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CHAPTER I 

INTRODUCTION 

 

1.1 Introduction 

 

Computer systems and networks have been shown to struggle from security 

vulnerabilities and openness, regardless of their manufacturer, or origin. It is both 

technically difficult and expensive to ensure that an information system will not be 

harmed by attacks exploiting those vulnerabilities. This is the reason that intrusion 

detection systems (IDSs) are vital to supervise and scrutinize systems for intruders during 

their lifetime and to detect possible attacks against them [1]. A very wide range of 

activity falls under this definition, including attempts to de-stabilize the network as a 

whole, gain unauthorized access to files or privileges, or simply mishandling and misuse 

of software. 

 IDSs are the only means of detecting and responding to hostile attacks in a 

reasonable amount of time. IDSs allow for complete monitoring of modern networks, 

giving an organization real-time insight into threats to information systems [1]. Without 

an IDS, an organization could be repeatedly attacked and compromised without anyone 

realizing. IDSs are a non-invasive technology. If properly configured, they cannot harm 

or disrupt normal business activities. Other security technologies (like firewalls) can be 
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single points of failure that add significant risk when implemented. Below we examine 

the different genres of IDS [1, 2]. 

 

Threats to network systems come typically from the malfunction of hardware or 

software, or through malicious behavior by users of software. Promptly resolving 

network incidents is very important, considering the huge costs of data loss and system 

downtime [2, 3]. The abundance of computational resources makes the lives of computer 

hackers easier. Without much effort, they can acquire detailed descriptions of system 

vulnerabilities and exploits to initiate attacks accordingly. Statistics from CERT 

Coordination Center (CERT/CC) [4], the most influential reporting center for internet 

security problems, show that there was a dramatic increase of reported network incidents 

to CERT/CC from 1988 to 2002, as illustrated in figure 1. This trend is expected to 

continue, as the number of incidents in the first two quarters of 2003 reached 76,404, 

nearly the total number of 2002. 

 

Figure 1: The number of incidents reported to CERT/CC from year 1988 to 2002. (The 
statistics are from http://www.cert.org/stats/cert stats.html#incidents. Please note that this 
reference is from the web, which may not be authoritative enough) 
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One should be aware of the fact that IDSs are not �THE� solution to the entire 

network and organization threats and no security technology can be considered in that 

way. This is because new attacks and intrusions evolve every other day and the IDS 

technology should be made to learn and recognize these threats. The catalog of all known 

attacks rapidly changes making this process of signature learning an intimidating task for 

the IDS technology developers.  

 In this work, we present a clustering framework for anomaly detection, where we 

plot all the data points in a complete metric space. We then manipulate these data points 

to create a learning pattern of structures called canopies. With this arrangement, we 

determine the outliers by taking into the consideration their position and the region they 

occupy. This requires a complex and costly pair-wise distance computation, which 

becomes a tedious and time-consuming task when the dataset produces a high 

dimensional metric space and an enormously large number of elements. We address this 

complexity with a solution called �Canopies�. Canopies are the substructure of clustering 

which lie in the metric space with the possibility of overlapping patterns. We have 

devised an algorithm to work on these canopies to cut down the search and trim down the 

costlier pair-wise distance computation substantially. The major and notable advantages 

of our algorithm are its simplicity and running time efficiency. The devised algorithm 

also eliminates the shortcomings of K-means algorithm which will be explained in a later 

chapter. It also has the advantage of learning new intrusions by the use of proper training 

process. We have compared our algorithm with Y-means clustering to depict the 

detection and false alarm rate efficiency.  
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In subsequent chapters, we present a detailed overview of IDS followed by the 

categorical review of various clustering methods used in the past and a brief explanation 

of their working. We next explain the K-means algorithm and its shortcomings followed 

by a description of the Y-means clustering algorithm. In chapter 5, the basic background 

idea, methodology, dataset description and detailed explanation of our algorithm is 

presented. This is complemented by the findings and the results of our work depicted by a 

Receiver Operating Characteristics (ROC) curve.  
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CHAPTER II 

INTRUSION DETECTION SYSTEMS (IDSS) � A PREVIEW 

 

2.1 Types of IDSs 

 

IDSs have matured to the point where there are essentially two types of IDs: 

Network IDS (NIDS) and Host IDS (HIDS). Host IDS resides on one machine and 

monitors that specific machine for intrusion attempts. More popular is the Network IDS, 

which monitors traffic as it flows through a network en route to other hosts. One type is 

not better than the other; each is appropriate for specific situations. 

 

2.1.1 Host-Based IDS 

 

Host-based IDSs (HIDSs) monitor for attacks at the operating system, application, 

or kernel level. HIDSs have access to audit logs, error messages, service and application 

rights, and any resource available to the monitored host. Additionally, HIDSs can be 

application aware. They have knowledge about what normal application data looks like, 

and what abnormal data looks like. They can monitor application data as it is being 

decoded and manipulated by the actual application. The benefits that HIDSs enjoy stem 

from this privileged access to the host [5]. 
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HIDSs are better able to determine whether an attack was successful. Malicious traffic 

looks remarkably similar to normal traffic, for this reason NIDSs are notorious for 

creating false alerts. On the other hand, HIDSs are more accurate at detecting genuine 

intrusions because they do not generate the same volume of false positives as a NIDS. 

HIDSs leverage their privileged access to monitor specific components of a host that are 

not readily accessible to other systems. Specific components of operating systems, such 

as passwd files in UNIX and the Registry in Windows, can be watched for misuse [5, 6]. 

There is too great a risk in making these types of components available to a NIDS to 

monitor. 

  HIDSs are in tune with the host they reside upon. They have deep knowledge 

that is available only to an IDS that actually resides on the same computer that is being 

monitored. Therefore, HIDSs can have specific knowledge about the host and the type of 

activity that is normal for it. Traffic sent to the host might appear perfectly normal to a 

NIDS, but be recognized by the HIDS as abnormal and malicious. For this reason, HIDSs 

can discover attacks that a NIDS would not be able to. 

Host-based IDSs do have some significant disadvantages. Because they reside on 

the monitored host, they have a limited view of the entire network topology. HIDSs 

cannot detect an attack that is targeted for a host that doesn�t have an HIDS installed. An 

attacker can compromise a machine that lacks an HIDS and then use legitimate access to 

a protected machine, and the HIDS would be none the wiser. To monitor for intrusion 

attempts, the HIDS has to be placed on every critical host. This becomes cost prohibitive 

as the number of hosts critical to the organization grows. Running IDSs at the host level 

also means that you need to have an HIDS version available for every operating system 
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we need to protect. If we have obscure versions of operating systems at any organization 

or run legacy systems, we may not be able to provide the coverage even if your 

organization can afford it [5]. 

HIDSs that rely on audit logs and error messages are essentially detecting attacks 

after they have occurred, which can lead to all sorts of problems. Some attacks can 

compromise the host before data is written to a log, effectively disabling the HIDS. 

HIDSs rely on the host to facilitate communication to the intrusion analyst; therefore any 

attack that can disable the host outright goes unnoticed [5, 6]. 

 

2.1.2 Network-Based IDS 

 

Network IDSs (NIDSs) are placed in key areas of network infrastructure and 

monitor traffic as it flows to other hosts. Network based IDS has grown in popularity and 

outpaced the acceptance of HIDS. A Network IDS is more cost effective than an HIDS 

because it can protect a large swath of network infrastructure with one device. With 

NIDS, the intrusion analyst has a wide-angle view of what is happening in and around the 

network. Monitoring for specific hosts or attackers can be increased or decreased with 

relative ease [6]. 

A NIDS can be more secure and less prone to outages than an HIDS. The NIDS 

should be run on a single hardened host that supports only services related to intrusion 

detection, making it more difficult to disable. NIDSs lose the disadvantages of relying on 

the integrity and availability of the monitored host, and are subsequently less prone to 

unobserved outages. 
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By not relying on the security of the host, NIDSs are not as prone to evidence 

destruction as HIDSs. Because NIDSs capture data and store it on a different machine, an 

attacker cannot easily remove the evidence of an attack.  

NIDSs do have some disadvantages inherent in their design. NIDSs must be 

extraordinarily proficient at sucking up large amounts of network traffic to remain 

effective. As network traffic increases exponentially over time, the NIDS must be able to 

grab all this traffic and interpret it in a timely manner. Currently, NIDSs must be 

carefully placed and tuned to avoid situations where packet loss can occur. This can often 

require placing several NIDSs downstream from a core router or switch [6, 7]. 

NIDSs are also vulnerable to IDS evasion techniques. Hackers have discovered 

numerous methods for hiding malicious traffic in ways an NIDS cannot detect. One such 

method takes advantage of the process that occurs when a network connection exceeds 

the maximum allowable size for a packet. This is called fragmentation. When the host 

receives these fragmented packets, it must reassemble them to correctly interpret the data. 

Different operating systems reassemble the packets in different orders. Some start with 

the first packet and work forward, whereas others do the reverse. Reassembly order is 

insignificant if the fragments are consistent and do not overlap as expected. If the 

reassembly overlaps, the results will differ from each other, depending on the reassembly 

order. Choosing the correct reassembly order to detect a fragmentation attack can be 

problematic for NIDSs [7]. 

Another method of IDS evasion is far simpler. Because a NIDS captures traffic as 

it traverses a network, security measures intended to thwart eavesdropping can prevent a 

NIDS from doing its job. Encrypted traffic is often use to secure Web communication 
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and is increasingly becoming the norm for delivering confidential information. Attackers 

can use this to their advantage by sending attacks in encrypted sessions, effectively 

hiding their exploit from the NIDS�s watchful eye. Some NIDSs support features that 

decrypt traffic before the IDS engine interprets it, but this option opens up a new 

vulnerability that some organization may not be willing to accept [7]. 

 

2.1.3 A Mixed Approach 

 

Both intrusion detection models ca be an effective component of a defense in 

depth when properly configured and maintained. An important point to remember is that 

we don�t have to choose one flavor of IDS exclusively. A NIDS has advantages that 

enable it to protect large portions of network infrastructure reasonably well. An HIDS 

offers fine tuned protection for mission-critical hosts. 

Most organizations start their foray into intrusion detection with an NIDS. After 

growing accustomed to intrusion detection they gradually place HIDSs on hosts that are 

critical to day-to-day operation. This methodology gives complete intrusion detection 

coverage for an organization [7]. 

 

2.2 Methods of Detecting Intrusions 

 

IDSs have several methods of detecting intrusions at their proposal. Certain 

techniques are better suited to monitoring for different types of intrusions; IDSs are likely 
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to employ more than one variety of detection. Signature detection is the most accurate 

technique of detecting known attacks. 

 

2.2.1 Signature Detection 

 

Signature detection identifies security events that attempt to use a system in a 

non-standard means. Known representations of intrusions are stored in the IDS and are 

then compared to system activity. When a known intrusion matches an aspect of system 

use, an alert is raised to the IDS analyst. 

Known representations of intrusions are termed signatures. Signatures must be 

created to exactly match the characteristics of a specific intrusion and no other activity to 

avert false positives. In an NIDS, a specific signature is created that matches either the 

protocol elements or content of network traffic. When the NIDS detects traffic that 

matches the signature, an alert is crafted. The Large ICMP Packet Remote Denial of 

Service (DoS) attack for Internet Security System�s BlackIce Defender is an easy-to-

understand example [7, 8]. 

BlackIce Defender is a common personal firewall for home and small business 

use. A security researcher found that sending an unusually large ICMP packet to a 

machine protected by BlackIce would cause that machine�s remote host to crash. To 

detect attacks against BlackIce, a signature was created to trigger on any ICMP packet 

over 10,000 bytes [8]. 

When a signature matches an intrusion, an alert is always generated. In addition, 

almost every type of malicious traffic can be identified by a unique signature. Therefore, 
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most malicious traffic can be caught by an IDS using signature detection, but they are a 

small minority and can be detected by other means. 

Signature detection does have some limitations. It has no knowledge of the 

intention of activity that matches a signature; hence it triggers alerts even if the traffic is 

normal. Normal traffic often closely resembles suspicious traffic; hence NIDSs that use 

signature detection are likely to generate false positives [7, 8]. 

Signature detection requires previous knowledge of an attack to generate an 

accurate signature. This fact makes an IDS that utilizes signature detection as its only 

means of monitoring blind to unknown attacks or attacks without a precise signature. In 

some cases, the modification of a single bit is enough to cause an IDS to miss an attack 

[7, 8]. 

New attacks require new signatures, and the rising tide of vulnerabilities ensures 

that the signature bases will grow over time. Every packet must be compared to each 

signature for the IDS to detect intrusions. This can become computationally expensive as 

the amount of bandwidth increases. When the amount of bandwidth overwhelms the 

capabilities of the IDS, it causes the IDS to miss or drop packets.  

 

2.2.2 Anomaly Detection 

 

Anomaly Detection detects misuse by measuring a norm over time and then 

generating an alert when patterns differ from the norm. Anomaly detection comes in 

many different forms. 
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Anomaly detection can be used at the application level to monitor the activity of 

users. The anomaly detection IDS gathers a set of data from the system activity of the 

user. This baseline dataset is then deemed �normal use�. If the user deviates from the 

normal use pattern, an alarm is raised. It can be used to monitor for privilege escalation 

attacks. If a normal user account does not have privileged access to an important 

operating system file, such as the SAM file in Windows operating systems, but is seen to 

be accessing it readily, the IDS determines that potentially damaging activity has taken 

place and generates an alert [9].  

An anomaly detection IDS is more adroit at catching, sophisticated attackers. An 

attacker can replicate a signature matching IDS in a controlled environment. The attacker 

can test out potential intrusions and discover which ones the signature matching IDS will 

notice. With an anomaly detection IDS, however, the attacker cannot predetermine which 

intrusive activity will go unnoticed. 

The key benefit of anomaly detection IDSs is that they do not rely on having 

previous knowledge of an attack. As long as the IDS can determine that the attack differs 

significantly from normal use, it can detect the attack.  

Like signature detection, anomaly detection has some limitations as well. The 

training period presents a problem for this method of monitoring for malicious use. You 

must assume that the data collected in the baseline dataset is not malicious and is normal 

activity. Anomaly detection can be prone to a relatively high degree of false positives. 

Suppose a particular type of traffic is rare, but non-malicious and normal. If this traffic 

was not captured when the IDS was generating baseline data, a false positive would be 

generated when the IDS encountered the traffic. This is a major problem, because over 
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time network traffic is composed of significant amounts of randomly occurring rare data. 

This makes anomaly detection not as accurate and hence not as popular as signature 

detection. 

 

2.2.3 Integrity Verification 

 

Integrity verification is a simple but highly effective means of monitoring for 

intruders. It works by means of generating a checksum for every file on a system, and 

then periodically comparing that checksum to the original file to ensure a change has not 

occurred. If an unauthorized file change transpires, an alert is generated. 

A large number of files on any system regularly change in the course of normal 

operation. The integrity verification IDS must be carefully turned to avoid false positives. 

The checksums need to be reset when legitimate changes occur. 

Integrity verification can be used to detect Web page defacements. Attackers 

often gain access to unpatched external facing Web servers and change the content the 

Web server displays. An integrity verification IDS could be deployed to create 

checksums and monitor specific Web page files. When the attacker changes the Web 

page�s content, the checksum verification fails and the appropriate party is notified. The 

files on an external facing Web site should not change frequently enough to create a 

deluge of false positives. In addition, the IDS can be configured to automatically rollback 

the file to its unaltered state. 

Integrity verification has some limitations as well. The primary disadvantage with 

integrity verification technology is that it requires access to sensitive files on the 
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monitored host. This dictates that it be a strictly host-based IDS, meaning that it inherits 

all the inefficiencies and drawbacks of an HIDS. In addition, the checksums can be 

altered to match the adulterated original file, rendering the integrity verification IDS 

useless. Storing checksums on a dedicated, hardened server can reduce the risk of this 

occurring, but does not completely eliminate it [9]. 

 

2.3 Origin of Attacks 

 

Threats to information resources come in a variety of forms. Security of 

information can be compromised by very simple means. Although there are many threats 

to digital infrastructure, this section focuses on network-borne threats that an IDS is 

designed to monitor for. 

Network-based threats can be separated into two categories: 

! Internal Threats 

! External Threats 

Attack origins are important to the field of intrusion detection. We must know where 

attacks are initiating from to deploy intrusion monitoring in the most effective locations. 

A common statistic is that almost 80% of successful attacks are internal [9]. 

 

2.3.1 External Threats 

 

One way of looking at the 80% statistic is that organizations are doing a pretty 

good job of protecting from external threats. It is likely that the vast majority of 
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attempted attacks are orchestrated from the external side and not the internal. The 

overwhelming majority of these external attacks are unsuccessful, whereas most internal 

attacks are executed with some degree of success. 

This is not to downplay the risks external to an organization. It takes only one 

small chink in the armor of an external defense to allow significant damage. A single 

remotely exploitable host, be it a router, firewall, mail server, or any other externally 

facing device, can cause serious harm. Although the compromised host may not be of 

great value itself, an attacker can leverage access to the host to penetrate deeper within 

the security layers. Attackers frequently utilize compromised externally facing hosts to 

access internal devices that have less stringent security controls. 

External security is often overlooked at organizations that feel they are not visible 

public targets. Small- or medium- sized organizations make the mistake of thinking they 

are not important enough for a hacker to target them. A hacker frequently scans the 

Internet looking for hosts vulnerable to exploit code the hacker has previously acquired 

or developed. The hacker is chiefly concerned with making use of a new exploit, instead 

of actively targeting a host [9].  

 

2.3.2 Internal Threats 

 

Internal attacks represent the majority of successful attacks on network 

infrastructure. Internal attacks can be damaging and far more difficult to discover. One 

factor that aggravates the situation is company insiders having extensive working 

knowledge of security controls and ample time to plan an attack. Insiders can leverage 
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the legitimate access they already possess to gain unauthorized additional access to 

systems. 

Internal attacks are more difficult to detect than external attacks. This happens 

when organizations are not monitoring the inside as heavily as the outside. An internal 

attack may be the result of an employee gradually accumulating privileged access and 

information over a period of years or decades. 

The internal infrastructure can also be unintentionally opened up to threats by 

uneducated or unsuspecting employees. Users can compromise internal security through 

the installation of firewall- defeating peer to peer (P2P) file sharing and instant 

messenger applications. Some P2P applications are packaged with spy ware or features 

that silently enable the sharing of the entire hard drive. Proxy-aware instant messengers, 

such as AOL Instant Messenger, can be used to slice through any open port on a 

corporate firewall. Modern viruses are bundled with numerous attack payloads that can 

open a system for the taking. Most non-technical users may be unaware that they are 

creating a gaping security hole by going about their daily activity. 

An IDS on the internal side can be used to detect both intentional internal attacks 

and corporate policy violations. They can detect the signature of most P2P tools, 

inappropriate Internet usage, and instant messengers. This is in addition to the expected 

intrusion monitoring capability. These abilities make an internal IDS an extremely 

powerful security application [9]. 

The line between internal and external is increasingly blurred by corporate 

partnerships and the extranets that enable them. An attacker can hop from one extranet to 

another, making the source of an attack difficult to discern. As more and more internal 
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security breaches are discovered, organizations will seek to increase internal security in 

the future. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 18

CHAPTER III 

LITERATURE  REVIEW 

 

3.1 Cell-Based Clustering 

 

Clustering is a well studied problem. However, the majority of work done is 

intended to optimize clustering. While some do provide a mechanism to handle noise but 

only to the extent of milding its affect on the overall quality of clusters. In more recent 

work, clustering (or a closely related approach) has been used to locate outliers in 

datasets [10-13]. An outlier is defined as an object with at least p fraction of the dataset is 

farther than distance D from the object, where p and D are parameters specified by the 

users [13]. They also propose an efficient cell-based approach for mining such outliers in 

high dimensional data. [12], [13] opt for a local perspective and investigate the problem 

of efficiently finding the top n outliers. They propose optimizations based on pruning 

those partitions that cannot contain any outliers. The notion of a �cell� is closely related 

to that of a cluster, and by their [12, 13] definition, dense regions cannot contain outliers. 

Interestingly, in our domain of network traffic some DOS attacks do generate large 

amounts of traffic and can possibly reside in dense regions. 

Instead of a global perspective [13], Local Outlier Factor (LOF) [9] uses a local 

perspective and locates outliers with respect to the density in the local/neighboring 
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region. They illustrate the inability of conventional approaches to detect such outliers. 

LOF has two short-comings: one, their approach is very sensitive to the choice of MinPts, 

which specifies the minimum number of objects allowed in the local neighborhood 

(similar to k in K-means Neighbor Natives); second, and more importantly, their 

approach is not well-suited for very high dimensional data such as network traffic data. 

[11] address the problem of mining outliers in high dimensional data. They calculate the 

sparsity coefficient, which compares the observed and expected number of data points, in 

�cubes" (spatial grid cells) generated by projections on the dataset. Their approach is 

computationally expensive, while they do provide theoretical examples of data points that 

are outliers in certain subsets of the feature space whose effect can possibly be offset by 

�noise� in the complimentary subset. They provide no practical example of such a 

scenario materializing; put another way they don�t empirically illustrate discovery of any 

outlier which would have been missed by the current distance-based outlier paradigm. 

[14] And [15] use clustering as an approximation of K-means Neighbor Natives to find 

sparse clusters and label them as anomalous.  

 

3.2 Fuzzy Clustering for Intrusion Detection 

 

Because anomaly detectors looks for abnormalities, many of the data mining 

techniques that seek to identify outliers in data become readily applicable. Hence many 

researchers have explored applying data mining techniques to the problem of intrusion 

detection. Lee et al., [16] performed experiments on sendmail system call data and 

network tcpdump data. They used RIPPER [17] [18] to generate classifiers for these 
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datasets. In another paper Lee et al., [19] describe how to use association rules and 

frequent episode algorithms to guide the process of audit data gathering and selection of 

useful features to build the classifiers. 

Dokas et al., [20] have developed classification algorithms for intrusion detection. 

These algorithms are designed especially for learning from datasets in which the class of 

interest (i.e. the intrusion class) is significantly smaller than the class representing normal 

behavior. In this body of work, the authors discuss various outlier detection schemes for 

detecting network intrusions.  

Dickerson et al., [21] developed the Fuzzy Intrusion Recognition Engine (FIRE) 

using fuzzy sets and fuzzy rules. FIRE uses the Fuzzy C-Means Algorithm developed by 

Bezdek [22] to generate fuzzy sets for every observed feature. The fuzzy sets are then 

used to define fuzzy rules to detect individual attacks. FIRE does not establish any sort of 

model representing the quiescent state of the system, but instead relies on attack specific 

rules for detection. 

 

3.3 Special Purpose IDSs and Anomaly Detection 

 

The intuitively most appealing way of dealing with false positives is to build 

�better� IDSs, which trigger less false positives. This is a challenging endeavor because 

false positives are the result of multiple problems, including a lack of suitable audit 

sources [23,24], harsh real-time requirements (which preclude a thorough analysis of the 

audit data) [24,25], the problem that for some events (e.g., failed logins) it is undecidable 

whether they constitute attacks [26,27], and the inherent difficulty of writing correct 
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intrusion detection signatures [28-31]. A �better� IDS would have to address all these 

issues, and a small number of research projects have attempted to do so. Examples of 

IDSs that are less prone to false positives include the embedded detectors technology by 

[32], a lightweight tool for detecting Web server attacks by [33], and a network-based 

IDS that focuses exclusively on low-level network attacks [34]. Interestingly, all three 

IDSs share two commonalities: first, they have public signatures that can be tuned to a 

given environment, and second they are special purpose. Special purpose IDSs are 

tailored toward detecting one class of attacks (e.g., Web server attacks), and they monitor 

audit sources that are particularly suitable for this task. A drawback of special-purpose 

IDSs is that they must be combined with other complementary IDSs to obtain 

comprehensive coverage. 

Clustering, or unsupervised learning, has attracted some interest [35�38] in the 

context of intrusion detection. The interesting feature of clustering is the possibility to 

learn without knowledge of attack classes, thereby reducing training data requirement, 

and possibly making clustering based techniques more viable than classification-based 

techniques in a real world setting. There exist at least two approaches. When doing 

unsupervised anomaly detection a model based on clusters of data is trained using 

unlabelled data, normal as well as attacks. The assumption is that the relative amount of 

attacks in the training data is very small compared to normal data, a reasonable 

assumption that may or may not hold in the real world context for which it is applied. If 

this assumption holds, anomalies and attacks may be detected based on cluster sizes. 

Large clusters correspond to normal data, and small clusters possibly correspond to 

attacks. A number of unsupervised detection schemes have been evaluated on the KDD 



 22

data set with varying success [35-37]. The accuracy is however relatively low which 

reduces the direct applicability in a real network. 

In the second approach, which is denoted simply as (pure) anomaly detection in 

this paper, training data is assumed to consist only of normal data. Munson and Wimer 

[38] used a cluster based model (Watcher) to protect a real web server, proving anomaly 

detection based on clustering to be useful in real life. 

 

3.4 Autoclass Bayesian Clustering 

 

Autoclass [40, 41] is a Bayesian Clustering program developed by Peter 

Cheeseman and his colleagues at NASA [39]. It automated the process of model selection 

as well as the process of parameter estimation. By calculating the approximation of the 

marginal density of data after the integration of the parameters, Autoclass compares 

different models and uses Ocam Razer to favor models with less complexity. 

 

3.5 Clustering and Classification Algorithm- Supervised (CCA-S) [42] 

 

Clustering and Classification Algorithm � Supervised (CCA-S) is a data mining 

algorithm, which is developed for detecting intrusions into computer network systems for 

intrusion detection. CCA-S is used to learn signature patterns of both normal and 

intrusive activities in the training data and to classify the activities in the testing data as 

normal or intrusive based on the learned signature patterns of normal and intrusive 
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activities. CCA-S differs from many existing data mining techniques in its ability in 

scalable, incremental learning. 

In CCA-S, a data record is considered as a data point in a p dimensional space. 

Each dimension is either a numerical or a nominal variable, called predictor variable, 

representing one attribute of the data. Each data point has also a label indicating the class 

of the data record, called the target variable. For computer intrusion detection based on 

signature recognition, the target variable is a binary variable with two possible values: 0 

for normal and 1 for intrusive. CCA-S clusters data points based on two criteria: the 

distance between data points, and the class label of data points. Only data points that are 

close and same in their class label can be grouped together to form a cluster. Each cluster 

represents a signature pattern for normal activities or intrusive activities, depending on 

the class label of the data points in the cluster. Formally, each data point is a (p+1)-tuple 

with the attribute variable vector X containing the p dimensions of predictor variables 

and one target variable - Y. The training data set has N data points. 

Step 1: Training (supervised clustering) 

It takes mainly two steps to incrementally group the N data points in the training 

data set into clusters. 

1. Scan the training data and compute the relative importance of each prediction 

variable with respect to the target variable. This step calculates the coefficient of the 

correlation between each predictor variable Xi and the target variable Y. In addition, two 

dummy clusters, one for normal activities and another for intrusive activities, are created. 

The centroid of the dummy cluster for normal activities is denoted by the mean vector of 

all the data points for normal activities in the training data set. The centroid of the 
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dummy cluster for intrusive activities is denoted by the mean vector of all the data points 

for intrusive activities in the training data set.  

2. Incrementally group each point in the training data set into clusters. Given a 

data point X, we find the nearest cluster L to this data point using a distance metric 

weighted by the correlation coefficient of each dimension. If L has the same class label as 

that of X, we group X with L; otherwise, we create a new cluster with this data point as 

the centroid of the new cluster. 

We then repeat the above steps until we process all the data points in the training data set. 

Step 2: Classification 

There are two methods to classify a data point X in a testing data set. 

1. Assign the data point X the class dominant in the k nearest clusters which are 

found using a distance metric weighted by the correlation coefficient of each dimension; 

or 

2. Use the weighted sum of the distances of k nearest clusters to this data point to 

calculate a continuous value for the target variable in the range of [0, 1]. 

Step 3: Incremental update 

The statistics from the correlation and the clustering are stored. When new 

training data become available, each step of the training can be repeated for new data 

points to update the clusters incrementally. An estimate of the computation cost of CCA-

S is provided here. Given N data points, and the total number of the resulting clusters L, 

the computation cost for training is O (p*N*L). And the computation cost of classifying a 

data point during testing is O (p*L). Hence, CCA-S is scalable to even large amounts of 

training data. This tremendously increment the computation cost of the cluster algorithm. 
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This can only be computed only when N data points and resulting clusters L are given. 

 

3.6 Graph Clustering and Graph Drawing [43] 

 

A graph is used as an abstraction of network traffic. Computers are represented by 

nodes, communication between computers is indicated by edges, weighted by the amount 

of exchanged data. Figure 2 shows such a clustering of a network.  

 

 

Figure 2: Communication clusters identified in the traffic matrix of a computer network.  
 
 

In this system, graph clustering algorithms are applied to the traffic graph. 

Clustering decomposes a graph G= (V, E) into clusters Ci Є V, 0≤ i ≤ n-1, where C1 UC2 
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U... U Cn = V and for all 0≤ i, j ≤ n-1: Ci ∩ Cj=Ø. This decomposition should represent 

the internal structure of the graph. In the domain of network traffic, a cluster should 

consist of nodes with a high inter-node traffic. 

There are several possibilities to present the results of the graph clustering. One 

approach is to present the results of the clustering process in lists. This form of 

presentation has several disadvantages. It is not possible to achieve a general overview on 

the current traffic structure in the network. Modifications of the structure are hard to 

discover in the lists. Due to this, a graphical representation of the clustering results was 

chosen. 

Visualization of network traffic is an important task for planning and managing 

large networks. Research is done on this item to provide network managers with an 

insight to the usage of their systems. Most of these systems present traffic information in 

a geographical way. The visualization of the traffic depends on the location of the nodes. 

In this system, they�ve chosen to present the results of the traffic analysis in another way. 

Their focus is on the structure of the traffic, and therefore they group nodes with strong 

communication relations together without considering their geographic location. 

This tool first places the clusters on the plane. The reader may note that the 

clusters form a new graph. Two clusters are connected if nodes within those clusters are 

connected by an edge. The clusters can be positioned using the Spring-Embedder. In a 

second step the nodes with the clusters are placed. This visualization helps the security 

manager to build his own opinion on messages from the event generator described in the 

next section. A major problem in intrusion detection systems are so called false negatives 

and false positives. The problem of any anomaly detection system is the fact, that 
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anomalies in the behavior are not necessarily based on intrusions (causing false positives) 

and intrusions do not necessarily cause anomalies in the system (leading to false 

negatives). This visualization helps discovering false positives (alarms without attack). It 

is easy to see, that there are more reasons for modifications in the traffic structure. 

Changes in network topology, new network devices, start or end of projects are examples 

for reasons for modifications in the typical structure.  

The user of the visualization module is able to use his additional personal 

knowledge to decide on the results of the event generating process. A special benefit of 

this visualization is the possibility of displaying modifications of the traffic structure in 

consecutive traffic matrices. Position and color of nodes indicate changes in their 

membership of different clusters. It is easy to track varying cluster, giving information on 

nodes that have changed their communication behavior. It is even possible to present 

longer series of traffic matrix visualizations in the form of an animation, showing long 

term behavior of the communication structure. 
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CHAPTER IV 

Y-MEANS CLUSTERING  

 

4.1 Introduction 

 

Y-means is one method clustering algorithm for intrusion detection. It is expected 

to automatically partition a data set into a reasonable number of clusters so as to classify 

the instances into `normal' clusters and `abnormal' clusters. It also overcomes the 

shortcomings of the K-means algorithm. 

 

4.2 K-Means Algorithm [46] 

 

The simple definition is that K-means clustering is an algorithm intended to 

categorize or congregate the objects based on features, attributes into K partitons or 

clusters, where K always represents a positive integer. The classification of data is the 

main purpose of the K-means clustering algorithm. 

The process for K-means clustering and positioning the K centroids can be accomplished 

by the following procedure: 

1. Position the K points in the feature space represented by the dataset that are being 

subjected to clustering. These plots set up the initial block of centroids 
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2. Allocate each subsequent data point from the considered dataset to the group that 

has the nearest centroid 

3. In this manner, when all the points are assigned to the appropriate group, reassign 

the K centroids by computing the mean of that group. 

4. Steps 2 and 3 are repeated until the movement of centroids ceases. This result in 

the partition of the datapoints into groups. The datapoints in a group represents 

some sort of similarity if they remain in that logical grouping. 

K-means clustering suffers from two major shortcomings: number of clusters 

dependency and degeneracy. Number of cluster dependency is the value of k which has 

to be supplied by the user and is very critical to the clustering result. Degeneracy means 

that K-means clustering may end up in producing empty clusters that makes the 

clustering process to give poor computational scaling.   

 

4.3 Y-Means Algorithm [37] 

 

Figure 3 illustrates the Y-means algorithm. Similar to K means, it partitions the 

normalized data into k clusters. The number of clusters k can be a given integer between 

1 and n exclusively, where n is the total number of instances. The next step is to find 

whether there are any empty clusters. 

If there are, new clusters will be created to replace these empty clusters; and then 

instances will be re-assigned to existing centers. This iteration will continue until there is 

no empty cluster. Subsequently, the outliers of clusters will be removed to form new 

clusters, in which instances are more similar to each other; and overlapped adjacent 
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clusters will merge into a new cluster. In this way, the value of k will be determined 

automatically by splitting or merging clusters. 

 

 

Figure 3: Y-Means Clustering Algorithm shown in a Flowchart 

The last step is to label the clusters according to their populations; that is, if the 

population ratio of one cluster is above a given threshold, all the instances in the cluster 

will be classified as normal; otherwise, they are labeled intrusive. 

 

4.4 Splitting Clusters 

 

An outlier is a point that is quite different from the majority of the points in a 

cluster. When Euclidean distance is used to evaluate the difference between two points, 

an outlier is the point that is remote from the majority of points. Since the cluster center is 

the mean vector of all the points in the cluster, and all points are assumed to have equal 

weights, one can find outliers using the radius of points; that is, if the radius of a point is 
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over the threshold, it is considered as an outlier. The idea of detecting outliers comes 

from the theory of robust regression and outlier detection [7]. 

From the Cumulative Standardized Normal Distribution Function table in [2], it is 

found that 99% of the instances of the cluster stay within the circle with a radius of 2.32 

σ, where σ is the standard deviation of the data. Therefore, the chosen threshold is t=2.32 

σ. The area within the circle is called the Confident Area of the cluster. Thus, in the 

cluster any point that stays out of the Confident Area will be deemed an outlier, and the 

remotest outlier will be removed first to form a new cluster. Then, this new cluster may 

snatch some points from its neighbor clusters. In the Y-means algorithm, the splitting will 

iterate until no outlier exits. The splitting procedure turns clusters into finer grains; and 

makes the instances in the same cluster more similar to each other, while it increases the 

number of clusters. However, it may partition the data set into too small clusters, i.e., 

over-splitting. In order to avoid the over-splitting, we can merge the overlapped adjacent 

clusters. 

 

4.5 Merging Clusters 

 

When two adjacent clusters have an overlap, they can be merged into a larger 

cluster. The merging threshold is set to 2.32 σ as well; that is, whenever there are some 

points in a cluster's Confident Area also fall in another cluster's Confident Area, the two 

clusters can be merged. The center of the new cluster can be obtained simply by 

calculating the mean vector of the two previous centers. 
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CHAPTER V 

METHODOLOGY 

 

5.1 Data Set Assumption 

 

The input to the algorithm is a large set of data with normal elements in majority and 

some attack data obscured within the data set. It can identify the unlabeled data and 

uncover the intrusions to the best possible. In general Intrusion Detection Systems (IDS) 

make two assumptions about the data set that trigger off the approach. 

1. The number of normal data greatly surpasses the abnormal or attack data  

quantitatively 

2. The attack data differs from normal data qualitatively 

The algorithm will work only when the assumptions hold over the data. The intrusion 

detection algorithms will not be able to detect the malevolent behavior of an authorized 

user of the network who meticulously uses it in a legitimate procedure. 

 

5.2 Data Representation 

 

The data input for the algorithm is collected from the audit stream of the system. 

The audit data is represented as x1...xm.  All possible input data are mapped to the space 

called inner product space H, which as a metric space, is complete. This space is a real 
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vector space of high dimension z. The use of using an inner product space is that we can 

define the dot product between elements in the inner product space at any instance. 

Hence we can also define distance as well as norm (what is norm?) on the space. This 

inner product space with an inner product < f, g > such that norm is defined by 

><= fff ,||  

turns H into a complete metric space. If the metric defined by the norm is not complete, 

then H is instead known as inner product space. Let the input data element x1 in the space 

H be represented as H(x1). To determine the distance between any two elements x and y 

in the input set, we can use the inner product space by determining the distance between 

H(x) and H(y) as 

                         Distance (x, y) = | H(x) � H(y) | 

 

                                                   = ><+><−>< )(),()(),(2)(),( yHyHyHxHxHxH  

 

If the space is a Euclidean space then this distance represents the standard 

Euclidean distance in that space. 

 

5.3 Data Normalization 

 

This work deals with an enormously large data set with numerous attributes. It is 

difficult to determine weight values for the vectors representing attributes. It becomes 

inevitable to cut losses by performing normalization on the data. This will minimize the 

unnecessary mock weight on the attributes and will reduce the problem of biasing the 

concentration on one particular attribute with a naturally larger magnitude than the other 

attributes. Leaving the discrete and binary data that will not much influence the biasing, 
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continuous data should be taken care of by appropriate technique. The continuous data 

can be best normalized by replacing each attribute value with its distance to the mean of 

all the values for that attribute in the input region. In our case to do this normalization the 

mean and standard deviation vectors must be calculated: 

                                              mean n = 1/m ∑
=

n

i
record

1
n 

                                                           deviationstd . n= ∑
=
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                                                New recordn = (recordn - meann) / std.deviationn 

 

 

5.4 Basic Background Idea 

 

 

This input data set for this work is inherently large in three senses at once - there 

are millions of elements, many thousands of features and many thousands of clusters. The 

requirement for efficient solution is a technique for clustering that is efficient when the 

problem is large in all of these three ways at once. Through a long literature survey and 

several clustering techniques, we found a close matching algorithm which resolves the 

problem of large data set to maximum extent. The technique is Efficient Clustering with 

Canopies, [45] where the key idea is to perform clustering in two stages, first a rough and 

quick stage that divides the data into overlapping subsets that are called �canopies�, then 

a more rigorous final stage in which expensive distance measurements are only made 

among points that occur in a common canopy. This differs from other clustering methods 

in that it forms overlapping regions. We integrate this idea of forming canopies with K-
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Means Algorithm with an optimizing technique which we call �Optimized N-Closest 

Points Algorithm�. 

 

This algorithm determines if a test data point lies in the sparse region of the inner 

product space H mentioned in the previous section by computing the sum of the distances 

to the n-closest points to the test data point and this calculation assigns the weight which 

will be referred as n-CP value. The inner product space H�s dense regions will have 

numerous points close to each other and n-CP value will be less. If the point has high n-

CP value then it means that attack element will be far from the normal elements in the 

inner product space which is checked by comparing with a threshold value. This idea will 

determine exactly how closely the test data point fits with already existing normal data in 

H space.  

 

5.5 Optimizing Cluster 

 

In this work, the canopy clustering technique is used specifically to chop down 

the search in the large set of data into smaller overlapping subsets or canopies which 

eliminates the necessity to check every data point. There should be a computational 

shortcut to eliminate the data in linear time from large set of cluster data. The clusters are 

used as a means to reduce the time consumed in finding the n-closest points. In other 

words they are hyper spheres that contain data from the training data set. Canopy 

clustering has a way to eliminate clusters without looking at the contents, thus drastically 

shrink the computation time. 



 36

 

In this work, the training data is clustered using fixed-width clustering algorithm. 

One variation would be placing the data point in exactly one cluster. If the cluster radius 

or cluster width is r and data are clustered in the vicinity of this radius, we can calculate 

the n-closest points from a given test point p using the mathematical property of 

inequalities. The data point p1 and p2 that are in the same cluster has the following 

properties: 

 

                                         Dist (p1, p2) ≤  2(cluster radius) 

                                         Dist (p1, p2) ≤  [dist (p1, centroid (p2)) + (cluster radius)] 

                                         Dist (p1, p2) ≥  [dist (p1, centroid (p2)) - (cluster radius)] 

 

 

5.6 Clustering Algorithm 

 

The algorithm works in linear time to form the clusters from the input training 

data set T. The point p is a point for which the distance is calculated to fit n-Closest 

Points set nCP. C is the set of clusters. R is the cluster radius. Di is the distance from p to 

the centroid of Ci. 

 

5.6.1 Fixed Radius Clustering Algorithm 

 

1. Set C = empty. 

2. For all pt � T: 

            (i)  If there exists ci such that [Di < R], add pt to the cluster ci. 
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            (ii) Else if C is empty or no ci exists such that [Di < R], build a new cluster cnew     

and insert pt as its centroid. 

 

At the start, an empty cluster set C is formed. T is the training set and each point 

in the training set is taken into consideration in succession. A cluster radius R is decided 

for the algorithm and this will serve as the cluster width for the entire process. When a 

point pt from the training set T lies within the width of a cluster R, then that point is put 

in that cluster, which means that point is the member of that cluster. If there is an empty 

set of cluster or if the point falls out of the existing cluster within the cluster set C, then a 

new cluster is generated with width R and point pt is the centroid of that new cluster. 

Using this simple clustering algorithm, all the points in the training set are clustered. 

 

5.7 Optimized n-Closest Points Algorithm 

 

The canopy clustering overlapping strategy is followed here. The overlapped 

cluster boundary is carefully assessed using the Cluster Gap G.  

 

In this algorithm: 

n = Number of closest points required 

pt = The point from which n closest points are need to be computed 

C = Set of clusters 

R = Cluster width 

G = Cluster gap 

nCP = Set of n closest points 



 38

Cp = Set of member points 

Largest (nCP) = Element with the maximum value in the set nCP 

 

Each cluster c from set C is comprised of the pair (c, D) where 

c = Set of p points that lie within the cluster    

D = Distance from the point pt to the centroid of cluster c 

 

5.7.1 n-CP Clustering Algorithm 

 

1. Let Cluster Gap G = 0, nCP value = 0, C0 = Ø, Cp = Ø 

2. For pt, compute Di for each ci � C 

3. Rank the clusters in C by from lowest to highest. 

    (C = {c0, c1, c2, c3, c4...} 

4. Do While (# (nCP) < n) 

          (i) Take the closest cluster from the set C that is, first member c0 of the sorted set C 

          (ii) Add all the points in c0 to C0. 

          (iii) Compute distances from test data point p to all the points in C0 and drop them 

in Cp 

                (iv) Test if [(D1-R) <G] assign G = D1-R 

           (v)  Else assign G= D0+R 

           (vi) Each pi � Cp   where distance (pt, pi) < G 

                        a) If (# (nCP) < n) then insert from Cp to nCP 
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                        b) Else if (# (nCP) == n) and [distance (pt, pi) < Largest (nCP)] then insert 

from Cp to nCP by replacing the Largest (nCP)    

            (vi) Eliminate c0 from C 

5. If nCP Value > IDS threshold broadcast it as an attack or intrusion else a normal data 

First, to compute n-closest data points, the distance from a given data point pt to 

all the cluster centroid from the cluster set C is determined. From the data obtained from 

this computation, the clusters are ranked on the basis of their distances from lowest to the 

highest. The first cluster in this sorted set has the label of closest cluster c0 in the set C 

and the next will be c1, etc. Next computation is the distance from the point pt to all the 

points in the closest cluster c0. This is shown in figure 4.These points belong to the set C0 

and they are added to the list of member points, Cp.   

After these computations, the algorithm proceeds with a concern on the 

establishment of cluster gap G and the changes in the boundaries of the cluster. The 

whole point of this boundary modification is to encompass the least number of points to 

calculate the n closest points.  The initial procedure of ranking the clusters results in a 

limited ordering. This is because the algorithm works on the concept of clustering with 

canopies and there could be overlapping.  Drawing a boundary by means of cluster gap G 

ensures that no other point of the clusters other than those added to the nCP set is closer 

than the added ones. This optimizes the entire testing by checking only the points that 

should be tested are tested. 

It is really significant to leave out the overlapped parts by other clusters because 

of the simple reason that they might include the points nearer to the point pt than the 

points in the closest cluster. 
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When the cluster gap G is first set up, the cluster c0 is examined to see if it has 

overlapped the closer cluster c1. If that gives a negative result then distance to the furthest 

point in the nearest cluster which will be (D0+R) is lesser than that of the closest point in 

the next ranked cluster c1 n and that will be (D1-R). If the overlapping test is positive then 

that shows there exist overlapping clusters. In that case the cluster gap is set to Di-R. This 

is the intersecting point nearest to point pt. All the points within this boundary are closer 

than any existing point in the cluster that has overlapped. This is shown in figure 5.  

 

 

Figure 4: A cluster arrangement as a result of fixed width clustering algorithm 
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Figure 5: A cluster gap between the first two clusters in the ranked order 

 

On setting up this boundary, all the points of Cp within the determined boundary 

are added to the nCP set. When the nCP set is maximized and the element with maximum 

value in nCP is greater than the given point than Largest (nCP) is removed and the given 

point is added. Then co is discarded by making c1 the co and c2 the new c1. When the nCP 

set has n elements that will be the time to stop the iteration or else the iteration continues 

until the nCP is maximized with n points.  

 

5.8 Dataset Descriptions 

 

The proposed algorithm will use the network connection records from the KDD 

Cup 99 Data. The KDD cup data set can be obtained from http://kdd.ics.uci.edu 
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/databases/kddcup99/kddcup99.html. This includes ample number of intrusions of 

different kind simulated in a military network environment. It approximately consists of 

4,900,000 data records. Each record is a vector of extracted feature weights collected 

from the raw network data during the simulated intrusions. A sequence of TCP packets to 

and from some IP addresses, starting and ending at some well defined times is said to be 

a connection. All the connections are labelled as either normal or exactly one kind of 

attack and these labels are assumed to be correct. The KDD data set was obtained by 

simulating a large number of different types of attacks, with normal activity in the 

background 

The simulated attacks fall in one of the four categories namely: 

• DoS � Denial of Service 

• R2L � Unauthorized access from a remote machine 

• U2R - Unauthorized access to super user or root functions 

• Probing � Surveillance and other probing for vulnerabilities. 

 

The anomaly algorithms used for intrusion detection are sensitive to the ratio of 

intrusions in the data set. If the number of intrusions is too high, each intrusion will not 

show up as anomalous. In order to make the data set more realistic many of the attacks 

are filtered so that the resulting data set consisted of 1 to 1.5% attacks and 98.5 to 99% 

normal instances. The KDD-99 data set has 41 fields to represent the network connection 

records and those fields are listed in the table 1. 
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Table 1: Features in KDD Cup 1999 Network connection records. 
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CHAPTER VI 

 

EXPERIMENTS 

 

The experiments are performed over the KDD-99 data set. The network 

connection records (KDD-99 Data Set) are analyzed to determine the performance of the 

algorithm. 

 

6.1 Performance measures 

 

To evaluate the proposed algorithm two major indicators of performance: the 

detection rate and the false positive rate are taken in to consideration. The detection rate 

is defined as the number of intrusion instances detected by the system divided by the total 

number of intrusion instances present in the data set. The false positive rate is defined as 

the total number of normal instances that were incorrectly classified as intrusions defined 

by the total number of normal instances. These are good indicators of performance, since 

they measure what percentage of intrusions the system is able to detect and how many 

incorrect classifications it makes in the process. These values over the labeled data are 

calculated to measure performance. 

 The trade-off between the false positive rate and detection rates is inherently 

present in numerous machine learning methods. By comparing these quantities against 

each other we can evaluate the performance invariant of the bias in the distribution of 
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labels in the data. This is especially important in intrusion detection problems because the 

normal data outnumbers the intrusion data by a factor of 100:1. The classical accuracy 

measure is misleading because a system that always classifies all data as normal would 

have 99% accuracy. 

 A Receiver Operating Characteristic (ROC) Curve is an aggregate of the 

probability of false alarms and the probability of detection measurements The ROC 

curves are plotted depicting the relationship between false positive and detection rates for 

one fixed training/test set combination. ROC curves are a way of visualizing the trade-

offs between detection and false positive rates. 

  

6.2 Experimental Setup 

 

For the selected data set, the data is split into two segments. One portion, the 

training set, was used to set parameter values for the proposed algorithm and the second 

portion, the test set was used for evaluation. The parameters are set based on the training 

set. For our algorithm over the KDD-99 data set, the detection threshold is varied 

successively and at each threshold, corresponding detection rate and false positive rate 

are computed. Using this observation, a ROC curve is obtained. 

 The parameter settings are as follows. For the nCP cluster-based algorithm with 

canopies presented in this thesis, the cluster width of the fixed-radius clustering was set 

to be 40. This value will differ depending on the size of the dataset and the chosen n 

value.. It is generally around 0.5 percent of the chosen n value. However a reasonable 

width should be set by testing for various values (around the said 0.5%) to achieve 
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efficient processing time. Also choosing an inefficient width will not affect the detection 

rate but the efficiency of the process. The clustering width is set in such a way that most 

of the data is grouped together into clusters. If the cluster width is too small, then the data 

is grouped together into many small clusters. If the cluster width is too large, then most of 

the data is grouped into very few clusters. The n value of the nCP algorithm was set to 

10,000 of the data set. The n is adjusted to the overall size of the data and it takes a value 

that is around 1%-2% of the overall size of the data. This value also does not influence 

the detection rate of the algorithm. 

 The experiments were performed on the data set for various findings. The first 

experiment was conducted by applying the algorithm on all the 41 features and then on 

the selected 17 features [47] based on the importance of the fields. The detection 

accuracy was obtained from both the tests. Each test involved training and testing phases. 

The experiment with 17 features included the data reduction phase. In the data reduction 

phase, important variables for intrusion detection were selected as described in [47] and 

then the training and testing phases were conducted. The selected 17 features are listed in 

the table 2. 

 The second experiment analyzes the performance measure of both the Y-Means 

algorithm and the nCP clustering algorithm with canopies technique. Both algorithms are 

tested for their detection accuracy and false alarm rate to depict the advantages and 

accuracy of my proposed algorithm. Here we compare our algorithm with Y-means 

because both the algorithms are devised to avoid the shortcomings of the K-means and 

strive to outperform the K-means algorithm, the basis concept for both the algorithms 

compared here. 
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duration 
protocol-type 

service 
src_bytes 

land 
wrong_fragment 

num_failed_logins 
logged_in 
root_shell 

num_file_creations 
is_guest_login 

count 
srv_count 
serror_rate 

srv_serror_rate 
diff_srv_rate 

dst_host_count 
 

Table 2: Selected important 17 features out of 41 features in KDD-99 data set 

 

The third and important experiment involves the analysis of time efficiency of the 

proposed clustering algorithm with canopies technique to show the speed up of the 

algorithm with the use of canopies compared to the basic K-Means and Random K-

Means algorithm. The random K-means algorithm differs from the basic K-means only in 

the way; the centroids are placed in the first step. Basic K-means plots first n points as the 

centroids and starts the iteration, whereas in random K-means clustering, n centroids are 

chosen at random and then proceeds with the grouping iteration. This test would show the 

time efficiency of the nCP clustering algorithm integrated with canopies concept.  The 

basis of this algorithm is K-means algorithm and we try to eliminate the shortcomings of 

the K-means algorithm and make it more efficient than the K-means does. The efficiency 



 48

is always measured and compared with the algorithm from which we derive or to which 

we apply some optimization technique. Here such algorithm is K-means and so we 

compare it with K-means algorithm. 

 

6.3 Experimental Results 

 

The approach of clustering technique integrated with the concept of canopies 

performed well over the KDD-99 data set. 

The results of the first experiment performed on KDD-99 data set with varying 

number of network connection records features which in this case 41 and 17 are shown in 

the table 3. The training and test comprises of 5092 and 6890 records. The detection 

accuracy values clearly depict the increase in the accuracy level for each of the attack 

class with maximum of 0.94% increase for the normal data values. This observation can 

be used to increase the efficiency of the clustering algorithms that work on KDD-99 data 

set. 

 

                         41 Variables                                     17 Variables 
Attack Class Train(s) Test(s) Accuracy (%) Train(s) Test(s) Accuracy (%) 
Normal 98.17 61.42 88.79 57.28 39.03 89.73 
Probe 117.12 69.07 87.22 61.56 32.47 88.06 
DoS 128.28 73.22 87.54 68.16 35.28 87.81 
U2R 72.45 40.39 57.45 37.48 18.54 57.61 
R2L 106.21 52.51 88.12 55.42 39.31 88.62 
 

Table 3: Performance of nCP clustering Algorithm with Canopies 
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 The performance of the nCP clustering algorithm is shown using the ROC curve 

in the figure 6.1. The ROC curve of the nCP clustering shows the maximum detection 

accuracy of 89% and false positive accuracy of 8%. The Y-Means clustering algorithm 

gives the maximum detection accuracy of 86% and false positive accuracy of 2.72%. On 

analyzing the ROC curve, the nCP clustering shows the higher detection rate than Y-

Means clustering algorithm at all selected points. However Y-Means clustering algorithm 

has better false positive rate at all threshold points. Based on this observation it can be 

concluded that nCP clustering with canopies algorithm has a better detection rate than Y-

Means clustering and the application that demands better false alarm rate can apply the 

Y-Means clustering technique for intrusion detection.      

 
Algorithm Detection Rate False Positive Rate 
 nCP Cluster
 nCP Cluster
 nCP Cluster
 nCP Cluster
 nCP Cluster

        89.71% 
        77.12% 
        54.23% 
        23.42% 
        11.03% 

          8.32% 
          6.93% 
          6.31% 
          4.17% 
          3.21% 

Y-Means 
Y-Means 
Y-Means 
Y-Means 
Y-Means 

        86.63% 
        74.38% 
        62.12% 
        21.37%  
        10.67% 

          2.72% 
          2.12% 
          1.81% 
          1.27% 
          1.15% 

 
Table 4: Selected points from the ROC curves of the performance of each algorithm over 
the KDD Cup 1999 Data 
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nCP Canopies Clustering Vs Y-Means Clustering ROC 
Curve for KDD Cup 1999 Data Set
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Figure 6:  ROC performance curves for nCP and Y-Means Clustering 

 

The third experiment is performed on the KDD Cup 1999 data set to determine 

the time efficiency of the nCP clustering algorithm compared to basic K-Means and 

random K-Means Clustering. Time is computed from the start of the algorithm to the 

stage that forms complete clusters of all the data records from the KDD Cup 1999 data 

set. Total records of 19,514 records are passed to each algorithm and computing time is 

measured till the complete cluster formation using all the input data records. Table 5 

shows the results of this experiment.  
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Clustering Algorithm Total Records Time Consumed 
K-Means 19,514 314.12 
Random K-Means 19.514 349.27 
nCP with Canopies 19,514 248.34 

 
Table 5: Time consumed by each algorithm on KDD-99 data set for cluster formation 
 

The nCP clustering shows the higher time efficiency of 248.34 seconds with the 

use of canopies clustering technique compared to K-Means and random K-Means 

clustering. This observation leads to the conclusion that canopies technique speeds up the 

process of cluster formation. K-Means clustering takes next position with the time 

consumption of 314.12 seconds and random K-Means clustering consuming 349.27 

seconds for total of 19,514 data records. 

The fixed width algorithm takes the time complexity of O(n), where n denotes the 

total number of data points. This algorithm can plot all the data points in single pass and 

the running time is directly proportional to the total number of data points available for 

clustering. The n-cp clustering also has the time complexity of O(n), where n represents 

the total number of clusters available to break and grab the required n closest data points 

that are necessary to compute the nCP score. 
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CHAPTER VII 
 

CONCLUSION 
 
 
 

We have presented a clustering framework to detect intrusion and an algorithm 

using the canopies concept to speed up the detection process. The data points are plotted 

in a complete metric space to provide the mathematical ease in distance computation. The 

canopies technique is efficiently used to form the complete clustering framework. A good 

training dataset will provide a more orderly and superior basis for the algorithm to work 

on the intrusions. The substructures called canopies appear also in an overlapping fashion 

that forces the cluster gap to be well defined. The cluster gap is seriously considered and 

recomputed on each iteration to speed up the process and produce more accurate results. 

The algorithm was tested against the KDD Cup 1999 data set. The experimental results 

show relatively high detection rate and low false alarm rate.  

Future work in this project includes the improvisation in false alarm rate. The 

proposed algorithm has a good false alarm rate but it is relatively higher when compared 

to the Y-means algorithm. More accurate distance computation using a complex and 

more reliable formula should bring a better false alarm rate. However this would increase 

its complexity and the time efficiency. 
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