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CHAPTER 1

INTRODUCTION

Quantum imaging is a newly born branch of quantum optics that investigates the ulti-

mate performance limits of optical imaging allowed by the laws of quantum mechanics.

Using the methods and techniques from quantum optics, quantum imaging addresses

the questions of image formation, processing and detection with sensitivity and res-

olution exceeding the limits of classical imaging. Particularly, the manipulation of

quantum entanglement has found enormous potential for improving performances

in the techniques of quantum imaging such as quantum interferometry, lithography,

microscopy and geometrical optics. Similar improvements have led to new types of

high-precision measurement, which can be grouped under quantum sensing or quan-

tum metrology. In this chapter, we give a brief introduction and survey to the systems

and technologies of quantum imaging and sensing.

1.1 QUANTUM IMAGING AND SENSING SYSTEMS

1.1.1 Quantum interferometry

Interferometry is one of the most fundamental and widely used methods to detect

the interference between two or more waves. In addition to its fundamental scientific

importance, interferometry is widely used in all kinds of optical imaging and sensing

applications. On the other hand, the concept of quantum interference gives a deeper

and more general understanding of the interference phenomena in physics. It demon-

strates the wave nature of massive particles more than anything else. The impact of

quantum interference on light experiments is associated with the quantization of the
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field where the energy of a light mode is quantized to be multiples of a basic unit, the

photon energy. For light, the quantum effects become apparent, for example, when

performing experiments with single photons. When one is dealing with such parti-

cles, interferometry cannot be described by the superposition of waves, as in classical

optics, and a different description of interferometry is required. Therefore, we need

a quantum interference method which is capable of utilizing the states of light that

can only be described in a quantized fashion. Quantum interferometry is the field of

quantum optics implementing the quantum interference phenomena utilizing states

which can be described only in a quantum mechanical way.

f
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Figure 1.1: The optical interferometer by using (a) one-port coherent source |α〉in,

and (b) two-port correlated source. In (b), the path entangled N -photon state

( 1√
2
[|N0〉AB + |0N〉AB]) between the two beam splitters (BS) is a superposition of N

photons altogether being in mode A or in mode B. For N = 2, the input state |ψ〉in
would be |11〉in.

In a conventional optical interferometer (see Fig. 1.1(a)), in which light in a co-
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herent state enters via only one port, the minimum phase sensitivity, ∆φ, scales as

1/
√

N , where N is the number of photons passing through the interferometer per

unit time. However, if carefully prepared quantum correlations are engineered be-

tween the photons entering through the two input ports (see Fig. 1.1(b)), then the

interferometer sensitivity improves by a factor of
√

N , to scale like 1/N , which is the

limit imposed by the Heisenberg Uncertainty Principle. This favorable scaling with N

means that, for large numbers of photons, a dramatic improvement in measurement

sensitivity should be possible. This may be of great importance in a number of areas

of physics including, for example, the detection of gravitational waves. In addition to

the increased phase measurement precision, quantum correlated photons can increase

the resolution of the interference pattern by using a special detection scheme. This

super-resolution increases the image quality by increasing the number of distinguish-

able bright points or number of pixels per unit area. This is classically limited by

the wavelength of the light source. In quantum interferometry, by using N quantum

entangled photons at a time, the number of pixels can be increased N2-times that of

uncorrelated ones.

1.1.2 Quantum interferometric lithography and microscopy

The classical resolution limit was established by Rayleigh at the end of the nineteenth

century and it states that the resolution in an optical system is limited by diffraction

on its optical elements due to the wave nature of light. According to this criterion,

two closely spaced points at the input of the optical system cannot be resolved if the

distance between them is smaller than λ/4 where λ is the wavelength of the light. In

optical-lithographic semiconductor etching techniques, the Rayleigh diffraction limit

puts a lower bound on the feature size that can be printed on chip. It is, in principle,

possible to work with shorter wavelengths. However, such an approach introduces

other problems. The optical elements working in the UV and X-ray regions of the
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spectrum is technologically and commercially difficult to produce and the problems

become worse the shorter you go. Therefore, at this point, one may ask the question

of how to beat the limit set by the Rayleigh criterion. Recent developments in the

quantum imaging techniques has shown that the limit of resolution also depends on

the strong non-local correlation properties of the light used to image the system. It has

been shown that the classical diffraction limit in lithography can be circumvented by

the use of path-entangled photon number states [1]. If N photons are path-entangled

in a special superposition state, [|N0〉+ |0N〉] /√2 (also known as NOON state, see

Fig. 1.1(b)), and if the recording medium responds by N -photon absorption, features

of size λ/4N can be written into the material. That is, the geometric distance between

the two points that can be distinguished according to the Rayleigh limit is now N

times smaller than the classical case. As a consequence, we can in principle read and

write much smaller features with this technique. The proof-of-principle experiments

displaying various aspects of this technique have been reported [2, 3].

1.1.3 Quantum metrology and precision measurements

Quantum metrology is the study of making high-resolution (super-resolution) and

highly sensitive (super-sensitivity) measurements of physical parameters using quan-

tum theory to describe the physical systems, particularly exploiting quantum entan-

glement [4]. It promises to develop measurement techniques that give better precision

than the same measurement performed in a classical framework. Many precision mea-

surements can be reformulated in terms of a phase measurement. For example, one

can send light through a medium with an unknown index of refraction n to induce a

phase shift φ = 2πL(n − 1)/λ, with λ the wavelength of the light and L the length

of the medium. This phase shift can be measured relative to a reference beam in a

Mach-Zehnder interferometer. When L and λ are known with very high precision,

one can infer the index of refraction with an accuracy that is proportional to the
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error in phase. The next question is, how well one can measure φ given a quantum

state |ψ(φ)〉 which has the phase φ as a dynamical parameter. That is, we want

an expression for the error, ∆φ, in the phase. For a coherent state input having N

photons on average, one can reach an optimum accuracy of ∆φ = 1/
√

N , which is the

standard quantum limit or shot noise limit. However, it is found that this limit is not

fundamental and the sensitivity of phase measurement depends on the nonclassical

correlation properties of the input state. For example, if N photons are utilized in a

NOON state superposition, by choosing a suitable measurement operator, one can

obtain a phase measurement accuracy of ∆φ = 1/N . This phase sensitivity, which

is inversely proportional to the total number of photons involved, is known as the

Heisenberg limit and it is proven to be the fundamental (unsurpassable) quantum

limit for the phase measurement [5]. This
√

N precision enhancement of the entan-

gled sources over the classical ones is related to the fact that the entangled states

can evolve faster than the unentangled configurations employing the same sources

[6]. Quantum metrology is not unique to photonic states, it can be realized in any

physical system that can be described in a quantum mechanical fashion.

1.1.4 Quantum non-distortion interrogation and ghost imaging

Quantum imaging has led to some other important breakthroughs as well, such as the

possibility of imaging without interaction (non-distortion interrogation) and repro-

ducing “ghost” images in a non-local manner: In non-interactive quantum imaging

(sensing), using single photons in an interferometric setting, it is possible to image or

detect an object, without a photon actually interacting with the object. Hence, one

can see what something looks like, without shining any light on it. This result has

been born out in a series of experiments by P. Kwiat and A. Zeilinger [7, 8]. On the

other hand, in ghost imaging, the idea is to make use of entangled photons to form an

image of an inaccessible object. One of the two entangled beams of light illuminates

5



the object. The other beam, by a correlation measurement, produces the image non-

locally without interacting with the object. The phenomenon of ghost imaging was

first demonstrated experimentally by Pittman et al. in 1995 [9]. Since then, the field

has evolved to the point of the development of practical applications which exploit

the greater resolution and nonlocal behavior of ghost imaging. Currently, there is

an intense technological and experimental effort to bring these breakthrough ideas of

quantum imaging into practicality for realistic problems.

1.2 PARAMETRIC DOWN CONVERSION AS A SOURCE OF

QUANTUM IMAGING AND SENSING

The process of spontaneous parametric down conversion (SPDC) has been a work

horse for the last two decades in understanding a variety of issues in quantum physics

and in applications in the field of quantum imaging [10, 11, 12, 13, 14]. It is a process

that is used to produce light possessing strong quantum features. Photon pairs gen-

erated by this process show entanglement with respect to different physical attributes

such as time of arrival and states of polarization [14, 15]. They are increasingly being

utilized for very basic experiments to test the foundations of quantum mechanics and

to do quantum information processing [14, 16]. It is also recognized that entangled

photon pairs could be useful in many practical applications in precision metrology in-

volving, e.g., interferometry [17, 18, 19, 20], imaging [9, 21], lithography [1, 2, 22, 23],

and spectroscopy [24].

Roughly speaking, down conversion is the conversion of a pump photon into signal

and idler photons within a nonlinear medium. Crystals of a certain chemical structure,

such as BBO (Beta Barium Borate), LBO (Lithium Barium Borate), or KDP (Dihy-

drogen Phosphate), have the property of optical nonlinearity, which means that the

polarizability of these crystals depends on the square (or higher powers) of an applied

electric field. The practical outcome of this property is that, when passing through

6
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Figure 1.2: Parametric down-conversion with different phase matching conditions.

(a) Type-I non-collinear geometry, (b) Type-II collinear geometry and (c) Type-II

non-collinear geometry.

such a crystal, a single-parent photon splits (down-converts) into a pair of daughter

photons (signal and idler). The probability that this event occurs is extremely small;

on average, it happens to only one out of every 10 billion photons. When the down-

conversion does occur, energy and momentum are conserved (equivalently known as

the frequency and phase-matching conditions):

ωp = ωs + ωi, kp = ks + ki, (1.1)

where ωj,kj (j = s, i, p) are the frequency and wavevector of the signal (s), idler

(i), and pump (p) photons. The daughter photons have lower frequencies than the

parent photon and emerge from the crystal on opposite sides of a cone that is centered

about the direction traveled by the parent. In Type-I phase matching the daughters

emerge from a specifically oriented crystal with identical polarizations that are aligned

perpendicular to the parent polarization—see Fig. 1.2(a). For the case when the signal

and idler photons have orthogonal polarizations (one “H” and one “V ”), then the

down-conversion is Type-II—see Fig. 1.2(b) and Fig. 1.2(c).

The light produced from the down-conversion process is emitted from the crystal in

cones centered around the pump beam direction. The orientation of the pump beam

7



polarization with respect to the optical axis of the crystal determines the direction a

particular wavelength will be emitted. The signal and idler photons are both emitted

into their own cones, and if the cones are tangential to one another then the down-

conversion is known as collinear—see Fig. 1.2(b). If the cones are spatially separated

from one another then the down-conversion is called non-collinear—see Fig. 1.2(c).

By increasing or decreasing the angle of the optical axis with respect to the pump

beam polarization, one can increase or decrease the angle of separation of the two

cones.

1.3 A TOUR THROUGH THIS WORK

Quantum entanglement plays a central role in the works of this dissertation. We can

describe entanglement as a strong and inherently nonclassical correlation between

two or more distinct physical systems. The quantum superposition principle says

that “if an event can be realized in two or more distinguishable ways, the state of the

system is a superposition of each way simultaneously”. In this sense, the quantum

entanglement is the superposition principle applied to certain nonlocal correlations:

“If a correlation can be realized in two or more indistinguishable ways, the state of

the system is a superposition of all such correlations simultaneously”. It was first

described in 1935 by one of the pioneers of quantum theory, Erwin Schrödinger, as

“the distinguishing inherited characteristic of quantum mechanics” [25] and it was

positioned at the heart of the famous EPR-paradox [26]. For many years, entan-

gled states were considered the subject of philosophical arguments or were used only

in experiments aimed at investigating the fundamental foundations of physics. For

more than a decade, however, entangled states have become a central resource in the

emerging field of quantum information science, which can be defined as the applica-

tion of quantum physics phenomena to the storage, communication and processing

of information. Quantum imaging offers numerous exciting opportunities in the area

8



of quantum information due to an intrinsic parallelism of optical image processing.

In fact, it was shown in [27] that these two fields were two manifestations of the

same principles. A quantum logic gate–the building block of a quantum computer

and an optical Mach-Zehnder interferometer–the basic system of optical imaging, are

formally equivalent and they represent the same phase measurement of a quantum

system in two different realizations.

There are various approaches to quantum imaging and sensing in terms of the

entangled sources of light. This dissertation focuses on the systems of quantum

imaging and sensing using the sources of quantum-correlated photon-pairs produced

by the process of parametric down-conversion. We present new theoretical results for

enhancing the resolution and sensitivity of photon-photon correlation measurements

in three different systems.

In the introduction chapter we give a brief overview of the systems of quantum

imaging and sensing. First we introduce the standard limitations of the conventional

imaging and sensing techniques using classical sources of light. Then we briefly out-

line the novelty of using quantum-correlated photons in interferometry, lithography,

metrology and geometrical imaging.

In chapter 2, we show how the entangled photons produced by parametric down

conversion can be used to improve the sensitivity of a Sagnac interferometer. The

resolution of the Sagnac phase shift by the measurements of two-photon and four-

photon coincidences increases by a factor of two and four respectively.

The entangled photon pairs have also very promising applications in quantum

magnetometry. In chapter 3, we propose a method of measuring magnetic fields with

increased resolution by using the magneto-optical rotations (MOR) of polarization

entangled photon pairs. We demonstrate how the improvement in magneto-optical

rotation of light could be realized by employing two different schemes with collinear

and noncollinear down-conversion geometries. We calculate the resolution that can be
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achieved in the MOR both by the use of coherent light and down-converted light. We

discuss the possibility that the Heisenberg limit could be reached in magnetometry

by the use of down-converted light.

In chapter 4, for a Mach-Zehnder type interferometer, we propose a new idea

of using stimulated parametric processes along with spontaneous ones to produce

resolution improvement while at the same time maintaining high visibility at large

gains of the parametric process. We use coherent beams at the signal and the idler

frequencies for the stimulation. We further show enhancement of the count rate by

several orders when stimulated parametric processes are used. Both the two photon

counts and the visibility can be controlled by the phases of the stimulating coherent

beams.

Chapter 5 particularly focuses on the minimum phase sensitivity limit. We ad-

dress the question of fundamental quantum limit in the phase sensitivity with the

stimulated parametric down-conversion source which is proposed in chapter 4. We

analyze the minimum phase uncertainty in a Mach-Zehnder type interferometer em-

ploying three different measurement schemes and compare the results with the stan-

dard quantum limit that is set for coherent sources.

In chapter 6 we summarize our results and give an outlook for the future possibil-

ities to improve the ideas. Some appendices follow at the end where we present most

of the longer calculations.
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CHAPTER 2

SAGNAC INTERFEROMETRY WITH ENTANGLED PHOTONS

2.1 INTRODUCTION

When two electromagnetic waves counter-propagate along a circular path in rotation

they experience different travel times to complete the path. This induces a phase shift

between the two counter-propagating waves proportional to the angular velocity of the

rotation. This phase difference is known as the Sagnac effect [28] and in addition to its

scientific importance, it has numerous practical applications such as the detection and

high-precision measurement of rotation. It was studied and used in optics only with

lasers until the new work [29] where they demonstrated the single-photon interference

in the fiber Sagnac interferometer using spontaneous parametric down conversion as

the source of single photons. However, it turns out that the results of interference

are no different than with classical sources. This is also true of many interferometric

experiments done at the single photon level [30, 31, 32]. Thus a natural question

would be—what is the nature of interference if we replace the single photon source

by an entangled photon pair source. This is what we examine in detail. We find that

the sensitivity of a Sagnac interferometer could be considerably improved by using

correlated photons [19, 20]. We thus bring the Sagnac interferometer in the same

class as other experiments on imaging [9, 21], lithography [1, 2, 22, 23, 33, 34] and

spectroscopy [24].

Parametric down conversion (PDC) is the predominant mechanism for experi-

mentalists to create entangled photon pairs as well as single photons. Multi-photon

entangled states produced in the down-conversion process are often used in quan-

11



tum information experiments and applications like quantum cryptography and the

Bell inequalities. In particular, demonstrations of two-photon [12, 13, 35, 36] and

four-photon [37, 38] interferences are holding promise for realizable applications with

entanglement-enhanced performance. The principle of this enhancement lies in the

fact that “the photonic de Broglie wavelength” [39] of an ensemble of photons with

wavelength λ and number of photons n can be measured to be λ/n using a special in-

terferometer. Further Steuernagel [40] has proposed the measurement of the reduced

de Broglie wavelength of two- and four-photon wave packets.

In this chapter, we present an analysis of how parametric down converted photons

could be useful to increase the rotation sensitivity in Sagnac interferometers. The

results show two- and four-fold increase in the sensitivity which can be interpreted as

a sign of two- and four-photon interference effect. The organization of the chapter is

as follows. The Sagnac ring interferometer is described in section 2.2 and the Sagnac

phase shift is derived. In section 2.3, we analyze interference results with classical

and quantum inputs. We compare the results obtained from entangled photon pairs

input with classical and single-photon inputs. We show how the two-photon and

four-photon coincidences increase the sensitivity in the phase shift. The visibility

of the counts is also discussed. We conclude the chapter in section 2.4 with a brief

discussion of the disturbances that can effect the transmission of modes in fibers.

2.2 THE SAGNAC INTERFEROMETER

The Sagnac interferometer consists of a ring cavity around which two laser light beams

travel in opposite directions on a rotating base. One can form an interference pattern

by extracting and heterodyning portions of the two counter-propagating beams to

detect the rotation rate of the ring cavity relative to an inertial frame. The position

of the interference fringes is dependent on the angular velocity of the setup. This

dependence is caused by the rotation effectively shortening the path distance of one

12



beam, while lengthening the other. In 1926, a Sagnac interferometer has been used

by Albert Michelson and Henry Gale to determine the angular velocity of the Earth.

It can be used in navigation as a ring laser gyroscope, which is commonly found on

fighter planes, navigation systems on commercial airliners, ships and spacecraft.

W

P
2

P

1
P

R

Figure 2.1: Schematics of a Sagnac ring interferometer.

The Sagnac effect [28] can be understood by considering a circular ring interfer-

ometer like the one shown in Fig. 2.1. The input laser field enters the interferometer

at point P and is split into clockwise (CW) and counterclockwise (CCW) propagating

beams by a beam splitter. If the interferometer is not rotating, the beams recombine

at point P after a time given by

t =
2πR

c
, (2.1)

where R is the radius of the circular beam path. However, if the interferometer is

rotating with angular velocity Ω, about an axis through the center and perpendicular

to the plane of the interferometer, then the beams reencounter the beam splitter at

different times. The transit times to complete one round trip for CW (t2 at point P2)

and CCW (t1 at point P1) are given by,

t1 =
2πR

c + RΩ
, (2.2)
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t2 =
2πR

c−RΩ
. (2.3)

Then one round trip time delay between the two beams is the difference

∆t = t2 − t1 =
4πR2Ω

c2 −R2Ω2
. (2.4)

For non-relativistic perimeter speeds (i.e. reasonable values of R and Ω), R2Ω2 ¿ c2,

∆t =
4πR2Ω

c2
. (2.5)

The angular phase difference between the two counter propagating waves, the Sagnac

effect, can be written as,

φ = ω∆t =
8π

λ c
AΩ , (2.6)

where λ is the wavelength, c the light velocity in vacuum, A the interferometer area

and Ω the angular velocity of the interferometer. A more general approach [42, 43, 44]

shows that the phase shift does not depend on the shape of the interferometer and

it is proportional to the flux of the rotation vector Ω through the interferometer

enclosed area. Then one can increase the flux by using a multi-turn round-trip path

like utilizing an optical fiber. In terms of the total length of the optical fiber, L, we

can recast Eq. (2.6) into

φ =
4πLRΩ

λ c
. (2.7)

Eq. (2.7) shows that the phase shift induced by rotation of a Sagnac fiber ring inter-

ferometer increases linearly with the total length of the optical fiber.

2.3 THE SAGNAC INTERFEROMETER WITH CLASSICAL AND

QUANTUM INPUTS

2.3.1 Classical input

We now consider the Sagnac fiber ring interferometer setup shown in Fig. 2.2. The

two input ports 1 and 2 are mixed by a 50/50 beam splitter and sent through a
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Figure 2.2: The Sagnac interferometer setup with classical input. The input field Ein

is separated by the beam splitter into two counter-propagating waves tEin and rEin.

Because of the rotation they end up at the beam splitter at different times (t1, t2).

rotating loop of fiber in the opposite direction. Then the beams recombine at the

beam splitter and come out from the ports they entered. The rotation induces the

phase difference φ given by the Eq. (2.7). If we choose the transmission and reflection

coefficients of the beam splitter as t = 1/
√

2 = t′, r = i/
√

2 = r′ then the entire setup

transforms the input field Ein into the output fields E1 and E2 by

E1 = r′rEine−iωt2 + t2Eine−iωt1 = Eine−iωt2ieiφ/2 sin(φ/2), (2.8)

E2 = rtEine−iωt1 + t′rEine−iωt2 = Eine−iωt2ieiφ/2 cos(φ/2), (2.9)

where ω is the frequency of the input field. The intensity measurements at the

detectors D1 and D2 becomes

I1 = |E1|2 = |Ein|2 sin2(φ/2), (2.10)

I2 = |E2|2 = |Ein|2 cos2(φ/2), (2.11)

respectively.
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Figure 2.3: The equivalent optical network diagram of the Sagnac interferometer for

quantized fields. “ φ ” represents the phase shift provided by the rotating loop of the

interferometer. The detectors D3 and D4 with the extra beam splitters (dashed lines)

are to be used for four-photon coincidence counting.

2.3.2 Quantum inputs

Now we analyze the results with quantized fields. Fig. 2.3 shows the equivalent

optical network diagram of the interferometer. We denote â1 and â2 as the input

mode operators. The two beam splitters represent double-use of the actual beam

splitter. The output modes b̂1 and b̂2 are related to the input modes by




b̂1

b̂2


 =

1√
2




1 i

i 1




︸ ︷︷ ︸
BSout




1 0

0 eiφ




︸ ︷︷ ︸
SAGNAC

1√
2




1 i

i 1




︸ ︷︷ ︸
BSin




â1

â2


 ,

= ieiφ/2



− sin(φ/2) cos(φ/2)

cos(φ/2) sin(φ/2)







â1

â2


 , (2.12)

where the global phase ieiφ/2 can be dropped. The use of a half-wave plate (HWP )

is required when the input ports have polarizations orthogonal to each other. Now
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the input and output modes are related to each other by the linear transformation,

b̂i =
2∑

j=1

Sij âj, (2.13)

where the matrix S of the coefficients Sij is known as the scattering matrix associated

with the network. In fact, Eq. (2.13) refers to the Heisenberg picture, where the

state vectors are constant while operators evolve. Therefore, without knowing the

Hamiltonian that describes the evolution by the unitary operator U on the state

vectors, by using the dynamics of the operators

âi → b̂i =
2∑

j=1

Sij âj ≡ U †âiU, (2.14)

â†i → b̂†i =
2∑

j=1

S∗ij â
†
j ≡ U †â†iU, (2.15)

one can calculate the probabilities for detecting certain numbers of photons at certain

outputs.

Now, let us analyze the rotation sensitivity to the phase shift “ φ ” for some Fock

state inputs. We denote n-photons in mode â1 and m-photons in mode â2 by |nm〉.
First, we begin with the input state |10〉, that is a single incident photon in mode â1

with the other mode in vacuum state. The output state can be written as

U |10〉 = Uâ†1|00〉 = Uâ†1U
†U |00〉 = Uâ†1U

†|00〉. (2.16)

The last equality results from the fact that the interferometer has no effect on the

vacuum |00〉. Although we are in the Schrödinger picture, it is perfectly valid to use

Eq. (2.15) with the substitution U → U † ≡ U−1. This implies S → S† resulting in

Uâ†iU
† =

2∑

j=1

Sjiâ
†
j. (2.17)

If we substitute Eq. (2.17) into Eq. (2.16) and use the scattering matrix given by Eq.

(2.12), we find

U |10〉 = − sin(φ/2)|10〉+ cos(φ/2)|01〉, (2.18)
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up to an overall phase. Similarly we can calculate

U |11〉 =
1√
2

sin(φ)(−|20〉+ |02〉) + cos(φ)|11〉, (2.19)

where the input is a pair of photons, one at each of the ports 1 and 2.

2.3.3 Single-photon input vs. two-photon input

The Heisenberg picture is convenient for computing the expectation values of photon

numbers. For the single photon input |10〉, the intensities at the detectors D1 and D2

read

I1 ≡ 〈b̂†1b̂1〉 = sin2(φ/2), (2.20)

I2 ≡ 〈b̂†2b̂2〉 = cos2(φ/2), (2.21)

whereas for the two-photon input |11〉, we have the single-photon counts at each

detector 〈b̂†1b̂1〉 = 1 = 〈b̂†2b̂2〉, i.e. there is no interference. On the other hand, by

using Eq. (2.12), we can calculate the two-photon coincidences at the detectors D1

and D2,

I12 ≡ 〈b̂†1b̂†2b̂2b̂1〉 = cos2(φ), (2.22)

which has a two-fold increase in the fringe pattern. This is also clear from the

Schrödinger evolution of the state given by Eq. (2.19). The reason of this two-fold

increase lies in the fact that when the two photons, one from each input port, enter

into the loop, they transform into the following two-photon path-entangled state,

|11〉 → |20〉+ |02〉√
2

→ |20〉+ ei2φ|02〉√
2

, (2.23)

which shows a two-fold reduction in the wavelength of source photons. This was

nicely demonstrated in the experiment [36] using photon pairs (biphotons) generated

by spontaneous PDC.
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2.3.4 Entangled photon pairs

We now discuss how the results given by Eqs. (2.10) and (2.11) are modified under

conditions of arbitrary pumping, if we work with down-converted photons. To avoid

coupling losses to a fiber, entangled photon pairs can also be generated inside a fiber

at telecom wavelengths. This has been demonstrated by Kumar and coworkers [41].

The state produced in nondegenerate parametric down conversion can be written as

|ψ〉 =
1

cosh g

∞∑

n=0

(−eiθ tanh g)n|n〉1|n〉2. (2.24)

This state can be generated mathematically by applying the two-mode squeeze opera-

tor Ŝ = exp(ρ∗â1â2−ρâ†1â
†
2) on the vacuum, where ρ = geiθ is the complex interaction

parameter (also known as the squeezing parameter) proportional to the nonlinearity

of the crystal, the pump amplitude and the crystal length. The polarizations of pho-

ton pairs in the noncollinear type-I and the collinear type-II down-conversion are the

same and orthogonal respectively. At first glance, it is easy to see that this state

is nonseparable (≡ entangled) to a product of states of mode 1 and mode 2. It is

already in Schmidt-decomposed form with a Schmidt number higher than 1 for g > 0,

which is a measure of entanglement [45]. Moreover one can calculate the Entropy of

Entanglement [46], E = −Tr2ρ log2 ρ as a function of g,

E = cosh2 g log2(cosh2 g)− sinh2 g log2(sinh2 g). (2.25)

The amount of entanglement given by Eq. (2.25) is approximately linear in g showing

that the state in Eq. (2.24) is fully entangled for g →∞.

When the input modes are in the state given by Eq. (2.24) the output detectors

D1 and D2 read the single counts

I1 ≡ 〈b̂†1b̂1〉 = sinh2 g = 〈b̂†2b̂2〉 ≡ I2, (2.26)

which does not give any information on the rotation. On the other hand, the two-

photon coincidence count, after subtracting independent counts, normalized over the
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product of single counts at each detector becomes,

g2
12 =

〈b̂†1b̂†2b̂2b̂1〉
〈b̂†1b̂1〉〈b̂†2b̂2〉

− 1 = cos2(φ) coth2 g, (2.27)

which is twice more sensitive to the rotation than the result in Eq. (2.20) with 100%

visibility. The signal itself depends on g and it is most significant when g ≈ 1. The

regime with an interaction parameter value of g = 1.39 has already been reached in

the experiment [47].

On the other hand, we can employ a different measurement—the projective mea-

surement,

P2 = Tr[|11〉〈11|ρ(φ)] ≡ |〈11|U |ψ〉|2

=
tanh2 g

cosh2 g
cos2(φ), (2.28)

which is the probability of detecting two photons, one at each detector operating in

coincidence. Here the state ρ(φ) = U |ψ〉〈ψ|U † is the evolved density matrix corre-

sponding to the state given in Eq. (2.24). This probability can be easily calculated

by utilizing the Schrödinger picture evolution of the state vector |11〉 given in Eq.

(2.19). The expression in Eq. (2.28) is a pure two-photon interference term since the

phase runs twice faster than the source photons. Thus, the two-photon coincidences

by using the state in Eq. (2.24) shows two-fold increase in the sensitivity of the phase

measurement.

The next question is—can we increase the sensitivity further by measuring higher

order coincidences? We suggest employing four single-photon detectors Di (i =

1, 2, 3, 4) as depicted in Fig. 2.3. We note that in a recent experiment [48] the tomog-

raphy of the Fock state |2〉 was done by letting the two photons propagate in different

directions and by using single photon detectors. For detection of multi-photons, it

is easier to use single photon detectors. We examine the coincidence of clicking of

four detectors, i.e. the probability of the state |1D̂1
1D̂3

1D̂2
1D̂4

〉 where D̂i’s denote the

modes that go into the corresponding detectors. This requires the state in modes
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Figure 2.4: Normalized four-photon probability in coincidence in 2-by-2 (solid line)

and 3-by-1 (dashed line) detection scheme described by Eqs. (2.32) and (2.34) respec-

tively.

b̂1 and b̂2 before the beam splitters BS1 and BS2 to be in a four-photon subspace.

We now outline this calculation. The four-photon coincidence detection probability

is given by

P4 = |〈1D̂1
1D̂3

1D̂2
1D̂4

|UBUS|ψ, 0v̂10v̂2〉|2

= 〈1D̂1
1D̂3

1D̂2
1D̂4

|UBUS|ψ, 0v̂10v̂2〉〈ψ, 0v̂10v̂2|U †
SU †

B|1D̂1
1D̂3

1D̂2
1D̂4

〉, (2.29)

where the state |ψ, 0v̂10v̂2〉 represents the tensor product of the state (2.24) with the

vacuum ports v1 and v2 at the beam splitters BS1 and BS2. The unitary operators

US and UB represent the evolution of the states inside the Sagnac interferometer and

the two beam splitters BS1 and BS2 respectively. First, we begin by calculating the

inverse evolution

U †
B|1D̂1

1D̂3
1D̂2

1D̂4
〉 = U †

BD̂†
1D̂

†
3D̂

†
2D̂

†
4UBU †

B|0000〉

= (t∗1b̂
†
1 + r′∗1 v̂†1)(t

∗
2b̂
†
2 + r′∗2 v̂†2)(r

∗
1 b̂
†
1 + t′∗1 v̂†1)(r

∗
2 b̂
†
2 + t′∗2 v̂†2)|0000〉
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= t∗1t
∗
2r
∗
1r
∗
2 b̂
†2
1 b̂†22 |0000〉+ . . . , (2.30)

where we take only four-photon state in modes b̂1 and b̂2 because other terms are irrel-

evant in our calculation. Here the ti’s and ri’s are the transmittance and reflectance

coefficients of the beam splitters BSi (i = 1, 2). Next, we operate U †
S on the resultant

state above,

U †
St∗1t

∗
2r
∗
1r
∗
2 b̂
†2
1 b̂†22 |0000〉 = t∗1t

∗
2r
∗
1r
∗
2U

†
S b̂†21 b̂†22 USU †

S|0000〉

= t∗1t
∗
2r
∗
1r
∗
2

(
− sin(φ/2)â†1 + cos(φ/2)â†2

)2

×
(
cos(φ/2)â†1 + sin(φ/2)â†2

)2 |0000〉

=
(

1

2
sin(φ)(−â†21 + â†22 ) + cos(φ)â†1â

†
2

)2

|0000〉

=
1

2
[1 + 3 cos(2φ)]|2200〉+ . . . , (2.31)

where we use the transformation given by Eq. (2.12) between the modes â1, â2 and

b̂1, b̂2. In the last line of Eq. (2.31) the first two modes are â1 and â2, while the last

two modes are the vacuum modes of the beam splitters BS1 and BS2. In the last line

of Eq. (2.31) we take only the state which has equal number of photons in modes â1

and â2 because the input state |ψ〉 is a pair photon state which is given in Eq. (2.24).

Therefore the absolute square of the inner product of the resultant state given in the

Eq. (2.31) with |ψ, 0v̂10v̂2〉 gives us the four-photon coincidence probability

P4 =
tanh4 g

cosh2 g
|t1t2r1r2|2 1

4
[1 + 3 cos(2φ)]2. (2.32)

The result given by Eq. (2.32) shows a reduction in the period of fringes by developing

smaller peaks as depicted in Fig. 2.4. The phase sensitivity shows a four-fold increase

with respect to the result in Eq. (2.20) obtained by single-photon input.

The four-photon coincidence detection can be done in an alternative way as de-

picted in figure 2.5. Here, three of the four photons are to be detected in the upper

output channel b̂1 while the fourth one goes into the detector placed in the lower

output channel b̂2. This time, we place the two extra beam splitters BS1 and BS2 to
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Figure 2.5: The Sagnac interferometer setup for four-photon coincidence detection in

3-by-1 scheme.

split up the three photons into single photons before they arrive at the detectors D1,

D2 and D3. Now, we begin with the evolution of the four-photon subspace term |22〉
provided by the input state |ψ〉,

|22〉 =
â†21√

2

â†22√
2
|00〉 −→ 1

2

(
iû† + l̂†√

2

)2 (
û† + il̂†√

2

)2

|00〉

−→ −1

8





(
ib̂†1 + b̂†2√

2

)4

+ ei4φ

(
b̂†1 + ib̂†2√

2

)4

+ 2ei2φ

(
ib̂†1 + b̂†2√

2

)2 (
b̂†1 + ib̂†2√

2

)2


 |00〉

=
1

4

{
ei2φ sin(2φ)b̂†31 b̂†2 + · · ·

}
|00〉

−→ ei2φ

4
sin(2φ)

{(
r1d̂

†
1 + t1(r2d̂

†
2 + t2d̂

†
3)

)3
b̂†2

}
|0000〉

=
ei2φ

4
sin(2φ)

{
6r1t

2
1r2t2d̂

†
1d̂
†
2d̂
†
3b̂
†
2 + · · ·

}
|0000〉

=
3

2
ei2φ sin(2φ)r1t

2
1r2t2|1111〉. (2.33)

The arrow in the first line represents the evolution of the input modes into the inter-

ferometer after BSin, while the second arrow shows further evolution of the modes by

the phase shift φ and BSout. In the third line we omit the terms giving photons in the

channels other than three in b1 and one in b2. The fourth line shows how the channel

23



b̂1 split up into the modes d̂1, d̂2 and d̂3 going into the detectors D1, D2 and D3

respectively and since we are considering only one photon per detector we omit the

other terms in the following line. In the last line we obtain the state corresponding

to the four-photon coincidence detection in a 3-by-1 scheme. Then, we calculate the

probability of four-photon coincidence to be,

P
(3by1)
4 =

tanh4 r

cosh2 r
|t21t2r1r2|2 9

4
sin2(2φ). (2.34)

The normalized plot of this probability is shown in Fig. 2.4. Note that all the peaks

are even in the interference pattern showing a pure four-fold increase in the sensitivity.

We note that Steuernagel has a similar result in his work [40] on reduced de Broglie

wavelength using precisely two photon events at each detector. In our proposal above

we use single photon detectors to do four-photon coincidence. Currently efforts are

on to find efficient nonlinear absorbers so that these could be used for the detection

of the precise number of photons [34, 49, 50].

2.4 CONCLUSION

There are advantages of using single photon interferometer as then the unwanted

effects due to nonlinearities are avoided. However the integration time becomes long

so that one can achieve the same level of sensitivity with classical interferometers

[51]. What we are demonstrating is that we get super-resolution relative to what is

obtained by the usage of single photons. We think that experiments should be feasible

because many two-photon and four-photon interference effects have been observed

[12, 13, 35, 36, 37, 38].
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CHAPTER 3

TOWARDS THE HEISENBERG LIMIT IN MAGNETOMETRY WITH

PARAMETRIC DOWN-CONVERTED PHOTONS

3.1 INTRODUCTION

In this chapter we present an analysis of how parametric down converted photons

could be very useful in getting better spectroscopic information about the medium.

We demonstrate how the improvement in magneto-optical rotation (MOR) of light

could be realized by employing two different schemes with collinear and non-collinear

type-II down conversion geometry compared to the use of coherent light. We calculate

the resolution that can be achieved in the MOR’s both by use of coherent light and

down converted light. We discuss that the Heisenberg limit [52] could be reached in

magnetometry by the use of down converted light.

3.2 MAGNETO-OPTICAL ROTATION (MOR) USING COHERENT

LIGHT SOURCE

Consider single mode coherent light traveling in the z-direction and a linear isotropic

medium made anisotropic by the application of magnetic field B in the z-direction.

The incident field can be written in the form

E(z, t) = exp(−iωt + ikz)(x̂εx + ŷεy) + c.c. (3.1)

The medium is described by the frequency and magnetic field dependent susceptibil-

ities χ±(ω). That means the horizontally and vertically polarized components of the

incident light will rotate on traveling in a medium of length l and the field at the exit
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can be written as

E(l, t) = exp(−iωt + ikl)(x̂εxl + ŷεyl) + c.c. (3.2)

The rotation of the horizontal and vertical components can be expressed by the

relations 


εxl

εyl


 = R




εx

εy


 (3.3)

where

R = eiφ+eiφ/2




cos(φ/2) − sin(φ/2)

sin(φ/2) cos(φ/2)


 , (3.4)

φ = kl(χ+ − χ−), (3.5)

φ+ = klχ+. (3.6)

The corresponding quantum mechanical description can be obtained by replacing

the classical amplitudes εx and εy by the annihilation operators âx and ây respectively.

For measurements with coherent sources one can look at the intensities of the x and y

components of the output when the input is x polarized with coherent state amplitude

αx (See Fig. 3.1(a). Then the measured quantities will be

Ixl = 〈â†xlâxl〉 = |αx|2 cos2(φ/2), (3.7)

Iyl = 〈â†ylâyl〉 = |αx|2 sin2(φ/2). (3.8)

One can estimate the minimum detectable rotation angle φm by looking at the fluctu-

ations ∆Nd in the photon number difference between horizontal and vertical photons,

where the number difference operator is given as Nd = â†ylâyl− â†xlâxl. This expression

is calculated to be (∆Nd)
2 = |αx|2 sin2 φ and since the fluctuation noise is 1 we obtain

φm ≈ 1/
√
〈N〉 where 〈N〉 is the mean number of input photons which is equal to

|αx|2.
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Figure 3.1: The setup for the Magneto-optical rotation of light by using (a) coherent

source, type-II PDC photons with (b) collinear and (c) non-collinear geometry.

3.3 MOR USING COLLINEAR TYPE-II PDC AND TWO-PHOTON

COINCIDENCE

We now discuss how the results (3.7) and (3.8) are modified if we work with down-

converted photons. We first consider the collinear case shown in Fig. 3.1(b). The

state produced in collinear PDC can be written as

|ψcol〉 =
1

cosh g

∞∑

n=0

(−eiψ tanh g)n|n〉H |n〉V . (3.9)

The values of the parameter g and the phase ψ are related to the pump amplitude

of the nonlinear crystal that is used in the down conversion process and the coupling

constant between the electromagnetic field and the crystal. Note that the state |ψcol〉
is a superposition of n photon pairs of horizontally and vertically polarized modes.

Inside the medium, these modes rotate with the same rotation matrix R given in Eq.
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(3.4): 


âHl

âV l


 = R




âH

âV


 . (3.10)

One can measure the intensity of each mode:

IH ≡ 〈â†HlâHl〉 = sinh2 g

= 〈â†V lâV l〉 ≡ IV . (3.11)

And the two-photon coincidence count is:

IHV ≡ 〈â†Hlâ
†
V lâHlâV l〉

= cos2(φ) sinh2 g cosh2 g + sinh4 g. (3.12)

Note the difference between Eqs. (3.7) and (3.12). With collinearly down-converted

photons we measure a rotation angle that is twice as large compared with the angle

for a coherent input. For g ¿ 1 we obtain the same result as given in [24]. The

fringe pattern and the visibility is given in Figs. 3.2 and 3.3. One can calculate

the minimum detectable rotation angle again by looking at the fluctuations in the

photon number difference Nd. This is given by (∆Nd)
2 = 4 sinh2 g cosh2 sin2(φ) =

(1 + 〈N〉)〈N〉 sin2(φ) ≈ 〈N〉2 sin2(φ) for large 〈N〉 where 〈N〉 = 2 sinh2 g. Making

(∆Nd) ∼ 1 [52] we get φm ≈ 1/〈N〉. Note that the sensitivity of this quantity is also

improved by a factor of 1/
√

N .

3.4 MOR USING NON-COLLINEAR TYPE-II PDC AND

FOUR-PHOTON COINCIDENCE

Next, we discuss the non-collinear PDC case. We have found an arrangement shown

in Fig. 3.1(c) which is especially attractive for improving sensitivity. The entangled

photons are coming in two different spatial modes, â and b̂. While one mode (say â)

is going parallel to B inside the medium, the other is going anti-parallel to it. At the
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Figure 3.2: The MOR plot of two-photon coincidence counts defined by the Eq. (3.12)

in collinear type-II PDC. g is the interaction parameter that defines the pumping

strength used in the production of down converted photons and φ = kl(χ+ − χ−).
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(3.12) and (3.19) respectively.
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Figure 3.4: (a) The normalized four-photon probability defined in Eq. (3.17), and (b)

its envelope with respect to the interaction parameter g in the non-collinear geometry.

exit we separate the H and V modes by polarizing beam splitters. The state of the

input photons can be written in the form [53]

|ψnon〉 =
1

cosh2 g

∞∑

n=0

√
n + 1(tanh g)n|ψn〉, (3.13)

where

|ψn〉 =
1√

n + 1

n∑

m=0

(−1)m|n−m〉âH
|m〉âV

|m〉b̂H
|n−m〉b̂V

. (3.14)

Here |m〉âV
represents m vertically polarized photons in mode â. Inside the medium,

“ + ” and “− ” polarization components of the modes â and b̂ gain phases klχ+ and

klχ− respectively. Thus we can write an effective Hamiltonian for the evolution of

the state |ψnon〉 inside the medium as follows:

Hmed = χ+â†+â+ + χ−â†−â− − χ+b̂†+b̂+ − χ−b̂†−b̂−, (3.15)

where

â± =
1√
2
(âH ± iâV ), b̂± =

1√
2
(b̂H ± ib̂V ). (3.16)

The minus sign in front of the b̂± modes comes from the fact that they are traveling
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its envelope with respect to the interaction parameter g at the exit ports of PBS in

the collinear geometry.

anti-parallel to the B field inside the medium. Then one can calculate the probability

of detecting four photons in each mode as:

Pnon = |〈1âH
1âV

1b̂H
1b̂V
| exp(−itHmed)|ψnon〉|2

=
tanh4 g

cosh4 g
cos2(2φ), (3.17)

where t is the duration of the evolution of the state inside the medium. Note that

this four-photon probability has a rotation angle that is four-times larger than the

angle for a coherent input. The fringe pattern with respect to φ and the probability

distribution with respect to g are shown in Fig. 3.4 (a) and (b).

Next we also examine the four-photon probability in the collinear case. The

probability of finding two H-photons and two V -photons at the exit ports of the

polarizing beam splitter is given by:

Pcol = |〈2âH
2âV

| exp(−itHmed)|ψcol〉|2

=
tanh4 g

cosh2 g

1

16
[1 + 3 cos(2φ)]2, (3.18)
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Figure 3.6: Four-photon coincidence counts defined in Eq. (3.19) with different inter-

action parameter values in the collinear geometry.

where we take Hmed = χ+â†+â+ + χ−â†−â− because of the collinear geometry. The

normalized plot of this quantity with respect to the magneto-optical rotation angle

φ and the envelope of the probability with respect to g are shown in Fig. 3.5 (a) and

(b).

On the other hand one can also calculate the coincidence counts of four photons

two-by-two at each detector as given by Glauber’s higher order correlation functions:

IHHV V = 〈aHl
†2aV l

†2â2
Hlâ

2
V l〉

= (3 cos2(φ)− 1)2 sinh4 g cosh4 g + 4(3 cos2(φ) + 1) sinh6 g cosh2 g

+ 4 sinh8 g. (3.19)

Plots of this quantity for different values of the interaction parameter g and the vis-

ibility are shown in Figs. 3.6 and 3.3. Note the distinction between Eqs. (3.18) and

(3.19) which is a reflection of what the detector is set to measure as we explain now.

32



The former is the probability of the state |ψcol(t)〉 to be projected onto the particular

four-photon subspace |22〉, i.e. Tr[|22〉〈22|ρcol(t)] where ρcol(t) = U |ψcol〉〈ψcol|U † and

U is the unitary operator that represents the evolution of the state by the Hamil-

tonian Hmed in the collinear geometry. On the other hand, coincidence counting of

four-photons at the detectors DH and DV (see Fig. 3.1(b)) is represented by the ex-

pectation value 〈â†2H â†2V â2
H â2

V 〉 = Tr[â†2H â†2V â2
Hâ2

Vρcol(t)]. Note here that the operator

â†2H â†2V â2
H â2

V has the spectral decomposition
∑∞

nm Cnm|nm〉〈nm| and obviously it con-

tains the projectors of all (n + m)-photon subspaces with nonzero coefficients Cnm.

Therefore the four-photon counting process at detectors includes not only |22〉 but

all other states |nm〉 in |ψcol(t)〉. Here the state |nm〉 represents n and m photons in

the âH and âV modes respectively.

3.5 CONCLUSION

We showed that the use of non-collinear type-II PDC light in MOR’s increases the

sensitivity by a factor of four in comparison with coherent light. We note that one

can expect to have further flexibility in sensitivity by using suitably prepared atomic

samples [54] as earlier studies [55, 56, 57] have shown how the sensitivity of interfer-

ometers can be improved by the use of entangled atoms.

We also give an argument that minimum rotation uncertainty scales to the Heisen-

berg limit by the use of down converted photons. It should be noted that the Heisen-

berg limit should be understood as an approximate limit at a large mean photon

number, that is, the rotation uncertainty approaches the order of 1/〈N〉 for large 〈N〉
[20]. The regime with an interaction parameter value of g = 1.3 has already been

reached in the experiment [58] giving entanglement of 12 photons and an evidence

also was given for entanglement of up to 100 photons.
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CHAPTER 4

QUANTUM IMAGING USING COHERENT BEAM STIMULATED

PARAMETRIC DOWN-CONVERSION

4.1 INTRODUCTION

The question of beating the diffraction limit in optics has been the subject of extensive

discussions recently [1, 19, 20, 22, 38, 40, 52, 59, 60, 61, 62, 63, 64, 65, 66, 67]. Dowling

and coworkers proposed [1] a very new idea to improve the sensitivity of resolution

by using detectors that work on two photon absorption and by using a special class of

entangled states called NOON states [59] . They showed that the diffraction limit can

be beaten this way. The issue of the resolution in imaging continues to be addressed

[2, 68, 69, 70, 71].

It is easy to produce NOON states experimentally with two photons by using a

very low gain parametric down converter. In this case the resolution is improved by

a factor of two. However the probability of two photon absorption is very low unless

one could develop extremely efficient two photon absorbers. One alternative would

be to work with down converters in the high gain limit [72] however then the visibility

of two photon counts goes down asymptotically to 20% [22]. Clearly we need to find

methods that can overcome the handicap of having to work with smaller visibility.

Another difficulty is with the magnitude of two photon counts. One needs to improve

the intensity of two photon counts considerably.

In this chapter, we propose a new idea using stimulated parametric processes along

with spontaneous ones to produce resolution improvement while at the same time

maintaining high visibility at large gains of the parametric process. The stimulated
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processes enhance the count rate by several orders of magnitude. We use coherent

beams at the signal and the idler frequencies. We further find that the phases of

coherent fields can also be used as tuning knobs to control the visibility of the pattern.

It may be borne in mind that the process of spontaneous parametric down conversion

has been a work horse for the last two decades in understanding a variety of issues in

quantum physics and in applications in the field of imaging [10, 11, 12, 13, 14].

We expect that the use of stimulated processes along with spontaneous ones would

change our landscape as far as fields of imaging and quantum sensors are concerned.

4.2 TWO-PHOTON COINCIDENCE COUNTS WITH STIMULATED

PARAMETRIC DOWN-CONVERSION

We now describe the idea and the results of calculations that support the above

assertion. Consider the scheme shown in Fig. 4.1. Here â1 and b̂1 are the signal and

f
BS BS

PDC

0â

0b̂ 1â

1b̂

3â

3b̂

a
D

b
D

coincidence
counter

pump
2â

2b̂

0
|b ñ

0
|a ñ

Figure 4.1: Using an input from non-degenerate stimulated parametric down-

conversion for determination of phase via photon-photon correlations.

idler modes driven by the coherent fields. The usual case of spontaneous parametric

down conversion is recovered by setting α0 = β0 = 0. The φ is the phase introduced

by the object or by an interferometer. For down conversion of type II the signal

and idler would be two photons in two different states of polarization. In order to

calculate the coincidence count it is good to work with Heisenberg operators. The
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fields reaching the detectors are related to the input vacuum modes â0 and b̂0 via



â3

b̂3


 =

1√
2




1 i

i 1







1 0

0 eiφ




1√
2




1 i

i 1







µ(â0 + α0) + ν(b̂†0 + β∗0)

µ(b̂0 + β0) + ν(â†0 + α∗0)


 ,(4.1)

where µ and ν are given in terms of the gain parameter g,

µ = cosh g, (4.2)

ν = eiψ sinh g. (4.3)

and ψ is the phase of the pump. We first note that in the absence of the object or

φ = 0, the mean count, say, at the detector Da is given by

Iâ ≡ 〈â†3â3〉 = sinh2 g + |α0|2
[
1 + 2 sinh2 g + sinh 2g cos(ψ − 2θ)

]
, (4.4)

where for simplicity we assume that α0 = β0. We denote θ as the phase of α0. Note

that the first term in Eq. (4.4) is the intensity of spontaneously produced photons.

The g-independent term in the square bracket is just the intensity of the coherent

beam and the rest of the terms result from stimulated parametric down conversion.

Note further that the mean count depends on the phase of the coherent beams used

to produce stimulated down conversion.

Now, using our basic equation (4.1) we calculate the two-photon coincidence

counts as follows:

Iâb̂ ≡ 〈â†3b̂†3b̂3â3〉 = A
{
1 +

V

1− V

(
1 + cos(2φ)

)}
. (4.5)

Here V is the visibility of two-photon coincidence counts

V =
B

A + B
, (4.6)

where

A = sinh4 g + 2|α0|2 sinh2 g
[
1 + 2 sinh2 g + sinh 2g cos(ψ − 2θ)

]
, (4.7)

B =
1

2

{(
1 + sinh2 g

)
sinh2 g + |α0|2 sinh 2g

[
sinh 2g +

(
1 + 2 sinh2 g

)
cos(ψ − 2θ)

]

+ |α0|4
[
1 + 2 sinh2 g + sinh 2g cos(ψ − 2θ)

]2
}
. (4.8)
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Both A and B depend on the gain g, amplitude and phase of the stimulating beams.

In Figs. 4.2(a) and 4.2(b) we display the fringes in two-photon counts under different
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Figure 4.2: (a) Stimulated emission enhanced two-photon counts for various phases of

the coherent field at the gain g = 0.5. The horizontal line shows the interferometric

phase. The pump phase ψ is fixed at π. The counts are in units of two-photon

coincidence rates coming from spontaneous down-conversion process. The modulus

of the coherent field |α| is chosen such that the coincidences coming from SPDC and

the coherent fields are equal to each other. The dashed line shows the two-photon

counts for the case of a spontaneous process. (b) The same as (a), but at the gain

g = 2.0. Here, the counts for the case of a spontaneous process (dashed line) is

multiplied by a factor of 103.
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conditions on the gain of the down-converter and the strength and phase of the

stimulating beams. These figures clearly show the advantages of using stimulating

parametric processes in quantum imaging. We next quantify these advantages.

We first note that in the absence of stimulating fields (|α0| → 0)

V −→ 1 + sinh2 g

1 + 3 sinh2 g
, (4.9)

and the strength of the two-photon counts reduces to

Iâb̂ −→ 2 sinh4 g + sinh2 g. (4.10)

In the limit of large gain, the visibility drops to 1/3 and the strength of two-photon

counts goes as exp(4g). Next, we examine the effect of stimulated parametric pro-

cesses on the visibility and the numerical strength of two-photon coincidence count.

In the limit of large gain, the visibility of the stimulated process reads

V −→
1
4

+ |α0|2 (1 + cos(∆)) + |α0|4 (1 + cos(∆))2

3
4

+ 3|α0|2 (1 + cos(∆)) + |α0|4 (1 + cos(∆))2 ,

(4.11)

where ∆ is the phase difference, ψ−2θ, between the pump and stimulating (coherent)

beams. Note that when |α0| → 0 we recover the same result as Eq. (4.9). The visibility

given in Eq. (4.11) has terms that arise from the interference between the spontaneous

and the stimulated down-converted photons. Clearly we can control the value of the

visibility by changing the amplitude of the stimulating beams. For example, we can

obtain 60% visibility even for |α0|2 ∼ 1 if ∆ = 0, which should be compared with the

33% value in the absence of the stimulating beams. As we increase the stimulating

beam intensity to ∼ 10, we obtain 90% visibility. If we assume that the stimulating

field’s intensity is of the order of the number of spontaneous photons produced by

the down-converter, i.e. |α0|2 ∼ sinh2 g, then the visibility of 100% can be reached

at g ' 2 − 2.5 (For ∆ = π we lose the advantage of a stimulating beam to produce
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higher visibility.). In Fig. 4.3 we show the visibility of two-photon coincidences with

respect to the gain for different values of the stimulating beam phases. The results in
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Figure 4.3: (Color online) Stimulated emission enhanced visibility of two-photon

counts for various phases (red and green lines) of the coherent field with respect to

the gain g. The pump phase ψ is fixed at π. The modulus of the coherent field |α0|
is chosen such that the coincidences coming from SPDC and the coherent fields are

equal to each other. The dashed line shows the visibility of two-photon counts in the

case of photons produced by spontaneous parametric down-conversion.

the region of large gain follow the approximate results based on Eq. (4.11).

We next examine the strength of two-photon counts in the limit of high gain.

This depends on the interferometric phase φ. To get an estimate of the strength of

two-photon counts let us set φ = 0:

Iâb̂ −→ 2 sinh4 g
{
1 + 4|α0|2 (1 + cos(∆))+2|α0|4 (1 + cos(∆))2

}
. (4.12)

Note that when α0 = 0 we recover Eq. (4.10). For ∆ = 0, the highest order term

in Eq. (4.12) goes as exp(4g)|α0|4, i.e. a factor of |α0|4 appears here compared to
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the spontaneous process. This then reduces to Iâb̂ → exp(8g) if we assume that the

stimulating field’s intensity is of the order of the number of spontaneous photons pro-

duced by the down-converter, i.e. |α0|2 ∼ sinh2(g). This leads to an enhancement by

exp(4g) in the two-photon count rates compared to the case of spontaneous processes.

In Figs. 4.4(a) and 4.4(b), we show the ratio of two-photon counts coming from the

stimulated process to the spontaneous process both at the low and high gain limits

respectively. It is shown that at g ' 1.7, three orders of magnitude rate enhancement
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Figure 4.4: The ratio of the two-photon coincidences coming from the stimulated

process to the spontaneous process for various phases of the coherent beams at the

(a) low and (b) high gain limits respectively. The pump phase is fixed at π and the

modulus of the coherent field |α| is chosen such that the coincidences coming from

SPDC and the coherent fields are equal to each other.
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is being reached. Therefore, in the determination of interferometric phase, we ob-

tain a ground-breaking enhancement in both the visibility and the strength of the

two-photon coincidence counts by controlling the phase and the amplitude of the

stimulating coherent beams. We show in Figs. 4.2(a) and 4.2(b), this cumulative

enhancement in both the visibility and the strength in the low and high gain limits

respectively.

A question that we have not investigated in the present chapter concerns the

minimum value of the phase ∆φ that can be measured. In the literature one has the

well known shot noise limit (∆φ ∼ 1/
√

N ; where N is the total number of photons)

obtained with coherent sources. This is to be compared with the Heisenberg limit

(∆φ ∼ 1/N) obtained with sources prepared in special states and with very special

detection schemes. Thus to improve the sensitivity it would be especially interesting

if one can do the latter with photon numbers of the same order as in coherent sources.

However so far one has achieved the Heisenberg limit only with photon numbers of

order few. Thus the real question is—what is the achievable phase uncertainty given

the presently available sources and measurement techniques? This is something that

needs to be studied in depth. In the next chapter, we analyze the minimum phase

uncertainty achievable with stimulated down-converted photons.

4.3 CONCLUSION

In conclusion, we have shown that using stimulated parametric processes along with

spontaneous ones leads to resolution improvement and high signal values while at

the same time maintaining high visibility at large gains of the parametric process.

We use coherent beams at the signal and idler frequencies. We find that the phases

of coherent fields can also be used as tuning knobs to control the visibility of the

pattern. The use of stimulated parametric down-conversion also improves the rates

of two-photon absorption in quantum lithography. The use of stimulated processes
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in multi-photon coincidence events is expected to produce even bigger advantages,

for example in producing much higher count rates. We hope to examine these in the

future. Finally we believe that the use of stimulated processes along with spontaneous

ones would change our landscape as far as the fields of imaging and quantum sensors

are concerned.
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CHAPTER 5

PHASE SENSITIVITY OF QUANTUM INTERFEROMETRIC

SENSORS WITH REALISTIC ENTANGLED SOURCES

5.1 INTRODUCTION

The phase measurement through interference presents itself in many areas of physics

as well as being a research subject by itself in quantum optics. The precise measure-

ment of the optical phase at the quantum level is an issue of fundamental importance

for both theory and experiment. The development of new physical theories depends

on increasingly precise measurements. For example, extremely accurate methods of

measuring the optical phase through interferometry are required for gravitational

wave detection experiments [67, 73, 74, 75].

An optical interferometer typically has two input ports and two output ports.

The quantity to be measured, usually a phase shift, is determined by measuring the

difference in the number of photons emerging from the two output ports. The mini-

mum phase shift, ∆φ, which one can measure, or the accuracy of the interferometer,

is determined by the fluctuations in the input light. If a coherent state is sent into

one of the ports and the vacuum into the other, then the accuracy is 1/
√

N , where

N is the mean number of photons in the input state. This is usually called the shot

noise limit or the standard quantum limit (SQL). If a vacuum squeezed state with

squeezing parameter g > 0 is sent into the second port instead of the vacuum, then

the accuracy becomes e−g/
√

N [17]. Caves [17], as well as Bondurant and Shapiro [76]

demonstrated that by feeding suitably constructed squeezed states into both ports of

the interferometer the phase sensitivity can asymptotically approach 1/N , for large
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N. The increased accuracy by squeezing the vacuum port has been experimentally

demonstrated [77, 78]. This phase sensitivity, which is inversely proportional to the

total number of photons involved, is known as the Heisenberg limit and it is proven

to be the fundamental (unsurpassable) quantum limit for the phase measurement [5].

Using squeezed light at the input ports is not the only method to beat the SQL of

the phase measurement. It is also possible to reach the Heisenberg limit by using

entangled photons as the two modes of the interferometer. For example, by using

path entangled photons in a special NOON state superposition [60]

|Ψ〉 =
1√
2
(|N0〉+ |0N〉), (5.1)

together with special detection schemes (M̂ = |N0〉〈0N |+ |0N〉〈N0|), one can reach

the Heisenberg limited accuracy in phase. Moreover, this state decreases the geo-

metric distance between the two points that can be distinguished N times that of

Rayleigh resolution limit.

It is easy to produce NOON states experimentally with two photons by using

a very low gain parametric down converter. However, preparation and detection

mechanisms get extremely difficult for higher N . It requires very high order nonlinear

materials with unrealistic measurement schemes. The Heisenberg limit accuracy using

NOON states can have a breakthrough in the phase measurement provided N is of the

order of photon intensity produced in conventional laser sources. In the near future

technology, to produce entangled photons of high intensity at the level of today’s

optical interferometers seems very unlikely. Therefore, it is desirable to analyze the

sensitivity of phase using sources of stimulated processes that can reach high intensity

of nonclassical photons. In the previous chapter, we have shown how the use of

stimulated parametric down conversion processes could be advantageous for increasing

resolution with high visibility and count rate. In this chapter we ask the question

of phase accuracy of the proposed method by using various detection mechanisms.

We calculate the phase sensitivity by using stimulated parametric down converted
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photons for different realistic measurement schemes.

The organization of the chapter is as follows. In section I, we introduce the

interferometer with the input photons coming from the stimulated parametric down-

conversion process. The input-output relations between the modes of the interferom-

eter are given. In Section II, we briefly introduce the fundamental sensitivity limit

of the optical interferometers with quantum correlated photons. In section III, we

calculate the minimum phase errors for three different measurement schemes.

5.2 THE INTERFEROMETER

We consider the Mach-Zehnder interferometer depicted in Fig. 5.1, which is the most

widely used two-beam interferometer for optical phase measurements. The two beam

splitters (BS) are used to mix the two input beams before and after the extra phase

shift, φ, introduced into one of the optical paths. In our particular setup â1 and b̂1

are the input beams to the interferometer generated by the down-converting crystal.

These signal and idler modes (â1 and b̂1 respectively) are driven by the coherent fields

α0 and β0 which are represented by the modes â0 and b̂0 respectively. The usual case

of spontaneous parametric down conversion is recovered by setting α0 = β0 = 0. The

output beams, â3 and b̂3, after the second beam splitter are then used for various types

of photon intensity or correlation measurements. The relative phase change between

the two paths inside the interferometer can be introduced by a different refractive

index material or by changing the path lengths. This relative phase change can be

detected through photon intensity measurement at the exit ports.

We now give the transformations between the input and the output modes of the

interferometer. The fields reaching the detectors are related to the input modes â1

and b̂1 via



â3

b̂3


 =

1√
2




1 i

i 1







1 0

0 eiφ




1√
2




1 i

i 1







â1

b̂1


 . (5.2)
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3â

3b̂

a
D

b
D

pump
2â
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Figure 5.1: Mach-Zehnder interferometer using an input from stimulated parametric

down-conversion for determination of phase.

In our particular setup, since the input modes are generated by the stimulated para-

metric down-conversion driven by the coherent fields, we further relate â1 and b̂1 to

the vacuum modes of the down-conversion process, namely â0 and b̂0, by means of

â1 = µ(â0 + α0) + ν(b̂†0 + β∗0), (5.3)

b̂1 = µ(b̂0 + β0) + ν(â†0 + α∗0), (5.4)

where µ and ν are given in terms of the gain parameter g,

µ = cosh g, (5.5)

ν = eiψ sinh g. (5.6)

and ψ is the phase of the pump. It is easy to work with the Heisenberg operators in

order to calculate the photon counts. The transformations given by Eq. (5.2) together

with (5.3) and (5.4) give the evolution of the input modes in the Heisenberg picture.

5.3 SENSITIVITY

The traditional argument for the sensitivity limit of the phase measurement comes

from the Heisenberg uncertainty relation for the phase and photon number [79, 80],

∆φ∆N ≥ 1, (5.7)
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where ∆φ and ∆N are the fluctuations for the phase and photon number, respectively.

The quantum mechanical definition of the fluctuation of an observable A is given by

∆A =
√
〈A2〉 − 〈A〉2. (5.8)

For example, the number fluctuation, ∆N , for the coherent state is
√

N where N is

the mean number of photons per unit time. Therefore, for shot-noise limited light,

the optimum phase resolution is

∆φ =
1√
N

. (5.9)

It is clear from this expression that with an unlimited amount of energy, we can obtain

phase measurements with an arbitrary accuracy, since by increasing the power the

phase resolution becomes smaller. However, at very high powers, radiation pressure

on the interferometer mirrors and heating induced effects add additional noise which

eventually will limit the overall performance of the interferometer. On the other

hand, quantum mechanics does not set any restriction on the fluctuation ∆N of the

photon number. Intuitively, one would argue that because of energy constraint, ∆N

should be bounded by the mean number of photons, that is ∆N ∼ O(N). In fact, it

has been proven that the ultimate precision in phase measurements is the so-called

Heisenberg limit [5]

∆φ ≥ 1

N
, (5.10)

where N is the total number of photons involved in the measurement. For optical

laser interferometers operating at milliwatts of optical power, this quantum sensitivity

boost corresponds to an eight-order-of-magnitude improvement of signal to noise.

However, this requires a very high number of entangled photons of the order ∼ 1018.

Current technology can utilize only 4 entangled photons at a time [38].
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5.4 PHASE SENSITIVITY CALCULATIONS FOR STIMULATED

PARAMETRIC DOWN-CONVERTED PHOTONS

To obtain the minimum limit of the phase sensitivity by the Heisenberg uncertainty

relation in a particular measurement, we need to calculate fluctuations of the phase

and the number operator. However, there is no well defined Hermitian phase operator

for some mathematical reasons. Instead, we measure a phase dependent Hermitian

operator X̂ such that

∆φ =
∆M̂

|∂〈M̂〉/∂φ| , (5.11)

where ∆M̂ is the fluctuation of the operator X̂ defined by Eq. (5.8).

A simple argument for the validity of this equation (5.11) can be given as follows

[19]. Consider a differentiable function y = y(x). We have y′(x) = dy/dx ∼= ∆y/∆x.

The approximation becomes an equality in the limit ∆x → 0. However, if y(x) is a

fluctuating dependent random variable, then we cannot take ∆y → 0. Hence the best

we can resolve the independent variable x is to within the associated ∆x. Hence, given

∆y, the minimal resolvable ∆x is given implicitly by |y′(x)| = ∆y/∆x or explicitly

by ∆x = ∆y/|y′(x)|. Setting 〈M̂〉 ≡ y and φ ≡ x gives Eq. (5.11) for the the minimal

detectable phase, ∆φ, if we identify ∆M̂ ∼= ∆〈M̂〉.
Next, we calculate this minimal detectable phase for three different measurement

schemes which can be realistically implemented in the laboratory. From now on we

take α0 = β0 for simplicity.

5.4.1 Phase sensitivity for the difference counts

We start by analyzing the minimum phase sensitivity for the photon difference counts

or photocurrent difference between the photons at the exit ports of the interferometer,

i.e. M̂1 = b̂†3b̂3 − â†3â3. We can get 〈M1〉 by simply subtracting the single counts:

〈â†3â3〉 = sinh2 g + |α0|2A1 [1− sin(φ)] , (5.12)
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〈b̂†3b̂3〉 = sinh2 g + |α0|2A1 [1 + sin(φ)] . (5.13)

where

A1 = 1 + 2 sinh2 g + sinh 2g cos(ψ − 2θ), (5.14)

and θ is the phase of the coherent field α0. The first term in Eqs. (5.12) and (5.13)

is the intensity of spontaneously produced photons. The total number of photons in

the stimulated process is given by

NT = 2 sinh2 g + 2|α0|2A1. (5.15)

Hence, by using Eqs. (5.12) and (5.4) the difference count signal is found to be

〈M̂1〉 = 2|α0|2A1 sin(φ). (5.16)

Note that this signal is zero for spontaneously produced photons. Next, we need to

calculate the fluctuations in M̂1 which contains the expectation value of the square

of M̂1:

〈M̂2
1 〉 = 〈â†23 â2

3〉+ 〈b̂†23 b̂2
3〉+ 〈â†3â3〉+ 〈b̂†3b̂3〉 − 2〈â†3b̂†3b̂3â3〉. (5.17)

This is a more complicated expression than the signal itself. It contains the two-

photon absorptions at the detectors Da and Db and the two-photon coincidence

counts. Straightforward calculations give the expressions for the first, second and

the last term of the Eq. (5.17):

〈â†23 â2
3〉 = B2 − sin(φ)|α0|2

{
2|α0|2A2

1 + 4A1 sinh2 g + A2 sinh 2g
}

+ sin2(φ)
{
|α0|4A2

1 + |α0|2A2 sinh 2g + sinh2 g(1 + sinh2 g)
}

,(5.18)

〈b̂†23 b̂2
3〉 = B2 + sin(φ)|α0|2

{
2|α0|2A2

1 + 4A1 sinh2 g + A2 sinh 2g
}

+ sin2(φ)
{
|α0|4A2

1 + |α0|2A2 sinh 2g + sinh2 g(1 + sinh2 g)
}

,(5.19)

〈â†3b̂†3b̂3â3〉 = A + B [1 + cos(2φ)] , (5.20)

where

A2 = sinh 2g + (1 + 2 sinh2 g) cos(ψ − 2θ), (5.21)
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B2 = 2 sinh4 g + |α0|4A2
1 + 4|α0|2A1 sinh2 g, (5.22)

A = sinh4 g + 2|α0|2A1 sinh2 g, (5.23)

B =
1

2

{
sinh2 g(1 + sinh2 g) + |α0|2A2 sinh 2g + |α0|4A2

1

}
. (5.24)

Then, after a lot of simplification, the variance of the signal M̂1 is found to be

(∆M̂1)
2 = 2|α0|2 + 4 sin2(φ)

{
|α0|2A2 sinh 2g + sinh2 g(1 + sinh2 g)

}
. (5.25)

Note that the variance is equal to NT when only coherent fields (g = 0) are used,

whereas it is equal to N2
T when only spontaneously produced photons (α0 = 0) are

used. The first term in the curly bracket results from the stimulated process. This

term increases the order of fluctuations further to N3
T if we assume that the stimulating

field’s intensity is of the order of spontaneously produced photons, i.e. |α0|2 ∼ sinh2 g.

Now we are ready to obtain an expression for the minimum phase sensitivity given by

Eq. (5.11). Note that with the results given by Eqs. (5.25) and (5.16), this expression

depends on the measured phase. Since a zero phase can always be obtained by

monitoring a null in the interference pattern, without a loss of generality, we may set

φ = 0 to obtain

∆φ|φ=0 =
1√

2|α0|
[
1 + 2 sinh2 g + sinh 2g cos(ψ − 2θ)

] . (5.26)

When the interferometer runs only with classical fields (set g = 0), we obtain the

usual shot noise sensitivity of 1/
√

NT . However, for the stimulated process, with the

assumption |α0|2 ∼ sinh2 g, in the high intensity regime, we reach a sensitivity of

∼ 1/N
3/4
T by surpassing the shot noise limit. We show the plot of this result in Fig.

5.2.

5.4.2 Phase sensitivity for the two-photon coincidence counts and the

two-photon absorption

Next, we analyze the minimum sensitivity limit ∆φ for the two-photon coincidence

signal M̂2 = â†3b̂
†
3b̂3â3 and the two-photon absorption M̂3 = â†23 â2

3 at the detector Da
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as already given by Eqs. (5.20) and (5.18) respectively. What we need to do next is

to calculate the variances for M̂2 and M̂3. Since these calculations are extremely long

and complicated to write here, we show the results by plotting the minimum phase

sensitivities in Fig. 5.2.
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Figure 5.2: Minimum phase sensitivity with respect to total number of photons

measured using stimulated parametric down-conversion. The gray line (I) shows

the shot noise limit for comparison. The green dotted-dashed line (II), the blue

dashed line (III) and the black line (IV) shows the minimum sensitivity for the sig-

nals M̂1 = b̂†3b̂3 − â†3â3, M̂2 = â†3b̂
†
3b̂3â3 and M̂3 = â†23 â2

3 respectively. The phase

uncertainty ∆φ is given in radians.

In Fig. 5.2 we show the collective results for the three measurements. We compare

the minimum phase uncertainties of these measurements to the case where only co-

herent fields are used (see Fig. 5.3). For the signal of M̂1 the sensitivity goes below the

shot noise level when a stimulated process is used. However, for the signals M̂2 and

M̂3 the sensitivities have become somewhat worse when a stimulated down-conversion
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Figure 5.3: The same as in Fig. 5.2 using coherent fields only (g = 0).

process is used. In order to reach the full advantage of quantum interferometry, both

resolution and sensitivity enhancements are required. This is what we expect from the

two-photon coincidence measurement scheme, M̂2. At this point, to understand the

differences in the sensitivity calculations for the two regimes (the stimulated process

vs. the coherent fields only) further analysis seems to be desired.
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CHAPTER 6

SUMMARY AND OUTLOOK

The works of this dissertation were mainly concerned with the following questions:

• How can the images be formed with higher resolution or better sensitivity

through the use of quantum states of light?

• How can we beat the Rayleigh resolution or diffraction limit which was caused

by the noise properties of the coherent sources of light?

• How can we increase the measurement sensitivity and resolution in interferom-

etry and magnetometry by using entangled photons?

• How are the resolution sensitivity and the measurement strategy related to each

other?

In fact, the questions above are closely related to each other in the context of fun-

damental limits to measurement in quantum mechanics. We have identified three

specific systems to address these questions. In this concluding chapter we give a brief

summary of what we have done and we describe further possibilities to extend these

works.

In chapter 2, we have found that the sensitivity of a Sagnac interferometer could

be considerably improved by utilizing nonclassical correlations of entangled photons

produced by parametric down-conversion. We proposed that by using four single-

photon detectors in an unusual unbalanced detection scheme, the resolution sensitivity

could be improved by a factor of 4 through photon-photon correlation measurements.
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The possibilities for higher order resolution enhancement are open. The unavoidable

effect of photon losses inside the interferometer is also a question that needs to be

tackled.

It is known that anisotropic properties of a medium can be obtained using magneto-

optical rotation (MOR) of linearly polarized coherent light. In chapter 3, we showed

that it is possible to improve MOR resolution by a factor of 4 in comparison to coher-

ent light by using polarization entangled photons and a special photon-photon correla-

tion measurement scheme. We investigated the possibility of reaching the Heisenberg

limit for the minimum MOR uncertainty in a medium where the anisotropy is induced

by an external magnetic field. Hence measuring MOR using entangled photons yields

a more precise measurement of the external field. Moreover, one may increase the res-

olution by increasing the multiple coincidences of photon correlation measurements.

This, however, requires multi-photon entangled states with higher intensity. Because

the probability of multi-photon entangled states decreases very rapidly at the low

gain limit one may have to use stimulated emission of polarized-entangled-photons

with multi-pass amplification as in reference [81]. Further research along these lines

would be very desirable. It would also be very interesting to adapt these studies to

the case where spin-entangled or spin-squeezed atoms are used instead of the entan-

gled photons, to measure the magnetic field since these systems can give more precise

results in quantum magnetometry.

In chapter 4, we proposed a new idea using coherent-beam-stimulated parametric

processes along with spontaneous ones to produce resolution improvement in an in-

terferometer while at the same time maintaining high visibility at large gains of the

parametric process. The results showed that stimulated processes enhance the count

rate by several orders of magnitude with a visibility of 100%. Furthermore, we have

found that the phases of coherent fields can also be used as tuning knobs to control

the visibility of the pattern. In a possible future work, we plan to investigate the ways

54



of improving the rate of two-photon absorption in quantum lithography. The use of

stimulated processes in multi-photon coincidence events is expected to produce even

bigger advantages, for example in producing much higher count rates. It is probable

that utilizing stimulated processes along with spontaneous ones would change our

landscape as far as the fields of imaging and quantum sensors are concerned.

Another point of interest in working with the stimulated parametric process is

the minimum phase uncertainty that can reached in the phase measurement. The

main objective of quantum interferometry with entangled sources is both to enhance

the resolution (super-resolution) and to decrease the measured phase uncertainty

(super-sensitivity). Even though the resolution enhancement is possible by the use

of coherent sources [82], nonclassical sources of light are needed to obtain increased

phase accuracy. Therefore, in chapter 5, we analyzed the minimum phase uncertainty

of the Mach-Zehnder interferometer with stimulated parametric down-conversion in-

put. We showed that it is possible to decrease the phase uncertainty below the

shot noise level for the measurement of photon difference at the output ports. We

also analyzed the minimum phase sensitivity for the two-photon coincidence counting

and the two-photon absorption signal. We think that further analysis of different

measurement schemes would be required to reach both the super-resolution and the

super-sensitivity.
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APPENDIX A

FOUR-PHOTON PROBABILITY

In this appendix we show the details of the calculation leading to the result given in

Eq. (3.17). One can obtain the result first by solving the Schrödinger equation for

the state |1âH
1âV

1b̂H
1b̂V
〉 in the four-photon subspace of the electromagnetic field and

having the inner product with the state |ψnon〉. Since the parts of the Hamiltonian

having â and b̂ modes commute, we can solve the Schrödinger equation for the states

|1âH
1âV

〉 and |1b̂H
1b̂V
〉 separately. Let us start with a general time-dependent state in

the âH and âV modes which contains two photons totally;

|ψ(t)〉 = c(t)|20〉+ d(t)|02〉+ f(t)|11〉 (A.1)

with the initial condition |ψ(0)〉 = |11〉. Solving the Schrödinger equation by using

the effective Hamiltonian H = χ+â†+â+ + χ−â†−â− gives us the result

|ψ(t)〉 = e−itχ[
1√
2

sin(Ωt)|20〉 − 1√
2

sin(Ωt)|02〉

+ cos(Ωt)|11〉] (A.2)

where χ = χ+ + χ− and Ω = χ+ − χ−. For a medium of length l, the angle Ωt

corresponds to the MOR angle φ which is given in Eq. (3.5). The solution for the

state |1b̂H
1b̂V
〉 can be obtained just by replacing φ by −φ because the direction of

propagation of the b̂ modes are opposite to that of â modes inside the medium. This

is the reason that the part of the effective Hamiltonian for the b̂± modes takes a

minus sign in Eq. (3.15). Consequently we can write the solution of the Schrödinger

equation for the state |1âH
1âV

1b̂H
1b̂V
〉 as:

exp(−itHmed)|1âH
1âV

1b̂H
1b̂V
〉 = e−itχ

[
1√
2

sin φ|20〉 − 1√
2

sin φ|02〉+ cos φ|11〉
]
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⊗ e−itχ

[
− 1√

2
sin φ|20〉+

1√
2

sin φ|02〉+ cos φ|11〉
]
.

(A.3)

Taking the inner product of this with the state |ψnon〉 and having the absolute square

gives us the result given in Eq. (3.17).

The result given in Eq. (3.18) can be obtained by following the same method

given above.
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