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Abstract 

Business are increasingly analyzing streaming data in real time to achieve 

business objectives such as monetization or quality control. The predictive algorithms 

applied to streaming data sources are often trained sequentially by updating the model 

weights after each new data point arrives. When disruptions or changes in the data 

generating process occur, the online learning process allows the algorithm to slowly 

learn the changes; however, there may be a period of time after concept drift during 

which the predictive algorithm underperforms. This thesis introduces a method that 

makes online neural network classifiers more resilient to these concept drifts by 

utilizing data about concept drift to update neural network parameters.  
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Chapter 1: Introduction 

Technology that generates data in a continuous, “streaming” fashion, such as 

smart phones, internet-of-things devices, networks of sensors, and internet applications 

and games has proliferated greatly in recent years (Ditzler, et al. 2015). Such sources of 

streaming data are often mined and analyzed in real time to achieve business objectives 

such as monetization or quality control.  

Predictive algorithms applied to streaming data sources are often trained 

sequentially (“online”) by updating the model weights after each new data point arrives. 

This allows a model to reflect the characteristics of the most recent data points. 

A common assumption, particularly when data does not arrive sequentially, is 

that the process generating the data does not change; that is, the characteristics of the 

data are fixed. This assumption is often false, as human habits or patterns often change 

or processes are disrupted by external factors. These disruptions or changes are known 

as “concept drift” and change the underlying characteristics of the generated data. 

Although the online learning process allows the model to eventually follow changes in 

the data generating process, there may be a period of time after concept drift during 

which the predictive algorithm underperforms. Aspects of underperformance include 

the time to recover from drift, the total “systemic impact”, and the drop in performance 

after drift. 

In this thesis I demonstrate that information about concept drift can be used to 

reduce the negative performance impact of concept drift on learning algorithms, such as 

online neural networks. I develop and test three methods that use this concept drift 

information to update the neural network parameters. The three proposed methods are 
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1) reset a given percentage of randomly selected weights to a random value; 2) rescale 

all weights between the existing value and a random value – the rescaling depends on 

the characteristics of the concept drift; 3) reset all weights based on a Bayesian-inspired 

formula. I test these three update methods on four simulated datasets that simulate 

concept drift at assigned intervals. The results demonstrate that the networks using the 

rescale methods perform better than an online network with no update method at all. 

Thus, there is value in the information about concept drift that can be used to aid online 

learning algorithms. Further, the methods are most effective in cases where concept 

drift is not small. As an added benefit, all three methods have low computational costs 

and memory requirements. 

This thesis is structured as follows. Chapter 2 contains background on related 

subjects that motivated this work, including data streams, online learning, concept drift, 

neural networks, and describes the related work and the contribution of this thesis. In 

Chapter 3, I present the methodology, which includes the description of the proposed 

methods, simulated data sets, and experimental design. In Chapter 4, I describe how 

results are evaluated, the results themselves, and discuss their significance. The work is 

concluded in Chapter 5. 
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Chapter 2: Background 

Machine learning is an area of applied statistics that emphasizes the use of 

computers to statistically estimate complicated functions. A machine learning algorithm 

learns,1 or is trained to perform some task if it can use past experience (data) to adjust a 

set of parameters in order to optimize some measure of performance or cost 

(Goodfellow, Bengio and Courville 2016; Murata 1998; Engelbrecht 2007). This trained 

algorithm is a model of the task. In general, a predictive model is a function 𝑓: 𝑋 → 𝑦 

that maps the input feature space 𝑋 to a corresponding output target space 𝑦 (Gama, 

Zliobaite, et al. 2014). Machine learning can train a predictive model for the 

classification task, where the output target space 𝑦 is a class label. Other tasks that 

machine learning can solve include regression, transcription, translation, and anomaly 

detection (Goodfellow, Bengio and Courville 2016). 

This chapter provides a background for key concepts in the areas of data 

streams, online learning, concept drift, and neural networks. This background is 

followed by related work and the contribution of this thesis. 

 

Chapter 2.1: Data Streams and Online Learning 

A data stream is an ordered sequence of m-dimensional points 𝑋1, 𝑋2, … , 𝑋𝑛 that 

may contain time stamps. The points generally must be accessed in order and can be 

read only once or a limited number of times in the prescribed sequence (Henzinger, 

Raghavan and Rajagopalan 1998; Guha, et al. 2003; Webb, Hyde, et al. 2016). This 

                                                 
1 Another definition of learning: an algorithm learns by optimizing its parameter set with respect to 

examples of the underlying rule that it is learning (Saad 1998). 
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sequential-temporal property distinguishes data streams from non-stream data (Bifet, 

Read, et al. 2013).  

The data stream framework is important because sources of streaming data are 

becoming increasingly common. Further, many types of data can be modeled as data 

streams, such as data sets that are too large to fit in main memory (Guha, et al. 2003) or 

data that arrive at sequential points in time. Examples include the growing number of 

monitoring systems that generate data at high rates, such as systems that track climate 

variables, physical systems, computer network traffic, or wearable and household 

devices that are often called the Internet of Things (Balzanella, Rivoli and Verde 2013; 

Ellis 2014). Other sources of data streams include social media activity and ecommerce 

websites (Ellis 2014). The possible uses of these streams are extensive.  

There are three key challenges commonly associated with data streams analysis: 

volume, velocity, and concept drift. First, data streams are unbounded: there is no 

bounded time interval during which the stream produces data and hence no 

corresponding limit to the volume of data produced (Balzanella, Rivoli and Verde 2013; 

Mena-Torres and Aguilar-Ruiz 2014). Due to this volume, it may be difficult to store all 

the data in a database to interact with it as needed (Rajaraman, Ullman and Leskovec 

2014) so the data may be discarded or archived and no longer be accessible for 

processing (Balzanella, Rivoli and Verde 2013). For this reason, many data stream 

algorithms seek to summarize the data stream so as to store the core signal in a reduced 

amount of space. Second, the velocity of a data stream, that is, the rate at which data 

enters the system, may be faster than an analytical method can update in real-time. 

Third, data streams are often generated by nonstationary processes, that is, processes 



5 

whose characteristics may change over time. A change in the data generating process is 

often called “concept drift”, which will be formally defined in Chapter 2.2.1. Accurately 

representing changing environments requires analytical processes that adapt quickly to 

new emerging concepts (Balzanella, Rivoli and Verde 2013). 

To deal with the constraints of the data stream model, data stream algorithms 

make two important assumptions. First, data stream algorithms often assume that there 

is limited space for computation (Guha, et al. 2003). They seek to use each data point 

only a few times and require a workspace that is smaller than the size of the input 

(Henzinger, Raghavan and Rajagopalan 1998). Second, data stream algorithms often 

require decisions to be made before all the data are available (Guha, et al. 2003). 

Batch, or “offline” learning is a traditional modeling approach that first trains a 

model on the entire dataset, possibly in batches, and then applies the model to real-time 

data or other applications (Ellis 2014). Figure 1 illustrates this general framework. In a 

typical supervised learning model, a dataset is first preprocessed, a step that may 

include data transformations and variable selection. Next, the data is partitioned into 

training and test datasets, typically via a randomized split. A model is then trained using 

only the training data. The performance and generalizability of the trained model is 

subsequently evaluated using the set of test data, which the model has not seen before. 

In some cases, the parameters of the model will be tuned and the model will be 

retrained on the training data in order to optimize the model performance (Kuhn and 

Johnson 2015). Other steps, such as cross-validation, may be added to this process. 
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Figure 1: Supervised (batch) Machine Learning Paradigm 

Batch learning algorithms generally violate the constraints and assumptions of 

the data stream model. Batch learning algorithms assume that there are no time 

constraints in updating a model in response to new information. This is seen in how 

models are updated with new observations: batch learning systems must rebuild a 

trained model from scratch using the entire training set, including old observations 

(Esposito, et al. 2004; Pérez-Sánchez, Fontenla-Romero and Guijarro-Berdiñas, 2016). 

Further, they frequently make several passes over the data during training, not limiting 

the number of times a data point is read (Mena-Torres and Aguilar-Ruiz 2014). The 

model can only be used for prediction once training is completed (Gama, Zliobaite, et 

al. 2014; Pérez-Sánchez, Fontenla-Romero and Guijarro-Berdiñas, 2016).  

Online, or incremental learning algorithms incrementally train or update a model 

in a sequential manner (Ellis 2014; Gama, Zliobaite, et al. 2014). In terms of the data 

stream framework, the model is continuously updated when each new data point arrives, 

alternating between observing new data and modifying model parameters (Ellis 2014) 

(Pérez-Sánchez, Fontenla-Romero and Guijarro-Berdiñas, 2016; Murata, Kawanabe, et 

al. 1998). Variations of this online process include training a model incrementally by 

continuously updating the model when each new observation arrives or retraining the 

model using the most recent batches of observations (Gama, Zliobaite, et al. 2014). As 

illustrated by Figure 2, online learning follows a simple procedure: (1) initialize the 
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model; (2) predict the output 𝑦𝑡 using input data 𝑥𝑡; (3) diagnose the model accuracy 

when the true value of 𝑦𝑡 has been received; and, (4) update the model with the new 

information (Gama, Zliobaite, et al. 2014). In this way, incremental/online techniques 

can refine or update a model without retraining it from scratch (Esposito, et al. 2004). 

Online learning algorithms also offer the advantage of low computational cost because 

all training examples do not need to be stored in memory (Murata 1998). In sum, online 

learning algorithms meet the constraints of the data stream framework and are well-

suited to analyzing and predicting data streams. 

 

Figure 2: Elements of the Online Machine Learning Paradigm 

 

 An implicit assumption of batch learning is that the process generating the data 

stream is stationary (Ditzler, et al. 2015). That is, there are no changes in the 

distribution of the data and the expected model output. The model trained at one time 

point will be equally valid at all future time points. This assumption of stationarity does 

not hold for many real-world tasks.  Many real-world data streams are generated by 

nonstationary processes that are represented by continuous flow of new information that 

affects the trained model (Balzanella, Rivoli and Verde 2013; Esposito, et al. 2004).  

The online learning paradigm, on the other hand, assumes that the information gained at 

any given moment is incomplete and thus that any learned theory is potentially 

susceptible of changes (Esposito, et al. 2004). This is particularly true when the 
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environment is not stationary. There is no expectation that a model trained at one time 

point is valid at all points in the future. Because online learning algorithms reference 

each training example only once, newer examples have more influence on the model 

parameters. This feature functions as a forgetting effect that allows the online learning 

algorithm to follow gradual changes in the environment (Murata 1998). 

 

Chapter 2.2: Concept Drift 

Dynamic and rapidly changing environments, where incremental learning is 

most suitable, are becoming increasingly common (Balzanella, Rivoli and Verde 2013; 

Ellis 2014). A common scenario of a changing environment is in industrial applications, 

where the wear and tear of machines causes data distributions to change gradually over 

time (Murata, Kawanabe, et al. 1998). The spam (unwanted email) detection problem is 

an example of a dynamically changing environment. The distinction between the spam 

and non-spam classes may evolve over time as spammers become more sophisticated or 

use new tactics. Indeed, spammers actively seek to evade spam filters. Further, as spam 

is user-specific, user preferences about what constitutes spam may also change over 

time (Kuncheva 2004). Another rapidly changing environment is user modeling and 

associated recommendation systems. Such systems are dynamic because the attributes 

that characterize a user and their interests in products and services are likely to change 

over time (Ditzler, et al. 2015; Webb, Pazzani and Billsus 2001). 

Because the real world is often dynamic and nonstationary, it is reasonable to 

assume that data representing dynamic real world environments are also nonstationary 

and unpredictable, changing over time as the real world changes.  Machine learning 



9 

algorithms should contain mechanisms for detecting and handling the complex, 

changing phenomena that the models aim to capture (Webb, Hyde, et al. 2016; Gama, 

Zliobaite, et al. 2014). In terms of the classification task, it follows that if the process 

generating the data changes over time, the target function to be predicted may also 

change (Gama, Zliobaite, et al. 2014).  

Traditionally, most machine learning algorithms operate in batch mode.  The 

result is one or more static models that represent the state of the environment at the time 

the model was generated. Such models are insufficient in nonstationary environments 

because they fail to adequately incorporate the most recent information about the 

environment. Nonstationary environments however can be handled using online 

learning algorithms (Webb, Hyde, et al. 2016). 

In a nonstationary environment, “concept drift” occurs when the characteristics 

of a data stream change. Concept drift is often framed in the context of data streams; 

however, the framework is applicable to any context in which a model may be learned 

from historical data and applied to future data (Webb, Hyde, et al. 2016). 

 

Chapter 2.2.1: Definition of Concept Drift 

 The general framework for concept drift is as follows. Let 𝑓 be the data 

generating process that produces a sequence of tuples (𝑋𝑡, 𝑦𝑡) at time 𝑡, where 𝑋𝑡 is a 

vector of inputs and 𝑦𝑡 is the true class label. Let 𝑚 be the model representing the data 

generating process 𝑓. The true underlying probability distribution of data produced by 𝑓 

at time 𝑡, 𝑃𝑡(𝑋, 𝑦), is unknown. The classification problem can be described in terms of 

Bayesian Decision Theory (Duda, Hart and Stork 2012), where classification decisions 
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are made in terms of the posterior probabilities of the classes.  Given the prior 

probabilities of the classes 𝑃(𝑦) and the class conditional probability density functions 

𝑃(𝑋|𝑦) the classification decision can be made according to 𝑃(𝑦|𝑋) =  
𝑃(𝑋|𝑦)𝑃(𝑦)

𝑃(𝑋)
 

(Gama, Zliobaite, et al. 2014). This probability, 𝑃(𝑦|𝑋), is the concept function that 𝑚 

represents. 

The concept at time 𝑡 is the conditional probability that input data 𝑋 is assigned 

to target class y, 𝑃𝑡(𝑦|𝑋) (Webb, Hyde, et al. 2016; Gama, Zliobaite, et al. 2014). In 

Figure 3 (Gama, Zliobaite, et al. 2014), the delineation between the green and red 

classes represents the “concept”. The goal of a model is to reproduce the concept, 

enabling it to correctly identify the target class of any input data point. 

 

Figure 3: Graphical representation of a concept 

Concept “drift” occurs when the description of a concept is disrupted by some 

change that requires the definition to be revised (Schlimmer and Granger 1986). In 

terms of modeling, if the data generating function 𝑓 has changed, the model 𝑚 

describing the function should also change (Martínez-Rego, Pérez-Sánchez, et al. 2011). 

Mathematically, concept drift occurs between times t and u if the probability 

distributions change: 𝑃𝑡(𝑦|𝑋) ≠ 𝑃𝑢(𝑦|𝑋) (Webb, Hyde, et al. 2016).  

There are two types of concept drift – “real concept drift” and “virtual concept 

drift.” Real concept drift occurs when 𝑃(𝑦|𝑋) changes; it requires model 𝑚 to be 

updated in order to maintain accuracy. This change can occur with or without changes 
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in the distribution of the input data, 𝑃(𝑋). Virtual concept drift occurs when distribution 

of the input data, 𝑃(𝑋), changes over time but 𝑃(𝑦|𝑋) does not. This type of drift does 

not affect the model’s description of the target concept (Webb, Hyde, et al. 2016; Gama, 

Zliobaite, et al. 2014). A typical example of real concept drift is the changing interests 

of a user following an online news stream. If the distribution of the incoming news 

remains constant but the conditional distribution of the users' preference for 

“interesting” news documents changes, then the target concept (articles that the user 

will find interesting) has changed. In the same vein, virtual concept drift would occur if 

the distribution of types of news documents in the stream changes; users would still 

have the same preferences, even if the variety of documents available to choose from 

are different (Gama, Zliobaite, et al. 2014). 

 

Figure 4: Real and virtual concept drift 

 

Figure 4 (Gama, Zliobaite, et al. 2014) illustrates the difference between real 

concept drift and virtual concept drift. The concept is the distinction between the red 

and green points. Under real concept drift, the distinction between the red and green 

points changes. After virtual drift, the distribution of red and green points changes but 

the previous distinction between classes remains valid. As the illustration suggests, the 

previous decision model only becomes obsolete under real concept drift (Gama, 

Zliobaite, et al. 2014). Absent updates to the model after real concept drift, the model 
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will no longer correctly describe the full target concept space; as a result, the model’s 

ability to correctly classify data under the new concept will decrease. 

This thesis will refer to real concept drift as simply “concept drift” or “drift.” 

 

Chapter 2.2.2: Quantifying Concept Drift 

 The magnitude of drift between times 𝑡 and 𝑢 can be generally defined as the 

distance function 𝐷(𝑡, 𝑢) (Webb, Hyde, et al. 2016). A frequently used metric for drift 

magnitude is 
# 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

# 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 𝑎𝑓𝑡𝑒𝑟 𝑑𝑟𝑖𝑓𝑡
, the percentage of input space that have a different 

class label when the change (drift) from concept 𝑓 at time 𝑡 to 𝑔 at time 𝑢 is complete 

(Kosina, Gama and Sebastiao 2010; Minku, White and Yao 2010; Chen, Koh and 

Riddle 2015). Note that this metric mainly reflects changes in 𝑃(𝑦) and 𝑃(𝑦|𝑋). It 

poorly reflects any changes in 𝑃(𝑋) or  𝑃(𝑋|𝑦) (Minku, White and Yao 2010). Webb, 

Hyde, et al. (2016) argues that the appropriate metric for measuring drift may vary by 

domain; this definition is selected because it is generalizable and easy to apply to many 

domains. 

 The severity of drift can vary widely. In the extreme, “severe” drift occurs when 

all examples are misclassified under the new target concept. Most drift is “intersected” 

drift, where part of the input space has the same target class in both the old and new 

concepts (Minku, White and Yao 2010). One could specify a threshold for “major” v 

“minor” drift, such that if the drift magnitude is less than the threshold, the model 

simply requires updating; if the drift magnitude is greater than the threshold, the drift is 

“severe” and the model ought to be abandoned in favor of a new model (Webb, Hyde, et 

al. 2016).  
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Cases in which the drift is “severe” can reasonably be assumed to be rare and 

the causes of such drift are likely apparent without the use of drift detection. As such, 

this study assumes that all drift encountered is “minor” and only requires updates to the 

model. 

 

Chapter 2.2.3: Drift Duration 

A stream is composed of discrete periods of time during which there are stable 

concepts, possibly interspersed by periods of instability, where the concept changes. 

Concept stability can be defined as any interval between time steps t and u such that 

𝐷(𝑡, 𝑢) <  𝜃, where 𝜃 is some minimum threshold for stability (Webb, Hyde, et al. 

2016). In this work, unstable concepts that do not account for the transition from one 

concept to another are assumed to be noise; a goal of an online learning algorithm is to 

account for such instability. 

The speed, or duration, of concept drift is the number of time steps for a new 

concept to completely replace an old concept (Minku, White and Yao 2010). A drift 

with a short drift duration is known as an abrupt drift. Abrupt drift occurs when a 

stream generated by concept 𝑓 is suddenly replaced by a new generating function 𝑔. 

The abrupt drift model assumes that concept drift occurs over discrete periods of time 

that is bounded before and after by periods without drift (Webb, Hyde, et al. 2016). An 

example of abrupt drift might be a market crash, where the market value suddenly drops 

significantly. 

Slow drift implies a long drift duration, also known as incremental, continuous, 

or extended drift. In this case, the change is a steady progression from concept 𝑓 to 
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concept 𝑔 such that at each time step 𝑡 + 𝑖, the distance from the old concept 𝑓, 

𝐷(𝑡, 𝑡 + 𝑖), increases and the distance to the new concept 𝑔, 𝐷(𝑡 + 𝑖, 𝑢), decreases 

(Webb, Hyde, et al. 2016). When incremental drift occurs, there may be several 

intermediate concepts between concepts 𝑓 and 𝑔  (Minku, White and Yao 2010). An 

example of incremental drift is a recession, where there are many intermediate concepts 

between the market peak (concept 𝑓) and the bottom of the recession (concept 𝑔).  

Figure 5 presents an example of incremental drift that occurs over a period of 

100 time steps. The functions 𝑣1(𝑡) and 𝑣2(𝑡) model the probability that an example 

from the old and new concepts, respectively, will be presented at time 𝑡. As illustrated, 

the speed of drift can be represented as the change in 𝑣2(𝑡), the probability that a 

sample from the new concept 𝑔 will be presented (Minku, White and Yao 2010). 

 

Figure 5: Illustration of incremental drift 

Drift recurrence occurs when the “new” concept has previously appeared in the 

data stream (Webb, Hyde, et al. 2016). Old concepts may reappear in a specific order, 

such as weather patterns (cyclical drift), or may be unordered, such as the market basket 

analysis problem (Webb, Hyde, et al. 2016; Minku, White and Yao 2010). In the market 

basket analysis problem, there is concept drift when a new product is introduced to the 

market. The data may return to the previous concept if consumers stop purchasing the 

new product and resume their past purchasing patterns (Minku, White and Yao 2010). 
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Chapter 2.2.4: Drift Detection 

Detecting drift quickly and providing a reasonable measure of drift magnitude is 

a challenging task. For example, if the label for data 𝑋 at time 𝑡1 is 𝑦1 but at 𝑡2 the 

correct label is 𝑦2, does this indicate concept drift or just noisy data? (Bach and Maloof 

2010).   

Various algorithms have been proposed to address the drift detection problem. 

Work in drift detection generally aims to efficiently identify the true points of concept 

drift with accuracy while also minimizing the drift detection time (Chen, Koh and 

Riddle 2015). A simple approach by Nishida and Yamauchi (2007) uses a statistical test 

based on prediction errors to detect concept drift in an online classifier. There are other 

adaptive test statistics for drift detection, as evaluated in Dries and Ruckert (2009). The 

DDM algorithm detects drift when drift causes the mean classification error to 

significantly increase; this increase is defined by the difference between the current 

cumulative mean and standard deviation and the minimum mean and standard deviation 

(Gama, Medas, et al. 2004; Chen, Koh and Riddle 2015). The EDDM algorithm for 

drift detection produces results similar to DDM but is designed to work well in the 

presence of slow, incremental change (Baena-Garcia, et al. 2006). ADWIN2 detects 

drift by using a Hoeffding bound and an adaptive windowing technique that stores 

classification errors in an exponential histogram data structure (Bifet and Gavalda 2007; 

Chen, Koh and Riddle 2015). SEED uses the same Hoeffding bound as ADWIN2 but 

uses a different data structure to store classification errors and uses a compression 

algorithm to reduce the number of boundary checks (Huang, et al. 2014; Chen, Koh and 
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Riddle 2015). The MagSeed algorithm can detect both drift and the drift magnitude 

(Chen, Koh and Riddle 2015).   

The detection of concept drift is outside the scope of this research.  This thesis 

assumes that any application of the proposal makes use of a drift detection algorithm 

that detects drift quickly and provides an accurate measurement of drift magnitude. 

 

Chapter 2.2.5: Other Considerations 

Modeling nonstationary environments requires that the past learned experience 

be replaced with new information that represents the current concept (Martínez-Rego, 

Pérez-Sánchez, et al. 2011). To do so, a learning system must balance stability, the 

ability to retain significant knowledge about the environment, and plasticity, the ability 

to update in response to new information by overwriting old concepts with new 

concepts. A learning system must be both plastic in response to new significant events 

and stable in response to noisy training inputs. Ideally, the system considers new 

samples to be more important than old samples to model the current concept. Because 

both requirements are desirable but in direct conflict, the challenge is known as the 

stability-plasticity dilemma (Grossberg 1987).  

Other desirable features that enable models in nonstationary environments to 

respond quickly to concept drift include the ability to: (i) automatically respond to drift 

without explicit detection (Widmer and Kubat 1996), (ii) respond to changes in the 

environment (Schlimmer and Granger 1986), (iii) adjust model in response to new 

concept (Widmer and Kubat 1996), (iv) distinguish between genuine change in the 
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underlying function and randomness (Schlimmer and Granger 1986), and (v) use 

previous learning to handle concepts that reappear (Widmer and Kubat 1996). 

 

Chapter 2.2.6: How I Will Treat Drift 

In this work, I assume that all concept drift is abrupt. To start, the proposed 

method, described in Chapters 2.5 and 3.1, requires that concept drift first be detected 

and assumes the use of a drift detection algorithm. It is difficult to detect drift in 

general, much less gradual drift. Few drift-detection methods are capable of detecting 

extended drift or concept instability. Further, it is impossible for a drift detection 

algorithm to detect whether a period of incremental drift has finished because the 

probability distribution of unseen observations is inherently unknown. So even if a 

method could handle incremental drift or unstable concepts, it would not know to do so.  

The assumption of abrupt drift is reasonable within the concept drift framework. 

Periods of incremental drift can be considered several distinct concepts. Each 

intermediate concept in a period of drift is a “new” concept, between which there is no 

stable period. Periods of incremental drift or concept instability can also be thought of 

as periods with increased noise. Non-trivially, the very purpose of online learning is to 

update the model in response to small or incremental changes.  
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Chapter 2.3: Neural Networks 

In this section, neural networks are described and defined in detail. Neural 

networks are a powerful class of nonlinear machine learning algorithms that can model 

a wide variety of tasks, including regression, classification, speech recognition, and 

image processing (Saad and Rattray 1998; Engelbrecht 2007). Further, neural networks 

can be trained online and are therefore a candidate model for handling concept drift in 

data streams. 

 

Chapter 2.3.1: Neural Network Overview 

Artificial neural networks are a diverse class of machine learning algorithms that 

are inspired by and modeled on the architecture of biological neurons in a brain 

(Goodfellow, Bengio and Courville 2016; Zou, Han and So 2009). The inspiration is 

drawn from the idea that the brain operates like a complex, nonlinear, and parallel 

computer that can perform difficult tasks, such as speech recognition and image 

processing, faster and more accurately than any computer (Engelbrecht 2007). The 

brain consists of a large network of interconnected nerve cells (“neurons”) that receive 

and transmit signals from neighboring neurons (Engelbrecht 2007; Zou, Han and So 

2009). Each neuron is a simple processing unit that performs a simple task (Jain, et al. 

2014; Zou, Han and So 2009). When the total signal that a neuron receives is greater 

than its given threshold, the neuron emits an electrochemical signal to neighboring 

neurons, which may in turn also propagate signals to further neurons (Zou, Han and So 

2009). A neuron can amplify or reduce the strength of a signal (Engelbrecht 2007). Like 

the biological network, an artificial neural network (or simply neural network) is a 
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network of interconnected nodes that represent biological neurons (Zou, Han and So 

2009). 

Generally, neural networks are directed acyclic graphs that describe how a series 

of functions, represented by artificial neurons, interact in a connected chain to complete 

some task (Goodfellow, Bengio and Courville 2016). Neural networks are often 

modeled as layered networks of artificial neurons; each neuron receives multiple 

weighted inputs from neurons in other layers (Engelbrecht 2007; Zou, Han and So 

2009). If the weighted sum of inputs is greater than the neuron’s threshold, then the 

neuron is activated and it passes the signal through an activation function to 

neighboring neurons in the network (Zou, Han and So 2009).  

A popular neural network architecture or design is the feedforward multilayer 

perceptron topology, illustrated in Figure 6 (Saad 1998; Jain, et al. 2014; Zou, Han and 

So 2009). In feedforward networks, input information flows through the network 

function in a single direction to produce some target output (Goodfellow, Bengio and 

Courville 2016). In other architectures, such as recurrent neural networks, neurons may 

have feedback connections to previous layers, through which information may be sent 

back into nodes in previous layers of the network (Saad and Rattray 1998; Engelbrecht 

2007; Goodfellow, Bengio and Courville 2016). In the multilayer perceptron topology, 

neurons are arranged in layers, which typically include an input layer that contains one 

neuron per input variable, one or more “hidden” layers, and an output layer that 

contains one neuron for each possible output (Jain, et al. 2014; Saad 1998). Each layer 

must contain at least one neuron (Jain, et al. 2014). The number of nodes in each layer 

is typically set intuitively and adjusted manually after several training iterations (Zou, 
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Han and So 2009). Figure 6 (Jain, et al. 2014) illustrates a feedforward multilayer 

perceptron neural network with three input neurons, four hidden neurons, and three 

output neurons. The circles represent neurons in the network.  

 

Figure 6: Feedforward Neural Network 

Like biological neurons, artificial neurons receive signals from the environment 

or other neurons, process the input, and, if activated, transmit a signal to all connected 

neurons. Alone, a single neuron can be used to model linearly separable functions with 

zero error (Engelbrecht 2007). Figure 7 (Engelbrecht 2007) illustrates how information 

flows through a neuron. 

 

Figure 7: Flow of information through a neuron 
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A neuron receives a vector of I input signals: 𝒛 = (𝑧1, 𝑧2, … , 𝑧𝐼) (Engelbrecht 2007; 

Zou, Han and So 2009). Each input signal 𝑧𝑖 is associated with a weight, 𝑣𝑖, that excites 

or inhibits the input signal (Engelbrecht 2007). The neuron computes the net input 

signal as a function of the input and its respective weights: 

𝑛𝑒𝑡 = ∑ 𝑧𝑖𝑣𝑖

𝐼

𝑖=1

 

(Engelbrecht 2007; Zou, Han and So 2009). The neuron then applies an activation 

function 𝑓 to the net input signal and neuron’s bias 𝜃 (threshold) to compute the output 

signal 

𝑜 = 𝑓(𝑛𝑒𝑡 − 𝜃). 

Alternatively, the threshold 𝜃 can also be represented as 

 𝜃 = 𝑧𝐼+1𝑣𝐼+1, 

where 𝑧𝐼+1 = −1. Correspondingly, the net input signal is calculated as  

𝑛𝑒𝑡 = ∑ 𝑧𝑖𝑣𝑖

𝐼+1

𝑖=1

 

and output function is denoted as  

𝑜 = 𝑓(𝑛𝑒𝑡) 

(Engelbrecht 2007). Figure 8 (Engelbrecht 2007) illustrates the flow of information 

through a neuron with the alternative formulation. 



22 

 

Figure 8: Flow of information through a neuron 

 The activation function 𝑓 controls whether the neuron fires and the strength of 

the signal released. Generally, activation functions are monotonically increasing 

functions that produce outputs that range from 0 to 1. There are a variety of activation 

functions, including the sigmoid function, softmax function, linear function, step 

function, ramp function, hyperbolic tangent function, and the Gaussian function.2 The 

sigmoid function is used in this study because of its wide usage. The sigmoid function, 

depicted in Figure 9, is calculated as 

𝑓(𝑛𝑒𝑡 − 𝜃) =
1

1 + 𝑒−𝜆(𝑛𝑒𝑡−𝜃)
, 

where 𝜆 controls the steepness (usually, 𝜆 = 1) (Engelbrecht 2007). The sigmoid 

activation function approaches 0 when (𝑛𝑒𝑡 − 𝜃) becomes very negative and 

approaches to 1 when (𝑛𝑒𝑡 − 𝜃) becomes very positive (Goodfellow, Bengio and 

Courville 2016). 

                                                 
2 Only the sigmoid and softmax activation functions are used in this work. 
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Figure 9: Sigmoid activation function 

The softmax function is typically used as a classifier output in order to represent the 

probability distribution of n different classes. Softmax is calculated as 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑛𝑒𝑡 − 𝜃)𝑘 =
exp (𝑛𝑒𝑡 − 𝜃𝑘)

∑ exp (𝑛𝑒𝑡 − 𝜃𝑗)𝑗
 

(Goodfellow, Bengio and Courville 2016). 

Figure 10 illustrates a feedforward neural network with 𝐼 neurons in the input 

layer 𝒛 = (𝑧1, 𝑧2, … , 𝑧𝐼), 𝐽 neurons in the single hidden layer 𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑗), and 𝐾 

neurons in the output layer 𝒐 = (𝑜1, 𝑜2, … , 𝑜𝐾). The [−1] elements and their respective 

weights represent the biases of each neuron in the hidden and output layers 

(Engelbrecht 2007). 
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Figure 10: Single-layer feedforward neural network 

The output of the network with any input 𝒛𝑝 is calculated with a single forward pass 

through the network, as indicated by the arrows. The value of each output unit 𝑜𝑘 for 

observation 𝑝 is calculated as  

𝑜𝑘,𝑝 = 𝑓𝑜𝑘(𝑛𝑒𝑡𝑜𝑘,𝑝) 

= 𝑓𝑜𝑘(∑ 𝑤𝑘𝑗𝑓𝑦𝑗

𝐽+1

𝑗=1

(𝑛𝑒𝑡𝑦𝑗,𝑝)) 

= 𝑓𝑜𝑘(∑ 𝑤𝑘𝑗𝑓𝑦𝑗

𝐽+1

𝑗=1

(∑ 𝑣𝑗𝑖𝑧𝑖,𝑝

𝐼+1

𝑖=1

)) 

where 𝑓𝑜𝑘 and 𝑓𝑦𝑗 are activation functions for output unit 𝑜𝑘 and hidden unit 𝑦𝑗; 𝑤𝑘𝑗is 

the weight between the output unit 𝑜𝑘 and hidden unit 𝑦𝑗; and 𝑧𝑖,𝑝 is the value of input 

unit 𝑧𝑖 of input pattern 𝒛𝑝. The (I + 1)-th input unit and the (J + 1)-th hidden unit are 
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bias units that represent the threshold values of neurons in the next layer. Note that each 

activation function 𝑓 can be a different function. Further, although the information from 

input neurons can be passed through an activation function, it is typically assumed that 

input units have linear activation functions (Engelbrecht 2007). 

Neural networks are trained by modifying network parameters (weights and 

biases) to minimize some objective or error function that measures the model’s ability 

to estimate the target function. The error function can be generically defined as 휀 =

𝑓𝑒(𝒘), where 휀 is the computed error, 𝑓𝑒 is the error function, and 𝒘 is the vector of 

weights and biases in the network. Minimizing this error function in neural networks is 

commonly achieved using stochastic gradient descent (Goodfellow, Bengio and 

Courville 2016; Engelbrecht 2007). Gradient descent works by calculating the gradient 

of the error function 
𝜕𝜀

𝜕𝒘
= 𝑓𝑒

′(𝒘) in the weight space and moving the vector of weights 

along the negative gradient. For 𝑤𝑖 ∈ 𝒘, the weight at time 𝑡 is updated as 𝑤𝑖(𝑡) =

𝑤𝑖(𝑡 − 1) − 𝜂
𝜕𝜀

𝜕𝒘
, where 𝜂 is the learning rate. The learning rate controls the rate at 

which vector moves along the negative slope of the gradient (Engelbrecht 2007). These 

calculations should bring the function implemented by the network is closer to the 

target function (Saad 1998). Figure 11 (Engelbrecht 2007) illustrates moving a weight 

vector containing a single weight along a gradient slope that corresponds to the 

network’s error. 
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Figure 11: Illustration of gradient descent 

Stochastic gradient descent with backpropagation has two phases for each 

epoch, or training iteration. First, the algorithm makes a forward pass by calculating the 

neural network’s output 𝒐𝑝 for each training input 𝒛𝑝. Second, the error is calculated 

and the error signal is propagated back from the output layer through the hidden layer(s) 

of the network to the input layer. The weights are then adjusted as functions of the 

backpropagated error signal (Engelbrecht 2007).  

The sum of squared errors (SSE) is often used as the error function for 

feedforward networks. For input vector 𝒛𝑝, the SSE is calculated as  

휀𝑝 =
1

2
(

∑ (𝑡𝑘,𝑝 − 𝑜𝑘,𝑝)
2𝐾

𝑘=1

𝐾
) , 

where 𝐾 is the number of output units and 𝑡𝑘,𝑝 and 𝑜𝑘,𝑝 are the target and calculated 

output values of k-th output unit, respectively. The value targets 𝑡𝑘,𝑝 is given by the 

training example (Engelbrecht 2007).  
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The rest of the calculations for gradient descent using the SSE objective function 

and sigmoid activation function are formulated as follows3 (the pattern subscript 𝑝 will 

be omitted to simplify the notation). The value of the k-th output unit is calculated as 

𝑜𝑘 = 𝑓𝑜𝑘,𝑝(𝑛𝑒𝑡𝑜𝑘) =
1

1 + 𝑒−𝑛𝑒𝑡𝑜𝑘
. 

The value of the j-th hidden unit is calculated as 

𝑦𝑗 = 𝑓𝑦𝑗(𝑛𝑒𝑡𝑦𝑗) =
1

1 + 𝑒−𝑛𝑒𝑡𝑦𝑗
. 

The changes in hidden-to-output weights are computed as 

∆𝑤𝑘𝑗,𝑝(𝑡) = 𝜂 (−
𝜕ε

𝜕𝑤𝑘𝑗
) = −𝜂𝛿𝑜𝑘𝑦𝑗 , 

where the output error to be backpropagated is calculated as 

𝛿𝑜𝑘 = −(𝑡𝑘 − 𝑜𝑘)(1 − 𝑜𝑘)𝑜𝑘. 

The changes in input-to-hidden weights are computed as 

∆𝑣𝑗𝑖,𝑝(𝑡) = 𝜂 (−
𝜕ε

𝜕𝑣𝑗𝑖
) = −𝜂𝛿𝑦𝑗𝑧𝑖, 

where the hidden-layer error to be back propagated is calculated as  

𝛿𝑦𝑗 = ∑ 𝛿𝑜𝑘𝑤𝑘𝑗𝑦𝑗(1 − 𝑦𝑗)

𝐾

𝑘=1

 

(Engelbrecht 2007). 

The batch learning framework for backpropagation and stochastic gradient 

descent accumulates all weight changes and adjusts the weights only after all training 

patterns have been presented. So, given 𝑃𝑇  patterns in the training set, the changes in 

the hidden-to-output weights are calculated as 

                                                 
3 See (Engelbrecht 2007) for a complete derivation of these formulae. 
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∆𝑤𝑘𝑗(𝑡) = ∑ ∆𝑤𝑘𝑗,𝑝(𝑡)

𝑃𝑇

𝑝=1

 

and the changes in the input-to-hidden weights are calculated as 

∆𝑣𝑗𝑖(𝑡) = ∑ ∆𝑣𝑗𝑖,𝑝(𝑡)

𝑃𝑇

𝑝=1

 

(Engelbrecht 2007). Thus, the weights at iteration 𝑡 + 1 are adjusted as  

𝑤𝑘𝑗(𝑡 + 1) = 𝑤𝑘𝑗(𝑡) + ∆𝑤𝑘𝑗(𝑡) and 𝑣𝑗𝑖(𝑡 + 1) = 𝑣𝑗𝑖(𝑡) + ∆𝑣𝑗𝑖(𝑡) (Jain2014). 

Figure 12 (Engelbrecht 2007) outlines a generic implementation of the 

stochastic gradient descent (SGD) algorithm. The algorithm trains a neural network by 

iterating over sets of input-output data pairs, seeking to minimize the error function 

(Jain, et al. 2014). Typical stopping conditions for the SGD include: stop after a given 

number of epochs; stop when the error of the training set is small enough, that is, it 

converges to an acceptable level of error; stop when overfitting is observed (e.g. 

network is memorizing the training data). 

 

Figure 12: SGD Algorithm 

Algorithm: Stochastic Gradient Descent Learning (batch) 

 

Initialize weights, 𝜂, and the number of epochs 𝑡 = 0; 

while stopping condition(s) not true do 

Let 휀𝑇 = 0; 

for each training pattern p do 

Do the feedforward phase to calculate 𝑦𝑗,𝑝 (∀ 𝑗 = 1, … , 𝐽) and 

   𝑜𝑘,𝑝 (∀ 𝑘 = 1, … , 𝐾); 

Compute output error signals 𝛿𝑜𝑘,𝑝 and hidden layer error signals 𝛿𝑦𝑗,𝑝; 

Adjust weights 𝑤𝑘𝑗 and 𝑣𝑗𝑘 (backpropagation of errors); 

휀𝑇+= [휀𝑝 = ∑ (𝑡𝑘,𝑝 − 𝑜𝑘,𝑝)2𝐾
𝑘=1 ]; 

end 

𝑡 = 𝑡 + 1; 

end 
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Once the neural network has been trained via SGD, the model is applied to the 

desired application. Neural networks are usually not trained further after the training 

phase in order to preserve the learning. Further, a network trained in batch mode has no 

mechanism to update itself in response to new information. To incorporate new training 

examples, the neural network needs to be retrained with the all new and old data 

samples (Jain, et al. 2014). 

Three key factors that impact the training and performance of neural networks 

are weight initialization, the learning rate, and network architecture. Weight 

initialization is important because gradient-based training methods like SGD are 

sensitive to how initial weights are set. If the weights are initialized close to a local 

minimum, the algorithm will converge quickly; if the weights are initialized on a flat 

area of the error surface, the algorithm will converge slowly. A common strategy for is 

to select small, randomized values centered around zero; this removes the bias toward 

any particular set of weights. The learning rate controls the size of the weight 

adjustments. Accordingly, the speed of the network’s convergence is proportional to the 

learning rate. If the learning rate is very small, only small adjustments are made to the 

weights each epoch and more learning iterations are required to converge. A small 

learning rate allows the algorithm to closely follow the gradient path, but this may also 

cause it to become trapped in a bad local minimum. If the learning rate is very large, 

large weight adjustments are applied and the algorithm converge quickly; however, the 

algorithm may also oscillate without reaching minimum because step size is too large. 

A large learning rate could also lead the algorithm to skip a good local minimum and 

converge at a bad local minimum. There are numerous strategies for selecting an 
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appropriate learning rate, including the simple approach of selecting a small value and 

increasing or decreasing the learning rate manually according to how the network 

converges. Network architecture, or the number of layers and number of neurons in 

each layer, controls the complexity of functions that the neural network can learn. In 

general, a simple architecture containing the fewer neurons or layers is preferable to a 

complex architecture with equivalent performance because on average, the simplest 

network will generalize best. Further, a network with too many extra neurons may 

memorize the training patterns and noise in the training data, leading to bad 

generalization to other data (Engelbrecht 2007). 

 

Chapter 2.3.2: Online Neural Networks 

Training a neural network in batch mode, as described in the previous section, is 

a viable approach to modeling problems in stationary environments. However, this is 

not the case in nonstationary environments, where a model ought to be updated in 

response to new information as it appears. Online learning is an efficient, common, and 

powerful approach for training networks in nonstationary environments (Jain, et al. 

2014). 

To train a neural network incrementally (online), update the network weights 

after observing each sample, instead of accumulating and averaging the weight updates 

at the end of each epoch, (Jain, et al. 2014; Kuncheva 2004). The set of parameters 𝑤𝑡 

at time 𝑡 are modified to 𝑤𝑡+1 by using only the next example (𝑥𝑡+1, 𝑦𝑡+1) given by the 

data generating process (Murata, Kawanabe, et al. 1998). Each iteration of online 

gradient descent uses a single example to update the parameter set, instead of averaging 
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the gradient over the complete training set (Bottou 1998). The formulae described in the 

previous section also apply to SGD in the online context. 

It has been shown that online learning is asymptotically as effective as batch 

learning if the appropriate learning rate 𝜂 is selected (Murata, Kawanabe, et al. 1998). 

Although online learning introduces some random noise into the learning, it is 

acceptable to assume that on average, random noise will not affect the algorithm’s 

behavior (Bottou 1998). 

There are a couple challenges in training neural networks. First, the training 

processes are dependent on the choice of training parameters, which impact the speed 

and convergence of the algorithm (Saad 1998; Saad and Rattray 1998). While training 

online with live data, it is difficult to retrain a network with a new set of training 

parameters. Second, SGD assumes that the error surface is fixed whereas the error 

surface in the online setting is inherently stochastic (Saad 1998). Third, the order that 

training examples are presented may introduce some bias to the model (Engelbrecht 

2007), as the weights are more strongly influenced by the most recent observations. 

This may be beneficial, as it enables the network to most closely represent the current 

concept. Although the influence of old observations cannot be removed directly, 

reducing this influence incrementally over time allows the network to better handle 

nonstationary environments, where a concept may drift among a set of concepts (Mena-

Torres and Aguilar-Ruiz 2014). 
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Chapter 2.4: Related Work 

There are three general approaches to addressing concept drift: detect-and-

retrain, constant updates, and ensembles (Kuncheva and Zliobaite 2009; Martínez-Rego, 

Pérez-Sánchez, et al. 2011). In the detect-and-retrain approach, when classification 

performance declines, the model is retrained using the new incoming data that 

represents the current distribution. A potential drawback of detect and retrain is that it 

can be computationally expensive to completely retrain a model on a high velocity and 

high volume data streams.  Further, the time required to detect drift may allow the 

model to perform poorly for a while – this may be unacceptable for tasks with a high 

cost of failure. The detect-and-retrain approach is rarely mentioned in the context of 

neural networks because of the high retraining cost. Constant updates are commonly 

implemented via a moving window or constant updates to the model parameters 

(Kuncheva and Zliobaite 2009). With a moving window, the window size is critical: if it 

is too long, then the system is less responsive to changes and if it is too short, then the 

system is unstable and undertrained (Martínez-Rego, Pérez-Sánchez, et al. 2011). 

Another drawback of windowing is that it is expensive to retrain the model each time 

the window moves. The constant updates approach is computationally cheaper; 

however, it retains old information without considering its value or relevance 

(Kuncheva and Zliobaite 2009). Ensembles are a popular approach to concept drift that 

combine several models to obtain a solution. There are many ways to create, update, 

and manage the ensembles. A potential challenge of the ensemble approach is that it 

may require creating a new model periodically and must determine how to handle old 

models when they become irrelevant. Managing a large ensemble of models may make 



33 

the system slower in the adaption to fast-changing environments due to the storage cost 

and computation size (Martínez-Rego, Pérez-Sánchez, et al. 2011).  

 

Chapter 2.4.1: Forgetting via Constant Updates and Instance Weighting 

The goal of the constant updates approach to responding to nonstationary 

environments is to learn new class descriptions and unlearn old knowledge while 

avoiding the need to explicitly detect drift (Kuncheva 2004). Constant updates address 

the fact that it is not possible to directly “forget” the influence of old observations on 

the network weights (Elwell and Polikar 2009). The primary challenge of the approach 

is to select appropriate rate of forgetting so that it corresponds to the rate and type of 

change (Kuncheva 2004). 

For other machine learning algorithms, a sliding window is a common 

implementation of forgetting (Kuncheva and Zliobaite 2009). The sliding window 

approach is limited by the requirement of storing the previous N data points. It is rarely 

used for neural networks because the retraining phase is computationally intensive 

(Elwell and Polikar 2009). 

In neural networks, instance weighting is used to “forget” the influence of old 

observations by weighting new observations higher. Unlike the window approach, 

instance weighting methods do not need to maintain past batch data. Further, instance 

weighting should lead to an adaptive neural network that balances new knowledge and 

old knowledge (Pérez-Sánchez, Fontenla-Romero and Guijarro-Berdinas 2010). This 

approach addresses and incorporates the criticism that the influence of older 
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observations on network weights cannot be canceled later; the influence can only be 

reduced over time (Mena-Torres and Aguilar-Ruiz 2014).  

Martínez-Rego, Pérez-Sánchez, et al. (2011) introduced an online and 

incremental one-layer neural network model for non-stationary problems that 

implements forgetting in the cost function by assigning higher weights to new 

observations. The objective cost function is weighted by a forgetting function that is 

constant in stationary environments and monotonically increasing in nonstationary 

environments. The model can thus adapt dynamically to both stable and dynamic 

environments. The method can model non-stationary environments without needing to 

detect changes or maintain irrelevant data. Martínez-Rego, Fontenla-Romero and 

Alonso-Betanzos (2012) updated the previous work by reducing the computational 

complexity of their algorithm. The previous algorithm was cumbersome because it 

needed to determine the weight for each new data sample by solving a system of linear 

equations and because the weighting of the data samples needed to be periodically reset. 

Pérez-Sánchez, Fontenla-Romero and Guijarro-Berdinas (2010) proposed a 

neural network training scheme that uses a factor to weigh the error committed by each 

sample in order to “forget” old information. Pérez-Sánchez, Fontenla-Romero, et al. 

(2013) furthered the previous work by designing an online incremental neural network 

with adaptive network topology. The algorithm allows the network structure to change, 

depending on the needs of the learning process. For example, increasing the number of 

hidden neurons implies changes to both the modified network layer and the next 

network layer because number of inputs to the next layer grows. 
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Chapter 2.4.2: Neural Network Ensembles 

 Neural network ensembles, a combination of several networks, collectively 

produce classifications by some voting scheme (Hansen and Salamon 1990). Neural 

network ensembles have been used to improve the generalization of neural network 

performance. Members of the ensemble may be trained for the same task or concept or 

may be trained on different tasks or concepts (Akhand, Islam and Murase 2009). 

There are many strategies for constructing an ensemble that adapts to changing 

environments. Results can by produced by simple or dynamically-weighted majority 

voting schemes (Elwell and Polikar 2009).  Maintaining diversity in an ensemble can 

help reduce the initial drop in accuracy that occurs immediately after drift (Minku, 

White and Yao 2010). Maintaining old classifiers in an ensemble can allow the 

ensemble to handle recurrent drifts. When a new concept is encountered, the model 

simply adds a new classifier to the ensemble. Each classifier in the ensemble then 

belongs to a different concept (Ramamurthy and Bhatnagar 2007; Elwell and Polikar 

2009). Each classifier in an ensemble could be constructed on a different subset of the 

available data points (Street and Kim 2001). Other techniques include dynamic 

combiners, updated training data, updating ensemble members, updating training data, 

structural changes of the ensemble, and adding new features (Kuncheva 2004). 

Ensembles of neural networks have also been used to address concept drift. 

Ghazikhani, Monsefi and Yazdi (Online cost-sensitive neural network classifiers for 

non-stationary and imbalanced data streams 2013) proposed a cost-sensitive, online 

neural network ensemble for learning imbalanced classes in nonstationary 

environments. The method proposed a dynamic weighting method for the ensemble. 
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Ghazikhani, Monsefi and Yazdi (Ensemble of online neural networks for non-stationary 

and imbalanced data streams 2013) proposed an online ensemble of cost-sensitive 

neural network classifiers for non-stationary and imbalanced data streams. The cost 

function assigned more importance is assigned to errors in the minority class. The new 

mechanism for weighting classifiers of an online ensemble used the Winnow method in 

order to handle both concept drift and class imbalance. The ensemble uses a fixed 

number of classifiers and generates ensemble diversity by using different initial 

weights. Ghazikhani, Monsefi and Yazdi (2014) furthered their previous work by 

creating an online neural network model that applies a forgetting function to handle 

concept drift.  

 

Chapter 2.5: Contribution of This Thesis 

If a neural network is trained in time with a data stream, the neural network 

parameters will follow minor concept drifts and concept instability; the responsiveness 

of the network depends on the learning rate used in the training algorithm (Kuncheva 

2004). Training a neural network on streaming data can therefore enable it to respond 

immediately to concept instability and extremely gradual drift. Even in the face of 

larger, faster drifts, a network will eventually learn to classify the new concept 

correctly. Yet there remains a period when the network’s ability to produce correct 

classifications is reduced.  

In this thesis, I demonstrate that if a learning system has detected concept drift, 

information about the drift can be used to reduce the underperformance of an online 
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neural network as it learns the new concept. Just as in Bayesian statistics,4 where a 

hypothesis is updated in response to new information (Kruschke 2014), an online 

learning model can be updated in response to information about concept drift. In this 

context, information about the drift is used to update the model parameters, reducing the 

negative impact of concept drift on model performance. Because information about drift 

is different from a new training observation, such updates ought to be applied outside 

the standard learning process.  

There are various attributes of concept drift that can be useful to a learning 

algorithm, including magnitude, duration, and scope. Magnitude is the distance between 

the new concept and the old concept; it is formally defined in Chapter 3 as the change in 

model accuracy after concept drift. Duration is the amount of time, or number of time 

steps, over which the concept is changing. Scope is the proportion of the domain of 𝑋 

for which 𝑃(𝑦|𝑋) changes and affects how much of a model requires updating (Webb, 

Hyde, et al. 2016). The methods proposed in this thesis only make use of magnitude 

because the duration is negligible (concept drift is simulated as abrupt) and the selected 

definition of magnitude is very similar to the definition of scope.  

This approach of using information about concept drift does not fall neatly into 

the categories of drift adaption described in Chapter 2.4. Instead, my thesis proposes 

that the learning system detect drift and make changes to model parameters such that 

the model moves away from the old concept. Under this model, weights and biases of a 

                                                 
4 Bayesian statistics is a branch of statistics that generally applies Bayes’ rule: 𝑝(𝑐|𝑟) =  

𝑝(𝑟,𝑐)

𝑝(𝑟)
=

 
𝑝(𝑟|𝑐)𝑃(𝑐)

𝑝(𝑟)
. Bayes’ rule states that the probability of 𝑐 given 𝑟 (the posterior belief) is the probability that 

both events occur together (the likelihood times the prior belief), relative to the probability of 𝑟 (the 

evidence) (Kruschke2014). In terms of concept drift, the prior represents the existing belief that the 

current set of parameters is optimal and the likelihood and evidence represents the information from drift. 
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neural network are updated using the drift magnitude, an approach that has the added 

benefits of low computational costs and memory requirements. The details of this 

method and its variations are described in the following chapters. 
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Chapter 3: Methodology 

The methodology is presented in this Chapter. I describe the proposed methods 

in Chapter 3.1, the simulated data sets with concept drift in Chapter 3.2, and the 

experiment design in Chapter 3.3. 

 

Chapter 3.1: Description of the Proposed Method 

After concept drift occurs, the proposed methods use the drift magnitude in 

various ways to update the neural network parameters independently of the gradient 

descent training algorithm. Drift magnitude is measured as the reclassification rate, or 

the change in the accuracy rate after drift occurs, calculated as 

𝑑𝑟𝑖𝑓𝑡 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = max(𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑏𝑒𝑓𝑜𝑟𝑒) −  𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑎𝑓𝑡𝑒𝑟 . 

Model accuracy is defined as 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡

# 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑
, 

where the accuracy is evaluated on an independent set of test data. In cases were drift 

leads to an improvement in model accuracy (the magnitude is negative), the proposed 

methods need not be applied. 

Given the calculated drift magnitude after concept drift, the proposed method 

adjusts the network parameters independently of the training algorithm to adapt to the 

drift. Three variations of updating are tested, each of which are applied to all network 

weights and applied to all network weights and biases for a total of six tests. Note that 

the term ‘node’ can refer to either weight or bias value. 

The first update variation is full reset, where the drift magnitude dictates the 

probability that a node will be randomly reset from the trained value to a random value. 
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Weights are adjusted according the following functions: 

𝑤𝑘𝑗(𝑡1) = 𝑏𝑘𝑗𝑤𝑘𝑗(𝑡0) + (1 − 𝑏𝑘𝑗) ∗ 𝑟𝑎𝑛𝑑 

and 

𝑣𝑗𝑖(𝑡1) = 𝑏𝑗𝑖𝑣𝑗𝑖(𝑡0) + (1 − 𝑏𝑗𝑖) ∗ 𝑟𝑎𝑛𝑑, 

where 𝑡0 and 𝑡1 are represent the moments before and after reset is applied to the 

network weights trained at time 𝑡, respectively, and 𝑏𝑘𝑗 and 𝑏𝑗𝑖 are Bernoulli variables 

with probabilities 𝑃(𝑏𝑘𝑗 = 1) = 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 and 𝑃(𝑏𝑗𝑖 = 1) = 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒. For 

example, if the drift magnitude is 20%, then each node has a 20% probability of being 

reset to a random value. Nodes are randomly selected because it is difficult or 

impossible to distinguish which combination of nodes represent the old concept and to 

what degree. Logically, a larger drift leads to resetting more nodes; thus, if the drift 

magnitude is 100%, then all nodes are reset and the neural network is effectively 

retrained from scratch. The “full reset” method is inspired by “dropout”, a popular 

regularization technique that, for each training example, randomly drops nodes in 

hidden layers with a given probability and trains the remaining nodes with 

backpropagation (Baldi and Sadowski 2013). Dropout is similar to averaging neural 

network ensembles (Hinton, et al. 2012). 

The second update variation is scaled reset, where all nodes are rescaled 

according to drift magnitude. In scaled reset, the new node values are determined by a 

sliding scale between the old node value and the new node value:  

𝑤𝑘𝑗(𝑡1) = 𝑤𝑘𝑗(𝑡0) ∗ (1 − 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒) + 𝑟𝑎𝑛𝑑 ∗ 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 

and 

𝑣𝑗𝑖(𝑡1) = 𝑣𝑗𝑖(𝑡0) ∗ (1 − 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒) + 𝑟𝑎𝑛𝑑 ∗ 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒. 
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Scaled reset is motivated by the idea that the greater the drift, the further the optimal 

network node values of the new concept will be from the trained node values 

representing the previous concept. The drift magnitude measures how close the new 

concept is to the old concept. Because the optimal node values to represent the new 

concept are unknown, a random value is used to represent the new concept. If there is a 

large drift, then the new node value is expected to be less like the old node value, 

therefore it is scaled closer to the random value. For small drifts, the new node value 

will be scaled closer to the old node value because less has changed. If the drift 

magnitude is 100%, scaled reset functions to reset the entire network. This update 

method tests whether the magnitude indicates how close the old network node is to the 

optimal value for the new concept. 

The third update variation is Bayesian rescaling, which applies the Bayesian 

probability formula to node values. Bayesian-inspired rescaling reapplies Bayes’ rule5 

to update the value of a node (Kruschke2014). Interpreting Bayes’ prior as the node 

value under the old concept, the likelihood as the magnitude drift, and the sum of 

magnitude-weighted node values as the evidence, the following formulas for updating a 

node value given a drift magnitude were derived as 

𝑤𝑘𝑗(𝑡1) =
𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 ∗ 𝑤𝑘𝑗(𝑡0)

∑ 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 ∗𝐽
𝑗=0 𝑤𝑘𝑗(𝑡0)

 

and 

𝑣𝑗𝑖(𝑡1) =
𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 ∗ 𝑣𝑗𝑖(𝑡0)

∑ 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 ∗𝐼
𝑖=0 𝑣𝑗𝑖(𝑡0)

 . 

                                                 
5 𝑝(𝑐|𝑟) =  

𝑝(𝑟|𝑐)𝑃(𝑐)

𝑝(𝑟)
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Table 1 summarizes the six update methods that will be tested. 

Table 1: Summary of network update methods 

Method Nodes updated 

Full Reset Weights and biases 

Full Reset Weights only 

Scaled Reset Weights and biases 

Scaled Reset Weights only 

Bayesian Rescaling Weights and biases 

Bayesian Rescaling Weights only 

 

The three update methods have low computational costs and memory 

requirements. Computational costs are low because update methods are only applied 

when drift is detected; other solutions to nonstationary environments require additional 

computations to predict each new observation, such as dynamically weighting an 

ensemble to determine model output for each input or calculating how much to weight 

each new input to the model. Computational costs are also low because the methods are 

simple to calculate – each constant-time formula is applied once for each parameter and 

thus runs in 𝑂(𝑤) time, where 𝑤 is the number of weights (and biases) to update. 

Memory requirements are low because only information about the current concept 

requires storage. 

 

  



43 

Chapter 3.2: Simulated Datasets 

With real datasets, it is difficult to know exactly when concept drift begins or 

ends, the type of drift present, or whether drift truly occurred. So, to analyze the 

strengths and weaknesses of the described methods and to control the timing and 

severity of drift, I perform tests on simulated datasets. This way, it will be known for 

which situations the strategy will be useful (Minku, White and Yao 2010). 

The described update methods will be tested on four simulated datasets, each 

labeled according to a different function. For each function, the x, y, and z parameters 

will be randomly generated; the other parameters of the functions will be set and 

readjusted when the simulated drift occurs. 

The SineV function randomly generates 𝑥 and 𝑦 variables in the range -10 to 10. 

The label is assigned as 0 if 𝑦 ≤ 𝑎 sin(𝑏𝑥 + 𝑐) + 𝑑; otherwise the label is 1. The 

function takes three static parameters: 𝑎 = 𝑏 = 1 and 𝑐 = 0.  To simulate concept drift, 

the parameter 𝑑 changes to a new value every 500 observations, assuming the following 

sequence of values: −2, 1, −5, 4, −8, 7 (Minku, White and Yao 2010). As shown in the 

scatter plot, changes in 𝑑 shifts the class division (the concept) vertically. 



44 

 

Figure 13: SineV concept, before and after drift 

The plane function randomly generates 𝑥, 𝑦, and 𝑧 variables. The label is 

assigned as 0 if 𝑦 ≤  −𝑎0 + 𝑎1 ∗ 𝑥1 + 𝑎2 ∗ 𝑥2; otherwise the label is 1. The fixed 

parameters 𝑎1 and 𝑎2 default to the value 0.1. To simulate concept drift, the parameter 

𝑎0 changes to a new value every 500 observations, taking the following sequence of 

values: -2.0, -2.7, -1, -3.2, -0.7, -4.4 (Minku, White and Yao 2010). As shown in Figure 

12, changes in 𝑎0 rotates the three-dimensional plane (the concept) towards the origin of 

the x-y axis. 
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Figure 14: plane function, before and after drift 

The plane2d rotating hyperplane function randomly generates 𝑥 and 𝑦 variables. 

The two classes are delineated by a straight line that is centered at the origin. The label 

is assigned as class 0 if 𝑦 cos 𝜃 + 𝑥 sin 𝜃 > 0, where 𝜃 =
𝑘∗𝜋

180
, otherwise the label is 1. 

There is 10% noise in class assignments (Narasimhamurthy and Kuncheva 2007). When 

concept drift occurs, the line rotates 𝑘 degrees around the origin. In the concept drift 

simulations, k takes on the following sequence of values: 0, 10, 25, 45, 70. The number 

of degrees rotated increases after each drift to test the impact of varying degrees of drift. 
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Figure 15: plane2d function before and after drift 

The four Gaussian components function samples 𝑥 and 𝑦 values from a 2-

dimensional mixture of four equiprobable Gaussian clusters. The means of the clusters 

are centered at (10, 10), (−10, 10), (−10, −10), (10, −10). Each point is assigned to 

one of two classes, depending on the current concept. During concept 1, if the 𝑦 in 

(𝑥, 𝑦) is less than 0, then the point is in class 1, otherwise it is in class 2. During concept 

2, if the 𝑥 in (𝑥, 𝑦) is less than 0, then the point is in class 1, otherwise it is in class 2 

(Narasimhamurthy and Kuncheva 2007). 
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Figure 16: Four Gaussian Components function, before and after drift 

The simulated datasets are implemented via a data generation class that returns a 

new single randomly generated data point at a time and assigns a label according to the 

current concept. After generating a given number of observations, the data generator 

labels the data points according to the subsequent concept until all pre-defined concepts 

have appeared. 

 

Chapter 3.3: Experimental Design 

All data simulations and experiments are implemented in Python. The neural 

network model is implemented by the pylearn2 package, a machine learning research 

library designed with flexibility to facilitate machine learning research (Goodfellow, et 

al. 2013). Pylearn2 was selected because it is extendable and allows the neural network 

parameters to be updated outside of the assigned learning function. 

For each simulated dataset, the tests generate a baseline neural network with no 

external adjustments after drift and six networks that are modified after drift by the six 
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update functions described in Chapter 3.1. The seven neural networks are initialized 

with identical parameters, learning rates, and network structures for each dataset; the 

hidden layer weights are initialized in the range -0.1 to 0.1 and the biases are initialized 

to 1. The hidden layers uses a sigmoid activation function and the output layer uses a 

softmax activation function. Table 2 summarizes the network structures selected for 

each dataset. The networks for each dataset are initialized and trained with the same 

settings and data so that any differences in performance are attributable to the update 

methods alone.  

Table 2: Neural network parameters 

Dataset Learning 

Rate 

# Input 

Nodes 

# Hidden 

Nodes 

# Output 

Nodes 

SineV 0.05 2 3 2 

Plane 0.05 3 3 2 

Plane2d 0.075 2 2 2 

Four Gaussian 

Components 

0.05 2 4 2 

 

The seven neural networks are sequentially trained with gradient descent on the 

same sequence of labeled training data. After the networks are trained on each new 

observation, the accuracy is evaluated on the 1,000 test data points sampled from the 

current concept. Model accuracies are evaluated on test data that was not used as 

training inputs in order to test the generalized performances of the models.  

When concept drift occurs, the first observation of the new concept is tested on 

the neural networks that model the old concepts because a network cannot be adjusted 

for concept drift until after it occurs. Then, 1,000 new test data points then are drawn 

from the new concept. This new test data is used to test the performances of the neural 
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networks under the new concept. The change in model performance (accuracy) is then 

used to calculate the drift magnitude. Once the drift has been detected and measured, 

the designated update method is applied to each network.  

As noted by Engelbrecht (2007), any study evaluating the performance of neural 

networks ought to be based on several simulations, with each simulation initialized with 

different random initial weights and different training and test datasets. Engelbrecht 

(2007), further noted that at least 30 independent simulations ought to be run in order 

for the central limit theorem’s6 normality assumption to hold. Thus, to show that the 

results are not due to a fortuitous generation of random numbers, each experiment is 

tested 30 times with different seeds passed into every random number generator; the 

results are averaged and reported in aggregate.7  

  

                                                 
6 The central limit theorem can be defined as follows: “the probability distribution governing the variable 

[x] approaches a Normal distribution as the number of observations (simulations) tends to infinity” 

(Engelbrecht 2007). 
7 The initial neural network parameters are not varied across simulations. 
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Chapter 4: Results and Discussion 

In this chapter, the results are described and evaluated. The results are presented 

in Chapter 4.1; subsection 4.1.1 describes the evaluation metrics and subsections 4.1.2-5 

present the results for each simulated dataset. In Chapter 4.2, the results are analyzed 

and discussed. 

 

Chapter 4.1: Results 

As explained in Chapter 3.3, the accuracy of each neural network is assessed 

after receiving each new observation. The results thus appear as a time series of 

accuracy rates. In order to improve the ability of the metrics described in Chapter 4.1.1 

to measure the model recoveries, I first smooth out the volatility using a simple moving 

average over a window of 15 observations.8 The primary benefit of removing the noise 

is to improve detection of model stability. 

Model stability is a critical component of the metrics described in the following 

section. Qualitatively, a model is considered stable during an interval if the model 

accuracy is relatively constant throughout the interval. A model has recovered from 

concept drift if the accuracy rate is stable and at a level similar to the stable accuracy 

rate before drift – there are cases where a model may not regain the previous level of 

accuracy or may exceed the previous level of accuracy. Formally, a model is stable 

during the interval [𝑡, 𝑢] if max(𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦[𝑡,𝑢]) − min(𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦[𝑡,𝑢]) <  𝜃, where 𝜃 is 

the stability threshold. The model has recovered and is stable in the long run if 

                                                 
8 The window includes 7 observations before the given observation, the given observation, and 7 

observations after the given observation. 
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max(𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑇) −  𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑡 < 𝜃𝑙, where 𝑇 is any arbitrary point in the future and 

𝜃𝑙 is the threshold for long term stability.9  

 

Chapter 4.1.1: Metrics for Evaluating Results 

This thesis adopts the resilience framework to evaluate the ability of the 

aforementioned update methods to aid in model recovery from concept drift. A formal 

definition of resilience is given by Vugrin, et al. (2010): 

Given the occurrence of a particular disruptive event (or set of events), the 

resilience of a system to that event (or events) is the ability to efficiently reduce 

both the magnitude and duration of the deviation from targeted system 

performance levels. 

In this application, concept drift is the disruptive event, the system is the neural network 

model and its assigned update method, and the targeted system performance level is the 

long-run stable accuracy rate. Vugrin, et al. (2010) noted that their approach for 

measuring system resilience is not specific to any model or domain; it simply requires 

time series data that measure a system’s output and recovery efforts. Because an 

inherent component of system resilience is recovery, the framework for evaluating 

recovery is directly applicable to this study. 

The resilience of a system is measured by the systemic impact, recovery 

duration, and the recovery effort. Systemic impact measures the effect on system 

performance, and is calculated as the difference between targeted and actual system 

performance levels following the disruptive event (concept drift). The recovery 

duration is the duration of time between system disruption and system recovery,  

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑢 − 𝑡0. The total recovery effort is the amount of resources consumed 

                                                 
9 In this application, 𝑇 is the last point of the current concept before the next drift occurs. 
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during the recovery process following disruption (Vugrin, et al. 2010). Because the 

recovery effort of all tested methods is the same (one external update to the network 

nodes), this metric will not be used.  

 

Figure 17: Resilience illustration 

 

Figure 17 (Vugrin, et al. 2010) illustrates the measurement of system resilience 

in a nonstationary environment. Given concept drift at time 𝑡 = 𝑡0, the systemic impact 

is the total deviation of the actual system performance (SP) from the targeted system 

performance (TSP) level. The duration is the number of time steps in which the system 

performance is less than the targeted system performance level. The model has 

recovered when 𝑆𝑃(𝑢) = 𝑇𝑆𝑃(𝑢) (Vugrin, et al. 2010). 

In evaluating the results of this study, the recovery duration and systemic impact 

will be used, in addition to the worst accuracy after drift and the categorical evaluation 

of recovery to pre-concept drift levels. Recovery duration, as described before, is the 

number of time steps between concept drift and model recovery, or the amount of time 

the neural network is underperforming. The systemic impact is measured as  

𝑆𝐼 = ∫ [𝑇𝑆𝑃(𝑡) − 𝑆𝑃(𝑡)]𝑑𝑡
𝑢

𝑡0
, where TSP is the target system performance and SP is the 



53 

actual system performance. It is the area between the target system performance and the 

actual system performance, illustrated in Figure 17. A good update method will reduce 

the systemic impact of concept drift on the neural network. The worst accuracy after 

drift, or largest deviation from target system performance is included because the 

update method should reduce the post-drift drop in accuracy, not increase it. Because 

accuracy is a proxy for closeness to the target concept: the update method should aid in 

bringing the model closer to the target concept, not further away. Given 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑓 , the 

model accuracy under the previous concept, and 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑔, the model accuracy under 

the new concept after the model has stabilized, the recovery performance of a neural 

network is evaluated as follows. If the concept is stable and 𝑎𝑏𝑠(𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑓 −

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑔) =  𝜃, the performance is recover. If the concept is stable and 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑓 >  𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑔, the recovery performance is underperform. Otherwise, the 

concept is stable and 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑓 <  𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑔; the recovery performance is 

overperform. 

Compared to the baseline neural network, an update method that adds robustness 

to the network will minimize recovery time, minimize systemic impact, and maximize 

worst accuracy after drift, and will either recover to or overperform the model accuracy 

under the old concept. 

 

Chapter 4.1.2: Results – SineV 

The averaged accuracy rates of the SineV experiments are plotted in Figure 18.  

The vertical axis represents the accuracy rate (0-100%) and the horizontal axis 

represents the time units (new observations are introduced to the system each time step). 

The five vertical lines indicate the five points in time when concept drift occurred. The 
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chart plots seven lines that represent accuracy rates of the baseline neural network with 

no update after concept drift and the six neural networks augmented by the 

aforementioned update methods.  

 

Figure 18: SineV results 

Before the first concept drift occurs (time 0 through 499), all the neural 

networks have identical accuracy rates because they are initialized identically and are 

trained using the same observations. After each concept drift occurs, all networks 

experience some drop in accuracy and generally recover to some “stable” or constant 

level. After the first concept drift at time 500, all networks recover at similar rates. The 

network with Bayesian rescaling applied to the weights took longer to recover than the 

other networks after the second drift at observation 1000. Several networks took a long 
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time to recover after the third drift at time 1500; the variance in accuracy rates was high 

before converging. After the fourth drift at time 2000 and fifth drift at time 2500, most 

networks converged to a stable accuracy rate quickly. Interestingly, none of the 

networks recovered to the accuracy rate achieved prior to the first drift.  

The results in terms of the resilience metrics described in the previous section 

are presented in Table 3. The first column lists the metric used by the given table 

section: worst accuracy rate after drift, recovery duration, systemic impact, and 

recovery performance. The neural networks that recover the best have high worst 

accuracy rates, small recovery duration, and small systemic impact. The second column, 

Label, indicates which instance of concept drift the row is describing; “Drift 1,” for 

example, refers to the first vertical line at time 500 in Figure 18. The third column, Drift 

Magnitude, lists the average measured concept drift magnitude for the given drift 

instance. The remaining columns list the measured results for each tested method for the 

given metric; “WB” represents “weights and biases” and “W” indicates “weights” only. 

The first row, for example, lists the drift label, the drift magnitude, and the worst 

accuracy rates of each update method after the first drift (time 500).  
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Table 3: SineV results 
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Drift 1 14% 84% 73% 82% 83% 84% 57% 83% 

Drift 2 21% 76% 62% 74% 75% 75% 74% 50% 

Drift 3 36% 58% 53% 58% 47% 58% 44% 60% 

Drift 4 46% 50% 45% 53% 45% 53% 53% 57% 

Drift 5 78% 17% 34% 25% 39% 24% 14% 22%           

R
ec

o
ve

ry
 

D
u
ra

ti
o
n

 

Drift 1 14% 98 95 96 96 97 94 98 

Drift 2 21% 105 104 105 105 106 146 344 

Drift 3 36% 117 220 115 253 117 399 479 

Drift 4 46% 66 60 71 48 64 84 47 

Drift 5 78% 130 74 77 60 76 237 80           

S
ys

te
m

ic
 I

m
p
a

ct
 

Drift 1 14% 4.80 6.74 5.13 4.57 4.90 10.47 5.13 

Drift 2 21% 7.47 9.14 7.51 8.02 8.13 11.38 33.62 

Drift 3 36% 13.55 21.27 11.64 27.23 12.83 29.14 28.59 

Drift 4 46% 9.89 11.00 12.09 7.16 11.05 17.46 8.14 

Drift 5 78% 24.32 12.07 21.38 8.42 21.17 32.00 23.01           

R
ec

o
ve

ry
 

P
er
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rm

a
n
ce

 Drift 1 14% recover under recover recover recover recover recover 

Drift 2 21% Under under under under under recover recover 

Drift 3 36% recover recover under recover recover recover under 

Drift 4 46% recover under recover under recover under recover 

Drift 5 78% Under under under under under recover under 

 

Table 4 shows the difference between performance of networks with the given 

update methods and the baseline (No Change) neural network for each of the three 

numerical metrics. For example, the network applying the full reset on both weights and 

biases (“Full (WB)”) method had a worst accuracy rate 11% lower than the baseline 

after drift 1 and 17% higher worst accuracy rate after drift 5. Further, full reset on 

weights and biases recovered 3 and 1 time steps faster than the baseline after the first 
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and second drifts, respectively, but 103 time steps slower after the third drift. Full reset 

on weights and biases had a 1.94 higher systemic impact than the baseline network after 

drift 1. Both scaled reset methods performed better than the baseline in all three metrics 

after drift 5 – the worst accuracy rate was higher (22% and 7% higher), the recovery 

duration was faster (70 and 54 time steps better), and the systemic impact was better 

(15.91 and 3.16 lower). 

Table 4: SineV results relative to baseline 

Metric Label Full 

(WB) 

Full  

(W) 

Scaled 

(WB) 

Scaled 

(W) 

Bayes 

(WB) 

Bayes 

(W) 

W
o
rs

t 
A

cc
u
ra

cy
 

Drift 1 -11% -2% -1% 0% -27% -1% 

Drift 2 -14% -1% -1% 0% -2% -26% 

Drift 3 -6% -1% -12% 0% -15% 2% 

Drift 4 -5% 3% -5% 3% 3% 7% 

Drift 5 17% 8% 22% 7% -3% 5%         
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D
u
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ti
o
n

 

Drift 1 3 2 2 1 4 0 

Drift 2 1 0 0 -1 -41 -239 

Drift 3 -103 2 -136 0 -282 -362 

Drift 4 6 -5 18 2 -18 19 

Drift 5 56 53 70 54 -107 50         

S
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m
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m
p
a

ct
 

Drift 1 -1.94 -0.32 0.23 -0.10 -5.67 -0.33 

Drift 2 -1.67 -0.03 -0.55 -0.66 -3.90 -26.14 

Drift 3 -7.71 1.92 -13.67 0.72 -15.59 -15.04 

Drift 4 -1.11 -2.20 2.73 -1.16 -7.57 1.74 

Drift 5 12.26 2.94 15.91 3.16 -7.68 1.31 
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Chapter 4.1.3: Results – plane 

The mean accuracy rates of the plane experiments are plotted in Figure 19. The 

chart has the same properties as Figure 18, which displayed the SineV results.  

 

Figure 19: Plane results 

As in the SineV simulations (Figure 18), all the neural networks modeling the 

plane dataset have identical accuracy rates before the first concept drift occurs at time 

500. After each concept drift occurs, most networks experience some drop in accuracy 

and generally recover to some “stable” or constant level. After the first drift (time 500), 

the baseline neural network and the networks with scaled reset all maintained accuracy 

rates consistent with those prior to the drift. As shown in Table 5, these networks have a 

recovery duration of 1 after the first drift. The other tested methods experience some 
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drop in accuracy after the first concept drift. After the second drift at time 1000, the 

baseline neural network and the networks with scaled reset experienced a small drop in 

accuracy and quickly recover to the previous level of accuracy after only several time 

steps. Networks using the other four update methods had greater drops in accuracy and 

took longer to recover. After the third and fourth drifts, all networks displayed some 

drop in accuracy after concept drift and required more than a few time steps to recover. 

Bayesian rescaling for weights and biases made the network most resilient to the third 

drift and Bayesian rescaling for weights made the network most resilient to the fourth 

drift. Aside from Bayesian rescaling for weights and biases, most networks experienced 

the steepest drop in accuracy and worst systemic impact after the fifth drift at time 

2500. 

The results in terms of the resilience metrics described in the Chapter 4.1.1 are 

presented in Table 5. The table is structured like Table 4 in Chapter 4.1.2. The baseline 

model was unaffected by the first drift of magnitude of 4% – it required a single time 

step to recover fully to the previous accuracy level and experienced zero systemic 

impact. The impact of concept drift on the baseline neural network was similarly 

negligible after the second concept drift. Only the scaled reset methods showed similar 

performance after the first drift. 
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Table 5: Plane results 

M
et

ri
c 

L
a
b
el

 

D
ri

ft
 

M
a
g
n

it
u

d
e 

N
o
 c

h
a
n

g
e 

F
u

ll
  

(W
B

) 

F
u

ll
  

(W
) 

S
ca

le
d
 

(W
B

) 

S
ca

le
d
  

(W
) 

B
a
ye

s 

(W
B

) 

B
a
ye

s 
 

(W
) 

W
o
rs

t 
A

cc
u
ra

cy
 

Drift 1 4% 95% 93% 93% 95% 95% 76% 90% 

Drift 2 3% 94% 93% 92% 94% 94% 72% 89% 

Drift 3 11% 89% 89% 90% 90% 89% 93% 85% 

Drift 4 10% 86% 84% 85% 86% 87% 80% 90% 

Drift 5 17% 82% 73% 81% 82% 82% 85% 81%           

R
ec

o
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ry
 

D
u
ra
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o
n

 

Drift 1 4% 1 59 59 1 1 131 48 

Drift 2 3% 16 16 21 16 16 105 56 

Drift 3 11% 154 63 82 67 121 85 96 

Drift 4 10% 129 110 127 116 127 180 30 

Drift 5 17% 96 101 96 96 96 98 195           

S
ys

te
m

ic
 I

m
p
a

ct
 

Drift 1 4% 0.00 0.93 0.94 0.00 0.00 8.36 0.95 

Drift 2 3% 0.20 0.23 0.42 0.20 0.20 10.75 1.02 

Drift 3 11% 3.35 0.94 1.69 1.38 3.09 -0.60 2.17 

Drift 4 10% 4.17 4.44 5.73 3.99 4.34 7.60 0.52 

Drift 5 17% 5.40 5.42 4.01 4.97 5.11 1.88 9.47           

R
ec

o
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ry
 

P
er
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a
n
ce

 Drift 1 4% recover recover recover recover recover recover recover 

Drift 2 3% recover recover recover recover recover over recover 

Drift 3 11% under under under under under under under 

Drift 4 10% recover recover recover recover recover recover recover 

Drift 5 17% under under under under under recover under 

 

Table 6 shows the improvement of the neural networks with each update method 

over the baseline neural network for each metric. After the concept drifts in the plane 

simulation, the worst accuracy rates of most neural networks were very similar to that 

of the baseline network. The networks with scaled weights and biases recovered in the 

same number of time steps as the baseline after drifts 1, 2, and 5 where the recovery 

durations were short; the network with full reset on weights and biases also recovered in 
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the same number of time steps after the second drift and the network with full reset on 

weights recovered in the same number of time steps after the fifth drift. 

Table 6: Plane results relative to baseline 

Metric Label Full 

(WB) 

Full  

(W) 

Scaled 

(WB) 

Scaled 

(W) 

Bayes 

(WB) 

Bayes 

(W) 

W
o
rs

t 
A

cc
u
ra

cy
 

Drift 1 -1% -1% 0% 0% -19% -4% 

Drift 2 -1% -3% 0% 0% -23% -5% 

Drift 3 0% 0% 1% 0% 4% -4% 

Drift 4 -3% -2% 0% 1% -6% 4% 

Drift 5 -9% 0% 0% 0% 4% 0%         

R
ec

o
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ry
 

D
u
ra
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o
n

 

Drift 1 -58 -58 0 0 -130 -47 

Drift 2 0 -5 0 0 -89 -40 

Drift 3 91 72 87 33 69 58 

Drift 4 19 2 13 2 -51 99 

Drift 5 -5 0 0 0 -2 -99         

S
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p
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ct
 

Drift 1 -0.93 -0.94 0.00 0.00 -8.36 -0.95 

Drift 2 -0.03 -0.22 0.00 0.01 -10.55 -0.82 

Drift 3 2.40 1.66 1.96 0.26 3.94 1.18 

Drift 4 -0.27 -1.56 0.17 -0.18 -3.43 3.65 

Drift 5 -0.01 1.39 0.43 0.29 3.52 -4.07 
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Chapter 4.1.4: Results – plane2d 

The mean accuracy rates of the plane2d experiments are plotted in Figure 20. 

The figure has the same properties as the charts showing the SineV and plane results, 

with the slight deviation that there are only four drifts. 

 

Figure 20: Plane2d results 

 Prior to the first concept drift, the neural networks converge after around 900 

time steps. After convergence, the neural networks show stable performance after each 

recovery from concept drift. After the first drift at time 1000, some networks, such as 

Bayesian rescaling and full reset on weights and biases display volatile performance 

before converging. Responding to the second drift at time 2000, all networks perform 

stably at a reduced level for approximately 100 time steps before returning to the 
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previous accuracy level. After drifts three and four at times 3000 and 4000, 

respectively, all networks show a drop in accuracy and a steady recovery to the previous 

performance level at varying rates. An interesting property of the plane2d tests is that 

the accuracy rates are highly correlated, even after drift: all the networks converge to 

the same accuracy rates after each concept drift. 

The results in terms of the resilience metrics are presented in Table 7. As 

illustrated in Figure 20, the recovery measures are fairly similar across neural networks. 

Table 7: Plane2d results 
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 Drift 1 11% 92% 74% 92% 91% 92% 78% 91% 

Drift 2 5% 93% 88% 92% 93% 93% 91% 93% 

Drift 3 13% 87% 78% 82% 87% 85% 86% 82% 

Drift 4 13% 87% 78% 73% 87% 84% 87% 73%           
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ry
 

D
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 Drift 1 11% 125 137 128 129 125 186 129 

Drift 2 5% 172 171 173 171 172 169 172 

Drift 3 13% 111 198 170 113 116 116 121 

Drift 4 13% 147 177 228 140 146 138 150           

S
ys
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m

ic
 

Im
p
a

ct
 Drift 1 11% 0.44 7.76 1.32 1.12 0.38 12.48 2.22 

Drift 2 5% 3.14 4.86 4.06 3.05 3.21 4.20 3.78 

Drift 3 13% 3.32 8.72 8.50 3.67 4.46 3.99 7.07 

Drift 4 13% 5.33 8.75 21.67 4.83 6.28 4.61 14.20           
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ry
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n
ce

 

Drift 1 11% under under under under under under under 

Drift 2 5% recover recover under recover recover recover recover 

Drift 3 13% under under under under under under under 

Drift 4 13% recover recover recover recover recover recover recover 
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Like Tables 6 and 7, Table 8 shows the difference between the performances of 

the neural network with the given update method relative to the baseline neural 

network. As illustrated in Figure 20, the differences in how the neural networks 

recovered from concept drift were very similar; this correlation is apparent in Table 8, 

where most differences between networks with update methods and the baseline are 

very small. The networks with full reset generally produced lower worst accuracy rates, 

recovered slower, and accrued a higher systemic impact than the baseline neural 

network. 

Table 8: Plane2d results relative to baseline 

Metric Label Full 

(WB) 

Full  

(W) 

Scaled 

(WB) 

Scaled 

(W) 

Bayes 

(WB) 

Bayes 

(W) 

W
o
rs
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A
cc

u
ra

cy
 Drift 1 -18% -1% -1% 0% -15% -2% 

Drift 2 -5% -1% 0% 0% -3% -1% 

Drift 3 -9% -5% 0% -1% -1% -4% 

Drift 4 -9% -14% 0% -2% 0% -13%         

R
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ry
 

D
u
ra
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 Drift 1 -12 -3 -4 0 -61 -4 

Drift 2 1 -1 1 0 3 0 

Drift 3 -87 -59 -2 -5 -5 -10 

Drift 4 -30 -81 7 1 9 -3         

S
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 Drift 1 -7.31 -0.88 -0.68 0.06 -12.04 -1.78 

Drift 2 -1.72 -0.92 0.09 -0.07 -1.07 -0.64 

Drift 3 -5.40 -5.18 -0.35 -1.14 -0.67 -3.75 

Drift 4 -3.42 -16.34 0.50 -0.95 0.72 -8.88 

 

 

Chapter 4.1.5: Results – four Gaussian components 

The mean accuracy rates of the four Gaussian component experiments are 

plotted in Figure 21. As illustrated, only one drift was applied to this simulation. Prior 

to drift, all networks achieved and maintained 100% accuracy. After the single concept 
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drift at time 500, all networks eventually return to the 100% accuracy level. Both 

Bayesian update methods aid the network in recovering from the drift in only a couple 

time steps. The network that applied full reset on weights and biases recovered the 

slowest and took many training observations to return to the 100% accuracy level. 

 

Figure 21:  Four Gaussian components results 

The results in terms of the resilience metrics described in the Chapter 4.1.1 are 

presented in Table 9. Unlike the previous tables, there is no column listing the drift 

label because only one drift occurred for this simulation. Although Figure 21 shows the 

recovery duration for full reset on weights and biases to be greater than 300 time steps, 

the table records the recovery duration as only 115 time steps because the accuracy of 

the neural network is stable (constant) for a long time – nearly 200 time steps – and 
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meets the definition for long-term stability in Chapter 4.1.1. The table records the 

Recovery Performance of this update method as “under” because the network 

underperformed the target accuracy rate of 100% at the time it was assessed to be 

stable. As illustrated in Figure 21, the networks with Bayesian rescaling have good 

worst accuracies, very short recovery durations, and negligible systemic impacts. 

Table 9: Four Gaussian components results  
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(W
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Worst 

Accuracy 

48% 52% 50% 52% 69% 57% 84% 97% 

Recovery 

Duration 

48% 52 115 52 56 60 14 2 

Systemic 

Impact 

48% 15.93 15.67 15.37 6.02 13.27 0.51 0.02 

Recovery 

Performance 

48% recover under recover recover recover recover recover 

 

Table 10 shows the difference between the performance of networks with each 

update method and the baseline neural network for each metric. Although networks 

using the full reset on weights and biases and scaled reset had slightly longer recovery 

durations than the baseline network, these networks still had a better systemic impact.  

 

Table 10: Four Gaussian components results relative to baseline 

Metric Full 

(WB) 

Full 

(W) 

Scaled 

(WB) 

Scaled 

(W) 

Bayes 

(WB) 

Bayes 

(W) 

Worst Accuracy -2% 0% 16% 5% 31% 45% 

Recovery Duration -63 0 -4 -8 38 50 

Systemic Impact 0.26 0.56 9.91 2.66 15.42 15.91 
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Chapter 4.2: Discussion 

An ideal update method will enable a neural network to be more resilient to 

concept drift than a baseline network that makes no attempt to respond to drift beyond 

the defined online learning process. Such an update method will aid the neural network 

in maximizing the worst accuracy after drift, minimizing the recovery duration, and 

minimizing the systemic impact. The ideal method should also aid the method in 

recovering to the pre-drift performance levels. In addition, in cases where the update 

method is shown to cause a neural network to be less resilient than the baseline, the 

decrease in resilience will be negligible. A negligible decrease in performance is 

defined as some negative, near-zero difference between the updated network and the 

baseline. An update method allows a network to perform well relative to the baseline if 

the recovery performance is better than the baseline, matches the baseline performance, 

or showed only a negligible decrease in performance relative to the baseline. 

 

Chapter 4.2.1: Evaluation of Update Methods 

In addition to Tables 3 through 10, Table 11 averages the differences between 

the performance of each six update methods and the baseline for each metric. 

Aggregating across all tests for the given method, the table displays the average 

differences between worst accuracy rates, average differences in recovery duration, and 

average differences in systemic impact.  

Table 11: Average Difference from the Baseline 

 Full 

(WB) 

Full 

(W) 

Scaled 

(WB) 

Scaled 

(W) 

Bayes 

(WB) 

Bayes 

(W) 
Avg Worst Accuracy -5% -1% 0% 2% -6% -1% 

Avg Recovery Duration -3.67 -5.40 7.93 9.73 -43.07 -31.80 

Avg Systemic Impact -1.14 -1.38 0.47 0.66 -4.40 -2.62 
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On average, the neural networks to which the full reset methods were applied 

performed worse than the baseline in the three quantitative metrics. Specifically, the 

average worst accuracy was 1 to 5% lower, the average recovery duration was 3 to 5 

time steps longer, and the systemic impact was 1.14 to 1.38 greater. For concept drifts 

of magnitude less than 40%, the worst accuracy rate of the networks with full reset were 

less than or equal to the baseline neural network. In around half of the simulated 

concept drifts, the networks with full reset recovered at a rate greater than or equal to 

the baseline neural network. In just one third of simulated concept drifts, the networks 

with full reset had a lower systemic impact than the baseline neural network.  

Table 11 shows that on average, the scaled reset methods match or outperform 

the baseline in the three selected metrics. Specifically, the average worst accuracy rate 

was 0 to 2% higher, the recovery duration was 7 to 9 time steps faster, and the average 

systemic impact was 0.47 to 0.66 lower. For concept drifts of magnitude less than 40%, 

the neural networks with scaled reset produce worst accuracy rates similar to those of 

the baseline neural networks. After concept drifts of magnitude greater than 40%, the 

worst accuracy rates for the networks with scaled reset are greater than or equal to those 

of the baseline neural networks. In general, neural networks with scaled reset have 

similar or faster recovery durations than the baseline neural networks. When a network 

with scaled reset recovers more slowly than the baseline, the difference is only a few 

time steps. The notable exception is recovery duration of the network with scaled reset 

for weights and biases after Drift 3 of the SineV simulation – the updated network 

required nearly 300 more time steps to recover than the baseline. With regard to 

systemic impact, neural networks with scaled reset have an equivalent or lower 
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systemic impact than the baseline in over 60% of concept drifts. With the exception of 

drift 3 of the SineV simulation, when the systemic impact of the network with scaled 

reset is less than the baseline, the differences are small. 

On average, the neural networks with Bayesian rescaling all recovered slower 

and produced worse systemic impact the baseline neural networks. The average worst 

accuracy was 1 to 6% lower, the average recovery duration was 31 to 43 time steps 

longer, and the systemic impact was 2.62 to 4.40 greater. Neural networks with 

Bayesian rescaling recovered much better than the baseline neural network in some 

cases and much worse in other cases. Networks with the Bayesian rescaling methods 

performed very well after the concept drift in the four Gaussian components dataset: 

worst accuracy rates were 84-97%, compared to the baseline of 52%; recovery 

durations were short, taking only 2 – 14 time steps compared to the 52 time steps taken 

by the baseline; systemic impacts were 0.51 or less, compared to the 15.93 systemic 

impact of the baseline. On the other hand, the networks with Bayesian rescaling 

performed very poorly relative to the baseline on other tests. For example, Bayesian 

rescaling required over 250 time steps to recover than the baseline after drift 3 the 

SineV simulation (see table 4) and over 47 to 130 more time steps to recover than the 

baseline after drift 1 of the plane simulation. Accordingly, the systemic impacts of the 

networks with these slow recoveries is large relative to the baseline. 

It is clear from this evaluation that only the networks with scaled reset meet the 

desired criteria of performing well relative to the baseline in most tests and metrics. The 

neural networks with full reset do not consistently perform better than the baseline in 

the three quantitative metrics. Despite performing well in some cases, networks with 
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Bayesian rescaling performed poorly relative to the baseline after several concept drifts, 

violating the requirement that any decreases in performance are negligible. 

 

Chapter 4.2.2: Evaluation by Drift Magnitude 

When concept drift was small, none of the tested update methods enabled the 

neural networks to perform better than the baseline. When the concept drift magnitude 

is less than 10%, the networks with an update method either match or perform worse 

than the performance of the baseline network in all metrics. After drifts of this small 

magnitude, networks with scaled reset have similar worst accuracy, recovery duration, 

and systemic impact as the baseline network because the network weights were changed 

by only a small amount. The full reset methods, which completely reset the value of one 

or more nodes, likely removed too much information. The Bayesian rescaling methods 

likely moved the node weights too far from both the original and new concepts.  

When concept drift was large, the tested methods enabled the neural networks to 

perform better than the baseline in most cases. After larger drifts of magnitude greater 

than 40%, nearly all update methods enabled its neural network to recover faster than 

the baseline or have a smaller systemic impact than the baseline. This is explained by 

the fact that update methods move the weight values further from the old concept (and 

theoretically closer to the new target concept) faster than the assigned network learning 

rates allow. 

This suggests it is best to apply the selected update method in cases where 

concept drift is above some threshold. The tests indicate that such a threshold might be 

around 40%.  
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Chapter 5: Conclusion 

In this thesis, I introduced the idea that information about concept drift can be 

applied to assist online learning algorithms in recovering from that concept drift. I 

proposed and tested three methods that applied data about concept drift to online neural 

networks: full reset, scaled reset, and Bayesian-inspired rescaling. These three methods 

were tested on four simulated datasets that generated concept drift at assigned intervals.  

The results show that a neural network applying scaled reset after drift performs 

better than an online neural network with no drift adaption. It follows that there is value 

in the information about concept drift that can be used to aid neural networks, and 

online learning algorithms in general. Further, the benefits of scaled reset on neural 

network resilience to concept drift were negligible when drift magnitude was small but 

significant when drift magnitude was large. This suggests that the scaled reset method 

ought to be applied when drift is not small, or is above some threshold. 

In conclusion, information about drift can be used to assist a learning algorithm 

in better recovering from drift – in time-sensitive applications, any reduction in a 

model’s underperformance is valuable. As an added benefit, this can be accomplished 

cheaply in terms of computational costs and memory requirements. 

There are several areas in which this work could be extended. The proposed 

scaled reset method could be tested in real-world environments. The framework could 

be applied to other online learning algorithms, such as support vector machines. The 

proposed update methods could be further refined or additional information about 

concept drift could be incorporated into the methods.  
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