5 

THE AVERAGE ELAPSED TIME FOR INSERT THROUGH 
FINGERS VERSUS FROM ROOT WITH P = 32 

# of Keys Fingers Root 
msec msec 

256 20.6 58.8 
1024 19.4 58.6 
4096 19.6 58.8 

16384 20.6 58.8 
65536 20.4 58.2 

TABLE 6 

THE AVERAGE ELAPSED TIME FOR INSERT THROUGH 
FINGERS VERSUS FROM ROOT WITH P = 16 

# of Keys Fingers Root 
msec msec 

128 10.2 27.8 
512 11.8 27.8 

2048 12.0 27.4 

49 



50 

TABLE 6 (continued) 

# of Keys Fingers Root 
----------------------~msec!-----------------msec~------

8192 
32768 

15.0 
14.8 

TABLE 7 

29.8 
27.6 

THE AVERAGE ELAPSED TIME FOR INSERT THROUGH 
FINGERS VERSUS FROM ROOT WITH P = 8 

# of Keys Fingers Root 
mse msec 

8 5.4 13.2 
16 6.6 12.6 
32 6.0 12.8 
64 6.2 12.8 

128 7.2 12.4 

TABLE 8 

THE AVERAGE ELAPSED TIME FOR DELETE THROUGH 
FINGERS VERSUS FROM ROOT WITH P = 32 

#, of Keys Fingers Root 
msec sec 

256 7.8 27.8 
1024 9.8 30.2 
4096 11.4 32.6 

16384 12.4 33.8 
65536 13.2 34.2 



TABLE 9 

THE AVERAGE ELAPSED TIME FOR DELETE THROUGH 
FINGERS VERSUS FROM ROOT WITH P = 16 

# of Keys Fingers Root 
msec msec 

128 6.6 19.8 
512 7.4 18.4 

2048 9.6 19.6 
8192 .. 11.4 22.0 

32768 12.8 22.2 

TABLE 10 

THE AVERAGE ELAPSED TIME FOR DELETE THROUGH 
FINGERS VERSUS FROM ROOT WITH P = 8 

# of Keys Fingers Root 
msec sec 

8 3.2 7.8 
16 4.2 8.2 
32 5.2 8.8 
64 4.6 9.2 

128 6.6 10.2 

The best case performance of the distributed multi-

51 

finger 2-3-4 tree operations is an order of magnitude better 

than the "start from root" approach. A search or update 

operation on the ordinary distributed 2-3-4 tree is 

performed in O(log2N) time as the best case because all data 

nodes are in the same leaf level. While in the distributed 



52 

finger 2-3-4 tree, the best case to perform an operation is 

0(1) time. 

The different implementations of the fingers we have 

shown so far are for ephemeral finger 2-3-4 tree. An update 

operation will change the structure of the tree. In the 

next Chapter, we will discuss the persistent implementation, 

where the old structure will be preserved at an update 

operation. 



CHAPTER V 

PERSISTENT TREE STRUCTURES 

Methods of Making a Tree 

Structure Persistent 

A persistent tree structure is a structure that 

supports access to multiple versions. In this Chapter, we 

consider the implementation of persistent search trees. 

When an update operation is performed in a persistent 

structure, a new version to represent the updated structure 

need to be created. So, we need a mechanism to retain the 

old version of the tree when a new version is created by an 

update. There are four methods of making the structure 

persistent found in the literature. These four methods are 

outlined below. 

Copying the Entire Tree 

Every time an update operation is performed, the entire 

tree is copied into a new tree with the update. It is a 

simple method to program. But it takes O(n) time and space 

complexity per update, where n is the number of elements in 

the tree. 

53 



54 

Path Copying 

This method is presented by Driscoll [9], Sarnak 

[20,21], and used by New [16]. The idea is to copy only the 

nodes in which changes are made. In other words, copy all 

nodes that are encountered on the insertion or deletion path 

starting from the root. The effect of this method is to 

create a set of search trees, one per update, having 

different roots but sharing common subtrees. The path 

copying method has the ability to update any version of the 

structure [13,14]. The major draw back of this method is 

that it requires O(log2N) space to make a single update, 

where N is the number of the keys in the tree. 

Time Stamp 

This method is presented by Sarnak and Tarjan[21) and 

Driscoll[9]. Their idea is to implement the trees without 

any node copying by allowing node to become arbitrarily 

"fat": each time we want to change a pointer, the new 

pointer is stored in the node, along with a time stamp 

indicating when the change has occurred and a bit that 

indicates whether the new pointer is a left or right 

pointer. Actually, we can know the direction of the new 

pointer by comparing the key of the item in the node 

containing the pointer to that of the item in the node 

indicated by the pointer. With this approach, an insertion 

or deletion in a persistent tree takes only 0(1) space, 

since an insertion creates only one new node and either kind 



55 

of update causes only 0(1) pointer change. The drawback of 

this method as described by Sarnak and Tarjan [21] is its 

time penalty, since a node can contain an arbitrary number 

of left or right pointers, deciding which one to follow 

during a search is not a constant time operation. Choosing 

the correct pointer takes O(log2m) time, and the time for an 

access, insertion, or deletion is O((log2n) (log2m) ). 

Limited Node Copying 

This method, which is presented by Driscoll [9]; and 

Kazerouni-zand and Fisher[13], is introduced to eliminate 

the drawback of the time stamp or fat node method. In this 

method, a node in the persistent structure is not allowed to 

become arbitrarily fat. Each node is allowed to hold only a 

fixed number of pointers. When we run out of space in a 

node for new pointer, we create a new copy of the node, 

containing only the current field values. In every current 

predecessor of the node being copied, a pointer to the new 

copy is stored. If there is no space in a predecessor for 

such a pointer, the predecessor, too, must be copied. Thus 

node copying can ripple backwards through the structure. An 

update operation takes only 0( 1 ) space in the amortized 

case and 0( log2n) time in the worst case [9]. Making a B­

tree persistent with this method was presented by Kazerouni­

zand and Fisher[13,14]. 

In the following sections, we describe a scheme for 

implementation of persistent structures in a distributed 

memory system. 



Persistent Distributed 2-3-4 

Tree Implementation 

56 

The main idea behind the time stamp method and the 

limited node copying method is not to make any changes to 

the keys stored in a node. This is accomplished by changing 

pointers in the case of deletion and creation of a new node 

in the case of insertion. In these two methods of making 

the structure persistent, if we change node keys, all the 

previous versions will be changed. 

As an (a,b)-tree, the 2-3-4 tree update operations 

(insertion, deletion, splitting, and merging,) involve 

changing the keys of the nodes as shown in Figure 15. So we 

cannot use the method of time stamp or limited node copying 

described at the beginning of this Chapter to make the tree 

persistent. There is a modification of the structure that 

allows us to use the time stamp methods for the 2-3-4 tree. 

The modification proposed by Kazerouni-zand and Fisher(14] 

is to use a time stamp for each key in the node and to allow 

more than one pointer for each child with the time stamps. 

The Distributed 2-3-4 Tree 

Persistent Operations 

To make the tree structure persistent, we follow the 

work of Kazerouni-zand and Fisher[14] of making B-trees 

persistent. However, we are working on a distributed 2-3-4 

tree using top-down updating method. 



57 

A--+· 
(a) INSERT 20 (h) INSERT 7 

.. 

(cJ MAKt. SI-'LII (dJ M~ A Nt.Hut. (eJ Ut.Lt.lt. !I 

A 
[f) DELETE 1 0 

Figure 15. 2-3-4 Tree Update Operations. In all 

update cases a, b, c, d, e, and f the keys are 

changed. 

We will use the limited node copying method to make 

our distributed 2-3-4 tree persistent. Before describing 

the operations, let us give the structure of the tree nodes. 

Each node of the 2-3-4 tree contains the following fields: 

- Key[ o •• 2] : 

Key, 

Key_Ver_No. 

- Children[0 •• 3] : 

Ftr[m], 

Ptr_ ver_no [m] • 

Where m is the number of auxiliary pointers for each child. 

If we select a large value of m, that may reduce the storage 



58 

requirement needed by the persistent distributed 2-3-4 tree 

because the number of node copying operation decreases 

although the space per a node increases. 

The host maintains a header node for the tree roots 

associated with different versions. The header structure is 

as following: 

Ver No 

Proc I Ptr 

Where Ver no is a sequence of numbers: o, 1, 2, 

Proc is the processor number which stores the root 

of the tree as it appears in the associated 

version Ver No. 

Ptr is a pointer to the root of the tree which 

exists in processor number Proc. 

Now, we can describe the operations. 

Search. The host accesses the header node which 

indicates the processor number storing the tree root and the 

desired pointer to follow for a given search version number. 

The host sends a PERS SEARCH(Ver, k, p) message containing 

the search version number Ver , the desired key k, and the 

address of the tree root p to the Proc processor. The Proc 

processor makes key comparisons and sends a PERS SEARCH(Ver, 

k, p) message to its successor. When a processor receives a 

PERS_SEARCH(Ver, k, p) message, it makes the same steps as 

in search operation in the Ephemeral 2-3-4 tree described in 



59 

Chapter III, except that we need to make a search on the 

pointers of the selected child. The pointer with the 

largest version number less than or equal to the Ver is 

selected. The operation repeats itself in each processor 

until the leaf processor is reached. At the leaf processor, 

if the received pointer points to a data node containing the 

desired key, it sends a PERS_SEARCH_REPLY(status) message 

with a positive result to the host. Otherwise, it sends a 

negative result. 

Insertion. In the matter of communication between the 

processors, the insertion algorithm is similar to the one in 

Chapter III, but the manipulation and transformation are 

different. Because we are dealing with a partial persistent 

structure, the insertion operation will be on the last 

version of the structure. 

When the PERS INSERT(Ver, k, Ptr) message is received 

by a processor, say i, it compares the keys of the node 

indicated by Ptr to decide from which child it follows, then 

it selects one of the child pointers that has the highest 

version number, say child_ptr. The current processor then 

sends PERS_INSERT_TRANSFORM(Ver, k, child_ptr) message with 

the current version number, the new key k, and the child 

pointer to the successor processor i+l. When processor i+l 

receives the message, it does one of the two following 

cases. 

CASE 1: Make a split: If the node addressed by the incoming 

message is full, having 3 keys, then we create two new nodes 



60 

and distribute the outgoing pointers and the keys in the old 

one between the new two nodes. The old node; however, is 

maintained because it serves previous versions. The keys of 

the newly created nodes are stamped with the current version 

number. We copy only the most recent outgoing pointer from 

each child pointer. Then, processor i+1 sends a PERS-

INSERT-TRANSFORM-REPLY(status, Ptr1, Ptr2, m) to its 

predecessor i carrying a status indicating either there was 

a transformation or not, the addresses of the two new nodes 

namely Ptr1 and Ptr2, and the middle key m of the old node. 

When processor i receives the reply, if the status indicates 

a modification, it stores the key m in the next available 

position and stamps it with the current version number. The 

addresses of the two newly created nodes are stored in the 

proper locations as in Figure 16, which is adapted from [13] 

and modified. 

Nl Nl 

I 
I I I I I 

It I I I I I 

J N l 

F1gure 16. Insertion Persistent Transformation I. 

The number of the auxiliary pointers, m, for each child 

is 2 in this Figure. 



61 

CASE 2: Make a copy: The processor selects the proper child 

in the addressed node by child_ptr in the incoming message. 

If all of the auxiliary pointers of the selected child are 

allocated, then we have to make a copy of this node to avoid 

an upwardly propagating split. The pointers with the 

highest version numbers and all keys are copied as shown in 

Figure 17. This persistent transformation is to guarantee 

that if a lower level node makes a split operation, the 

selected child of the current node has available slots for 

the addresses of the new nodes resulting from the split. 

Thus node copying cannot ripple backwards through the 

structure. In order to reply to the predecessor, the 

processor i+l sends a PERS-INSERT-TRANSFORM-REPLY(status, 

Ptr) message to its predecessor carrying a status and the 

address of the new node. 

Nl 

The currentverclon lc 8 

Figure 17. Insertion Persistent Transformation II. 

The number of the auxiliary pointers, m, for each 

child is 2 in this Figure. 

CASE 3: If neither of the two conditions in cases 1 & 2 is 



62 

met, then the processor i+l sends a 'No change' message to 

its predecessor. 

When the processor i receives from its successor the 

PERS-INSERT-TRANSFORM-REPLY(status, ptr) message, it stores 

the given addresses, if any, in its auxiliary pointers. 

Again, it searches for the proper pointer and sends an PERS­

INSERT(Ver, k, Ptr) message this time to its successor 

processor i+l. 

Deletion. The deletion algorithm is similar to the one 

described in Chapter III, but the transformations do not 

destroy the old structures to enable accessing by previous 

versions. Because we are dealing with a partial persistent 

structure, the update operation takes place on the last 

version of the structure. 

When the PERS-DELETE(Ver, k, ptr) message is received by a 

processor, say i, it compares the key k with the keys in the 

node addressed by ptr to decide from which child it follows, 

then it selects one of the child pointers that has the 

highest version number. It sends PERS-DELETE-TRANSFORM(Ver, 

ptrl, ptr2, m, k) message with the current version number, 

the child pointer, the child sibling pointer, the key m 

discriminating between the child and its sibling, and the 

key k need to be deleted to the successor processor i+l. 

When processor i+l receives the message, it does one of the 

four following cases. 

CASE 1: Make a merge: If the node addressed by ptrl in the 

incoming message has only two pointers, and its sibling ptr2 



has also two pointers, then we create a new node and merge 

the keys of the two nodes forming one node with three keys 

and four pointers. The two old nodes; however, are 

maintained because they serve previous versions. This 

63 

transformation is to avoid upwardly propagating merging and 

achieve a top-down updating approach. The keys of the newly 

created node are stamped with the current version number as 

in Figure 18. The processor i+1 sends a PERS-DELETE­

TRANSFORM-REPLY(status, ptr) message to its predecessor i 

carrying a status and the addresses of the new node. 

Nl 

N2 Nl 

~ 
CURRENT VERSION 13 5 

Figure 18. Deletion Persistent Transformation. 

The number of the auxiliary pointers, m, for each child 

is 2 in this Figure. 

Case 2: Borrow one pointer: If the node addressed by the 

incoming message have only two pointers, and its adjacent 

node has more than two pointers, then the addressed node 

borrows on~ pointer from a neighbor node. The old structure 

is preserved in this case even without copying both nodes. 

This transformation does not affect the previous version. 



64 

Again, this transformation is to achieve a top-down updating 

approach. 

CASE 3: Make a copy: Using the given version number and the 

key k, the processor selects the proper child in the node 

addressed by ptrl in the incoming message. If all of 

auxiliary pointers of the selected child are allocated, then 

we have to make a copy of this node to avoid upwardly 

propagating split. Only the pointers with the highest 

version numbers are copied as well as all keys. This 

transformation is to guarantee that if a lower level node 

makes a merge operation, the selected child of the current 

node has an available slot for the address of the merged 

nodes. 

The processor i+l sends a PERS-DELETE-TRANSFORM­

REPLY(status, ptr) to its predecessor carrying a status and 

the address of the new node. 

CASE 4: If none of the three conditions in cases 1, 2 and 3 

is met, then the processor i+l sends a 'No change' message 

to its predecessor. 

When the processor i receives the PERS-DELETE­

TRANSFORM-REPLY(status, ptr) message, it stores the given 

pointer, if any, in its auxiliary pointers. Again, it 

searches for the proper pointer and sends an PERS­

DELETE(Ver, k, ptr) message this time to its successor 

processor i+l. 

Persistent Multi-Finger 2-3-4 Tree 

The update operations of the ephemeral finger 2-3-4 



65 

tree described in Chapter IV may change the structure of the 

tree as well as the fingers. Therefore, new methods should 

be devised to maintain persistent finger 2-3-4 trees. In 

this section, a mechanism for maintaining persistent multi-

fingers' distributed 2-3-4 tree is presented. 

Based on the persistent implementation scheme of the 

distributed 2-3-4 tree explained in the previous section, we 

will add fingers to the structure. Every processor 

maintains left and right fingers resulting in 2*p fingers to 

the structure, where p is the number of working processors. 

Every processor retains its own fingers. In the persistent 

implementation of the fingers, we will make use of an array 

of pointers to fingers for each left and right finger. The 

selected approach to persistence is the limited node copying 

method. Therefore, the array of fingers will be fixed. The 

following is a conceptual view of the array of fingers: 

0 2 m 

Ver No 

Ptr 

Where m is the same m in the previous section which 

indicates the number of pointers for each child. 

When a new version of a finger needs to be added to the 

finger array and there is no available slots, a new finger 

array is created and linked to the previous finger array. 

The new finger pointer is stored in the new finger array. 

When an update operation is applied to the tree, always 



66 

there will be a copying or a pointer change to preserve the 

old structure. But the fingers need to be preserved only 

when the update operation affects the fingers. Because we 

are dealing with partial persistent structure, a pointer to 

the most recent finger is maintained to enable update 

operations to access the right finger in 0(1). A binary 

search is needed to locate the right finger in a search 

operation. Update operations force finger copying in the 

following cases: 

1 - A node with 4 children on the access path of an 

insertion operation is split into two nodes. If the most 

recent left finger points to the full node, a new left 

finger is created and assigned to the left one of the two 

newly created nodes. on the other hand, if the most recent 

right finger points to the full node, A new right finger is 

created and assigned to the right one of the two newly 

created nodes. 

2 - In the access path of an insertion or deletion, if 

we reach a node whose child's auxiliary pointers are 

allocated, then a copy of this node is made as described in 

the second insertion persistent transformation in the 

previous section. If the most recent left finger points to 

that node, a new left finger is created and assigned to the 

new copy of the node. On the other hand, if the most recent 

right finger points to that node, a new right finger is 

created and assigned to the new copy of the node. Figure 19 

shows an example of this case. 



PROCI 

LFIN-ARY 

N1 

~ N2 

PROCI+~ 

Nl 

Figure 19. Persistent Multi-Finger 2-3-4 Tree. 

67 

The number of the auxiliary pointers, m, for each 

child is 2 in this Figure. 

Performance Analysis 

The 2-3-4 tree has 3 keys and 4 pointers. In order to 

make the distributed 2-3-4 tree persistent, we need to 

increase the storage requirement for each node by 3*2 bytes 

for the keys• version numbers and 4*(m(2+4}} bytes for the 

children auxiliary pointers and their version numbers 

assuming that two bytes are needed for the version number 

and four bytes are needed for the auxiliary pointers. For a 

tree of N nodes, the extra space required to make the tree 

persistent is N(3*2 + 4*m*6} which is O(m*N} besides the 

nodes need to be copied when all auxiliary pointers of a 

child in the access path are allocated. The number of node 

copies is proportional to 1/m. 

In the ephemeral implementation of the multi-finger 

distributed 2-3-4 tree, the storage required is 2*4*log2N 

bytes, where 4 is the number of bytes needed for a finger 



68 

pointer and N is the number of keys in the tree. While in 

the persistent implementation, the storage required is 

2*4*m*log2N bytes, where m is the number of possible fingers 

for each finger array. Thus, the increase in the storage 

requirement foe maintaining fingers is O(m*log2N). 

An extra field in the header node is maintained to 

indicate the last version number [13]. This field allows 

access to the proper tree root for update operations in 

0(1), while for a search operation, a binary search is 

needed. 

To access the right finger in a search operation, a 
' binary search is needed costing O(log2m), while in update 

operations, the last version of a finger is indicated a 

pointer, so a direct access can be achieved in this case. 



CHAPTER VI 

CONCLUSIONS 

In this thesis, we have presented techniques for 

mapping several forms of 2-3-4 trees to the hypercube 

architecture. A level to a processor mapping is selected. 

We have shown that a tree of N keys requires at least 

log2N+1 processors. A storage requirement of 0(4 1 ) is 

needed to store the ith level of the tree in processor i. A 

wrap around mapping is presented which overcomes the problem 

associated with the bound of the number of processors. 

Operations of the distributed 2-3-4 tree cost 

O(log2N). However, our implementation of the top-down 

updating allows pipelining the operations. We have shown 

that in such a case, an operation of the distributed 2-3-4 

tree completes after 0(1). Some empirical results on time 

complexity are also given. 

Two different implementations of the distributed finger 

2-3-4 tree are presented. The first implementation uses two 

fingers and the second implementation ( called multi-finger 

implementation) uses two fingers at each level of the tree. 

The fingers are stored in such a way that they can be 

activated in 0(1) time. Empirical results show that the 

multi-finger approach is more efficient. 

The finger concept has also been applied to persistent 

69 



70 

2-3-4 tree in a distributed environment. A method for 

incorporating fingers with persistent 2-3-4 trees is 

presented in the thesis. Future study will be targeted to 

the implementation of other data structures in the 

distributed environment. The effect of pipelining in the 

shared memory environment needs to be explored and compared 

against the distributed memory architectures. 



REFERENCES 

[1] Bier, T., Loe, K. "Embedding of binary trees into 
hypercubes." J. of Parallel and Distributed 
Computing, 6(1989), 679-691. 

[2] Brown, M. R., Tarjan, R. E. "Design and analysis of a 
data structure for representing sorted lists." SIAM 
J. Comput. 9, 3(Aug. 1980), 594- 614. 

[3] Carey, M. J., Thompson, c. D. "An efficient 
implementation of search trees on O(log N) 
processors. " Dept. Comput. Sci., Univ. California, 
Berkeley, CA, Rep. UCB/CSD 82/101, (Nov 1982). 

[4] Carey, M. J., Thompson, c. D. "An efficient 
implementation of search trees on [Lg N + 1] 
processors." IEEE Trans. on computers, c-33, (Nov. 
1984), 1038-1041. 

[5] Chen, w., Stallmann, M. F., and Gehringer, E. F. " 
Hypercube embedding heuristics: an evaluation." 
International J. of Parallel Programming, 18(Nov. 
1989), 505-549. 

[6] Colbrook, A., Smythe, c. "Efficient implementations 
of search trees on parallel distributed memory 
architectures." IEE Proc., E-5, 137(Sep 1990), 394-
400. 

[7] Dekel, E., Peng, s., and Lyengar, s.s. "Optimal 
parallel algorithms for constructing and maintaining 
a balanced m-way search tree." Int. J. of Parallel 
Programming, 15( Nov. 1986), 503-518. 

[8] Dehne, F. and Andrew, R. "Implementing data 
structures on a hypercube multiprocessor, and 
applications in parallel computational geometry." J. 
of Parallel and Distributed Computing, 8(1990), 367-
375. 

[9] Driscoll, J., Sarnak, N., Sleator, D., Tarjan. R. 
"Making data structures persistent." Proc. 18th Ann. 
ACM Symp., Berkeley, CA (May 1986), 1- 13. 

[10] Ellis, c. "Concurrent search and insertion in AVL 
trees." IEEE Trans. Comput. C-29, 9(1980), 8- 817. 

71 



72 

[11] Fisher, A.L. "Dictionary machines with a small number 
of processors." Proc of the 11th Annual Int. Symp. on 
Computer Architecture, IEEE, New York, 1984, 151-156. 

[12] Guibas, L., Sedgewick, R. "A Dichromatic framework 
for balanced trees." Proc. 19th Symposium on the 
foundations of Computer science, 1978. 

[13] Kazerouni-zand,M. and Fisher, D. D., "Deletion on 
persistent B-trees." Proc. of the workshop on applied 
computing 1 89, Stillwater, Oklahoma, March 30, 1989, 
90-96. 

[14] Kazerrouni-zand, M. and Fisher, D. D., "A space 
efficient persistent B-tree." Proc. of Second 
Oklahoma Applied Computing Workshop, Tulsa, Oklahoma, 
March 88, 295-318. 

[15] Kosaraju, s. R. "Localized search in sorted list." 
Proc. 13th Annual ACM Symp. on theory of computing 
(1981), 62-69. 

[16] New, H. H. "Concurrent operations in persistent 
search trees." Master thesis, Dept. of computing and 
information sciences, Oklahoma State University, 
Stillwater, OK, 1985. 

[17] 0 1 Gorman, R. "The RPA - making the array approach 
acceptable." Major Advances in Parallel Processing, 
130-146. 

[18] Rao, N., Kumar, v. "Parallel depth first search. Part 
I. Implementation." Int. J. of Parallel Programming, 
16(Nov. 1987), 479-499. 

[19] Rattner, J. "Concurrent processing: a new direction 
in scientific computing." Technical paper, T0-9, 
National Computer Conference, 1985, 1-9. 

[20] Sarnak, N. I. 11 Persistent data structures." Dept. of 
computer science, New York University, New York, NY: 
1986, Dissertation. ' 

[21] Sarnak, N., Tarjan, R. E. "Planar point location 
using persistent search trees." Comm. ACM 7, 29(July 
1986), 669- 697. 

[22] Shieh, J. J., Papachristou, c. A. "Fine grain mapping 
strategy for multiprocessor systems." IEE Proc. E-3, 
138(May 1991), 109- 120. 

[23] Tarjan, R. E. "Efficient top-down updating of red­
black trees." Tech. Rept. CS-TR-013-86, Princeton 
Univ., (June 1985). 



[24] Tarjan, R. E., VanWyck, c. J. "An O(n log log n) -
time algorithm for triangulating a simple polygon." 
SIAM J. Comput. 17, 1(Feb. 1988), 143- 178. 

[25] Upfal, E., Wigderson, A. "How to share memory in 
distributed system." J. of the ACM 2, 34(Jan 1987), 
6-127. 

[26] Wu, A. "Embedding of tree networks into hypercubes." 
J. of Parallel and Distributed Computing, 2(1985), 
238-249. 

73 



APPENDIXES 

74 



APPENDIX A 

HOST AND NODE ALGORITHMS 

75 



Host Program Algorithm 

The following is the general algorithm for the host 

program given in appendix c. 

step 1. Read the desired number of nodes. 

Step 2. Allocate a cube. 

Step 3. Load all nodes with the node program. 

step 4. Initialize the cube 

- Send INIT message with a big key to the ROOT 

node. 

- Receive The address of the tree root from the 

ROOT node. 

Step 5. Print a menu & get the user choice and data. 

76 

step 6. Send a message according to the user desired 

function to the ROOT processor or to all processors 

in case of multi-finger implementation. 

step 7. Receive a reply message from leaf processor 

indicating the success or the failure of the 

operation with the elapsed time. 

step a. Go to step 5 until the user choose to exit from the 

system. 

step 9. Kill the cube. 

Step 10. Release the cube. 

Step 11. End Host. 



Node Program Algorithm 

The following is the general algorithm for the 

node program given in appendix D. 

Step 1. Get process id from the system. 

step 2. Get the current node number from the system. 

77 

Step 3. Receive a message from host indicating the number 

of working processors (size). 

Step 

Step 

Step 

4. If my-node < size /* I am working processor */ 

5. Receive INIT message from predecessor. 

6. Initialize a level of the tree in the 

current processor as following: 

- Create a node with four NULL pointers. 

- Send a reply with the address of the newly 

created node to predecessor processor. 

- Send an INIT message to the successor 

processor. 

- Receive a reply from the successor. carrying 

the offset of its node. 

- Set the node first pointer to the received 

offset. 

- End INIT. 

step 7. Post asynchronous messages and get their IDs for 

PRINT, SEARCH, INSERT, INSERTTRANS, DELETE, 

DELETETRANS. 

Step 8. While TRUE do 

- Check mail box for incoming messages 



78 

. Using the messages' IDs check all posted 

asynchronous messages . 

. If any arrive, call the corresponding 

procedure. 

Step 9. End while. 

step 10. End node. 

(the procedures are: print(), search(), 

insert(), inserttrans(), delete(), and 

deletetrans(). ) 



APPENDIX B 

CAREY AND THOMPSON ALGORITHM 

79 



80 

There are three different codes for each of processor 1 
to k-2, processor k-1, and processor k. 

The Code for Processors Pi, i=1,2, ... , k-2 

While true do 
Receive reqMsg from Pi-1; 
case MsgType(reqMsg) of 

SEARCH: 
begin 

Perform path selection; 
Send SEARCH (n, p 1 ) to P1+1 ; 

end; 
INSERT: 

begin 
Perform path selection; 
Send INSERT_TRANSFORM(p 1 ) to P1+1 ; 
Receive INSERT_TRANSFORM_REPLY (m, np) from P1+1 ; 

if (np != nil) then 
Insert np and m into current index node; 

endif; 
Send INSERT (n, p 1 ) to P1+1 ; 

end; 

DELETE: 
begin 

Perform path selection; 
Send DELETE_TRANSFORM(m,p 1 ,p") to P1+1 ; 
Receive DELETE_TRANSFORM_REPLY(m',np) from 
p1+1; 
Replace old splitting key with m1 ; 

if (np != nil) then 
Delete np from current index node; 

endif; 
Send DELETE(n,p') to P1+1 ; 

end; 
INSERT TRANSFORM: 

begin 
Perform an insertion transformation if 
applicable; 
Send INSERT_TRANSFORM_REPLY (m, np) to P1_1 

end; 

DELETE TRANSFORM: 
begin 

Perform a deletion transformation if 
applicable; 
Send DELETE_TRANSFORM_REPLY (m 1 , np) to P1 _1 ; 

end; 
endcase; 

endwhile; 



The code for processor Pk_ 1 

While true do 

Receive reqMsg from Pk-2.; 
case MsgType(reqMsg) of 

SEARCH: 
begin 

Perform path selection; 
Send SEARCH (n, p 1 ) to Pk; 

end; 

INSERT: 
begin 

Perform path selection; 
Send 'INSERT (n, p') to Pk; 
Receive INSERT_REPLY(np); 
if (np != nil) then 

Insert np and m into current index node; 
endif; 

end; 

DELETE: 
begin 

Perform path selection; 
Send DELETE (n, p') to P ; 
Receive DELETE_REPLY(s~atus); 
if ( status = no error ) then 
Delete p' from the current index node; 

endif; 
end; 

INSERT TRANSFORM: 
begin 

Perform an insertion transformation if 
applicable; 
Send INSERT_TRANSFORM_REPLY(m,np) to Pk_2 ; 

end; 

DELETE TRANSFORM: 
begin 

Perform a deletion transformation if 
applicable; 
Send DELETE_TRANSFORM_REPLY(m',np) to 

end; 
endcase; 

endwhile; 

81 



The code for processor Pk 

while true do 
Receive reqMsg from Pk_1; 
case MsgType(reqMsg) or 

SEARCH: 
begin 

if ( data item found) then 
send out'data item; 

else 
Send out error response; 

endif; 
end; 

INSERT: 
begin 

if (data item not found), then 
Insert data item; 

else 

Send INSERT_REPLY(nil) to Pk_ 1 ; 
Send out acknowledgement; 

Send INSERT_REPLY (nil) to Plc_ 1 ; 
Send out error response; 

endif; 
end; 

DELETE: 
begin 

if (data item not found) then 
Delete data item; 

else 

Send DELETE REPLY (no error) to Pk_ 1 ; 
Send out acknowledgement; 

Send DELETE_REPLY (error) to Pk_ 1 ; 
Send out error response; 

endif; 
end; 

endcase; 
endwhile; 

82 



APPENDIX C 

SOURCE CODE OF HOST PROGRAM 

83 



I******************************************************** 
* Routine name : host.c * 
* Purposes 1. allocate cube * 
* 2. get user informtion * 
* 3. send the size of the cube * 
* Loop * 
* 4. get user desired operations * 
* 5. Send the request to processors * 
* 6. Receive the result from processor * 
* 7. Update timings * 
* endLoop * 
* 8. At the end kill the cube * 
* 9. Release the cube * 
*********************************************************I 
#include <cube.h> 
#include <stdio.h> 

84 

#define HOST PID 100 
#define NODE PID 0 
#define ALL NODES -1 
#define ALL PIDS -1 

I* 
I* 
I* 
I* 

process id 
process id 
symbol for 
symbol for 

of the host process *I 
for node processes *I 
all nodes *I 
all processes *I 

#define ROOT 0 
#define INIT 0 
#define INITREP 20 
#define SIZE TYPE 1 I* type of size message *I 
#define TIME TYPE 2 I* type of time message *I 
#define INSERT 5 I* type of insert msg *I 
#define DELETE 6 I* type of delete msg *I 
#define SEARCH 9 I* type of search msg *I 
#define PRINT ' 10 I* type of print msg*l 
#define MULTI FIN ACCESS 16 I* type of search thru fingers *I 
#define DISFIN - 17 * type of dispaly fingers *I 
#define REALROOT 18 I* type of real root processor *I 
#define RESULT 21 I* type of final result *I 
#define PIPE 22 I* type of pipelining operations *I 
#define LARGE 200000 I* Used to indicate the maximum 

number of keys *I 

I********************************************** 
* data types * 
***********************************************I 
typedef struct tree { I* this is the structure of the 2-3-4 

tree nodes. *I 
int key[3] ; 

struct tree *point[4]; 
struct tree *paret ; 

} treetype; 



85 

/***************************************************** 
* declaration * 
******************************************************/ 
typedef struct buffer { /* buffer is the means of 

communication */ 
int n ; I* the key need to be searched, inserted, or 

deleted. */ 
/* fail or success */ int 

int 
status 
fin ; /* fin=1 if the operation need to be thru 

unsigned long tim; /* 
struct tree *p[4]; 
} buffertype; 

fingers */ 
elapsed time for the operation */ 

typedef struct {/* used to maintained the operation timings */ 
unsigned long with[1000],without[1000]; 
int w,wo 

}operation; 

typedef struct { /* for the general timing result */ 
operation search, 

insert, 
delete; 

} result ; 

int real_id; /* real root message id */ 
int realroot; /* indicates the real root */ 

int size; /* number of working nodes */ 
buffertype buf ; /* means of communication */ 
treetype *root ;/*pointing to he root of the tree in proc 0 *I 
result res ; 
unsigned long starttime; 
unsigned long tms, ms, tsec, /* time calculation variables */ 

sec, min; 
char nd[3] ; 

I* gray code sequence */ 
int array[32]={0,1,3,2,6,7,5,4,12,13,15,14,10,11,9,8, 

24,25,27,26,30,31,29,28,20,21,2,22,18,19,17,16}; 

int fin . /* fin=1 if the operation need to , 
fingers *I 

int items . I* the nuber of keys in the tree */ , 
int leaf . I* leaf processor # *I , 

float seed=1 . , 
/***************************************** 
* floor function * 
*****************************************/ 
float floor(x} 

float x; 
{ 

be thru 



long i; 
i=x; 

return i; 
} 

/**************************************************** 
* Function Name : random * 
* Input paras Nothing * 
* Output paras Nothing * 
* Return value random number * 
* Purpose to produce a new random number * 
*****************************************************/ 

float random () 
{ 
float a=l6807, 

q=127773, 
m=2147483647, 
r=2836; 

float lo,hi,test; 

hi=floor(seedjq); 
lo=seed-q*hi; 
test=a*lo - r*hi; 
if ( test > 0 ) seed=test; 

else seed= test+m ; 
return(seedjm); 

} 

/*********************************************** 
* my-succ() return the successor processor of * 
* my node processor * 
************************************************/ 

int my_succ(my_node) 
int my_node; 
{ 
int i ; 

if(my node==leaf) { 
- printf("ERRORl\n"); return -1; } 

for (i=O;i<32;i++) 
if (array[i]==my_node){ 

} 
printf("Error in suc\n"); 
} 

return array[i+l); 

/*********************************************** 
* my-pred() retur the predessor processor of * 
* my_node processor * 
************************************************/ 
int my_pred(my_node) 
int my node; 
{ 

86 



int i; 
if (my_node==ROOT) { printf("ERROR2\n"); return -1; } 

for (i=O;i<32;i++) if (array[i]==my_node){ 

} 
printf("Error in prd\n"); 

} 

reurn array[i-1]; 

/************************************************** 
* dump() the buffer communication for testing * 
***************************************************/ 
dump(b) 
buffertype b 
{ 

} 

printf("\n BUFFER: n=%d status=%d\n",b.n,b.tatus); 
printf("pO=%X p1=%X p2=%X 
p3=%X\n",b.p[O],b.p[1],b.p[2],b.p[3]); 

!****************************************************** 
* Menu() is to print user menu and get the desired * 
* function * 
******************************************************* 
menu(x) 
int *x ; 
{ 

87 

printf("\n"); 
printf("**************************************************** 

******\n"); 
printf("* 

*\n"); 
printf("* OPERATION ON 2-3-4 TREES 

*\n"); 
printf("* 

*\n"); 
printf("* 1. initialize the tree randomly. 

*\n"); 
printf("* 2. insert new item starting from root. 

*\n"); 
printf("* 3. insert new item starting from Fingers. 

*\n"); 
printf("* 4. delete an item starting from root. 

*\n"); 
printf("* 5. delete an item starting from Fingers. 

*\n"); 
printf("* 6. Search for an item starting from root. 

*\n"); 
printf("* 7. Search for an item starting from Fingers. 

*\n"); 
printf("* 8. print he tree in in-order traversal. 



*\n") ; 
printf("* 9. Display fingers. 

*\n") ; 
printf("* 10. Print resulting times on the screen. 

*\n); 
printf("* 11. Print resl_ting times on output file. 

*\n"); 
printf("* o. exit from the program. 

*\n") ; 
printf("* 

88 

*\n"); 
printf("**************************************************** 

*****\n\n"); 
printf("Enter the number of required function: "); 
scanf("%d",x); 

} 

if (*x==3 I I *x==5 I I *x==7) fin = 1; /* thru fingers */ 
else fin = o ; /* thru root */ 

/************************************************* 
* initcube() toinitialize all processor at the * 
* beginning of execution * 
**************************************************/ 
initcube(x) 
int x ; 

{ 
treetype *new; 

} 

buf.n = x ; 
buf.p[1] = NULL ; 
csend(INIT,&x,sizeof(x),ROOT,NODE_PID); 
crecv(INITREP,&buf,sizeof(buf)); 
root= bufp[O] ; 

/************************************************** 
* printinorder() for in-order printing of the * 
* 2-3-4 tree. * 
***************************************************/ 

printinorder () 
{ 
int i,j,k,t ; 
buf.p[O] = root; 
buf.p[1] = NULL; 
buf.p[2] = NULL; 
buf.p[3] = NULL; 

t=1000+15*items; 

csend(PRINT,&buf,sizeof(buf),ROOT,NODE_PD); 
for(i=O;i<t;i++) 
for(k=O;k<20;k++) { 

printf(""); /*delay for synchronization*/ 



j=i/2/3/4/5*5*6*7/3/4; 
} 

} 

/**************************************************** 
* checksize() to adjust improper cube size * 
*****************************************************/ 

checksize(i) 
int *i; 
{ 

if ( *i<=2) 
else 

if ( *i<=4) 
else 

if ( *i<=8) 
else 

if ( *i<=16) 
else 

*i 

*i 

*i 

*i 

*i = 32 ; 

} 

= 4; 

= 4; 

= 8; 

= 16; 

!*********************************************** 
* insertpipeline() to pipeline x insertion * 
* operations. * 
************************************************/ 

int insertpipline(x) 
int x ; 

{ 
int i; 

buf.n = x ; 

} 

buf.p[O] = root ; 
buf.fin = o ; 
for(iO;i<lOOO;i++) printf('"'); 

csend(INSERT,&buf,sizeof(buf), 
my_pred(my_pred(my_prd(realroot))),NODE_PID); 

/***************************************************** 
* insert() is to direct the insertion request either * 
* to the root of the tree or to all fingers * 
* the get the responce and return it to the * 
* caller. * 
******************************************************/ 

int insert(x) 
int x ; 

{ 

89 



unsigned long t; 
int i; 

buf.n = x ; 

if ( fin ) { 

90 

buf.status = 2 ; I* insertion code used to find the safe 
node *I 

buf.fin = 1 ; I* indicates that the opertion is thru 
fingers *I 

csend(MULTI_FIN_ACCESS,&buf,sizeof(buf),ALL_NODES,NODE_PID); 
} 

else { 

} 

buf.p[O] = root ; 
buf.fin = 0 ; 
csend(INSERT,&bu,sizeof(buf),ROOT,NODE PID); 

crecv(RESULT,&buf,sizeof(buf)); I* message expected from the 
nodes maintaingthe external nodes, size- *I 

t = buf.time ; 

if (fin) res.insert.with[res.insert.w++] = t; 
else 

res.insert.without[res.insert.wo++] = t; 
return buf.status ; I* which indicate fail or success *I 
} 

I***************************************************** 
* delete() is to direct the deletion request either * 
* to the root of thetree or to all fingers * 
* the get the responce and return it to the * 
* caller. * 
******************************************************I 

delete(x) 
int x ; 

{ 
long t; 

buf.n = x ; 
if ( fin ) { 

buf.status = 3 ; I* deletion code used to findthe safe 
node *I 

buf.fin = 1 il* indicates that the opertion is thru 
fingers *I 

csend(MULTI_FIN_ACCESS,&buf,sizeof(buf),ALL_NODES,NODE_PID); 
} 

else { 
buf.p[O] = root ; 
buf.fin = 0 ; 
csend(DELETE,&buf,sizeof(buf),ROOT,NODE_PID); 



91 

} 
crecv{RESULT,&buf,sizeof{buf)); I* message expected from the 

node maintaing the external nodes, size-1 *I 
t = buf.time 

if {fin) res.delete.with[res.delete.w++] = t; 

else 
res.delete.without[res.delete.wo++] = t; 

return buf.status ; 
} 

I* which inicate fail or success *I 

I***************************************************** 
* search{) is to direct the search request either * 
* to the root of the tree or to all fingers * 
* the get the responce and return it to the * 
* caller. * 
******************************************************I 
search{x) 
int x ; 

{ 
long t; 

buf.n = x ; 
if { fin ) { 

buf. status = 1 ; I* 

buf.fin = 1 il* 

search code used to find the safe 
node *I 

indicates that the opertion is thru 
fingers *I 

csend{MULTI_FIN_ACCESS,&buf,sizeof{buf),ALL_NODES,NODE_PID); 
} 

else { 

} 

buf.p[O] = root ; 
buf.fin = 0 ; 
csend{SEARCH,&buf,sizeof{buf),ROOT,NODE_PID); 

crecv{RESULT,&buf,sizeof{buf)); I* message expected from the 
nodes maintaing the external nodes, size-1 *I 

t = buf.time ; 
if {fin) es.search.with[res.search.w++] = t; 
else 

res.search.ithout[res.search.wo++] = t; 

return buf.status ; 
} 

I* which indicate fail or success *I 



I********************************************* 
* buildtree() is to initialize the tree with * 
* n odes at the beginning * 
**********************************************I 

buildtree () 
{ 
int key ,i; 
I* FILE *pp,*fopen(); *I 

for(i=O; i<200;i++) random(); I* prime the random *I 
printf("\n How many nodes do you need: "); 
scanf("%d",&items) ; 
l*pp=fopen ( "randoms", "w") ; *I 

fin = o ; 
for(i=O;i<items;i++) { 

key = random() * 1000 ; 
l*fprintf(pp," %d\n",key);*l 
insert(key) ; 

I* insertpipline(key ; *I 
if (msgdone(real_id)) 

real_id=irecv(REALROOT,&realroot,sizeof(realroot)); 
} 

} 

res.search.w=O; 
res.search.wo=O; 
res.insert.w=O; 
res.insert.wo=O; 
res.delete.w=O; 
res.delete.wo=O; 
l*fclose(pp) ;*I 

I******************************************************* 
* host main * 
********************************************************I 

main() 
{ 

/* Host main *I 

int i,t,nk, x; 

92 

I* for (i=O;i<32;i++) printf("%d %d\n",i,gray(i));*l 
res.search.w=O; I* initialize the number of *I 
res.search.wo=O; I* operations for the purpose of *I 
res.insert.w=O; I* timings *I 
res.insert.wo=O; 
res.deete.w=O; 
res.delete.wo=O; 



printf("How many nodes do you want'?"); 
gets(nd); 

strcat(nd,"sx"); 
getcube("tree",nd,NULL,l); 
setpid(HOST_PID); 
size = (nd[O] - 'O' ) ; 

93 

if (nd[l] && nd[l]!='s') size= size*lO + nd[l]-'O'; 

checksize(&size); 
leaf = sizel2; 
I* Load all nodes with pid NODE PID. *I 
load "node", ALL_NODES, NODE_PID); 

I* 
* Send message containing number of working 
* node to all nodes. 
*I 

csend(SIZE_TYPE, &size, sizeof(size), 
ALL_NODES, NODE_PID); 

initcube(LARGE); 

I* post asynchronous real root msg *I 
real id=irecv(REALROOT,&realroot,sizeof(realroot)); 
realroot = my_pred(my_ped(leaf)) ; 

do { 
if (msgone (real_id)) { printf ( "REAL=%d\n", real root) ; 

real_id=irecv(REALROOT,&realroot,sizeof(realroot)); 
} 
menu(&x); 
switch (x) { 
case 1 

case 2 
case 3 

case 4 
case 5 

. . 

. . 

prinf("BEFORE INI\n"); 
ini tcube (LARGE) ; 
printf("AFTER INIT\n"); 
buildtree(); 
reak; 

printf("Enter the new key: "); 
scanf("%d",&nk); 
if (insert(nk) ) 

printf("\nThe new item is inserted 
successfully •• \n"); 

else printf("The key is redundant •• \n"); ; 
break 

: pintf ("Enter the element key need to be 
deleted: "); 

scanf("%d",&nk); 
if (delete(nk) ) 

printf("\nThe item is deleted 
successfully •• \n"); 

else printf ("The key does not exist •• \n") ; 
break; 



case 6 
case 7 

case 8 

case 9 

case 

case 

. . 
94 

printf ("Enter the element key need to be 
searched : 11 ); 

scanf( 11 %d 1 &nk); 
if (search(nk) ) 

printf( 11 \nThe item is found •• \n"); 
else printf ("The given key does not 

exist .• \n"); 
break; 
system( 11 rm o.o 11 ); 

printinorder(); 
system("cat o.o11 ); 

break; ' 
csend(DISPFIN 1 1111 1 0 1 ALL_NODES 1 NODE_PID); 
break; 

10 'printf("Search Timing(1) 1 Insert 

11 

Timing(2) 1 11 ); 

printf( 11 Delete Timing(3) 1 All Timing(4) ? 11 ); 

scanf( 11 %d11 1 &t); 
switch (t) { 

case 1 searchtime(res); 
break; 

case 2 inserttime(res); 
break; 

case 3 deletetime(res); 
break; 

case 4 : printresult(res); 
break; 

} 
break; 

. . printf( 11Search Timing(1) 1 

Timing(2) 1 11 ); 

Insert 

printf ( 11 Delete Timing ( 3) 1 All Timing ( 4)? 11 ) ; 

scanf( 11 %d 11 1 &t); 
switch (t) { 

case 1 

case 2 

case 3 

case 4 

} 
break; 

searchtimef(res 1 size); 
break; 
inserttimef(res 1 size); 
break; 

: deletetlmef(res 1 slze); 
break; 
printresultf(res 1 size); 
break; 

case 0: printresult(res); 
break; 

} 
} while (x!=O) ; 

killcube(ALL_NODES 1 ALL_PIDS); 
relcube("tree"); 

} /* End host main */ 



/**************************************************** 
* * 
* 
* 
* 

All the following routines are to format the 
result either on screen or on files * 

* 
* 

*****************************************************/ 

#include <stdio.h> 

typedef struct { 
unsigned long with[lOOO],without[lOOO]; 
int w,wo ; 

}operation; 

typedef struct { 
operation search, 

insert, 
delete; 

} result ; 

printresultf(res,size) 
result res ; 
int size; 
{ 
int i,j,max; 
char fn[20); 
FILE *p,*fopen(); 

printf("Output file?"); 
scanf("%s",fn); 
p = fopen(fn,"w"); 
fprintf(p,"\n The nmber 
%2.0f\n\n",size); 

of working processors 

if (res.search.w > res.insert.w ) max =res.search.w; 
else max=res.insert.w; 

if (res.delete.w > max ) max =res.delete.w; 

95 

is 

fprintf(p,"l--------------1------------------l--------------
-----l\n"); 
fprintf(p,"l SEARCH I INSERT I DELETE 

l\n"); 
fprintf(p,"l--------1-------l--------l-------l--------l----­
-----l\n"); 
fprintf(p,"l with without! with without with 
without l\n"); 
fprintf(p,"l--------l--------l--------l------l--------1----­
-----l\n"); 

for (i=O;i<max;i++){ 
fprintf(p,"l">; 
if ( i< res.search.w) fprintf(p," %3d 



l",res.search.with[i]): 
else fprintf(p," 

if (i< res.search.wo) 
I II) • I I 

fprintf(p," %3d l",res.search.without[i]): 
else fprintf(p," I"); 

if ( i< res.insert.w) 
fprintf(p," %3d l",res.insert.with[i]): 
else fprintf(p," I"); 

if (i< res.insert.wo) 
fprintf(p," %3d l",res.insert.without[i]); 
else fprintf(p," I"); 

if ( i< res.delete.w) 
fprintf(p," %3d 1" 1 res.delete.with[i]): 
else fprintf(p," I"); 

if (i< res.delete.wo) 
fprintf(p," %3d l",res.delete.without[i]); 
else fprintf(p 1 " I"): 

fprintf(p"\n"): -
} 
fclose(p); 
} 

searchtimef(res,size) 
result res : 
int size; 
{ 
int i,j,max; 
char fn[20]; 
FILE *P 1 *fopen(); 

printf("Output file?"); 
scanf("%s",fn); 
p = fopen(fn,"w"); 
fprintf(p,"\n The number 
%2.0f\n\n",size); 

max=res.insert.w; 

of working 

if (res.search.wo > max ) max =res.search.wo; 

processors 

fprintf(p 1 111 -------------------------------------- 1\n"); 
fprintf(p 1 11 1 SEARCH 1\n"); 
fprintf(p,"l------------------- 1------------------1\n"); 
fprintf(p,"l with Fingers I without fingers 1\n"); 
fprintf(p,"!-------------------!------------------ 1\n"); 
for (i=O;i<max;i++){ 
fprintf(p,"l"): 
if ( i< res.search.w) 
fprintf(p," %3d I" ,res.search.with[i]); 

else fprintf(p," 
if ( i< res.search.wo) 
fprintf(p," %3d 

I n) • 
I I 

l",res.search.without[i]); 

96 

is 



else fprintf(p, 11 

fprintf(p,"\n 11 ); 

} 
} 

inserttimef(res,size) 
result res ; 
int size; 
{ 
int i,j,max; 
char fn[20]; 
FILE *p,*fopen(); 

printf("Output file?"); 
scanf("%s",fn); 
p = fopen(fn, 11w11 ); 

fprintf(p, 11 \n The number 
%2oOf\n\n11 ,size); 

max=resoinsertow; 

I II) o 
I I 

of working processors 

if (resoinsertowo > ma ) max =resoinsertowo; 

fprintf(p," 1-------------------------------------- 1 \n11 ); 
fprintf(p, 11 1 INSERT 1\n11 ); 

fprintf(p, 11 ~------------------- 1 ------------------1\n"); 
fprintf(p, 11 1 with Fingers I without fingers 1\n"); 
fprintf(p, 11 !-------------------!------------------!\n11 ); 

for (i=O;i<max;i++){ 
fprintf(p,"l 11 ); 

if ( i< resoinsertow) 
fprintf(p, 11 %3d l 11 ,resoinsertowith[i]); 

else fprintf(p," 
if ( i< resoinsertowo) 
fprintf(p, 11 %3d 

else fprintf(p, 

fprintf(p,"\n"); 
} 
} 
deletetimef(res,size) 
result res ; 
int size; 
{ 
int i,j,max; 
char fn[20]; 
FILE *p,*fopen(); 

I 11) o 

I ' 

l",resoinsertowithout(i]); 

I n) o 
I I 

97 

is 

printf("Output file?");scanf("%s",fn); 
p = fopen ( fn, "w") ; 
fprintf(p,"\n The number of working processors is 
%2o0f\n\n",size); 



max=res.delete.w; 
if {res.delete.wo > max ) max =res.delete.wo; 

fprintf{p," 1-------------------------------------- 1\n"); 
fprintf{p,"l DELETE 1\n"); 
fprintf(p,"l------------------- 1------------------1\n"); 
fprintf{p,"l with Fingers I without fingers 1\n"); 
fprintf{p,"!-------------------1------------------!\n"); 
for {i=O;i<max;i++){ 
fprintf{p,"l"); 
if { i< res.delete.w) 
fprintf{p," %3d l",res.delete.with[i]); 

else fprintf(p," 
if { i< res.delete.wo) 
fprintf{p," %3d 

else fprintf{p," 

fprintf{p,"\n"); 
} 
} 

printresult{res) 
result res ; 
{ 
int i,j,max; 

I II) o I I 

l",res.delete.without[i]); 

I II ) • 
I I 

98 

p r i n t f ( 11 I = % d D = % d s = % d 
\n",res.insert.w,re.delete.w,res.search.w); 
if {res.searchw > res.insert.w ) max =res.search.w; 
else max=res.insert.w; 

if {res.delete.w > max ) max =res.delete.w; 

printf{"l-----------------l------------------1--------------
-----l\n"); 
printf {" I SEARCH I INSERT I DELETE 

l\n"); 
printf("l------l----------l--------l---------l--------l----­
-----1\n"); 
printt(" 1l with I without I with I without I with I 
without \n"); 
printf("!-------1----------l--------l---------l--------l---­
------l\n"); 

for (i=O;i<max;i++){ printf("l">; 
if ( i< res.search.w) 
printf(" %3d l",res.search.with[i]); 
else printf(" I">; 

if (i< res.search.wo) 
printf(" %3d l",res.search.without[i]); 
else printf" I"); 

if ( i< res.insert.w) 
printf(" %3d l",res.insert.with[i]); 



else printf(" l"); 
if (i< res.insert.wo) 
printf(" %3d l",res.insert.without[i]); 
else printf(" "); 

if ( i< res.delete.w) 
printf(" %d l",res.delete.with[i]); 
else printf(" l"); 

if (i< res.delete.wo) 
printf(" %3d l",res.delete.without[i]); 
else printf(" I"); 

printf("\n"); 
} 
} 

searchtime(res) 
result res ; 
{ 
int i,j,max; 
max=res.insert.w; 

if (res.search.wo > max ) max =res.search.wo; 

printf(" 1-------------------------------------- 1\n"); 
printf("l SEARCH 1\n"); 
printf("'------------------- 1------------------'\n"); 
printf( 11 1 with Fingers I without fingers 1\n"); 
printf("l-------------------1-----------------l\n"); 
for (i=O;i<max;i++){ 
printf("l">; 
if ( i< res.search.w) 
printf(" %3d l",res.search.with[i]); 

else printf(" 
if ( i< res.search.wo) 
printf(" %3d 

else printf(" 

printf("\n"); 
} 
} 

inserttime(res) 
result res ; 
{ 
int i,j,max; 
max=res.insert.w; 

I n) • 
I ' 

l",res.search.without[i]); 

I n) • 
I ' 

if (res.insert.wo > max ) max =res.insert.wo; 

printf(" 1-------------------------------------- 1\n"); 
printf("l INSERT 1\n"); 
printf("~------------------- 1 ------------------1\n"); 
printf("l with Fingers I without fingers 1\n"); 
printf("l-------------------1------------------l\n"); 
for (i=O;i<max;i++){ 

99 



printf( 11 111 ); 

if ( i< res.insert.w) 
printf( 11 %3d 

else printf( 11 

if ( i< res.insert.wo) 
printf( 11 %3d 

else printf( 11 

printf( 11 \n"); 
} 
} 

deletetime(res) 
result res ; 
{ 
int i,j,max; 
max=res.delete.w; 

l 11 ,res.insert.with[i]); 

I II) • 
I I 

l 11 ,res.insert.without[i]); 

I II) o 
I I 

if (res.delete.wo > ma ) max =res.delete.wo; 

printf( 111 -------------------------------------- 1 \n11 ); 
printf( 11 1 DELETE !\n11 ); 

printf( 11 ~------------------- 1 -----------------l\n"); 
printf("l with Fingers I without fingers 1 \n"); 
printf("!-------------------1------------------!\n"); 
for (i=O;i<mx;i++){ 
printf( 11 111 ); 

if ( i< res.delte.w) 
printf( 11 %3d l 11 ,res.delete.with[i]); 

else printf( 11 

if ( i< res.delete.wo) 
printf( 11 %3d 

else printf( 11 

printf ( "\n11 ) ; 

} 
} 

I II) • I I 

l 11 ,res.delete.without[i]); 

I ") • 
I ' 

100 



APPENDIX D 

SOURCE CODE OF NODES' PROGRAM 

- 101 
~ 
~ 

~· ., 
~.~ ... 



102 

I* node.c program *I 

#include <stdio.h> 
#include <cube.h> 

HOST PID 
NODE PID 
ROOT 
ALL NODES 
INIT 
SIZE TYPE 
TIME 

I* process id of the host process *I 
I* process id of the node process *I 
I* root node id *I 

I* type of initialization message *I 
I* type of size message *I 
I* type of time message *I 

#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define MY sue 

100 
0 
0 

-1 
0 
1 
2 

3 I* type of sending or receiving from 
successor *I 

#define MY_PRED 4 

5 
6 

#define INSERT 
#define DELETE 
#define INSERTTRANS 
#define DELETETRANS 8 
#define SERCH 9 
#define PRINT 10 
#define INSERTREP 11 
#define DELETEREP 12 
#define INSETTRANSREP 13 
#define DELETETRANSRP 14 
#define RESTORE 15 
#define MULTI_FIN_SEARCH 

#define DISPF 17 
#define REALROOT 18 
#define INITREP 20 
#define RESULT 21 
#define PIPE 22 

I* type of sending or receiving from 
predecessor *I 

I* insert message type *I 
I* delete msg type *I 

I* restore msg type *I 
16 I* operation thru fingers *I 

I* display fingers *I 
I* real root type *I 

I* type of initialization message *I 
I* type of final result message *I 
I* type of pipelining operations *I 

#define LARGE 200000 

I*********************************************************** 
*****I 
I* data types 

*I 
I*********************************************************** 
******I 

typedef struct tree{ I* 2-3-4 tree nodes' structure,s *I 

int key[3] : 
struct tree *child[4] : 
struct tree *parent 
}treetype ; 

. , 



103 

typedef struct { /* buffer is the mean of communication */ 
int n ; 
int status ; 
int fin ; /* when 1 means operation thru fingers */ 

unsigned long time; 
struct tree *p[4] ; 
}buffertype ; 

struct tree *qO,*q1; 

/********************************************************/ 
/* declaration */ 
/********************************************************/ 

treetype *p,*p1,*p11,*np,fsO,fs1 ; 

struct { /* Fingers declarations */ 
int no ; /* number of keys in that node */ 

treetype *point; /* finger pointing to the finger node */ 
} f1,f2; 

buffertype buf,buf1; /* communication buffers */ 
/* asynchronous msg ids */ 

int dispf_id,init_id,in_id,del_id,instrans_id, 
deltrans_idsearch_id,print_id, 
time id,real id,rest id,fin access id; 

int m,m1,n,local; - - -
unsigned line : 

int size ;J* number of nodes which will work on problem */ 
int my_pid, /* process id of the nodes */ 

my_node; /* node id of each node */ 
int busy_pro, /* inidicate weather the processor is 

busy or not*/ 
start_pro, /* 1 if start processor */ 
realroot, /* indicate the real root of the processors */ 
change ; /* 1 if structure has been changed */ 

unsigned long starttime, /* time variables */ 
endtime ; 

int temp=O; 

FILE *fp, *fopen(); 
int small ; 
int colmn=1; 

/* Gray code sequence */ 
int array[32]={0,1,3,2,6,7,5,4,12,13,15,14,10,11,9,8, 

24,25,27,26,30,31,29,28,20,21,23,22,18,19,17,16}; 

/****************************************** 
* copy() is to copy the node p to s * 
*******************************************/ 



copy(s,p) 
treetype *s,*p; 
{ 

int i; 
for(i=O;i<J;i++) 

s->key[i]=p->key[i]; 

for(i=O;i<=J;i++) 
s->child[i] = p->child[i]; 

s->parent = p->parent; 

} 

/****************************************** 
* copybuf() is to copy~the buffer p to s * 
*******************************************/ 

copybuf(s,p) 
buffertype *s,*p; 
{ 

int i; 
s->n = p->n; 
s->status = p->status; 
s->fin = p->fin; 
for(i=O;i<4;i++) 

s->p[i]=p->p[i); 

} 
me(x) 
int x 
{ 
if (my_node==x) 

return 1; 
else return o; 
} 

104 

/******************************************************** 
* leaf() returns TRUE if i is a leaf processor * 
*********************************************************/ 

leaf( i) 
int i ; 
{ 

} 

if (i ==size/2) return 1 ; /* yes you are leaf */ 
else return 0 ; 



/******************************************************** 
* leafpred() returns TRUE if i is a leaf pred processor * 

105 

*********************************************************/ 

leafpred(i) 
int i ; 
{ 
if (i ==1+size/2) return 1 ; /* yes you are the pred of the 

leaf */ 
else return 0 

} 

/******************************************************** 
* indexnode() returns TRUE if i is index processor * 
*********************************************************/ 

indexnode(i) 
int i ; 
{ 

if (!leaf(i) && !leafpred(i) ) 
return 1 ; /* yes you are indexnode */ 

else return 0 ; 
} 

prn(ms) 
char ms[] 
{ 
printf{"Iam%d 

} 

dumpp(b) 
treetype *b ; 
{ 

%s\n",my_node,ms); 

printf("p0=%X p1=%X p2=%X p3=%X\n",b->child[O], 
b->chid[1],b->child[2],b->child[3)); 

p r i n t f { " k o = % d k 1 = % d k 2 = % d 
\n",b->key[O],b->key[1],b->key[2]); 
} 

dump{b) 
buffertype b ; 
{ 

printf("\n BUFFER: n=%d status=%d\n",b.n,b.status); 
p r i n t f ( 11 p 0 = % X p 1 = % X p 2 = % X 

p3=%X\n",b.p[O],b.p[1],b.p[2],b.p[3)); 
} 



/***************************************************** 
* dispf() to display evrey procesor fingers * 
******************************************************/ 

dispf () 
{ 

printf( 11 PRO%d FINGERl: 
real=%d\n" ,my node, fl. no, 

no=%d %d %d 

106 

%d 

fl.point->key[O] ,fl.point->key[l], 
fl.point->key[2],realroot); 
printf( 11 PRO%d FINGER2: , no=%d . . %d %d %d 
real=%d\n",my node,f2.no, 

f.point->key[O,f2.point->key[l], 
f2.point->key[2],realroot); 

dispf_id=irecv (DISPF, '"' ,0) ; 
} 

/************************************************** 
* broadcast() is to brodcast the real root msg to * 
* all other processor and host * 
***************************************************/ 
broadcast(r) 
int r ; 
{ 
csend(REALROOT,&r,sizeof(r),myhost(),HOST_PID); 
csend(REALROOT,&r,sizeof(r),ALL_NODES,NODE_PID); 

} 

/***************************************************** 
* print() controls the printing from that processor * 
*****************************************************/ 

print() 
{ 
int i,j 

if(leaf(my_node)) { 

} 

fp = fopen("o.o","a"); 
if (!fp) printf("ERROR FP\n\n"); 
for(i=O;i<4;i++) 

if (buf.p[i]) 
fprintf(fp,"%3d ",buf.p[i]->key[O]); 

if (++colmn>4) { 

} 

colmn=l; 
fprintf(fp,"\n"); 

else fprintf(fp," "); 
fclose(fp); 

else { 



107 

for(i=O;i<4;i++) 
if (buf.p[i]) { 

for(j=O;j<4;j++) 
buf1.p[j]=buf.p[i]->child[j] ; 

csend(PRINT,&buf1,sizeof(buf1),my_succ(),NODE_PID); 
} 

} 
print_id=irecv(PRINT,&buf,sizeof(buf)); 

} /* print */ 

/*********************************************** 
* search() is to ontrol the searching at the * 
* current processor level * 
************************************************/ 
search() 
{ 

/* send to the leaf the start time of this operation*/ 

if (my_node==ROOT && !buf.fin){ 
starttime=mclock(); 

} 

} 

if ( !local && buf.fin && busy_pro) { 
search_id=irecv(SEARCH,&buf,sizeof(buf)): 
return ; 

if (leaf(my_node)) busy_pro=O; 
else 
busy_pro = 1 ; 

if (leaf(my_node)) { 

} 
else 

if (buf.n==buf.p[O]->key[O]) 
buf.status = 1 ;J* success */ 

else buf.status = O; /* fail */ 
csend(TIME,&buf,sizeof(buf),ROOT,NODE_PID); 

if(buf.n<=buf.p[O]->key[O]) { 

} 

buf1.p[O] = buf.p[O]->child[O] ; 
buf1.n = buf.n ; 
buf1.fin = buf.fin; 
csend(SEARCH,&buf1,sizeof(buf1),my_succ(),NODE_PID); 

else if(buf.n<=buf.p[O]->key[1]) { 

} 

buf1.p[O]= buf.p[O]->child[1] ; 
buf1.n = buf.n ; 
buf1.fin = buf.fin; 
csnd(SEARCH,&buf1,sizeof(buf1),my_succ(),NODE_PID); 

else if(buf.n<=buf.p[O]->key[2]) { 
buf1.p[O] = buf.p[O]->child[2] ; 
buf1.n = buf.n ; 
buf1.fin = buf.fin; 
csend(SEARCH,&buf1,sizeof(buf1),my_succ(),NODE_PID); 

} 
else { /* greater than the third key */ 



108 

buf1.p[O] = buf.p[O]->child[3] ; 
bufl.n = buf.n ; 
buf1.fin = buf.fin; 
csend(SEARCH,&buf1,sizeof(buf1),my_succ(),NODE_PI); 

} 
if (!local) 

search_id=irecv(SEARCH,&buf,sizeof(buf)); 

} I* search *I 

I***************************************************** 
* insertleaf() is a spcial insertion routine for the * 
* leaf processQr * 
*******************************************************I 

insertleaf () 
{ 
treetype *q; 

if ( buf.p[O] ) 
if ( buf.n== buf.p[O]->key[O]) { 

buf.p[O] = NULL ; 

csend(INSERTREP,&buf,sizeof(buf),my_pred(),NODE_PID); 

} 

buf.status = o ; I* fail *I 
csend(TIME,&buf,sizeof(buf),ROOT,NODE_PID); 
ins id=irecv(INSERT,&buf,sizeof(buf)); 
eturn; 

q = (treetype *)malloc(sizeof(treetype)); 
if ( !q) printf("Memory Overflow\n\n\n"); 

if (buf.p[O]){ 
f (buf.p[O]->key[O] < buf.n ) 

q->key[O] = buf.n ; 
else { 

q->key[O]=buf.p[O]->key[O] ; 
buf.p[O]->key[O = buf.n ; 

} 
buf. = buf.p[O]->key[O] ; 
buf.status = 1 ; 

} 
else { 

} 

q->key[O] = buf.n 
buf.status = 4 ; 

buf.p[O] = q ; 

. 
' I* first item *I 

csend(INSERTREP,&buf,sizeof(buf),my_pred(),NODE_PID); 
buf.status = 1 ; I* success *I 
csend(TIME,&buf,sizeof(buf),ROOT,NODE_PID); 

ins id=irecv(INSERT,&buf,sizeof(buf)); 
} I* ins leaf- *I 



109 

/************************************************** 
* insert() is to control the insertion at the * 
* current processor level. * 
* A transformation is made if necessary * 
* by communicating with the successor * 
* processor * 
***************************************************/ 

insert() 
{ 

/* send to the leaf the start time of this operation*/ 
if (my_node==ROOT && !buf.fin){ 

} 

starttime=mclock(); /* the start time will be computed 
at leaf*/ 

if (leaf(my_node)) { 
isertleaf() ; 
return ; 

} 

busy_pro = 1 ; 
if (my_node==ROOT && buf.p[O]->child[3]) { 

} 

printf (\n\n\n TREE IS FULLLLLLLLL\n\n\n\n11 ) ; 

return; 

buf1.fin = buf.fin ; /*to propagate the type of search*/ 
if(buf.n<=buf.p(O]->key(O]) { 

buf1.p[O] = buf.p(O]-child[O] ; 
buf1.n = buf.n ; 

if ( indexnode(my_node)) { 
csend(INSERTTRANS,&buf1,sizeof(buf1),my_succ(), 

NODE PID); 
crecv(INSERTTRANSREP,&buf1,sizeof(buf1)); 

} 

else 
if (leafpred( my_node)) { 
csend(INSERT,&buf1,sizeof(bufl),my_succ(), 

NOD_PID); 
crecv(INSERTREP,&buf1,sizeof(buf1)); 

} 
if (buf1.status==10 ) { /* we should stop */ 

if (!local) 
ins_id=irecv(INSERT,&buf,sizeof(buf)); 
buf1.status = O; 
return; 

} 

if(buf1.p(O]) { /*there should bet max 2 keys */ 
change = 1 ; 
if(buf.p(O]->child[3]) 

printf( 11 ERROR INSERT 4 pointers?\n"); 
if (buf.p[O]->child[1]==NULL){ 

realroot = my_node ; 



} 

} 

broadcast(realroot); 
} 

buf.p[O]->key[2] = buf.p[O]->key[l] ; 
buf.p[O]->key[1] = buf.p[O]->key[O] ; 
buf.p[O]->child[J] = buf.p[O]->child[2] ; 
buf.p[O]->child[2] = buf.p[O]->child[l] ; 
if (buf1.status==4) 

buf.p[O]->child[O] = buf1.p[O] ; 
else { 

} 

buf.p[O]->key[O] = buf1.n ; 
buf.p[O]->child[1] = buf1.p[O] ; 

if ( f1.point==buf.p[O]) 
f1.no++; 

else change = O; I* there is no change *I 

110 

else if(buf.n<=buf.p[O]->key[l]) { 
buf1.p[O] = buf.p[O]->child[l] ; 
buf1.n = bu.n ; 

} 

if ( indexnode(my_node)) { 
csend(INSERTTRANS,&buf1,sizeof(buf1),my succ(), 

NODE PID); -
crecv(INSERTTRANSREP,&buf1,sizeof(buf1)); 

} 
else 
if ( leafpred(my_node)) { 
csend(INSERT,buf1,sizeof(bufl),my_succ(), 

NODE PID) ; 
crecv(INSERTREP,&buf1,sizeof(buf1)); 

} 
if (buf1.status==10 ) { I* we should stop *I 

buf1.status = O; 

} 

if (!local) 
ins_id=irecv(INSERT,&buf,sizeof(buf)); 
return; 

if(bufl.p[O]) { 

} 

change = 1 ; 
if(buf.p[O]->child[J]) 

printf("ERROR INSERT 4 pointers?\n"); 
buf.p[O]->key[2] = buf.p[O]->key[1] ; 
buf.p[O]->key[1] = buf1.n ; 
buf.p[O]->child[J] = buf.p[O]->child2] ; 
if (buf1.status==4) 
buf.p[O]->child[1] = buf1.p[O] ; 
else 
buf.p[O]->child[2] = buf1.p[O] ; 
if ( fl.point==buf.p[O]) 

f1.no++; 

else change = O; I* there is no change *I 



else { I* greater than key[1] *I 
buf1.p[O] = buf.p[O]->child[2] : 
bufl.n = buf.n : 

if ( indexnode(my_node)) { 
csend(INSERTTRANS,&buf1,sizeof(buf1,my_succ(), 

NODE PID); 
crecv(INSERTTRANSREP,&buf1,sizeof(buf1)); 

} 
else 
if ( leafpred(my_node)) { 
csend(INSERT,&buf1,sizeof(buf1),my_succ(), 

NDE PID); 
crecv(INSERTREP,&buf1,sizeof(buf1)); 

} 
if (buf1.status==10 ) { I* we should stop *I 

buf1.status = O; 

} 

if (!local) 
ins_id=irecv(INSERT,&buf,sizeof(buf)); 
return; 

if(bufl.p[O]) { 
change = 1 ; 
if(buf.p[O]>child[3]) 

111 

printf("ERROR INSERT 4 pointers?\n"); 
buf.p[O->key[2] = buf1.n : 

} 

} 

if buf1.status==4) 
buf.p[O]->child[2] = buf1.p[O] : 
else 
buf.p[O]->child[3] = buf1.p[O] ; 
if ( f1.point==buf.p[O]) 

fl. no++; 

else change =O; I* there is no change *I 

if ( indexnode(my node)) { 
I* Now send insert message *I 

buf.status = o : I* useful! for restore *I 

if(buf.n<=buf.p[O]->key[O]) 
buf1.p[O] = buf.p[O]->child[O] ; 

else if(buf.n<=buf.p[O]->key[1]) 
buf1.p[O] = buf.p[O]->child[1] ; 

else if(buf.n<=buf.p[O]->key[2]) 
buf1.p[O] = buf.p[O]->child[2] ; 

else I* greater than the third key *I 
buf1.p(O] = buf.p[O]->child[3] ; 

buf1.n = buf.n ; 
csend(INSERT,&buf1,sizeof(buf1),my_succ(),NODE_PID); 

} I* is < size -2 *I 
if (!local) 

ins id=irecv(INSERT,&buf,sizeof(buf)); 
} I* insert *I 



I***************************************************** 
* inserttrans() is to make a transformation of * 
* splitting the full node to two nodes* 
* and give the result to predecessor * 
******************************************************I 

inserttrans() 
{ 

buf1.status = 0 ; 
if ( buf1.fin && busy_pro) { 

112 

buf1.status = 10 ; 
csend(INSERTTRANSREP,&buf1,sizeof(buf1),my_pred(),NODE_PID); 

instrans id=irecv(INSERTTRANS,&buf1,sizeofbuf1)); 
return ; 

} 
copybuf(&buf,&buf1); 

if (buf.p[O]->chid[3]==NULL){ 
change = O; 
buf.p[O] = NULL; 

} 
else { 

change = 1 ; I* we made a change *I 
p = (treetype*)malloc(sizeof(treetype)); 
p->key[O] = buf.p[O]->key[2] ; 
p->key[1] =LARG ; 
p->key[2] = LARGE; 
p->child[O] = buf.p[O]->child[2] ; 
p->child[1] = buf.p[O]->child[3] ; 
p->child[2] = NULL; 
p->child[3] = NULL; 
buf.n = buf.p(O]->ky[1] ; 
buf.status = ; 
buf.p[O]->key[1] = LARGE; 
buf.p[O]->key[2] = LARGE; 
buf.p[O]->child[2] = NULL; 
bu.p(O]->child[3] = NULL; 
p->parent = buf.p[1] ; 

I* update fingers if necessary *I 
I* left finger cannot be change in insert *I 

if ( f2.point==buf.p[O]) 
f2.point = p ; I* change right finger *I 

buf.p(O] = p ; 
} 

csend(INSERTTRANSREP,&buf,sizeof(buf),my_pred(),NODE_PID); 
instrans id=irecv(INSRTTRANS,&buf1,sizeof(buf1)); 

} I* inserttrans *I 



113 

/************************************************** 
* delete() is to centro the deletion at the * 
* urrent processor level. * 
* A transformation is made if necessary * 
* by communicating with the successor * 
* processor. * 
***************************************************/ 
delete() 
{ 
int sent ; 

/* send to the leaf the start time of this operation*/ 
if (my_node==ROOT && !buf.fin){ 

starttime=mclock(); 
} 

if (leaf(my_node)) { 
buf.status = 0 ; 
if (buf.p[O] ) 

if (buf.p[O]->key[O]==buf.n) { 
free(buf.p[O]); 
buf.status = 1 ; /* no error */ 

} 

csend(DELETEREP,&buf,sizeof(buf),my_pred(),NODE_PID); 
csend(TIME,&buf,sizeof(buf),ROOT,NODE_PID); 
if (!local) 

del_id=irecv(DELETE,&buf,sizeof(buf)); 
return; 

} /*leaf */ 

busy_pro = 1 ; 

sent = 0 ; /* 1 indicate that we sent the delete msg */ 
buf1.fin = buf.fin ; /*tp propagate the type of search*/ 

/* start p[O] */ 
if(buf.n<=buf.p[O]->key[O]) { 

buf1.status = 0 ; /* the main is the first */ 
buf1.p[O] = buf.p[O]->child[O] ; 
bufl.p[l] = buf.p[O]->child[l ; 
bufl.n = buf.p[O]->key[O] ; 

if ( leafpred(my_node ) I I buf.p[O]->child[l]==NULL) { 
buf1.n = buf.n ; 
csend(DELETE,&bufl,sizeof(buf1),my_succ(), 

NODE PID) ; 
sent = 1 ;-/* we sent delete message */ 
if (leafpred(my_node)) { 
crecv(DELETEREP,&buf1,sizeof(bf1)); 
if (bufl.status) { /* no error */ 

buf.p[O]->key[O] = buf.p[O]->key[1] ; 
buf.p[O]->key[1] = buf.p[O]->key[2] ; 
buf.p[O]->key[2] = LARGE; 
buf.p[O]->child[O] = buf.p(O]->child[l] ; 
buf.p[O]->child[l] = buf.p(O]->child[2] ; 
bf.p[O]->child[2] = buf.p[O]->child[3] ; 



} 
} 

} 

buf.p(O]->child[3] = NULL; 
if ( f1.point==buf.p(O]) 

f1.no--; 

else { 
I* indexnode *I 

csend (DELETETRANS, &bU:f1, sizeof (buf1) , my _succ () , 
NODE PID); 

crecv(DELETETRANSREP,&buf1,sizeof(buf1)); 

if (buf1.status==10 ) { I* we should top *I 
buf1.status = O: 

} 

if (!local) 
del_id=irecv(DELETE,&buf,sizeof(buf)); 
return; 

switch (buf1.status) { 
case o : I* No transformation ook place *I 

change = O; I* there is no change *I 
break; 

case 1 : I* two node have been merged *I 
change = 1 ; 

buf.p(O]->key(O] = buf.p(O]->key(1] : 
buf.p[O]->key(1] = buf.p(O]->key[2] : 
buf.p[O]->key(2] = LARGE : 
buf.p[O]->child[1] = buf.p[O]->child[2] : 
buf.p[O]->child[2] = buf.p[O]->child[3] ; 
buf.p[O]->child[3] = NULL; 

if ( f1.point==buf.p[O]) 
f1.no--; 

if (buf.p[O]-child[1]==NULL){ 
realroot = my_node : 

} 
break; 

broadcast(realroot); 

114 

case 2 : I* one pointer is added from neighbor of 3*1 
cae 3 : I* one pointer is added from neighbor of 4*1 

I* either cases change the splitting key *I 

buf.p[O]->key[O] = buf1.n; 
if ( f1.point==buf.p[O]) 

f1.n--; 
change = 1 ; 

break ; 
} I* end switch *I 

} I* ndexnode *I 

} I* p[O] *I 

else 
if(buf.n<=buf.p[O]->key(1]) { 



115 

buf1.status = 2 ; I* means the main is the second *I 
buf1.p[O] = buf.p[O]->child[O] ; 
buf1.p[1] = buf.p[O->child[1] ; 
buf1.n = buf.p[O]->key[O] ; 

if ( leafpred(my_node) I I bf.p[O]->child[1]==NULL) { 
bufl. n = buf. n ; 
buf1.p[O] = buf.p[O]->child[1] ; 
csend(DELETE,&buf1,sizeof(buf1),my succ(), 

NODE_PID); -
sent = 1 ; I* we sent delete message *I 
if (lefpred(my_node)) { 
crecv(DELETEREP,&buf1,sizeof(buf1)); 
if (buf1.status) { I* no error *I 

} 
} 

buf.p[O]->key[1] =buf.p[O]->key[2] ; 
buf.p[O]->key[2] = LARGE; 
buf.p[O]->child[1] = buf.p[O]->child[2] ; 
buf.p[O]->child[2] = buf.p[O]->child[3] ; 
buf.p[O]->child[3] = NULL; 

if ( f1.point==buf.p[O]) 
f1.no--; 

} 
else 
if ( indexnode(my_node)) { 

csend(DELETETRANS,&buf1,sizeof(buf1),my_succ(), 
NODE_PID) ; 

crec(DELETETRANSREP,&buf1,sizeof(buf1)); 

if (buf1.status==10 ) { I* we should stop *I 
buf1.status = O; 

} 

if (!local) 
del_id=irecv(DELETE,&buf,sizeof(buf)); 
return; 

switch (buf1.status) { 
case 0 I* No transformation took place *I 

change = 0; I* there is no change *I 
break; 

case 1 : I* two nodes have been merge *I 
change = 1 ; 

buf.p[O]->key[O] = buf.p[O]->key[1] ; 
buf.p[O]->key[1] = buf.p[O]->key[2] ; 
buf.p[O]->key[2] = LARGE ; 
buf.p[O]->child[1] = buf.p[O]->child[2] ; 
buf.p[O]->child[2] = buf.p[O]->child[3] 
buf.p[O]->child3] = NULL; 

if ( f1.point==buf.p[O]) 
f1.no--; 

break; 
case 2 I* one pointer is added from neighbor of 3*1 
case 3 : 1 * one pointer is added from neighbor of 4 *I 

I* either cases change the splitting key *I 
change = 1 ; 



buf.p[O]->key[O] = buf1.n; 
if ( f1.point==buf.p[O]) 

f1.no--; 
break ; 

} I* end switch *I 
} I* indexnode *I 

} I* p[1] *I 

else 
if(buf.n<=buf.p[O]->key[2]) { 

buf1.status = 2 ; 
buf1.p[O] = buf.p[O]->child[1] ; 
buf1.p[1] = buf.p[O]->child[2] ; 
buf1.n = buf.p[O]->key[1] ; 

116 

if ( leafpred(my_node) I I buf.p[O]->child[1]==NULL) { 
buf1.p[O] = buf.p[O]->child[2] ; 
buf1.n = buf.n ; 
csend(DELETE,&buf1,sizeof(buf1),my succ(), 

NODE PID); -
sent = 1 ; J* we sent delete message *I 
if (leafpred(my_node)) { 
crecv(DELETEREP,&buf1,sizeof(buf1)); 
if (buf1.status) { I* no error *I 

} 
} 

buf.p[O]->key[1] = buf.p[O]->key[2]; 
buf.p[O]->key[2] = LARGE ; 
buf.p[O]->child[2] = buf.p[O]->child[3]; 
buf.p[O]->child[3] = NULL; 

if ( f1.point==buf.p[O]) 
f1.no--; 

} 
else 
if ( indexnode(my_node)) { 

csend(DELETETRANS,&buf1,sizeof(buf1) ,my_succ(), 

NODE PID); 
crecv(DELETETRANSREP,&buf1,sizeof(buf1)); 

if (buf1.status==10 ) { I* weshould stop *I 
buf1.status = O; 

} 

if (!local) 
del_id=irecv(DELETE,&buf,sizeof(buf)); 
reurn; 

switch (buf1.status) { 
case 0 : I* No transfomation took place *I 

change = O; I* there is no change */ 
break; 

case 1 : I* two nodes have been merged */ 
change = 1 ; 

buf.p[O]->key[1] = buf.p[O]->key[2] ; 



buf.p[O]->key[2] = LARGE ; 
buf.p[O]->child[2] = buf.p(O]->child[3] ; 
buf.p[O]->child[3] = NULL; 

if ( f1.point==buf.p[O]) 
fl.no--; 

break; 

117 

case 2 : I* one pointer is added from neighbor of 3*1 
case 3 : I* one pointer is added from neighbor of 4*1 

I* either cases change the splitting key *I 
change = 1 

buf.p[O]->key[1] = buf1.n; 
if ( f1.point==buf.p[O]) 

fl. no--; 
break ; 

} I* end switch *I 
} I* indexnode *I 

} I* p[2] *I 

else I* greater than key(2] */ 
if{!buf.p[O]->child[3]) printf("ERRR3456"); 
else { 

buf1.status 3 ; 
bufl.p[O] = buf.p[O]->child[2] ; 
bufl.p[l] = buf.p[O]->child[3] ; 
buf1.n = buf.p[O]->key[2] ; 

if ( leafpred(my_node) I I buf.p[O]->child[l]==NULL) { 
bufl.p[O] = buf.p[O]->child[3] ; 
bufl. n = buf. n ; 
csend(DELETE,&buf1,sizeof(buf1),my_succ(), 

NODE PID); 
sent = 1 ; f* we sent delete message *I 
if (leafpred{my_node)) { 
crecv(DELETEREP,&buf1,sizeof(buf1)); 
if (buf1.status) { I* no error *I 

buf.p[O]->key[2] = LARGE ; 
buf.p[O]->child[3] = NULL; 

} 
} 

} 
else 

if ( f1.point==bu.p[O]) 
fl.no--; 

if ( indenode(my_node)) { 
csend(DELETETRANS,&buf1,sizeof(bufl),my_succ(), 

NODE PID); 
crecv(DELETETRANSREP,&bufl,sizeof(bufl)); 

if (bufl.status==lO ) { I* we should stop *I 
bufl.status = O; 

} 

if (!local) 
del_id=irecv(DELETE,&buf,sizeof(buf)); 
return; 



switch (buf1.status) { 
case 0 : I* No transformation took place *I 

hange = 0; I* there is no change *I 
break; 

case 1 I* two nodes have been merged *I 
change = 1 ; 
buf.p[O]->key[2] = LARGE ; 
buf.p[O]->child[3] = NULL; 

if ( f1.point==buf.p[O]) 
fl. no--; 

break; 

118 

case 2 
case 3 

I* one pointer is added from neighbor of 3*1 
I* one pointer is added from neighbr of 4*1 
I* either cases change the splitting key *I 

change = 1 ; 
buf.p[O]->key[2] = buf1.n; 

if ( f1.point==buf.p[O]) 
f1.no--; 

break ; 
} I* end swtch *I 

} I* indexnode *I 

} I* p[3] *I 
if ( indexnode(my node) && sent==O) { 

I* Now send delete message if we did not sent before */ 

if(buf.n<=buf.p[O]->key[O]) { 
buf1.p[O] = buf.p[O]->child[O] ; 
buf1.p[1] = buf.p[O]->child[1] ; 
buf.status = 1; 

} 
else if(buf.n<=buf.p[O]->key[1]) { 

} 

buf1.p[O] = buf.p[O]->child[1] ; 
buf1.p[1] = buf.p[O]->child[O] ; 
buf.status = 2; 

else if(buf.n<=buf.p[O]->key[2]) { 

} 

buf1.p0] = buf.p[O]->child[2] 
buf1.p[1] = buf.p[O]->child[1] ; 
buf.status = 2; 

else { I* greater than the third key *I 
buf1.p[O] = buf.p[O]->child[3] ; 
buf1.p[1] = buf.p[O]->child[2] ; 
buf.status = 2; 

} 
buf1.n = buf.n ; 
csend(DELETE,&buf1,sizeof(buf1),my_succ(),NODE_PID); 

} I* ndex node *I 
I* when my_node <size -1 *I 

if (!local) 
del id=irecv(DELETE,&bufsizeof(buf)); 
} /* delete *I 



119 

I***************************************************** 
* deletetrans() is to make a transformation of * 
* merging to underfull nodes to one * 
* full node, or borrrow one pointers * 
* from neighbor if it has more than 3 
* and give the result to predecessor * 
******************************************************I 

deletetrans () 
{ 

if ( buf1.fin && busy_pro) { 
buf1.status = 10 ; 

csend(DELETETRANSREP,&buf1,sizeof(buf1),my_pred),NODE_PID); 
deltrans_id=irecv(DLETETRANS,&buf1,sizeof(buf1)); 

return ; 
} 

copybuf(&buf,&buf1); 

switch (buf.status) { 
case o 
case 1 

if (buf.p[O]->child[2] ){ 
change = O; 
buf1. status = o; I* it has more than two 

ponters *I 
} 

else { I* it has only two pointers *I 
change = 1 ; I* we made a change 

if ( buf.p[1]->child[2] ) { 
*I 

I* pring one pointer from neighbor *I 
buf.p[O]->key[1] = buf.n ; 

I* 

buf1.n = uf.p[1]->key[O] ; 
bu.p[O]->child[2] = buf.p[1]->child[O] ; 

buf.p[O)->child[2]->parent 
buf.p[O]->child[O)->parent;*l 

buf.p[1)->child[O] = buf.p[1]->child[1] ; 
buf.p[1]->child[1] = buf.p[1]->child[2] ; 
buf.p[1]->child[2] = buf.p[1]->child[3] ; 
buf.p[1]->child[3) = NULL; 
buf.p[1]->key[O] = buf.p[1]->key[1] ; 
buf.p[1]->key[1] = buf.p[1]->key[2] ; 
buf.p[1]->key[2] = LARGE; 
buf1.status = 2 ; 
if(buf.p[O]==f.point) f1.no++; 
else 

if(buf.p[1)==f1.point) f1.no--; 
} 

else { I* he neighbor has also two *I 
I* So, merge *I 

buf.p[O]->key[1] 
buf.p[O]->key[2] 

= buf.n ; 
= buf.p[1]->key[O] ; 

= 



120 

buf.p[O]->child[2] = buf.p[1]->child[O]; 
I* buf.p[O]->child[2]->parent = 

buf.p[O]->child[O]->parent;*l 
buf.p[O]->child[3] = buf.p[1]->child[1]; 

I* buf.p[O]->child[3]->parent = 
buf.p[O]->child[O]->parent;*l 

I* update fingers if necessay *I 
I* left finger cannot be change in delete *I 
if (f2.point==buf.p[1]) f2.point = buf.p[O]; 

if ( f2.point==buf.p[1]) 
f2.point = buf.p[O] ; I* change right finger *I 

} 

free(buf.p[1]); 
free ( buf.p[l]) ; 
bufl.status = 1 ; 
buf1.p[O] buf.p[O] ; 

} I* else needs trans *I 

csend(DELETETRANSREP,&bufl,sizeof(buf1),my_pred(),NODE_PID); 
break; 

case 2 
case 3 

if (buf.p[l]-child[2] ){ 
change = O; 

} 

bufl.status = O; I* it has more than to 
pointers *I 

else { I* it has only two pointers *I 
change=l; 

if ( buf.p[O]->child[2] ) { 
I* left nieghbor has more than two *I 
I* pring one pointer from neighbor *I 

buf.p[1]->key[l] = bf.p[l]->key[O] ; 
buf.p[1]->key[O] = buf.n ; 
buf.p[l]->child[2] = buf.p[1->child[l] ; 
buf.p[1]->child[l] = buf.p[l]->child[O] ; 
if (buf.p[O]->chid[3]) {I* four pointers *I 

bul.n = buf.p[O]->key[2] ; 
buf.p[1]->child[O]=buf.p[O]->child[3]; 
buf.p[O]->key[2] = LARGE; 
buf.p[O]->child[3] = NULL; 

} 
else 
{ I* three pointers *I 

} 

buf1.n =buf.p[O]->key[1] ; 
buf.p[1]->child[O] = buf.p[O]->child[2]; 
buf.p[O]->key[1] = LARGE; 
buf.p[O]->child[2] = NULL; 

I* buf.p[1]->child[O]->parent = 
buf.p[l]->child[l]->parent;*l 

bufl.status = 2 ; 
if(buf.p[l]==f1.point) f1.no++; 



else 
if(buf.p[O]==f1.point) f1.no--; 

} 
else { /* the neighbor has also two */ 

/* So, merge */ 

121 

buf.p[O]->key[1] = buf.n ; 
buf.p[O]->key[2] = buf.p[1]->key[O] ; 
buf.p[O]->child[2] = buf.p[l]->child[O]; 

/* buf.p[O]->child[2]->parent = 
buf.p[O]->child[O]->parent;*/ 

buf.p[O]->child[3] = buf.p[1]->child[1]; 
/* buf.p[O]->child[3]->parent = 

buf.p[O]->child[O]->prent:*/ 

/* update fingers if necessary */ 
/* left finger cannot be change in delete */ 

if ( f2.point==buf.p[1]) 
f2.point = buf.p[O] ; /*change right finger*/ 

free ( buf.p[1]) : 
buf1.status = 1 ; 

buf1.p[O] = buf.p[O] ; 
} 

} /* else needs trans */ 

csend(DELETETRANSREP,&bufl,sizeof(buf1),my_pred(),NODE_PID); 
break; 

} /* end case */ 
deltrans_id=ircv(DELETETRANS,&buf1,sizeof(buf1)): 

} /* deletetrans */ 

/************************************************* 
* multi-fin-access() is to be' activated when the * 
* current processor receive a msg from host to * 
* perform the given operation through fingers * 
**************************************************/ 

multi_fin_access() 
{ 
buf.p[O] = NULL ; 
busy_pro = 0 ; /* initially none of the processors is busy*/ 
start_pro= 0 ; 
if (my_node==ROOT) starttime=mclock(); 
if (!leaf(my_node)){ 
/* check the left finger for this processor */ 

if ( ( buf.n<=fl.point->key[O]) &&/*it subtends the key*/ 
( buf.status==2 && f1.oint->child[3]==NULL II /* it 

is save */ 
buf. status==3 && (realroot==my _node ll 

f.point->child[2]) l l 
buf.status==1 ) ) 



122 

buf.p[O] = f1.point ; I* start the operation from 
this finger */ 

else 
if ( ( buf.n>=f2.point->key[O]) && I* it subtends the 

key*/ 
f2.point->child[3]==NULL I I /* it 

is save*/ 
( uf.status==2 && 

buf.status==3 && (relroot==my node I I 
f2 . point->child [ 2] >ll 

buf.status==1 ) ) 
buf.p[O] = f2.point ; I* start the operation from 

this finger */ 

if ( buf.p[O] ) { 
change = o 
start_pro= 1 ; 
local = 1; 

switch (buf.status) { 
case 1 searh(); 

break; 
case 2 insert(); 

break; 
case 3 delete(); 

break; 
} 

} 
} /* not leaf */ 

fin_access_id=irecv(MULTI_FIN_SEARCH,&buf,sizeof(buf)); 
} /* end multi fin access */ 

/**********************************************************/ 
f*check_mailbox() is to monitore the asynchronous messages*/ 
/*if there any message call the operations handler */ 
/* simulating hrecv() system call. and call the desired */ 
/* routine */ 
/**********************************************************/ 

check mailbox() 

{ 
long ty,no; 
local = o ; 
if (msgdone(init_id)) 

initcube(); 
if (msgdone(ins_id)) 

insert () ; 
if (msgdone(del_id)) 

delete(); 
if (msgdone(search_id)) 

search() ; 
if (msgdone{print_id)) 

print(; 



} 

if (msgdoe(fin_access_id)) 
multi fin access(); 

if (msgdone(real_id)) 
real_id=irecv(REALROOT,&realroot,sizeof(realroot)); 

/* do nothing; the realroot will get the value */ 

if ( !leaf(my node)) { 
if (msgdone(instrans id)) 

inserttrans() ;-
if (msgdone(deltrans_id)) 

deletetrans); 
if (msgdone(dispf_id)) 

dispf(); 
} 

if(my_node==ROOT) 
if(mgdone(time id)) { 
endtime = mclock(); 
buf.time = endtime - starttime; 
csend(RESULT,&buf,sizeof(buf),myhost(),HOST_PID); 
time id = irecv(TIME,&buf,sizeof(buf)); 

} 

/**************************************************** 
* initcube(),when a processor receive INIT msg, * 
* it will activate this routine to initialize the * 
* 2-3-4 tree in the current level. * 
*****************************************************/ 
initcube() 
{ 

line= o ; 
realroot = size/2+1; 

f1.point = NLL; 
f2.point = NULL; 
small = buf.n; 
if ( !leaf(my_node)) { 

p=(treetype *)malloc(sizeof(treetype)); 
p->key[O] = buf.n ; 
p->key[1] = buf.n ; 
p->key[2] = buf.n ; 
p->parent = buf.p[l] ; 
p->child[O] = NULL; 
p->child[l] = NULL; 
p->child[2] = NULL; 
p->child[3] = NULL; 

fl.point = p ; 
f2.point = p ; 
buf.p[O] = p ; 

123 

if (my node==ROOT) 
- csend(INITREP,&buf,sizeof(buf),myhost(),HOST_PID); 

else 
csend(INITREP,&buf,sizeof(buf),my_pred(),my_pid); 

if ( !leaf(my_node)) { 



} 
} 

} 

} 

buf.p[l] = p ; I* parent *I 
csend(INIT,&buf,sizeof(buf) ,my_succ(),my_pid); 

if (!leafprd{my node)) { 
crecv{INITREP,&buf,sizeof{buf)); 
p->child[O] = buf.p[O] ; 

init id =irecv{INIT,&buf,sizeof(buf); 

124 

I********************************************************* I 

main() 
{ I* Node main *I 

int tm,j,i,t; 
my_pid = mypid(); I* Get process id. *I 
my_node = mynode(); I* Get node number. *I 

I* 
* Receive message containing number of working 
* nodes. 
*I 

crecv(SIZE_TYPE, &size, sizeof{size)); 

if (my_node <size){ 
crecv(INIT,&buf,sizeof(buf)); 

*I 

initcube () ; 
ins id=irecv(INSERT,&buf,sizeof(buf)); 
del=id=irecv(DELETE,&uf,sizeof(buf)); 
search_id=irecv(SEARCH,&buf,sizeof{buf)); 
print id=irecv(PRINT,&buf,izeof(buf)); 
fin_access_id=irecv(MULTI_FIN_SEARCH,&buf,sizeof(buf)); 
real_id=irecv(REALROOT,&realroot,sizeof(realroot)); 

if ( !leaf(my_node)) { 
dispf_id=irecv(DISPF,"",O); 

I* 
rest id=irecv(RESTORE,&temp,sizeof(temp)); 

} 

instrans id=irecv{INSERTTRANS,&bufl,sizeof(buf)); 
deltrans=id=irecv(DELETETRANS,&bufl,sizeof(bufl)); 

if {my_node==ROOT) 
time id = irecv(TIME,&buf,sizeof(buf)); 



for(;;) /*this is infinite loop to check the incoming 
messages and perform the desired tasks */ 

check_mailbox() ; 

} /* End if I am working node */ 
} /* main */ 

int my succ ( ) 
{ 
int i ; 
if(leaf(my_node)) { 

printf("ERROR1\n"): return -1; } 
for (i=O;i<32;i++) 
if (array[i]==my_node){ 

return array[i+1]; 
} 

printf("Error in suc\n"); 
} 

int my __pred ( ) 
{ 
int i; 

if (my_node==ROOT) { printf("ERROR2\n"); return -1; } 

for (i=O;i<32;i++) 
if (array[i]==my_node){ 

} 
printf("Error in rd\n"); 
} 

return array[i-1]; 

125 



VITA 

Abdulkader A. Al-fantookh 

Candidate for the Degree of 

Master of Science 

Thesis: IMPLEMENTATION OF A FAMILY OF 2-3-4 TREES IN THE 
HYPERCUBE 

Major Field: Computer Science 

Biographical: 

Personal Data: Born in Riyadh, Saudi Arabia, July 1, 
1961, the son of Al-fantookh A. and Alfuriah N. 

Education: Received Bachelor of Science Degree in 
Computer Science form King Saud University at 
Riyadh, Saudi Arabia in May, 1988; Completed 
requirements for the Master of Science degree at 
Oklahoma State University in May, 1992. 

Professional Experience: Teaching Assistant , Department 
of Computer Science, King Saud University, July 
1988, to June 1989. A student member of the ACM and 
Saudi Computer Society. 


