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Abstract 

Computer supported collaborative applications are gaining popularity among Internet 

users who are geographically dispersed. Examples of this kind of application range 

from video conferencing, video-on-demand, distributed database replication, 

distributed interactive simulations, online multiplayer games, and peer-to-peer file 

sharing systems. These types of distributed applications call for efficient group 

communication which entails determining routes that are independent of the underlying 

network. To meet the demands of these distributed applications, there have been 

increased research efforts in the development of network protocols that can be executed 

at the application layer. These protocols are built for virtual networks named as overlay 

networks.  In an overlay network, the nodes are the hosts that participate in the 

distributed application and the links are paths in the Internet that consist of several 

routers along the path. Overlay networks provide a flexible and deployable approach 

for many distributed applications.  

 Our research is focused on the development of algorithms for the construction 

of overlay networks that meet the demands of the distributed applications.  In addition, 

we have provided network protocols that can be executed on these overlay networks 

for a chosen set of collaborative applications: floor control and multicasting.  Our 

contribution in this research is four fold. 

 xii



First, we consider the floor control problem wherein the participating users 

coordinate among themselves to gain exclusive access to the communication channel. 

To solve the floor control problem, we present an implementation and evaluation of 

distributed Medium Access Control (MAC) protocols on overlay networks. As an 

initial step in the implementation of these MAC protocols, we propose an algorithm to 

construct an efficient communication channel among the participating users in the 

overlay network. We also show that our implementation scheme (one of the first 

among decentralized floor control protocols) preserves the causal ordering of 

messages.  

Second, we address the problem of designing multicasting sub-network for 

collaborative applications using which messages are required to arrive at the 

destinations within a specified delay bound and all the destinations must receive the 

message from a source at ‘approximately’ the same time. The problem of finding a 

multicasting sub-network with delay and delay-variation bound has been proved to be 

NP-Complete in the literature and several heuristics have been proposed. We have 

designed and implemented a fast heuristic and our extensive empirical studies indicate 

that our heuristic uses significantly less run-time in comparison with the best-known 

heuristics while achieving the tightest delay variation for a given end-to-end delay 

bound.  

Third, we address the limitations of traditional multicasting models. Towards 

this, we propose a model where a source node has different switching time for each 

child node and the message arrival time at each child depends on the order in which the 

source chooses to send the messages. This model captures the heterogeneous nature of 

 xiii



communication links and node hardware on the overlay network. Given a multicast tree 

with link delays and generalized switching delay vectors at each non-leaf node, we 

provide an algorithm which schedules the message delivery at each non-leaf node in 

order to minimize the delay of the multicast tree. Our algorithm uses the concept of 

min-max matching problem on bipartite graphs. We also show an important lower 

bound result that states that optimal multicast switching delay problem is as hard as 

min-max matching problem on bipartite graphs. 

Fourth, we address the problem of finding an arbitrary application designer 

specific overlay network on the Internet. This problem is equivalent to the problem of 

subgraph homeomorphism and it is NP-Complete. We have designed a polynomial-

time algorithm to determine if a delay constrained multicasting tree (call it a guest) can 

be homeomorphically embedded in a general network (call it a host). A delay 

constrained multicasting tree is a tree wherein the link weights correspond to the 

maximum allowable delay between the end nodes of the link and in addition, the link 

of the guest should be mapped to a shortest path in the host.  Such embeddings will 

allow distributed application to be executed in such a way that application specific 

quality-of-service demands can be met. 

 xiv



 

 

Chapter 1 

Introduction 

 

1.1 Overlay Networks 

 

Internet has made a tremendous impact on human civilization by providing global 

connectivity to vast number of end users who are geographically dispersed from each 

other. Researchers believe that a large portion of Internet’s success was due to its 

simple underlying network protocol (IP). But success of Internet also brings with it a 

limitation that it is very difficult to deploy a new protocol or add a new service at the 

network layer. Adding a new service at the network layer implies changing all the 

routers in the Internet around the world which is not feasible. Applications like video 

conferencing, large-scale distributed interactive simulation, online games, distributed 

database replication would like to perform efficient group communication by choosing 

a route which is not dictated by the underlying network. So the efficient 

 1



implementation of these applications requires the assistance of the routers on the 

underlying network. This may include anywhere from network layer modification to 

requiring the routers to perform additional special functions based on packet header 

information. These requirements impose limitations in terms of scalability, network 

management, and deployment and hence have been recognized as major impediments 

for the wide acceptance by the Internet community. 

 

 To alleviate this problem, recent research trend is to develop and implement 

network layer protocols at the application layer. This method will give the flexibility to 

the users to develop network protocols that suit their application needs. Clearly, 

application programs can reside only at the end-hosts. Taking a note of this, network 

applications build virtual networks named overlay networks [1-6]. An overlay network 

is a virtual network deployed over an existing network. In an overlay network, each 

individual link which connects two nodes can comprise of several routers and hosts in 

the underlying physical network. Overlay networks provide a flexible and deployable 

approach for applications. When a better routing or a control protocol is demanded by 

an application, it can be easily deployed in the application level without changing the 

lower level Internet protocols. 

 

 In an overlay network the end-users self-organize into a network architecture 

and share the responsibility for creating, consuming, and forwarding messages to other 

end-users. Each edge in this network corresponds to a unicast path between two end-

hosts in the underlying network. Two types of architectures have been proposed by the 
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researchers for the overlay network: peer-to-peer architecture and proxy based 

architecture. In the peer-to-peer architecture (Figure 1.1), all end-hosts are connected to 

each other. The network functionality of the overlay is pushed to end-hosts. Napster [7] 

and Gnutella [8] are the examples of peer to peer architecture. The disadvantage of this 

architecture is that it puts additional burden on end-hosts as each end-host has to 

maintain the routing and group management information at its end. In the proxy based 

architecture (Figure 1.2), networking service is provided through a set of distributed 

nodes called Network Service Nodes (NSN) (Multicasting on overlay networks [1, 2] 

refer to these nodes as Multicast Service Nodes (MSN)). The NSNs communicate with 

end-hosts and with each other using standard unicast mechanism. M-Bone [9] and X-

Bone [10] are examples of proxy-based overlay networks. Most of the research work 

dealing with multicasting on overlay networks [1, 2, 4] uses proxy based architecture. 

 

End User

End User

End User

End User

 

 

Figure 1.1: Peer-to-peer overlay network 
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Figure 1.2: Proxy-based overlay network 

 

1.2 Collaborative Applications 

 

Collaborative Applications are a class of applications that involve sharing of data 

between a set of geographically distributed users connected to each other through a 

network. Examples of such applications include video conferencing, collaborative 

design and simulation, distributed database replication, and online games. In this type 

of applications, users coordinate their activities so as to achieve a common goal. 

 

1.3 Floor Control in Collaborative Applications 

 

In Collaborative Applications, the users typically share some resources and it is 

required that at any given instance, only one user has exclusive access to a given 
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common resource. One such shared resource is the underlying network that the 

distributed users employ to communicate with one another. The problem of providing a 

user the exclusive access to the communication channel facilitated by the underlying 

network is termed as the floor control problem [11, 12] and the channel is referred to as 

the floor. Usually, the user who wins the floor will use an efficient mechanism (e.g. 

multicasting) to send a sequence of messages to all the other users in the collaborative 

application. 

 

A simple mechanism to implement floor control on an overlay network would 

be to choose a centralized NSN (the controller NSN) in the overlay network that will 

control the access to the network. Each end-host that has a message to send, first sends 

a request for permission to access the channel to its NSN which in turn forwards the 

request to the controller NSN that schedules the access request. This centralized 

approach albeit simple runs into several problems: the links to the controller NSN can 

be congested with requests thereby slowing the processing of requests and failure of 

the controller NSN results in the failure of the entire application. Dommel and Garcia 

[11] presented a centralized approach and a novel taxonomy to analyze and compare 

existing floor control protocols for the regular internet. Towards this, the authors have 

proposed the first tree based group coordination protocol where the logical control tree 

is correlated to the underlying multicasting tree. When a node wants to acquire the 

floor, it sends request to the root of the control tree which is the current floor handler. 

When the root wants to relinquish the floor, it sends a floor grant signal to the 

requester. The root also informs other nodes in the tree about the new floor handler. 
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The control tree is adjusted to make the new floor handler as the root of the tree. The 

authors have claimed that the proposed tree based protocol is dynamically centralized 

in the sense that the controller node is dynamically selected instead of using a single 

central node for the entire session. The disadvantage of this protocol is that the 

controller node will always be biased towards the nodes which are nearer to the root of 

the tree.  

 

To overcome the deficiencies of the centralized approach, decentralized 

approaches as presented in the MAC protocols for LANs can be adapted with 

appropriate implementation considerations. In this research, we consider two well 

known MAC protocols: ALOHA and Distributed Queue Dual Bus (DQDB) and show 

how these protocols can be efficiently implemented on an overlay network. We 

consider ALOHA for floor control as it was the first randomized solution to channel 

allocation problem in MAC layer and is the basis of IEEE 802.3 standard protocol. The 

DQDB protocol is chosen for floor control as it is an elegant solution for a distributed 

network which achieves First In First Out (FIFO) order without having a centralized 

queue. Certain group communication applications such as video conferencing, 

collaborative design and simulation and online games require FIFO ordering of 

requests to maintain fairness among the users. 

 

 The first step in the implementation of these MAC protocols on an overlay 

network is to construct an efficient communication channel among the NSNs in the 

overlay network. The efficiency of the communication channel is directly proportional 
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to the maximum of the end-to-end delay between all pairs of NSNs. Other metrics of 

efficiency such as average waiting time at the intermediate NSNs and loss probability 

can also be used to construct this communication channel. The communication channel 

can be thought of as a token-bus network where each node is connected through a bus. 

Since in an overlay network, each end-host is attached to a NSN and NSNs are 

connected to each other, our goal is to construct an efficient spanning sub-network of 

NSNs for coordinating floors among the end-hosts. We assume that each end hosts is 

connected to its nearest NSN using the shortest unicast path in the underlying physical 

network. 

 

 In this research, we present efficient implementation of distributed protocols for 

the floor control problem on a proxy based overlay network. The algorithm previously 

proposed for the floor control problem on wide area networks [11-15] can be extended 

to the case of overlay networks but they do not take into account the end-to-end delays 

of the underlying communication infrastructure which are crucial on an overlay 

network. They also do not consider the causal ordering of messages which guarantees 

that messages are received in the sending order. We analyze the efficiency of our 

implementation of distributed floor control protocols and show that our implementation 

preserves causal ordering of messages. As an initial step in the implementation of floor 

control protocols, we propose an algorithm to construct an efficient communication 

channel among the NSNs. 
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1.4 Multicasting for Data Delivery 

 

In a collaborative application, when an end-host acquires the floor, it wants to deliver 

data to other participating end-hosts. We propose to use multicasting for data delivery 

as  multicasting is an efficient communication mechanism in which a source host sends 

the same message to a group of destination hosts, called the multicasting group. The 

general strategy of accomplishing this task is to construct a rooted tree T called the 

multicast tree that contains the source as the root and the destination hosts as the leaf 

nodes.  The primary advantage of using the multicast is that it conserves network 

bandwidth. Contrasted with the unicast mechanism where separate messages are sent 

to each destination host from the source host, multicasting avoids sending the same 

message multiply over links that are common to a source and different destinations.   

   

 Collaborative applications such as video conferencing, online games, 

interactive simulations, distributed database replications require that messages should 

arrive at the destinations within a specified delay bound.  Furthermore, these 

applications also require that the destinations receive the message from the source at 

approximately the same time. In applications for teleconference, the data sent from 

speaker’s end should reach all the participants at the same time, which means the delay 

variation among the paths from the speaker to the participants should be minimum. 

Certain critical database applications (e.g. hospital information systems [16], stock 

brokerage database) require that data should be replicated at all sites at the same time, 
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otherwise data will be temporally inconsistent. For example, consider a telemedicine 

system with distributed databases which stores the medical test results of patients. 

Physicians with varied expertise from different places make decisions on patients’ 

medication and procedures by monitoring the results in the database. If the test results 

of a patient are not replicated at the same time at all sites, it is possible that inconsistent 

state of data might lead to a wrong decision being made. Online games applications 

also require that a move made by a player should be viewed by other players almost at 

the same time.  

 

The problem of Delay and Delay Variation Bounded Multicasting Network 

(DVBMN) is one of finding a sub-network given a source and a set of destinations that 

satisfies the QoS (Quality of Service) requirements on the maximum delay from the 

source to any of the destinations and on the maximum inter-destination delay variance. 

Rouskas and Baldine [17] have shown that the DVBMN problem is NP-complete and 

have presented the first heuristic for the problem along with its performance 

evaluation.  Kapoor and Raghavan [18] provided a novel heuristic that uses dynamic 

programming and showed that the delay variation obtained by their algorithm is 

significantly less than the heuristic of Rouskas and Baldine [17]. Unlike the heuristic of 

Rouskas and Baldine [17] which constructs a multicasting tree, the heuristic of Kapoor 

and Raghavan [18] constructs a multicasting network that may not be a tree. But on 

such a network no more than two messages are sent along each edge and hence it 

achieves the desired bandwidth savings.  A simple heuristic was provided by Sheu and 

Chen [19], in which there are no bounds set on the delay variation. The complexity of 
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the heuristics proposed by Kapoor and Raghavan [18] and Rouskas and Baldine [17] is 

high when a new member joins the multicasting group or an existing member leaves 

the group.   

 

In this research, we present a polynomial time heuristic for the DVBMN 

problem with the following characteristics: 

• Our heuristic achieves the tightest (in a technical sense to be precisely defined 

later) possible bounds on delay variation along with Kapoor and Raghavan [18] 

but our heuristic outperforms the heuristic in [18] in terms of time-complexity. 

The complexity of our heuristic is O(|E| + nk log (|E|/n) + m2k), where n and |E| 

are the number of nodes and edges in the overlay network, respectively, m is 

the number of destinations and k is the number of shortest paths determined 

between source and destination nodes. The complexity of the heuristic in [18] is 

O(Δ|E|mδ), which is pseudo-polynomial in delay and delay variation bounds, 

where m is the number of destination nodes and Δ and δ are the delay and delay 

variation bounds, respectively.  Note that Δ is independent of the network size 

and hence even for smaller and less dense graphs, the heuristic in [18] requires 

large execution time.  The time-complexity of the heuristic by Rouskas and 

Baldine [17] is O(nmk(|E| + nk log (|E|/n)))♦1using the best known k shortest 

path algorithm in [20]. Note that for dense graphs that is, |E| = O(n2) and m = 

O(n) the time complexity of the algorithm in [17] is O(n4k + n3k log (|E|/n)).  

                                                 
♦ The complexity in [17] is shown to be O(k2mn4) using a less efficient k-shortest path algorithm.  We also 
implemented the heuristic of Rouskas and Baldine [17] using the faster k shortest path algorithm in [20]. 
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For the same values of |E| and m, our algorithm will have complexity of O(n2k). 

It should be pointed out that the heuristic by Rouskas and Baldine [17] does not 

provide the tightest delay variation as obtained by this research and Kapoor and 

Raghavan [18]. 

• We use an efficient k shortest path algorithm due to Victor and Andres [20, 21] 

on various network topologies with different edge densities. The k shortest path 

algorithm [20, 21] was executed on a 360MHz (SunSparc) computer.  On a 

graph with 100 nodes with 80% edge density, 10 shortest paths between all 

pairs of nodes (10,000 of them) can be determined in just 15 seconds. Also, in 

order to find about 2,000 shortest paths between source and 10 destinations in a 

dense graph with 100 nodes it took only 65 seconds!   

• Extensive simulations with varying number of nodes, edge densities, and size of 

multicasting group have shown that our heuristic outperforms heuristics in [17, 

18] by a significant margin in terms of execution time while achieving the 

tightest possible delay variation.   

• In order to perform join operation (where a single node joins the multicasting 

group) or leave operation (where a single node leaves the multicasting group) 

we show that our heuristic has a time-complexity of O(m2k) with the tightest 

delay variation. The heuristics in [17] and [18] have to be rerun in order to 

perform either a single join or leave operation, and hence incur complexities of 

O(nmk(|E| + nk log (|E|/n))) and O(Δ|E|mδ), respectively. 
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1.5 Limitations of Traditional Multicasting Models 

 

Overlay multicasting differs from traditional multicasting in several ways. 

Conventional multicasting network models do not capture all the behaviors of 

application level multicast. In any packet transmission, there are, in general, four types 

of delays, (i) processing delay (also known as nodal delay), (ii) queuing delay, (iii) 

transmission delay, and (iv) propagation delay.  Of these, both nodal and queuing 

delays are associated with a node sending packets, and transmission and propagation 

delays are associated with a link.  The end-to-end delay for packet transmission is the 

sum of all these delays between a source and a destination. In application level 

multicasting, an important nodal delay component (we will call this as the duplicating 

delays) occurs as a result of duplication and transmission of packets by an interior node 

in the multicast tree to its children in the tree. We will illustrate the concept of 

duplicating delays using an example of a multicasting tree on an overlay network.  

 

Let us assume a multicast tree T on an overlay network with S as the root of the 

tree. Also assume that c1, c2, and c3 are the children of S.  Every node in the tree will 

use sendTo and recvFrom socket utilities [22] to send the packet that originated from S 

to its children in the tree and to receive the packet sent by its parent in the tree, 

respectively.  Node S will execute sendTo three times, once for each of its children in 

the tree.  Note that each of the send places the same size data on to the kernel buffer.  
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Now we have three copies of the same packet in the kernel send buffer and the UDP 

takes the segment (containing one data packet obtained as a result of the execution of 

sendTo function) and adds its header which is then passed to IP layer.  The IP layer 

adds its header and places the packets in the data link layer queue. The frames in the 

queue (corresponding to each IP packet) are sent sequentially using both the logical 

link control protocol and the medium access control protocol.  The medium access 

control layer transmits to the nearest router designated for the given host by gaining 

exclusive access to the channel and transmitting the frame.   The delay experienced by 

the data link layer in sending a single frame is proportional to the channel access time 

and time required to receive the acknowledgement from the data link layer of the 

nearest router.  This time on the average is the same for every frame sent by the host.  

The child node that receives information as a result of the second sendTo experiences 

additional delay due to the fact that the frames corresponding to the first sendTo have 

to be completed before its frame can be sent. Note that using current implementations 

of operating systems, applications may perform concurrent message transmissions. But 

this concurrent transmission will be serialized when it goes through a physical link 

[23].  

 

Based on the discussion of the delays above, it is evident that the order in which 

the source S will issue the send to its children will decide when the children c1, c2, and 

c3 will receive the packet from S.  Let S send to the children in the following order, first 

to c1, then to c2, and finally to c3.  Let us assume that since S issues the send to c1 first, 
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the additional delay experienced by it is 0 units. Let c2 experience an additional delay 

of 3 units and c3 experience of 5 units due to the fact that S sent the data packet using 

the second and third sendTo function statement executions at S, respectively. 

Generalizing this we will define a delay vector for a child node c1 with two other 

siblings to be , where is the additional delay experienced when S sends 

the data packet to c

>< 321 i
111 ,, ccc ,1c

1 using the ith sendTo statement. 

 

Given a multicast tree on an overlay network with link delays and duplicating 

delay vectors, we propose an algorithm which determines the order in which the data 

packets have to be sent by each non-leaf node to its children in the multicast tree such 

that the delay of the multicast tree is a minimum. 

 

1.6 Embedding Multicasting Trees on the Overlay  

Network 

 

Many collaborative applications require a multicasting tree for data delivery. These 

applications require that data be delivered within a desired time bound. To address this 

issue, we propose the problem of embedding a multicasting tree on the overlay 

network. An example of a tree network specified by an application designer is shown 

in Figure 1.3.  The numbers of the links specify the maximum allowable delay on that 
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 Figure 1.3: An example of a tree network specified by an application designer 

 

link. The embedding problem is one of mapping nodes from a guest graph (the one the 

application designer desires) to a host graph (the overlay network) such that it maps 

(one-to-one) nodes in the guest graph to the nodes in the host graph and edges in the 

guest graph to the edges or paths in the host graph.  We need to embed the multicasting 

tree on the overlay network in such a way that the embedding satisfies the delay 

constraint specified along each link in the tree. 

  

Graph-Embedding problem for general graphs is defined as follows: given a 

graph (guest) G = (VG, EG) and another graph (host) H = (VH, EH), find an embedding 

function f such that f maps (one-to-one) nodes in G to nodes in H and f maps edges in 

G to paths or edges in H. Graph-Embedding problem for general graphs is a well 

known NP Complete problem [61]. In our multicasting tree embedding problem, the 

guest graph is a tree. Also, when we embed each edge of the multicasting tree on the 

overlay network, we want to ensure that the edge is embedded on a shortest path on the 

overlay network. To solve the multicasting tree embedding problem, we start with the 
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host graph as a shortest path tree. Now our problem is reduced to sub-tree embedding 

problem which is deciding whether a given tree can be embedded into another given 

tree. 

 

A guest tree GT can be embedded into a host tree HT, if there exists an 

embedding function f (one-to-one) which maps nodes of GT to nodes in HT and edges 

of GT to edges or paths in HT. Different types of tree embeddings are defined 

depending on the conditions imposed on the embedding function f [25]. 

 

Isomorphic embedding: For every pair of nodes uG and vG of GT, if there is an edge 

(uG, vG) in GT, then there exists an edge from (f(uG) , f(vG)) in HT. 

Homeomorphic embedding:  For every pair of nodes uG and vG of GT, if there is an 

edge (uG, vG) in GT, then there exists a path from f(uG) to f(vG) in HT with all 

intermediate nodes of out-degree 1 and with no intermediate node coming from GT. 

 

In the multicasting tree embedding problem, an edge in the multicasting tree 

can be mapped to a path in the overlay network. Now our problem is similar to sub-tree 

homeomorphism problem. Given two trees GT and HT, the sub-tree homeomorphism 

problem is to find whether HT has a sub-tree Ht that can be transformed into GT by 

repeatedly removing any node of degree 2 and adding the edge joining its two 

neighbors. In multicasting tree embedding problem, we have to ensure that the 

embedding satisfies the delay constraint. In this research, we propose an algorithm for 

delay constrained multicasting tree embedding problem on the overlay network.  
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1.7 Organization of the Dissertation 

 

The dissertation is organized in the following way. In chapter 2, we discuss about the 

floor control issues for collaborative application in overlay networks and provide an 

algorithm for constructing an efficient participating chain of NSNs. We provide the 

implementation of two distributed floor control protocols for overlay networks and 

compare them using an analytical model and simulation experiments. We also show 

that our implementation preserves causal ordering of messages. In chapter 3, we 

formally define the delay and delay variation bound multicasting problem and present a 

heuristic for the problem. Using simulation experiments, we show that our heuristic 

achieves better performance than other heuristics presented in the literature. In chapter 

4, we illustrate the duplicating delay problem in overlay multicasting using an 

example. We also present an optimal scheduling algorithm for multicasting tree with 

duplicating delay vectors. In chapter 5, we formally define the delay constrained 

multicasting tree embedding problem on overlay network and propose an algorithm for 

the problem. Chapter 6 summarizes the contribution of this dissertation and outlines the 

direction and scope for future research. 
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Chapter 2 

Floor Control in Collaborative 

Applications 

 

2.1 Introduction 

 

A distributed collaborative application can be formalized using a 3-tuple, CA = (G, U, 

F) where G = (V, E) denotes the network connecting the set of end-users V using the 

set of communication links E. F denotes the set of floors where each floor f ∈ F is 

associated with a shared media (resource) used in the collaborative application. As the 

network links typically have non-negligible delays, let d(e) denote the delay associated 

with a link e ∈ E. U represents the set of end-users participating in the collaborative 

application with U ⊆ V. 
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Floor Control Problem (FCP): Given a network G = (V, E), a set of participating end-

users U, and a set of floors F, design an access protocol on G which, at any instance of 

time, grants a floor f ∈ F to only one user u ∈ U. 

 

2.2 Overview of the solution 

 

We adopt a two phased solution approach to solve the FCP. In phase one, we construct 

an efficient2  communication channel G' = (U, E') connecting the set of participating 

end-users U where E' ⊆ E. In the second phase, we design access control protocols on 

G' which will ensure that at any instance of time, a floor f ∈ F is used by only one user 

u ∈ U. In this dissertation, for the sake of simplicity, we have discussed our 

implementation of floor control protocols for |F| = 1. However, we believe that our 

implementation of protocols can easily be extended to accommodate multiple floors in 

the system. 

 

In an overlay network the end-hosts share the responsibility of creating, 

consuming, and forwarding messages to other end-hosts creating a virtual network 

architecture on top of the physical network. In the peer-to-peer architecture, the overlay 

functionality is pushed to the end-hosts, while in proxy-based architecture, the overlay 

functionality is provided through a set of distributed nodes called Network Service 

                                                 
2 The efficiency of the communication channel can be measured as the maximum end-to-end delay 
between any pair of participating end-users in G'. In the next subsection, we will explain why an 
efficient communication channel is important for floor control protocols 
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Nodes (NSN). Most of the research work dealing with multicasting on overlay 

networks [1, 2, 3] use a proxy based architecture and in this dissertation too, we shall 

assume a proxy based architecture. In spite of there being differences between these 

two architectures, the issues regarding the floor control problem remain the same. 

Therefore, the proposed solutions are applicable to both proxy-based and peer-to-peer 

overlay networks.  Thus, an NSN in our description that takes part in the floor control 

protocols will be referred to as an end-user in the peer-to-peer architecture. In a proxy 

based architecture, the NSNs communicate with end-hosts and with each other using 

standard unicast mechanisms. 

 

Communication in any collaborative application in the overlay network can be 

divided into two phases: contention phase and data delivery phase.  In the contention 

phase, an end-host that wishes to send data to other participating end-hosts through the 

floor informs its NSN of its intention. The NSN then contends with other such NSNs to 

acquire the floor and depending on the outcome, it sends either a grant signal or a 

rejection signal to the requesting end-host. In other words, contention phase is the 

phase during which the floor control problem occurs. Consequently, any FCP solution 

ought to be executed during this phase to resolve the contention. In the data delivery 

phase, the end-host, which was granted floor by its NSN in the contention phase, sends 

data to all other participating end-hosts through its NSN. In this dissertation, we 

present efficient protocols for both contention and data delivery phases. 
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2.2.1 Solutions for the Contention Phase 

 

To overcome the deficiencies of the centralized approach as discussed in the previous 

chapter, decentralized approaches are considered in this research. Conventional MAC 

protocols resolve channel contention in a single-hop environment. Since FCP could be 

viewed as a channel contention problem in a multi-hop setting, MAC protocols present 

themselves as easily adaptable choices for solving the FCP. Towards this, we consider 

two well known MAC protocols: ALOHA and Distributed Queue Dual Bus (DQDB) 

and discuss efficient implementation strategies for these protocols on an overlay 

network. We consider ALOHA for floor control as it was the first randomized solution 

to channel allocation problem in MAC layer and is the basis of IEEE 802.3 standard 

protocol. The DQDB protocol is chosen for floor control as it is an elegant solution for 

a distributed network which achieves First In First Out (FIFO) order without having a 

centralized queue. Certain group communication applications such as video 

conferencing, collaborative design and simulation and online games require FIFO 

ordering of requests to maintain fairness among the users. 

 

The effectiveness of most MAC protocols depends on the ability of a host to 

quickly detect the transmission from other hosts sharing the medium, which in turn, 

depends on the medium's propagation delay. When adopting MAC protocols as FCP 

solutions, care must be taken to minimize the delay involved in a host detecting the 

transmission of other hosts sharing the floor. Since a floor typically spans over a multi-
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hop WAN, significant delays can occur in detecting a transmission of another host, 

especially when the other host is several hops away. Therefore, in order to increase the 

effectiveness of MAC protocols as FCP solutions, we first abstract the WAN 

connecting the NSNs as a communication channel. The constructed channel is such 

that it minimizes the maximum end-to-end delay between any pair of NSNs in the 

overlay3. Once the channel abstraction is done, the MAC protocols are implemented on 

top of this channel to solve the FCP. 

 

2.2.2  Solutions for the Data Delivery Phase 

 

As mentioned earlier, in the data delivery phase, the end-host which was granted floor 

by its NSN in the contention phase sends data to all other participating end-hosts 

through its NSN. Collaborative applications require that data sent by end-hosts be 

received by other participating end-hosts in the order of floor acquisition (for e.g. in 

online games, players want to see the moves made by other players in proper order). If 

an end-host A acquires the floor before another end-host B, then all the participating 

end-hosts should receive the data sent by end-host A before they receive the data sent 

by end-host B. This implies that causal ordering [27, 28] of messages should be 

maintained in the data delivery phase. Causal ordering guarantees that messages are 

delivered to the destinations according to their sending order. As the participating end-

                                                 
3 Other metrics of efficiency such as average waiting time at the intermediate NSNs and loss probability 

can also be used to construct this communication channel. 
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hosts are geographically distributed, causal ordering in the data delivery phase does not 

occur automatically and additional mechanisms are required for enforcing the same. In 

this research, we present algorithms employing which causal ordering of messages can 

be ensured in the data delivery phase. 

 

2.3 Optimal Participating Chain for Contention  Phase 

 

As discussed earlier, the contention phase involves two tasks. The first task is to 

construct an efficient communication channel that connects all the NSNs and the 

second phase is to develop contention resolution protocols that employ this 

communication channel to allocate the floor for the interested NSNs. This section 

presents the details of the first task on constructing an efficient communication 

channel. 

 

We call an NSN to be participating, if there is at least one participating end-

user attached to it. We aim to construct an efficient communication channel by creating 

a chain of the participating NSNs such that the resulting chain has the least end-to-end 

delay among all possible chains. 

 

Consider a weighted graph of NSNs, G = (V, E), a set of participating NSNs P 

⊆ V and a non-negative delay d(e) for each edge e ∈ E. A participating chain PC = (VC, 

EC) where P ⊆ VC ⊆ V and EC ⊆ E is a path (simple or non-simple) that connects the 
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set of participating NSNs P. For example an Euler path can be a participating chain. 

The length of a participating chain is defined as ∑
∈P

ld
C

l

)( . The participating chain can 

be thought of as a token-bus network where the maximum end-to-end delay is equal to 

the length of the chain. Considering the link delays in the overlay network, this end-to-

end delay could be large depending on the choice of the participating chain. 

 

Problem Optimal Participating Chain: Given a graph G = (V, E), a set of vertices P 

⊆ V, a delay function d(e) for each edge e ∈ E, the problem is to construct a path PC 

(simple or non-simple) that connects all the vertices in V such that, delay (PC) ≤ delay 

(P') for all possible P'. 

 

If G is un-weighted, then Hamiltonian walk on G is the optimal participating 

chain [29]. If G is weighted, then Hamiltonian walk on G may not be the optimal 

participating chain. For example, consider the graph G on Figure 2.1. The Hamiltonian 

walk on G is A-E-B-C-D with length 6+2+10+4 = 22. The optimal participating chain 

on G will be A-E-B-E-D-C with length 6+2+2+2+4 = 16. Given a weighted connected 

graph, we are interested to find the optimal participating chain.  
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                Figure 2.1: A graph G = (V, E) 

 

We develop an algorithm to obtain an optimal participating chain for a tree. Given a 

weighted graph, a Steiner tree can be constructed using the efficient heuristics 

presented in the literature [56, 65]. Our algorithm takes a Steiner tree as an input and 

produces an optimal participating chain for the Steiner tree. Before we explain our 

algorithm, we list down the properties of an optimal participating chain of a tree 

network. 

 

Property 1: An optimal participating chain (PC) of a tree network will start at a node of 

degree 1 and end at a node of degree 1. 

 

Proof:  Suppose we have a tree T with k + 1 nodes and root p. Clearly p has k children. 

Let the children of p be c1, c2, c3, …, ck. Let us assume that w is an optimal PC on T and 

that w starts from p which has degree k > 1. Then w will be p - c1- p - c2 – p - c3 – p- …  

- p - ck. Let w' be another PC which starts from c1. Then w' will be c1 – p - c2 – p - c3- … 

- p - ck. It is easily observed that length(w) = length (w') + 1. So w cannot be the 

optimal PC on T. This is a contradiction. So an optimal PC on a tree will start with a 
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node of degree 1. In a similar way, we can prove that an optimal PC on a tree will end 

with a node of degree 1. ■ 

 

Property 2: An optimal participating chain (PC) of a tree network will not traverse the 

links in the longest path of the tree more than once. 

 

Proof: Let us assume that the weight of link c1 - p in T is lw1, weight of link c2 - p in T 

is lw2,…, weight of link ck - p in T is lwk. Without loss of generality we can also 

assume that lw1 > lw2 > lw3 > … > lwk. Note that the longest path in T will be c1 – p - 

c2. Suppose w1 is an optimal PC on T which traverses the links of the longest path more 

than once. Let w1 be c1 – p - c2 – p - c3 - … - p - ck. Suppose  w2 is another PC chain 

(which traverses c2 at the end) c1 – p - c3 – p - c4 - … - p - ck – p - c2. It can be easily 

observed that length (w1) > length (w2). So w1 is not the optimal PC of T. This is a 

contradiction. So the optimal PC of a tree will not visit the links of the longest path 

more than once. ■ 

 

Property 3: Different order of visiting the sub-trees of children (of the root) which are 

not contained in the longest path does not change the length of the optimal PC.  

 

Proof: Let us assume that c1 and c2 are the children of p which are contained in the 

longest path of T. Let w1 be an optimal PC which starts at c1 and ends at c2. So w1 will 

be c1 – p - c3 – p - c4 – p - c5 - … - p - ck – p - c2. Let w2 be another PC which starts at c1 

and ends at c2 but visits the other children of p in different orders. Let w2 be c1 – p -c4 – 
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p - c5 – p - c3 – p - … - p - ck – p - c2. It is easily observed that length (w1) = length (w2). 

This implies that optimal PC of a tree is independent of the ordering of children (or the 

sub-trees rooted at the children) of the root which are not contained in the longest path. 

■ 

 

In order to derive the optimal PC from tree T, first we determine the root of the 

T such that root is the center of the tree. Center location on a tree network is a well 

known problem and several algorithms have been presented in the literature [30-34]. If 

there are more than one center nodes in T, we choose one of them arbitrarily. Suppose 

the center location algorithm returns r as the root of T. We rearrange T with respect to 

r. 

 

Now we want to traverse (visit all the nodes at least once) T so that the length 

of the traversal (chain) is minimum. The process of finding the chain is a three step 

process: (a) identifying the nodes in the longest path in the rooted tree T, (b) 

rearranging the children of non-leaf nodes (which are in the longest path) in the tree T, 

and (c) performing an in-order traversal of the rearranged tree. 

 

Let u and v be the two children of r which are contained in the longest path of 

T. Let {x1, x2, ... , xk} be the set of leaf nodes of the subtree rooted at x in the tree. Also, 

let us denote the path length from node x to the leaf node xi by l(x, xi)  and let l(x)= max 

{l(x, xi), 1 ≤ i ≤ k}. We order the children of r in non-increasing order of their l values 

calculated as above. The first and second node in the sorted order will be named as v 
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and u, respectively. We rearrange the children of r such that u and v are the leftmost 

and rightmost child, respectively. Then we rearrange the children of u (respectively v) 

in the decreasing (respectively increasing) order of their l values. Now the in-order 

traversal of the new tree will produce the desired chain. We will use the following 

notations and definitions as part of our algorithm.  

T(r): Tree with root r.  

ST(c): Subtree of T rooted at c. 

Ordering Symbol: {≤ , ≥}. 

Order (T(r), < ordering symbol >): Arrange k children of r in T such that l(ci) < 

ordering symbol >  l(ci+1) and ci is a child of r for 1 ≤ i ≤  k. 

 

Algorithm find_chain_PC ( ) 

Input: T(r) 

Output: chain PC

Begin 

Compute l(x) for each non-leaf node x in T. 

Sort the children of r in non-increasing order of their l values. 

Let v and u be the first and second child of r in the sorted order. 

Rearrange T such that u and v are the first and last child of r. 

  For each non-leaf node i in ST(u) 

   Order (ST(i), ≥). 

End For 
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For each non-leaf node l in the ST(v) 

Order (ST(l), ≤). 

End For 

  PC = In-order traversal on T. 

End 

Figures 2.2, 2.3 and 2.4 illustrate the algorithm using an example. 

 

Figure 2.2: A tree with node A as root 
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Figure 2.3: The tree after bottom-up computation of l(x) for each non-leaf node x 
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In-order traversal: L-E-M-E-B-F-N-F-O-F-B-A-C-G-C-H-C-A-D-I-D-K-D-J-P-J-Q-J-R

Figure 2.4: The rearranged tree with the in-order traversal 

 

Using the properties of optimal chain of a tree, the following two theorems can be 

easily proved. 

 

Theorem 2.1: Algorithm  find_chain_PC will always return the optimal traversal on 

T(r). 

 

Proof: According to property 2, the optimal traversal of a tree will not visit the links of 

the longest path of the tree more than once. In our algorithm, first we determine the 

children of the root r which are contained in the longest path. Then we rearrange the 

tree in such way that the children of r which are contained in the longest path are 
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visited only once in the in-order traversal of T. The first For loop in the algorithm 

ensures that one of the end-nodes in the longest path is made the leftmost leaf node in 

the rearranged tree and the second For loop ensures that the other end-node in the 

longest path is made the rightmost leaf node in the rearranged tree. This implies that in 

the rearranged tree, the path from the leftmost child to the root and the path from root 

to the rightmost child constitute the longest path of the tree. The in-order traversal will 

ensure that the links in the longest path of the tree are visited only once. It also ensures 

that the traversal starts with a node of degree 1 and ends with a node of degree 1 

(Property 1). ■ 

 

Theorem 2.2: Algorithm  find_chain_PC has a complexity of O(nlogn).  

 

Proof: A tree with n nodes has O(n) edges. Initially we sort the edges of the tree 

(which takes O(nlogn)) and store the sorted edges in an array. Each non-leaf node 

keeps pointers to the elements in the sorted array which correspond to its children. This 

can be done by scanning the sorted array only once. The Order ( ) function in the 

algorithm rearranges the children of a non-leaf node based on the pointers to the sorted 

array.   ■ 
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2.4 Protocols for Resolving Floor Contention 

 

Once the communication channel has been constructed, the participating NSNs employ 

contention resolution protocols to gain access to the floor. The contention resolution 

protocols can either be randomized or scheduled.  In randomized protocols, the NSNs 

try to detect collision and either grant or reject the floor requests of the attached end-

hosts depending on the outcome of the collision detection mechanism. If an end-host 

receives floor rejection message, it waits for random amount of time and sends the 

floor request again to its NSN. In the case of scheduled protocols, each NSN that has 

received a floor request from its end-host, waits for its turn as in a token passing 

mechanism. This mechanism can be round robin or first-in-first-out. In this research, 

we consider ALOHA and CSMA protocols for the randomized type and DQDB 

protocol for the scheduled type. The generic protocol for floor acquisition at the end-

host is as follows. 

 

Protocol End-host_floor_acquisition( ) 

Begin 

If end-host wants to acquire floor 

Generate floor_request message 

Send floor_request message to NSN 

End If 

If end-host receives floor_grant message from NSN 
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End-host goes to Data Delivery Phase 

Else If end-host receives floor_reject message from NSN 

End-host waits for random amount of time 

End-host_floor_acquisition( ) 

End If 

End 

 

2.4.1 ALOHA for Floor Control 

 

In the conventional ALOHA protocol [23], nodes send data whenever they are ready. 

When two nodes send data at the same time, a collision occurs and the colliding frames 

are garbled. The sending node can find out whether its frame is garbled by listening to 

the channel. If the frame is garbled, the sending node waits a random amount of time 

and sends it again. Implementing ALOHA protocol for floor control on the overlay 

network poses a challenge in that a technique is required for the NSNs to detect the 

collisions of request signals.  We propose a technique wherein, an NSN waits for 

certain period of time after forwarding the floor request signal (received from its end-

host) to other NSNs. During the waiting period if it receives another floor request 

signal, it determines that a collision has occurred. An important parameter which 
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dictates the efficiency of the above floor access solution is the duration of the waiting 

period which in turn depends on the length of the participating chain4.  

 

Every NSN in the participating chain (PC) maintains a list of neighbor NSNs < 

l_nbor, r_nbor >, where l_nbor and r_nbor are the IDs of the left and right side 

neighbors in the chain respectively. For the first and last NSN in PC, the l_nbor and 

r_nbor, respectively will be null. We assume that every NSN knows the length of PC 

(say C). When an end-host wants to acquire the floor, it sends a floor_request signal to 

its NSN. The NSN forwards the floor_request signal to its neighbor NSNs and waits for 

2C amount of time period. The neighbor NSNs then forward the floor_request to their 

left or right neighbors, as the case may be, and the process continues. If the originating 

NSN does not receive any forwarded floor_request signal from its neighbor NSNs 

during the waiting period, it assumes that there is no contention for the floor. It then 

grants the floor to the requesting end-host by sending a floor_grant signal. The 

requesting end-host, then enters into the data delivery phase (discussed in Section 2.5) 

for sending data to all the participating end-hosts. If the NSN, which forwarded the 

generated floor_request signal, receives floor_request signals from its neighbor NSNs 

during the waiting period, it figures out that its end-host's floor_request signal is 

colliding with the floor_request signal of at least one other end-host and rejects the 

floor_request by sending a floor_reject signal to the requesting end-host. The 

                                                 
4 It is for this reason, we seek to construct a participating chain that minimizes the maximum end-to-end 

delay. 
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requesting end-host then backs off and waits for random amount of time and resends its 

floor_request signal to its NSN.  

 

The length of the waiting period is set to 2C because in the worst case, the end-

host attached to the first NSN in PC will be contending for floor against the end-host 

attached to the last NSN in PC. When the last NSN in PC forwards a floor_request 

signal, it will take C units of time to reach the signal at the first NSN. If the first NSN 

in PC waits for 2C units of time after it has forwarded the floor_request (which was 

generated by its end-host) to its r_nbor, the NSN will be able to detect whether the 

request is colliding with a request generated by an end-host attached to the last NSN. 

The protocol is as follows. 

 

NSN_ALOHA_on_P_C 

Begin 

If NSN receives floor_request from its end-host 

floor_control (floor_request) 

End If 

If NSN receives floor_request from l_nbor 

NSN forwards floor_request to r_nbor 

End If 

If NSN receives floor_request from r_nbor 

NSN forwards the floor_request to l_nbor 

  End If 
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End 

  

floor_control (floor_request) 

Begin 

Send floor_request to l_nbor and r_nbor 

  Set timer = 2C 

While timer ≠ 0 

If floor_request is received from l_nbor OR r_nbor 

Send floor_reject to end-host 

Break 

End If 

timer-- 

End While 

Send floor_grant to end-host 

End 

 

The protocol can be described using the finite state machine of Figure 2.5 

where state space S = {IDLE, PASSIVE, CONTENDING, GRANT, and REJECT}. 

Transitions are triggered when an NSN receives a message or the timer expires. 

Initially an NSN is in the IDLE state. When an NSN receives a floor_request signal 

from one of its neighbor NSNs, it goes to PASSIVE state. In this state, the NSN 

forwards the floor_request signal to its other neighbor and changes its state back to 

IDLE. When an NSN receives a floor_request signal from its end-host, the NSN goes 
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to CONTENDING state. In the CONTENDING state, the NSN sets its timer to 2C. If 

another floor_request is received in this state, the NSNs goes to REJECT state. In this 

state, the NSN sends floor_reject signal to the requesting end-host and changes its state 

back to IDLE state. When the NSN is in the CONTENDING state, if the timer expires 

and no floor_request signal is received, the NSN switches to GRANT state. In the 

GRANT state, the NSN sends floor_grant signal to the requesting end-host and 

changes its state back to IDLE state. 

 

CONTENDING

IDLE

PASSIVE

GRANT

REJECT

floor_request recvd
from neigbor NSN

floor_request forwarded to
neighbor NSN

sent floor_grant to the
requesting end-host

timer expiresfloor_request recvd
from end-host

floor_request
recvd from
end-host or

neighbor NSN

sent floor_reject to the
requesting end-host

 

 

Figure 2.5: State Diagram for ALOHA on a participating chain 
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2.4.2 DQDB for Floor Control 

 

IEEE 802.6 protocol [23] uses Distributed Queue Dual Bus (DQDB) for Metropolitan 

Area Network (MAN). In this protocol, stations are connected to two parallel 

unidirectional buses.  Each bus has a head-end and a steady stream of cells is generated 

from each head-end. A cell travels through the bus and when it reaches the end, it just 

falls off. When a station wants to send data to another station, it has to know whether 

the destination station is on its left or right. If the destination is to the right, the sender 

uses (say) Bus 1 for sending request signals and (say) Bus 2 for sending data. If the 

destination is to the left of the sender, the roles of Bus 1 and Bus 2 are inter-changed. 

 

We can implement DQDB for floor control by arranging the participating NSNs 

in a chain called participating chain (PC) using the algorithm mentioned in section 2.3. 

Two unidirectional logical paths are maintained among the NSNs: request_flow and 

signal_flow path as shown in Figure 2.6. 

 

 

 

Figure 2.6: A participating chain with request_flow path and signal_flow path 
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In Figure 2.6, the request_flow path is D-E-C-B-A and the signal_flow path is 

A-B-C-E-D. The request_flow path carries requests in one direction and the 

signal_flow path carries signals in the opposite direction. The first NSN in the 

signal_flow path is known as head_NSN and the first NSN in the request_flow path is 

known as tail_NSN. Each NSN knows its neighbors < l_nbor, r_nbor > in each path. 

Each NSN also maintains two variables: RQ and DQ. RQ of an NSN keeps track of the 

number of requests forwarded by the preceding NSNs in the request_flow path before 

the NSN gets its chance to acquire the floor for its end-host. DQ of an NSN denotes the 

position of NSN's end-hosts' request in the distributed queue. Initially the DQ value 

and the RQ value of each NSN are assigned to 0. 

 

When an end-host wants to acquire the floor, it sends a floor_request signal to 

its NSN. The NSN of the requesting end-host forwards the request signal to its l_nbor 

in the request_flow path. The NSN of the requesting end-host also copies its RQ value 

to its DQ value and resets its RQ to 0. The l_nbor NSN of the requesting NSN (we call 

the NSN attached to the requesting end-host as requesting NSN) increments its RQ 

value when it receives the floor_request signal in the request_flow path and forwards 

the signal to its l_bor in the request_flow path. All the downstream NSNs in the 

request_flow path, after receiving the floor_request signal, increment their RQ values 

and forward the request to their l_nbors in the same path. An agent program at the 

head_NSN generates a wake_up signal which propagates through the signal_flow path 

until it reaches the tail_NSN. Each wake_up signal carries a sequence number which is 

incremented each time the signal is generated. Before forwarding wake_up signal to its 
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r_nbor in the signal_flow path, the head_NSN checks its DQ value. If its DQ value is 

0, the head_NSN checks whether it has any requesting end-host. If it has a requesting 

end-host, the head_NSN accepts the wake_up signal and sends floor_grant signal to its 

requesting end-host. In this case, the head_NSN puts the end-host ID in the wake_up 

signal and forwards the signal to its r_nbor in the signal_flow path. If the DQ value of 

the head_NSN is greater than 0, the head_NSN decrements its DQ value and forwards 

the wake_up signal to its r_nbor in the signal_flow path without putting the ID of the 

end-host in the signal. When an NSN receives a wake_up signal from its l_nbor in the 

signal_flow path, it checks whether the signal contains any end-host ID (which implies 

that the wake_up signal is already used). If the signal contains an end-host ID, it just 

forwards the signal to its r_nbor in the signal_flow path. If the signal does not contain 

any end-host ID, the NSN checks its DQ value. If its DQ value is 0, the NSN knows 

this is its end-host's turn to acquire the floor. So the NSN puts the end-host ID in the 

wake_up signal, forwards the signal to its r_nbor in the signal_flow path, and sends 

floor_grant signal to its requesting end-host. If the DQ value of an NSN is greater than 

0, the NSN just decrements its DQ value and forwards the wake_up signal to its r_nbor 

in the signal_flow path. The head_NSN generates wake_up signal periodically. The 

DQDB protocol on participating chain for floor control is given below. 

 

 

NSN_DQDB_on_PC ( ) 

Begin 

If NSN receives floor_request from its end-host 
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Forward floor_request to l_nbor in request_flow path 

DQ  RQ 

RQ  0 

End If 

If floor_request is received in request_flow path 

RQ  RQ + 1 

Forward floor_request to l_nbor in request_flow path 

End If 

If wake_up is received in signal_flow path 

If wake_up does not contain end-host ID 

If (DQ = 0) 

Send floor_grant to requesting end-host 

Put end-host ID in the wake_up signal 

Forward the wake_up signal to r_nbor in signal_flow 

path 

Else 

DQ  DQ - 1 

Forward wake_up to r_nbor in signal_flow path 

End If 

Else 

Forward wake_up to r_nbor in signal_flow path 

End If 

End If 
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End 

 

The state diagram of the protocol is given in Figure 2.7. In this state machine 

the state space S = {IDLE, PROECESS GENERATED REQUEST, PROCESS 

RECEIVED REQUEST, PROCESS WAKE-UP SIGNAL and GRANT}. Transitions 

are triggered when an NSN receives a floor_reuest from its end-host or receives a 

forwarded floor_request from its neighbors or receives a wake_up signal. Initially an 

NSN is in the IDLE state. When an NSN receives a floor_request signal from its end-

host, it goes to PROCESS GENERATED REQUEST state. In this state, the NSN 

modifies its state variables (DQ and RQ), forwards the request to its appropriate 

neighbor and goes back to IDLE state. When an NSN receives a forwarded 

floor_request signal from its neighbor NSN in the request_flow path, it goes to 

PROCESS RECEIVED REQUEST state. In this state, the NSN modifies its state 

variables, forwards the request to its appropriate neighbor and goes back to IDLE state. 

When an NSN receives a wake_up signal, it changes its state to PROCESS WAKE-UP 

SIGNAL state. In this state, the NSN checks its DQ value. If the DQ value is 0 and the 

NSN has previously requested end-host, the NSN goes to GRANT state. In the 

GRANT state, the NSN sends floor_grant signal to the requesting end-host. 
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Figure 2.7: State Diagram for DQDB on a participating chain 

 

Note that in our participating chain, an NSN can appear more than once. For 

example in the participating chain of Figure 2.8, node NSN C appears twice. In this 

situation, one of them will work as primary NSN and others will work as secondary 

NSNs. In the chain of Figure 2.8, NSN C first appears between NSN B and D and then 

appears between NSN D and NSN E. We can assign the first one as primary NSN and 

the second one as secondary NSN. A secondary NSN is not attached to any end-user, it 

just forwards floor_request and wake_up signals along the two paths. 

 

 

Figure 2.8: A participating chain where an NSN appears more than once 
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2.5 Data Delivery Phase 

 

In the contention phase, the end-hosts contend for floor acquisition through their 

attached NSNs. The end-host which acquires the floor enters into data delivery phase 

for sending data to other participating end-hosts. We propose to use the participating 

chain and the optimal multicasting tree for data delivery. Using the participating chain 

we want to ensure that causal ordering of messages is maintained among the 

participating end-hosts. 

 

The optimal multicasting tree can be a single source shortest path tree when we 

want to minimize the maximum end-to-end delay in data delivery. If the collaborative 

application requires that data should be reached at all participating end-hosts almost at 

the same time, then we can use the multicasting tree with minimum end-to-end delay 

and minimum delay variation [17-35] as the optimal multicasting tree. We connect the 

root of the multicasting tree to the last NSN (tail_NSN in case of DQDB) in the 

participating chain and show that it can achieve causal ordering. 

 

2.5.1 Data Delivery Phase for ALOHA 

 

When an end-host (which acquires the floor) enters into data delivery phase, it sends 

data to its NSN. The NSN forwards the data along the participating chain until it 

reaches the last NSN in the chain. The last NSN in turn, forwards this data to the root 
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of the multicasting tree which forwards it to all the participating end-hosts. Note that 

when the NSNs forward data to the root of the multicasting tree, they do not forward 

data to their attached participating end-hosts. To prove that the proposed 

implementation of ALOHA maintains causal ordering, let us consider the following 

worst case scenario. NSN A and B are the first and last NSNs of the participating chain 

respectively. At time t = 0, A forwards the floor request of its end-host to its neighbor 

in the chain (Figure 2.9). Then A waits for 2C time period. Assume that A does not 

receive any floor request during the waiting period. So A will grant floor to its 

requesting end-host at time t = y where y = 2C. Then the end-host will send data to A 

and A will forward the data to the root of the multicasting tree. It will take C + δ units 

of time to reach the data from A to the root where δ is the path delay between B (which 

is the last NSN) and the root. Now consider that B forwards a floor request (generated 

from its end-host) at time t = x. Clearly x > C, otherwise A would have received the 

floor request forwarded by B which could have resulted in a floor rejection at A. B 

waits for 2C time period. Assume that B does not receive any floor request during the 

waiting period. So B will grant floor to its end-host at time t = z where z = x + 2C. 

Then the end-host sends data to B and B forwards the data to the root of the tree. It will 

take δ units of time to reach the data from B to the root. We have to prove that the root 

receives the data of A before B. Let u and v be the values of t when the root receives 

the data from A and B respectively. Therefore, u = y + C + δ = 3C + δ and v = z + δ = x 

+ 2C + δ It can be easily observed that v > u as x > C. So our implementation 

guarantees that causal ordering will be maintained among the participating end-hosts. 
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Figure 2.9: Timing diagram for floor control signal by NSNs A and B in ALOHA 

 

2.5.2 Data Delivery Phase for DQDB 

 

In case of DQDB, when the tail_NSN receives the wake_up signal in the signal_flow 

path, it forwards the signal to the root of the multicasting tree. The root keeps the 

sequence number of the wake_up signal in the database. If the wake_up signal does not 

contain an end-host ID, then the root assumes that the wake_up signal was not used by 

any end-host. If the signal contains an end-host ID, the root keeps both the sequence 

number and the end-host ID in the database. When an end-host receives floor_grant 

signal from its NSN, it enters into data delivery phase. In this phase, the end-host sends 

data along with its ID to its NSN. The NSN forwards the data along the signal_flow 

path until the data reaches the tail_NSN. Then the tail_NSN forwards data to the root of 

the multicasting tree. Now the root checks the ID of the end-host in the database. If the 

sequence number associated with the end-host is the smallest among the sequence 

numbers (associated with end-host IDs), the root forwards the data of the end-host to 

other participating end-hosts using the multicasting tree and removes the entry 
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(sequence number and its end-host ID) from the database. Otherwise the root buffers 

the data until it receives the data from the end-host with the smallest sequence number 

in the database (as shown in Figure 2.10). This implementation ensures that all the 

participating end-host receives data according to the order of floor acquisition which in 

turn ensures causal ordering of data among the participating end-hosts. 
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  Figure 2.10: Buffering end-user data at the root for DQDB 

 

2.6 Analytical Evaluation 

 

In order to compare the described protocols, we use efficiency as the performance 

metric. In this section we derive the efficiency of each protocol using the analytical 

model defined in [11] as the basis. We also consider the overlay network delays in the 

evaluation. Our intention is to compare each protocol considering the underlying 

communication infrastructure in the contention phase. Efficiency of a protocol is 

defined as the ratio of floor usage time and turn around time. Floor usage time denoted 

by U is the activity time of an end-host when it uses the floor to send messages to other 

end-hosts. Turn around time denoted by T consists of two components: contention time 
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(X) and floor usage time (U). The contention time, X accounts for the time required for 

request generation and propagation and waiting period before acquiring the floor. So 

we have, 

  T = X + Y 

  Efficiency, 
UX

U
T
U

+
==η  … … … (1) 

To derive the expression of contention time, X, we consider the worst case scenario for 

each protocol using the communication infrastructure in the contention phase. We 

assume that control messages in the protocol are transferred reliably over the network. 

The floor request generation rate follows Poisson distribution. The parameters used in 

the evaluation are listed in Table 2.1. 

 

Parameter Description 

γ Average processing time of control message at each NSN 

δ Duration of average activity period for each end-host 

η Efficiency of the protocol 

λ Floor request inter-arrival rate for end-hosts 

σ Average delay between an end-host and its NSN 

n Number of participating NSNs in the group 

communication 

α Frequency of wake-up signals generated by head NSN 

C Total Delay of the Communication Chain 

Table 2.1: Parameters used in the analysis 
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γ is the average time to process and propagate a control message at each NSN. δ is the 

average time used by each end-host for sending data to other end-hosts when it gets the 

floor. λ denotes the inter-arrival rate for floor requests. n is total number of 

participating NSNs participating in the group communication. α is the frequency of 

wake-up signal generation by the agent program at head NSN in DQDB. C denotes the 

total delay of the communication chain.  

 

2.6.1 Efficiency of ALOHA on a Participating Chain 

 

The efficiency of pure ALOHA protocol as derived in [23] is 

    eG G2−=η  … … … (2) 

where G is the total rate of transmission attempts per frame time. When we implement 

ALOHA on the participating chain, we assume that all the NSNs are actively 

monitoring each other’s activity. In the worst case analysis, when an end-host 

connected to the leftmost NSN in the participating chain generates a floor request 

signal, it will take σ + C1+C2+ … … + Cn-1 units of time to reach the signal at the 

rightmost NSN of the chain. Each NSN takes γ units of time to process and propagate 

the control message. So the total overhead in communication is σ + C + nγ where C = 

C1 + C2+ … … + Cn-1. The vulnerability period of a packet is defined [23] to be the 

time period if another packet is generated during that time period, the two packets will 

collide. In the pure ALOHA implementation on a participating chain, the floor request 

of an end-host is not going to collide with floor request from other end-hosts if no 
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requests are generated during the vulnerability period of 2(δ+σ + 2C + nγ ). The 

request arrival rate is Poisson. So the probability that a floor request is successful is e -

2(δ+σ + 2C + nγ )λ. Using Equation 2, we derive the efficiency of ALOHA on a participating 

chain as follows: 

   … … … (3) e nCnC λγσδλγσδη )2(2)2( +++−+++=

 

2.6.2 Efficiency of DQDB on a Participating Chain 

 

When we implement DQDB on a participating chain, the first NSN on the signal_flow 

path and request_flow path are designated as head_NSN and tail_NSN respectively. In 

the worst case analysis, when an end-host attached to the tail_NSN, sends a request and 

the tail_NSN forwards the request in the request_flow path, it takes (σ+ C + nγ) units 

of time to reach the request to head_NSN. Since the floor request arrival rate is λ, the 

number of requests generated during the time period (σ+ C + nγ) will be (σ+ C + nγ) λ. 

This implies that the on the average there will be (σ+ C + nγ) λ number of requests 

before the request of the end-host of the last_NSN in the distributed queue. The wake-

up signal generation rate at the head_NSN is α. So it will take 
α

λγσ )( nC ++  units of 

time to process (σ+ C + nγ) λ  number of requests. Then it takes another C unit of time 

to reach the wake_up signal from head_NSN to the tail_NSN. So the total waiting time 

for the end-host at the last_NSN before it acquires the floor will be 
α

λγσ )( nC ++  + C 
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+ σ. Using Equation (1), we derive the efficiency of DQDB implementation on 

participating chain as follows. 

   
δσ

α
λγσ
δη

+++
++

=
CnC )(

… … …(4) 

 

2.6.3 Results 

 

We compare the efficiencies of different floor control protocols using our analytical 

model. We set the number of participating NSNs n to 10. The average activity time, δ 

is set to the length of the chain(C) which is assigned the value 0.5s. The average delay 

between an end-host and its NSN σ is set to 0.3s. γ, the average processing time for 

control message is set to 0.02s [11]. α, the frequency of wake_up signal generation rate 

at the head_node for DQDB is set to 1 in each second. Efficiency for each protocol for 

varying request rate (λ) is calculated using the formula provided in the previous 

subsection. The results are plotted in Figure 2.11. 
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Figure 2.11: Comparing Efficiencies of Different Floor Control Protocols with 

Analytical Model 

 

From the results, we observe that on average DQDB outperforms ALOHA in 

terms of efficiency. The efficiency of ALOHA reaches 0 when the request rate is 10 

whereas the efficiency of DQDB reaches 0 when the request rate is near 1000. 

 

2.7 Simulation Experiments 

 

We have simulated both ALOHA and DQDB floor control protocols using the latest 

version of ns-2. Simulations were done on a participating chain of 10 NSNs with 2 

end-hosts connected to each NSN. In both simulations, we have used constant bit rate 

traffic source with different time intervals and UDP as the transport layer protocol. The 
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simulation time is set to 2000 seconds. Some parameters used in the simulations are 

listed in Table 2.2. 

 

Parameter Value 

request packet size  25 bytes 

link delay 50 ms 

bandwidth 1 Mbps 

cell size for DQDB   44 bytes 

contention window for ALOHA  20 

cell generation rate for DQDB  1.0 

Table 2.2: Parameters used in the simulation 

 

We have varied the request rate for the whole network and calculated the total 

contention time for each protocol. We assume that the floor utilization time is the 

length of the participating chain. Then we have calculated the efficiency for each 

protocol using Equation 1. The results of the simulation experiments are plotted in 

Figure 2.12. Each point in the plots represents average value taken over 30 simulation 

runs. From the results, we can observe that DQDB performs better than ALOHA in 

terms of efficiency when the system request rate is high. For ALOHA, when the 

system request rate is low, the efficiency achieved from simulation experiments is 

higher than the efficiency calculated from analytical model. This is due to the fact that 

when the request rate is low, the probability of collision in the system will be low. So 

the waiting time for the floor grants will be less which increases the efficiency. 
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Figure 2.12: Efficiencies VS System Request Rate for Different Floor Control 

Protocols from Simulation Experiments 

 

2.8 Related Work 

 

Most of the existing floor control mechanisms presented in the literature propose 

centralized control to coordinate floor among the users. Lennox and Schulzrinne [15] 

proposed a protocol for Reliable Decentralized Conferencing using a full mesh 

conferencing system which allows any number of users to participate in a conference 

without any central point of control. This type protocol is well suited for small 

impromptu conferences. In this model, every user directly coordinates with other users 

and all the users have equal rights. The protocol uses several messages for 

communication between the users and it is assumed that the messages are transmitted 
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reliably. Though this protocol performs better for small scale conference, its message 

complexity is very high. 

 

Katrinis et al. [13] proposed a distributed floor control protocol called Activity 

Sensing Floor Control Protocol (ASFC) using the concept of activity sensing and 

collision detection from Ethernet protocols.  In this protocol, each user monitors the 

activity on a specific resource and contends to get the floor for the resource only if the 

it senses that the resource is unoccupied. This sensing is achieved by real-time 

monitoring of the incoming data traffic towards the resource. An ASFC protocol agent 

runs at each user end for each resource. In the protocol, a resource is considered to be 

occupied if the inter-arrival time between two consecutive received data packets at the 

resource does not exceed a threshold value. The protocol assumes that the maximum 

inter-departure time between two consecutive data packets transmitted by a floor 

holder is fixed and globally known. It also assumes that the worst case one-way transit 

delay experienced by a data packet is fixed. Each user keeps track of number of 

unsuccessful floor attempts in order to calculate the back-off interval which is an 

overhead for the end-user. Though the protocol is distributed, it suffers from using 

fixed parameters which might change from time to time over the network. The protocol 

also does not ensure causal ordering of data among the end-users. 

 

Qiu et al. [14] proposed a three-channel rotation conference control protocol for 

an interactive and scalable video-conferencing system. In their protocol, three media 

channels are used for two interactive speakers. Contention for shared media channels is 
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resolved using a three channel rotation scheme. Out of three channels, a dedicated 

channel is used for control traffic. Conference participants can have three roles: current 

speaker, previous speaker and listener. When a participant wants to become a speaker, 

he/she sends a request signal to a centralized controller. The controller chooses the 

speaker depending on the access policy which can be FCFS (First Come First Served) 

or priority based. Though the protocol makes the collaboration highly interactive, it 

suffers from the drawbacks of using centralized controller. 

 

 The protocol presented by Dommel and Garcia [11] referred as Hierarchical 

Group Control Protocol (HGCP) uses a logical control tree for coordinating control 

information among the users. The control tree is derived from the shared 

acknowledgement tree used in reliable multicast protocol. Nodes in the tree are labeled 

using a finite alphabet set with the property that label of a node l(x) is the prefix of its 

children. Three types of control responsibilities are assigned among the nodes in the 

tree: the control node hosts the floor handler or floor controller which regulates to a 

resource and updates other nodes in the tree about the status of the resource, the relay 

node collects control information from its children and forwards them in the tree 

towards the control node and relays replies to the children, the leaf nodes mark the end 

of tree branches and communicate with their parent relay nodes. In HGCP, it is 

assumed that the floor controller and the floor handler are the same node. Every node 

communicates only with their neighborhood by knowing the direction towards the 

current floor handler. Floor handler is always the root of the tree and tree virtually 

rotates with the new floor handler. HGCP works in three phases. In the setup phase, 
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every node updates its state table by comparing the state tables of its parent and 

children. The state table contains floor information of about the local and remote 

resources in the session. Every node advertises its state table to its neighbors in the tree 

and integrates updates from its neighbors into its state table. In the active phase of the 

protocol, a node sends REQUEST message to its neighbor which is closer on the path 

to the floor handler when the node wants to acquire the floor. The direction towards the 

floor handler is computed using the prefix of the node label entry in the state table. The 

floor handler orders all the requests based on their priority, queuing, timestamp and 

reception order. When the floor handler completes its resource access, it sends a 

GRANT message to its successor using the label information from the state table. 

When the floor handler receives confirmation from its successor, it relinquishes the 

floor and multicasts the position of the new floor handler to all the members in the 

session. Now the nodes contending for the floor sends their REQUESTs to the new 

floor handler. In the termination phase, floor state information is deleted from the 

records. 

 

2.9 Summary 

 

Floor control protocols play an important role in collaborative applications on the 

overlay network. Due to its drawbacks and limitations, centralized floor control 

solutions are not preferred by the Internet community. In this dissertation, we have 

proposed to implement two well-known distributed MAC protocols (ALOHA and 
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DQDB) for floor control on the overlay network. Towards this, we have showed how 

these protocols can be efficiently implemented using an optimal chain. Among the 

distributed algorithms, we show that our protocol preserves causal ordering. Using an 

analytical model, we have derived the efficiency of each protocol. We have also 

performed simulation experiments for each protocol. Both the analytical and simulation 

results show that DQDB outperforms ALOHA in terms of efficiency. 
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Chapter 3 

Multicasting with Delay Variation 

 

3.1 Introduction 

  

One approach to ensure minimum delay variation is to buffer the messages at different 

nodes in the network. This approach can be categorized into three classes: buffering at 

source node, buffering at intermediate nodes, and buffering at destination nodes. 

Buffering at source node requires the source node to keep additional information for 

each destination. The source node will buffer a message for different amount of time 

for each destination and transmit the message multiple times over the network, and 

clearly, this is a waste of network bandwidth. Also, buffering at source node defeats the 

purpose of multicasting which is one of conserving network bandwidth. Buffering at 

intermediate nodes requires some nodes to be identified as core nodes in the network. 

Messages are buffered at these core nodes before they are sent to the destinations. 
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Buffering at destination nodes requires each destination node to buffer the messages 

before they pass the messages to the application process. In this approach, the source 

node informs the destination nodes when they can process the received packets. For 

example, consider the graph in Figure 3.1. In this graph, the value on each curved line 

specifies the delay of the shortest path from the source to a destination. Suppose the 

source node S sends packets to destinations D1, D2 and D3. The maximum delay among 

the paths for destinations D1, D2 and D3 is 5. Now to ensure minimum delay variation 

among the destinations, the source node S informs destination nodes D2 and D3 to 

process their packets after 5-2 = 3 units of time and 5-1 = 4 units of time, respectively. 

Node D1 can process the packet as soon as it receives. This implies that node D2 and D3 

have to buffer their packets for 3 and 4 units of time respectively. It is easily observed 

that the amount of buffer space required at each destination node is directly 

proportional to the maximum delay variation among the destinations. Another major 

drawback of this scheme is that it relies on the destination nodes for minimizing the 

delay variation. Such a scheme can be easily compromised by the end users to gain a 

competitive edge over others in case of online games. To overcome these drawbacks, 

our approach is to route the packets using longer paths for some destination nodes such 

that all the destination nodes receive the message almost at the same time. This 

implies, for node D2 and D3 in Figure 3.1, instead of using the shortest paths, we will 

find longer paths from S to D2 and D3 so that they receive the packets at the same time 

and can process the packet without buffering them. 
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Figure 3.1: A graph with S as source node and D1, D2, D3 as destination nodes 

   

3.2 Formal Definition of the Problem 

 

We use a weighted graph G = (V, E) to denote the overlay network where V denotes 

the set of end-users (NSNs, in case of proxy based overlay) and E denotes the set of 

links on the overlay network between the end-users. For each link in E, we define a 

link-delay function D: E →ℜ+. Basically the link-delay function associates a delay 

with each link in the overlay network.  In order to do multicasting, a source node s ∈ V 

sends multicasting messages to a group of destination nodes M ⊆ V – s. The messages 

are transmitted through a multicasting sub-network T = (VT, AT) where T spans the 

source node s and all the destination nodes in M. The sub-network T may contain nodes 

other than in M and the source node s. A path PT(s,v) is defined as the path from source 

s to destination v ∈ M in T.  The total delay for sending message from source s to 
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destination v along this path will be ∑
∈ ),(

)(
vsPl T

lD . We now define two important 

parameters for DVBMN problem.  

• Source-destination delay bound, Δ: Parameter Δ refers to the upper bound on the 

end-to-end delay along any path from the source to a destination node.  

• Inter-destination delay variation tolerance, δ: Parameter δ is the maximum 

allowed difference between the end-to-end delays along the paths from the source 

to any two destination nodes.   

The formal definition of DVBMN problem is stated below (see also [17]). 

Given an overlay network, G = (V, E), a source node s ∈ V, a multicast group 

M ⊆ V – s, a link delay function D: E →ℜ+, a delay bound Δ and a delay variation 

tolerance δ, find a multicast sub-network T = (VT, AT) which spans s and all the nodes 

in M such that 

         for each v ∈ M    (1) ∑
∈

Δ≤
),(

)(
vsPl T

lD

∑ ∑
∈ ∈

−
),( ),(

)()(
vsPl usPlT T

lDlD   ≤  δ   Muv ∈∀ ,           (2) 

    

We define another parameter δT, the maximum inter-destination delay variation as 

follows 

δT = max ∑ ∑
∈ ∈

−
),( ),(

)()(
vsPl usPlT T

lDlD over all u,v∈M             (3) 
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The tightest delay variation is the one that minimizes δT. This notion helps us 

benchmark whether each heuristic achieves the tightest bound for a delay variation. We 

have assumed that node latency is zero at each node in the overlay network. 

 

3.3 Literature Review 

 

Multicast Routing with QoS constraints has been extensively studied by the network 

community due to the popularity of computer collaborative applications which demand 

different QoS requirements. Many protocols for this problem have been proposed in 

the literature [36-42].  Salama et al. [43] and Dziong et al. [44] have provided a 

comparison study of different multicasting protocols. Most of these protocols try to 

construct a delay-constrained minimum cost tree. Multicast routing with delay and 

delay variation constraints has been addressed by Rouskas and Baldine [17], Sheu and 

Chen [19] and Kapoor and Raghavan [18]. In the following subsections, we will 

discuss the heuristics proposed by Rouskas and Baldine [17], Sheu and Chen [19] and 

Kapoor and Raghavan [18].   
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3.3.1 Delay Variation Bound Multicast Algorithm (DVBMA) 

[17] 

 

The heuristic proposed by Rouskas and Baldine [17] constructs a multicast tree 

satisfying an end-to-end delay constraint Δ, and delay variation constraint δ. Initially 

the shortest path tree T0 from source s to all nodes in multicasting group M is 

determined using Dijkstra’s algorithm [45]. If T0 does not satisfy the end-to-end delay 

constraint Δ, then no tree will satisfy it and hence the algorithm terminates, otherwise, 

if it satisfies both end-to-end delay constraint Δ and delay variation constraint δ, the 

algorithm outputs T0 and terminates. It is possible that the delay variation constraint is 

not satisfied and the algorithm may terminate without finding the tree. The second part 

of the algorithm in [17], referred as Delay Variation Multicast Algorithm (DVMA), 

first identifies the farthest destination node w in the shortest path tree T0. It computes 

first k-shortest paths from s to w. Then it repeatedly performs the following. It takes a 

shortest path from s to w, forms an initial tree Ti and tries to attach other destination 

nodes in M to Ti through the best path (which satisfies the end-to-end delay constraint 

Δ and has minimum delay variation). This is performed by finding l-shortest paths 

from each node in Ti to a destination node in M which is not yet connected to Ti. 

DVMA searches through all possible trees depending on the value of k and l and 

returns the tree with minimum delay variation. The main advantage of DVMA is that it 

ensures that the resulting solution is a tree. During our implementation of this 

algorithm we found a serious drawback in the heuristic in [17].  The order in which the 
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destination nodes in M are added to the initial tree determines the tightness of the delay 

variation.  Of course all possible orderings will make the complexity of the heuristic 

exponential. 

 

3.3.2 Delay and Delay Variation Constraint Algorithm (DDVCA) 

[19] 

 

Sheu and Chen [19] heuristic (named DDVCA) is a combination of Core Based Tree 

(CBT) [46, 47] concept and Dijkstra’s shortest path algorithm [45]. In CBT approach, 

some routers are chosen as Core Routers. In DDVCA, the Core Router is addressed as 

a central node. The main steps of DDVCA are as follows. First the central node of the 

network, Cn is determined. In order to find the Cn , minimum delay paths between each 

destination node and other nodes in the network is calculated using the standard 

Dijkstra’s algorithm [45]. Then for each node in the network, the delay variation 

between the node and each destination node is determined. The node with minimum 

delay variation is chosen as Cn. In the next step, the multicasting tree is constructed by 

connecting the destination nodes and the source node s to the central node Cn using the 

minimum delay paths. It might be possible that the multicasting tree constructed with 

the chosen central node, violates the end-to-end delay constraint Δ. This implies that 

the delay of the path from s to a destination Cn exceeds Δ. In this case the node with 

second minimum delay variation is chosen as Cn. The main advantage of DDVCA is 
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that it is simple and has a time complexity of O(mn2).   But the main disadvantage of 

this approach is that it does not take into account the delay variation bound δ. 

 

3.3.3 Dynamic Program for Delay Variation Bound (DPDVB) 

[18] 

 

Kapoor and Raghavan [18] proposed a heuristic (named DPDVB) that tries to 

minimize the cost of multicasting tree together with the delay and delay variation 

constraints. The cost can be a measure of residual bandwidth or the amount of buffer 

space required in the network. This problem can be reduced to DVBMN problem if the 

costs are set to zero. In this algorithm, it is assumed that the delay and cost values are 

integrals, implying that the delay and cost values can be scaled to corresponding 

integer values. The function gj(t) is defined as the minimum cost path from node 1 to 

node j with delay exactly equal to t and node 1 as the source. Then the following 

recurrence is defined 

gj(t) = min { gk(t - tkj) + ckj , ∀ k | (k,j) ∈ E, tkj ≤ t}. 

where ckj and tkj denote the cost and delay of the path from node k to node j, 

respectively. The algorithm first initializes two variables TC and t to infinity and 1, 

respectively. TC represents the total cost of all the paths in the solution. Now gj(t) is 

computed for all nodes in the network except the source. Then the algorithm checks 

whether paths exist to all nodes in M in the window of (t-δ). If paths exist to all nodes 

in M in this window, then the overall cost C for paths to all nodes in M is computed. If 
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C is same for more than one set of paths, then the set of paths, which have minimum 

delays for nodes in M, is chosen.  If C is less than or equal to TC, then TC is initialized 

to C. Next t is incremented by 1. The algorithm computes gj(t) again and the whole 

process is repeated till t is not equal to Δ. The main advantage of DPDVB is that it 

achieves the tightest bound in delay variations. 

 

3.4 Motivating Example 

 

Our heuristic works as follows.  It first computes the k-shortest paths5 from source to 

each of the destinations such that the delay of each shortest path is less than or equal to 

the delay bound.  The value of k is chosen depending upon the size, edge density, and 

number of destinations.  This analysis is shown in section 3.6.  We cleverly select a 

shortest path for each destination from among the k shortest paths available to that 

destination in such a way that the delay variation is the smallest possible.  We will 

examine this concept with the example below.  Consider the overlay network given in 

Figure 3.2. 

 

 

 

 

 

                                                 
5 K-shortest Path Problem: Given a graph G = (V, E) and two nodes s, t ∈V, find k shortest paths 
between s and t in G in order of increasing length. 
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Figure 3.2: Example of a network with link delays. Nodes in double circles are the 

destination nodes and node Vs is the source node. 

 

In Figure 3.2, we have an overlay network with VS as source node and V2, V5, 

V8 as destination nodes. We want to construct a multicasting sub-network with tightest 

delay variation and end-to-end delay bound of 50. First we find all the paths from VS to 

V2, V5, V8 for which the delays are less than or equal to 50.  Then we list all the paths 

with their corresponding delays in the increasing order of the delays as shown in Table 

3.1. 
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Source Destination Path Delay 

(a) VS –V1–V2 31 

(b) VS–V7–V8–V4–V2 32 

(c) VS–V7–V8–V5–V2 35 

 

V2

(d) VS-V7-V8-V5-V4-V2 40 

(e) VS–V7–V8–V5 26 

(f) VS–V7–V8–V4–V5 32 

(g) VS–V1–V2–V5 40 

 

V5

(h) VS–V1–V2–V4–V5 45 

(i) VS–V7–V8 20 

(j) VS–V1–V2–V4–V8 43 

 

 

 

 

VS

 

V8

(k) VS–V1–V2–V5–V8 46 

 

Table 3.1: List of paths from VS to V2, V5, V8 and their corresponding end-to-end 

delays 

 

From this list of paths, we choose the delays and their corresponding paths to 

construct the multicasting sub-network as follows. First we have to choose a path from 

Vs to each of the destinations from the set of paths given in Table 3.1.  For example, let 

us suppose that we choose paths (a), (e), and (i) (the first shortest paths from source to 

each of the destinations V2, V5, and V8, respectively), then after merging these paths the 
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resulting sub-network will be a shortest path tree. If we remove the delay variation 

constraint from our problem, then the shortest path tree will be the optimal multicasting 

tree. Note that destination nodes V2, V5, and V8 receive the message from Vs at time 

units 31, 26, and 20 resulting in a delay variation of 11. 

 

If the paths that are chosen are (d), (g), and (j), the end-to-end delays for each 

of the destinations V2, V5, and V8 will be 40, 40, and 43, respectively.  These delays 

are within the desired delay bound of 50, but the delay variation is only 3 smaller when 

compared to 11 in the previous case.  Merging these paths we obtain a sub-network as 

shown in Figure 3.3.  Although the sub-network is not a tree, at most one message 

needs to be sent on each direction of any link. We notice from the multicasting sub-

network in Figure 3.3 that destination node V2 works as relay node for the paths VS – 

V1 – V2 – V4– V8 and VS – V1 – V2 – V5. That is, the node V2 will not consume the data 

while working as a relay node for these paths. It will simply just forward the data along 

the path. This can be done using source-routing protocols where source specifies the 

path to be followed by a packet. In Grid Computing [48] Environment, this type of 

protocol is implemented using software routers. 
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Figure 3.3: The multicasting sub-network with a delay variation of 3 and a delay 

bound 50 obtained after merging the paths (d), (g), and (j) in Table 3.1.  The number in 

the parenthesis indicates the destination(s) of the packets sent from the source Vs. The 

directions on the arcs indicate how the messages for each of the destinations travel. 

 

3.5 Our Heuristic: Chains 

 

Given the motivating example in section 3.4, we know that the number of such shortest 

paths from the source to each destination within the bounded delay may not all be the 

same (as in the example in the previous section).  However, we can assume that the 

number of shortest paths for any source-destination pair is bounded by an integer value 

k.  Now, we can see that after computing all shortest paths for each of the m 

destinations satisfying the maximum delay constraint, we can find a path to each of the 

destinations that gives the smallest delay variation in a brute-force manner.    Clearly, 

the time-complexity of this approach would be O(km).  In this section, we present an 

algorithm that has a time-complexity of O(m2k) that chooses a path to each of the 

destinations from a set of k shortest paths (to each destination) such that the delay 
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variation is the smallest.  Note that the k-shortest paths from a given source s to all the 

nodes in a n node network with |E| links can be determined in O(|E| + nk log (|E|/n)) 

[20, 21].  Given the algorithm in this section, the total time-complexity of the entire 

algorithm would be O(|E|+ nk log (|E|/n) + m2k) for the DVBMN problem. 

 

Suppose source s wants to multicast data to destinations v1, v2, …, vm and let 

there be ki different shortest paths for each vi. Let the delay of these paths be 

 in the increasing order of the end-to-end delays. Our aim is to find the 

set of paths P from source s to each destination v

iikii ddd ...,,, 21

1, v2, …, vm such that maximum 

difference between the delays of these paths in P is a minimum. The problem of 

finding these paths can be transformed into the following problem. 

 

Consider sets Si = {di1, di2, …, dik}, where 1 ≤ i  ≤ m, where dij, 1 ≤  j  ≤ k are 

integers with color(dij) = i.  Without the loss of generality, assume that the elements in 

each Si are non-decreasing.  Define  and again without loss of generality 

assume that the elements in D are non-decreasing.  The set D can be constructed in 

O(mk) time using the merge algorithm [45].  We will define color[i] = j, for each 

element i in D if the element i belongs to the set j. 

U
m

i
iSD

1

}{
=

=

 

We now construct an array next, where next[i] corresponds to the ith element of 

the set M as defined as follows: The array next is of size mk and next[i] = min{j | j  > i, 
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color(j) ≠ color(i), j ≤ mk}, if there exists such a j, otherwise next[i] = -1.  For example, 

consider the following sets: 

S1 = {31, 32, 35, 40}, S2 = {26, 32, 40, 45}, S3 = {20, 43, 46} 

 1 2 3 4 5 6 7 8 9 10 11 

D 20 26 31 32 32 35 40 40 43 45 46 

color 3 2 1 1 2 1 2 1 3 2 3 

next 2 3 5 5 6 7 8 9 10 11 -1 

 

The next array can be computed in O(mk) time by a linear scan of the array D 

starting from the right and moving towards the left. The algorithm to compute the next 

array is given below: 

 

Algorithm Compute_next_array 

Begin 

 t = mk; 

 c = color[mk]; 

 next[t] = -1; 

 for ( j = mk -1; j > 0; j --) 

 { 

  if( color[j] ! = c) 

  { 

   next[j] = t; 

   c = color [j]; 
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  } 

  else 

  { 

   next[j] = next[t]; 

  } 

  t = j; 

 } 

End 

 

 

The sequence i, next(i),  next(next(i)), next(next(next(i))), … is defined as a 

candidate chain starting from the ith element of D. In this case, we say that element i 

starts a candidate chain.  A candidate chain is a valid chain if it contains exactly m 

elements and each element in the candidate chain is of a different color.  Each element 

i that starts a valid chain is called as a valid element, otherwise the element will be 

called as invalid. It is easy to observe that all invalid elements occur at the rightmost 

end of the array D.  In order to identify the valid and invalid elements in D, initially we 

mark all the elements in D as valid and scan the array D from right to left.  As we move 

from right to left we keep a count of the number of elements that are of different color 

(call this variable count).  We can use a Boolean array of size m initialized to false, to 

keep track of the different colors processed so far.  When we encounter an element i 

and count is not equal to m, we increment the count variable by one if the element is 

not found in the Boolean array (constant time to check if it is present).  In this case, the 
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ith element is marked as invalid.  When count reaches m, our algorithm terminates.  The 

complexity of finding all the valid and invalid elements is O(mk). In the above 

example, elements in position 9, 10, and 11 are invalid. 

 

Also for the example above, the chain {20, 26, 31} is valid, similarly {26, 31, 

43}, {31, 32, 43}, {32, 32, 43}, {32, 35, 43}, {35, 40, 43}, and {40, 40, 43} are some 

of the other valid chains.  The value of a valid chain is difference between the last and 

first element of the chain.  For example, the value of the valid chain {26, 31, 43} is 43-

26 = 17 and similarly the value of valid chain {40, 40, 43} is 40-43 = 3. 

 

Based on the above problem definition and the example, we can say that our 

next goal would be to determine a valid chain whose value is a minimum among all 

valid chains.  First, we will describe a O(m2k2) algorithm Chains to find a valid chain 

of minimum value and then show how the complexity can be improved to O(m2k) 

based on a useful observation.  The algorithm Chains assumes that D, color, and next 

are all available. It also assumes that the valid and invalid elements are marked 

appropriately. 

 

Algorithm Chains 

Begin 

  BestChainValue = ∞; 

  BestChainStartPos  = 1; 

  for (int i = 1; i ≤ m·k; i++) 
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  { 

   //Find the valid chain starting from i 

   for (j=1; j ≤ m; j++) flag[j] = false; 

   count = 1; 

   k = next[i]; 

   flag[color[k]] = true; 

   while ((k ≠ -1) && (count ≠ m))   

             //May have to loop through the entire list D 

   { 

         if !flag[color[k]] 

            { 

                flag[color[k]] = true; 

                count = count + 1; 

             } 

         if (count < m) k = next[k]; 

    } 

   if (count == m)  

//Valid chain found starting from i 

   { 

       currentChainValue = D[k] – D[i]; 

       if(currentChainValue< BestChainValue) 

       { 

          BestChainValue= currentChainValue; 
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          BestChainStartPos = i; 

        } 

   } 

  } 

End 

 

The algorithm Chains clearly has a complexity of O(m2k2) and using the 

following Property 1 and Property 2, we will show that the complexity of the algorithm 

can be improved to O(m2k).  We will define first(C) to be an index position in D that is 

the first element of the chain C; similarly last(C) be an index position in D that is the 

last position of the Chain C. 

 

Property 1:  Let C1 and C2 be two valid chains with first(C1) < first(C2) < last(C1) and 

there exists an element at position j in D such that color[j] = color[first(C1)] and 

first(C1) < j < last(C1) and D[j] ∈ C2.  The value of chain C1 is greater than or equal to 

the value of chain C2. 

 

Proof: Suppose we have a list D with n elements in non-decreasing order and P, Q, R, 

S and T denote the color of the elements. We construct two chains C1 and C2 from D 

with C1 containing elements P(1)-Q(2)-R(i1)-S(j1)-T(n) and C2 containing elements 

Q(2)-P(3)-R(i2)-S(j2)-T(n). The number inside the parenthesis indicates the index 

position of the element in D. We can easily observe that C1 and C2 satisfy the condition 

first(C1) < first(C2) < last (C1) and here j = 3 as color[3] = color[first(C1)] and D[j] is 
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included in chain C2. Let us assume that the value of chain C1 is less than the value of 

chain C2.  We calculate the value of chain C1, value(C1) = D[n] – D[1] and value of 

chain C2, value(C2) = D[n] – D[2]. Now value(C1) < value(C2) implies that D[1] > 

D[2]. But this is a contradiction as the list D is in non-decreasing order of elements. So 

value of chain C1 will be always greater than or equal to the value of chain C2. ■ 

 

Property 2:  For any two valid chains C1 and C2, if first(C1) < first(C2), then last(C1) ≤ 

last(C2). 

 

Proof: It can be easily observed that if first(C1) is less than first(C2), then chain C2 will 

end either along with chain C1 or after chain C1. In the first case, last (C1) will be equal 

to last (C2). The second case will occur when there are some colors which appear 

between first(C1) and first(C2) and then appear again between last(C1) and last(C2). In 

this case, last (C2) will be greater than last (C1). ■   

 

Our improved algorithm works as follows.  First we scan all the elements in D 

(actually the array color) from left to right. At each position j we keep an array count of 

size m (the maximum number of colors), where count[i] is the number of elements 

from positions 1 to j with color i.  This process will take O(m2k) time.  We perform a 

second scan of the array D (along with the color array).   Before the beginning of the 

second scan, we create a queue Q that stores nodes that have only one attribute which 

is the color of the element. The maximum number of nodes in the queue is at most m 

and no two nodes in the queue have the same color.  An array pointTo of size m is 
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created, where pointTo[i] points to the node with color i in the queue, if it exists 

otherwise it is set to null.   The node with color[1] (the color of the first element of D) 

is created and added to the queue Q.  The element pointTo[color[1]] is set to point to 

this node in the queue Q.  The scan begins with the second element in D (along with 

array color).  Conceptually now we will try to find a valid chain that begins with 

Q.front() (the first element of the queue).  From Property 2 we will first find the valid 

chain for this element provided that we do not find another element with the same color 

as the one in the front of the queue (based on Property 1).  We will keep going until we 

find m different colored elements and each time we find a element with a new color we 

will add that to the queue.  If we come across a color that we have already seen then we 

will remove them from the queue (O(1) operation since we have access to it via the 

pointTo array).   

 

If we remove the element from the front of the queue, then based on Property 1, 

there exists another valid chain that may start with the same of different color.  Now 

rather than rescanning, we will use the information from scan one as follows.  Let us 

say that when the second scan is at position l we removed the front of the queue (that is 

when the color[j] = color[Q.front()]).  Also, let the new front of queue Q be an element 

that was added to the queue when the scan was at position p (p < l).  Our next goal is to 

find a valid chain from p.  To avoid rescanning from position p, we can use the count at 

locations p and l to determine the number of elements with different colors in locations 

p through l and proceed to scan from positions l +1 for colors that need to be added to 

form a valid chain.  Because each element of the arrays D and each color is processed 
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at most once during the second scan and also that the maximum number of 

comparisons needed at each position (using the count array) is at most m, the total 

complexity of the second scan and hence the improved algorithm is O(m2k). 

 

Based on the above algorithm, we can clearly see that after computing k 

shortest paths (that satisfies the delay bound) to each of the destinations, a path from 

source s to each of the destinations can be chosen in O(m2k) time such that the delay 

variation is minimized.   

 

Given that the k-shortest path algorithm can be determined in O(|E| + nk log 

(|E|/n)) [20, 21]  the total time complexity of the DVBMN problem is O(|E| + nk log 

(|E|/n) + m2k). 

 

3.6 Performance Evaluation 

 

For evaluation purposes, we implemented DVMA, DDVCA, DPDVB and our heuristic 

Chains and compared each of them in terms of the tightest delay variation and 

execution time. We set the end-to-end delay bound Δ = 0.05s and the delay variation 

bound δ = 0 (this value of δ will force each heuristic to return the solution with the 

tightest δT). We have run the heuristics on randomly generated graphs constructed 

using Georgia Tech Internetwork Topology Models (GT-ITM) [49, 50]. The nodes in 

the graph are placed in a grid of dimension 4900×4900 km to resemble the whole 

 80



network spreading all over the United States and delay for each link is set to the 

propagation delay of electrical signal along that link. The average node degree for each 

graph is kept in the range of 3.5 and 4. Each heuristic has been tested on various graphs 

with number of nodes varying from 20 to 100 and percentage of nodes in the multicast 

group varying from 5% to 15%. The results are plotted in Figures 3.4 through 3.6. Each 

point in the plots represents average value taken over 30 graphs. The experiments are 

done on Sun UltraSPARC-IIi Workstations (360 MHz of clock speed and 128 MB 

RAM) running Solaris 8. 

  

From Figures 3.4 - 3.6, we observe that Chains along with DPDVB achieves 

the tightest delay variation for all the cases. We also notice that Chains outperforms 

DVMA and DPDVB for all cases in terms of execution time. Only DDVCA shows 

better performance than Chains in terms of execution time. But we have already 

observed that DDVCA does not achieve the tightest delay variation. Table 3.2 shows 

the numerical values of execution time of DVMA, DPDVB, DDVCA and Chains for 

various numbers of nodes. Table 3.3 shows how the execution time increases when the 

percentage of nodes in the multicast group increases for DVMA, DPDVB, DDVCA 

and Chains. We observe that Chains outperforms DVMA and DPDVB in terms of 

execution time even with higher number of nodes in the multicast group. Since 

DPDVB along with only Chain achieves the tightest delay variation and from Table 3.2 

we observe that the rate of increase in the execution time of Chain is more than that of 

DPDVB, we have performed additional experiments with Chain and DPDVB for more 

number of nodes. From Table 3.4, we can easily observe that the execution time of 
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DPDVB is always more than that of Chains even with higher number of nodes. We 

also observe that the rate of increase in the execution time of Chains decreases for 

higher number of nodes. This is due to the fact that execution time of Chain depends 

largely on the value of  k. As the value of n (number of nodes) increases, Chain 

requires larger value of k to find out the multicasting sub-network with minimum δ. 

But the rate of increase of k goes down as the value of n increases. This implies that for 

higher values of n and fixed Δ, a larger value of k might not be required by Chain to 

obtain a multicasting sub-network with minimum δ. Next we compared the execution 

time of DPDVB and Chains for different values of Δ, the end-to-end delay bound. The 

results are plotted in Figure 3.7. From Figure 3.7, we observe that the execution time of 

DPDVB increases with Δ, whereas the execution time of Chains remains almost 

constant.      

 

The asymptotic complexity of our algorithm is dominated by finding the k-

shortest paths from source to all destinations such that the delay for these paths are less 

than or equal to the delay bound Δ. If Δ is large, then the value for k may increase. 

However, our implementations show that finding k-shortest paths in a large network 

with the algorithm proposed in [20] is quite efficient. For our experiments, we have 

generated random graphs consisting of nodes 50 and 100 with a varying edge 

probability of 0.2, 0.4, 0.6 and 0.8 using the model in [49, 50]. Then we have used the 

recursive enumeration code for finding k-shortest paths provided at [21]. We have run 

our simulation for all pairs k-shortest paths with different values of k for each generated 
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random graph. We also calculated the elapsed time for each run and plotted the results 

in Figure 3.8. From the plots, we can observe that for a graph with 50 nodes and edge 

probability 0.8 (which means a dense graph), the time to calculate 10 shortest paths for 

all pairs is 1.37 sec. When the number of nodes increases to 100, this value becomes 18 

sec.  

 

Now we need to determine how k is related to the end-to-end delay bound, Δ 

and the density of the network. We have done an experiment with Chains for various 

values of average node degree of the network and the delay bound Δ and calculated the 

value of k required for achieving the tightest delay variation. We have varied the 

average node degree from 4 to 8. In order to vary the delay bound Δ, first we calculated 

the delay of the farthest destination in the multicast group and then set Δ in the range of 

100 % to 350 % of the delay of the farthest destination. From Figure 3.9, we observe 

that as the average node degree of the network increases, which implies the graph 

becomes dense; we need a higher value of k to achieve the tightest delay variation. This 

is obvious from the fact that as the graph becomes dense, we have more paths from the 

source to the destinations. We also observe that as Δ increases, the value of k increases 

since the search space for Chains increases. 
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Figure 3.4: Delay variation graph and execution time graph for 5% of the nodes as 

destinations 
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Figure 3.5: Delay variation graph and execution time graph for 10% of the nodes as 

destinations 
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Figure 3.6: Delay variation graph and execution time graph for 15% of the nodes as 

destinations 
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Number of Nodes 

DVMA 
   (sec) 

DPDVB
   (sec)  

DDVCA 
    (sec) 

  Chains 
    (sec) 

      20   7.53  11.328      0.0     0.82 
     40 17.14  11.49    0.01    1.62 
     60  23.2  12.74    0.02    2.43 
    80 41.45  14.76    0.065    3.17 
   100 58.407  19.41    0.12    7.63 

 
Table 3.2: Execution Time vs Number of Nodes with 10% of the nodes in the 

Multicast Group 

 
% Of Nodes in the  DVMA
  Multicast Group    (sec) 

DPDVB
  (sec) 

DDVCA
  (sec) 

 Chains 
  (sec) 

5 15.642  14.16  0.052   1.55 
10  41.45   14.76  0.065   3.17 
15  90.49   15.4  0.095   4.664 

 

Table 3.3: Execution time vs % of nodes in the Multicast Group (Total Nodes = 80) 

 

 
Number of Nodes 

DPDVB
   (sec)  

  Chains 
    (sec) 

      20  11.328     0.82 
     40  11.49    1.62 
     60  12.74    2.43 
    80  14.76    3.17 
   100  19.41    7.63 
   120  37.05   16.42 
   140  77.66   19.54 
   160 119.39   23.42 
   180 183.05   27.27 
   200 235.70   38.13 

 
Table 3.4: Comparison of Execution Times of DPDVB and Chains with 10% of the 

nodes in the Multicast Group 
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Figure 3.7: Comparison of Execution Times of DPDVB and Chains for different 

values of Δ (End-to-End Delay bound) with number of nodes 100 

 

 
Number of Nodes = 100

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10

k

Ti
m

e 
(in

 s
ec

)

Number of Nodes = 50

0

0.5

1

1.5

1 2 3 4 5 6 7 8 9 10

k

Ti
m

e 
(in

 s
ec

)

Edge Prob 0.2

Edge Prob 0.4

Edge Prob 0.6

Edge Prob 0.8

 

 

 

 
 
Figure 3.8: Execution time for finding k-shortest paths when the number of nodes is 50 

and 100 
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Figure 3.9: k vs End-to-End Delay bound for networks with average node degree 
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3.7 Dynamic Reorganization of Multicasting Sub- 

Network 

 

In multicasting applications, it is observed that some nodes in the multicast group may 

leave the session of multicasting after a certain period or some new nodes may join the 

multicasting group. We need to update the multicasting sub-network to include the 

joining node and exclude the leaving node in such way that delay along the path from 

source to each multicasting node (including the new one) is bounded by Δ and the 

delay variation among the multicasting nodes is a minimum. The authors in [17] 

discuss various cases for join and leave operation with their heuristic. 

 

3.7.1 Leave Operation 

 

When a node wants to leave the multicasting session, it issues a leave request. The 

leaving node can be either a leaf node or a non-leaf node of the multicasting sub-

network. 

• If the leaving node is a leaf node, authors in [17] have suggested pruning the 

tree to exclude the leaf node. But this strategy may not work when we want to 

achieve the tightest delay variation. In this situation, DVMA has to rework the 

whole process with updated multicasting group. In Chains, we will remove all 
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the delays of the leaving node from the sorted list D and from color, form the 

chains again and return the chain with minimum delay variation.   

• If the leaving node is not a leaf node, the solution of DVMA is to make the 

node work as a relay node and use the same tree. This solution also may not 

yield the tightest delay variation and again the DVMA heuristic has to repeat 

the whole process. For Chains, the solution will be the same as the previous 

one. 

 

3.7.2 Join Operation 

 

When a node wants to join the multicasting group, it issues a join request. The joining 

node may or may not be part of the existing multicasting sub-network.  

• If the joining node is a part of the sub-network, then DVMA uses the same tree 

with making the joining node work as both a relay node and a multicasting 

node. If the tightest delay variation is required, DVMA has to rework the whole 

process with the updated multicasting group. In Chains, we will find k-shortest 

paths from the source to the joining node such that delay of these paths are less 

than or equal to Δ. Then we will merge this sorted list of delays of the joining 

node with the existing sorted list of delays of other multicasting nodes. We will 

form chains and return the chain with minimum delay variation. 

• If the joining node is not a part of the sub-network, DVMA finds l-shortest 

paths from each node in the sub-network to the joining node and returns the 
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best path for constructing the new tree. For Chains, the solution will be the 

same as in the previous case.  

 

The heuristic DPDVB [18] is unsuited for join and leave operations, as the entire 

heuristic has to be rerun. 

 

3.8 Summary 

 

In this research, we have considered the problem of determining a multicasting sub-

network with end-to-end delay bound and delay variation bounded for collaborative 

applications on overlay network. We have discussed three well-known heuristics from 

the literature and exposed their limitations. Then we have presented our heuristic 

Chains, which achieves the tightest delay variation for a given delay bound. At the 

initial phase of our heuristic, we have used k-shortest path technique proposed by 

Victor and Andres [20] to find all paths for each destinations for which the delays are 

less than or equal to the delay bound. Then using these delays, we have determined the 

delay chain, which gives the minimum delay variation and constructed the multicasting 

sub-network by retrieving the paths from the delays. We have implemented all the 

heuristics and observed Chains outperforms DPDVB and DVMA in terms of execution 

time. The Chains heuristic also achieves the tightest delay variation bound along with 

DPDVB. We have also presented results to show that finding k-shortest paths for all 

destinations is not a bottleneck in our solution. We have also observed that Chains 
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require higher values of k to achieve the tightest delay variation when the graph 

becomes dense or when the end-to-end delay bound increases. For dynamic 

reorganization of multicasting sub-network with the tightest delay variation and 

bounded delay, we notice that solution with Chains is more efficient than that of 

DVMA in terms of time-complexity.  
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Chapter 4 

Duplicating Delays in Overlay 

Multicasting 

 

4.1 Introduction 

 

Two basic communication models are used to characterize multicast operation on a 

network. In the first model, known as telephone model, a node may send a message to 

at most one other node in each round. In this model, both the sender and the receiver 

are busy during the whole sending process. The second model which is a realistic 

model is known as postal model. In the postal model, a sender may send another 

message before the current message is completely received by the receiver. Bar-Noy et. 

al. [51] first introduced the heterogeneous postal delay model in the context of network 

multicasting. In their model, they consider link delays and switching time delay at each 

 91



node, and further assume that the time interval between two successive message sends 

is equal to the switching time. Assume node u has two children v1 and v2 and switching 

time at node u is su. Node u sends message to v1 at time t = 0 and the message arrives at 

v1 at time t1 = λuv1
, where λuv1

 is the delay of the link (u, v1). Now u can send a 

message to v2 at time t' = su. The message arrives at v2 at time t2 = su + λuv2
 where 

λuv2
 is the delay of the link (u, v2). In this model, the authors assumed that su is 

smaller than λuv1
 and λuv2

. Eli et. al. [52] modified the heterogeneous postal model 

and proposed the generalized heterogeneous postal (GHP) model where t1 = su + 

λuv1
and t2 = 2*su + λuv2

. Both Bar-Noy et. al. [51] and Eli et. al. [52] provide 

approximation algorithms for minimum-delay multicast scheme for a general graph as 

input. 

 

In this research, we propose a model where node u has different switching time 

for each child node v (represented using a delay vector) and the message arrival time at 

each child v depends on the order in which u chooses to send the messages. This model 

captures the heterogeneous nature of communication links and node hardware on the 

overlay network [1-5]. For example consider an overlay network with hosts H1, H2, and 

H3. The host H1 is connected to host H2 through Fiber Optics backbone network and 

host H1 is connected to host H3 through Ethernet. When H1 wants to multicast message 

to H2 and H3, the switching time at H1 for H2 and H3 will not be the same. Different 

switching times for different children induces the notion of ordering at the sending 
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node and the delay of a multicasting scheme depends on the ordering at each sending 

node. 

 

Suppose a source NSN S wants to send the same message to a group of 

destination NSNs D. The general strategy of accomplishing this task is to construct an 

overlay multicasting (rooted) tree T such that T contains S as the root and NSNs in D as 

the leaf nodes.  The non-leaf nodes and the links of the tree are other NSNs and links of 

the overlay network, respectively.  If the root S has k children in the tree T, then S 

duplicates the message k times and sends a single message to each of its children.  The 

non-leaf nodes receiving the message, performs the same function as the root and this 

process is repeated until the leaf nodes (the multicast group) receives the message.  

 

We consider a proxy based overlay network represented by a graph G = (V, E) 

with n NSNs and m links, where V and E are a set of NSNs (hosts, routers) and a set of 

links, respectively.  Each link e(i, j) ∈ E is associated with delay d(e) > 0.  Consider a 

simple directed path (simply referred as a path) P from i0 to ik (denoted i0 ~ ik) given by 

(i0, i1), (i1, i2), …, (ik-1, ik), where (ij, ij+1) ∈ E, for j = 0, 1, …, (k-1), and all i0, i1, i2, …, 

ik are distinct. The path-delay of P is given by d(P) = where e∑
=0

),(
j

jed
−1k

Maximum

j = (ij, ij+1).    

Let S be a node in the network, called the source node, and D = d1, d2, …, dk, where k ≤ 

n-1 be the set of destination nodes.  The tree-delay of the tree T is given by d(T) = 

 for all 1 ≤ i ≤ k, where P),( ii PdP i is path from S to di ∈ D.  The objective of 
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multicasting algorithms known in the literature is to construct the tree T that has the 

minimum d(T).   

 

Banikazemi [53] discusses algorithms such as Spanning Trees, Reverse Path 

Broadcasting (RPB), Truncated Reverse Path Broadcasting (TRPB), Reverse Path 

Multicasting (RPM), Steiner Trees (ST), and Core Based Trees (CBT) for building a 

multicasting tree.  The algorithm (TM) due to Takahashi and Matsuyama [54] is a 

shortest-path based algorithm and was further studied and generalized by Ramanathan 

[55].  The algorithm (KMB) by Kou, Markowsky, and Berman [56] is a minimum 

spanning tree based algorithm.  None of the algorithms presented consider duplicating 

delays in multicasting. 

 

 

Figure 4.1:  Multicasting tree with link delays and duplicating 

delay vectors at each node. 
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Figure 4.1 show a multicasting tree with root node ‘a’ and the duplicating delay 

vectors at each node.  The values on the links are the link delays. The leaf nodes of the 

tree are the nodes in the destination. If we consider only the link delays, the delay of 

this multicasting tree is 110 as it is the maximum of the delays of all the paths a ~ e, a ~ 

f, a ~ g and a ~ h. Now, the ordering of packet sends at each non-leaf node will cause 

additional delay in multicasting as shown in the duplicating delay vectors at each node. 

As seen in Figure 4.1, when ‘a’ is sending packets to ‘b’, ‘c’ and ‘d’ in the order of ‘b, 

c, d’, nodes ‘c’ and ‘d’ will incur additional delay due to processing of packet for ‘b’ 

before them. The duplicating delay vector at node ‘b’ in Figure 4.1 <0, 2, 3> means 

that if ‘a’ sends packet first to ‘b’, the duplicating delay at ‘b’ is 0. If ‘a’ sends packet 

second to ‘b’, the duplicating delay at ‘b’ is 2 and if ‘a’ sends the packet third to ‘b’, 

the duplicating delay at ‘b’ is 3.  If the orderings of packet sends at nodes ‘a’ and ‘c’ 

are ‘b, c, d’ and ‘f, g’, respectively, the delay of the multicasting tree becomes 116 (this 

is the delay of path a ~ g which is 40 + 4 + 60 + 12 = 116).  

 

Given a multicast tree with link delays and duplicating delay vectors, our goal 

is to determine the order in which the data packets have to be sent to each of the 

children in the multicast tree in such a way that the delay of the multicast tree is a 

minimum.  
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4.2 Formal Definition of the Problem 

4.2.1 Definitions 

 

We define a vector T as an ordered collection of elements, namely, <v1,v2, ...,vk>.  In 

other words, given a set S = {s1,s2,..., sk}, a vectorization of S would involve some 

specific ordering of elements of S resulting from a bijection  f: S → {1,...,|S|}, where |S| 

is the cardinality of S.  Given a vector T, we might use T, ambiguously, as an 

(unordered) set when ordering information is not relevant to the discussion.  For a 

vector T = <v1,v2, ...,vk>, we define a bijective mapping function σ : {v1,v2, ...,vk}→ 

{1,2,...,k} such that σ(vj) = j, 1≤ j≤ k.   Let C = {Ci}, 1≤ i≤ k, be a collection of vectors 

each having the same cardinality k.  This implies, each Ci would look like Ci = 

, 1≤ i≤ k.  A feasible vector of representatives of C is a vector <v>< i
k

ii vvv ,...,, 21 1,v2, 

...,vk> such that vi ∈ Ci, and σ(vi) ≠ σ(vj), i ≠ j, 1≤ i,j ≤ k. 

   

Example: Let C1 = <0, 2, 1>, C2 = <2, 0, 3>, and C3 = <1, 2, 3>.  A feasible vector of 

representatives for the collection of sets {C1, C2, C3} is <2, 3, 1>, whereas <2, 0, 1> is 

not. 

The following observations are easy to derive. 

 

Proposition 1: Given a collection C = {Ci}, 1≤ i ≤ k, of vectors, a feasible vector of 

representatives of C always exists.■ 
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Proposition 2:  Given a collection C = {Ci}, 1≤ i ≤ k, of vectors, there exists k! 

possible feasible vectors of representatives.  Let ℑ(C) denote the collection of all 

possible feasible vectors of representatives.■ 

 

We will denote the set of non-negative real numbers by the notation ℜ +.  The 

cartesian product of the set of non-negative real numbers k times will be denoted by ℜ 

+
k, i.e., ℜ +

k = ℜ + × ℜ + ×  ... × ℜ + (k times).    Let T = (V, E) be a tree with root r that 

represents the multicasting network of nodes. Let S (v) denotes the number of siblings 

of a node v of T, including itself.  Trivially, S(r) = 1, for the root node.  We can model 

the problem of multicasting as follows based on assigning labels or weights to edges of 

the multicasting tree.  For each node v ≠ r, there is a vector called the duplicating delay 

vector D(v) = < t1, t2, ..., tk >, where k = S(v) and 1 ≤ i ≤ k and ti ∈ ℜ +.  The ti’s are 

called duplicating time delays.  We know that t1 = 0 for all non-root nodes in the tree.  

However, this fact is not material to the algorithm discussed here.  Given a non-leaf 

node v, let v1, v2,  ... , vk be the children of v.  Let us denote the edge set {(v, v1), (v, v2),  

... , (v, vk)} by E(v).  We define a feasible duplicating delay vector for the edge set E(v) 

as  

Pv : E(v) → ℜ +k such that Pv = < p1, p2, ..., pk > ∈ℑ({D(vi) : 1 ≤  i ≤ k})  

where v1, v2, ..., vk are the children of v.  A feasible duplicating delay vector Pv induces 

a natural labeling function lv: E(v) → ℜ +, where l((v, vi)) = pi,, 1 ≤ i ≤ k.  Intuitively, a 

feasible duplicating delay vector assigns a “label” or a “weight” pi to each edge (v, vi) 

where < p1, p2, ... ,  pk > is a feasible vector of representatives for the collection {D(vi)}, 
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1 ≤ i ≤ k. We call the functions fv, “feasible duplicating delay functions”. Given a 

multicast tree T rooted at r, and delay vectors D(v) for each non-root node v, we can 

extend the feasible duplicating delay functions fv to the whole tree T as follows:  A 

feasible multicast tree assignment fT : E(G) → ℜ + such that fT((u, v)) = fu((u, v)), where 

(u, v) ∈ E. Essentially, a feasible multicast tree assignment assigns a label or a weight 

to each edge of the tree so that the collection of weights on an edge set E(v) forms a 

duplicating delay vector.  

 

Given a leaf node v, we know that there exists a unique path P = (v1 = r, v2, ... , 

vk = v)  from r to v.  Let fT be a feasible multicast tree assignment.  We define a path 

delay PD(v) as PD(v) = . Given f∑
=

+

k

i
iiT vvf

0
1),( T , we denote the maximum delay of fT 

by PDmax(fT) = max{PD(v): v is a leaf node of T}.   We define an optimal multicasting 

tree assignment as a feasible multicast tree assignment fT
OPT

 such that PDmax(fT
OPT) = 

min {PDmax(fT): for all feasible multicast tree assignments fT for T}.  We will call 

PDmax(fT
OPT) or simply PDOPT(T), the optimal multicasting duplicating delay for T.  

The problem is to compute both fT
OPT and PDOPT(T) in an efficient manner.  To solve 

this problem, we consider the following min-max matching problem and establish a 

relationship. 

 

 98



4.2.2 Min-Max Matching Problem on Weighted, Bipartite 

Graphs 

 

Let G =(S, D, E) be a weighted, complete bipartite graph where S and D are the vertex 

set partitions and E the edge set of G.  Furthermore, let us assume that |S| = |D|, and that 

the weights are from ℜ +.  A perfect matching for G is a set of edges M of G  such that 

no two edges of M are incident on a common vertex of G and  M has maximum 

cardinality with this property. For G, trivially, a perfect matching having |S| edges 

exists. The problems of computing a matching of maximum cardinality and a perfect 

matching are well studied in the literature [57].  We define heavy weight of a perfect 

matching M for G as h(M) = max {weight of edge e: e ∈ M}.  A min-max matching of 

G is a perfect matching N of G such that h(N) = min {h(M): M is a perfect matching of 

G}.  The problem of min-max matching and its dual the max-min matching are 

problems of independent interest and arise in many scheduling applications. The 

following lemmas address the complexity of computing a min-max matching for a 

complete, weighted bipartite graph G. 

 

Lemma 1: The sequential time-complexity for obtaining a min-max matching of a 

weighted, complete bipartite graph is the same as finding the maximum cardinality 

matching of a bipartite graph [58][59].■ 
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Lemma 2:  Given a complete, weighted bipartite graph, a maximum weighted 

matching can be determined in O( nm ) time [57].■ 

 

The above result of [57] was improved by [60] in 1995 to O ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

),( nmk
nm  where k(x, y) 

=

y
x
x

2

log

log  

 

4.2.3 A Special Case of the Multicasting Tree Problem 

 

Let us consider a degenerate case fan of the multicast tree.  A fan T = (V, E) is a 

multicast tree with k+1 nodes, where k of the (k+1) nodes are leaves attached directly 

to the root node.  To be more descriptive, let us also say that the leaf nodes are v1, v2,  

... , vk attached to the root v.  Let Di = , 1 ≤ i ≤ k, be the duplicating delay 

vector for node v

>< i
k

ii ttt ,...,, 21

i.  We construct a weighted, complete bipartite graph G = (S, D, F) 

from T as follows.  We let S = { v1, v2,  ... , vk}, D  = {1, 2, ..., k}, and the edge set F = 

{(vi , j): 1 ≤  j ≤ k, 1 ≤ i ≤ k}.  In other words, each vertex of S is connected to all of the 

vertices of D.  The weight of an edge e = (vi , j) ∈ F is given by w((vi , j)) =  , 1 ≤ i , j 

≤ k.   

i
jt

It is fairly straightforward to see that a feasible duplicating delay vector of T is 

a vectorized representation of the set of weights in a weighted, perfect matching M of 
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G where the ordering is from 1 through k.  Secondly, because T is a fan, fr(T) is the 

same as fT, where r is the root node of T and for all multicasting tree assignments of fT.  

Thirdly, the path delay PD(vi) = fT(r, vi) for each leaf node vi. Hence given a 

multicasting tree assignment fT, the maximum delay PDmax(fT) is the heavy weight of 

the corresponding weighted, perfect matching on G.  In the same vein, it is easy to see 

that an optimal multicasting tree assignment for T can be obtained by finding a min-

max matching for the transformed graph G. Finally, the construction of G from T can 

be done in time O(n2), where n is the number of nodes in the fan. The number of edges 

in the bipartite graph is n2. Based on the above remarks and Lemmas 1 and 2, the 

following lemma can be obtained. 

 

Lemma 3: Given a multicasting fan T, a special case of a tree, an optimal multicasting 

tree assignment for T and the corresponding optimal multicasting duplicating delay can 

be found in O(n5/2) time, where n is the number of nodes in T. ■ 

 

4.2.4 Hook-up Fans 

 

We will use the notation F(p) for a fan with p leaves, having (p + 1) nodes including 

the root. Given a collection of vertex-disjoint fans F(p1), F(p2),………, F(pj) with roots 

r1, r2, ….., rj respectively, a hook-up fan is defined as the composition of the collection 

of fans F(pi) 1 ≤ i ≤  j, such that the hook-up fan is a tree T = (V, E) satisfying the 

following properties. 
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1.  Where V(.) denotes the vertex set and r the root of T. U
j

i
i rpFVTV

1
}{))(()(

=
= U

2. The edge set of T,   UU }1:),{())(()(
1

jirrpFETE i
j

i
i ≤≤=

=

Diagrammatically, the hook-up fans obtained by the composition operation looks as 

shown in Figure 4.2: 

 

1r 2r jr

. . . . . . . . . . . .

)( 1pF )( 2pF )( jpF

Composition
Operation

1r 2r jr

r

. . . . . . . . .. . .

. . .

 

Figure 4.2: Hook-up fan 

 

We denote a hook-up fan by  C ( F(p1), F (p2), … …., F(pj)). 
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4.2.5 Optimal Multicasting Tree Assignment for a Hook-up Fan 

 

We know from the previous section how to compute an optimal multicasting tree 

assignment for a fan. In this section, we will show a method to obtain an optimal 

multicasting tree assignment for a hook-up fan. Consider a hook-up fan H with 

duplicating delay vector as shown in Figure 4.3: 

 

. . .

r

)( 1pF )( 2pF )( jpF

1r 2r jr>< 11
2

1
1 ,...,, jttt >< 22

2
2
1 ,...,, jttt >< j

j
jj ttt ,...,, 21

 

   Figure 4.3: Hook-up fan H with duplicating delay vectors 

 

The duplicating delay vectors at nodes ri are indicated in the Figure 4.3 as  

D(ri) =        for 1 ≤ i ≤  j >< i
j

ii ttt ,......,, 21

Let m1,m2,…. …. , mj be the optimal multicasting duplicating delays for fans 

F(p1), F(p2), …. …., F(pj) respectively. We know that these can be obtained by using 

Lemma 3. Let , 1 ≤ i ≤ j be the corresponding optimal multicasting fan )( iPFf
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assignments. We transform the hook-up fan to a fan F(j) as shown in Figure 4.4 along 

with new duplicating delay vectors. 

 

r

1r 2r jr

. . .

>+++< 1
1

1
1
21

1
1 ,...,, mtmtmt j >+++< 2

2
2

2
22

2
1 ,...,, mtmtmt j >+++< j

j
jj

j
j

j mtmtmt ,...,, 21  

Figure 4.4: Fan F(j) with new duplicating delay vectors 

 

The duplicating delay vectors for the fan in Figure 4.4 are  

 D(ri) =    for 1 ≤ i ≤  j >+++< i
i
ji

i
i

i mtmtmt ,......,, 21

We now compute an optimal multicasting tree assignment fF(j)
OPT for fan F(j) and the 

corresponding optimal multicasting delay PDOPT (F(j)).  

Let  f F(j) OPT = < l1, l2, … … , lj >.  

We know that each li is of the form , 1 ≤ i ≤  j where ∈ D(ri
i
r mv
i
+ i

ri
v i) of H.  

Secondly,  is a feasible duplicating delay vector for edge set E(r) in 

H. Based on this, we will re-work the solution obtained on F(j) as a solution for the 

original hook-up fan H as indicated in Figure 4.5. Let f

>< j
rrr j

vvv ,......,, 21
21

r (ri) = i
ri

v ,  1 ≤ i ≤  j. 
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Figure 4.5: Fan F(j) with feasible duplicating delay vectors 

     

Lemma 4: For the hook-up fan H in Figure 4.5, the multicast tree assignment fH given 

by fr(.) and , 1 ≤ i ≤  j is a feasible multicast tree assignment. )( iPFf

 

Proof: , 1 ≤ i ≤  j are feasible multicast fan assignments for F(p)( iPFf i). 

     is a feasible duplicating delay vector >< j
rrr j

vvv ,......,, 21
21

In the reminder of the section we will show that fH is also an optimal multicasting tree 

assignment for H. We need a few results before that. Let H be a hook-up fan as shown 

in Figure 4.6 with an optimal multicasting tree assignments as indicated. 
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 Figure 4.6: Hook-up fan H with optimal multicasting tree assignments 

 

ui = PDmax ( )( iPFf  ), 1 ≤ i ≤  j.  

Let tS + uS = PDOPT (H), where s ∈ {1, 2, ……, j}, without loss of generality. In other 

words, there could be more than one path from r with the same value for optimal delay. 

We break ties arbitrarily and pick one such indexed by. ■ 

 

Lemma 5: Given H as above, uS is optimal for F(PS), i.e., uS = PDOPT (F(PS)). 

 

Proof:  Suppose uS is not optimal for F(PS). Then there exists an optimal assignment 

for F(PS) such that optimal multicasting duplicating delay for F(S) = vS = PDOPT 

(F(PS)). Clearly, then vS < uS. It is clear, using this new assignment for F(PS), we could 

construct another feasible assignment for H. Let us call this new feasible assignment 

for H, fH
OPT [new] . In fH

OPT [new], we have new values for the path delays originating 
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at r and ending at leaves of FS. In particular the maximum path delay of uS + tS 

becomes vS + tS. We know that vS + tS < uS + tS. Two possibilities exist for the optimal 

assignment of H. 

(i) vS + tS > ui + ti , i ≠ s, 1 ≤ i ≤  j or 

(ii) ∃ q ∈ {1, 2, … …,  j}, q ≠ s such that  

   uq + tq > ui + ti , 1 ≤ i ≤  j and i ≠ s and uq + tq > vs + ts

In case (i) above, we have a new min max value (vS + tS ) < (uS + tS). And this is a 

contradiction. In case (ii) above, there is a new min max delay on a different path. In 

this case,  uq + tq > vs + ts and uq + tq < us + ts. Hence uq + tq is a maximum that is less 

than the optimal value us + ts. Again this is a contradiction. ■ 

 

Lemma 5 is crucial because it suggests that we could have sub-optimal 

solutions for all but one fan and still get an optimal solution or assignment for a hook-

up fan. The next lemma extends this idea and shows that any optimal assignment for a 

hook-up fan can be made to consist of optimal assignments for all fans in a hook-up 

fan. 

 

Lemma 6:  For a hook-up fan H, and an optimal multicast tree assignment fH
OPT, there 

exists another optimal multicast tree assignment fH
OPT [new] such that all the fans of H, 

F(p1), F(p2),…. …. , F(pj) have optimal assignments. 
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Proof:  From Lemma 5, we know that there exists one fan F(pS) with an optimal 

assignment, where s ∈ {1, 2, … … , j}.Without loss of generality, let F(pq) be a fan 

which does not have an optimal assignment where q  ≠ s and q ∈ {1, 2, … … , j}. Let 

PDOPT (H) be the optimal multicasting duplicating delay for H. We know that PDOPT 

(H) is of the form us + ts where us is the optimal value for F(Ps). Hence us + ts > ui + ti, i  

≠ s, 1 ≤ i ≤  j. In particular us + ts > uq + tq where uq is sub-optimal for F(pq). Let vq be 

optimal for F(pq). Then vq < uq and hence by substituting an optimal assignment for 

F(pq), we get a new assignment for H. The only change in the path delay is the value of 

the q’th path where uq + tq changes to vq + pq. Since us + ts > uq + tq, we have us + ts > vq 

+ pq. This means that the new optimal assignment preserves the optimal delay value us 

+ ts. Hence all suboptimal assignments for the fans can be replaced by optimal 

assignments without a change to the optimal value us + ts. ■ 

Lemma 5 and 6 lead to the following important theorem. 

 

Theorem 7: Given a hook-up fan H as in Lemma 4 with multicasting tree assignment 

fH, fH is an optimal multicasting tree assignment. 

 

Proof:  We know from Lemma 4, fH is a feasible assignment for H made up of fr(.) and 

, 1 ≤ i ≤  j. We also know that f)( iPFf H is an optimal solution to the system of 

duplicating delay vectors (of the fan obtained from H). 

>+++< i
i
ji

i
i

i mtmtmt ,......,, 21 , where mi = PDOPT (F(pi)), 

and   = D(r>< i
j

ii ttt ,......,, 21 i) of H, 1 ≤ i ≤  j 

 108



From Lemma 6, we know that there exists an optimal solution for hook-up fan H, 

whose fans also have optimal multicasting tree assignments. This is shown in Figure 

4.7. 

 

r

1r 2r jr

1m 2m jm

. . .

. . .

1u
2u ju

Figure 4.7: Hook-up fan H with optimal multicasting 

 

where mi is the maximum delay for fan F(pi) and mi is optimal for F(pi), 1 ≤ i ≤  j. The 

optimal duplicating delay for H is max {ui + ti : 1 ≤ i ≤  j}. Secondly, delays {ui + ti : 1 

≤ i ≤  j} are an optimal solution to the same set of duplicating delay vectors 

, 1 ≤ i ≤  j. Hence the theorem. ■ >+++< i
i
ji

i
i

i mtmtmt ,......,, 21

 

 Theorem 7 tells us that we can obtain an optimal solution to a hook-up fan by a 

bottom-up approach. Any multicasting tree can be obtained by a series of hook-up 

operations starting from the base fans. 
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4.2.6 Example 

 

Bottom-up approach to computing the optimal multicasting tree assignment using 

hook-up fan decomposition is shown in Figure 4.8. 

 

a

b
c d

e f h g

>< 1,
2
1,0

>< 2,1,0 >< 1,2,0

>< 1,0 >< 2,0 ><
2
1,0 >< 1,0

Figure 4.8: Multicast tree with duplicating delay vectors at nodes and assuming that 

the link delays are the same on all links. 

 

The steps for computing the optimal solutions for fans from Figure 4.8 are shown in 

Figure 4.9 and Figure 4.10. 
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Figure 4.9: Optimal Solutions for fans b, c and d 
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 (ii) Optimal Solutions for the hook-up fan 

 

Figure 4.10: The Hook-up fans and its Optimal Solution 

 

Re-working the optimal solutions we get the optimal multicast tree shown in Figure 

4.11 with PDOPT (T) = 1 ½ unit and the ordering at node ‘a’ is ‘c’, ‘b’ and ‘d’.  The 

ordering at node ‘c’ is ‘f’ and then ‘e’.  The ordering at node ‘d’ is ‘h’ and then ‘g’. 
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Figure 4.11: The optimal multicasting tree 

 

4.3 Algorithm and its Time Complexity 

4.3.1 Algorithm for Optimal Multicasting Delay 

 

Repeat the following steps until the root of the tree is reached. 

1. Find optimal solutions to base fans F(pi). Let PDOPT(F(pi)) be the delays. 

2. Hook them up and add PDOPT(F(pi)) to duplicating delay vectors. 

3. Find optimal solutions to hook-up fans with such modified duplicating delay 

vectors. 

 

After the root is reached, re-work the solutions obtained top-down to get complete tree 

assignment. 
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4.3.2 Time Complexity of the Algorithm 

 

In this section we address the time-complexity of our algorithm for optimal 

multicasting delay. For each fan F(pi), using Lemma 3, we can compute an optimal 

solution in O(pi 5/2) time where pi is the number of leaves in fan F(pi). During the 

bottom-up approach, let us say, we have a sequence l1, l2,… …, lj leaves when we get 

to the root where l1+ l2 +… …+ lj = O(n). Hence the running time is bounded by 

 )()(
11

2/5 ∑≤∑
==

j

i
i

j

i
i llO 5/2

= O(n5/2) 

 

Theorem 8:  The optimal multicasting tree assignment problem can be solved in 

O(n5/2) time.■ 

 

4.4 Lower Bound Result 

 

From Lemma 3, we know that given a multicast fan T, a special case of a tree, an 

optimal multicast tree assignment for T and the corresponding optimal multicasting 

switching delay can be found in O(n5/2) time, where n is the number of nodes in T.  

Conversely, we can also show in a straightforward fashion that solving the multicasting 

tree problem is at least as hard as the min-max matching problem.  Hence, it is unlikely 

that the above time-complexity can be improved easily.  To see this, let there be a 
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weighted, complete bipartite graph G = (S, D, F) where S = { v1, v2, ..., vk}, D = {1, 2, 

..., k}, and edge set F = {(vi,  j): 1 ≤ j ≤ k, 1≤  i ≤ k}.  The weight of an edge e = (vi , j) 

∈ F is given by w((vi , j)) =  , 1 ≤ i , j ≤ k.   i
jt

 

We transform this graph into a fan T = (V, E) which is a multicast tree with k + 

1 nodes, where k of the (k + 1) nodes are leaves attached directly to the root node.  Let 

the leaf nodes be v1, v2, ..., vk attached to the root node that we call v.  Let Di =  w((vi , 

j)) =  where 1 ≤  j ≤ k for each i,  1 ≤  i ≤ k.  Indeed, Di
jt i can be taken to be the 

duplicating delay vector for node vi.       

 

Furthermore, it is easy to see that computing the min-max matching on G can 

be achieved by computing the optimal multicasting tree assignment T.  Noting that 

solving the optimal multicasting tree assignment for an arbitrary tree is as hard as for a 

special case of fan, we have proved that the optimal multicasting tree assignment 

problem has a lower bound of O(n5/2) time. 

 

4.5 Simulation Experiments 

 

To validate our argument that ordering is important in overlay multicasting, we have 

written a program for multicasting in the application layer using BSD sockets [22]. Our 

experimental setup consists of four nodes with one source and three destinations. 

Before data is multicast from the source to the destinations, the time of all the nodes 
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are synchronized with a centralized time-server. In our experiment, we have chosen the 

source node, time-server and one destination node at University of Oklahoma (OU), 

Norman Campus, one destination node at Loyola University Chicago (LUC) and one 

destination node at University of British Columbia (UBC) Canada as shown in Figure 

4.12. The source multicasts data to the destinations and each destination computes the 

delay when it receives the data. We run the experiment with changing the order of 

multicasting at source. Each packet was send over 30 times and the average time taken 

is shown in the Table 4.1. The results are plotted in Figure 4.13. Our experimental 

results show that ordering changes the delay for packets at each destination.   

   

Source Node
at

OU (Norman)

Destination Node
at

OU (Norman)

Destination Node
at

LUC (Chicago)

Destination Node
at

UBC (Canada)

Time Server at
OU (Norman)

Multicasting DataTime
Synchronization

 

   

 Figure 4.12: Experimental Setup for Multicasting Application 
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Delay at each node in seconds of multicast packets 

of size 1kb 

Ordering OU, Norman (A) LUC,Chicago (B) UBC, Canada (C) 

A-B-C  0.145 1.522  1.769 

A-C-B 0.1  1.585 1.606 

B-C-A 0.428 1.383 1.448 

B-A-C 0.09 1.367 1.502 

C-A-B 0.202 1.548 1.504 

C-B-A 0.337 1.396 1.485 

 

Table 4.1: Table demonstrating that order matters in multicasting. 

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

a-b-c a-c-b b-c-a b-a-c c-b-a c-a-b

Different orders of Multicasting

D
el

ay
 (i

n 
se

cs
)

OU-Norman(a) Loyola Univ Chicago(b) UBC Canada(c) 
 

 Figure 4.13: Plotting of Different Orders of Multicasting VS Delay 

 

 

 

 117



4.6 Summary 

 

In this research, we have considered a more generalized form of switching delay 

vectors (called duplicating delay vectors) where all the elements of a vector may not be 

equal. Given a multicast tree with link delays and generalized delay vectors at each 

non-leaf node, we provide an algorithm which schedules the message delivery at each 

non-leaf node in order to minimize the delay of the multicast tree. Our algorithm, 

which has a complexity of O(n5/2), uses the concept of min-max matching problem on 

bipartite graphs. We also show an important lower bound result that optimal multicast 

switching delay problem is as hard as min-max matching problem on bipartite graphs. 
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Chapter 5 

Embedding Multicasting trees on the 

Overlay Network 

 

5.1 Introduction 

 

The problem of embedding multicasting trees on the overlay network can be reduced to 

delay constrained sub-graph homeomorphism problem. The sub-graph 

homeomorphism problem can be defined as follows: given a guest graph G and a host 

tree H, find whether H has a sub-graph H’ that can be transformed to G by repeatedly 

removing any node of degree 2 and adding the edge joining the neighbors. In 

multicasting tree embedding problem, the guest graph is a tree T = (VT, ET) where each 

link e ∈ ET is assigned a delay function d(e) which specifies the maximum allowable 

delay along that link. This implies that if e ∈ T is mapped to a path P in the overlay 

 119



network, the delay along the path P should be less than or equal to d(e). Also we want 

that each edge e ∈ T should be mapped to a shortest path in the overlay network. Based 

on the constraint of our embedding and the definition of homeomorphic embedding, we 

write following two important lemmas. 

 

Lemma 1: Let G be a tree. If G is homeomorphic to a graph H, then the subgraph H’ of 

H which is homeomorphic to G is a tree. 

 

Proof: Suppose G is a tree which is homeomorphic to a graph H. Let H’ be the 

subgraph of H which is homeomorphic to G. We have to prove that H’ is a tree. 

According to the definition of homeomorphism, G can be obtained from H’ by 

repeatedly removing any node of degree 2 and adding the edge joining its two 

neighbors. Suppose H’ is not a tree and H’ contains a cycle. It can be easily shown that 

any cycle with n nodes (Cn) can be contracted to a cycle with 3 nodes (C3) which 

implies that C3 is homeomorphic to Cn. C3 cannot be contracted any further as it will 

create multiple edges. So the subgraph homeomorphic to C3 will contain C3. We have 

assumed that H’ contains a cycle which can be contracted to C3. If G is homeomorphic 

to H’, then G contains C3. This is a contradiction since G is a tree.  ■    

 

Lemma 2: Let G be a tree. If G is homeomorphic to a graph H in such a way that each 

edge of G is mapped to a shortest path in H, then the subgraph H’ of H which is 

homeomorphic to G is a shortest path tree in H. 

 

 120



Proof: Suppose G is homeomorphic to a graph H in such a way that each edge of G is 

mapped to a shortest path in H. Let H’ be the subgraph of H which is homeomorphic to 

G. From Property 1, we know that H’ is a tree. We have to show that H’ is a shortest 

path tree of H. Suppose H’ is not a shortest path tree of H. Then there exists at least 

two nodes u, v ∈ H for which the path P(u~v) in H’ is not the shortest path between 

nodes u and v in H. For the sake of generality, we assume that u is an ancestor of v in 

H’.  

Case (i): An edge (x, y) ∈ G is mapped to path P(u~v) in H’. Since G is 

homeomorphic to H’, the path P(u~v) in H’ is the shortest path between node u 

and v in H. This is a contradiction.   

Case (ii): Nodes u and v are included in a shortest path between nodes p and q 

(p ancestor of q) in H’ and an edge (x, y) ∈ G is mapped to path P(p~q) in H’.  

Since any subpath of a shortest path is also a shortest path, path P(u~v) in H’ is 

a shortest path between nodes u and v in H. This is a contradiction. 

Case (iii): Node v is included in the shortest path between nodes p and q (p 

ancestor of q) in H’ but node u is not included in that path and an edge (x, y) ∈ 

G is mapped to path P(p~q) in H’. Then path P(v~p) is the shortest path 

between nodes v and p in H. Suppose an edge (x, z) ∈ G is mapped to path 

P(p~r) in H’ and node u is contained in P(p~r). Then path P(p~u) in H’ will be 

the shortest path between node p and u in H. This implies that P(u~v) in H’ is 

the shortest path between node u and v in H. This is a contradiction. ■ 
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Lemma 1 and Lemma 2 suggests that we search all the shortest path trees of H 

to find out whether delay constraint homeomorphic (shortest path) embedding of GT 

exists in H. Now, given a multicast tree GT and a shortest path tree HT in the overlay 

network, our problem is to find whether HT  has a sub-tree homemorphic to GT such 

that the delay constraint for each edge of GT is satisfied. We need to do this process for 

all shortest path trees of H.  

 

The following example illustrates our problem. In Figure 5.1, we have a 

shortest path tree HT and a multicasting tree GT. The edge (x, z) of GT can be mapped to 

edge (A, C) of HT and d(A, C) ≤ d(x, z). Similarly edges (y, s) and (y, t) of GT can be 

mapped to edges (D, E) and (D, F) of HT respectively and d(D, E) ≤ d(y, s) and d(D, F) 

≤ d(y, t). Now edge (x, y) of GT can be mapped to path (A-B-D) of HT and d(A-B-D) ≤ 

d(x, y). So HT  has a sub-tree which is homeomorphic to GT and the homeomorphism 

satisfies the delay constraint of GT. 

x

z y

s t

8

22 25

20

A

B C

D 

E F 

10 7

16 18 

10 

HT GT

 

Figure 5.1: A shortest path tree HT and a multicasting tree GT  
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5.2 Formal Definition of the Problem 

 

Suppose we have a host tree HT = (VH, EH) where VH denotes the set of NSNs (or end-

users) and EH denotes the set of links in HT. For each link eh ∈ EH, we have a delay 

function DH: EH  ℜ+ which assigns end-to-end delay along each link in EH. We have 

a guest tree (multicasting tree) GT = (VG, EG) where VG is the set of nodes specified by 

the collaborative application desginer and EH is the set of virtual links connecting the 

nodes in GT. For each link eg ∈ EG, we have a delay function DG: EG  ℜ+ which 

denotes the maximum allowed end-to-end delay along each virtual link in EG.    

  

 The tree GT can be embedded in HT when there exists an injective mapping f 

which maps the nodes of GT to the nodes of HT and for every pair of nodes uG, vG of 

GT, if there is a link (uG, vG) in GT, then there exists a path from f(uG) to f(vG) in HT 

with all intermediate nodes of out-degree 1 and with no intermediate node in GT and 

the delay of the path  f(uG) ~ f(vG) is less than or equal to the delay of the link (uG, vG) 

in GT which implies that d(f(uG) ~ f(vG)) ≤ d(uG, vG). 

 

 Given a guest tree GT and a host tree HT with delay functions DG and DH 

defined on GT and HT, respectively, find whether HT has a sub-tree Ht which is 

homemorphic to GT by repeatedly removing any node of degree 2 and adding the link 

joining its two neighbors such that the delay constraint for each link in GT is satisfied in 

Ht.  
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5.3 Our approach 

 

The sub-graph homeomorphism problem which determines for given two graphs G and 

H whether H has a sub-graph H’ homeomorphic to G is an NP Complete problem [61]. 

But the sub-tree homeomorphism problem is polynomial-time solvable and different 

algorithms are proposed for this problem in the literature which are defined for un-

weighted trees. The most efficient algorithm for sub-tree homeomorphism problem on 

un-weighted trees has been proposed by [26] which has a complexity of O(n2.5) where 

n is the number of nodes in the host tree. In our solution, we modify the algorithm of 

[26] such that it determines whether the guest tree GT is delay constrained 

homeomorphic to the host tree HT. For the sake of simplicity we will denote the host 

tree with H and the guest tree with G. 

 

5.3.1 Terminologies  

 

We describe the algorithm for delay constrained sub-tree homeomorphism problem for 

a rooted tree. A host tree H = (VH, EH) with root node r is called a rooted tree and is 

denoted as Hr = (VH, EH, r). The rooted tree specifies the direction for each link which 

points away from the root. The sub-tree generated by node v in Hr is denoted as Hr(v). 

If the guest tree is rooted at r’, then it can represented by Gr’ = (VG, EG, r’). For each 

node v ∈ VH in Hr , we define the following two terms: 
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DSr(v) = {x ∈ VG | there is sub-tree of Hr(v) which is delay constrained homeomorphic 

to Gr’(x)}.  

 

PP

r(v) = {x ∈ V  | x can be potentially embedded on v }.   G

 

Now if we can show that r’ ∈ DSr(v) which implies that the sub-tree rooted at v 

in Hr has a delay constrained sub-tree homeomorphic to Gr’, then we have solved our 

problem. DSr(v) and PP

r(v) for each node v ∈ V  in H  is computed in bottom-up 

fashion. Initially DS

H r

r(v) and Pr
P (v) is computed for all the leaf nodes in Hr and the leaf 

nodes are marked. Note that all the leaf nodes in Gr’ will be included in DSr(v) and 

PP

r(v) if v is a leaf node in H . Next, DSr
r(v) and Pr

P (v) is computed for a non-leaf node v 

in Hr, if DSr(w) is computed for the all the children w of v in Hr. It can be easily proved 

that if u ∈ DSr(w) and v is the parent of w, then u ∈ DSr(v). It can also be easily proved 

that if u ∈ Gr’ is a leaf node, then u ∈ PP

r(v) ∀ v ∈ H .    r

 

 Suppose node v in Hr has children x1, x2, …, xs, and node u in Gr’ has children 

y1, y2, …, yt and xi and yj are the leaf nodes of Hr and Gr’, respectively for 1 ≤ i ≤ s and 

1 ≤ j ≤ t . Now we need to decide whether u ∈ DSr(v). This problem can be solved by a 

bipartite matching problem. We construct a bipartite graph B with partitions X and Y 

where X is the set of children of v in Hr and Y is the set of children of u in Gr’, and 

make an edge (xi, yj) in B iff yj ∈ PP

r(x ) and d(v, x ) ≤ d(u, y ) where d(v, x ) and d(u, y ) 

are the delay of the edges (v, x ) and (u, y ) in H  and G , respectively. We compute the 

i i j i j

i j r r’
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matching M of the bipartite graph B. If |M| = |Y|, then we include u in DSr(v) and in 

Pr
P (v) and mark v. This is illustrated with an example in Figure 5.2. 

 

 

Figure 5.2: An example of Hr(v) and Tr’ (u) 

Initially we compute the DSr( ) and PP

r( ) for all the leaf nodes in H (v). DSr
r(x ) = {y , 

y , y }, DS

1 1

2 3
r(x ) = {y , y , y }, DS2 1 2 3

r(x ) = {y , y , y }, DS3 1 2 3
r(x ) = {y , y , y }, Pr

4 1 2 3 P (x1) = {y1, 

y2, y3}, PP

r(x ) = {y , y , y }, Pr
2 1 2 3 P (x3) = {y1, y2, y3}, and PP

r(x ) = {y , y , y } and mark the 

leaf nodes x , x , x and x as mapped. Next we construct the bipartite graph B with X = 

{x , x , x , x } and Y = {y , y , y }. Edge (x , y ) will be included in B as y ∈ Pr

4 1 2 3

1 2 3 4 

1 2 3 4 1 2 3 2 1 1 P (x2) and 

d(v, x2) ≤ d(u, y1). Similarly edges (x2, y2), (x2, y3), (x3, y3), (x4, y1) and (x4, y3) will be 

included in B. The matching M of B will be {(x3 – y3), (x2 – y2), (x4 – y1)} and |M| = |Y|. 

So u is included in DSr(v) and Pr(v) and v is marked as mapped.    

 

 Next, we generalize DSr(v) and PP

r(v) for any non-leaf node v in H  based on the 

following condition. Let v be a node in H  with children x , x , …, x , and u be a node 

in G  with children y , y , …, y  and DS

r

r 1 2 s

r’ 1 2 t
r(x ) for each child x  of v for 1 ≤ i ≤ s  is 

computed. Now we construct the bipartite graph B with X and Y where X = {x , x , …, 

x } and Y = {y , y , …, y }.  In B, an edge is created between x  and y ,  

i i

1 2

s 1 2 t i j
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i) If yj ∈ PP

r(x ) and d(v, x ) ≤ d(u, y ) OR i i j

ii) if yj ∉ PP

r(x ) but there exists a node x  along the path (v – x  – child 

(x ) – child(child(x ))) -  … - x ) where y  ∈ Pr

i ik i

i i ik j P (xik) and d(v – xi – 

child (xi) – child(child(xi))) -  … - xik) ≤ d(u, yj). 

 

5.4 Algorithm and its Time Complexity 

5.4.1 Algorithm 

 

The algorithm for finding whether a given host tree has a subtree which is delay 

constrained homeomorphic to a given guest tree is given below: 

 

Algorithm Find_Delay_Constrained_Homeomorphism 

 

Input: Rooted trees Hr = (VH, EH, r) and Gr’ = (VG, EG, r’) with delay functions DH and 

DG for Hr and Gr’, respectively.   

Output: Yes if Hr has a sub-tree which is delay constrained homeomorphic to Gr’.  

Begin 

Initially all the nodes are not marked 

For each leaf node v of Hr

 DSr(v) = {x | x is a leaf node of Gr’} 

 Pr(v) = {x | x is a leaf node of Gr’} 
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End for 

For each node v of Hr

 Pr(v) = {x | x is a leaf node of Gr’} 

End for 

For each node v of Hr

 If all the children of v are marked 

  Compute_ DSr(v)_ Pr(v) 

  Mark node v 

 End if 

End for 

If r’ ∈ DSr(r) 

 return Yes 

Else  

  return No 

End if 

End 

 

Compute_ DSr(v)_ Pr(v) 

Begin 

 DSr(v) = where X is the set of children of v U
Xx

r xDS
∈

)(

 For each node u of Gr’

 128



Construct the Bipartite graph B with X and Y where X is the set of 

children of v and Y is the set of children of u. 

For each  xi ∈ X and each yj ∈ Y 

If  yj ∈ PP

r(x )  i

  If  d(v, xi) ≤ d(u, yj) 

Create an edge (xi, yj) 

    End if 

   Else 

    If (there exists a node xik along the path (v – xi – child (xi)  

– child(child(xi))) -  … - xik) where yj ∈ PP

r(x ) and d(v – 

x  – child (x ) – child(child(x ))) -  … - x ) ≤ d(u, y ) ) 

ik

i i i ik j

  Create an edge (xi, yj) 

End if 

   End if 

  End for 

Compute matching M of B 

If |M| = |Y| 

 Include u in DSr(v) and in PP

r(v) 

 Mark v as mapped 

End if 

 End for 

End   
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Theorem: The algorithm Find_Delay_Constrained_Homeomorphism is correct. 

 

Proof: In the algorithm Find_Delay_Constrained_Homeomorphism, a node u ∈ Gr’ is 

included in DSr(v) and PP

r(v) of a node v ∈ H , only when all the children of u are 

feasibly mapped to the children of v. This is done with the bipartite matching. An edge 

between x  (a child of v) and y  (a child of u) is created in the bipartite graph, if x  is 

feasibly mapped to y  and the delay of (v, x ) is less than or equal to the delay of (u, y ). 

If x  is not feasibly mapped to y , then the algorithm traverses the tree downwards to 

find out the node which is feasibly mapped to y . This exhaustive traversal takes care of 

the possible feasible embedding of an edge in G  to a path in H . ■     

r

i j i

j i j

i j

j

r’ r

 

5.4.2 Time Complexity 

 

The algorithm Find_Delay_Constrained_Homeomorphism decides whether Hr has a 

sub-tree homeomorphic to Gr’ or not. We assume |VH| = n and |VG| = m. Now we 

compute the complexity of DSr(v) and PP

r(v) computation of each v ∈ H . Suppose t  

and s  be the number of children of node u  in G  and node v  in H , respectively. We 

can write   and . From [57], we know that the matching problem 

on a bipartite graph with node partition of size t and size s can be solved in time ct

r i

i i r’ i r

1
1

−=∑
=

ns
n

i
i 1

1
−=∑

=
mt

m

i
i

3/2s 

for some constant c. Hence the time complexity of computing DSr(v) and Pr
P (v) will be 

bounded by . We compute DSmsctcs ij

m

j
i

5.15.1

1
≤∑

=

r(v) and PP

r(v) for each node v  ∈ V  and i H
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|V | = n. Also when we construct the edges in the bipartite graph, if y  ∉ Pr
H j P (xi),  we 

traverse down the tree Hr and find out the node for which yj belongs to its PP

r( ) value. 

The complexity of this operation is O(n). Hence, the total complexity of 

Find_Delay_Constrained_Homeormorphism is . In the worst 

case, m will be equal to n. The total complexity of the algorithm is O(n

nmcnmsc i

n

i

25.15.1

1
≤∑

=

3.5).    

 

 

5.5 Summary 

 

In this research, we have considered the problem of embedding a designer specified 

multicasting tree on the overlay network. We use the concept homeomorphic 

embedding of trees and propose an algorithm which determines whether a host tree is 

delay constrained homeomorphic to a guest tree. The complexity of our algorithm is 

O(n3.5).  
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Chapter 6 

Conclusion and Future Work 

 

6.1 Contribution 

 

In this research, we have developed protocols and designed networks for computer 

supported group collaborative applications on overlay networks. 

 

• We have defined floor control problem and analyzed different approaches for 

floor control on overlay networks. We have provided an algorithm for 

constructing an efficient communication channel for implementing distributed 

floor control protocols on overlay networks. We have proposed to implement 

and evaluate MAC protocols for LANs on the communication channel to 

resolve floor control among the end-users. Towards this, we have considered 
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two well known MAC protocols: ALOHA and DQDB and showed how these 

protocols can be efficiently implemented on the communication channel 

constructed from the overlay network. We have described each protocol using 

algorithms and state diagrams. We have proved that implementation of our 

distributed floor control protocols preserves causal ordering of messages. Using 

an analytical model, we have derived the efficiency of each protocol. We have 

also performed simulation experiments for each protocol. Both the analytical 

and simulation results show that implementation of DQDB as a floor control 

protocol on overlay networks outperforms the implementation of ALOHA for 

the same purpose in terms of efficiency.  

 

• We have considered the problem of determining a multicasting sub-network 

with end-to-end delay bound and delay variation bound. We have discussed 

three well-known heuristics from the literature and exposed their limitations. 

Then we have presented our heuristic Chains, which achieves the tightest delay 

variation for a given delay bound. We have implemented all the heuristics and 

observed Chains outperforms DPDVB and DVMA in terms of execution time. 

The Chains heuristic also achieves the tightest delay variation bound along with 

DPDVB. We have also presented results to show that finding k-shortest paths 

for all destinations is not a bottleneck in our solution. For dynamic 

reorganization of multicasting sub-network with the tightest delay variation and 
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bounded delay, we notice that solution with Chains is more efficient than that 

of DVMA in terms of time-complexity. 

 

• For overlay multicasting tree models, we have considered a more generalized 

form of switching delay vectors (called duplicating delay vectors) where all the 

elements of a vector may not be equal. Given a multicast tree with link delays 

and generalized delay vectors at each non-leaf node, we provide an algorithm 

which schedules the message delivery at each non-leaf node in order to 

minimize the delay of the multicast tree. Our algorithm, which has a complexity 

of O(n5/2), uses the concept of min-max matching problem on bipartite graphs. 

We also show an important lower bound result that optimal multicast switching 

delay problem is as hard as min-max matching problem on bipartite graphs.  

 

• We have considered the problem of embedding a collaborative application 

designer specified multicasting tree on the overlay network. In the multicasting 

tree embedding problem, an edge in the multicasting tree can be mapped to a 

path in the overlay network. Our problem is similar to sub-tree homeomorphism 

problem. Given two trees GT and HT, the sub-tree homeomorphism problem is 

to find whether HT has a sub-tree Ht that can be transformed into GT by 

repeatedly removing any node of degree 2 and adding the edge joining its two 

neighbors. In multicasting tree embedding problem, we have to ensure that the 

embedding satisfies the delay constraint on each link in the multicasting tree. In 
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this research, we have proposed an algorithm for delay constrained multicasting 

tree embedding problem on the overlay network.  

 

6.2 Future Scope of Work 

 

• Collaborative applications such as video-conferencing, multi-party 

games, distributed database replication and interactive simulations are 

group multicasting or multiple source multicasting by nature which 

implies that every member of the multicasting group may transmit data 

to other members in the group. There are two traditional approaches for 

group multicasting: source-based tree and shared tree. In the source-

based tree approach, separate multicasting trees rooted at each source 

node are used. In the shared tree approach, a single tree referred as Core 

Based Tree (CBT) is used for multicasting.  These two approaches 

exhibit contrasting behavior in terms of performance, overhead, 

scalability and robustness. Source-based tree achieves better end-to-end 

delay performance with high protocol overhead. This approach is not 

scalable when the group size is large. But source-based tree performs 

better in terms of fault tolerance. Shared tree approach suffers the 

drawback of network congestion as data from each source node traverse 

the edges of the shared tree. This approach is not fault tolerant and 

increases end-to-end delay in data transmission. The advantages of 
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shared tree approach are it has less protocol overhead and it is scalable. 

As part of our future research, we want to study the multiple source 

multicasting problems on overlay networks. Multicasting with end-to-

end delay bound and delay variation bound for group multicasting on 

overlay networks has not been addressed in the literature. We want to 

analyze both the approaches for collaborative applications on overlay 

networks. 

 

• Network protocol designers use different simulation tools to experiment 

the efficiency, throughput of their protocols. The main strength of 

simulation is that the researchers can control the parameters of 

simulation environment. But this is not a realistic model of the real 

Internet. Moreover critiques often question the model being too artificial 

and simple. To overcome these deficiencies and to provide greater 

realism in the experiments, wide area distributed testbeds (such as 

Planetlab [62]) are getting popular among the network researchers. 

Using the widely deployed distributed nodes in the Planetlab testebed, 

researchers can test their protocols. A researcher needs to select a subset 

of nodes from the testbed that satisfy the parameters of a given testbed 

configuration. As part of our future research, we want to implement the 

proposed protocols on virtual testbeds on the Internet to analyze their 

actual performance.  
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