
Y-MEANS CLUSTERING Vs N-CP CLUSTERING

WITH CANOPIES FOR INTRUSION

DETECTION

BY

SIVANADIYAN SABARI KANNAN

Bachelor of Engineering

 Madras University

Chennai, India

2002

Submitted to the faculty of the
Graduate College of the

Oklahoma State University
in partial fulfilment of
 the requirements for

the Degree of
MASTER OF SCIENCE

December 2005

ii

Y-MEANS CLUSTERING Vs N-CP CLUSTERING

WITH CANOPIES FOR INTRUSION

DETECTION

Thesis Approved:

Dr. JOHNSON P. THOMAS
 Thesis Advisor

Dr. G.E.HEDRICK

Dr. DEBAO CHEN

Dr. GORDON EMSLIE
 Dean of the Graduate College

 iii

ACKNOWLEDGEMENTS

There are many people who I would like to thank through out my graduate experience,

but two stand out as the most noteworthy and significant. These are my advisor Dr.

Johnson P. Thomas and Dr. Blayne E. Mayfield, who taught me the techniques of

programming.

The mediocre teacher tells.

The good teacher explains.

The superior teacher demonstrates.

The great teacher inspires.

 -William Arthur Ward.

Both the teachers inspired me. I thank my advisor for his continuous support throughout

my thesis work. I never had an easy question, but my advisor always had an easy answer.

He was always there to listen and give advice. He showed me distinctive ideas to

approach a research problem and the need to be determined to realize my goals. Without

Dr. Mayfield, I would not have come this far as far as software programming is

concerned. I also thank my other committee members, Dr. G. E. Hedrick and Dr. Debao

Chen for their timely suggestions and comments. I give my special thanks to Dr. Hedrick

who asked me good questions and enlightened me, when I had difficulties in answering

them during my final thesis presentation.

 iv

I have no words to express my gratitude toward my family: my parents Kannan and

Visalakshi for giving me life in the first place, for educating me with aspects from both

arts and sciences, for providing unconditional support and motivation to pursue my

interests. My brother, Shankkar for listening to my complaints and frustrations through

out my Masters program. Last, but not least, I thank my friends, who were always with

me during my tough times and worst struggles.

 v

TABLE OF CONTENTS

Chapter Page

I INTRODUCTION ..1

 1.1 Introduction...1

II INTRUSION DETECTION SYSTEMS (IDSs) � A PREVIEW5
 2.1 Types of IDSs..5

 2.1.1 Host-Based IDS ..5
 2.1.2 Network-Based IDS...7
 2.1.3 A Mixed Approach ..9

 2.2 Methods of Detecting Intrusions ..9
 2.2.1 Signature Detection...10
 2.2.2 Anomaly Detection...11
 2.2.3 Integrity Verification ..13

 2.3 Origin of Attacks...14
 2.3.1 External Threats..14
 2.3.2 Internal Threats...15

III LITERATURE REVIEW ..18
 3.1 Cell-Based Clustering..18
 3.2 Fuzzy Clustering for Intrusion Detection ...19
 3.3 Special Purpose IDSs and Anomaly Detection...20
 3.4 Autoclass Bayesian Clustering...22
 3.5 Clustering and Classification Algorithm-Supervised��������.22
 3.6 Graph Clustering and Graph Drawing..25

IV Y-MEANS CLUSTERING ...28
 4.1 Introduction...28
 4.2 K-Means Algorithm���������������������28
 4.3 Y-Means Algorithm...29
 4.4 Splitting Clusters ...30
 4.5 Merging Clusters ...31

V METHODOLOGY..32

 5.1 Data Set Assumption ...32
 5.2 Data Representation ..32
 5.3 Data Normalization ...33

 vi

 5.4 Basic Background Idea..34
 5.5 Optimizing Cluster..35
 5.6 Clustering Algorithm ..36

 5.6.1 Fixed Radius Clustering Algorithm..36
 5.7 Optimized n-Closest Points Algorithm ..37

 5.7.1 n-CP Clustering Algorithm ..38
 5.8 Dataset Descriptions..41

 VI EXPERIMENTS..44
 6.1 Performance Measures��������������������44
 6.2 Experimental Setup���������������������.45
 6.3 Experimental Results��������������������..48

 VII CONCLUSION ...52

 REFERENCES ..53

 vii

LIST OF TABLES

Table Page

1. Features in KDD Cup 19999Network connection records�...�������.43

2. Selected important 17 features out of 41 features in KDD-99 data set.�.��...47

3. Performance of nCP clustering Algorithm with Canopies���������48

4. Selected points from the ROC curves of the performance of each

Algorithm over the KDD Cup 1999 Data���..�������..����..49

 5. Time consumed by each algorithm on KDD-99 data set for
 cluster formation..51

 viii

 LIST OF FIGURES

Figure Page

1. The number of incidents reported to CERT/CC from year 1988 to 2002����..2

2. Communication clusters identified in the traffic matrix of a
 computer network �������������������������25

3. Y-Means Clustering Algorithm shown in a Flowchart �.���������...30

4. A cluster arrangement as a result of fixed width clustering algorithm ���.�...40

5. A cluster gap between the first two clusters in the ranked order..�������41

6. ROC performance curves for nCP and Y-Means Clustering �����..���.50

 1

CHAPTER I

INTRODUCTION

1.1 Introduction

Computer systems and networks have been shown to struggle from security

vulnerabilities and openness, regardless of their manufacturer, or origin. It is both

technically difficult and expensive to ensure that an information system will not be

harmed by attacks exploiting those vulnerabilities. This is the reason that intrusion

detection systems (IDSs) are vital to supervise and scrutinize systems for intruders during

their lifetime and to detect possible attacks against them [1]. A very wide range of

activity falls under this definition, including attempts to de-stabilize the network as a

whole, gain unauthorized access to files or privileges, or simply mishandling and misuse

of software.

 IDSs are the only means of detecting and responding to hostile attacks in a

reasonable amount of time. IDSs allow for complete monitoring of modern networks,

giving an organization real-time insight into threats to information systems [1]. Without

an IDS, an organization could be repeatedly attacked and compromised without anyone

realizing. IDSs are a non-invasive technology. If properly configured, they cannot harm

or disrupt normal business activities. Other security technologies (like firewalls) can be

 2

single points of failure that add significant risk when implemented. Below we examine

the different genres of IDS [1, 2].

Threats to network systems come typically from the malfunction of hardware or

software, or through malicious behavior by users of software. Promptly resolving

network incidents is very important, considering the huge costs of data loss and system

downtime [2, 3]. The abundance of computational resources makes the lives of computer

hackers easier. Without much effort, they can acquire detailed descriptions of system

vulnerabilities and exploits to initiate attacks accordingly. Statistics from CERT

Coordination Center (CERT/CC) [4], the most influential reporting center for internet

security problems, show that there was a dramatic increase of reported network incidents

to CERT/CC from 1988 to 2002, as illustrated in figure 1. This trend is expected to

continue, as the number of incidents in the first two quarters of 2003 reached 76,404,

nearly the total number of 2002.

Figure 1: The number of incidents reported to CERT/CC from year 1988 to 2002. (The
statistics are from http://www.cert.org/stats/cert stats.html#incidents. Please note that this
reference is from the web, which may not be authoritative enough)

 3

One should be aware of the fact that IDSs are not �THE� solution to the entire

network and organization threats and no security technology can be considered in that

way. This is because new attacks and intrusions evolve every other day and the IDS

technology should be made to learn and recognize these threats. The catalog of all known

attacks rapidly changes making this process of signature learning an intimidating task for

the IDS technology developers.

 In this work, we present a clustering framework for anomaly detection, where we

plot all the data points in a complete metric space. We then manipulate these data points

to create a learning pattern of structures called canopies. With this arrangement, we

determine the outliers by taking into the consideration their position and the region they

occupy. This requires a complex and costly pair-wise distance computation, which

becomes a tedious and time-consuming task when the dataset produces a high

dimensional metric space and an enormously large number of elements. We address this

complexity with a solution called �Canopies�. Canopies are the substructure of clustering

which lie in the metric space with the possibility of overlapping patterns. We have

devised an algorithm to work on these canopies to cut down the search and trim down the

costlier pair-wise distance computation substantially. The major and notable advantages

of our algorithm are its simplicity and running time efficiency. The devised algorithm

also eliminates the shortcomings of K-means algorithm which will be explained in a later

chapter. It also has the advantage of learning new intrusions by the use of proper training

process. We have compared our algorithm with Y-means clustering to depict the

detection and false alarm rate efficiency.

 4

In subsequent chapters, we present a detailed overview of IDS followed by the

categorical review of various clustering methods used in the past and a brief explanation

of their working. We next explain the K-means algorithm and its shortcomings followed

by a description of the Y-means clustering algorithm. In chapter 5, the basic background

idea, methodology, dataset description and detailed explanation of our algorithm is

presented. This is complemented by the findings and the results of our work depicted by a

Receiver Operating Characteristics (ROC) curve.

 5

CHAPTER II

INTRUSION DETECTION SYSTEMS (IDSS) � A PREVIEW

2.1 Types of IDSs

IDSs have matured to the point where there are essentially two types of IDs:

Network IDS (NIDS) and Host IDS (HIDS). Host IDS resides on one machine and

monitors that specific machine for intrusion attempts. More popular is the Network IDS,

which monitors traffic as it flows through a network en route to other hosts. One type is

not better than the other; each is appropriate for specific situations.

2.1.1 Host-Based IDS

Host-based IDSs (HIDSs) monitor for attacks at the operating system, application,

or kernel level. HIDSs have access to audit logs, error messages, service and application

rights, and any resource available to the monitored host. Additionally, HIDSs can be

application aware. They have knowledge about what normal application data looks like,

and what abnormal data looks like. They can monitor application data as it is being

decoded and manipulated by the actual application. The benefits that HIDSs enjoy stem

from this privileged access to the host [5].

 6

HIDSs are better able to determine whether an attack was successful. Malicious traffic

looks remarkably similar to normal traffic, for this reason NIDSs are notorious for

creating false alerts. On the other hand, HIDSs are more accurate at detecting genuine

intrusions because they do not generate the same volume of false positives as a NIDS.

HIDSs leverage their privileged access to monitor specific components of a host that are

not readily accessible to other systems. Specific components of operating systems, such

as passwd files in UNIX and the Registry in Windows, can be watched for misuse [5, 6].

There is too great a risk in making these types of components available to a NIDS to

monitor.

 HIDSs are in tune with the host they reside upon. They have deep knowledge

that is available only to an IDS that actually resides on the same computer that is being

monitored. Therefore, HIDSs can have specific knowledge about the host and the type of

activity that is normal for it. Traffic sent to the host might appear perfectly normal to a

NIDS, but be recognized by the HIDS as abnormal and malicious. For this reason, HIDSs

can discover attacks that a NIDS would not be able to.

Host-based IDSs do have some significant disadvantages. Because they reside on

the monitored host, they have a limited view of the entire network topology. HIDSs

cannot detect an attack that is targeted for a host that doesn�t have an HIDS installed. An

attacker can compromise a machine that lacks an HIDS and then use legitimate access to

a protected machine, and the HIDS would be none the wiser. To monitor for intrusion

attempts, the HIDS has to be placed on every critical host. This becomes cost prohibitive

as the number of hosts critical to the organization grows. Running IDSs at the host level

also means that you need to have an HIDS version available for every operating system

 7

we need to protect. If we have obscure versions of operating systems at any organization

or run legacy systems, we may not be able to provide the coverage even if your

organization can afford it [5].

HIDSs that rely on audit logs and error messages are essentially detecting attacks

after they have occurred, which can lead to all sorts of problems. Some attacks can

compromise the host before data is written to a log, effectively disabling the HIDS.

HIDSs rely on the host to facilitate communication to the intrusion analyst; therefore any

attack that can disable the host outright goes unnoticed [5, 6].

2.1.2 Network-Based IDS

Network IDSs (NIDSs) are placed in key areas of network infrastructure and

monitor traffic as it flows to other hosts. Network based IDS has grown in popularity and

outpaced the acceptance of HIDS. A Network IDS is more cost effective than an HIDS

because it can protect a large swath of network infrastructure with one device. With

NIDS, the intrusion analyst has a wide-angle view of what is happening in and around the

network. Monitoring for specific hosts or attackers can be increased or decreased with

relative ease [6].

A NIDS can be more secure and less prone to outages than an HIDS. The NIDS

should be run on a single hardened host that supports only services related to intrusion

detection, making it more difficult to disable. NIDSs lose the disadvantages of relying on

the integrity and availability of the monitored host, and are subsequently less prone to

unobserved outages.

 8

By not relying on the security of the host, NIDSs are not as prone to evidence

destruction as HIDSs. Because NIDSs capture data and store it on a different machine, an

attacker cannot easily remove the evidence of an attack.

NIDSs do have some disadvantages inherent in their design. NIDSs must be

extraordinarily proficient at sucking up large amounts of network traffic to remain

effective. As network traffic increases exponentially over time, the NIDS must be able to

grab all this traffic and interpret it in a timely manner. Currently, NIDSs must be

carefully placed and tuned to avoid situations where packet loss can occur. This can often

require placing several NIDSs downstream from a core router or switch [6, 7].

NIDSs are also vulnerable to IDS evasion techniques. Hackers have discovered

numerous methods for hiding malicious traffic in ways an NIDS cannot detect. One such

method takes advantage of the process that occurs when a network connection exceeds

the maximum allowable size for a packet. This is called fragmentation. When the host

receives these fragmented packets, it must reassemble them to correctly interpret the data.

Different operating systems reassemble the packets in different orders. Some start with

the first packet and work forward, whereas others do the reverse. Reassembly order is

insignificant if the fragments are consistent and do not overlap as expected. If the

reassembly overlaps, the results will differ from each other, depending on the reassembly

order. Choosing the correct reassembly order to detect a fragmentation attack can be

problematic for NIDSs [7].

Another method of IDS evasion is far simpler. Because a NIDS captures traffic as

it traverses a network, security measures intended to thwart eavesdropping can prevent a

NIDS from doing its job. Encrypted traffic is often use to secure Web communication

 9

and is increasingly becoming the norm for delivering confidential information. Attackers

can use this to their advantage by sending attacks in encrypted sessions, effectively

hiding their exploit from the NIDS�s watchful eye. Some NIDSs support features that

decrypt traffic before the IDS engine interprets it, but this option opens up a new

vulnerability that some organization may not be willing to accept [7].

2.1.3 A Mixed Approach

Both intrusion detection models ca be an effective component of a defense in

depth when properly configured and maintained. An important point to remember is that

we don�t have to choose one flavor of IDS exclusively. A NIDS has advantages that

enable it to protect large portions of network infrastructure reasonably well. An HIDS

offers fine tuned protection for mission-critical hosts.

Most organizations start their foray into intrusion detection with an NIDS. After

growing accustomed to intrusion detection they gradually place HIDSs on hosts that are

critical to day-to-day operation. This methodology gives complete intrusion detection

coverage for an organization [7].

2.2 Methods of Detecting Intrusions

IDSs have several methods of detecting intrusions at their proposal. Certain

techniques are better suited to monitoring for different types of intrusions; IDSs are likely

 10

to employ more than one variety of detection. Signature detection is the most accurate

technique of detecting known attacks.

2.2.1 Signature Detection

Signature detection identifies security events that attempt to use a system in a

non-standard means. Known representations of intrusions are stored in the IDS and are

then compared to system activity. When a known intrusion matches an aspect of system

use, an alert is raised to the IDS analyst.

Known representations of intrusions are termed signatures. Signatures must be

created to exactly match the characteristics of a specific intrusion and no other activity to

avert false positives. In an NIDS, a specific signature is created that matches either the

protocol elements or content of network traffic. When the NIDS detects traffic that

matches the signature, an alert is crafted. The Large ICMP Packet Remote Denial of

Service (DoS) attack for Internet Security System�s BlackIce Defender is an easy-to-

understand example [7, 8].

BlackIce Defender is a common personal firewall for home and small business

use. A security researcher found that sending an unusually large ICMP packet to a

machine protected by BlackIce would cause that machine�s remote host to crash. To

detect attacks against BlackIce, a signature was created to trigger on any ICMP packet

over 10,000 bytes [8].

When a signature matches an intrusion, an alert is always generated. In addition,

almost every type of malicious traffic can be identified by a unique signature. Therefore,

 11

most malicious traffic can be caught by an IDS using signature detection, but they are a

small minority and can be detected by other means.

Signature detection does have some limitations. It has no knowledge of the

intention of activity that matches a signature; hence it triggers alerts even if the traffic is

normal. Normal traffic often closely resembles suspicious traffic; hence NIDSs that use

signature detection are likely to generate false positives [7, 8].

Signature detection requires previous knowledge of an attack to generate an

accurate signature. This fact makes an IDS that utilizes signature detection as its only

means of monitoring blind to unknown attacks or attacks without a precise signature. In

some cases, the modification of a single bit is enough to cause an IDS to miss an attack

[7, 8].

New attacks require new signatures, and the rising tide of vulnerabilities ensures

that the signature bases will grow over time. Every packet must be compared to each

signature for the IDS to detect intrusions. This can become computationally expensive as

the amount of bandwidth increases. When the amount of bandwidth overwhelms the

capabilities of the IDS, it causes the IDS to miss or drop packets.

2.2.2 Anomaly Detection

Anomaly Detection detects misuse by measuring a norm over time and then

generating an alert when patterns differ from the norm. Anomaly detection comes in

many different forms.

 12

Anomaly detection can be used at the application level to monitor the activity of

users. The anomaly detection IDS gathers a set of data from the system activity of the

user. This baseline dataset is then deemed �normal use�. If the user deviates from the

normal use pattern, an alarm is raised. It can be used to monitor for privilege escalation

attacks. If a normal user account does not have privileged access to an important

operating system file, such as the SAM file in Windows operating systems, but is seen to

be accessing it readily, the IDS determines that potentially damaging activity has taken

place and generates an alert [9].

An anomaly detection IDS is more adroit at catching, sophisticated attackers. An

attacker can replicate a signature matching IDS in a controlled environment. The attacker

can test out potential intrusions and discover which ones the signature matching IDS will

notice. With an anomaly detection IDS, however, the attacker cannot predetermine which

intrusive activity will go unnoticed.

The key benefit of anomaly detection IDSs is that they do not rely on having

previous knowledge of an attack. As long as the IDS can determine that the attack differs

significantly from normal use, it can detect the attack.

Like signature detection, anomaly detection has some limitations as well. The

training period presents a problem for this method of monitoring for malicious use. You

must assume that the data collected in the baseline dataset is not malicious and is normal

activity. Anomaly detection can be prone to a relatively high degree of false positives.

Suppose a particular type of traffic is rare, but non-malicious and normal. If this traffic

was not captured when the IDS was generating baseline data, a false positive would be

generated when the IDS encountered the traffic. This is a major problem, because over

 13

time network traffic is composed of significant amounts of randomly occurring rare data.

This makes anomaly detection not as accurate and hence not as popular as signature

detection.

2.2.3 Integrity Verification

Integrity verification is a simple but highly effective means of monitoring for

intruders. It works by means of generating a checksum for every file on a system, and

then periodically comparing that checksum to the original file to ensure a change has not

occurred. If an unauthorized file change transpires, an alert is generated.

A large number of files on any system regularly change in the course of normal

operation. The integrity verification IDS must be carefully turned to avoid false positives.

The checksums need to be reset when legitimate changes occur.

Integrity verification can be used to detect Web page defacements. Attackers

often gain access to unpatched external facing Web servers and change the content the

Web server displays. An integrity verification IDS could be deployed to create

checksums and monitor specific Web page files. When the attacker changes the Web

page�s content, the checksum verification fails and the appropriate party is notified. The

files on an external facing Web site should not change frequently enough to create a

deluge of false positives. In addition, the IDS can be configured to automatically rollback

the file to its unaltered state.

Integrity verification has some limitations as well. The primary disadvantage with

integrity verification technology is that it requires access to sensitive files on the

 14

monitored host. This dictates that it be a strictly host-based IDS, meaning that it inherits

all the inefficiencies and drawbacks of an HIDS. In addition, the checksums can be

altered to match the adulterated original file, rendering the integrity verification IDS

useless. Storing checksums on a dedicated, hardened server can reduce the risk of this

occurring, but does not completely eliminate it [9].

2.3 Origin of Attacks

Threats to information resources come in a variety of forms. Security of

information can be compromised by very simple means. Although there are many threats

to digital infrastructure, this section focuses on network-borne threats that an IDS is

designed to monitor for.

Network-based threats can be separated into two categories:

! Internal Threats

! External Threats

Attack origins are important to the field of intrusion detection. We must know where

attacks are initiating from to deploy intrusion monitoring in the most effective locations.

A common statistic is that almost 80% of successful attacks are internal [9].

2.3.1 External Threats

One way of looking at the 80% statistic is that organizations are doing a pretty

good job of protecting from external threats. It is likely that the vast majority of

 15

attempted attacks are orchestrated from the external side and not the internal. The

overwhelming majority of these external attacks are unsuccessful, whereas most internal

attacks are executed with some degree of success.

This is not to downplay the risks external to an organization. It takes only one

small chink in the armor of an external defense to allow significant damage. A single

remotely exploitable host, be it a router, firewall, mail server, or any other externally

facing device, can cause serious harm. Although the compromised host may not be of

great value itself, an attacker can leverage access to the host to penetrate deeper within

the security layers. Attackers frequently utilize compromised externally facing hosts to

access internal devices that have less stringent security controls.

External security is often overlooked at organizations that feel they are not visible

public targets. Small- or medium- sized organizations make the mistake of thinking they

are not important enough for a hacker to target them. A hacker frequently scans the

Internet looking for hosts vulnerable to exploit code the hacker has previously acquired

or developed. The hacker is chiefly concerned with making use of a new exploit, instead

of actively targeting a host [9].

2.3.2 Internal Threats

Internal attacks represent the majority of successful attacks on network

infrastructure. Internal attacks can be damaging and far more difficult to discover. One

factor that aggravates the situation is company insiders having extensive working

knowledge of security controls and ample time to plan an attack. Insiders can leverage

 16

the legitimate access they already possess to gain unauthorized additional access to

systems.

Internal attacks are more difficult to detect than external attacks. This happens

when organizations are not monitoring the inside as heavily as the outside. An internal

attack may be the result of an employee gradually accumulating privileged access and

information over a period of years or decades.

The internal infrastructure can also be unintentionally opened up to threats by

uneducated or unsuspecting employees. Users can compromise internal security through

the installation of firewall- defeating peer to peer (P2P) file sharing and instant

messenger applications. Some P2P applications are packaged with spy ware or features

that silently enable the sharing of the entire hard drive. Proxy-aware instant messengers,

such as AOL Instant Messenger, can be used to slice through any open port on a

corporate firewall. Modern viruses are bundled with numerous attack payloads that can

open a system for the taking. Most non-technical users may be unaware that they are

creating a gaping security hole by going about their daily activity.

An IDS on the internal side can be used to detect both intentional internal attacks

and corporate policy violations. They can detect the signature of most P2P tools,

inappropriate Internet usage, and instant messengers. This is in addition to the expected

intrusion monitoring capability. These abilities make an internal IDS an extremely

powerful security application [9].

The line between internal and external is increasingly blurred by corporate

partnerships and the extranets that enable them. An attacker can hop from one extranet to

another, making the source of an attack difficult to discern. As more and more internal

 17

security breaches are discovered, organizations will seek to increase internal security in

the future.

 18

CHAPTER III

LITERATURE REVIEW

3.1 Cell-Based Clustering

Clustering is a well studied problem. However, the majority of work done is

intended to optimize clustering. While some do provide a mechanism to handle noise but

only to the extent of milding its affect on the overall quality of clusters. In more recent

work, clustering (or a closely related approach) has been used to locate outliers in

datasets [10-13]. An outlier is defined as an object with at least p fraction of the dataset is

farther than distance D from the object, where p and D are parameters specified by the

users [13]. They also propose an efficient cell-based approach for mining such outliers in

high dimensional data. [12], [13] opt for a local perspective and investigate the problem

of efficiently finding the top n outliers. They propose optimizations based on pruning

those partitions that cannot contain any outliers. The notion of a �cell� is closely related

to that of a cluster, and by their [12, 13] definition, dense regions cannot contain outliers.

Interestingly, in our domain of network traffic some DOS attacks do generate large

amounts of traffic and can possibly reside in dense regions.

Instead of a global perspective [13], Local Outlier Factor (LOF) [9] uses a local

perspective and locates outliers with respect to the density in the local/neighboring

 19

region. They illustrate the inability of conventional approaches to detect such outliers.

LOF has two short-comings: one, their approach is very sensitive to the choice of MinPts,

which specifies the minimum number of objects allowed in the local neighborhood

(similar to k in K-means Neighbor Natives); second, and more importantly, their

approach is not well-suited for very high dimensional data such as network traffic data.

[11] address the problem of mining outliers in high dimensional data. They calculate the

sparsity coefficient, which compares the observed and expected number of data points, in

�cubes" (spatial grid cells) generated by projections on the dataset. Their approach is

computationally expensive, while they do provide theoretical examples of data points that

are outliers in certain subsets of the feature space whose effect can possibly be offset by

�noise� in the complimentary subset. They provide no practical example of such a

scenario materializing; put another way they don�t empirically illustrate discovery of any

outlier which would have been missed by the current distance-based outlier paradigm.

[14] And [15] use clustering as an approximation of K-means Neighbor Natives to find

sparse clusters and label them as anomalous.

3.2 Fuzzy Clustering for Intrusion Detection

Because anomaly detectors looks for abnormalities, many of the data mining

techniques that seek to identify outliers in data become readily applicable. Hence many

researchers have explored applying data mining techniques to the problem of intrusion

detection. Lee et al., [16] performed experiments on sendmail system call data and

network tcpdump data. They used RIPPER [17] [18] to generate classifiers for these

 20

datasets. In another paper Lee et al., [19] describe how to use association rules and

frequent episode algorithms to guide the process of audit data gathering and selection of

useful features to build the classifiers.

Dokas et al., [20] have developed classification algorithms for intrusion detection.

These algorithms are designed especially for learning from datasets in which the class of

interest (i.e. the intrusion class) is significantly smaller than the class representing normal

behavior. In this body of work, the authors discuss various outlier detection schemes for

detecting network intrusions.

Dickerson et al., [21] developed the Fuzzy Intrusion Recognition Engine (FIRE)

using fuzzy sets and fuzzy rules. FIRE uses the Fuzzy C-Means Algorithm developed by

Bezdek [22] to generate fuzzy sets for every observed feature. The fuzzy sets are then

used to define fuzzy rules to detect individual attacks. FIRE does not establish any sort of

model representing the quiescent state of the system, but instead relies on attack specific

rules for detection.

3.3 Special Purpose IDSs and Anomaly Detection

The intuitively most appealing way of dealing with false positives is to build

�better� IDSs, which trigger less false positives. This is a challenging endeavor because

false positives are the result of multiple problems, including a lack of suitable audit

sources [23,24], harsh real-time requirements (which preclude a thorough analysis of the

audit data) [24,25], the problem that for some events (e.g., failed logins) it is undecidable

whether they constitute attacks [26,27], and the inherent difficulty of writing correct

 21

intrusion detection signatures [28-31]. A �better� IDS would have to address all these

issues, and a small number of research projects have attempted to do so. Examples of

IDSs that are less prone to false positives include the embedded detectors technology by

[32], a lightweight tool for detecting Web server attacks by [33], and a network-based

IDS that focuses exclusively on low-level network attacks [34]. Interestingly, all three

IDSs share two commonalities: first, they have public signatures that can be tuned to a

given environment, and second they are special purpose. Special purpose IDSs are

tailored toward detecting one class of attacks (e.g., Web server attacks), and they monitor

audit sources that are particularly suitable for this task. A drawback of special-purpose

IDSs is that they must be combined with other complementary IDSs to obtain

comprehensive coverage.

Clustering, or unsupervised learning, has attracted some interest [35�38] in the

context of intrusion detection. The interesting feature of clustering is the possibility to

learn without knowledge of attack classes, thereby reducing training data requirement,

and possibly making clustering based techniques more viable than classification-based

techniques in a real world setting. There exist at least two approaches. When doing

unsupervised anomaly detection a model based on clusters of data is trained using

unlabelled data, normal as well as attacks. The assumption is that the relative amount of

attacks in the training data is very small compared to normal data, a reasonable

assumption that may or may not hold in the real world context for which it is applied. If

this assumption holds, anomalies and attacks may be detected based on cluster sizes.

Large clusters correspond to normal data, and small clusters possibly correspond to

attacks. A number of unsupervised detection schemes have been evaluated on the KDD

 22

data set with varying success [35-37]. The accuracy is however relatively low which

reduces the direct applicability in a real network.

In the second approach, which is denoted simply as (pure) anomaly detection in

this paper, training data is assumed to consist only of normal data. Munson and Wimer

[38] used a cluster based model (Watcher) to protect a real web server, proving anomaly

detection based on clustering to be useful in real life.

3.4 Autoclass Bayesian Clustering

Autoclass [40, 41] is a Bayesian Clustering program developed by Peter

Cheeseman and his colleagues at NASA [39]. It automated the process of model selection

as well as the process of parameter estimation. By calculating the approximation of the

marginal density of data after the integration of the parameters, Autoclass compares

different models and uses Ocam Razer to favor models with less complexity.

3.5 Clustering and Classification Algorithm- Supervised (CCA-S) [42]

Clustering and Classification Algorithm � Supervised (CCA-S) is a data mining

algorithm, which is developed for detecting intrusions into computer network systems for

intrusion detection. CCA-S is used to learn signature patterns of both normal and

intrusive activities in the training data and to classify the activities in the testing data as

normal or intrusive based on the learned signature patterns of normal and intrusive

 23

activities. CCA-S differs from many existing data mining techniques in its ability in

scalable, incremental learning.

In CCA-S, a data record is considered as a data point in a p dimensional space.

Each dimension is either a numerical or a nominal variable, called predictor variable,

representing one attribute of the data. Each data point has also a label indicating the class

of the data record, called the target variable. For computer intrusion detection based on

signature recognition, the target variable is a binary variable with two possible values: 0

for normal and 1 for intrusive. CCA-S clusters data points based on two criteria: the

distance between data points, and the class label of data points. Only data points that are

close and same in their class label can be grouped together to form a cluster. Each cluster

represents a signature pattern for normal activities or intrusive activities, depending on

the class label of the data points in the cluster. Formally, each data point is a (p+1)-tuple

with the attribute variable vector X containing the p dimensions of predictor variables

and one target variable - Y. The training data set has N data points.

Step 1: Training (supervised clustering)

It takes mainly two steps to incrementally group the N data points in the training

data set into clusters.

1. Scan the training data and compute the relative importance of each prediction

variable with respect to the target variable. This step calculates the coefficient of the

correlation between each predictor variable Xi and the target variable Y. In addition, two

dummy clusters, one for normal activities and another for intrusive activities, are created.

The centroid of the dummy cluster for normal activities is denoted by the mean vector of

all the data points for normal activities in the training data set. The centroid of the

 24

dummy cluster for intrusive activities is denoted by the mean vector of all the data points

for intrusive activities in the training data set.

2. Incrementally group each point in the training data set into clusters. Given a

data point X, we find the nearest cluster L to this data point using a distance metric

weighted by the correlation coefficient of each dimension. If L has the same class label as

that of X, we group X with L; otherwise, we create a new cluster with this data point as

the centroid of the new cluster.

We then repeat the above steps until we process all the data points in the training data set.

Step 2: Classification

There are two methods to classify a data point X in a testing data set.

1. Assign the data point X the class dominant in the k nearest clusters which are

found using a distance metric weighted by the correlation coefficient of each dimension;

or

2. Use the weighted sum of the distances of k nearest clusters to this data point to

calculate a continuous value for the target variable in the range of [0, 1].

Step 3: Incremental update

The statistics from the correlation and the clustering are stored. When new

training data become available, each step of the training can be repeated for new data

points to update the clusters incrementally. An estimate of the computation cost of CCA-

S is provided here. Given N data points, and the total number of the resulting clusters L,

the computation cost for training is O (p*N*L). And the computation cost of classifying a

data point during testing is O (p*L). Hence, CCA-S is scalable to even large amounts of

training data. This tremendously increment the computation cost of the cluster algorithm.

 25

This can only be computed only when N data points and resulting clusters L are given.

3.6 Graph Clustering and Graph Drawing [43]

A graph is used as an abstraction of network traffic. Computers are represented by

nodes, communication between computers is indicated by edges, weighted by the amount

of exchanged data. Figure 2 shows such a clustering of a network.

Figure 2: Communication clusters identified in the traffic matrix of a computer network.

In this system, graph clustering algorithms are applied to the traffic graph.

Clustering decomposes a graph G= (V, E) into clusters Ci Є V, 0≤ i ≤ n-1, where C1 UC2

 26

U... U Cn = V and for all 0≤ i, j ≤ n-1: Ci ∩ Cj=Ø. This decomposition should represent

the internal structure of the graph. In the domain of network traffic, a cluster should

consist of nodes with a high inter-node traffic.

There are several possibilities to present the results of the graph clustering. One

approach is to present the results of the clustering process in lists. This form of

presentation has several disadvantages. It is not possible to achieve a general overview on

the current traffic structure in the network. Modifications of the structure are hard to

discover in the lists. Due to this, a graphical representation of the clustering results was

chosen.

Visualization of network traffic is an important task for planning and managing

large networks. Research is done on this item to provide network managers with an

insight to the usage of their systems. Most of these systems present traffic information in

a geographical way. The visualization of the traffic depends on the location of the nodes.

In this system, they�ve chosen to present the results of the traffic analysis in another way.

Their focus is on the structure of the traffic, and therefore they group nodes with strong

communication relations together without considering their geographic location.

This tool first places the clusters on the plane. The reader may note that the

clusters form a new graph. Two clusters are connected if nodes within those clusters are

connected by an edge. The clusters can be positioned using the Spring-Embedder. In a

second step the nodes with the clusters are placed. This visualization helps the security

manager to build his own opinion on messages from the event generator described in the

next section. A major problem in intrusion detection systems are so called false negatives

and false positives. The problem of any anomaly detection system is the fact, that

 27

anomalies in the behavior are not necessarily based on intrusions (causing false positives)

and intrusions do not necessarily cause anomalies in the system (leading to false

negatives). This visualization helps discovering false positives (alarms without attack). It

is easy to see, that there are more reasons for modifications in the traffic structure.

Changes in network topology, new network devices, start or end of projects are examples

for reasons for modifications in the typical structure.

The user of the visualization module is able to use his additional personal

knowledge to decide on the results of the event generating process. A special benefit of

this visualization is the possibility of displaying modifications of the traffic structure in

consecutive traffic matrices. Position and color of nodes indicate changes in their

membership of different clusters. It is easy to track varying cluster, giving information on

nodes that have changed their communication behavior. It is even possible to present

longer series of traffic matrix visualizations in the form of an animation, showing long

term behavior of the communication structure.

 28

CHAPTER IV

Y-MEANS CLUSTERING

4.1 Introduction

Y-means is one method clustering algorithm for intrusion detection. It is expected

to automatically partition a data set into a reasonable number of clusters so as to classify

the instances into `normal' clusters and `abnormal' clusters. It also overcomes the

shortcomings of the K-means algorithm.

4.2 K-Means Algorithm [46]

The simple definition is that K-means clustering is an algorithm intended to

categorize or congregate the objects based on features, attributes into K partitons or

clusters, where K always represents a positive integer. The classification of data is the

main purpose of the K-means clustering algorithm.

The process for K-means clustering and positioning the K centroids can be accomplished

by the following procedure:

1. Position the K points in the feature space represented by the dataset that are being

subjected to clustering. These plots set up the initial block of centroids

 29

2. Allocate each subsequent data point from the considered dataset to the group that

has the nearest centroid

3. In this manner, when all the points are assigned to the appropriate group, reassign

the K centroids by computing the mean of that group.

4. Steps 2 and 3 are repeated until the movement of centroids ceases. This result in

the partition of the datapoints into groups. The datapoints in a group represents

some sort of similarity if they remain in that logical grouping.

K-means clustering suffers from two major shortcomings: number of clusters

dependency and degeneracy. Number of cluster dependency is the value of k which has

to be supplied by the user and is very critical to the clustering result. Degeneracy means

that K-means clustering may end up in producing empty clusters that makes the

clustering process to give poor computational scaling.

4.3 Y-Means Algorithm [37]

Figure 3 illustrates the Y-means algorithm. Similar to K means, it partitions the

normalized data into k clusters. The number of clusters k can be a given integer between

1 and n exclusively, where n is the total number of instances. The next step is to find

whether there are any empty clusters.

If there are, new clusters will be created to replace these empty clusters; and then

instances will be re-assigned to existing centers. This iteration will continue until there is

no empty cluster. Subsequently, the outliers of clusters will be removed to form new

clusters, in which instances are more similar to each other; and overlapped adjacent

 30

clusters will merge into a new cluster. In this way, the value of k will be determined

automatically by splitting or merging clusters.

Figure 3: Y-Means Clustering Algorithm shown in a Flowchart

The last step is to label the clusters according to their populations; that is, if the

population ratio of one cluster is above a given threshold, all the instances in the cluster

will be classified as normal; otherwise, they are labeled intrusive.

4.4 Splitting Clusters

An outlier is a point that is quite different from the majority of the points in a

cluster. When Euclidean distance is used to evaluate the difference between two points,

an outlier is the point that is remote from the majority of points. Since the cluster center is

the mean vector of all the points in the cluster, and all points are assumed to have equal

weights, one can find outliers using the radius of points; that is, if the radius of a point is

 31

over the threshold, it is considered as an outlier. The idea of detecting outliers comes

from the theory of robust regression and outlier detection [7].

From the Cumulative Standardized Normal Distribution Function table in [2], it is

found that 99% of the instances of the cluster stay within the circle with a radius of 2.32

σ, where σ is the standard deviation of the data. Therefore, the chosen threshold is t=2.32

σ. The area within the circle is called the Confident Area of the cluster. Thus, in the

cluster any point that stays out of the Confident Area will be deemed an outlier, and the

remotest outlier will be removed first to form a new cluster. Then, this new cluster may

snatch some points from its neighbor clusters. In the Y-means algorithm, the splitting will

iterate until no outlier exits. The splitting procedure turns clusters into finer grains; and

makes the instances in the same cluster more similar to each other, while it increases the

number of clusters. However, it may partition the data set into too small clusters, i.e.,

over-splitting. In order to avoid the over-splitting, we can merge the overlapped adjacent

clusters.

4.5 Merging Clusters

When two adjacent clusters have an overlap, they can be merged into a larger

cluster. The merging threshold is set to 2.32 σ as well; that is, whenever there are some

points in a cluster's Confident Area also fall in another cluster's Confident Area, the two

clusters can be merged. The center of the new cluster can be obtained simply by

calculating the mean vector of the two previous centers.

 32

CHAPTER V

METHODOLOGY

5.1 Data Set Assumption

The input to the algorithm is a large set of data with normal elements in majority and

some attack data obscured within the data set. It can identify the unlabeled data and

uncover the intrusions to the best possible. In general Intrusion Detection Systems (IDS)

make two assumptions about the data set that trigger off the approach.

1. The number of normal data greatly surpasses the abnormal or attack data

quantitatively

2. The attack data differs from normal data qualitatively

The algorithm will work only when the assumptions hold over the data. The intrusion

detection algorithms will not be able to detect the malevolent behavior of an authorized

user of the network who meticulously uses it in a legitimate procedure.

5.2 Data Representation

The data input for the algorithm is collected from the audit stream of the system.

The audit data is represented as x1...xm. All possible input data are mapped to the space

called inner product space H, which as a metric space, is complete. This space is a real

 33

vector space of high dimension z. The use of using an inner product space is that we can

define the dot product between elements in the inner product space at any instance.

Hence we can also define distance as well as norm (what is norm?) on the space. This

inner product space with an inner product < f, g > such that norm is defined by

><= fff ,||

turns H into a complete metric space. If the metric defined by the norm is not complete,

then H is instead known as inner product space. Let the input data element x1 in the space

H be represented as H(x1). To determine the distance between any two elements x and y

in the input set, we can use the inner product space by determining the distance between

H(x) and H(y) as

 Distance (x, y) = | H(x) � H(y) |

 = ><+><−><)(),()(),(2)(),(yHyHyHxHxHxH

If the space is a Euclidean space then this distance represents the standard

Euclidean distance in that space.

5.3 Data Normalization

This work deals with an enormously large data set with numerous attributes. It is

difficult to determine weight values for the vectors representing attributes. It becomes

inevitable to cut losses by performing normalization on the data. This will minimize the

unnecessary mock weight on the attributes and will reduce the problem of biasing the

concentration on one particular attribute with a naturally larger magnitude than the other

attributes. Leaving the discrete and binary data that will not much influence the biasing,

 34

continuous data should be taken care of by appropriate technique. The continuous data

can be best normalized by replacing each attribute value with its distance to the mean of

all the values for that attribute in the input region. In our case to do this normalization the

mean and standard deviation vectors must be calculated:

 mean n = 1/m ∑
=

n

i
record

1
n

 deviationstd . n= ∑
=

=
−

mi

i
recordm

1
()1/(1 n� mean n) 2

 New recordn = (recordn - meann) / std.deviationn

5.4 Basic Background Idea

This input data set for this work is inherently large in three senses at once - there

are millions of elements, many thousands of features and many thousands of clusters. The

requirement for efficient solution is a technique for clustering that is efficient when the

problem is large in all of these three ways at once. Through a long literature survey and

several clustering techniques, we found a close matching algorithm which resolves the

problem of large data set to maximum extent. The technique is Efficient Clustering with

Canopies, [45] where the key idea is to perform clustering in two stages, first a rough and

quick stage that divides the data into overlapping subsets that are called �canopies�, then

a more rigorous final stage in which expensive distance measurements are only made

among points that occur in a common canopy. This differs from other clustering methods

in that it forms overlapping regions. We integrate this idea of forming canopies with K-

 35

Means Algorithm with an optimizing technique which we call �Optimized N-Closest

Points Algorithm�.

This algorithm determines if a test data point lies in the sparse region of the inner

product space H mentioned in the previous section by computing the sum of the distances

to the n-closest points to the test data point and this calculation assigns the weight which

will be referred as n-CP value. The inner product space H�s dense regions will have

numerous points close to each other and n-CP value will be less. If the point has high n-

CP value then it means that attack element will be far from the normal elements in the

inner product space which is checked by comparing with a threshold value. This idea will

determine exactly how closely the test data point fits with already existing normal data in

H space.

5.5 Optimizing Cluster

In this work, the canopy clustering technique is used specifically to chop down

the search in the large set of data into smaller overlapping subsets or canopies which

eliminates the necessity to check every data point. There should be a computational

shortcut to eliminate the data in linear time from large set of cluster data. The clusters are

used as a means to reduce the time consumed in finding the n-closest points. In other

words they are hyper spheres that contain data from the training data set. Canopy

clustering has a way to eliminate clusters without looking at the contents, thus drastically

shrink the computation time.

 36

In this work, the training data is clustered using fixed-width clustering algorithm.

One variation would be placing the data point in exactly one cluster. If the cluster radius

or cluster width is r and data are clustered in the vicinity of this radius, we can calculate

the n-closest points from a given test point p using the mathematical property of

inequalities. The data point p1 and p2 that are in the same cluster has the following

properties:

 Dist (p1, p2) ≤ 2(cluster radius)

 Dist (p1, p2) ≤ [dist (p1, centroid (p2)) + (cluster radius)]

 Dist (p1, p2) ≥ [dist (p1, centroid (p2)) - (cluster radius)]

5.6 Clustering Algorithm

The algorithm works in linear time to form the clusters from the input training

data set T. The point p is a point for which the distance is calculated to fit n-Closest

Points set nCP. C is the set of clusters. R is the cluster radius. Di is the distance from p to

the centroid of Ci.

5.6.1 Fixed Radius Clustering Algorithm

1. Set C = empty.

2. For all pt � T:

 (i) If there exists ci such that [Di < R], add pt to the cluster ci.

 37

 (ii) Else if C is empty or no ci exists such that [Di < R], build a new cluster cnew

and insert pt as its centroid.

At the start, an empty cluster set C is formed. T is the training set and each point

in the training set is taken into consideration in succession. A cluster radius R is decided

for the algorithm and this will serve as the cluster width for the entire process. When a

point pt from the training set T lies within the width of a cluster R, then that point is put

in that cluster, which means that point is the member of that cluster. If there is an empty

set of cluster or if the point falls out of the existing cluster within the cluster set C, then a

new cluster is generated with width R and point pt is the centroid of that new cluster.

Using this simple clustering algorithm, all the points in the training set are clustered.

5.7 Optimized n-Closest Points Algorithm

The canopy clustering overlapping strategy is followed here. The overlapped

cluster boundary is carefully assessed using the Cluster Gap G.

In this algorithm:

n = Number of closest points required

pt = The point from which n closest points are need to be computed

C = Set of clusters

R = Cluster width

G = Cluster gap

nCP = Set of n closest points

 38

Cp = Set of member points

Largest (nCP) = Element with the maximum value in the set nCP

Each cluster c from set C is comprised of the pair (c, D) where

c = Set of p points that lie within the cluster

D = Distance from the point pt to the centroid of cluster c

5.7.1 n-CP Clustering Algorithm

1. Let Cluster Gap G = 0, nCP value = 0, C0 = Ø, Cp = Ø

2. For pt, compute Di for each ci � C

3. Rank the clusters in C by from lowest to highest.

 (C = {c0, c1, c2, c3, c4...}

4. Do While (# (nCP) < n)

 (i) Take the closest cluster from the set C that is, first member c0 of the sorted set C

 (ii) Add all the points in c0 to C0.

 (iii) Compute distances from test data point p to all the points in C0 and drop them

in Cp

 (iv) Test if [(D1-R) <G] assign G = D1-R

 (v) Else assign G= D0+R

 (vi) Each pi � Cp where distance (pt, pi) < G

 a) If (# (nCP) < n) then insert from Cp to nCP

 39

 b) Else if (# (nCP) == n) and [distance (pt, pi) < Largest (nCP)] then insert

from Cp to nCP by replacing the Largest (nCP)

 (vi) Eliminate c0 from C

5. If nCP Value > IDS threshold broadcast it as an attack or intrusion else a normal data

First, to compute n-closest data points, the distance from a given data point pt to

all the cluster centroid from the cluster set C is determined. From the data obtained from

this computation, the clusters are ranked on the basis of their distances from lowest to the

highest. The first cluster in this sorted set has the label of closest cluster c0 in the set C

and the next will be c1, etc. Next computation is the distance from the point pt to all the

points in the closest cluster c0. This is shown in figure 4.These points belong to the set C0

and they are added to the list of member points, Cp.

After these computations, the algorithm proceeds with a concern on the

establishment of cluster gap G and the changes in the boundaries of the cluster. The

whole point of this boundary modification is to encompass the least number of points to

calculate the n closest points. The initial procedure of ranking the clusters results in a

limited ordering. This is because the algorithm works on the concept of clustering with

canopies and there could be overlapping. Drawing a boundary by means of cluster gap G

ensures that no other point of the clusters other than those added to the nCP set is closer

than the added ones. This optimizes the entire testing by checking only the points that

should be tested are tested.

It is really significant to leave out the overlapped parts by other clusters because

of the simple reason that they might include the points nearer to the point pt than the

points in the closest cluster.

 40

When the cluster gap G is first set up, the cluster c0 is examined to see if it has

overlapped the closer cluster c1. If that gives a negative result then distance to the furthest

point in the nearest cluster which will be (D0+R) is lesser than that of the closest point in

the next ranked cluster c1 n and that will be (D1-R). If the overlapping test is positive then

that shows there exist overlapping clusters. In that case the cluster gap is set to Di-R. This

is the intersecting point nearest to point pt. All the points within this boundary are closer

than any existing point in the cluster that has overlapped. This is shown in figure 5.

Figure 4: A cluster arrangement as a result of fixed width clustering algorithm

 41

Figure 5: A cluster gap between the first two clusters in the ranked order

On setting up this boundary, all the points of Cp within the determined boundary

are added to the nCP set. When the nCP set is maximized and the element with maximum

value in nCP is greater than the given point than Largest (nCP) is removed and the given

point is added. Then co is discarded by making c1 the co and c2 the new c1. When the nCP

set has n elements that will be the time to stop the iteration or else the iteration continues

until the nCP is maximized with n points.

5.8 Dataset Descriptions

The proposed algorithm will use the network connection records from the KDD

Cup 99 Data. The KDD cup data set can be obtained from http://kdd.ics.uci.edu

 42

/databases/kddcup99/kddcup99.html. This includes ample number of intrusions of

different kind simulated in a military network environment. It approximately consists of

4,900,000 data records. Each record is a vector of extracted feature weights collected

from the raw network data during the simulated intrusions. A sequence of TCP packets to

and from some IP addresses, starting and ending at some well defined times is said to be

a connection. All the connections are labelled as either normal or exactly one kind of

attack and these labels are assumed to be correct. The KDD data set was obtained by

simulating a large number of different types of attacks, with normal activity in the

background

The simulated attacks fall in one of the four categories namely:

• DoS � Denial of Service

• R2L � Unauthorized access from a remote machine

• U2R - Unauthorized access to super user or root functions

• Probing � Surveillance and other probing for vulnerabilities.

The anomaly algorithms used for intrusion detection are sensitive to the ratio of

intrusions in the data set. If the number of intrusions is too high, each intrusion will not

show up as anomalous. In order to make the data set more realistic many of the attacks

are filtered so that the resulting data set consisted of 1 to 1.5% attacks and 98.5 to 99%

normal instances. The KDD-99 data set has 41 fields to represent the network connection

records and those fields are listed in the table 1.

 43

Table 1: Features in KDD Cup 1999 Network connection records.

 44

CHAPTER VI

EXPERIMENTS

The experiments are performed over the KDD-99 data set. The network

connection records (KDD-99 Data Set) are analyzed to determine the performance of the

algorithm.

6.1 Performance measures

To evaluate the proposed algorithm two major indicators of performance: the

detection rate and the false positive rate are taken in to consideration. The detection rate

is defined as the number of intrusion instances detected by the system divided by the total

number of intrusion instances present in the data set. The false positive rate is defined as

the total number of normal instances that were incorrectly classified as intrusions defined

by the total number of normal instances. These are good indicators of performance, since

they measure what percentage of intrusions the system is able to detect and how many

incorrect classifications it makes in the process. These values over the labeled data are

calculated to measure performance.

 The trade-off between the false positive rate and detection rates is inherently

present in numerous machine learning methods. By comparing these quantities against

each other we can evaluate the performance invariant of the bias in the distribution of

 45

labels in the data. This is especially important in intrusion detection problems because the

normal data outnumbers the intrusion data by a factor of 100:1. The classical accuracy

measure is misleading because a system that always classifies all data as normal would

have 99% accuracy.

 A Receiver Operating Characteristic (ROC) Curve is an aggregate of the

probability of false alarms and the probability of detection measurements The ROC

curves are plotted depicting the relationship between false positive and detection rates for

one fixed training/test set combination. ROC curves are a way of visualizing the trade-

offs between detection and false positive rates.

6.2 Experimental Setup

For the selected data set, the data is split into two segments. One portion, the

training set, was used to set parameter values for the proposed algorithm and the second

portion, the test set was used for evaluation. The parameters are set based on the training

set. For our algorithm over the KDD-99 data set, the detection threshold is varied

successively and at each threshold, corresponding detection rate and false positive rate

are computed. Using this observation, a ROC curve is obtained.

 The parameter settings are as follows. For the nCP cluster-based algorithm with

canopies presented in this thesis, the cluster width of the fixed-radius clustering was set

to be 40. This value will differ depending on the size of the dataset and the chosen n

value.. It is generally around 0.5 percent of the chosen n value. However a reasonable

width should be set by testing for various values (around the said 0.5%) to achieve

 46

efficient processing time. Also choosing an inefficient width will not affect the detection

rate but the efficiency of the process. The clustering width is set in such a way that most

of the data is grouped together into clusters. If the cluster width is too small, then the data

is grouped together into many small clusters. If the cluster width is too large, then most of

the data is grouped into very few clusters. The n value of the nCP algorithm was set to

10,000 of the data set. The n is adjusted to the overall size of the data and it takes a value

that is around 1%-2% of the overall size of the data. This value also does not influence

the detection rate of the algorithm.

 The experiments were performed on the data set for various findings. The first

experiment was conducted by applying the algorithm on all the 41 features and then on

the selected 17 features [47] based on the importance of the fields. The detection

accuracy was obtained from both the tests. Each test involved training and testing phases.

The experiment with 17 features included the data reduction phase. In the data reduction

phase, important variables for intrusion detection were selected as described in [47] and

then the training and testing phases were conducted. The selected 17 features are listed in

the table 2.

 The second experiment analyzes the performance measure of both the Y-Means

algorithm and the nCP clustering algorithm with canopies technique. Both algorithms are

tested for their detection accuracy and false alarm rate to depict the advantages and

accuracy of my proposed algorithm. Here we compare our algorithm with Y-means

because both the algorithms are devised to avoid the shortcomings of the K-means and

strive to outperform the K-means algorithm, the basis concept for both the algorithms

compared here.

 47

duration
protocol-type

service
src_bytes

land
wrong_fragment

num_failed_logins
logged_in
root_shell

num_file_creations
is_guest_login

count
srv_count
serror_rate

srv_serror_rate
diff_srv_rate

dst_host_count

Table 2: Selected important 17 features out of 41 features in KDD-99 data set

The third and important experiment involves the analysis of time efficiency of the

proposed clustering algorithm with canopies technique to show the speed up of the

algorithm with the use of canopies compared to the basic K-Means and Random K-

Means algorithm. The random K-means algorithm differs from the basic K-means only in

the way; the centroids are placed in the first step. Basic K-means plots first n points as the

centroids and starts the iteration, whereas in random K-means clustering, n centroids are

chosen at random and then proceeds with the grouping iteration. This test would show the

time efficiency of the nCP clustering algorithm integrated with canopies concept. The

basis of this algorithm is K-means algorithm and we try to eliminate the shortcomings of

the K-means algorithm and make it more efficient than the K-means does. The efficiency

 48

is always measured and compared with the algorithm from which we derive or to which

we apply some optimization technique. Here such algorithm is K-means and so we

compare it with K-means algorithm.

6.3 Experimental Results

The approach of clustering technique integrated with the concept of canopies

performed well over the KDD-99 data set.

The results of the first experiment performed on KDD-99 data set with varying

number of network connection records features which in this case 41 and 17 are shown in

the table 3. The training and test comprises of 5092 and 6890 records. The detection

accuracy values clearly depict the increase in the accuracy level for each of the attack

class with maximum of 0.94% increase for the normal data values. This observation can

be used to increase the efficiency of the clustering algorithms that work on KDD-99 data

set.

 41 Variables 17 Variables
Attack Class Train(s) Test(s) Accuracy (%) Train(s) Test(s) Accuracy (%)
Normal 98.17 61.42 88.79 57.28 39.03 89.73
Probe 117.12 69.07 87.22 61.56 32.47 88.06
DoS 128.28 73.22 87.54 68.16 35.28 87.81
U2R 72.45 40.39 57.45 37.48 18.54 57.61
R2L 106.21 52.51 88.12 55.42 39.31 88.62

Table 3: Performance of nCP clustering Algorithm with Canopies

 49

 The performance of the nCP clustering algorithm is shown using the ROC curve

in the figure 6.1. The ROC curve of the nCP clustering shows the maximum detection

accuracy of 89% and false positive accuracy of 8%. The Y-Means clustering algorithm

gives the maximum detection accuracy of 86% and false positive accuracy of 2.72%. On

analyzing the ROC curve, the nCP clustering shows the higher detection rate than Y-

Means clustering algorithm at all selected points. However Y-Means clustering algorithm

has better false positive rate at all threshold points. Based on this observation it can be

concluded that nCP clustering with canopies algorithm has a better detection rate than Y-

Means clustering and the application that demands better false alarm rate can apply the

Y-Means clustering technique for intrusion detection.

Algorithm Detection Rate False Positive Rate
 nCP Cluster
 nCP Cluster
 nCP Cluster
 nCP Cluster
 nCP Cluster

 89.71%
 77.12%
 54.23%
 23.42%
 11.03%

 8.32%
 6.93%
 6.31%
 4.17%
 3.21%

Y-Means
Y-Means
Y-Means
Y-Means
Y-Means

 86.63%
 74.38%
 62.12%
 21.37%
 10.67%

 2.72%
 2.12%
 1.81%
 1.27%
 1.15%

Table 4: Selected points from the ROC curves of the performance of each algorithm over
the KDD Cup 1999 Data

 50

nCP Canopies Clustering Vs Y-Means Clustering ROC
Curve for KDD Cup 1999 Data Set

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5

False Positive Rate

D
et

ec
tio

n
R

at
e

nCP Clustering
Y-Means Clustering

Figure 6: ROC performance curves for nCP and Y-Means Clustering

The third experiment is performed on the KDD Cup 1999 data set to determine

the time efficiency of the nCP clustering algorithm compared to basic K-Means and

random K-Means Clustering. Time is computed from the start of the algorithm to the

stage that forms complete clusters of all the data records from the KDD Cup 1999 data

set. Total records of 19,514 records are passed to each algorithm and computing time is

measured till the complete cluster formation using all the input data records. Table 5

shows the results of this experiment.

 51

Clustering Algorithm Total Records Time Consumed
K-Means 19,514 314.12
Random K-Means 19.514 349.27
nCP with Canopies 19,514 248.34

Table 5: Time consumed by each algorithm on KDD-99 data set for cluster formation

The nCP clustering shows the higher time efficiency of 248.34 seconds with the

use of canopies clustering technique compared to K-Means and random K-Means

clustering. This observation leads to the conclusion that canopies technique speeds up the

process of cluster formation. K-Means clustering takes next position with the time

consumption of 314.12 seconds and random K-Means clustering consuming 349.27

seconds for total of 19,514 data records.

The fixed width algorithm takes the time complexity of O(n), where n denotes the

total number of data points. This algorithm can plot all the data points in single pass and

the running time is directly proportional to the total number of data points available for

clustering. The n-cp clustering also has the time complexity of O(n), where n represents

the total number of clusters available to break and grab the required n closest data points

that are necessary to compute the nCP score.

 52

CHAPTER VII

CONCLUSION

We have presented a clustering framework to detect intrusion and an algorithm

using the canopies concept to speed up the detection process. The data points are plotted

in a complete metric space to provide the mathematical ease in distance computation. The

canopies technique is efficiently used to form the complete clustering framework. A good

training dataset will provide a more orderly and superior basis for the algorithm to work

on the intrusions. The substructures called canopies appear also in an overlapping fashion

that forces the cluster gap to be well defined. The cluster gap is seriously considered and

recomputed on each iteration to speed up the process and produce more accurate results.

The algorithm was tested against the KDD Cup 1999 data set. The experimental results

show relatively high detection rate and low false alarm rate.

Future work in this project includes the improvisation in false alarm rate. The

proposed algorithm has a good false alarm rate but it is relatively higher when compared

to the Y-means algorithm. More accurate distance computation using a complex and

more reliable formula should bring a better false alarm rate. However this would increase

its complexity and the time efficiency.

 53

REFERENCES

[1] Stephen Northcutt, Judy Novak, Network Intrusion Detection: An Analyst's
Handbook (2nd Edition), Sams publishing, 2000.

[2] http://netsecurity.about.com/cs/hackertools/a/aa030504.htm (Last Referenced:
January 14, 2005)

[3] Tim Crothers, Implementing Intrusion Detection Systems: A Hands-On Guide for
Securing the Network, Wiley Publishing, Inc., 2002.

[4] Mark Cooper, Stephen Northcutt, Matt Fearnow, Karen Frederick, Intrusion
Signatures and Analysis, Sams publishing, 2001.

[5] http://www.windowsecurity.com/articles/Hids_vs_Nids_Part1.html (January 14,
2005)

[6] http://www.sans.org/resources/idfaq/what_is_id.php (January 14, 2005)

[7] http://www.sans.org/resources/idfaq/host_based.php (January 14, 2005)

[8] http://www.sans.org/resources/idfaq/network_based.php (January 14, 2005)

[9]http://www.sans.org/resources/idfaq/aint.php,
http://www.nwfusion.com/reviews/2005/ 013105rev.html (January 14, 2005)

[10] Breunig M., Kriegel H., Ng R. T., Sander, �LOF: Identifying Density-Based Local
Outliers�, Proceedings of the ACM SIGMOD Conference, pp. 24-31, 2000.

[11] Aggarwal C. C., Yu P S., �Outlier Detection for High Dimensional Data�,
Proceedings of the ACM SIGMODConference, pp. 45-49, 2001.

[12] Ramaswamy S., Rastogi R., Shim K., �Efficient Algorithms for Mining Outliers
from Large Data Sets�, Proceedings of the ACM SIGMOD Conference, pp. 13-21, 2000.

[13] Knorr E M., Ng R. T., �Algorithms for Mining Distance-Based Outliers in Large
Datasets�, Proceedings of the VLDB Conference, pp. 78-85, 1998.

 54

[14] Sequeira, K., Zaki, M.: Admit: Anomaly-based data mining for intrusions. In:
Proceedings of the 8th ACM SIGKDD international conference on Knowledge discovery
and data mining, Edmonton, Alberta, Canada, ACM Press, pp.386�395, 2000.

[15] Leonid Portnoy. �Intrusion detection with unlabeled data using clustering�,
Undergraduate Thesis, Columbia University, 2000

[16] Wenke Lee K., Salvator J. Stolfo, �Data Mining Approaches for Intrusion
Detection�, Proc. 1998. 7th USENIX Security Symposium, 1998.

[17] William W. Cohen, �Fast Effective rule induction�, Proceedings of the 12th
international Conference on Machine Learning, 1995.

[18] William W. Cohen, �Text categorization and relational learning�, Proceedings of the
12the International Conference on Machine Learning, pp. 112-118, 1995.

[19] Wenke Lee K., Salvator J. Stolfo, Mok K., �Mining Audit Data to build Intrusion
Detection Models�, pp. 56-64, Proceedings of KDD-98, 1998.

[20] Paul Dokas, Levent Ertoz, Vipin Kumar, Aleksandar Lazarevic, Jaideep Srivastava,
and Pang-Nig Tan, �Data Mining for Network Intrusion Detection�, Next Generation
Data Mining, pp. 23-34, 2002.

[21] John E. Dickerson, Jukka Juslin, Ourania Loulousoula, Julie A. Dickerson, �Fuzzy
Intrusion Detection�, IFSA World Congress and 20th North American Fuzzy Information
Processing Society (NAFIPS) International Conference, pp. 85-90, 2001.

[22] Bezdek J.C., Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum Press, New York, 1981.

[23] Price, K. E., �Host-based misuse detection and conventional operating systems�
audit data collection�, M.S. Thesis, Purdue University, 1997.

[24] Ptacek, T. H. and Newsham, T. N., �Insertion, evasion, and denial of service:
Eluding network intrusion detection�, Tech. Rep., Secure Networks, Inc., 1998.

[25] Ilung, K., Ustat K.M., �A real-time intrusion detection system for UNIX�, IEEE
Symposium on Security and Privacy, Oakland, CA, pp. 16�28, 1993.

[26] Bellovin, S. M., �Packets found on an Internet�, Computer Communications Review
pp. 23, 3, 26�31, 1993.

[27] Paxson, Bro V., �A system for detecting network intruders in real-time�, Computer
Networks, pp. 31, 23/24, 2435�2463, 1999.

 55

[28] Kumar, S., �Classification and detection of computer intrusions�, Ph.D. Thesis,
Purdue University, 1995.

[29] Lee, W., Stolfo, S. J., �A framework for constructing features and models for
intrusion detection systems�, ACM Transactions on Information and System Security, pp.
3, 4, 227�261, 1998.

[30] Mounji, A., �Languages and tools for rule-based distributed intrusion detection�,
Ph.D. Thesis, Facultes Universitaires Notre-Dame de la Paix Namur, Belgium, 1997.

[31] Ning, P., Jajodia, S., Wang, X. �Abstraction-based intrusion detection in distributed
environments�, ACM Transactions on Information and System Security, pp. 4, 407�452,
2001.

[32] Zamboni, D., �Using internal sensors for computer intrusion detection�, Ph.D.
Thesis, Purdue University, 2001.

[33] Almgren, M., Debar, H., AND Dacier,M., �A lightweight tool for detecting web s
rver attacks�, Network and Distributed System Security Symposium, pp. 157�170, 2000.

[34] Sekar, R., Guang, Y., Verma, S., Shanbhag, T., �A high-performance network
intrusion detection system�, 6th ACM Conference on Computer and Communications
Security, pp. 8�17, 1999.

[35] Portnoy, L., Eskin, E., Stolfo, S., �Intrusion detection with unlabeled data using
clustering�, ACM Workshop on Data Mining Applied to Security, pp. 231-252, 2001.

[36] Sequeira, K., Zaki, M, �Admit: Anomaly-based data mining for intrusions�,
Proceedings of the 8th ACM SIGKDD international conference on Knowledge discovery
and data mining, Edmonton, Alberta, Canada, ACM Press, pp. 386�395, 2002.

[37] Guan, Y., Ghorbani, A.A., Belacel, N, �Y-means: A clustering method for intrusion
detection, Proceedings of the IEEE Canadian Conference on Electrical and Computer
Engineering, Montreal, Canada, pp. 87-99, 2003.

[38] Munson, J., Wimer, S.: Watcher: the missing piece of the security puzzle. In:
Proceedings of the 17th Annual Computer Security Applications Conference, New
Orleans, LA, USA, IEEE Computer Society, pp. 230�239, 2001.

[39] Cheeseman Peter, Stutz John, �Bayesian classification (autoclass): Theory and
Results�, ACM Transactions on Information and System Security, pp. 153�180, 1996.

[40] Cheeseman Peter, Stutz John, Will Taylor. World Wide Web,
http://ic.arc.nasa.gov/ic/projects/bayes-group/autoclass/ (January 15, 2005)

 56

[41] Yu Guan, Ali A. Ghorbani, Nabil Belacel. World Wide Web,
http://www.cs.unb.ca/profs/ghorbani/ali/papers/ccece03.pdf (January 15, 2005)

[42] Nong Y., Xiangyang L., ‘‘A Scalable Clustering Technique for Intrusion Signature
Recognition’’, Proceedings of the 2001 IEEE Workshop on Information Assurance and
Security United States Military Academy, West Point, NY, pp. 5-6 June, 2001.

[43] Jens Tölle, Oliver Niggemann. Supporting Intrusion Detection by Graph Clustering
and Graph Drawing, World Wide Web, http://dbvis.fmi.uni-konstanz.de/members/panse
/seminar_ws0203/pdf/SupportingIntrusionDetectionbyGraphClusteringandGraphDrawing
.pdf

[44] Peter Mell, Vincent Hu, Richard Lippmann, Josh Haines, Marc Zissman �An
Overview of Issues in Testing Intrusion Detection Systems�

[45] Andrew McCallum, Kamal Nigam, Lyle Ungar, �Knowledge Discovery and Data
Mining: Efficient Clustering of High-Dimensional Data Sets with Application to
Reference Matching.�, Proceedings of International Conference on Machine Learning�,
pp. 231-286, 2000.

[46] Luke, Brian T., �K-Means Clustering�, http://fconyx.ncifcrf.gov/~lukeb/
kmeans.html (November 20, 2005)

[47] Chebrolu S., Abraham A., Thomas Johnson P., �Feature deduction and ensemble
design of intrusion detection systems�, Computers and Security, pp. 295-307, 2005.

VITA

Sivanadiyan Sabari Kannan

Candidate for the Degree of

Master of Science

Thesis: Y-MEANS CLUSTERING Vs N-CP CLUSTERING WITH CANOPIES FOR

 INTRUSION DETECTION.

Major Field: Computer Science

Biographical:

 Personal Data: Born in Pollachi, Tamil Nadu, India, on April 12, 1980, the
 son of Mr. S. Kannan and Mrs. Visalakshi Kannan.

 Education: Received Bachelor of Engineering in computer Science and
 Engineering from Madras University, Chennai, India in May
 2002.Completed the requirements for the Master of Science
 Degree with a major in Computer Science at Oklahoma State
 University in December 2005.

 Experience: August 2003 � December 2004: Supervisor of Kerr-Drummond
 dining hall of Oklahoma State University, Stillwater. Internship
 offer from StatSoft, Inc. Tulsa from September 2005 to February
 2006.
 .

