
UNIVERSITY OF OKLAHOMA 
 

GRADUATE COLLEGE 
 
 
 
 
 
 
 

INTELLIGENT CYBERINFRASTRUCTURE FOR BIG DATA ENABLED 

HYDROLOGICAL MODELING, PREDICTION, AND EVALUATION 

 
 
 
 
 
 

A DISSERTATION 
 

SUBMITTED TO THE GRADUATE FACULTY 
 

in partial fulfillment of the requirements for the 
 

Degree of 
 

DOCTOR OF PHILOSOPHY 

 
 
 
 
 
 
 
 
 

By 
 

ZHANMING WAN 
 Norman, Oklahoma 

2015 
  



 
 
 
 
 

INTELLIGENT CYBERINFRASTRUCTURE FOR BIG DATA ENABLED 
HYDROLOGICAL MODELING, PREDICTION, AND EVALUATION 

 
 

A DISSERTATION APPROVED FOR THE 
GRADUATE COLLEGE 

 
 
 
 
 
 
 
 

BY 
 
 
 

    ______________________________ 
Dr. Yang Hong, Chair 

 
 

______________________________ 
Dr. Aondover Tarhule 

 
 

______________________________ 
Dr. Xiangming Xiao 

 
 

______________________________ 
Dr. Valliappa Lakshmanan 

 
 

______________________________ 
Dr. Sadiq Khan 

 
 

______________________________ 
Dr. Naiyu Wang 

  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by ZHANMING WAN 2015 
All Rights Reserved. 

  



 

 

 

 

 

 

 

 

 

 

This dissertation is dedicated to my wife Wei Sun, to my parents, 

and to my parents-in-law, for their constant love, support, and patience.



iv 

Acknowledgements 

I would like to express sincere appreciation to Dr. Yang Hong, my academic 

advisor, for his mentoring and support during the past three and half years of the doctoral 

degree program. I would also like to thank other members of my advisory committee, Dr. 

Aondover Tarhule, Dr. Xiangming Xiao, Dr. Valliappa Lakshmanan, Dr. Sadiq Khan, 

and Dr. Naiyu Wang, for all their help and advice through the development of my 

dissertation research. Special thanks to Dr. Jonathan J. Gourley, Dr. Ke Zhang and Dr. 

Xianwu Xue for their contribution during this work. 

This work is mainly supported by Hydrometeorology and Remote Sensing 

(HyDROS) Lab and School of Civil Engineering and Environmental Science at the 

University of Oklahoma. Partial support was provided by National Oceanic and 

Atmospheric Administration (NOAA) and Advanced Radar Research Center (ARRC) at 

the University of Oklahoma. 



v 

Table of Contents 

Acknowledgements ......................................................................................................... iv 

List of Tables ................................................................................................................. viii 

List of Figures .................................................................................................................. ix 

Abstract .......................................................................................................................... xiii 

Chapter 1: Introduction ..................................................................................................... 1 

1.1 Statement of Problems .......................................................................................... 1 

1.2 Related Background ............................................................................................. 3 

1.2.1 Hydrologic Data .......................................................................................... 3 

1.2.2 Hydrologic Models ...................................................................................... 4 

1.2.3 GIS and Web Integrations ........................................................................... 4 

1.2.4 Cloud Computing and Big Data Era ............................................................ 6 

1.2.5 Data Visualization ....................................................................................... 7 

1.3 Research Objectives ............................................................................................. 9 

1.4 Organization of the Dissertation ......................................................................... 10 

1.5 List of Publications from the Dissertation .......................................................... 12 

Chapter 2: A cloud-based global flood disaster community cyber-infrastructure: 

Development and demonstration ........................................................................ 13 

2.1 Introduction ........................................................................................................ 15 

2.2 Cyber-infrastructure Design for Flood Monitoring ............................................ 19 

2.3 Demonstration .................................................................................................... 26 

2.4 Discussion ........................................................................................................... 31 

2.4.1 Advantage .................................................................................................. 31 



vi 

2.4.2 Performance Experiment ........................................................................... 32 

2.4.3 Limitation and scalability .......................................................................... 34 

2.4.4 Data sharing ............................................................................................... 36 

2.4.5 Sustainability ............................................................................................. 36 

2.5 Conclusion .......................................................................................................... 38 

Chapter 3: Water balance-based actual evapotranspiration reconstruction from ground 

and satellite observations over the conterminous United States ........................ 39 

3.1 Introduction ........................................................................................................ 40 

3.2 Data and Methodology ....................................................................................... 43 

3.2.1 Study Area and Data .................................................................................. 43 

3.2.2 Methodology .............................................................................................. 46 

3.3. Results ............................................................................................................... 54 

3.3.1 Downscaled EWT and its Spatiotemporal Patterns ................................... 54 

3.3.2 Spatial Patterns of Water Budget Terms in CONUS ................................. 57 

3.3.3 Evaluation of Water Balance-based ET Reconstruction and its Spatial 

Pattern ..................................................................................................... 57 

3.4. Conclusion and Discussion ................................................................................ 66 

Chapter 4: Big data solutions enabled web GIS-based hydrological modeling framework 

for the conterminous United States .................................................................... 70 

4.1 Introduction ........................................................................................................ 71 

4.2 Method and Material .......................................................................................... 74 

4.2.1 Web Framework Implementation .............................................................. 74 

4.2.2 Hydrologic Models .................................................................................... 82 



vii 

4.3 Data and Study Area ........................................................................................... 85 

4.3.1 Data ............................................................................................................ 85 

4.3.2 Study Area ................................................................................................. 86 

4.4 Evaluations and Results ...................................................................................... 88 

4.4.1 Multi-basin Evaluation .............................................................................. 88 

4.4.2 Performance Evaluation ............................................................................ 93 

4.5 Discussion ........................................................................................................... 97 

4.5.1 Big data support ......................................................................................... 97 

4.5.2 Data and Models Trade-off ....................................................................... 98 

4.5.3 Scalability .................................................................................................. 99 

4.6 Conclusion ........................................................................................................ 101 

Chapter 5: Overall Conclusion and Future Work ......................................................... 103 

5.1 Summary ........................................................................................................... 103 

5.2 Limitations and Future Work ........................................................................... 106 

References .................................................................................................................... 108 

  



viii 

List of Tables 

Table 2.1 Performance comparison results. ................................................................... 34 

Table 4.1 Parameters of lumped CREST model. ........................................................... 83 

Table 4.2 Parameters of HyMOD model. ....................................................................... 84 

Table 4.3 Pseudocode and description of database queries. ........................................... 95 

 



ix 

List of Figures 

Figure 2.1 The global flood community cyber-infrastructure framework. .................... 20 

Figure 2.2 Comparison of data tables a) global flood inventory and b) Google fusion table.

 ...................................................................................................................... 22 

Figure 2.3 Flood event over Northeast U.S. in New Hampshire of October 2005 a) global 

flood inventory, b) Google fusion table attributes, and c) Google map view.

 ...................................................................................................................... 23 

Figure 2.4 The map visualization of global flood cyber-infrastructure. The top and bottom 

maps are color coded by severity and fatalities respectively. ...................... 27 

Figure 2.5 The statistical chart and table of global flood cyber-infrastructure. ............. 27 

Figure 2.6 The flood events observation report form. .................................................... 30 

Figure 2.7 Mobile version of the cyber-infrastructure. .................................................. 37 

Figure 3.1 Locations of 592 USGS stream gauging stations used in this study and spatial 

distributions of their corresponding sub-basins over the CONUS; the blank 

areas are regions without sufficient good-quality observational data. ......... 43 

Figure 3.2 Time series of monthly terrestrial water storage change over CONUS and its 

twelve hydrologic regions from the original and land surface model-based 

downscaled GRACE data from 2002 to 2013; the downscaled data are the 

ensemble mean, while the grey area denotes the min-max ensemble range. 55 

Figure 3.3 Spatial patterns of ground and satellite observed multi-year (from Apr 2002 to 

Mar 2013) mean annual (a) ensemble-mean terrestrial water storage change 

(ΔS), (b) precipitation (P), and (c) runoff depth (R). ................................... 56 



x 

Figure 3.4 Spatial patterns of multi-year average annual ET from (a) the ensemble mean 

of water balance based reconstructions, (b) a remote sensing based estimate 

(Zhang et al. 2010), (c) the data-driven upscaled estimate (Jung et al. 2010), 

and (d) the MOD16A2 product (Mu, Zhao, and Running 2011). ................ 58 

Figure 3.5 Mean ensemble spread of the reconstructed monthly ET. ............................ 59 

Figure 3.6 Inter-comparisons (a) between mean annual ET estimates from the ensemble 

mean of water balance based reconstruction (ETRecon) and the remote 

sensing based estimate by Zhang et al. (2010) (ETZhang), (b) between 

ETRecon and the data-driven upscaled ET estimate by Jung et al. (2010) 

(ETJung) , (c) between ETRecon and the MOD16A2 ET by Mu, Zhao, and 

Running (2011) (ETMu), (d) between  ETZhang  and ETJung , (e) between 

ETZhang and ETMu, and (f) between ETJung and ETMu across 592 CONUS 

basins; black solid circles are basin-level mean annual ET, while grey error 

bars denotes interannual variability (standard deviation) of basin-level annual 

ET. ................................................................................................................ 61 

Figure 3.7 Same as Figure 3.6, but for (a-c) intercomparison between the water balance 

based ET reconstruction by resampling the 1° GRACE data onto the 0.125° 

grid (ETResample) and the three independent ET records, and (d-f) 

intercomparison between the ET reconstruction by ignoring change in water 

storage (ETP-R) and the three ET records. .................................................. 63 

Figure 3.8 Comparison of mean monthly profile of actual ET from the ensemble mean of 

water balance based reconstructions, remote sensing based estimate (Zhang et 



xi 

al. 2010), data-driven upscaled estimate (Jung et al. 2010) and MOD16A 

product (Mu, Zhao, and Running 2011). ...................................................... 65 

Figure 3.9 Locations of sub-basins are impacted by reservoirs and other human activity 

such as urbanization, mining, agricultural changes, and channelization. ..... 68 

Figure 4.1 The architecture of the web GIS-based hydrological modeling framework. 74 

Figure 4.2 Web interface of the proposed modeling framework and its options for users 

to select their basins of interest in the framework: (a) selection from the map 

by clicking the basin’s corresponding gauge point, (b) selection from a list of 

gauges or by searching gauge information (as shown in the red rectangle in 

Figure 4.2(b)). ............................................................................................... 79 

Figure 4.3 User input box for date range and model parameters. .................................. 80 

Figure 4.4 The results from executing both lumped CREST model (top panel) and 

HyMOD model (bottom panel) for a selected basin. Each panel contains four 

sections: (1) hydrograph section, (2) zoom-in section, (3) statistics section, 

and (4) mouse-over value section. ................................................................ 81 

Figure 4.5 Distribution of 323 selected USGS gauge stations and major river channels. 

The gauge stations are color coded by gauge areas using geometrical interval 

classification and river channels are classified by discharge rate (level 1 of 

river channels was intentionally assigned blank legend to reduce displayed 

river channels in the figure). From level 1 to 5, gauge controlled area and river 

discharge rate gradually increase. ................................................................. 87 



xii 

Figure 4.6. Comparison of statistical indices (NSCE, CC, RMSE (%), BIAS (%)) between 

Lumped CREST and HyMOD models before and after calibration during 

calibration and validation time periods. ....................................................... 91 

Figure 4.7 Comparison of statistical metrics (CC and NSCE) between Lumped CREST 

and HyMOD models after calibration between calibration and validation 

periods. ......................................................................................................... 93 

Figure 4.8 Comparison of mean execution time between PostgreSQL and Hive for eight 

different SQL queries. .................................................................................. 96 

 

  



xiii 

Abstract 

Most hydrologic data are associated with spatiotemporal information, which is 

capable of presenting patterns and changes in both spatial and temporal aspects. The 

demands of retrieving, managing, analyzing, visualizing, and sharing these data have 

been continuously increasing. However, spatiotemporal hydrologic data are generally 

complex, which can be difficult to work with knowledge from hydrology alone. With the 

assistance of geographic information systems (GIS) and web-based technologies, a 

solution of establishing a cyberinfrastructure as the backbone to support such demands 

has emerged. This interdisciplinary dissertation described the advancement of traditional 

approaches for organizing and managing spatiotemporal hydrologic data, integrating and 

executing hydrologic models, analyzing and evaluating the results, and sharing the entire 

process. 

A pilot study was conducted in Chapter 2, in which a globally shared flood 

cyberinfrastructure was created to collect, organize, and manage flood databases that 

visually provide useful information to authorities and the public in real-time. The 

cyberinfrastructure used public cloud services provided by Google Fusion Table and 

crowdsourcing data collection methods to provide location-based visualization as well as 

statistical analysis and graphing capabilities. This study intended to engage citizen-

scientists and presented an opportunity to modernize the existing paradigm used to 

collect, manage, analyze, and visualize water-related disasters eventually. 

An observationally based monthly evapotranspiration (ET) product was produced 

in Chapter 3, using the simple water balance equation across the conterminous United 

States (CONUS). The best quality ground- and satellite-based observations of the water 
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budget components, i.e., precipitation, runoff, and water storage change were adopted, 

while ET is computed as the residual. A land surface model-based downscaling approach 

to disaggregate the monthly GRACE equivalent water thickness (EWT) data to daily, 

0.125º values was developed. The derived ET was evaluated against three sets of existing 

ET products and showed reliable results. The new ET product and the disaggregated 

GRACE data could be used as a benchmark dataset for researches in hydrological and 

climatological changes and terrestrial water and energy cycle dynamics over the CONUS. 

 The study in Chapter 4 developed an automated hydrological modeling 

framework for any non-hydrologists with internet access, who can organize hydrologic 

data, execute hydrologic models, and visualize results graphically and statistically for 

further analysis in real-time. By adopting Hadoop distributed file system (HDFS) and 

Apache Hive, the efficiency of data processing and query were significantly increased. 

Two lumped hydrologic models, lumped Coupled Routing and Excess STorage (CREST) 

model and HyMOD model, were integrated as a proof of concept in this web framework. 

Evaluation of selected basins over the CONUS were performed as a demonstration. Our 

vision is to simplify the processes of using hydrologic models for researchers and 

modelers, as well as to unlock the potential and educate the less experienced public on 

hydrologic models. 
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Chapter 1: Introduction 

 

1.1 Statement of Problems 

  When conducting hydrologic research, various data may be acquired during the 

process. With the help of geographic information systems (GIS), the efforts of processing, 

analyzing, and visualizing the data is significantly diminished. However, several possible 

problems still exist. First, if the data is prepared by a third party, all we need to do after 

downloading the data is effectively organizing and using the data. Data is most commonly 

disseminated as data files. With file-based data structure, it is difficult to use and query 

the data, especially when the data volume is large. Second, if the required data is not 

provided by a centralized organization, it is difficult to collect these data by gathering 

limited labor to search and inquire. Third, data sharing and remote collaboration might 

be problematic with traditional stand-alone work environment. 

 Hydrological modeling is a widely adopted approach in hydrology research, 

which uses empirical, physical, or mathematical principles to conceptualize and simulate 

different phases of hydrologic cycle in order to assist scientific research in hydrologic 

events prediction, water resources management, and climate change assessment (McCuen 

1973, Viessman and Lewis 2003, Xue et al. 2015). To execute a hydrologic model, one 

needs to install and configure the model, prepare all forcing data as model requires, and 

visualize and analyze the results. It is time-consuming to deal with these tedious steps. 

Moreover, it is difficult to share the whole process since it contains the model, the data, 

and the results. 
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 Hydrologic models work as simulation of real hydrologic processes to predict 

hydrologic events. They can be effective if they provide accurate predictions. In fact, 

hydrologic models are not always accurate; even if they perform well for one basin, there 

is no guarantee they can perform well for another basin. Calibration of hydrologic models 

is one method to improve the performance of the models by using optimization algorithms 

to adjust model parameters in given ranges to amend the results being close to the 

observations. However, most of the times model results still differ from the observations 

due to a combination of reasons, including spatial variabilities and uncertainty of basins, 

data, and models. 

 Therefore, it is challenging but timely to establish a cyberinfrastructure for 

processing and organizing hydrologic data, setting up and configuring hydrologic models, 

analyzing and visualizing both the data and the results, and sharing the entire process and 

collaborating with people, including non-hydrologist as well as researchers around the 

world. 
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1.2 Related Background 

1.2.1 Hydrologic Data 

 Most hydrologic data have spatial and temporal attributes, which can be illustrated 

in different forms. Vector shapes, including points, polylines, and polygons, are 

commonly used as the media to demonstrate spatial attribute of such data. For instance, 

points can be used to indicate locations of events of natural hazards, such as floods 

(Adhikari et al. 2010, Wan et al. 2014) as used in Chapter 2 and landslides (Li, Liu, et al. 

2013), and locations of ground gauge stations (Gourley et al. 2013, Wan et al. 2015). 

Polylines can be used to show locations and shapes of rivers and contour lines (Viessman 

and Lewis 2003). Polygons are widely used in inundation mapping (Fluet-Chouinard et 

al. 2015) and watersheds delineation (Martínez-López et al. 2014). Besides vector data, 

raster data serve as an alternative to represent data with spatial attribute. The raster data 

structure, typically referred to as grid or matrix, comprises an array of pixels (i.e. grid 

cells) in predefined orders with coordinate information for each pixel (Mattikalli 1995). 

Many satellite observations used in hydrology research are conveyed as raster data, such 

as the Gravity Recovery and Climate Experiment (GRACE) data used in Chapter 3. 

Likewise, algorithm generated hydrologic data have a similar format, such as observation 

interpolation based Parameter-elevation Regressions on Independent Slopes Model 

(PRISM) data used in Chapters 3 and 4, and calculated ET products used and 

reconstructed in Chapter 3. 
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1.2.2 Hydrologic Models 

 Hydrologic models are software packages used to simulate single or multiple 

surface and underground hydrologic processes in hydrologic cycle to understand such 

processes by recreating historical events and predicting potential future occurrences 

(Viessman and Lewis 2003). By determining if the domain can be subdivided, hydrologic 

models are categorized into lumped, semi-distributed or distributed models, while in 

semi-distributed and distributed models the target basin can be subdivided into sublevel 

computational units using mathematical or physical representations (Vieux 2001). Semi-

distributed and distributed hydrologic models are capable of maintaining spatial 

variabilities of basins. Thus, model complexity is increased, which influences model 

efficiency when applying forcing data with relatively higher resolutions (Carpenter and 

Georgakakos 2006). In addition, model calibration is utilized to optimize model 

parameters and obtain satisfactory results from hydrologic models. In Chapter 3, soil 

moisture content data are simulated by four land surface / hydrologic models. The 

research in Chapter 4 integrates two lumped hydrologic models for rainfall-runoff 

simulations. 

 

1.2.3 GIS and Web Integrations 

 As aforementioned, hydrologic data are mostly spatiotemporal data in both vector 

and raster formats. Therefore, desktop and web-based GIS are being heavily used for data 

processing, analysis, visualization, and sharing (Bhatt, Kumar, and Duffy 2014, 

DeVantier and Feldman 1993). Some pilot studies have been conducted in hydrology 

using desktop GIS (e.g. ArcGIS and Quantum GIS (QGIS)). Zhan and Huang (2004) 
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developed an extension of ArcGIS to determine curve numbers (CN) from soil and land 

use information and calculate runoff using Soil Conservation Service (SCS) CN 

procedure. Olivera et al. (2006) presented a combination of ArcGIS with the Soil and 

Water Assessment Tool (SWAT) for data analysis and visualization. Bhatt, Kumar, and 

Duffy (2014) introduced a modeling framework coupled Quantum GIS (QGIS) with Penn 

State Integrated Hydrologic Model (PSIHM) for watershed delineation, simulation, and 

visualization. 

 With fast Internet access and low latency, traditional read-only web environment 

has been transformed into the “rich application” era of Web 2.0. Plenty of data transfer 

protocols, file formats, open source software, and online services are developed to utilize 

the bandwidth of the Internet and provide novel user experience. HyperText Markup 

Language (HTML) is the basic language to create web pages. Just like HTML, Extensible 

Markup Language (XML), JavaScript Object Notation (JSON) and GeoJSON are 

developed to encoding regular data and spatial data in formats that can be read by both 

human and machine efficiently. With asynchronous methods (e.g. Asynchronous 

JavaScript and XML (AJAX)) to get and post data in standard formats over the internet, 

data becomes sharable and concurrency of access from multiple users becomes feasible. 

The development of web environment and web technology enable the capability to share 

hydrological modeling framework and collaborate with people distantly, Huang (2003) 

integrated TOPography based hydrological MODEL (TOPMODEL) into a web modeling 

and visualization framework to allow user interaction with environmental applications. 

The famous Web-based Hydrograph Analysis Tool (WHAT) is an example using GIS to 

access real-time U.S. Geological Survey (USGS) discharge data directly from web 
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servers for visualization and validation (Lim et al. 2005). Comair et al. (2014) presented 

a GIS based hydrologic information system to store and share hydrologic data, execute 

hydrologic model, and deliver simulation results for better water management and 

decision-making. 

 

1.2.4 Cloud Computing and Big Data Era 

Beyond traditional web technology, the use of cloud computing and big data has 

surged in recent years to facilitate research in geo-computation and hydrology. Cloud 

computing is a framework for supporting elastic network access to elastic computing 

resources  (Mell and Grance 2011) so that it can maximize the efficiency and data safety 

during collaboration, while minimizing time and expense spent on the system. Several 

studies have confirmed the advantages of using cloud computing. Gong, Yue, and Zhou 

(2010) adopted cloud computing to provide elastic geoprocessing capabilities and data 

services in a distributed environment. Behzad et al. (2011) used cloud computing with 

cyber-infrastructure-based GIS to implement a large number of concurrent groundwater 

ensemble runs with improvement in computational efficiency. The study of Sun (2013) 

presented a collaborative decision-making water management system using a cloud-based 

service, revealing the potential to fundamentally change a water management system 

from its design to the operation. Namibia flood SensorWeb infrastructure is another 

example which was created for rapid acquisition and distribution of data products for 

decision-support systems to monitor floods, utilizing the Matsu Cloud to store and pre-

process data through hydrological models and eliminating the latency to users’ real-time 

online requests (Kussul et al. 2012). 
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Big data refers to any collection of data sets with large volume, high complexity, 

and fast update rate, which are usually difficult to be managed and processed by 

traditional databases or file systems (Kitchin 2013, Bhosale and Gadekar 2014, Fernández 

et al. 2014, Vitolo et al. 2015). The advancement of satellite and ground observation 

technologies improve both spatial and temporal resolutions recent years, which in return 

transforms spatiotemporal data in earth science studies into big data scope. With big data 

being involved in hydrological modeling, solutions such as distributed file systems and 

high-performance computation are incorporated into such framework. Li, Yang, et al. 

(2013) developed a web-based application for high-performance analysis and 

visualization of big spatiotemporal data and climate model simulations. Hu, Cai, and 

DuPont (2015) coupled an agent-based system with an environmental model and 

integrated it into a web application enabled by Hadoop-based high-performance 

computation for watershed management. 

 

1.2.5 Data Visualization 

 The increase in computation power is always associated with the development of 

web-based visualization. Improved graphic processing abilities offer two dimensional 

(2D), three dimensional (3D), and even multi-dimensional options for complex and high-

resolution geospatial data visualization for web environment. Several well-known 

examples include ArcGIS Online, a GIS solution for web-based analysis, visualization 

and collaboration (ESRI 2015); Earth, an online 3D animated visualization of global 

weather conditions (Earth 2015); and Google Earth, a 3D geographic information 

program for both desktop and online uses (Google 2015a). When Al Gore mentioned 
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computational technology and digital earth concept in his speech in 1998 (Gore 1998), 

one could hardly imagine what has been achieved today in this field. 

 From programming perspective, Application Programming Interfaces (API) are 

provided for both client side and server side. By using libraries like Google Maps API 

(Google 2015c) and Leaflet (Leaflet 2015), it is straightforward to create simple 

customized applications with map visualization. Open data kit (ODK) (ODK 2015) is 

another example of open source software to help build data collection survey, collect data 

from users, and aggregate data into useful formats. 
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1.3 Research Objectives 

 The overarching objective of this dissertation is to establish an intelligent 

cyberinfrastructure for organization and management of hydrologic data, integration and 

execution of hydrologic models, analysis and evaluation of the results, and sharing the 

entire process. As an interdisciplinary research, the vision is to facilitate the existing 

paradigm of hydrologic research and expose potential of the water community by 

engaging the public (including non-hydrologist) with state-of-the-art web technologies 

and the assistance of GIS to help with hydrologic data collection, use hydrological 

modeling, and conduct hydrologic analytics. Specific objectives in this dissertation are 

listed as follows: 

• To organize natural hazards inventory by establishing a cloud-based 

cyberinfrastructure with capabilities of on demand data management and sharing, 

instantaneous map and statistic visualizations, and real-time updating through 

crowdsourcing. 

• To develop land surface models-based algorithm to disaggregate GRACE data to 

improve and produce an important model output (ET) using water balance-based 

approach. 

• To establish a web GIS-based hydrological modeling framework with big data 

support and scalable structure to facilitate multi-source data processing, 

evaluation, and visualization. 
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1.4 Organization of the Dissertation 

 This dissertation is organized into an introductory chapter, three main chapters 

with three related researches, and a summary chapter. Chapters 2 and 3 were published 

as two stand-alone peer-reviewed journal articles, and Chapter 4 is ready to be submitted 

to a journal. List of publications from this dissertation is in Section 1.5. 

Chapter 2 presents a study entitled “A cloud-based global flood disaster 

community cyber-infrastructure: Development and demonstration”. A globally shared 

flood cyber-infrastructure to collect, organize, and manage flood databases that visually 

provide useful information in real-time, using cloud computing services and 

crowdsourcing data collection methods to provide on-demand, location-based 

visualization and statistical analysis. It involves public participation to submit their 

entries of flood events for archiving comprehensive information of flood events, past and 

present. As a cloud-based cyberinfrastructure with crowdsourcing capabilities, an 

opportunity is presented to modernize the way of collecting and sharing information for 

water related disasters. 

Chapter 3 is entitled “Water balance-based actual evapotranspiration 

reconstruction from ground and satellite observations over the conterminous United 

States”. This chapter describes an approach to produce an observationally based monthly 

ET product using the water balance equation across the CONUS. The best quality ground- 

and satellite-based observations of the water budget components are adopted, while ET 

is computed as the residual. A land surface models-based downscaling approach to 

disaggregate the GRACE EWT data is developed. The reconstructed ET is evaluated 

against three sets of existing ET products, showing similar spatial patterns and small 
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differences that ensure the reliability of this approach. The new ET product can be used 

as a benchmark dataset in evaluation for other hydro-climatological research over the 

CONUS. 

 Chapter 4 is entitled “Big data solutions enabled web GIS-based hydrological 

modeling framework for the conterminous United States”. It elaborates on an automated 

general-purpose hydrological modeling framework with web accessibility for non-

hydrologists to organize hydrologic data, execute hydrologic models, and visualize 

results graphically and statistically for further analysis in real-time. Aided by HDFS and 

Apache Hive, the framework presents an efficient and effective way for data processing 

and query. Two lumped hydrologic models, lumped CREST and HyMOD, were 

integrated as a proof of concept in this web GIS framework and it is evaluated against 

selected basins over the CONUS. The goal is to simplify the processes of using 

hydrologic models for researchers and modelers, and educate the less experienced non-

hydrologist on hydrologic models. More importantly, this shared framework is designed 

with elasticity of being expanded to accommodate various data and different models. 
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Chapter 2: A cloud-based global flood disaster community cyber-

infrastructure: Development and demonstration 

 

Flood disasters have significant impacts on the development of communities 

globally, often causing loss of life and property. It is increasingly important to create a 

globally shared flood cyber-infrastructure (CyberFlood) to collect, organize, and manage 

flood databases that visually provide useful information back to both authorities and the 

public in real-time. The community shared CyberFlood infrastructure described in this 

study uses cloud computing services and crowdsourcing data collection methods to 

provide on-demand, location-based visualization as well as statistical analysis and 

graphing capabilities. It also involves public participation, allowing the public to submit 

their entries of flood events to help the community to archive comprehensive information 

of flood events, past and present. The Global Flood Inventory (GFI) is used as a primary 

database to develop this cyber-infrastructure. The GFI, which contains detailed 

information of global flood events from 1998 to 2008, was developed and made available 

for community use. In order to expand and update the existing inventory, a crowdsourcing 

methodology is employed which enables web-based data entry for the public to report or 

record their personal accounts of local flood events. This step is also intended to engage 

citizen-scientists so that they may become motivated and educated about the latest 

developments in satellite remote sensing and hydrological modeling technologies. Cloud 

computing is further integrated into this cyber-infrastructure by utilizing public cloud 

services provided by Google, which effectively accelerates the speed during data 

processing and visualization over the Internet. As a cloud-based cyber-infrastructure, 
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people can access this infrastructure from all over the world through the Internet or mobile 

phones. The shared vision is to better serve the global water community by providing 

essential flood information, aided by the state-of-the-art cloud computing and crowd-

sourcing technology. This CyberFlood presents an opportunity to eventually modernize 

the existing paradigm used to collect, manage, analyze, and visualize water-related 

disasters (e.g. floods, landslide, and droughts). 
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2.1 Introduction 

Flooding is one of the most dangerous natural disasters globally, frequently 

causing tremendous loss of life and economic damages. According to the International 

Federation of Red Cross (IFRC) and Red Crescent Societies (RCS), almost half of the 

natural disasters that happened between 2002 and 2011 were floods. During this period, 

natural disasters caused approximately 1.1 million fatalities worldwide, affected 

approximately 2.7 billion people, and led to economic losses totaling approximately $1.4 

trillion USD. Of these damages, approximately 57,000 (5%) of the fatalities, 1.2 billion 

(44%) of the affected, and $278 billion USD (20%) of the economic damages were 

attributed to floods alone (Zetter 2012). 

The significant global impact of recurring flooding events leads to an increased 

demand to have comprehensive flood databases for flood hazard studies. There are 

several existing flood databases, such as the International Disaster Database (EM-DAT), 

ReliefWeb (launched by the United Nations Office for the Coordination of Humanitarian 

Affairs (OCHA)), the International Flood Network (IFNET) and the Global Active 

Archive of Large Flood Events (created by the Dartmouth Flood Observatory (DFO)). 

However, there is often a lack of specific geospatial characteristics of the flooding impacts 

or a failure to enlist all flood events due to variable entry criteria. Moreover, these data 

warehouses lack interactive information sharing with the communities affected by the 

flood events. Therefore, a methodology developed by Adhikari et al. (2010) utilized 

valuable flood event information from the aforementioned sources, specifically the DFO, 

and synthesized these data with media reports and remote sensing imagery in order to 

provide a record of flooding events from 1998 to 2008. The digitized Global Flood 
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Inventory (GFI) gathers and organizes detailed information of flood events from reliable 

data sources, defines and standardizes categorical terms as entry criteria for flood events 

(e.g. severity and cause), and cross-checks and quality controls flood event information 

(e.g. location) to eliminate redundant listings. These characteristics make GFI an 

appropriate starting point to develop a unified, global flood cyber-infrastructure. 

However, one limitation of this database is that GFI only contains flood events through 

2008. Although it is possible that flood events after 2008 can be collected manually, as 

was done in Adhikari et al. (2010), it can be incomplete and inefficient since this process 

only involves a limited number of resources and people. Recently, technological advances 

in social media have tremendously improved data gathering and dissemination, especially 

with the development of World Wide Web technologies. Built on the platform of social 

media, crowdsourcing has become a versatile act of collecting information from the 

public.  

Crowdsourcing is a term that generally refers to methods of data creation, where 

large groups of potential individuals generate content as a solution of a certain problem 

for the crowdsourcing initiator(Hudson-Smith et al. 2009, Estellés-Arolas and González-

Ladrón-de-Guevara 2012). In theory, crowdsourcing is based on two assumptions 

described by Goodchild and Glennon (2010).  First, “a group can solve a problem more 

effectively than an expert, despite the group’s lack of relevant expertise”, and second, 

“information obtained from a crowd of many observers is likely to be closer to the truth 

than information obtained from one observer.” Based on the definition and assumption 

of crowdsourcing, it has the ability to collect a considerable amount of information from 

its randomly distributed participants. The nature of crowdsourcing accommodates data 
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collection in numerous forms, including questionnaires, phone calls, text messages, 

emails, web surveys and other paper-based, mobile phone-based, and web-based methods. 

Moreover, crowdsourcing can be embedded with location-based information by using 

GPS-enabled devices, IP (internet protocol) addresses, or participants’ awareness of their 

current locations. Crowdsourcing offers new opportunities to expand the information 

available to impacted communities and provide a “two-way” street for the same affected 

populations to communicate with the global community. 

The data collected from crowdsourcing will be used in a cloud computing 

framework for information sharing that includes data processing and visualization. Gong, 

Yue, and Zhou (2010) adopted cloud computing technology in geoprocessing functions 

to provide elastic geoprocessing capabilities and data services in a distributed 

environment. Behzad et al. (2011) used cloud computing in addition to a cyber-

infrastructure-based geographic information system to facilitate a large number of 

concurrent groundwater ensemble runs by improving computational efficiency. Huang et 

al. (2013) integrated cloud computing in dust storm forecasting to support scalable 

computing resources management, high resolution forecasting, and massive concurrent 

computing. As defined by the National Institute of Standards and Technology (NIST), 

cloud computing is a model for supporting elastic network access to a shared pool of 

configurable computing resources (Mell and Grance 2011). The nature of cloud 

computing assures that it can (a) reduce the time and cost during implementation, 

operation, and maintenance of the global flood cyber-infrastructure, (b) provide an 

interface for collaboration at both global and local scales, and (c) conveniently share data 

in a secure environment. These advantages make cloud computing an attractive technique 
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in the global flood cyber-infrastructure that can maximize the efficiency and data safety 

during collaboration, while minimizing time and expense spent on the system.  

Several studies have already used cloud-based services with water-related 

management and monitoring. The study of Sun (2013) presented a collaborative decision-

making water management system using a cloud service provided by Google Fusion 

Table. The author describes the migration of the management system from a traditional 

client-server-based architecture to a cloud-based web system, revealing the potential to 

fundamentally change a water management system from its design to the operation. 

Another example is the Namibia flood SensorWeb infrastructure, which was created for 

rapid acquisition and distribution of data products for decision-support systems to 

monitor floods (Kussul et al. 2012). The decision-support system utilizes the Matsu Cloud 

to store and pre-process data through hydrological models, eliminating the latency when 

clients select specific data. 

This study proposes a cloud-computing service provided by Google to establish 

the global flood cyber-infrastructure, to share the GFI, to provide statistical and graphical 

visualizations of the data, and to expand the breadth and content of the GFI by collecting 

new flood data using crowdsourcing technology (i.e. CyberFlood). The next section 

focuses on the architecture of the cloud computing system designed for global flood 

monitoring, analysis, and reporting. Section 2.3 demonstrates the system’s functionality, 

and a summary is provided in Section 2.4. 
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2.2 Cyber-infrastructure Design for Flood Monitoring 

 The global flood cyber-infrastructure consists of four components: the GFI data 

source, cloud service, web server, and client interface (Figure 2.1). The GFI is pre-

processed before being imported into the cyber-infrastructure, as explained later in this 

section. The cloud service, which significantly improves the performance and decreases 

the burden on the web server, handles all data queries, data visualization, and data 

analysis. The web server simply deals with sending requests and responses between 

clients and the cloud. The client interface is mainly built with hypertext markup language 

(HTML) and JavaScript. Since all the data are processed before being imported into this 

cyber-infrastructure, the client side only sends operational requests from users and 

renders responses from the cloud service. 
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Figure 2.1 The global flood community cyber-infrastructure framework. 

As previously mentioned, GFI standardizes categorical terms as entry criteria for 

flood events. In other words, every data column in GFI is carefully designed so that each 

entry strictly follows the criteria of the corresponding data column (Figure 2.2a). GFI was 

pre-processed before being successfully imported into a Google Fusion Table. Python 

code, which is a cross-platform, extensible, and scalable programming language (Sanner 

1999), was written to do the data conversion. The purpose is to maintain data consistency, 

making the converted data readily readable and reducing the data conversion load on the 

client side. In this process, cells containing -9999, which represent no value in GFI, are 

removed because they are not consistent with empty cells that also represent no value. 

Data columns of flood severity, cause, country, and continent are filled with numbers to 
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indicate certain meanings in GFI. A look-up table was used to convert the numerical 

codes into text. For example, “1” means “heavy rain” in the column pertaining to flood 

causes, whereas it means “Africa” in the column pertaining to continents (Figure 2.2a and 

Figure 2.2b). In other words, if the GFI with numbers are imported into the Fusion Table 

and used directly by the cyber-infrastructure, the numbers have to be converted to the 

corresponding texts each time during the refresh on the client side. As a result, text is 

assigned to severity, cause, country, and continent during this process. Location, the most 

important information for map visualization in this cyber-infrastructure, is described in 

two columns representing latitude and longitude in GFI. However, if one flood event 

involves more than one location, then there will be multiple data records, and only the 

first data record has shared information such as event ID and date. To improve this data 

structure and for better visualization, multiple data records representing the same flood 

event are combined into a single record, while location is presented as MultiGeometry 

using Keyhole Markup Language (KML) (Wilson 2008).  
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Figure 2.2 Comparison of data tables a) global flood inventory and b) Google fusion 
table. 

An example of a flooding event in New Hampshire in October 2005 is illustrated 

in Figure 2.3. Figure 2.3a shows the event as stored in the original GFI covering events 

from 1998-2008. Five locations were associated with this event. Cells are left blank if 

they share the same record as in the first row. Figure 2.3b shows the same flooding event 

as in Figure 2.3a, but converted into a Google Fusion Table. This table also includes all 

five locations that are now represented in the geometry column with KML. Figure 2.3c 

illustrates the visualization of this event, showing the severity as well as the specific 

locations impacted. Additional layers such as rivers, roads, and topography can also be 

included during this step to ascertain the spatial extent of inundation.  
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Figure 2.3 Flood event over Northeast U.S. in New Hampshire of October 2005 a) 
global flood inventory, b) Google fusion table attributes, and c) Google map view. 

The processed GFI, now converted to a Google Fusion Table (Figure 2.2b) 

belongs to a “Software as a Service” (Yang et al. 2011) type of cloud-based service for 

data management and integration (Gonzalez et al. 2010). Google Fusion Table was 

created to manage and collaborate with tabular datasets in which geospatial fields can be 

included to provide location information.  These geospatial fields can be in the form of 

latitude and longitude in two separate columns, latitude and longitude pairs in one column, 

or KML strings in one column. Fusion Table accepts many different tabular formats of 

files as its data source. Any text-delimited files such as comma-separated values (CSV) 

files, KML files, and spreadsheets can be imported directly into a Fusion Table. Since 
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Google Fusion Table is a part of Google Drive, users can simply select an existing 

spreadsheet from their Google Drive and import it into a Fusion Table. Cloud computing 

is embedded to provide rapid responses to requests from users for data querying, 

summary, and visualization. Moreover, data security and sharing is already implemented 

in Google Fusion Table.  

The steps required to import data into a Google Fusion Table are straightforward. 

First, the data must be in one of the supported formats (tabular or text-delimited data such 

as CSV files, excel spreadsheets, and other similar types.). A wizard then provides easy-

to-follow instructions describing how to upload the data. Fusion Table looks like a 

common table in a spreadsheet, whereas it supports structured query language (SQL) to 

operate the table. Keywords, such as “SELECT”, “INSERT”, “DELETE” and 

“UPDATE”, can be used to manipulate Fusion Table, which is similar to how a table is 

handled in a database. Fusion Table provides application programming interface (API) to 

programmatically perform SQL-based, table-related tasks through using hypertext 

transfer protocol (HTTP) requests (Google 2015b). By combining with other Google-

provided APIs, the capability of Fusion Table can be extended to not only manipulate the 

data in the table, but also visualize the data through thematic mapping and analytic charts. 

Fusion Table, which plays an important role in this global flood cyber-

infrastructure, provides data storage, data sharing, and fast data access. However, since 

the infrastructure is functioning from the backend, users cannot benefit from this service 

unless a traditional server and client components are included for interaction. Since all 

the computing loads are on the cloud, the web server only serves as a “middleware” 

dealing with requests and responses between the cloud and clients. The web server also 
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protects the Fusion Table on the cloud from being accidentally modified by clients. 

Google provides two kinds of API keys for programmers to develop applications. One of 

the keys is a string, which grants permission to applications to select items from the 

Fusion Table. The other key is a special file that should be stored securely with the 

application on the web server. This type of key grants permission to the application from 

the specific web server to insert, update, or delete items from the Fusion Table. The client 

side is programmed with HTML and JavaScript, along with several APIs from Google, 

to send requests through the server to the cloud, receiving responses for location-based 

and analytic visualization. 
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2.3 Demonstration 

 The global flood cyber-infrastructure is currently running at 

http://eos.ou.edu/flood/ (Figure 2.4). An Apache web server is deployed to host the 

frontend web interface. Google Map has been integrated to map the locations of flood 

events after querying the Fusion Table using the Google Map API. All the points 

representing locations of flood events are color coded by severity or fatalities associated 

to the flood event. Severity is classified into classes 1, 2, and 3, with “Class 1” being least 

severe and “Class 3” the most severe. Fatalities are categorized into four classes based on 

the value. Users are allowed to select a range of years and causes of flood events from 

the provided controls. Each selection will lead to a new query from the Fusion Table, 

which means that the desired data will be plotted on the map with event details that have 

just been uploaded in real-time. In addition to visualization of the data using information 

stored in the Fusion Table, a Google Chart API is utilized to create analytic charts for 

statistical analysis of the flood events (Figure 2.5). Variables such as the year, month, 

severity, cause, continent, and country, can be analyzed in a chart and a table. Variables 

can be summarized by the count of the variables, sum of fatalities, or average of fatalities. 

For instance, Figure 2.5 demonstrates the summary of flood events by year and severity. 

Flood events with Class 1 severity are in a blue color on the chart, with about 270 of the 

flood events in 2003 occurring with such a severity class. 

http://eos.ou.edu/flood/
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Figure 2.4 The map visualization of global flood cyber-infrastructure. The top and 
bottom maps are color coded by severity and fatalities respectively. 

 

Figure 2.5 The statistical chart and table of global flood cyber-infrastructure. 
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 In order to expand and update the existing GFI, now stored as a Fusion Table, 

crowdsourcing from public entries is implemented in this cyber-infrastructure by 

providing a flood events observation report form (Figure 2.6). Most of the fields are the 

same as the existing GFI. However, photo URL and source URL fields are appended to 

the Fusion Table to store additional details about the submitted flood event. This means 

that users are able to upload one photo per submission and provide a URL of the web 

source as a proof or supplemental information of that flood event. The current date will 

be retrieved from the users’ operating system by default to submit present flood events. 

Users can also select any date between 1998 to present if past events are reported. Since 

reported events will be displayed on the map in real-time immediately following 

submission, location is a required field in the report form. Location will be automatically 

retrieved if a location service is allowed by the client’s browser or the uploaded photo is 

geo-tagged. This report form is submitted directly into the Fusion Table through the 

server, and this process is protected by Google Account Authentication and Authorization 

Mechanism to secure data on the Fusion Table. A two-way quality control approach of 

data from crowdsourcing is implemented. First, when a user submits a report of flood 

events, the system will automatically check if each field is correctly formatted. For 

example, fields of latitude and longitude can only be numeric values. Fields of day, month, 

and year are restricted to certain numbers that can only be selected by users. Instructions 

have also been created for first-time users and they can learn what each field means and 

how to retrieve current location to help them submit correct information. Secondly, after 

submission, the data will be manually checked with different sources, including news 

reports, flood reports from other major disaster data sources, and satellite imagery. 
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Checking data sequentially is not an efficient way of quality control. However, it is 

effective in this case since the number of data received so far is limited. Newly submitted 

events following post-processing will be assigned IDs according to the number of 

milliseconds from 1970/01/01 to the time of the submission. For example, a flood event 

reported at 12/18/2013 23:35:15.199 will be assigned an ID of 1387431315199. 

Sequential IDs will be assigned to newly submitted data after quality control is complete. 

If crowdsourced data submissions increase in frequency in the future, automated data 

quality control procedures will be developed to check the spatial and temporal 

consistency with other flood reports. Other automated procedures can crosscheck the 

reports with global flood forecasts available from http://eos.ou.edu/Global_Flood.html. 

A crowdsourcing way to control the quality of crowdsourced flood events reports are 

under consideration. A mechanism could be established to grant permission to qualified 

users and students who have expertise in flood monitoring and validation to check the 

data quality in the Fusion Table. 

http://eos.ou.edu/Global_Flood.html
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Figure 2.6 The flood events observation report form. 
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2.4 Discussion 

2.4.1 Advantage 

Although CyberFlood does not directly solve flooding problems, this work is 

expected to be able to help advance flood-related research areas such as hydrologic model 

evaluation, flood risk management, and flood awareness. Both the public and research 

community can use the resources provided by this cyber-infrastructure to analyze 

retrospective flood events and submit their witness accounts of previously unreported 

flood events. Therefore, this approach is useful for flood monitoring and validation 

research. The long-term database could also help generate flood climatology of 

occurrences and damage and therefore could potentially lead to better flood risk 

management for zoning and other flood-related decision-making purposes. Public 

engagement using crowdsourcing and cloud-based techniques could potentially raise 

flood awareness around the globe and provoke citizen-scientists to consider careers in the 

natural sciences, engineering, and mathematics. 

CyberFlood has been created to be used by anyone with internet access. In order 

to access the flood resources, a web-based interface is provided and is becoming 

accessible through iOS apps for mobile users. As CyberFlood becomes more accessible 

through these apps, more people will use it to view retrospective flood events, monitor 

current flood events, and contribute to the flood community by submitting their reports 

of flood events. CyberFlood has been created to adapt the idea of Volunteered Geographic 

Information (VGI), which is described as tools to create, assemble, and disseminate 

geographic information provided voluntarily by individuals (Goodchild, Yuan, and Cova 



32 

2007), for compiling flood events by involving map-based visualization and utilizing 

human sensors to collect useful data globally. 

Compared with the traditional server-client structure, the cloud computing service 

provided by Google Fusion Table enhances the performance of the global flood cyber-

infrastructure in terms of the speed during data query and data visualization. By providing 

a Fusion Table API, the complexity of the global flood cyber-infrastructure is 

significantly reduced.  This benefits both programmers and clients since they are able to 

focus more on the actual functions they need to implement and use, not on the logistics 

with the cloud itself.  Rather than using the traditional server-client based structure, this 

simplified cloud-based framework makes it easier to develop scalable applications. 

Furthermore, taking into consideration of data sharing and collaboration, Fusion Table 

provides a comprehensive solution to keep data secure while making seamless 

communications between collaborators and Google servers for data updates, queries, and 

visualization. 

 

2.4.2 Performance Experiment 

An experiment was developed to compare the speed of reading data and 

geographically displaying data using Google Maps API with a Google Fusion Table and 

a MySQL database respectively, both of which contain the same dataset. Google Maps 

API provides two ways to display markers on Google Map. The traditional way is by 

using google.maps.Marker class. The more efficient way is to utilize 

google.maps.FusionTablesLayer class that can only be employed by data from the Google 

Fusion Table. As a result, the data in the Google Fusion Table is visualized by 
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google.maps.FusionTablesLayer class while the data in the MySQL database is 

visualized by google.maps.Marker class in this experiment. The query speed of both 

Google Fusion Table and MySQL database are rapid, taking a few milliseconds. However, 

the speed advantage becomes predominant when using data from the Google Fusion 

Table with google.maps.FusionTablesLayer class. Table 2.1 demonstrates the results of 

this performance experiment. The first 1000, 5000, 10000, 50000, and 100000 records 

are retrieved from the dataset. The average time of reading and displaying different size 

of data is calculated from five consecutive measurements. When data records increase 

from 1000 to 100000, the average elapsed time for using the Google Fusion Table with 

google.maps.FusionTablesLayer class is always low (less than 10 ms) while the average 

elapsed time for using the MySQL database with google.maps.Marker class is much 

higher (more than 1000 ms) and increases significantly to more than 3000 ms when 

displaying 100000 records. 
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Table 2.1 Performance comparison results. 

 Google Fusion Table (google.maps.FusionTablesLayer) 

Test Order 1 2 3 4 5 Average 

1,000 Records 17 8 8 7 8 9.6 

5,000 Records 9 7 6 7 9 7.6 

10,000 Records 12 7 8 6 7 8.0 

50,000 Records 8 9 8 7 7 7.8 

100,000 Records 14 10 9 8 8 9.8 

 MySQL (google.maps.Marker) 

Test Order 1 2 3 4 5 Average 

1,000 Records 1052 1039 1041 1049 1048 1045.8 

5,000 Records 1128 1138 1143 1111 1116 1127.2 

10,000 Records 1202 1194 1230 1233 1240 1219.8 

50,000 Records 1842 2145 1915 1867 2211 1996.0 

100,000 Records 3050 3332 2938 2895 3123 3067.6 

    Unit: Milliseconds (ms) 
 

2.4.3 Limitation and scalability 

Fusion Table has some limitations on storage and usage. Each user can import 

data files no more than 100 MB into each Fusion Table, and each Google cloud account 

can contain data no more than 250 MB. The Google Fusion Table is an experimental 

product, which does not have a payment option for increasing the storage space. However, 

the data inside the Google Fusion Table is text-based which takes up very little space. 

When data are inserted into the Google Fusion Table, efforts have been made with 

additional code/scripts to save space by normalizing each field and trimming unnecessary 

spaces. Currently, there are 2730 records in the Fusion Table, which takes up 657 KB out 

of 250 MB. This means approximately 1 million similar data records can be stored with 
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just this one Google cloud account. Furthermore, photo submissions are uploaded to a 

separate server with terabyte-level shared storage space and only the URLs linked to the 

photos are stored in Fusion Table. 

The situation when the dataset grows beyond the limit of approximately 1 million 

records has also been taken into consideration. One solution is to have the data stored in 

multiple Fusion Tables of multiple Google accounts and perform a cross-table query. 

Another way is to use other cloud-based services, such as Google Cloud SQL and 

BigQuery, Amazon EC2, and Windows Azure. Google services will be our first choice 

because it is usually straightforward to develop applications with other Google products, 

such as Google Maps/Earth and Google Chart. 

When inserting a data record into the Fusion Table, the record should be less than 

1 MB, and a maximum of 25,000 requests per day can be sent to one Google account with 

free Fusion Table API access. However, the number of maximum requests per day can 

be increased by request through Google. 

As a result, there is a trade-off between using Fusion Table resources directly and 

consuming a small portion of the resources from clients. In order to reduce the times in 

querying the Fusion Table, data from the prior queries are stored on the client side in the 

global flood cyber-infrastructure. If the next operation from the client side returns the 

same result as the previous operation, no request will be sent to the Fusion Table.  It will 

use the stored data instead. 
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2.4.4 Data sharing 

Although Google Fusion Table API does not provide a way to download raw data 

programmatically, as a shared cyber-infrastructure, the data in the Fusion Table of 

CyberFlood is free to download. A link can be provided to the actual Fusion Table from 

where users can view raw data and download them as a CSV or KML file. After the raw 

data have been made accessible, it is possible for users to adapt the raw data to visualize 

flood events in their own way and gain more discovery. 

 

2.4.5 Sustainability 

In order to involve people, some poster presentations about CyberFlood have been 

given at several conferences. Meanwhile, iOS apps for iPad and iPhone are under 

development (Figure 2.7), providing functions for people to view flood events 

visualizations in the form of map and chart and submit their witness accounts of flood 

events. Plans are made to advertise the CyberFlood through non-traditional media, such 

as social media Facebook and Twitter. We have also developed the mPING 

(Meteorological Phenomena Identification Near the Ground: 

http://www.nssl.noaa.gov/projects/ping/) app which includes flood entries (4 levels of 

severity) and uses crowdsourcing technique to obtain data. Given that the mPING has 

more than 200,000 active users today, this app will also be utilized to advertise our 

CyberFlood system.  
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Figure 2.7 Mobile version of the cyber-infrastructure. 

 Since only limited entries from crowdsourcing during the 2009-2013 period are 

obtained, locally recruited students are compiling flood events from multiple sources for 

that period with manual quality control. Data for these years will be available in 

CyberFlood. 
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2.5 Conclusion 

 The cyber-infrastructure for global flood disaster community (CyberFlood), with 

cloud computing service integration and crowdsourcing data collection, provides on-

demand, location-based visualization, as well as statistical analysis and graphing 

functions. It involves citizen-scientist participation, allowing the public to submit their 

personal accounts of flood events to help the flood disaster community to archive 

comprehensive information of flood events, analyze past flood events, and get prepared 

for future flood events. This cyber-infrastructure presents an opportunity to eventually 

modernize the existing methods the flood disaster community utilizes to collect, manage, 

visualize, and analyze data with flood events.  

 In the future, data describing the flood reports in this cyber-infrastructure will be 

linked to real-time and archived satellite-based flood inundation areas, observed stream 

flow, simulated surface runoff from a global distributed hydrological modeling system, 

and precipitation products. These datasets will be beneficial both as method to validate 

the crowdsourced flood events and to help educate, motivate, and engage citizen-

scientists about the latest advances in satellite remote-sensing and hydrological modeling 

technologies. Given the elasticity of a cloud-based infrastructure, this cyber-infrastructure 

for global floods can be applied to other natural hazards, such as droughts and landslides, 

at both global and regional scales.  
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Chapter 3: Water balance-based actual evapotranspiration 

reconstruction from ground and satellite observations over the 

conterminous United States 

 

The objective of this study is to produce an observationally based monthly 

evapotranspiration (ET) product using the simple water balance equation across the 

conterminous United States (CONUS). We adopted the best quality ground- and satellite-

based observations of the water budget components, i.e., precipitation, runoff, and water 

storage change, while ET is computed as the residual. Precipitation data is provided by 

the bias-corrected PRISM observation-based precipitation dataset, while runoff comes 

from observed monthly streamflow values at 592 USGS stream gauging stations that have 

been screened by strict quality controls. We developed a land surface model-based 

downscaling approach to disaggregate the monthly GRACE equivalent water thickness 

data to daily, 0.125º values. The derived ET computed as the residual from the water 

balance equation is evaluated against three sets of existing ET products. The similar 

spatial patterns and small differences between the reconstructed ET in this study and the 

other three products show the reliability of the observationally based approach. The new 

ET product and the disaggregated GRACE data provide a unique, important hydro-

meteorological data set that can be used to evaluate the other ET products as a benchmark 

dataset, assess recent hydrological and climatological changes, and terrestrial water and 

energy cycle dynamics across the CONUS. These products will also be valuable for 

studies and applications in drought assessment, water resources management, and climate 

change evaluation. 
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3.1 Introduction 

 As one of the major components of the global hydrologic cycle, 

evapotranspiration (ET) is a complicated process and composed of evaporation from land 

surface and water bodies, and transpiration from vegetation to the atmosphere (Allen et 

al. 1998).  Evaporation and transpiration processes occur simultaneously and are difficult 

to separate (Anderson et al. 2007, Liu et al. 2011, Mallick et al. 2014). Accurately 

estimating actual ET is of great importance because it is a crucial variable in water 

resources management, agriculture, and ecology (Khan et al. 2010), and an important 

process in the fields of hydrology, meteorology and atmospheric sciences (Chauhan and 

Shrivastava 2009). 

 Several approaches have been developed to estimate actual ET, including 

meteorology-driven diagnostic models such as the Penman-Monteith (PM) method 

(Monteith 1965), satellite data-driven PM approaches (Cleugh et al. 2007, Mu et al. 2007, 

Zhang et al. 2009, Zhang et al. 2010, Zhang et al. 2008), satellite data-driven Priestly-

Taylor empirical approach (Fisher, Tu, and Baldocchi 2008), energy balance methods 

(Bastiaanssen et al. 1998, Su 2002, Wang and Bras 2011, Wang and Bras 2009), 

vegetation index-ET empirical relationship methods (Gillies, Kustas, and Humes 1997, 

Nishida et al. 2003, Tang et al. 2009), and data-driven statistical methods (Jung et al. 

2010). The water balance approach is another way to determine ET by quantifying it as 

the residual in the water balance equation. This method is simple and sound in theory, 

and warrants accurate estimate of ET as long as the other water components can be 

accurately measured. Additionally, unlike the other approaches, it does not require 

additional meteorological inputs except precipitation. One good example for 
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measuring/estimating ET using the water balance approach is the lysimeter. The water 

balance method has been used to estimate ET in previous studies (Long, Longuevergne, 

and Scanlon 2014, Ramillien et al. 2006, Zeng et al. 2012, Zhang et al. 2010), but this 

approach is usually applied to one or multiple basins to derive the areal-mean ET of these 

basins that serve as an ET validation data set.  

 The recent ET estimates by model simulations and satellite-driven algorithms are 

usually evaluated against point FLUXNET eddy covariance measurements (Mu et al. 

2007, Velpuri et al. 2013, Zhang et al. 2009) and simulations from land surface models 

(Jung et al. 2010, Schwalm et al. 2013). Few of these studies use basin-wide ET estimates 

from water balance computations as benchmark values to evaluate the remotely sensed 

ET estimates (Zeng et al. 2012, Zhang et al. 2010). The water balance-based ET is rarely 

available, covers few regions, and has coarse spatial resolution due to the limited data 

availability and continuity.  

 To produce a subbasin-wide ET product with continuous temporal coverage and 

downscaled gridded water storage change data with a relatively finer spatial resolution 

(0.125°), we utilized the trustworthy ground- and satellite-observed hydrological data 

provided by USGS, NASA, and USDA to estimate monthly actual ET and monthly 

0.125° water storage change data from April 2002 to September 2013 across the 

conterminous United States (CONUS). The method developed in this study computes 

actual ET as the residual in the simple water balance equation. The objective of this study 

is to produce an observationally based monthly evapotranspiration (ET) product using the 

simple water balance equation across the CONUS. This dataset can be used to evaluate 

the other ET products as a benchmark dataset, assess recent hydrological and 
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climatological changes across the CONUS. These products will be also valuable for 

studies and applications in drought assessment, water resources management, and climate 

change evaluation. 
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3.2 Data and Methodology 

3.2.1 Study Area and Data 

The spatial domain of this study is the CONUS, ranging from 25°N to 50 °N and 

from 124.75 °W to 67 °W (Figure 3.1). The data used in this study include observations 

of precipitation, runoff, and water storage change from ground and satellite data, and river 

network and topographical data from a remote sensing-derived digital elevation model 

(DEM). The river network data have a spatial resolution of 0.125° and were derived from 

an upscaled global data set from the combined HydroSHEDS and HYDRO1K datasets 

(Wu et al. 2012). 

 

Figure 3.1 Locations of 592 USGS stream gauging stations used in this study and 
spatial distributions of their corresponding sub-basins over the CONUS; the blank 
areas are regions without sufficient good-quality observational data. 
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The precipitation data are from the PRISM (Parameter-elevation Regressions on 

Independent Slopes Model) daily precipitation data set produced by the PRISM group at 

Oregon State University (http://www.prism.oregonstate.edu). The PRISM daily 

precipitation product is a 4-km gridded estimate of precipitation for the CONUS based 

on observations from a wide range of monitoring networks with sophisticated quality 

control, and bias and topography corrections (Daly et al. 2008). The PRISM interpolation 

method calculates climate–elevation regression for each grid cell, and stations entering 

the regression are assigned weights based primarily on the physiographic similarity of the 

station to the grid cell. Factors considered are location, elevation, coastal proximity, 

topographic facet orientation, vertical atmospheric layer, topographic position, and 

orographic enhancement caused by the underlying terrain (Daly et al. 2008). The PRISM 

data set is the source of USDA’s official climatological data. In this study, all analyses 

were conducted on a geographical grid with a resolution of 0.125°. Therefore, the PRISM 

precipitation was first aggregated from 4 km to 0.125° and then summed from daily 

values to monthly values. 

 Monthly mean streamflow observations from all USGS stream gauging stations, 

which have continuous discharge data between April 2002 and September 2013, were 

chosen to derive the monthly runoff depth at the sub-basin level. Some of these stations 

were further screened out if differences between their drainage areas as provided by 

USGS metadata and the areas derived from the 0.125° DEM-based flow accumulation 

are larger than 20%. If multiple streamflow measurement stations fall in the same 0.125° 

grid cell, only the station with the largest drainage area was kept for further analysis. The 

drainage area of each station must contain at least two 0.125° grid cells. After the strict 

http://www.prism.oregonstate.edu/
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screening process, streamflow data from 592 USGS stations were chosen for further 

analysis (Figure 3.1).  

 
Monthly equivalent water thickness (EWT) of water storage is provided by the 

Gravity Recovery and Climate Experiment (GRACE) satellite-derived data set. GRACE 

is a twin-satellite mission launched in March 2002 to observe the variation of Earth’s 

gravity field anomalies. GRACE satellites provide information on changes in the gravity 

fields, which are controlled primarily by variations in water distribution and are used to 

derive terrestrial water storage change at a spatial resolution of ≥200,000 km2 (Tapley, 

Bettadpur, Ries, et al. 2004). The latest GRACE land grid data Release-05 (RL05) 

released in February 2014 is used in this study. The RL05 is a level-3 GRACE product 

containing the EWT product in centimeters with a spatial resolution of 1°×1° (Chambers 

2006). This gridded data set was converted from sets of spherical harmonic coefficients 

of the standard GRACE product describing the monthly variations in Earth’s gravity filed 

after applying a series of GRACE filters (Swenson and Wahr 2006, Wahr, Molenaar, and 

Bryan 1998, Wahr, Swenson, and Velicogna 2006). Gridded scaling factors are also 

applied to the gridded GRACE EWT to minimize the leakage error due to resampling and 

post-processing, i.e., the filtering and smoothing processes (Landerer and Swenson 2012). 

Although GRACE provides an opportunity to better constrain the water budget equation, 

it has relatively coarse spatial resolution and suffers periodic data gaps due to battery 

management issues and during certain orbit periods 

(http://grace.jpl.nasa.gov/data/gracemonthlymassgridsoverview/). To achieve a 

continuous terrestrial water storage change data with a spatial resolution of 0.125°, we 

developed a downscaling approach in which the GRACE data were used to constrain the 
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water storage thickness simulated by four land surface models (LSMs) from North 

American Land Data Assimilation System project phase 2 (NLDAS-2) and correct the 

bias in the modeled water storage thicknesses. Details of this downscaling method are 

described in Section 3.2.2. 

 

3.2.2 Methodology 

In this study, we derived monthly areal-mean actual ET on a sub-basin level using 

the water balance equation by assuming no net groundwater flow across the boundary of 

a river basin of interest: 

𝐸𝐸𝐸𝐸 = 𝑃𝑃 − 𝑅𝑅 − ∆𝑆𝑆 + 𝜀𝜀 (3.1) 

where P (mm) is the monthly precipitation; R (mm) is the monthly runoff depth; ∆𝑆𝑆 (mm) 

is the monthly terrestrial water storage change, i.e. change in the monthly EWT; and ε is 

an error term. Because the water budget terms (P, R and ∆𝑆𝑆) are derived from ground and 

satellite observations, there are some measurement and processing errors in these data 

sets (Daly et al. 2008, Landerer and Swenson 2012, Swenson and Wahr 2006, Tapley, 

Bettadpur, Watkins, et al. 2004). However, quantifying the error for each of the datasets 

for each sub-basin is impractical, and we assume that the errors are random and small in 

magnitude relative to the values of the water balance variables. Therefore, the derived 

monthly ET values inherit these errors given that they are computed as the residual. The 

sources and detailed processing of the three water budget terms used to compute the ET 

are described in Section 3.2.1 and the remaining part of this section. 
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Calculation of sub-basin runoff depth 

Since many of these USGS streamflow measurement stations are nested within 

the same parent watersheds (Figure 3.1), we first derived the topological relationships 

among these stations within the same parent basins from the river network data (i.e., flow 

direction, flow accumulation area). The drainage areas of all neighboring upstream 

stations from a given station were subtracted out from the drainage area of this station so 

that each station was attributed to unique contributing areas, i.e. a sub-basin associated to 

a specific station does not contain or overlap with other sub-basins. For example, there 

are 102 stations in the Missouri river basin; therefore, the application of the above 

procedure produces 102 sub-basins that do not overlap with each other (Figure 3.1). 

Missing values exist in some of the 592 USGS stations for different reasons, but 

these data gaps must be less than 20% of the total record, else they are removed. Linear 

interpolation is not a good solution when the data gap encompasses two or more months. 

This is because linear interpolation can artificially smooth the fluctuation of monthly 

discharge values. Instead, we applied an alternative method in which the multi-year mean 

value of a missing month (𝑄𝑄𝑚𝑚����), the discharge of its nearest month (𝑄𝑄𝑛𝑛), and the multi-

year mean value of the nearest month (𝑄𝑄𝑛𝑛����) are used to fill the missing value of the missing 

month (𝑄𝑄𝑚𝑚): 

𝑄𝑄𝑚𝑚 =
𝑄𝑄𝑚𝑚���� × 𝑄𝑄𝑛𝑛

𝑄𝑄𝑛𝑛����
 

(3.2) 

In essence, we assume that the ratio of monthly discharge in a missing month to its multi-

year mean is equal to the ratio of monthly discharge in its nearest month to the multi-year 

mean discharge of the nearest month. 
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 The monthly runoff depth of sub-basin i is then computed by the following 

equation: 

𝑅𝑅𝑖𝑖 =
(𝑄𝑄𝑖𝑖 − ∑ 𝑄𝑄𝑛𝑛𝑁𝑁

𝑛𝑛=1 ) × 𝑇𝑇
𝐴𝐴𝑖𝑖

× 1000 
(3.3) 

where 𝑅𝑅𝑖𝑖 is the monthly runoff depth of sub-basin i (mm); 𝑄𝑄𝑖𝑖 is the monthly discharge at 

station i (m3 s-1); 𝑄𝑄𝑛𝑛 is the monthly discharge of neighbor upstream station n of station i 

(m3 s-1); N is the total number of neighbor upstream stations for station i; Ai is the 

contributing land area of sub-basin i (m2); and T is time (s) in a month. 

 

Downscaling of GRACE equivalent water thickness data 

As we discussed previously, the GRACE data have periodic gaps and a coarse 

spatial resolution. To utilize the GRACE data to derive continuous, finer resolution time 

series of water storage change, we developed a model-based approach to downscale the 

GRACE data.  First, hourly 0.125° simulations of the Variable Infiltration Capacity (VIC) 

,  Noah Land Surface Model (Noah), Mosaic, and Sacramento Soil Moisture Accounting 

(SAC) models from North American Land Data Assimilation System project phase 2 

(NLDAS-2) were used in this study to estimate daily water thickness of soil water storage 

across the CONUS. The four models form the land surface model (LSM) ensemble 

executed over the CONUS in NLDAS-2 (Xia, Mitchell, Ek, Sheffield, et al. 2012). The 

VIC model is a semi-distributed grid-based land surface hydrological model, which 

solves for full water and energy balances (Liang et al. 1994, Liang, Wood, and 

Lettenmaier 1996). The Noah model is a community LSM, which simulates soil moisture 

(both liquid and frozen), soil temperature, skin temperature, snowpack depth, snowpack 

water equivalent (and hence snowpack density), canopy water content, and the energy 
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flux and water flux terms of the surface energy balance and surface water balance (Chen 

et al. 1996, Ek et al. 2003, Koren et al. 1999, Mitchell et al. 2004). The Mosaic model 

was developed for use in NASA’s global climate model and simulates energy and energy 

balance, and soil moisture and temperature (Koster, Suarez, and Heiser 2000). Originally 

formulated as a lumped conceptual hydrological model, SAC has since been converted 

into a distributed version and has adopted some components of the surface-vegetation-

atmosphere transfer scheme developed within the coupled climate modeling community 

(Koren et al. 2007). In the NLDAS-2 project, the VIC model is equipped with three soil 

layers with a fixed 10 cm top layer and two other layers with spatially varying thicknesses, 

while the Noah model has spatially uniform four soil layers with fixed thicknesses of 10, 

30, 60, and 100 cm (Xia, Mitchell, Ek, Sheffield, et al. 2012). Mosaic has three soil layers 

with thicknesses of 10, 30, and 160 cm, while SAC has five soil layers to cover a 2-m soil 

profile (Xia, Mitchell, Ek, Sheffield, et al. 2012).  

 To downscale the GRACE data, we first aggregated four sets of hourly LSM data 

separately to produce four sets of daily equivalent water thickness (EWT: mm) data on a 

0.125° grid. The EWT is the integral of water above and inside the soil column within 

each grid cell, including surface water and soil water computed in the four LSMs. 

However, like many other LSMs, the four NLDAS-2 LSMs do not simulate groundwater 

fluxes (Xia et al. 2015, Xia, Mitchell, Ek, Cosgrove, et al. 2012, Xia, Mitchell, Ek, 

Sheffield, et al. 2012); thus, the models do not account for changes in groundwater fluxes 

such as water depletion and recharge. However, these changes can be captured by the 

GRACE data over large spatial extent. We then normalized the daily EWT by its mean 

value from January 2004 to December 2009 grid cell by grid cell to produce normalized 
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EWT (Si) by following the same normalization procedure used in the GRACE data 

(http://grace.jpl.nasa.gov/data/gracemonthlymassgridsoverview/). Considering that the 

footprint of GRACE signals is ~200,000 km2 (about 4° by 4°) (Longuevergne, Scanlon, 

and Wilson 2010) and the GRACE data are believed to have large uncertainty for 

resolutions < its footprint (Long, Longuevergne, and Scanlon 2014, Longuevergne, 

Scanlon, and Wilson 2010), we aggregated the 1° GRACE data to 4° and then downscaled 

the 4° data to 0.125° using the following method. The 0.125° normalized EWTs from the 

LSMs were aggregated to 4.0° to match with the 4°GRACE grid, using area as a 

weighting factor as: 

𝑆𝑆𝑀𝑀 =
∑(𝑆𝑆𝑖𝑖 × 𝑎𝑎𝑖𝑖)

∑𝑎𝑎𝑖𝑖
=
∑(𝑆𝑆𝑖𝑖 × 𝑎𝑎𝑖𝑖)

𝐴𝐴
 

(3.4) 

where 𝑆𝑆𝑀𝑀 (mm) is the 4.0° LSM normalized EWT; 𝑎𝑎𝑖𝑖 (m2) is the area of the 0.125° grid 

cell i; A (m2) is the total area of the 4.0° grid cell containing the 0.125° grid cell i. The 

difference between the 4.0° LSM normalized EWT and 4.0° GRACE normalized EWT 

(𝑆𝑆𝐺𝐺) represents the bias (B) of the modeled EWT if we treat the GRACE data as “truth”: 

𝐵𝐵 = 𝑆𝑆𝑀𝑀 − 𝑆𝑆𝐺𝐺 (3.5) 

The total water volume offset (𝐵𝐵 × 𝐴𝐴) between the model and GRACE data were 

further distributed to the 0.125° grid using water volume as weight: 

𝑏𝑏𝑖𝑖 =
𝐵𝐵 × 𝐴𝐴 × 𝑆𝑆𝑜𝑜𝑜𝑜 × 𝑎𝑎𝑖𝑖

∑(𝑆𝑆𝑜𝑜𝑜𝑜 × 𝑎𝑎𝑖𝑖)
𝑎𝑎𝑖𝑖

=
𝐵𝐵 × 𝐴𝐴 × 𝑆𝑆𝑜𝑜𝑜𝑜
∑(𝑆𝑆𝑜𝑜𝑜𝑜 × 𝑎𝑎𝑖𝑖)

 

(3.6) 

where 𝑏𝑏𝑖𝑖  is the bias of the 0.125° model EWT; and 𝑆𝑆0𝑖𝑖  is the pre-normalized 0.125° 

model EWT. Since the GRACE data is a monthly composite product and different 

number of daily measurements is used for different months to calculate monthly values, 
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the bias 𝑏𝑏𝑖𝑖 is treated as the bias in the middle of a month. Then linear interpolation is 

applied to produce daily bias values for each grid cell. Finally, once the bias 𝑏𝑏𝑖𝑖  is 

subtracted from 𝑆𝑆𝑖𝑖, we can obtain the 0.125° bias-corrected daily EWT (𝑆𝑆𝑖𝑖′): 

𝑆𝑆𝑖𝑖′ = 𝑆𝑆𝑖𝑖 − 𝑏𝑏𝑖𝑖 (3.7) 

This downscaling method preserves the accuracy of the GRACE data and 

provides that the summation of the 0.125° bias-corrected EWT over any 4° GRACE grid 

cell is equal to the original 4° GRACE value at the same grid cell. Moreover, this 

downscaling method produces a finer resolution, continuous daily EWT series. The 

monthly water storage change (∆Sm) in month m at grid cell i is derived as the difference 

between bias-corrected daily EWT value on the last day of a given month and on the last 

day of its previous month as: 

∆𝑆𝑆𝑚𝑚 = 𝑆𝑆𝑖𝑖′(𝑑𝑑𝑚𝑚) − 𝑆𝑆𝑖𝑖′(𝑑𝑑𝑚𝑚−1) (3.8) 

where 𝑑𝑑𝑚𝑚 and 𝑑𝑑𝑚𝑚−1are the Julian days of months m and m-1, respectively. 

 Since we downscaled the GRACE data using the outputs from four LSMs, we 

correspondingly produced four sets of 0.125° ∆𝑆𝑆𝑚𝑚 and monthly actual ET. The four sets 

of data form an ensemble. We used the ensemble mean as the final product. Hereafter, 

the reconstructed ET and downscaled ∆𝑆𝑆𝑚𝑚  denotes their ensemble means except as 

otherwise noted. To quantify the uncertainty in the reconstructed ET due to difference in 

the model outputs, we applied the commonly used ensemble standard deviation (SD), i.e. 

ensemble spread, as a metric: 

𝑆𝑆𝑆𝑆 = �
1

𝑀𝑀 − 1
� (𝐸𝐸𝐸𝐸𝑚𝑚 − 𝐸𝐸𝐸𝐸����)2

𝑀𝑀

𝑚𝑚=1
 

(3.9) 
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where 

𝐸𝐸𝐸𝐸���� =
1
𝑀𝑀
� 𝐸𝐸𝐸𝐸𝑚𝑚

𝑀𝑀

𝑚𝑚=1
 

(3.10) 

and M (=4) is the number of ensemble members. Considering that there is only one set of 

precipitation and runoff data, the ensemble spread of ∆𝑆𝑆 is essentially the same as that of 

ET according to equation (3.1). 

  

Evaluation of the water balance based ET  

To evaluate the reconstructed ET values using the subbasin water balance 

approach, we compared the ET estimates with three data sets of ET estimations with 

reported good quality. One ET data set is produced by a remote sensing driven process-

based algorithm (Zhang et al. 2010), the second data set is a data-driven, upscaled eddy-

covariance flux measurements from the global FLUXNET work using a sophisticated 

machine learning method (Jung et al. 2010), and the third data set is the MOD16A2 global 

ET product (Mu, Zhao, and Running 2011). All of the three ET data sets are widely 

assessed and used in the atmospheric and earth sciences community (Cai et al. 2011, 

Wang and Alimohammadi 2012, Zeng et al. 2012), and are treated as benchmark ET 

products in some studies (Swenson and Wahr 2006, Zeng et al. 2012). 

  



53 

Three statistical variables were used to measure the similarity between the three 

products, including mean difference (MD), root mean square difference (RMSD) and the 

coefficient of determination (R2). The mean difference is defined as the average 

difference between the estimates to be evaluated (yi) and the estimates to be compared 

against (xi): 

MD =
∑ (𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 

(3.11) 

where n is the sample size.  RMSD is used to measure the closeness between two ET 

products and defined as: 

RMSD = �∑ (𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 

(3.12) 

The R2 coefficient is used to evaluate the covariance between the two estimates of ET.  
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3.3. Results 

3.3.1 Downscaled EWT and its Spatiotemporal Patterns 

 Figure 3.2 shows the normalized regional mean EWT values over the CONUS 

and its twelve hydrologic regions from Apr. 2002 – Sep. 2013 using the original monthly 

GRACE data, the original model daily EWT, and the downscaled daily EWT. Although 

there are some discrepancies between the GRACE data and the original ensemble mean 

of EWT from the NLDAS-2 LSMs, the mean of model results shows a generally good 

agreement with the GRACE data in terms of the seasonality and interannual variability 

(Figure 3.2). It is clear that the downscaled daily EWT matches the original GRACE data 

quite well with the added benefit of improved resolution using the model-based 

downscaling technique (Figure 3.2). The EWT series shows a clear, consistent seasonality 

with peak values falling between February and April when snow storage reaches 

maximum values and with minimum values around September when air temperatures are 

high accompanied by low seasonal precipitation in most hydrological units of the 

CONUS (Figure 3.2).  It also shows large inter-annual variability; the difference between 

the highest water storage and the lowest water storage during the twelve years is about 

180 mm, which is equivalent to 1,055 km3 of liquid water. The min-max spreads of the 

original model water storage and the downscaled GRACE data (grey areas in Figure 3.2) 

are generally narrow with relatively large spreads in few months in a couple of 

hydrological regions, e.g. the Northwest and Southeast regions (Figure 3.2), indicating 

that the difference between the NLDAS-2 LSMs water storage data are subtle in these 

large regions. 
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Figure 3.2 Time series of monthly terrestrial water storage change over CONUS and 
its twelve hydrologic regions from the original and land surface model-based 
downscaled GRACE data from 2002 to 2013; the downscaled data are the ensemble 
mean, while the grey area denotes the min-max ensemble range. 

 The spatial pattern of the eleven-year (Apr 2002-Mar 2013) mean water storage 

change shows that most of the CONUS had very small water storage changes (Figure 

3.3(a)), indicating most of these areas are in a water storage balanced state. However, 

some areas in the southern CONUS (e.g. eastern Texas and western Louisiana) and 

central Minnesota show negative multi-year water storage change, implying that these 

areas have lost water in the past twelve years. The loss of water storage in these areas is 

largely attributed to groundwater depletion and recent drought episode (Freshwater 

Society 2013, Long et al. 2013). In contrast, part of Florida shows a small gain of water 

storage during the past eleven years (Figure 3.3(a)). 
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Figure 3.3 Spatial patterns of ground and satellite observed multi-year (from Apr 
2002 to Mar 2013) mean annual (a) ensemble-mean terrestrial water storage change 
(ΔS), (b) precipitation (P), and (c) runoff depth (R). 
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3.3.2 Spatial Patterns of Water Budget Terms in CONUS 

 Spatial patterns of ground-observed, twelve-year mean annual precipitation and 

annual runoff depth are shown in Figure 3.3. The mean annual precipitation displays a 

clear spatial gradient in which annual precipitation gradually decreases from the 

Southeast US to the Midwest and to the Rocky Mountains, and then increases from the 

Rocky Mountains to West Coast (Figure 3.3(b)). The spatial pattern of runoff depth is 

very similar to that of precipitation with a correlation coefficient of 0.84 (P<0.001); the 

west and east coasts of the US and the Southeast have the highest annual runoff, while 

the Rocky Mountains and the Great Plains have the lowest annual runoff (Figure 3.3(b)). 

The similarity between the spatial patterns of precipitation and runoff indicates that 

precipitation is the major controlling factor of runoff. 

 

3.3.3 Evaluation of Water Balance-based ET Reconstruction and its Spatial Pattern 

 Multi-year average annual ET from the ensemble mean of water balance-based 

reconstructions (ETRecon; Figure 3.4(a)) is compared with the remote sensing-based 

estimate (Zhang et al. 2010) (ETZhang; Figure 3.4(b)), the data-driven upscaled estimate 

(Jung et al. 2010) (ETJung; Figure 3.4(c)), and the MOD16 ET product (ETMu; Figure 

3.4(d)). ET estimates from all four methods show similar spatial patterns. ET is the 

highest in the Southeast and decreases westward and northward, and reaches its minimum 

in the interior of the Intermountain West such as the deserts in Nevada. ET increases 

again from the Intermountain West to the West coast (Figure 3.4). Although ETRecon has 

a similar pattern as those of precipitation and runoff, the correlation coefficient of ETRecon 
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and precipitation is 0.72 (P < 0.001); i.e., weaker than that of runoff and precipitation. 

This is because ET is not only largely controlled by precipitation but also impacted by 

other factors such as land-cover type, radiation, humidity, wind speed, temperature, etc.   

 

Figure 3.4 Spatial patterns of multi-year average annual ET from (a) the ensemble 
mean of water balance based reconstructions, (b) a remote sensing based estimate 
(Zhang et al. 2010), (c) the data-driven upscaled estimate (Jung et al. 2010), and (d) 
the MOD16A2 product (Mu, Zhao, and Running 2011). 

 The uncertainty in the reconstructed ET resulted from the difference in the four 

LSMs outputs is generally small (Figure 3.5): the mean ensemble spread of the 

reconstructed ET is less than 9 mm/month for 79% of the study region, and the largest 

ensemble spread is less than 30 mm/month. The regions with relatively large ET 

ensemble spread are mainly located in the coastal areas and part of the Midwest, while 

the other regions have generally small uncertainty spread, indicating that the four LSMs 

have generally compatible spatial patterns of water storage (Figure 3.5).  
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Figure 3.5 Mean ensemble spread of the reconstructed monthly ET. 

The four sets of ET estimates across the 592 CONUS sub-basins show very 

similar spatial gradients (Figure 3.4), although some differences can be noticed. For 

example, the ETRecon in this study generally has higher values than the other three 

products in the Southwest (Figure 3.4). The inter-comparison between the four ET 

estimates show high correlations indicated by the high R2 values (≥0.74). The mean 

difference between these ET estimates for the 592 basins ranges from 6.8 to 96.5 mm yr-

1 (Figure 3.6). The RMSD between the four ET estimates varies between 64.4 and 146.3 

mm yr-1 (Figure 3.6). It is notable that the ETRecon values show higher similarity and 

correlation with ETZhang and ETJung relative to ETMu (Figure 3.6a, b, c). In addition, the 

ETZhang and ETJung values are very close to each other and show similar quality. Although 

the two prior estimates were produced by different approaches, they used similar 

climatology and remote-sensing data (Jung et al. 2010, Zhang et al. 2010). This may 
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explain why these two products have very similar results across the CONUS. The 

generally close spatial patterns and small differences between the four ET estimates from 

different approaches indicate the high accuracy and robustness of these ET estimates. In 

other words, the water balance-based ET reconstruction conducted in this study is valid. 
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Figure 3.6 Inter-comparisons (a) between mean annual ET estimates from the 
ensemble mean of water balance based reconstruction (ETRecon) and the remote 
sensing based estimate by Zhang et al. (2010) (ETZhang), (b) between ETRecon and 
the data-driven upscaled ET estimate by Jung et al. (2010) (ETJung) , (c) between 
ETRecon and the MOD16A2 ET by Mu, Zhao, and Running (2011) (ETMu), (d) 
between  ETZhang  and ETJung , (e) between ETZhang and ETMu, and (f) between 
ETJung and ETMu across 592 CONUS basins; black solid circles are basin-level 
mean annual ET, while grey error bars denotes interannual variability (standard 
deviation) of basin-level annual ET. 
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To assess the effectiveness of our downscaling method and the importance of 

monthly terrestrial water storage change, i.e. the ∆𝑆𝑆 term, in the water balance based ET 

estimate, we produced two additional sets of monthly ET records: one is the water balance 

based ET reconstruction by resampling the 1° GRACE data onto the 0.125° grid using 

the nearest neighbor method (ETResample), while the other is the ET estimate as the 

difference between P and R (ETP-R). It is clear that the ETResample shows substantially 

poorer agreements with the three independent ET records than the ETRecon in terms of the 

scatterplots and the R2 and RMSD metrics (Figure 3.7a-c). This suggests that using the 

1° GRACE data without downscaling it to derive sub-basin level ET, in particular for 

regions that are less than 1° by 1°, will result in additional uncertainty and erroneously 

abnormal results as shown in Figure 3.7a-c. In other words, our downscaling method has 

effectively disaggregated the coarser GRACE data to finer (0.125°) resolution, resulting 

in good-quality ET reconstruction. ETP-R also shows degraded agreements with the three 

ET records similar to ETResample in terms of the R2 and RMSD metrics (Figure 3.7d-f). 

Like the results of ETResample, the derived ET by ignoring the ∆𝑆𝑆 term can also result in 

erroneous and abnormal values such as negative values and erroneously high values as 

shown in Figure 3.7d-f. Therefore, it is important to account for the ∆𝑆𝑆 term in order to 

provide accurate monthly ET estimates using the water balance approach. The 

downscaling approach implemented in this study is capable of disaggregating the coarser 

GRACE EWT to finer resolution to achieve reasonably good estimates of ∆𝑆𝑆 for sub-

basins that are even smaller than the footprint of the GRACE data. It is worthy to note 

that ETRecon, ETResample, and ETP-R all have generally higher values than the three 

independent remote sensing based ET products, suggesting that these remote sensing 
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based ET products may tend to understate the actual ET considering these products don’t 

explicitly account for water balance closure and the effect of P on ET. 

 

Figure 3.7 Same as Figure 3.6, but for (a-c) intercomparison between the water 
balance based ET reconstruction by resampling the 1° GRACE data onto the 0.125° 
grid (ETResample) and the three independent ET records, and (d-f) intercomparison 
between the ET reconstruction by ignoring change in water storage (ETP-R) and the 
three ET records. 
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 We further investigated the agreement of seasonality among the four ET 

estimates, the ETRecon and the three independent ET records, by comparing their twelve-

year mean monthly profiles. The results show that all the four ET estimates show similar 

monthly profiles with peak values in July when solar radiation, temperature and plant 

growth reach their peaks and with minima in January when solar radiation and 

temperature reach their minima and most plants are dormant in the CONUS (Figure 3.8). 

Despite these similar monthly profiles, there are some noticeable differences. For 

example, the ETRecon has generally higher values than the other three products, especially 

in the summer months. These differences imply that the existing three ET products may 

tend to underestimate the actual ET, because the existing ET products do not explicitly 

quantify some hydrological processes during the frozen periods such as sublimation and 

snowmelt that impact the ET, and the existing ET products can be also affected by satellite 

signal saturation during the peak of growing season. It is also notable that ETMu tends to 

have lower seasonal variability than the other products indicated by its higher minimum 

values and smaller peak values. In the rest of the months, ETRecon, ETZhang and ETJung 

products have similar values, while ETMu have generally lower values than the other 

products (Figure 3.8).  
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Figure 3.8 Comparison of mean monthly profile of actual ET from the ensemble 
mean of water balance based reconstructions, remote sensing based estimate (Zhang 
et al. 2010), data-driven upscaled estimate (Jung et al. 2010) and MOD16A product 
(Mu, Zhao, and Running 2011). 
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3.4. Conclusion and Discussion 

 In this study, a new actual ET product across the CONUS has been derived from 

high quality satellite and ground observations, including the PRISM precipitation data, 

USGS observed streamflow data, and GRACE water storage data that has been 

downscaled using land surface models. This data set covers 73% of the CONUS and is 

available from Apr. 2002 to Sep. 2013. To our knowledge, this is the first study that 

derives decadal, continuous monthly ET values across the CONUS from observations 

using the subbasin water balance method. The method is unique in that it is 

observationally driven so that ET is computed as the residual in the water balance 

equation. This differs from past methods and models that often estimate ET using 

approximate methods and then compute the storage term as the residual in the water 

balance. The wide availability and accuracy of the GRACE observations enabled us to 

adopt a new approach in the terms of the water balance equation. The new ET product 

derived in this study shows high similarity with three existing, high quality ET products 

across the CONUS, indicating the reliability of the approach.  Since the new ET product 

is derived from observations, it can be regarded as a benchmark data set to evaluate the 

existing and new model-based ET products. Moreover, we downscaled the GRACE data 

with the aid of four LSMs to produce a continuous daily equivalent water thickness 

dataset with a spatial resolution of 0.125º and converted the USGS observed streamflow 

data to runoff depth. All the above products can serve as important hydro-meteorological 

data sets for assessment of hydrological and climatological changes, and evaluation of 

terrestrial water and energy cycle dynamics across the CONUS. These products will be 
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also valuable for studies and applications in drought assessment, water resources 

management, climate change evaluation, and so on. 

 Although this new ET product is derived from ground and satellite observations, 

there are several limitations with this approach and the product. Further study is needed 

to thoroughly address these limitations. First, the reconstructed ET from the water balance 

method is a basin-mean product and correspondingly has variable spatial resolutions 

depending on the area of each individual sub-basin. For example, the area of the 592 

basins in this study ranges from 292 km2 to 303,700 km2. To produce gridded data, 

physical or statistical methods need be developed to disaggregate the areal-average ET to 

individual grid cells; the distributed hydrologic models and land surface models may be 

useful for this.  

Second, the ET reconstruction method does not account for the impacts of water 

transfer in or out of the sub-basins by human activities such as irrigation and inter-basin 

water diversions; therefore, the ET estimates in these areas heavily impacted by these 

human activities may have higher uncertainty. We derived a map showing these sub-

basins which have at least 10% of area controlled or affected by reservoirs and other 

human activities such as urbanization, mining, agricultural changes, and channelization 

using the USGS streamflow qualification codes for peak streamflow 

(http://nwis.waterdata.usgs.gov/nwis).  245 of the 592 basins have more than 10% area 

controlled by reservoirs, while 3 basins have more than 10% impervious cover due to 

urbanization, mining, agricultural changes, channelization, or other anthropogenic 

activities (Figure 3.9). These basins impacted by human activities are largely located in 

the Midwest (Figure 3.9). The stream flow interruption caused by human activities do not 
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affect the water balance-based ET reconstruction as long as no significant amount of 

water is diverted to another basin, because the ET in this study is derived on the basin 

level. However, the inter-basin transfer of water definitely can cause large errors in the 

water balance-based ET calculation. It is impractical for us to quantify the impact of the 

inter-basin transfer in this study due to lack of data. The general similar spatial patterns 

between ET derived in this study and the other three ET products from remote sensing 

and upscaled flux tower data in these basins impacted by human activities suggest that 

most of these basins do not experience substantial inter-basin transfer of water (Figure 

3.4 and Figure 3.9).  

 

Figure 3.9 Locations of sub-basins are impacted by reservoirs and other human 
activity such as urbanization, mining, agricultural changes, and channelization. 
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Third, the ET estimate is directly calculated as the residual of all other water 

budget terms and inherits the measurement and processing errors in all other water budget 

terms. For example, some studies shows that the GRACE water thickness data can have 

an error of 2-3cm (Landerer and Swenson 2012). Although the evaluation of the PRISM 

precipitation shows a near zero bias over the CONUS but may have relatively larger errors 

in some regions (Daly et al. 2008). Finally, the availability of the ET reconstruction using 

this approach is limited by the availability of the measurements of the other water budget 

terms. However, the observation-based ET estimate in this study presents a best available 

ET estimate from the high quality observations. Therefore, there is strong reason to 

believe that this ET estimate is close to the “truth”. 
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Chapter 4: Big data solutions enabled web GIS-based hydrological 

modeling framework for the conterminous United States 

 

 Hydrological modeling is widely applied in hydrologic research and practices 

through synthesis and simulation of hydrologic processes. Setting up and executing stand-

alone hydrologic models can be difficult due to data limitation and lack of expertise. The 

objective of this study is to develop an automated and web accessible hydrological 

modeling framework for any non-hydrologists, as long as with internet access, who can 

organize hydrologic data, execute hydrologic models, and visualize results graphically 

and statistically for further analysis in real-time. By adopting Hadoop Distributed File 

System (HDFS) and Apache Hive, the efficiency of data processing and query was 

significantly increased. Two lumped hydrologic models, lumped Coupled Routing and 

Excess STorage (CREST) and Hydrological MODel (HyMOD), were integrated as a 

proof of concept in this web framework. Evaluation of selected basins over the 

conterminous United States (CONUS) were performed as a demonstration. Our vision is 

to simplify the processes of using hydrologic models for researchers and modelers, as 

well as to unlock the potential and educate the less experienced public on hydrologic 

models. 
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4.1 Introduction 

As an important type of environmental modeling, hydrological modeling serves 

as an approach to conceptualize and investigate land surface and underground processes, 

which involves water and energy circulations, water resources management, and impacts 

of climate change (Leavesley 1994, Wood et al. 1997). Synthesis and simulation of any 

combinations of surface and groundwater processes are used as key tools in hydrological 

modeling to understand hydrologic processes by recurring historical events and 

predicting possible future occurrences (Viessman and Lewis 2003). Since forcing and 

output data from hydrologic models comprise heterogeneous geospatial data, desktop and 

web-based geographic information systems (GIS) are being used for data processing, 

analysis, visualization, and sharing (Bhatt, Kumar, and Duffy 2014, DeVantier and 

Feldman 1993). Some pilot studies have been conducted in this direction using desktop 

GIS with hydrological modeling. Van Der Knijff, Younis, and De Roo (2010) 

demonstrated the LISFLOOD model, which is a combination of a distributed hydrologic 

model with GIS for water balance study and flood simulations. Bhatt, Kumar, and Duffy 

(2014) introduced a modeling framework coupled Quantum GIS (QGIS) platform with 

Penn State Integrated Hydrologic Model (PSIHM) to provide effective functions 

including watershed delineation, simulation, and visualization. 

However, in order to share modeling framework and collaborate with people 

distantly, it is inadequate to manage by stand-alone GIS based hydrological modeling 

framework; therefore, web technologies are adopted in such applications. Huang (2003) 

integrated TOPography based hydrological MODEL (TOPMODEL) into a web modeling 

and visualization system using web map service to allow user interacting with 
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environmental applications. The well-accepted Web-based Hydrograph Analysis Tool 

(WHAT) is another example using GIS to access real-time U.S. Geological Survey 

(USGS) streamflow data directly from web servers for visualization and validation (Lim 

et al. 2005). Comair et al. (2014) presented a GIS based hydrologic information 

framework to store and share hydrologic data, execute hydrologic model, and convey 

simulation results to stakeholders for better water resources management and decision-

making. V. Boyina et al. (2015) implemented a hydrologic web-mapping application 

using GIS resources and meteorological observations to improve visualization and 

analysis process for hydrological modeling. Mantas, Liu, and Pereira (2015) created a 

web application for accessing earth observation data, which features online data 

visualization and analysis system, web services, and mobile applications. 

Over the past decade, the advancement of satellite and ground observation 

technologies have been witnessed, which includes improvement on both spatial and 

temporal resolutions of these products. This improvement in return transforms 

spatiotemporal data sets in earth science studies into data sets with larger volume, higher 

update rate, and heterogeneous data types and formats. These kinds of revolution bring 

difficulties for web-based implementations of using these data due to time limit. One 

study disclosed that users of web applications are very sensitive to responding time in a 

matter of seconds (Galletta et al. 2004). With big data being involved in web-based 

hydrological modeling framework, solutions such as distributed file systems and high-

performance computation are incorporated into such framework. Li, Yang, et al. (2013) 

developed a web-based system for high-performance analytics and visualization of big 

spatiotemporal data and climate model simulations. Hu, Cai, and DuPont (2015) coupled 



73 

an agent-based system with an environmental model and embedded it into a web 

application enabled by Hadoop-based high-performance computation to facilitate solving 

complex problems for watershed management. 

Although previous studies pointed out different approaches of using GIS and web 

technologies with diverse types of modeling systems, none of them tried to create a 

general-purpose web-based hydrological modeling framework with big data solutions to 

cope with heterogeneous hydrologic data and models for non-hydrologist. In this study, 

a GIS enabled web-based framework is implemented to integrate different hydrologic 

models with the support of big data solutions. Hydrologic forcing data are initially 

organized, processed, and stored in the framework. By using HDFS and Apache Hive 

data infrastructure, the operation time for data processing, query, and input/output (IO) 

are reduced notably. Two lumped hydrologic models, lumped CREST and HyMOD 

rainfall-runoff models, are incorporated as a demonstration of such framework. 

Evaluations are conducted on selected basins over the CONUS. The following section 

demonstrates the implementation of this web framework and introduces the integrated 

hydrologic models. Sections 4.3 and 4.4 provide details of the data used in the framework 

and results from multi-basin evaluation and performance evaluation. Sections 4.5 and 4.6 

are the discussion and conclusions related to this framework, respectively. 
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4.2 Method and Material 

In this study, a web GIS-based hydrological modeling framework is created with 

HDFS and Hive to support data query, model execution, and results analysis and 

visualization, which consists of three components: data sources, servers with models, and 

user interface (Figure 4.1). The next sub-section introduces the structure of this web 

framework and two integrated hydrologic models will be described in Section 4.2.2. 

 

Figure 4.1 The architecture of the web GIS-based hydrological modeling 
framework. 

 

4.2.1 Web Framework Implementation 

Data sources 

USGS discharge data are used for hydrologic models calibration and validation. 

The data are downloaded programmatically using USGS water services 

(http://waterservices.usgs.gov/) as tab-separated values, which are ready to use in web 

environment. To execute hydrological models, such as lumped CREST and HyMOD, 

precipitation data and potential evapotranspiration (PET) data are required as forcing data 

http://waterservices.usgs.gov/
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in the same spatial and temporal resolutions. These gridded data are usually obtained from 

satellite observations or gauge based interpolation in the form of a data array containing 

data cells in both rows and columns mapping to corresponding longitude and latitude for 

each time step. When using file based method for data retrieving and calculation, most of 

the running time is consumed during the file opening and loading to memory phases if 

thousands of files needs to be opened and processed at the same time (e.g. loading and 

processing more than 3650 data files for fine-resolution CONUS wide 10-year daily 

precipitation data). To the best of our knowledge, data query and management will also 

be problematic with gridded data files because no effective query language or other 

techniques have been published to work directly with large amount of data files. A 

possible workaround is to convert the data files, transfer them to HDFS, and store them 

into Hive. 

 

Server structure 

Apache Hadoop, which is an open source programming framework, consists of 

MapReduce and HDFS to provide solutions to store, process, and manage large data sets 

(Borthakur et al. 2011, Polato et al. 2014). MapReduce is an architecture to divide data 

and tasks (“map” module) and run them with parallelization in a distributed computing 

environment (“reduce” module) (Bhosale and Gadekar 2014, Hu, Cai, and DuPont 2015). 

HDFS is a file storage system built on top of Hadoop framework to facilitate high 

performance file services with high reliability and scalability (Borthakur et al. 2011, 

Shvachko et al. 2010). As another component of Hadoop framework, Apache Hive serves 

as a data warehouse infrastructure that structures data into common database paradigm 
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and provides a language similar to Structured Query Language (SQL) for data query and 

management (Thusoo et al. 2010). In this study, precipitation data are in binary format 

and PET data are in Hierarchical Data Format (HDF) format originally. However, both 

of them have the same daily temporal resolution and a similar structure that contains 

metadata and array-like data values. The precipitation and PET data originally have 

different spatial resolutions and they are projected to 0.125o before they are used in the 

web framework. Converting the gridded precipitation and PET data to comma-separated 

values (CSV) format is straightforward. Each row of data in CSV file represents one year 

of data for a specific location (i.e. a data cell in the gridded file). Although, the size of 

CSV file is larger than the same amount of data stored in binary or HDF format, CSV is 

one of the standard format to transfer data to Hive data infrastructure and the size of data 

will be compressed after stored in Hive. The coordinate index and the year number are 

inserted to each data row as a unique identifier of that row. The coordinate index is 

calculated as in the following equation: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
(90 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) × 360

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2
+

180 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 
(4.1) 

where cLat and cLon are the latitude and longitude of a given grid cell, respectively and 

dRes is the data resolution. All the given values and variables in the equation above have 

a unit of degrees; dRes is set to 0.125 in the study. As a result, it is possible to convert 

coordinates of every grid cell of any data with any resolution in this way and it is 

reversible to determine the coordinates of a grid cell from the coordinate index. This 

mechanism of data format ensures that the web framework is scalable to accommodate 

any gridded data with any spatial and temporal resolution by design. Converted 
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precipitation and PET data are transferred to HDFS and imported into Hive by web 

Application Programming Interfaces (API). 

 

Implementation and user interface 

A five-node computer cluster is configured as a testbed for the web framework, 

including three nodes for HDFS and Hive, one node for data calculation and model 

execution (computation server), and one node for website deployment (web server). 

Apache HTTP Server is deployed on the web server to host the web portal of this 

hydrological modeling framework and handle all communications between users and 

other servers. Hydrologic models are converted to Python programming language 

(Rossum 1997) and capsulated as an individual web program with standardized data input 

and output. The converted hydrologic models are invoked through FastCGI (Fast 

Common Gateway Interface), which is a protocol defined for communications between 

servers and FastCGI programs (Adida 1997). The web portal is built with basic hypertext 

markup language (HTML) and JavaScript and the results are visualized with open-source 

JavaScript libraries. 

Users are provided with several ways to select a basin of interest from the web 

portal (Figure 4.2). Once a basin is selected, the web server is going to communicate with 

the computation server to search for calculated areal mean precipitation and PET data for 

the selected basin. If the basin has been previously calculated by another or the same user, 

the current user will be notified to proceed to the next step. If the basin is never selected 

for simulation, precipitation and PET data on Hive will be queried and retrieved for the 
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selected basin. The retrieved data are then sent to computation server and areal mean 

precipitation and PET are calculated for each time step: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷������� =
∑(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 × 𝑎𝑎𝑖𝑖)

∑𝑎𝑎𝑖𝑖
 

(4.2) 

where 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷������� is the areal mean precipitation or PET; Datai refers to precipitation or PET 

data value of the ith grid cell in a given basin and ai is the area of the ith grid cell. Once 
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the areal mean values are calculated, it is stored on the computation server for repeated 

use. 

 

Figure 4.2 Web interface of the proposed modeling framework and its options for 
users to select their basins of interest in the framework: (a) selection from the map 
by clicking the basin’s corresponding gauge point, (b) selection from a list of gauges 
or by searching gauge information (as shown in the red rectangle in Figure 4.2(b)). 

 Multiple options are provided for date range selection, model selection, and model 

parameters input (Figure 4.3). Data for executing the models are currently provided 

between January 2000 and December 2013. Default parameter values for both lumped 
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CREST and HyMOD models are provided for selected basins. These values are retrieved 

by model calibration using Markov Chain Monte Carlo (MCMC) parameter optimization 

method (Metropolis et al. 1953) for the time period from 2001 to 2005 inclusive; right 

after a warm-up time period of the year of 2000 to abate the uncertainty in initial 

conditions and balance the soil state in models (Xue et al. 2015). The maximum Pearson 

correlation coefficient (CC) is used as single objective function to perform automatic 

hydrologic calibration. These model parameters are adjustable within given ranges and 

detailed information is provided in the next sub section. 

 

Figure 4.3 User input box for date range and model parameters. 

Model execution and results visualization are automatic after user issues 

command to the web server. The results are visualized for each selected hydrologic model 

(Figure 4.4), including a hydrograph displaying plots of observed and simulated discharge 

and precipitation rates versus date, a panel showing statistical metrics for user defined, 

calibration, and validation time periods separately, and functionalities, such as zooming-
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in to a time period and mouse-over hydrograph for instantaneous values of observed and 

simulated discharge, precipitation, and date. 

 

Figure 4.4 The results from executing both lumped CREST model (top panel) and 
HyMOD model (bottom panel) for a selected basin. Each panel contains four 
sections: (1) hydrograph section, (2) zoom-in section, (3) statistics section, and (4) 
mouse-over value section. 
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4.2.2 Hydrologic Models 

This web GIS-based hydrological modeling framework is designed to 

accommodate any hydrologic models. Two commonly used lumped hydrologic models, 

lumped CREST and HyMOD models, are integrated into the framework as a proof of 

concept. Lumped hydrologic models treat the entire basin as a whole piece and no water 

is routed inside the target basin. Both of these two hydrologic models employ the same 

precipitation and PET data as their forcing data. 

 

Lumped CREST Model 

The lumped CREST (Coupled Routing and Excess Storage) model is a simplified 

version of grid based distributed CREST model (Wang et al. 2011, Xue et al. 2013), 

which was developed by the University of Oklahoma (http://hydro.ou.edu) and NASA 

SERVIR Project Team (http://www.servir.net). Lumped CREST computes the runoff 

generation components (e.g., surface runoff and infiltration) using the variable infiltration 

capacity (VIC) which is a concept originally presented in the Xinanjiang Model (Zhao et 

al. 1980, Zhao 1992) and later implemented in the VIC Model (Liang et al. 1994). After 

precipitation reaches the ground, some of the water evaporates into the atmosphere, 

whereas infiltration is split out of the excess rainfall through VIC curve. The rest of the 

excess rainfall is separated into overland excess rainfall (RO) and interface excess rainfall 

(RI) by using the saturated soil hydraulic conductivity (Wang et al. 2011, Zhang et al. 

2014). RO and RI are further routed through overland and interflow linear reservoirs 

respectively, which are controlled by the corresponding discharge multipliers. The 

summation of overland flow and interflow forms the total simulated discharge. Seven 

http://hydro.ou.edu/
http://www.servir.net)/
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parameters in lumped CREST model are provided to accept user input and used for model 

calibration. The descriptions and empirical ranges are given in Table 4.1 (Xue et al. 2013). 

Table 4.1 Parameters of lumped CREST model. 

Parameter Description Range 

PKE Multiplier to convert PET to actual evapotranspiration 
(AET) 0.1 – 1.5 

PIM Impervious area ratio 0– 0.2 

PWM Maximum water capacity of the soil layer (mm) 80 – 200 

PFC Saturated soil hydraulic conductivity (mm / day) to 
separate excess rain 

0 – 
2827.2 

LEAKO Overland reservoir discharge multiplier 0 – 1 

LEAKI Interflow reservoir discharge multiplier 0 – 1 

PB Exponent of VIC curve 0.05 – 1.5 
 

HyMOD model 

HyMOD model is a conceptual lumped hydrologic model for basin wide 

hydrologic simulation based on the Probability Distributed Model (PDM) (Wagener et al. 

2001, Moore 2007). This model consists of several quick release reservoirs and one 

parallel slow release reservoir operating at the same time (Zhang et al. 2013). 

Precipitation is first used to fill the water storage capacity and yield the AET, and then 

the excess rainfall is separated into quick and slow flows by the parameter Alpha. These 

quick and slow flows are routed through corresponding quick and slow release reservoirs 

with rates governed by rate parameters of quick and slow release reservoirs, respectively. 

The summation of quick and slow flows is the total simulated discharge. Five parameters 

in HyMOD model are provided to accept user input and used for model calibration. The 

descriptions and empirical ranges are given in Table 4.2 (Quan et al. 2015, Zhang et al. 

2013, Herman, Reed, and Wagener 2013). 
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Table 4.2 Parameters of HyMOD model. 

Parameter Description Range 

Cmax Maximum storage capability in basin (mm) 0 - 2000 

B Soil distribution parameter 0 – 2 

Alpha Quick/slow routing division parameter 0 – 1 

Kq Quick release reservoir rate parameter (day) 0.15 – 1 

Ks Slow release reservoir rate parameter (day) 0 – 0.15 
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4.3 Data and Study Area 

4.3.1 Data 

Discharge data, precipitation data, and PET data are imported into this web 

framework for a test run. As previously mentioned, discharge data are downloaded 

programmatically from USGS and they are daily mean discharge observations from 

gauge stations between January 2000 and December 2013. The units of USGS discharge 

data are originally cubic feet per second (cfs) and converted to cubic meter per second 

(cms). 

The precipitation data are produced by the PRISM (Parameter-elevation 

Regressions on Independent Slopes Model) group at Oregon State University 

(http://www.prism.oregonstate.edu). The product is daily, 4 km gridded estimate of 

precipitation for the CONUS based on observations from a wide range of surface stations 

with quality control and corrections (Daly et al. 2008). The PRISM interpolation method 

computes climate elevation regression for each grid cell, and stations entering the 

regression are assigned weights based primarily on the physiographic similarity of the 

station to the grid cell. The PRISM data is the official spatial climatological data of U.S. 

Department of Agriculture (USDA). In this web framework, all analyses were conducted 

with a spatial resolution of 0.125o. Therefore, the PRISM precipitation data were first 

aggregated from 4 km to 0.125o before imported and used in the web framework. 

The PET data were extracted from a global terrestrial evapotranspiration (ET) 

product, which adopted satellite remote sensing-based algorithms using a modified 

Penman-Monteith approach with normalized difference vegetation index (NDVI) based 

biome-specific canopy conductance to estimate canopy transpiration and soil evaporation 
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and using a Priestley-Taylor approach to estimate open water evaporation (Zhang et al. 

2015, Zhang et al. 2009, Zhang et al. 2010). The PET data are daily products, which were 

first aggregated from 8 km to 0.125o and then imported and used in the web framework. 

 

4.3.2 Study Area 

USGS gauge stations over the CONUS were used to perform an evaluation using 

this web framework. Wan et al. (2015) utilized a screening process to select gauge stations 

and a similar approach was adopted in this study. First, all selected gauge stations should 

have continuous daily discharge data between January 2000 and December 2013 and the 

data should be actual observation values instead of estimate values as well as not being 

disturbed by ice or other natural factors. Second, differences between USGS provided 

drainage areas of gauge stations and the areas derived from the 0.125o geographic grid 

should be less than 20%. Third, the drainage area of each gauge station should be larger 

than two 0.125o grid cells. After the screening process, only 323 gauge stations were 

chosen for further analysis (Figure 4.5). 
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Figure 4.5 Distribution of 323 selected USGS gauge stations and major river 
channels. The gauge stations are color coded by gauge areas using geometrical 
interval classification and river channels are classified by discharge rate (level 1 of 
river channels was intentionally assigned blank legend to reduce displayed river 
channels in the figure). From level 1 to 5, gauge controlled area and river discharge 
rate gradually increase. 
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4.4 Evaluations and Results 

4.4.1 Multi-basin Evaluation 

Multi-basin evaluation was designed to evaluate the functionalities of this web 

framework by sequentially executing web accessible lumped CREST and HyMOD 

models for each of the selected basins in a programmatic way with the same forcing data 

and time ranges. Nash-Sutcliffe coefficient of efficiency (NSCE), CC, normalized bias 

(BIAS (%)), and normalized root mean-squared error (RMSE (%)) were used as the 

statistical metrics to quantify model performance. NSCE values range from negative 

infinity to one, where one indicates perfect agreement between observed and simulated 

discharge data. The agreement decreases as NSCE values distance from one. CC values 

range between -1 to 1 inclusive and is used to measure the degree of linear relationship 

between observed and simulated discharge data with 1 being total positive correlation, 0 

being no correlation, and -1 being total negative correlation. The normalized bias assesses 

the relative difference between observed and simulated discharge data and normalized 

RMSE measures the mean error magnitude between these two data sets. Both normalized 

bias and RMSE favor of the optimal value of 0%. The equations for calculations of NSCE, 

CC, BIAS (%), and RMSE (%) are given in Equations (4.3) to (4.6), respectively. 

NSCE = 1 −
∑(𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖)2

∑(𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 𝑂𝑂𝑂𝑂𝑂𝑂�����)2
 

(4.3) 

CC =
∑(𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 𝑂𝑂𝑂𝑂𝑂𝑂�����)(𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 − 𝑆𝑆𝑆𝑆𝑆𝑆�����)

�∑(𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 𝑂𝑂𝑂𝑂𝑂𝑂�����)2 ∑(𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 − 𝑆𝑆𝑆𝑆𝑆𝑆�����)2
 

(4.4) 

BIAS (%) =
∑𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 − ∑𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖

∑𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖
× 100 

(4.5) 
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RMSE (%) =
�∑(𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖)2

𝑛𝑛
𝑂𝑂𝑂𝑂𝑂𝑂����� × 100 

(4.6) 

where Obs and Sim denote observed and simulated discharge data respectively; 𝑂𝑂𝑂𝑂𝑂𝑂����� and 

𝑆𝑆𝑆𝑆𝑆𝑆����� means the arithmetic mean of observed and simulated discharge data separately; i is 

the ith values of observed or simulated discharge data; n is the total number of pairs of 

observed and simulated discharge data. 

As aforementioned, automatic calibrations are applied for each basin using 

MCMC optimization method for the time period between 2001 and 2005 inclusive. The 

time period between 2006 and 2013 inclusive is used as validation period in this 

evaluation. 

Evaluation results are illustrated in this section and all the results are calculated 

and visualized by using this web framework. Figure 4.6 shows the distributions of 

statistical metrics of lumped CREST and HyMOD models with and without calibration 

for calibration and validation time periods. In general, both hydrologic models perform 

similarly to each other for both calibrated and uncalibrated cases during both time periods. 

The bottom, middle, and top lines of the box represent the 25th percentile, median, and 

75th percentile respectively, while the bottommost and topmost lines show the minimum 

and maximum values respectively. It is apparent that the distribution of NSCE shifts to 

higher values from uncalibrated results to those calibrated results (Figure 4.6a, b). 

Moreover, more than 75% of NSCE values are positive after calibration for both 

hydrologic models in both time periods. Likewise, the distribution of CC in the calibrated 

results also shifts to higher values with almost all positive values (Figure 4.6c and d). In 

addition, the mean and spread of normalized RMSE and bias decrease considerably after 
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model calibration is applied (Figure 4.6e, Figure 4.6f, Figure 4.6g, and Figure 4.6h). The 

similarity and changes in all statistical metrics indicate that both hydrologic models 

perform comparably and the automatic calibration method that was used to provide 

optimal parameters for both hydrologic models substantially improves model results in 

the web framework. 
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Figure 4.6. Comparison of statistical indices (NSCE, CC, RMSE (%), BIAS (%)) 
between Lumped CREST and HyMOD models before and after calibration during 
calibration and validation time periods. 
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 Further evaluations are conducted using model results after calibration to reveal 

more details. Figure 4.7 shows inter-comparisons between calibration and validation time 

periods for both lumped CREST and HyMOD models using CC and NSCE values 

calculated from observed and simulated discharge. The dotted vertical and horizontal 

lines divided each plot into four quadrants to separate positive and negative values. The 

dotted diagonal is the bisector of the first quadrant. Both models present high correlations 

between calibration and validation time periods for both CC and NSCE values. It is clear 

that only a small number of basins have negative values in CC and NSCE. HyMOD model 

presents a slightly higher correlation than lumped CREST model in both scenarios. 
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Figure 4.7 Comparison of statistical metrics (CC and NSCE) between Lumped 
CREST and HyMOD models after calibration between calibration and validation 
periods. 

 

4.4.2 Performance Evaluation 

 To facilitate fast data query, Apache Hive was used with the support of HDFS. A 

performance evaluation was developed to compare the execution time of SQL queries on 

both PostgreSQL and Hive. PostgreSQL is a commonly used relational database 
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management system (Herzog 1998). Queries were executed on both PostgreSQL and 

Hive against data with the same structure and volume, which comprised about 1.3 million 

converted PET data records over the CONUS. Pseudocode of the queries are listed in 

Table 4.3. Query 1 was a full table scan for the total number of data records. Queries 2 

and 3 were used to retrieve partial and all the data from table by using a year number as 

the filter and no filter, respectively. Queries 4 to 8 were filtering data retrieval process by 

using basin indices. “Basin_Guage_ID” used in Table 4.4 is an array of coordinate indices 

calculated by Equation (4.1) for target basins. For instance, if a basin covers an area of 

five grid cells which have corresponding coordinate indices of 1149854, 1152734, 

1155614, 1155615, and 1155616, the query is written as “Select * from table where index 

in (1149854, 1152734, 1155614, 1155615, 1155616)”. Five basins used in Queries 4 to 

8 ranged from small to large with an area of 1516, 5926, 28635, 158138, and 713200 

square miles (sq mi), and these basins were selected based on geometrical interval 

classification of the area of all 323 selected basins. 
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Table 4.3 Pseudocode and description of database queries. 

 Pseudocode Description 

Query 1 Select count (*) from table; Full table scan 

Query 2 Select * from table where year = 2005; Select partial data 

Query 3 Select * from table; Select all data 

Query 4 Select * from table where index in 
Basin_03345500; 

Select data from a basin with an 
area of 1516 sq mi 

Query 5 Select * from table where index in 
Basin_07185000; 

Select data from a basin with an 
area of 5926 sq mi 

Query 6 Select * from table where index in 
Basin_03377500; 

Select data from a basin with an 
area of 28635 sq mi 

Query 7 Select * from table where index in 
Basin_07263450; 

Select data from a basin with an 
area of 158138 sq mi 

Query 8 Select * from table where index in 
Basin_07022000; 

Select data from a basin with an 
area of 713200 sq mi 

 

The results of the performance evaluation are illustrated in Figure 4.8. Each query 

was executed consecutively on PostgreSQL and Hive for ten times separately. Maximum 

and minimum execution times were removed before calculating the mean execution time 

for each query. The reason for conducting the removal of max/min values was that the 

database system sometimes needs warm-up time for hard drive-memory data exchange, 

especially when the database is queried for the first time. Figure 4.8 shows a clear increase 

of query execution time in PostgreSQL as a function of the number of retrieved data 

records for the same type of queries, whereas the query execution time of Hive stays 

almost consistent for all queries in this evaluation. All the queries executed on Hive are 
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faster than these executed on PostgreSQL. Queries 6 to 8 executed on Hive were more 

than ten times as fast as these executed on PostgreSQL. 

 

Figure 4.8 Comparison of mean execution time between PostgreSQL and Hive for 
eight different SQL queries. 
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4.5 Discussion 

Although this web GIS-based hydrological modeling framework does not directly 

improve hydrologic models, it is designed to incorporate any hydrologic models or other 

type of models, such as geotechnical model SLIDE (Hong et al. 2015), through a web 

accessible environment to better serve hydrologic research and education. From research 

perspective, researchers can use this framework to select their basin of interest, time 

period, models, and parameters to execute models and attain results for evaluation and 

validation. From education perspective, this web framework provides pervasive usability 

for anyone with Internet access, making it possible for people without hydrology 

background to learn practical hydrological modeling and evaluation skills. With this plug-

in free web framework, users only need a modern web browser to dive in instead of taking 

time installing software, downloading data, or configuring models. 

 

4.5.1 Big data support 

Big data refers to any collection of data sets with large size, high complexity, and 

fast growth rate, which are usually difficult to be managed and processed by traditional 

databases or file systems (Kitchin 2013, Bhosale and Gadekar 2014, Fernández et al. 

2014, Vitolo et al. 2015). Initially, the precipitation and PET data used in this study are 

file based. The precipitation data are stored as binary files and each file contains daily 

data for one day, whereas the PET data are wrapped as HDF files and each file contains 

daily data for one year. It is also possible that other data formats will be used in the future 

when more models are integrated with different forcing data. With inconsistent file 

formats and structures, it is difficult to retrieve, query, and process these data in an online 
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environment, especially when thousands of data files need to be load and read for long 

time series.  

Big data solution is integrated to solve these problems by using HDFS and Hive. 

HDFS provides reliable and elastic distributed file storage and management, and Hive is 

capable of accommodating large data sets for high performance data query and 

processing. Another advantage of using Hive is that data will be highly compressed and 

data query speed will be significantly increased if a table is created and stored as ORC 

(Optimized Record Columnar) format (Huai et al. 2014). Data in this study were stored 

as ORC format which yielded approximately 85% decrease in data size and five times 

speedup in data query when comparing to the same data stored in regular Hive table. 

These characteristics of big data solution guarantee the ability of expanding this web 

framework to host much more data in the future. 

 

4.5.2 Data and Models Trade-off 

The precipitation and PET data originally have a spatial resolution of 4 km and 8 

km, respectively and both of them were aggregated to a lower spatial resolution of 0.1250 

before imported into this web framework. The major reason for downscaling forcing data 

to lower resolution is that this framework is not only established for applications in the 

CONUS, but also for global applications, especially in the data sparse areas/countries. 

For example, precipitation or PET data are only available at coarse spatial resolutions for 

some parts of Africa. In order to use this web GIS-based modeling framework globally, 

it is wise to adopt data with relatively fine spatial resolution as a test run and gradually 

migrate to high spatial resolution for data rich areas.  
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For this framework, it is possible to incorporate both lumped and distributed 

hydrologic models. Distributed hydrologic models are capable of maintaining spatial 

variabilities of basins, whereas model complexity needs to be considered to balance 

computation time and resolution of forcing and output data (Carpenter and Georgakakos 

2006). Theoretically, with better understanding of the dynamics of hydrologic processes, 

rapid development of computation technologies, and growing availability of fine-

resolution forcing data, the performance of distributed hydrologic models should exceed 

lumped hydrologic models. However, multiple studies concluded that distributed 

hydrologic models did not always outperform lumped hydrologic models due to 

uncertainties in hydrologic models, observation data, spatial characteristics of basins, and 

so forth (Grayson, Moore, and McMahon 1992, Liu and Gupta 2007, Reed et al. 2004, 

Khakbaz et al. 2012). For the simplicity of illustration, lumped CREST and HyMOD 

models were selected in this study rather than distributed hydrologic models. In addition, 

with the increase of spatial resolution of the forcing data, the computational efficiency of 

distributed models will decline much more than that of lumped models. As a result, 

lumped model will benefit the future studies when the web framework performance is 

examined using data with high spatial resolution. 

 

4.5.3 Scalability 

This web framework is created with scalability in mind in several aspects. First, 

this framework used free or open source software for implementation, including data 

infrastructure (Apache Hive), file system (HDFS), web server (Apache HTTP server), 

Python libraries (Numpy for calculation, h5py for HDF-related operation, Spotpy for 



100 

parameter optimization, and et cetera), and JavaScript libraries and extensions (Bootstrap 

for framework structure, Leaflet for map integration, D3 for general purpose 

visualization, and et cetera). For detailed information regarding aforesaid software, refer 

to Steiniger and Hunter (2013), Zavala-Romero et al. (2014), and Swain et al. (2015). 

With free or open source software, maintenance and further development of this 

framework is possible. Second, models integrated in this framework are not limited to the 

demonstrated ones. If a model supports gridded forcing data and can be directly used or 

recoded to be compatible with FastCGI, the model can be integrated into this web 

environment. Execution time of a new model should be evaluated beforehand because 

web applications are highly time sensitive. Third, data storage is optimized to incorporate 

data with different spatial and temporal scales by using coordinate index and adjusting 

data table structure. Fourth, since the entire web GIS-based hydrological modeling 

framework is built on top of big data enabled distributed file system and data 

infrastructure, the framework can be transferred to a computer cluster with any number 

of nodes. 
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4.6 Conclusion 

 The web GIS-based hydrological modeling framework proposed in this study, 

with big data support and modeling integration, provides a general purpose web 

accessible infrastructure for data storage, processing, hydrologic models execution, as 

well as graphical and statistical results visualization and evaluation. By adopting HDFS 

and Hive, the time consumption for processing and querying data declines drastically. 

Two lumped hydrologic models, lumped CREST and HyMOD rainfall-runoff models, 

were integrated in this web framework as a demonstration. 323 basins were selected over 

the CONUS to conduct the multi-basin evaluation. Both hydrologic models presented 

significant performance increase after automatic calibration. The statistical results for 

both models after calibration showed noticeable similarity between calibration and 

validation time periods. The objective is to facilitate the processes of using hydrologic 

models for researchers as well as the public and bridge the gap between complicated 

hydrological modeling education and the studious non-hydrologist. 

Future expansion of this web GIS-based modeling framework will incline towards 

three directions. For CONUS wide web modeling simulation, the framework will be 

deployed on more powerful cluster to accommodate data with higher spatiotemporal 

resolutions. Temperature data will be added to the framework for enabling snow module 

for both lumped CREST and HyMOD models. For web modeling simulation in data 

sparse areas/countries, such as regions of Africa, this framework will be examined for 

usability. For engaging different types of models, geotechnical SLIDE model will be 

added as an experiment. Given the elasticity of this web framework, it is conceivable that 
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different types of data and models could be incorporated for local, regional, and global 

wide simulations in various fields of studies. 
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Chapter 5: Overall Conclusion and Future Work 

 

5.1 Summary 

 Hydrological modeling has been widely used in hydrologic events predictions, 

water resources management, climate change evaluation, and hydrology education. The 

performance efficiency and results accuracy of hydrological modeling are always crucial 

to the users. Furthermore, sharing hydrological modeling framework, including the data, 

the models, and the results is the key to collaboration with researchers and non-

hydrologists to conduct research, solve problems, and educate people with interest in 

hydrology. As it is challenging to achieve the overarching goal by stand-alone 

hydrological modeling systems, a novel cyberinfrastructure is established in this 

dissertation to coordinate hydrologic data collection and organization, support hydrologic 

model integration and execution, improve model results aided by analytics and 

visualization, and share the whole framework to anyone with Internet access. 

 An approach of combining cloud-computing service with crowdsourcing method 

is employed to establish a cyberinfrastructure for flood events collection, on-demand, 

location-based visualization, and statistical analysis. It creates a network that could 

involve citizen-scientists participation, allowing the public to submit personal accounts 

of flood events to help the flood disaster community to archive detailed information of 

flood events, investigate past flood events, and get prepared for forthcoming flood events. 

This cyberinfrastructure delivers an opportunity to modernize the existing methods 

utilized by the flood disaster community ultimately to collect, manage, visualize, and 

analyze data with flood events. 
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 A new actual ET product across the CONUS is derived from high quality ground 

and satellite observations, including the PRISM precipitation data, USGS observed 

discharge data, and GRACE EWT data that has been downscaled using land surface 

models with an innovative and unique bias correction algorithm. This data set covers 73% 

of the CONUS and is available for eleven years. The CONUS-wide, decadal, and 

continuous monthly ET estimates are calculated by using water balance equation enabled 

by the wide availability and accuracy of the GRACE observations. The new ET product 

derived in this research shows high similarity with three existing, high quality ET 

products, indicating the reliability of the approach, which can be regarded as a benchmark 

data set to evaluate other ET products over the CONUS. Moreover, the downscaled the 

GRACE data, converted USGS observed runoff depth data, and the new reconstructed 

ET product can serve as important and valuable data sets for assessment in hydro-

meteorological studies and applications. 

 Lastly, a web GIS-based hydrological modeling framework is proposed with big 

data support and modeling integration to provide a general-purpose Internet accessible 

modeling infrastructure for hydrologic data processing and management, hydrologic 

models execution, and graphical and statistical results visualization and evaluation. By 

adopting big data solutions (i.e. HDFS and Hive), the efficiency for processing and 

querying data is increased considerably. Two lumped hydrologic models, lumped CREST 

and HyMOD rainfall-runoff models, are integrated in this web framework as a proof of 

concept. 323 basins has been selected with strict screening over the CONUS to perform 

the multi-basin evaluation. Both hydrologic models present significant improvement after 

automatic calibration. The statistical results for both models after calibration show 
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noticeable similarity between calibration and validation time periods. This web-based 

sharable hydrological modeling framework is developed for both researchers and non-

hydrologists and is believed to facilitate the processes of preparing and archiving 

hydrologic data, executing hydrologic models, and conducting analysis and visualization 

for hydrologic research and education.  
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5.2 Limitations and Future Work 

 The cloud service used in the flood disaster cyberinfrastructure is a free service 

provided by Google Fusion Table (GFT). This free cloud service has limits, such as 

maximum size of each Fusion Table, maximum capacity of each Google cloud account, 

maximum insertion size, maximum requests per day, and maximum response size per 

query. Some constrains have been resolved when GFT upgrades from version 1.0 to 2.0 

(Google 2015b). However, if other limits have been reached, it is always possible to find 

other paid cloud services. The flood cyberinfrastructure will be linked to real-time and 

archived ground and satellite observations, as well as model-simulated results, which will 

be beneficial as a validation method to engage more citizen-scientists. The elasticity of a 

cloud-based infrastructure also has potential to be applied to other natural hazards, such 

as droughts and landslides, at both global and regional scales 

 The limitations of the new reconstructed ET product are raised in the research. 

First, the reconstructed ET is a basin-mean product and correspondingly has variable 

spatial resolutions depending on the area of each individual sub-basin. Second, the ET 

reconstruction method does not account for the impacts of water transfer in or out of the 

sub-basins by human activities. However, the general similar spatial patterns between 

reconstructed ET and the other three ET products in these basins impacted by human 

activities suggest that most of these basins do not have substantial inter-basin transfer of 

water. Third, the ET estimates are calculated as the residual in water balance equation, 

which inherit the measurement and processing errors in all other water budget 

components. Finally, the availability of the ET reconstruction is limited by the availability 

of the observational measurements of the other water budget components. Further studies 
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can be conducted on the uncertainties of cross-basin water transfer and the error terms in 

water balance terms in ET calculation if related data are available. In addition, with 

different data source, it is possible to reconstruct actual ET estimates using the same 

methodology for basins lack of data in this study and perform further evaluation. 

 The web GIS-based hydrological modeling framework in this study is designed 

with capability to expand to other hydro-meteorological data with even higher spatial and 

temporal resolutions. For the model selection, only lumped hydrologic models are 

integrated in this framework. These are the tradeoffs among data availability, model 

complexity, and computation efficiency. The framework will eventually be applied at a 

global scale. Some regions in Africa do not have high-resolution data or lack of data for 

complicated models. It is wise to deploy the framework with relatively fine spatial 

resolution and simplified hydrologic models on our testbed with limited computation 

power. It is conceivable that the framework could be gradually migrated to high resolution 

with sophisticated hydrologic models in data rich areas, running on high performance 

clusters. Future research of this web GIS-based modeling framework will focus on three 

directions. First, the framework will be deployed on more powerful cluster to 

accommodate data with higher spatiotemporal resolutions in data rich areas, such as the 

CONUS. Evaluation will be performed on framework efficiency. Second, snow module 

for both lumped CREST and HyMOD models will be added and enabled, respectively. 

As a result, temperature data will be imported to the framework for snow module. Third, 

different types of models will be engaged and examined with this framework, including 

geotechnical model SLIDE. Distributed hydrologic models will also be evaluated with 

this web framework.  
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