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FOREWORD

The recent profusion of control-theoretic publica­

tions dealing vith problems in finite-dimensional Euclidian 

spaces has- inevitably given rise to attempts to extend these 

results to more general settings. The most natural avenue 

of extension is to Banach spaces of various kinds, especially 

Hilbert spaces.

Here we treat only the question of time-optimal con­
trols for the canonical problem. Extensions to more general 

questions are simple, and the literature abounds with such 

extensions. In particular, see [1]*, [2] and [5]»

Our first results are somewhat in the spirit of 

those given by Jacobs in [II]. We prove, in a Hilbert space 

setting, the existence of measurable controls bounded within 

a varying restraint set and the weak compactness of a class 

of functions.

In the following section we treat the question of a 

time-optimal control for a linear process in a separable and 

reflexive Banach space. Our work is based upon existence 

theorems found in Kato [3] and Kato and Tanabe [4]. It 

somewhat overlaps recent unpublished results of Friedman [2] 

and the recent publication of Lions [7l* We prove several
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corollaries concerning what one might term traditional con­

trol problems. In particular, we deal with a problem raised 

in Roxin [8].

Next, we discuss the same question for a nonlinear 

process, motivated by the paper of Lee and Markus [6]. The 

reader will no doubt notice that the hypotheses on the con­

trol function are quite strong, due to the absence of a 

Banach space form of the classic Caratheodory existence 

theorem for differential equations.

We have usually followed the notation most commonly 

used in the current literature on control. Elements of the 

various spaces considered are subscripted, and functions are 

superscripted. We usually use some form of the term 

"strong" as a modifier of some other term only when it is 

necessary to make a distinction from the weak form of the 

same modified term. However, even in cases where no con­

fusion would be likely to result from the omission of some 

form of "strong", it is sometimes retained for purposes of 

emphasis. We never omit any form of "weak".

Where the context makes the meaning clear, we have 

omitted such phrases as

n— p-a>

All the functions hereafter considered are functions 

from a compact interval of the real line, generally denoted 

by I , to a Banach space of one sort or another. The meas­

ure on I is always the usual Lebesgue measure, and in some
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cases where no confusion with terms such as "strongly measur­

able" and "weakly measurable" is likely the modifier 

"Lebesgue" is omitted. This is frequently done when the 

function considered is from I to the real line. We never 

omit any form of "strong" or "weak" as a modifier of any 

form of the term "measurable".

The Hausdorff metric on the metric space of closed

and bounded subsets of a metric space is symbolized by

dist[ , ] , while the metric of the original space is sym­

bolized by dist( , ).

Derivatives are taken in the usual sense of the limit 

of the difference quotient.

The term "almost everywhere" is used in the sense of 

"except on a set of measure zero".



OPTIMIZATION PROBLEMS IN BANACH SPACE 

CHAPTER I 

THE BOCHNER INTEGRAL

In the.past few decades several theories of inte­

gration have been developed that are somewhat divergent from 

that dne to Lebesgue. We shall consider a theory due to 

S. Bochner.

The Bochner integral makes possible the integration 

of functions to a Banach space from an abstract set, S , on 

which a cT-finite measure has been defined on a

-algebra of subsets, called the measurable subsets of S. 

The value of the integral of such a function is again an 

element of the Banach space, and many of the most useful and 

important properties of the Lebesgue integral can be extended 

almost word for word to this more general setting. As 

examples, we mention two such results. They are analogues 

of familiar results from Lebesgue theory, and will be used 

repeatedly in the sequel.

(1.1) IIc b )̂ /̂  u(t) I -(L)/|(u(t)||
s s
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(1.2) (B)jT(au(t)+bv(t)) = a{B)  J u { t ) + l > { ' B ) J ' v { t )  , where a
8 8 8

and b are real.
We now proceed to the precise definition of the 

Bochner integral that is most relevant to our control- 

theoretic setting. Let

U ! I B ̂

where B is a Banach space and I is a closed and bounded in­

terval of the real line. Then u is said to be countably- 

valued if the range of u is a countable subset of B and 

u assumes each non-zero value, u^ , on a Lebesgue measur­

able subset, , of I.

In the setting in which we are interested, the 

countably valued function u is said to be Bochner inte- 

grable if the function

(1.3) I I u( ) j |  ;I-^ R:: t— ^  l|u(t)||

has a finite Lebesgue integral over I, and the Bochner in­

tegral of u over I is defined by

/  to
u(t) = %meas(Ej^).

I k=1

THEOREM 1.1. If the function defined by (1.3) has a 

finite Lebesgue integral over I , then the limit in (1.4) 

exists.

Proof. (Our proof follows [I, 79]») Note that



I k=1

K
Hence, ||%(|^Gas(E^), K=1,2,...J is a Cauchy sequence,

k=1

and since

II Huj^meas(E^) - %[u^meas(E^){| = t  |luJ|meas(E^), 
k—1 k—1 k—K+1

we see that u^meas(E^), K=1,2,-.i.^ is also a Cauchy
k=1

sequence, and hence converges.
Q. E . D .

Next, a function u from I to B, not necessarily 

countahly-valued, is said to be Bochner integrable over I 

iff there is a sequence "(û } of countably-valued Bochner 

integrable functions from I to B such that

(1.5) u^(t)— »- u(t) a. e. on I;

(1.6) (d J* ||û (t)-u(t)l|— 0.
I

We define the Bochner integral of u by

(B)/u^(t)— (B)/-(1.7) ( B ) J u (t)— (B)J u(t).
I I

THEOREM 1.2. Given the above conditions on {u^}, 

the limit in (I.7) exists.

Proof. By definition (1.*+),
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i3)fvi^it) = ^  u5neas(EP), m=1 , 2, ....
I k=1 K K

Consider two elements, u’̂ and , of {n^}, and then 

sequentialize the countable collection of Lebesgue measur­

able subsets of I, •^E®’̂ ::k,l = 1, 2, . ...j , 

where = E^flE^. Denote this sequentialized collection

by = 1 , 2,...}.

Then,

(1.8) u^ meas(E ) = [  u%eas(E^) = { B ) i f  u^(t),
j(k,l)=1 k,l j(k,l) 1=1 1 1 I

where uĵ  ^ is the functional value of u^ on Ej (i-̂ i) »

A similar statement holds for u^.

Also,

(1.9) Z Z  I K  .Wmeas(E./, . 0  = H  |(u?|meas(Ej) 
j(k,l)=l" 1=1

= (L)/|K(t)|| ,
I

and a similar statement holds for u^. Also, the function 

un_uin Is countably-valued and constant on each of the sets



= (L)i/ llu'*(t)I + (L)/|lu“(t)|| .
I I

From the preceding statement and (1.8) and its analogue for 

m , we see that the limits

exist, and

j(k

= 3(,|=/tk,l- ’̂ , l > - “ ‘̂ 3(k,l)>- 

Also, since

= ILX,.5,l-tS,F"ees'h(k,l)>i
j(k,l)-1



¥6 see that

(1.10) jjcB)/'u^(t)- (B)u'u®(t)j[ = (L)J ||û (t)--u®(t)|| .
I I I

But since llû (t)-û (t))l = llû (t)-u(t)j| + jlu®( t)-u( t)j| , 

we see that
(1.11) (L). ||û (t)-û (t)|| = (L)J'||u^(t)-u(t)||

I

+ ( L ) S |lu’̂ ( t ) - u ( t ) | l  .
I

By condition (1.6) we see that the right side of (1.11) ap­

proaches zero as m and n become large. Hence the sequence 

^(B) v^u^(t)J is Cauchy and hence convergent, and we have

shown that the limit in (1.7) exists.

Tlie uniqueness of the limit follows from the fact 

that any two sequences of functions with properties (1.5) and

(1 .6) can be combined into a single such sequence by alter­

nating their terms.
Q. E. D.

Suppose the function u maps I into B. We say

that u is almost separably-valued if there is a subset Eg 

of I such that meas(I-Eg)=0, and the set u (I-Eq ) is

separable.

We say that u is weakly measurable if for each b*

of B* , the adjoint space of continuous linear functionals

on B , the function

h*u;I— R:;t-^ b*[u(t)]



10

is Lebesgue measurable.

Finally, we say that u is strongly measurable if 

u is weakly measurable and almost separably-valued.

We say that a function u is Bochner p-integrable 

if u is strongly measurable and the function

||u ( — *-R;;t— |ju(t)|),P , p>-1,

has a finite Lebesgue integral on I.

In the case where p=1 , it can be shown [I, 80] 

that this condition is equivalent to Bochner integrability 

as defined following Theorem 1.1. It is frequently useful 

to replace that definition by this characterization.

Finally, we define the norm of a Bochner p-integrable 

function by
1/P ̂ ||uiT:;ir j(1.12) )|u||p = [(L)/||u(t)|P]^'^^, p = 1.

We denote the class of Bochner p-integrable functions from 
I to B by Bp(I,B) , and remark that it is shown in 

[I, 8l] that Bp(I,B) is a Banach space under the norm de­

fined by (1.12).

It is useful to note that if the function u is 

Bochner p-integrable and also bounded, then u is Bochner 

p*-integrable, where p* - 1.



CHAPTER II

EXISTENCE AND COMPACTNESS OF 

SETS OF FUNCTIONS

In the sequel we shall have need, of a version of the 

Rlesz theorem and related results. We first prove the fol­

lowing lemma.

LEMMA 2.1.1. Suppose X is a real Hilbert space 

[IV, 73]. Then one can define an inner product (u,v) on 

62(1,X) , where u and v are elements of B2(I,X) , the 

set of Bochner square-integrable functions from I to X , 

by the statement

(2.1) (u,v) = (L)/ [u(t),v(t)] ,

where [ , ] symbolizes the inner product on X.

Proof. Since B2(I,X) is a Banach space with the 

norm defined by (1.12) with p=2 , we see that the function 

u-v is an element of B2(I,X).

Hence the functions

11
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IjuC )-v( R: :t— »- ll-u(t)-v(t)|l

||u( R; :t— *- llu(t)||

IIv( )||̂ :I— ► R;:t— ||v(t)|P

a r e  Lebesgue Integrable. Then since

[ u ( t ) , v ( t ) ]  = l l t l ( t ) P  + (Iv(t)jl^ -  .Hu(t)-Y(t)l i .^,
2 ■ • ■ ■

the function

[u( ),v( )]:!— *-R;:t— ^[u(t),v(t)]

is Lebesgue integrable. Hence (u,v) is well defined by

(2.1). The familiar properties of the inner product follow 

readily from the properties of the Lebesgue integral and the 

inner product on X. To illustrate,

(au,v) = (L)/ [au(t),v(t)] = (L)/*a[u(t),v(t)]
I I

= a(L)J'[u(t),v(t)] = a(u,v).
I

The other properties follow similarly.
Q. E. D.

Suppose is a sequence of elements of a Banach

space, X. We say that converges weakly to a point

of X iff for each continuous linear functional x* defined 

on X , x*(x^) converges to X*(Xq ).-
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THEOREM 2.1. Suppose {u^} is a sequence of elements 

of 82(1,X) that converges weakly to vP of Bg(I,X). Then 

there is a subsequence of {u^} , called - [ u ^ , such 

that the sequence of arithmetic means of the elements of 

{ u j j -  converges strongly to u° . That is, the sequence 

of functions ^v^} , defined by

= r t  5 k=1 ,2, ...
j(^=1 

has the property that

||v̂ -U°)lg = ( v^-u°, v^-u° ) 0.

Proof. It is enough to show that (v^-uO,v^-u°)— v- 0, 

and without loss of generality we take u° equal to 0 .

As defined in (2.1), the function

( ,v):B2(I,X)— ► R: :u— ► (u,v)

is continuous and linear, and so ( ,v) is an element of

B^djX) , the adjoint space to B2(I,X).

It is well known [IV, 12k] that a weakly convergent 

sequence of elements of a Banach space is bounded in norm, 

so there is a constant M with the property that 

llû ll̂  - M , n=1 , 2, ....

Let j(1) = 1 , and take

8(1) = ĵ n: : l(u^,ui^^ ) )l - 1, n > j ( 1)} .
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We see that 8(1) is not empty, since

= 0,

due to the weak convergence of u^ to 0.

Let minS(l) = j(2) , and suppose, proceeding in­

ductively, that

j(1)<j(2)< ... < j(k).

and define S(k) = {"n: : ) ( u ^ , u ^ ^ - 1/k,..., |(u^,uj^^^)l

- 1/k; n>  j(k)} .

We see that S(k) is not empty just as in the case of 8(1)

Let fflin8(k) = j(k+1) , and the sequence uJ(%)

is well defined. But then

l ,m=n
(^j(l) ^j(m)) ^ nM^+2/1+4/2+...+2(n-1)/(n-1)

= k i ;1 ^ 1

à tf+2 0n Q. E. D.

A set is said to be weakly compact if every sequence 

of elements of the set contains a weakly convergent sub­

sequence. It is said to be weakly compact in itself if 

every sequence of elements of the set contains a subsequence 

that converges weakly to an element of the set.
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THEOREM 2.2. Let C#(B) denote the set of nonempty, 

convex, closed and bounded subsets of a complete inner 

product space B. Suppose that

G;I— > C#(B),

and that t) : : t < Ï} is bounded. Then the set of

functions B^tO) , where by definition the function u is. 

an element of BgCG) iff

u: I— „ B ;

u^Bgd^B) ;

u(t)f G(t) a.e. on I ; 

is weakly compact in itself.

Proof. If p > 1 , then B*(I,B) = B^(I,B*) , where 

1/p + 1/q = 1 [1,89]• Hence, since B is reflexive, we 

see that

B**(I,B) = B*(I,B*) = Bp(I,B**) = Bp(I,B).

Thus B2(I,B) is reflexive and so closed and bounded 

spheres of B2(I,B) are weakly compact in themselves [1,38]. 

Since the elements of BgCG) take their values almost 

everywhere in a bounded set, the set B2(G) is also 

bounded. Hence if {û }̂ is a sequence of elements of 

B2(G) , there is a subsequence, also called {u^} , and an

element u° of 62(1,8 ) such that
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11°(weak).

We must show that u° is an element of BpfG).

By Theorem 2.1 there is a subsequence, also called 
u^ , such that

n
:^y~u^ = ^  u°(strong).

That is,

^k=1

[(!)/llv’̂(t)-u°(t)ll2]1/2 = ||v^-u°)L— 0.
■ I

We now quote a result on real variables given in [III,86].

If a sequence of elements of L2 converges in norm 

to zero, there is a subsequence that converges to zero al­

most everywhere.

Thus we can suppose that

||v^(t)-u°(t)il^— 0 a._e. on I.

or that

(2.1a) v^(t)— fc» u°(t)(strong) on ,

where is a subset of I , and meas(I-Eo) = 0.

For each u^ there is a subset, Ê  ̂ , of I such that 

meas(I-Ej^) = 0 and for each t in E^ , u^(t) is an 

element of G(t) .
By the convexity of each G(t) and the definition

CD
of v^ , we see that for each t in E^ , v^(t) is an

n=1
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element of G(t) , where n=1, 2, ....

From (2.1a) and the closure of each G(t) , we see that for
09

each t in , u°(t) is an element of G(t) . Since
n=0

CD
measd-/^ E^) = 0 , 

n=0

u°(t)€G(t) a.e. on I.

Hence vP is an element of Bp(G) .
Q. E. D.

A map G from a metric space X into the space of 

closed and bounded subsets of a' metric space Y is said to 

be upper semi continuous (hereafter abbreviated to u. _s. _c.) 

at the point of X iff

®  _______________________
( |  [U{G(x) : :x 6S(Xq , 1/n) } ]CG(Xq ) , 
n=1

where 8(x ,1/n) denotes the sphere of radius 1/n 

centered at Xq and the upper bar denotes closure. The 

concept of upper semicontinuity can be defined for more gen­

eral spaces, but the above definition will suffice for our 

purposes.

The following theorem generalizes a result of 

Jacobs [II,31]*

THEOREM 2.3. Suppose the map G from I jto 

C#(H) is. , where C#(H) denotes the collection of

convex, closed and bounded subsets of a separable Hilbert 
space which has the real numbers as its scalar field.
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If UfG-( t) : : t £ l} compact in itself, then S( G) not 

empty, where the function u is an element of 8(G) iff

n:I— V H (strongly measurable) ; 

u(t)£G(t) for each t in I .

Proof. Select a dennmerable orthonormal basis - ( ^ i }  

for H. (For a discussion of the relevant definitions and a 

proof that such a basis must exist, see [111,78].) We now 

define a function u and show that it is an element of 8(G) 

For each t in I there is an element Xq of G(t) 

such that [ ,b̂ ] is a minimum over G(t). To show this,

consider t in I. Since the map

(2.2) [ ,b-|]:H— »- R: :x— >. [x,b^ ]

is continuous and linear, there is a real number m such

that m =  inf ( [x,b-] ] ,x€G(t) ).

Take a sequence [x^] of elements of G(t) such that 

[x;̂ ,b̂  ]— >■ m. Then since G(t) is bounded, it is weakly 
compact [1,38]. Hence there is a point x^ of H and a 

subsequence of |x̂ | , also called x̂̂ ]- , such that x̂ ^

converges weakly to Xq .

By Theorem 2.1 there is a further subsequence, also 
called jx̂ j , such that the arithmetic means of the ele­

ments of [xĵ } converge strongly to Xq. That is.
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1A
ï ï L %  " ^0 (Strom).
k=1

Since each G(t) is convex and each x^ is an 

element of G(t) , then each is an element of G(t).

S i n c e G(t) is closed, x^ is an element of G(t). Due to 

the definition of ^x^^ , the weak convergence of x^ to 

Xq and the continuity and linearity of the map [ ,ty],

[x^,b^]— •- [xQ,bi] = inf([x,b^],x<G(t)).

Since x is an element of G(t), the infimum is

actually a minimum.

Suppose that this does not uniquely define u(t). 

That is, suppose there is another element of G(t), say

x-| , such that [xQ,b-|] = [x-|,b-|].

Then let

U^(t) = (y::yeG(t) and [y,b-|] = min( [x,b^ ] ,x€G( t) )} .

We now minimize the function [ ,b2] over U^(t).

To see that this minimum exists, observe that U^(t) 

is bounded, since it is a subset of G(t). Since U^(t) is 

the intersection of the closed set G(t) and the pre-image 

of the closed subset of the reals consisting of the single

point min([x,b^],xcG(t)) under the continuous map

[ ,b-|] , then U^(t) is also closed. To show that U-j(t)
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is convex, consider two elements, x and y of U^(t) and 

two non-negative real real numbers, a and b , such that 

a + b = 1. Since

[ax+by,b-i] = a[x,b-|] + b[y,b^] = (a+b) (min( [x,b^ ] ,xeG( t) ) ),

and X and y are elements of G(t), which is convex, we 

see that ax + by is an element of U^(t). Hence U-|(t) is 

convex.

Thus the minimum of [a^bg] over U^ft) exists by 

the same argument that showed the existence of the minimum 

of [x,b-̂ ] over G(t).

Suppose that this does not uniquely define u(t). 

That is, suppose that Up(t) consists of more than one 

point, where

2(t) = (y::yeU^(t) and [y^bg] = minfTx/bnl ,x*U^(t) )]U

Then we can minimize [x,b^] over UpCt) by the above 

argument. This yields a set U^(t) of elements that mini­

mize [x,bg] over U2(t). We proceed in this manner, 

minimizing [x,b^+i] over U%(t), where

(2.3) u^(t) = fy::yeu^_i(t) and [y,b^]

= min([x,b^],x*U^_^(t))} .

If after a finite number of such steps we obtain a set 

U^(t) consisting of a single point, we define that point
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to be u(t).

In the case where no U^(t) consists of a single 

point, we say that

u(t) = Q u  (t), n=0

where we define UgCt ) to be G(t).

To show that the above intersection can contain at 

most one point, suppose that it contains two points, y and 

z. Then since y and z are both elements of Uĵ (t) for 

all n , we see that

[y,bn+l] = [z,b^+^] = min([x,b^+^],x«U^(t)) , n=0,1,--

But then y and z have the same 'coordinates' and are 

hence equal.

To show that the intersection is not empty, select 
a sequence of points of H , {x̂ }̂ , such that each x̂  ̂ is 

an element of Uĵ (t). There is a subsequence of X̂ĵ  ̂ that 

converges weakly to a point x* of H. Since each 

Û +-|(t) is a subset of U^(t) , we see that for each n we 

can find a subsequence of our original sequence that con­

sists solely of elements of U%(t) , and still converges 

weakly to x*. But since convex, closed and bounded subsets 

of a reflexive Banach space are weakly compact in themselves 

[1,37-38], we see that x* is an element of each U%(t). 

Hence the intersection is not empty, and so u(t) is well 

defined.
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Next we show that the function u so defined is 

strongly measurable.

Consider the coordinate map, c^ , where

(2.^) c^:I— R: : t— >• [u(t) ,b^J , k=1 , 2, ....

We show that each c^ is Lebesgue measurable. To this end,

let fUs) ={t::tÉl and [u(t),b-^] = s}.

It is enough to show that F’'(s) is closed. Suppose that 

{t^} is a sequence of elements of f U s )  and that 

t^ ^  t°. To show that t° is an element of F^(s), con­

sider the following special case of a theorem due to Jacobs 

[11,16].

(2.5) Let C(X) the collection of closed and bounded 

subsets of a metric space. X , and I W  a compact interval 

of the real line. Suppose

F:I— »- C(X) (u._s.c,.) ,

and that {t^} and {x^] are sequences of elements of I 

and X respectively such that

t ^ _ _ t °  I ;

x^— *. x ° X ;

x^eF(t^) for all n.
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Then we conclude that x° au element of F(t°).

Since each u(t^) is an element of the compact set

U{G( t) : ; t«I}, we see that there is a subsequence of {t^} , 

also called {t^} , and a point h^ of H such that

(2.5a) u(t^)— ► h^ (strong).

By the definition of the function u , each u(t)

is an element of G(t). Hence, by (2.5), (2.5a) and the 

convergence of t^ to t"̂ , we see that h^ is an element

of G(t°). Hence, again due to the definition of the func­

tion u, [u(t°),b-^] = [hQ,b-|].

Since for each n , [u(t%),b^] - s, we see from

( 2 . 5 a )  and the continuity of the inner product map that

[u(t^) ,b^]— [hQ,b^] = s.

Hence [u(t°),b^] = s , and we see that t° is an element of
1 1 F (s). Hence Fl(s) is closed, and so c ' is measurable,

where

c’':I— ► R::t— #- [u(t),b^].

We now show by induction that each c^ is measurable.

Suppose that we have closed subsets of I,

(2.6) J-|(=I), J2, •••,

such that the maps c^, c^, ..., c^ are measurable on 

J-), Jp,..., Jk respectively, and
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'i' “i+1 ' ''(2.7) _ , 1=1,2, ;

(2.8) meas( J.-J.^. )-< _ £ _  , 1=1, 2, ... ,k-1 , £>-0 ;
oi+2

(2.9) is. continuous on , 1 = 1 , 2, ..., k-1.

Recall the following form of Lusln's Theorem [V,236]:

Suppose S is. a measurable subset of the reals and

f is a measurable map from S io the reals. Then If g>-0.

there Is a closed subset of S, call It E, such that f 

Is continuous on E, and meas(8-E)< G.

Given the closed subsets mentioned In (2.6), Lusln’s 

Theorem shows that there Is a closed subset of I

such that

(2.10) \^'^k+1 ’

(2 .1 1) meas(J^-J^+l)<_^ ;
2'

(2.12) c^ Is continuous on

The maps c^, ĉ , c^ are certainly continuous

on . We now show that the map c^+l Is measurable on

J -j. Let

pk+1(s) = (t: a M  [u(t) ] - s}.

Suppose that {t^l Is a sequence of elements of F^^1(s) 

and t^— ► t°. We show that t° Is an element of F̂ '*'Ut) ,
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which is then seen to be closed. We will have then shown

that c^^1 is measurable on .

Since each u(t^) is an element of U(G(t) : :t€l}, 

which is compact in itself, there is a subsequence of [ t ^ J  , 

also called {t^? , and a point h of H such that

(2.12a) u(t^)— ► h^ (strong).

By another application of (2.5), the theorem of 

Jacobs, h is an element of G(t°).

Since the maps c"̂ , c^, ..., c^ are continuous on

^k+1’ see that

(2.13) [u(t%),b^]— ► [u(t°),bj_] , i = 1, 2, ..., k.

(Remember that t^— t° and

c^:I— ». R: :t— », [u(t) ,bj_] , i = 1 , 2, --- )

Again, by the continuity of the inner product map 

and (2.12a), we have

(2.1^) [u(t^),b^]— ^ [hQ,bĵ ] , i = 1 , 2, ..., k+1 .

We now consider two cases: A and B.

A. u(t°) = h^.

In this case, since each t^ is an element of 

F^^^(s), we see that
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(2.15) - s , n = 1, 2, ----

So, by (2.15) and (2.l4) for the case i = k+1 , we see

that [n(t°),b%+i] = [hQ,b%+i] ^ s ,

and t° is an element of F^^1(s).

B. u(t°) / hQ.

By (2.13) and (2.1^) we see that

(2.16) [u(t°),bj_] = [hQ,bj_] ,1 = 1,2, ..., k.

Thus both hg and u(t°) are elements of U^(t°) , 

i = 1,2, ..., k, where U^(t°) is as defined by (2.3).

Then by the definition of u(t°),

(2.17) min([x,b^|i],xfU^(t°)) = [u( t°) ] = [hQ,b%+i]

From (2.1^) and the fact that each t^ is an element 

of pk+1(s),

[ho,bk+i] - s,

and so from (2.1^) we see that [n(t°),b^+^] - s , and

hence that c^^^ is measurable on .

Thus we have established by induction the existence 

of a sequence of closed subsets of I , with J-| = I,

such that
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( 2 . 1 8 ) , k = 1 , 2,  . .  . ;

(2.19) meas( )-<-^^ , k = 1 , 2, ... ;

(2.20) is, measurable on , k = 1 , 2, ....
CO

From (2.18) each is measurable on O J v  ?
k=1

and by (2.18) and (2.19) , we see that

»  *  £
meas(I-/\ Jt,) < ̂ ^ 1 + 2  < £  

k+1 k=1

Since £  is arbitrary, each c^ is measurable almost every­

where on I. That is, each is measurable on I , and 

we remind the reader that "measurable" has heretofore meant 

"Lebesgue measurable".

Me must now show that each map b^ , where

. k
(2.20a) b^:I— ^  [u(t) ,b. ]b- ,

i=1

is weakly measurable.

It is known [IV,110] that each linear functional in 

H* is of the form

(2.21) [ ,h] :H— >. R: :x— [x,h] ,

where h is some point of H. But is a complete

orthonormal basis, and so each h of H has a unique 

representation of the form
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(2.22) h = T  [h,b.]b. .
i=1 1

Hence, from (2.20a) and (2.22), we see that for all choices 

of k, t and h ,

(2.23) [h^(t),h] = ^  [u(t) ,bj_][h,b. ] .
1-1

Hence the function

k
(2.2^) [b^( ) ,h] R: :t->- 27 [u( t) ,b. ][h,b• ]

i=1

is identical with the function

(2.25) k k
22 [b,b^ ]c^( ):I— >-R;:t— ^  [h,b- ]c^( t) , 
i=1 i=1

where we remind the reader that c^(t) = [u(t),bj_] .

Then for each h in H , the function defined by

(2.25) is Lebesgue measurable, being the linear sum of a 

finite number of Lebesgue measurable functions defined over 

a finite interval. Hence for each h in H , the function 

defined by (2.24) is Lebesgue measurable.

Hence the composition of any linear functional in H* 

with any b^ as defined in (2.20a) is of the form

[ ,h]b^:I— R: :t— [b^(t),h] , 

which we have shown to be Lebesgue measurable. Hence each
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is weakly measurable. Since the range of each b^ is 

in H , which is by hypothesis separable, each b^ is 

strongly measurable.

Further, since ^b^^ is an orthonormal basis, for 

each t in I,

i  . - 1=1 1=1

k *
b^(t) = [u(t) ,b̂ ]bj_— ^  [u(t) ,bj_]b̂  = u(t) as k-

Hence the function u is the pointwise limit of the sequence 

^b^J of strongly measurable functions, and by Theorem 

3.5*^*(3)? [1,7^], the function u is itself strongly 
measurable.

Q. E. D.

COROLLARY 2.3-1 The function u defined in 

Theorem 2.3 is Bochner integrable.

Proof. Since U'{G(t) : :t € l} is bounded, there is a 

constant M such that for each t in I and for each k,

(2.26) lib̂ (t)|l = ( [ u ( t )  ,bj_]“)''/2 i ^  [u(t) ,bĵ ]̂ )''/̂
i=1 1=1

= llu(t)l! = M.

Since each c^ is Lebesgue measurable, where 

c^(t) = [u(t),b^] , we see that for each k, the function

(2.27) llb̂ ( )1|:I— »*R::t— ► llb̂ (t)H
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is Lebesgue measurable, being defined as in (2.26) by a 

finite number of Lebesgue measurable functions. From (2.26) 

we see that for each k, the function defined by (2.27) is 

bounded by M, and so has finite Lebesgue integral. Hence 

each b^ is Bochner integrable on I, and so by Theorem

3.7-9, [1,83], a generalization of the classic dominated 
convergence theorem of Lebesgue, and the pointwise conver­

gence of b^ to u on I, we see that

( B ) J ' b ^ ( t ) — (B) J  u ( t )  ( s t r o n g ) .
I I Q. E. D.

COROLLARY 2.3.2. If p>1 , then u is Bochner

p-integrable.

Proof. Since |(u(t)(| is bounded on I, the function

||u( )||P :I— >-R:;t— ^  |\u(t)jp

is bounded and has finite Lebesgue integral on I.
Q. E. D.

Suppose X and Y are metric spaces. A map F

from X to C#(Y) is said to be upper semicontinuous with

respect to inclusion (hereafter abbreviated to u. s_. c_. j..) 

at a point Xq of X iff

(2.28) for any £> 0 there is a j*(€)>-0 such that if

dist(x,x^)<f (6), then

F(x)c Ufs £ (z) : ;z £ F(x )} .
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THEOREM 2.4 Suppose that H is. in Theorem 2.3

and that

C#(H) (u.s.c.i.) ,

and that each G(t) is convex, closed and bounded. Then
there is a map u from I jW H that is strongly measurable

and such that u(t) is an element o f G(t) for each t in

I.

Proof. Our proof will lean heavily upon the methods 
of the preceding theorem. The map which we exhibit is the

same. The hypotheses on each G(t) are the same, and so

the map is still well defined.

We shall show only the measurability of ĉ  on I,

where

ĉ  : I— ^  R: ;t— ^  [u(t) ,b̂  ].

The measurability of each c^ and the strong measurability 

of u follow exactly as in the preceding theorem.

As in Theorem 2.3, let

F^(s) = ft::tel and [u(t),b^] - s} .

We show that F^(s) is closed, and hence that c"' is

measurable.

Suppose that {t^} is a sequence of elements of 

f'(s), and that t^— ^  t°. We show that t° is an element 

of Fl(s).
Consider some € > 0  and the ^(£)>-0 of the
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definition of u.s.c.i. above. By the fact that t^— *■ t^ , 

there is an integer N such that if n - N, then

<  S(€). By the definition of S(€), we see that for 
each in G(t^) there is an element y of G(t°) such

that dist(x^,y)< 6  . Since u(t^) is an element of  

GCt^), there is an element y^ of G(t°) such that 

dist(u( t^) ,y^) <€ .

Since H is a separable Hilbert space and £b^^ is 

a complete orthonormal basis, we see that

(2.29) [u(t^)-y^,u(t^)-y^)] = dist^(u(t^).y^) =

1 - 1

From (2.29) and the inequality immediately preceding, we 

see that '

(2.30) [u(t^)-y^^,b^ ]2 <  €^.

From the linearity of the inner product in its first 

argument, (2.30) and elementary algebra, we see that

(2.31) [u(t^),b-i]-y^,b^] - ̂  .

Since y^ is an element of G(t°), then by the 

definition of u(t°),

(2.32) [u(t°),b^] = [y^,b^] .
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Since is an element of f U s ), we see that

(2.33) [u(t^) ,b-| ] = s.

From (2.31), (2.32) and (2.33) we see that

[u( t^) ,b̂  ] = s+e ,

Since £ is arbitrary,

[u(t°),b^] = s ,

■1
and F (s) is closed.

Q. E. D.

Tlieorems 2.3 and 2.4 are motivated by the well 

known lemma of Filippov [11 ]. By strengthening the hy­

pothesis on the map G of Theorem 2.3 from u. s. c. to

u. s. c. i. (Filippov originally hypothesized u. s. c. i.), 

we are able to eliminate the quite restrictive hypothesis of 

compactness of the set in which the controls take their 

values. Indeed, this set need not even be bounded.



CHAPTER I I I

THE EgjATIOW  OF EVOLUTION AND 

TIME-OPTIMAL CONTROLS

Let X be a separable and reflexive Banach space. 

Assume that the linear operator A from X into itself 

either is independent of t or satisfies the following con­

cilions ;

(i) For each t in an interval [0,T] the operator

A(t) is. closed and the domain of A(t) is 

dense in X and independent of t;

(ii) for Re(*>v) = 0 , ('Xl-A(t) exists;

(iii) for R e C \ )  = 0 , IK 'X I-A(t) )-^)l  ̂ Y T & T  ’

where c is. a real constant;

(iv) ll(A(t)-A(s) )A(r)"^ll = klt-sl^ , where k > 0  and

a-T-O.

Then by the results given in [3,211], [^,11?] and

[11,363], if
u:[0,T]— =>- X::t— ► u(t) 

in such a manner that

(3.0) ||u(t)-u(s)ll = C|t-s|^, where C > 0  and b >0 ,

there is a unique differentiable solution to

3^
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(3.1) + A(t)x(t) = u { t )  , t€[0,T]

of  the form

pt
(3.2) X (t) = 8(t,0)Xg + (B) S(t,s)u(s) , té[0,T] .

vn

Where the linear operators |̂ S(t,s) ; : (t,s) ̂  [0,T]x[0,T]} 

where s - t, from X into itself all have norm less than 

or equal to one and are all continuous in t and s 

simultaneously.

It should be emphasized that |̂ S(t,s) : :(t,s)^[0,T]x[0,T]]’ 

depends only upon [A(t)::t € in a very complicated

manner which it is not feasible to discuss here, but which is 

developed in [3,210].

If the function u fails to satisfy the very strong 

condition given in (3.0), which is called Holder continuity, 

the function x^, defined in (3.2), may fail to be dif­

ferentiable, and so of course may fail to satisfy (3.1).

However, if u is merely bounded and strongly measurable, 

then the function x^ is still well defined, and is called 

the weak solution to (3.1).

THEOREM 3.1. Let ^  the set of strongly meas­

urable functions that satisfy the following conditions;

(3.3) u:[0,T]-^X;
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(3.4) ii( t) € U a .e., where U is. a convex, closed and 

hounded subset of X;

d "

pT
(3-5) (L) llu(t)((P - M, where 1 . (That is,

Jo

W p  =

(3.6) x^(0) = Xq and x^(T^) = x^, where 0 = T^ = T.

We say that the control u directs its response x^ 

from jbq x̂  time .

I£ is. not empty, it contains a time-optimal

control.

Proof. We begin the proof by establishing the fol­

lowing lemma.

LEMMA 3.1.1. If u maps [0,T] into X, and u 

is strongly measurable and bounded, then for almost all s 

in [0,T],

, flS+e
i(B)J u(t)— u(s) as I — —  0 .

Proof of the Lemma. If the function f from [0,T] 

to the real numbers is bounded and Lebesgue measurable, then 

it is well known that

H s+e.
f(t)— f(s) as e— ►  0

for almost all s in [0,T].



37
Since X is separable, let be a countable

dense subset of X. Since u is strongly measurable and 

bounded, the function

)|u( )-xJ| :[0,T]— ►R: :t— ^  ||u(t)-xj|

is bounded and Lebesgue measurable for each x^.

Applying the above quoted result, we see that

-I ps+Ê ,
(3 .7) g(L)j llu(t)-x^|(— (lu(s)-x^ll as 6 — »-0 for

s€E^, n=1 , 2, . . . ,  

where i s  a subset of [0,T] and meas(f0,Tl-E^)

“ 0 5 II—15 2  ̂ ••••
0» 22

Til en measCr 0,Tl- P I e ^̂) = 0. Select s in ( |E^ and then 
n=1 n=1

select some x^ from ^x^] such that |lu(s)-x^(l<X, where 

S>'0.  We must also demand that sj^ T in order that integra­

tion over the range [s,s+fi] be defined for sufficiently 

small positive £.

Then by properties (1.1) and (1.2) of the Bochner 

integral and the properties of the norm of a Banach space,
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*S+G fS+G II

(B)j u(s)-(B)J u(t)|p

^lj(B)j (-a(t)-u(s))

, ftS+E . ftS+£ ,  ̂ , fS+E
1(L)| |lu(s)-xJ+l(L)r ||u(t)-xj= f+l(L) llu(t)-xj .

S • Ü S s

Since we see by (3.7) that the second expression 

in the last term of the above inequality approaches

|ju(s)-Xĵ [] as € approaches zero positively, we have that

s+e
0 é lim ^  u(s)-l(B) u(t)|| = 2 S .

g— ». 0+ ' ® J s

Since is arbitrary,

0

Hence
1 ps+e 
■g(B) u(t)— fu(s) as, € — *"0

The lemma is established, since s was any point of

n=1
Now, let {u^} be a sequence of elements of 

such that
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(3.8) — ^ TO = in£(TU)
■UtfU]y]-

Where for simplicity of notation we replace by

Since is bounded as a s u b s e t  of Bp([0,T],X)

in the norm defined by (1.12), there is an element u° of

Bp([0,T],X) and a subsequence of ? also called ̂u^} ,

such that

(3 .9) u^— ►u® (weak).

We shall show that u° is an element of and

that u° is time-optimal.

As is well known, there is a family ff^? of linear 

functionals on X and a set Ĉj_] of real numbers such 

that X is an element of the convex set U iff fi(x) = Cj_ 

for all i. (Due to the separability of X, these sets may 

be denumerable, but this is irrelevant to  our proof.)

In what follows, 6 > 0  and 0 - s< s+£ - T.

Let

(3.10) u(£,n,s) = j(B)J u%(t) , n = 0, 1,

From [1,80],

•s+f
(3 .11) fi(u(e,n,s)) = 1(L)J  fi(u^(t)) for i, and

n = 1 , 2, .... Since each u’̂, n = 1 , 2, ... takes its
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values almost everywhere in U, then for almost all t in 

[0,T], all i, and n = 1, 2, ... , fi(u%(t)) - Cj_.

Hence from (3.11),

(3.12) fi(u(£,n,s)) - for all i, and n = 1, 2, ---

From (3*9) we see that for all i,

(3.13) f^(u(e,n,s))— *"fi(u(e,0,s)) as n— *-eo.

From Lemma 3.1.1 and (3.10) we see that

(3.1^) u(£,0,s)— »-u°(s) a.e. on [0,T], a^ £— ^  0"̂ .

From (3.12) and (3.13), we see that for all i,

(3.1^) f^(u(6,0,s)) = .

Hence for each i, for any positive 6 , and for any s

in [0,T], u(£,0,s) is an element of U.

From (3.143 and the closure of U, we see that 

for almost all s in [0,T], u°(s) is an element of U. 

Hence condition (3.4) is satisfied.

From the reflexivity of Bp([0,T],X) and conditions

(3 .5) and (3 .9) it follows that Hence

condition (3.5) is satisfied for u°.

Consider now the responses to the controls

fu^::n=0, 1, ...] , where
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(3.16) x^(t) = S(t,s)xQ + (B)J S(t,s)u^(s) , n = 0, 1, ...

Since is an element of Uĵ , n = 1, 2,' ..., it

follows that

(3 .17) x^(0) = Xq and x^(T^) = x^, n = 1, 2, ---

The fimction x° as defined by (3.16) is the weak

solution of (3 .1) corresponding to the control u°, and

we must show that x°(0) = Xq and x°(T°) = x^. Since 

S(0,0) = I [4,210], it is clear from (3.16) that 

x°(0) = Xq . To show that x°(T°) = x^, we will show that

(3 .18) x^(T^)— ^  x°(T°) (weak).

Since x^(T^) = x-|, n = 1, 2, --- , it follows that

(3 .19) x^(T^)— X-] (strong) and a fortiori (weak).

Since the weak limit is unique [IV,121], it will follow from

(3 .18) and (3 .19) that x°(T°) = x^. We now proceed to

prove (3 .18).

Since S is continuous is t and s simultaneously 

[3,210], T^_v-T° and [0,T]x[0,T] is compact, it follows 

that

(3 .20) S(T^,s)— ► S(T°,s) (strongly and uniformly in s). 

Since the functions u^, n=1, 2, ... take their
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values almost everywhere in U, they are uniformly bounded

almost everywhere. Hence it follows from (3.20) that

pT°
(3.21) (B)l (S(T^,s)-S(T°,s))u^(s)— ^  0 (strong).

Let f be a continuous linear functional on X 

and suppose that u and v are elements of Bp([0,T],X) 

and that a and b are real numbers. Due to the linearity 

of the Bochner integral and the functional f,

nT°
f[(B)l S(T°,s)(au(s)+bv(s))] =

J q

af[(B) S(T°,s)u(s)] + bf[(B) S(T°,s)v(s)]. 
0 # n

Since S is bounded [3,210], we see that the map F, where

ijO
(3.22) F:B^([0,T],X)— ► R::u— f[(B)f S(T°,s)u(s) ].P V 0

is a continuous linear functional on Bp([0,T],X). Hence 

from (3 .9)5

pT° pT°
(3 .23) F(u^) = f[(B) S(T°,s)u^(s)]— f[(B) S(T°,s)u°(s)]

J o  '^0

= F(u°).

Since f was arbitrary in X*, it follows from (3.23) that
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f'T̂  nT°
S(T°,s)-a^(s)— *-(B) 8(T°,s)iiO(s) (weak). 
0 V 0

aT°
We write (B)( S(T°,s)u^(s) in the form 

ü 0

aT°
(3.25) XB) [8(Tn,s)-8(T°,s)]n]:i(s) + (B) 8(T^,s)u^(s) +

J 0 V T°

(B)
OTO
8(T°,s)#(s),
0

We have shown that the first integral in (3.25) converges 

strongly to zero. (See (3.21).) The second integral con­

verges strongly to zero due to the fact that T^— ^  T° 

and S and u^, n = 1, 2, ... are all uniformly bounded. 

Hence it follows from (3.24) and the statement immediately 

above that

aT^ aT°
(3.26) (B) S(T^,s)u^(s)— (B) S(T°,s)u°(s) (weak).

J 0 0

It then follows from (3.20) that

(3.27) S(t’̂,0)Xq— >-S(T°,0)xq (strong).

Hence it follows from (3.16), (3.26) and (3.27) that

x^(T^)— ►x°(T°) (weak).
Q. E. D.

Several interesting corollaries are easily obtained.
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Corollary 3«1*1 • By making M sufficiently large,

condition (3 -5) may be omitted.

Proof. Since U is bounded, let M = T|lxjp.x«U

This corollary is proved in [2,10].
Q. E. D.

The set attainable from x , called R^, is de­

fined by

(3 .28) Rq = £ 2; : z € X and some u of directs its re­

sponse from Xq to z m  time less than or

equal to T.}

A set F is weakly closed iff for any sequence

^x^^ of elements of F,

(3 .29) (weak) implies x^fF.

Corollary 3*1*2 The set attainable from x^ is

closed and weakly closed.
Proof. Since strong convergence implies weak con­

vergence, it follows that if a set is weakly closed, it is

strongly closed. We show that R is weakly closed. To

this end, suppose that is a sequence of elements of

R and that 0

(3 .30) z^_v-Zq (weak).

Note that for each n, z^ = x^(T^), where 

0 = t'̂ = T and each x^ is the response to some control u^
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of U^. As in Theorem 3.1, there is a subsequence of

, also called {^n} ; .̂n element u° of and a

real number T° of [0,T] such that

(3 .31) u^— >.u° (weak) and — ^T°,

where for each n, the control u^ directs its response 

from X to in time T̂ .

By the proof of Theorem 3.1, and the definition of 

the subsequence .[ẑ ,

(3 .32) x^(T’a)— >x°(TO) (weak).

By (3 .30), (3 .32) and the uniqueness of the weak 

limit, Zq = x°(T°), and so Zq is an element of Rq.

Q. E. D.

Corollary 3-1.3» The set attainable from x^ is

bounded.

Proof. Suppose u is an element of U^. Then its

response x^ has the form given by (3.2). Since each S

has norm less than or equal to one [3,210] and

||Ull= •^^l|x||<+ûD , we see that

|lx(t)ll ^ |lS(t,0)XoH +11 (B)| S(t,s)u(s)|| = 1)Xq11 + T)IU||

xeu

i :
for all t in [0,T].

Q. E. D.

Wo say that z is an element of R(t), the set 

attainable from x at time t iff there is a control u
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of where the constant M is as in Theorem 3*1 , that

directs its response from to z in time t, where

0 = t = T.

It is clear that for each t in [0,1], R(t) is 

bounded, for R(t) is a subset of R^. To show that each 

R (t) is weakly closed and hence closed, suppose that 

is a sequence of elements of R (t) and that

(3 .33) — *-z^ (weak).

As in the proof of Theorem 3.1, there is an element 
u° of U]y[ and a subsequence of also called C z^,

such that

(3 •3'+) u^— ^ u° (weak) and %P( t)— ►x°(t) (weak).

Since for each n, z^ = x^(t), it follows from

(3 .33), (3*3^) and the uniqueness of the weak limit that

Zq = x°(t). Hence z is an element of R (t), which is 

seen to be weakly closed.

Remark 3-1.1. Since each S(t,s) is a bounded 
linear operator and Bochner integration is a linear opera­

tion, R(t) is convex for each t in [0,T]. Since each 

R(t) is also closed and bounded and X is separable, each 

R(t) is weakly compact in itself [1,38].

THEOREM 3.2. For each constant M, as defined in 

Theorem 3.1, the map
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(3.35) R:[0,T]_^C#(X)::t— ►R(t)

is contin.'uo'us.

Proof. We have seen that R is well defined. To 

show that R is continuous, we use the previously noted 

fact that C#(X) is a metric space under the Hausdorff 

metric, where

(3 36) distTA Bl = supremum [ inf dist(a,h'), inf dist(a',h)] 
 ̂ a€A,bcB h’éB a«A

We show that if [t^} is a sequence of elements of 

[0,T], then

(3.37) t^— t° implies R(t^)— ►•R(t°).

To establish (3*37) it is enough to show that for 

every 6>0 , there is a f(6) >0 such that when lt^-t°(<^(f), 

then

(3 .38) if 2„€R(t^), there is a z^«R(t°) such that

dist(z^,z.) - ^/2 ;

(3 .39) if Zg€R(t°), there is a z°cR(t^) such that 

dist(z^,z°) ^ e/2 .

Suppose Zq is an element of R(t°). Then some 

control u° of has a response x° such that

(3.Î+0) Zq = x°(t°) = S(t°,0)xQ + (B)j 8(t0,s)u0(s).
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From (3 .̂ 0), we see that z° is an element of 

R(t^), where

rt^
(3 .^1) = x°(t^) = S(t^,0)xQ + (B)j S(t^,s)u°(s).

From (3 .^0), (3-^1)5 the triangle property of the 

norm, the uniform boundedness of S(t,s), the previously 

noted properties of the Bochner integral and the boundedness 

of the restraint set U, we see that

(3.42) dist.(z°,z^) = [|zO-ẑ |( ^ |ls(tn,0)-S(to,0) [[.||xo|| +

|(B)f[S(t°,s)-S(t",s)]u°(s)|| + ||(B)|%(tn,s)uO(s)|| 5

[[S(t^,0)-S(t°,0) ||-([x qII + (t°)maximum||S(t°,s)-S(t^,s)ll-llull +
s«LO,TJ

where ((U(( = sup |(x(|*:+<p  . 
xfiU

From (3.20) and (3.42) we see that

(3 .43) dist(z°,z^)— >. 0 ^  t^— ^ t ° .

Now, suppose that z^ is an element of R(t“ ). 

There is a control u^ with a response x^ such that
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(3.44) = x^(t^) = 8(t^,0)Xg + (B)J^ S(t^,s)u^(s)

Then z^ is an element of R(t°), where

ft°
(3 .45) z^ = x^(t°) = S(t ,0)xq + (B) S(t°,s)u^(s) .

° vQ

By the same argument with which we established (3«43), 

we see that

(3.46) dist(z^,z^)— ^  0 as t̂ -

It follows from (3.43) and (3.46) that for every 

ExO there is a ((e) >0 such that when (t^-t°(< î(£), 

conditions (3.38) and (3.39) hold. Thus we have 

established (3-37)•
Q. E. D.



CHAPTER IV

TIME-OPTIMAL CONTROL OF A NONLINEAR PROCESS

Based upon a well known paper of Lee and Markus [6], 

we consider a control problem in a Banach space setting.

Our results depend upon a theorem which extends the method 

of successive approximations to a class o f  differential 

equations in a Banach space. The theorem we use is found in 

[1,67], and we quote:

THEOREM ^ . 1. Suppose that B is_ a Banach space and

that

f:RxB— ^B::(t,x)— ^f(t,x) , 

where f is continuous in each variable separately for

(1+.1 ) It-t^l = a, Ijx-x̂ ll = b,

and f satisfies

( 4 . 2 )  l l f ( t , x ) l l  = M;

(4.3) ||f(t,x^ )-f(t,Xg)ll = cjlx^-XgH

for t, X, X p  and Xp in the regions indicated in (4.1). 

Here a, b, M, a M  c are positive constants and

50
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(1+.1+) aM = b .

Then there is exactly one continuously differentiable func­

tion X such that

(^•5) d t ^  ” f(t,x(t)) and x(t^) = x^,

where It-t I = a.
pt

The solution is of the form x(t) = Xq + (B) 1 f(t,x(t))

In preparation for the use of this theorem, suppose 

that B-| and Bp are Banach spaces and that

(If.6) f :[0,T]xB^xB2— ♦- B̂  : ;(t,x,u)— f(t,x,u) ,

where f is continuous in t and u simultaneously and also 

Lipschitzian in x. (See condition (lf.3)*)

Suppose also that

( 4 ^ 7 )  l l f ( t , x , u ) l i  = | ^ ( t , u ) ,

where the function is real-valued and upper semicon- 

tinuous.

Consider a function u such that

(4.8) u:[0,T]— >. Bp (continuous).

The range of u is compact in B2, and so is bounded

on [0,T]xRange(u). Hence f is bounded on [0,T]xB-|xRange(u) 

To apply Theorem 4.1 to the function defined in (4.6),



note that

(i+.9) f : [0,T]xB^— »- : : (t,x)— ^  f(t,x,u(t) ).

Then f as defined in (^.9) is continuous in t 

and Lipschitzian in x. Due to condition (^.7) f is 

bounded in norm by some constant M. Since f is defined 

for each x in B p  the inequality in (*+.*+) is autc • 

matically satisfied, where T/2 = a.

Hence by Theorem +̂.1 there is a unique continuously 

differentiable solution to the differential equation

= f(t,x,u(t))

of the form

(!+.11 ) x^(t) = Xq + (B) f f (t,x'̂ (t) ,u( t) ), 0 = tQ = T.

We call the solution x'̂  to (4.10) the response to the

control u.

Next, we suppose that

(4.12) K:[0,T]— ►C(B-|) (upper semi continuous) ,

where C(B-|) is the space of closed and bounded subsets of

B.. A control u is said to direct its response x^ from

Xq to the target set K(t^) if

( 4 . 1 3 )  =  X  j
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(4.14) x(t]j^)€K(tY),

where

(4.15) 0 = = ty = T.

We call (t^^t^) a time of flight.

THEOREM 4.2. Let ^  a closed set of equicon­

tinuous controls which take their values within C2, a 

subset of B2 which is compact in itself. Then of the con­

trols which direct their responses from Xq the varying

target set there is a control u°, also an element of

that has minimum time of flight. That is.,

(4.16) (t°-t°) = m = inff(t^-t^);;u directs x^ from

Xq to K(t^)}.

Proof. Since (t^-tU) = Q for each u, the 

infimum in (4.16) surely exists. Hence there is a sequence 

{u^} of elements of {u} such that

(4.17) (t^-tg)— ^  m.

Since each element of {u^} takes its values in 

Cp; the sequence is bounded. As elements of £u} , the 

elements of {u^} are equicontinuous. Hence by Ascoli's 

Theorem [111,39] and the compactness of [0,T] there is a 

function u° that is equicontinuous with {u} and a
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subsequence of f u ^  , also called { u ^ }  , such that

(4.18) (t?-t^ ) — > m;I 0

(4.19)

(4.20) t^— ^t°,-0 0

(4.21) u^(t)— >" u ° ( t )  (uniformly on [0,T]).

We show that u° is the desired optimal control by showing 

that u° has time of flight (t^-t°).

Suppose that is the sequence of responses to

the sequence of controls {u^} . Each zP is of the form

(4.22) x^(t) = Xq + (B)
1/

ft
f(t,xP(t),u^(t)), 0 = t = T.

Since f is bounded in norm due to (4.7) and the

compactness of [OjTjxCg, we see from (4.22) that the 

elements of {x^} are equilipschitzian and a fortiori 

equicontinuous. We see that they are also uniformly bounded, 

and so by Ascoli's Theorem there is a function x° and a

subsequence of {x^} , also denoted by fxp} , such that

(4.23) xP(t)— ^ x°(t) (uniformly on [0,T]).

The statements (4.18), (4.19), (4.20) and (4.21) remain

true for the subsequence of u^ corresponding to the subse­

quence {x^} . We will show that x° is the response to u°
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and that u ° directs x° from Xg to K(t°) in time 

(t°-t°). This will complete our proof.

We have seen that u° is equicontinuous with fu} . 

From (4.21) and the fact that each u^ takes its values 

in Cp; which is compact in itself and hence closed, we see 

that u° takes its values in Cp. Hence u°é {u} .

Since

||x^(tg)-x°(t°)|| = ||x^(tg)-x°(tg)|| + llx°(t^)-x°(t°)||,

it follows from (4.20), (4.23) and the continuity of x°

that

(4.25) x^( t^)— x°(t°).

From (4.25) and the fact that for each n, x^(t^) = x , 

it follows that

(4.26) X°(tg) = Xg.

From the inequality

l|x"(tn)-x°(tpll 5 l|x"(t«)-x°(t^)ll + llx°{t̂ ‘)-x°(tpll,

conditions (if.19) and (4.23) and the continuity of x°,

it follows that

(4.27) x̂ (t̂ ĵ )— >- x°(t°).

Since for each n we know that x^(t^) is an element of 

K(t^), it follows from (4.19), (4.27), the upper
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semicontinuity of K and the theorem of J a c o b s  [II,16] 

quoted in the preceding section that

(4^28) x°(tO)(K(t°).

From (4.21), (4.23) and the fact that f is

Lipschitzian in its second argument and continuous in its 

third argument we see that

f(t,x^(t) ,u^(t) )---3»- f(t,x°(t) ,u°(t) ).

Hence from the boundedness of f and the generalized 

Lebesgue theorem [1,83] we see that

rtt
(4.29) (B) f(t,x^(t),u^(t))— >-(B)

•'4
f(t,x°(s),u°(s))

on [0,T].

From (4.20) and the boundedness of f we see that

(4.30) (B) f(t,x^(t),u^(t))— 0.
_n

From (4.29) and (4.30) it follows that

rtt
(4.31) (B) f(t,x^(s) ,u^(s) ) - ^  (B)

v/fH
f(t,x°(s),u^(s))

on [0,T].
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From (^.22) and (^.31) it follows that

f̂t
(^.32) + (B) f(t,x°(s),u°(s)) on [0,T]. 

*0

From (^.23) and (^.32) we see that

nt
(^•33) X (t) = Xq + (B) f(t,x°(s),u°(s)) on [0,T].

t°0

Since n° and x° are continuous and f is 

simultaneously continuous in its first and third arguments 

and Lipschitzian in its second argument, it follows that the 

function

{ h . 3 h ) f:[0,T]— ► B̂  :;t— f(t,x°(t) ,u°(t) )

is continuous. Hence we see from this and (4.33) that

(4.35) ^^^^=f(t,x°(t),u°(t)).

Thus we see that x° is the response to u°. It follows

from (4.26) and (4.28) that u° has time of flight 

(t°-t°).
 ̂ ° Q. E. D.

We define the set attainable from x by

(4.36) A = : :z«B^ and there is a control u of {u}

that directs its response from x^ to z.}

Corollary 4.1.1. attainable set is. compact in

itself.



58

Proof. Suppose is a sequence of elements of

Then by the proof of Theorem 4.1 there is a subsequence 

of , also called , a control u° of { u } with

response such that

(4.37) = x^(tn)— »-x°(t°).

Hence x°(t°) is an element of A^, which we see is compact 

in itself.
Q. E. D.



CHAPTER V 

EXAMPLES

The reader has doubtless noticed that the compactness 

hypothesis in Theorem 2.3 is quite restrictive. One is 

tempted to replace it by demanding only that UCl(t)::tel} 

be bounded and then using the fact that its closed convex 

hull would be compact in itself. [1,38]

This would be a simple matter if one could replace 

the strong convergence of to x in (2.5) by weak con­

vergence. The following counterexample shows that this is 

impossible.

Let the space of (2.5) be Ig, and let I = [0,1]. 

For each t in [0,1] suppose that the constant (and 

a fortiori continuous) map G be

G(t) = ^x; ; 11x11 = 1, x & Ig}.

Let be defined by:

= 'i

a^ =0, i / n.

59
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For each n, let = 1/n. Then we see that 

t^— ► 0;

— > 0 (weak) ; 

x^fG(t^) for each t̂ .

Hence the hypotheses of (2.5) are satisfied with the 

exception of that of strong convergence. But it is clear 

that 04G(0).

Since the map G is continuous and the space con­

sidered is quite highly structured, it would seem unlikely 

that the hypothesis of weak convergence could be retained by 

means of any very realistic strengthening of any of the 

other hypotheses.

A better counterexample in which the map G is u.s.c, 

and each G(t) is closed, bounded and convex has been ob­

tained. However, it has not been included.

I am indebted to Dr. Ewing for the following example, 

which relates a standard problem in variational theory to 

control theory.

If we read Theorem 3-1 down to the familiar real- 

value setting, we have a simple form of the Mayer problem,

-1
(5.1) t (u,x) = global minimum on C,

where C is the class of all pairs

u:[t°,t1]— »-R, x;[t°,t^]— ► R such that u is measurable
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and X is A. C. on [t°,t^], and

(5.2) ju(t)| = M on [0,T]

such that

(5.3) x(t) = f[t,x(t),u(t)] = A(t)x(t) + u(t) a.e. on [t°,t^] 

where A( ) is a continuous scalar function and such that

(5.*+) t° = 0 - T = constant

x(t°) = 0 x(t^) = x̂  = constant.

Theorem 1£ C is, not emuty, then there is an

element (u°,x°) of C such that

fWiiO vO'i - infimumt^ (u,x).

Proof. Every (u,x) of C can be extended to 

[0,T] by setting u(t) = u(t^) and x(t) = x(t^) for 

t€(t^T].

Define

(5.5) z(t) = u(s) for t [0,T].

We see by (5.2) that z is lipschitzian with 

constant M.

Let £(u’̂,x^)J be a sequence of elements of C 

such that
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ti(un,x°)-^ M fi m  t'(u,x),
(U,X)€C

and let correspond via (5*5) to {u^.

The functions in being equi-lipschitzian are

a fortiori equicontinuous and are equally bounded. Hence 

by Ascoli's Theorem we can suppose the sequence so chosen 

that it converges uniformly to z°, where

z°:[0,T]— R,

and z° satisfies the same Lipschitz condition as the z^.

Moreover, z°(t) exists and is - M a .  e. on 

[0,T]. Hence we can define

t) when it exists
u°(t) =■

.an arbitrary real number in [0,T] elsewhere,

and u°:[0,T]— »- R is an admissible component of (u,x)cC. 

Observe that

(5.6) x’̂(t) = J  [expJ^A(s) ]u^(r) for t«[0,T].

Since x^(0) = 0 and x^[t’'(u^,x’̂)] = x-]

= constant by (5.^),

it follows from (5.6) (after an integration by parts) 

that x°(0) = 0 and x°[t^(u°,x°)] = x^. Hence the pair



63

furnishes the desired minimum.

Extensions to more general Mayer problems and to 

some forms of the Bolza Problem should be easy.

Notice that in (5-6) the term expj'tA(s) plays 

the role (with a slight change of notation) of the operator 

8(t,x) of Theorem 3-1•

Since we are treating the case of a real variable, 

the rather elaborate hypotheses of Theorem 3.1, particularly 

the highly restrictive uniform Holder condition (iv), are 

not necessary.

The foregoing example, with Theorem 3.1? illustrates 

the difficulty of obtaining the Banach space analogues of 

familiar theorems of real variables.
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