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Abstract 

In recent years, communities in the U.S. and other countries have experienced 

several catastrophic natural hazards (e.g. Hurricane Katrina in 2005 and the Christchurch 

Earthquake in 2011).  The unproportioned social, political impact and economic loss from 

these events and the fact that such events will continue to occur have highlighted the 

vulnerability of typical communities, and more importantly, emphasized the significance 

of considering the performance of communities as a whole under extreme natural and man-

made events over a long-time horizon. The physical built environment and the decision-

making on them plays a critical role in determining the extent to which the community will 

perform immediately after the hazard events, the recovery trajectory afterward as well as 

the long-term financial health, environmental protection, and prosperity. Some 

communities in the U.S. began or about to implement large-scale, community-level 

engineering strategies. However, such strategies generally suffer from lacking quantitative 

support. While some studies have been done to explore the large-scale decision-making, 

they might be not sufficient to address the problem systematically. A uniform decision 

support framework for various strategies across different stages of infrastructure systems 

must be developed. 

This dissertation focuses on developing a risk-informed decision-making 

framework for building portfolios under the threat of natural hazards, with particular 

emphasis on exploring optimal strategies supporting the engineering enhancement 

measures in different stages of building portfolios over their lifetime.  In this study, three 
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categories of large-scale engineering strategies are discussed in depth: new construction, 

pre-hazard retrofitting, and post-hazard reconstruction that communities may adopt to 

enhance the performance of the residential building cluster, and thus the whole community 

in future hazards. Decision-making is explored under seismic and tornado hazards as 

examples and reveals that communities can and must make engineering decisions from the 

perspective of the resilience performance of communities and simultaneously consider the 

sustainability requirements (by employing the economic metric of life-cycle cost as an 

example). The study demonstrates that the resilience and sustainability goals could be 

achieved at the same time without compromising one or the other. The proposed decision-

making framework could assist community leaders in designing mandatory/voluntary 

policies or financial incentives to let owners invest in an organized manner and collectively 

enable the community to achieve its pre-defined resilience and sustainability goals in the 

long-term. 



 1 

Chapter 1 Introduction 

1.1  Background and Motivation 

Recent catastrophic natural hazards in the United States and around the world, e.g. 

Hurricane Katrina (2005), the Great East Japan Earthquake and Tsunami (2011), and 

Hurricane Sandy (2012), have highlighted the enormous socio-economic consequences of 

such extreme events on the highly developed and interconnected modern societies. Such 

consequences are anticipated to increase given the continued economic and population 

growth in hazard-prone regions. These impacts from natural hazards have raised concerns 

regarding the current system of hazard prevention and mitigation, that is, structural 

engineers analyze and design, retrofit, and reconstruct buildings to ensure life safety under 

rare hazards according to codes and standards which, however, usually do not include 

systematic community-level considerations on functionalities of community as a whole,  

let alone the calibration of the performance of communities against the anticipation of their 

stakeholders. 

The resilience of a community is defined by its ability to adapt to changing 

conditions and to return to a level of normalcy within a reasonable time. The resilience of a 

community depends on the performance of the built environment and on supporting social, 

economic and public institutions which are essential for immediate response and long-term 

recovery within the community following a disaster (NIST, 2015b). The resilience of a 

community’s building portfolio as a functionally integrated system, in particular, plays a 

critical role in mitigating the negative impact from natural hazards, promoting rapid 
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recovery, and supporting the sustainable development of the community (NIST, 2015b). 

The concept of resilience provides brand-new perspectives to community leaders, 

engineers, and other stakeholders for hazard preparedness and mitigation. To enhance the 

resilience of their building portfolios, communities can gradually implement voluntary or 

mandatory portfolio-level enhancement programs, such as elevated new construction 

requirements (Wang et al., 2018), retrofitting programs for existing building categories 

with poor performance before disasters (e.g. City and County of San Francisco, 2013; 

HCIDLA, 2015; FDEM, 2016) and reconstruction program for damaged buildings 

following a disaster. However, such large-scale plans often suffer from lack of quantitative 

measurements which link the extent to which the resilience performance gap (between 

current and target performance) being filled, and from the inconsistency between different 

enhancement plans. In addition, current community-level plans often do not have a 

perspective on long-term planning, thus miss the opportunity of balancing short-term 

resilience planning with the long-term sustainable development of the community. 

 On the other hand, sustainability aims at fulfilling the needs of the present 

generation without compromising the ability of future generations to meet their own needs 

(Brundtland 1987). More and more scientific studies have shown that the accumulation of 

greenhouse gas (GHG) from human activities since the industrial revolution has caused 

significant global warming and climate change, which could lead to re-distribution of 

precipitation and more severe climate-related hazards (e.g. Brooks (2013)). The concept of 

sustainability emerged at a time when the public and countries gradually realized the 

importance of the above-mentioned environmental issues, equity, and long-term 
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development. The built environment, especially the construction and operation of building 

portfolios, contribute significantly to the financial investment and environmental impact, 

therefore has attracted more and more attention from researchers, engineers, and decision-

makers, who try to develop decisions based on sustainability indicators and sustainable 

development philosophy.  

Resilience and sustainability ultimately should be inextricably linked and mutually 

reinforcing in engineering decision-making in a community (Czajkowski, 2015). Recently, 

some studies have attempted to unify the resilience and sustainability quantification for 

community’s infrastructure systems due to their similarities in metrics (both include 

economic and social dimensions), scope, and ultimate goals (Padgett & Tapia, 2013; 

Bocchini et al., 2014). However, few attempts have been made to incorporate a 

quantitative and unified framework in decision-making involving community-scale, 

portfolio-level building new design, retrofitting, and reconstruction to fulfill both resilience 

and sustainability goals of the community. 

Considering the unproportioned social and economic loss from hazard events, the 

extended time horizon of future hazard exposure, public’s expectations on communities’ 

functional performance under such events,  there is an urgent need to develop a decision 

framework that can support portfolio-level, systematic new design, pre-hazard retrofitting 

and post-hazard reconstruction strategies that would enable communities to achieve a 

higher, pre-defined resilience performance goal as well as fulfilling requirement for 

sustainable development in the long-term. As an essential infrastructure system of a 

community, the performance of its building portfolio under various hazards is critical to its 
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hazard resilience. Generally, a community may achieve higher resilience in the long term 

by setting a higher design requirement for new constructions, retrofitting existing portfolio 

before hazard events, or strategically rebuilding damaged portfolio after hazard events. 

However, currently, there is no community level, systematic decision tool that can support 

these procedures. 

1.2  Objectives, Scope and Assumptions 

The overall aim of this Ph.D. research is to develop a risk-informed and unified 

decision-making methodology that could ultimately help a community achieve its pre-

defined resilience and sustainability goals. This decision-making process will require a 

fundamental change to current engineering practices by adjusting the new design, pre-

hazard retrofitting, and post-hazard reconstruction strategies. The intention is to assess the 

social and economic consequences from extreme events (related to Resilience) and in 

overall life-cycle (related to Sustainability) and to derive optimal decisions for building 

portfolios, in which the performance under rare hazard events are guaranteed and at the 

minimum life-cycle cost (or maximum value). To achieve the above objectives, the 

following tasks are to be conducted:  

(1) Reviewing and critically appraising existing literature related to decision-making 

including community resilience, sustainability, and their relationship, hazard 

characterization and uncertainty propagation, life-cycle assessment under hazards, 

and multi-criteria decision making. 
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(2) Performing the hazard characterization for building portfolios according to the 

hazard type, and requirement of resilience and sustainability assessment. 

(3) Investigating the propagation of uncertainties from hazard event generation, 

transmission, local amplification, building response, and damage. 

(4) Assessing the performance of building portfolios under hazards for rare hazards 

events and for all events within the life-cycle in resilience and sustainability 

indicators. 

(5) Identifying the minimum design requirement of new building construction from de-

aggregating the resilience performance goals of building portfolios. 

(6) Developing the retrofit strategy for the existing, vulnerable building portfolios prior 

to major hazard events with the aim to enhance future performance in terms of 

economic loss and social well-being. 

(7) Developing the reconstruction strategy for the damaged building portfolios after 

major devastating hazard events from the perspective of the life-cycle measures of 

the building portfolio over the long term in the future. 

(8) Implementing the proposed decision-making framework to testbed communities 

under different hazard types.  

 

The assumptions for this study are: 

(1) It is possible to quantify resilience and sustainability performances of a community, 

and it is possible to employ these measurements to identify optimal pre-hazard and 

post-hazard enhancement strategies for community building portfolios. 



 6 

(2) While the resilience and sustainability performance of a community is collectively 

defined by its physical, social, economic, and political systems, as well as the 

interdependencies among them, in this study only the physical infrastructure system 

will be considered from an engineering perspective.  

(3) It is not the focus of this study to pursue the absolute measurement of resilience and 

sustainability metrics of a community, rather this study will focus on quantifying 

the resilience and sustainability in a way that can support decision-making related 

to design, retrofit and reconstruction of building portfolios. 

(4) While the concept of sustainability embodies ecological, economic, and social 

dimensions, this study will only explore the economic aspect of sustainability as 

economic metric is also connected with resilience. 

1.3  Organization of Dissertation 

The dissertation is organized as follows: 

Chapter 2 appraises current literature on risk-informed decision-making related to 

civil infrastructures, including resilience, sustainability, and their unification, hazard 

characterization, life-cycle assessment, and multi-criteria decision-making methodologies.  

Chapter 3 identifies the minimum design requirement for new building 

constructions through a risk de-aggregation algorithm. A new design philosophy is needed 

to support a communities’ functionality preservation and quick recovery under extreme 

events. Thus, it is proposed that the performance target of individual buildings under 

hazards should be ultimately related to the resilience goal(s) of the community as a whole 
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in a quantitative manner. This task will invert the minimum performance objective for new 

building constructions by de-aggregating the community resilience goals expressed in 

terms of multiple metrics. Part of this chapter (new construction under tornado hazards) 

has been published in a journal paper (Wang et al., 2018), where I developed the 

methodology, performed the case study, and wrote the draft paper. 

Chapter 4 develops a pre-hazard retrofit strategy for existing building portfolios. 

There is a growing trend in recent years for communities to implement large-scale 

community-level retrofit programs to enhance the resilience of under-performing 

community building inventories. Such community-level retrofit activities are expected to 

be common as more communities have started to incorporate resilience concepts in their 

strategic development planning. This task will seek to develop the portfolio-level retrofit 

framework that provides optimal retrofit strategies for enhancing a community’s existing 

building portfolio before the hazard event. Part of this chapter has been published in a 

conference paper (Wang & Wang, 2017), where I developed the methodology, performed 

the case study, and wrote the draft paper. 

Chapter 5 develops a post-hazard reconstruction strategy for damaged building 

portfolios. Following a catastrophic natural hazard, communities seek strategies to rebuild 

their severely damaged building portfolios, which can be opportunities to enhance their 

resilience and sustainability under future hazards. The large-scale investment and long-

lasting impact of reconstruction practices require that the decision-making should be 

constructed on the analysis of the building portfolio over its whole life-cycle. A 

quantitative methodology is needed that could handle each of the phases that a building 
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portfolio need to face after a severe hazard event, and further provide decision support to 

best enhance the performance of the portfolio in future hazards. This task will propose a 

post-hazard reconstruction decision framework that can support Build Back Better based 

on portfolio level life-cycle analysis.  

Lastly, Chapter 6 summarizes the major findings and conclusions of this 

dissertation as well as points out future research needs and possible directions. 
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Chapter 2 Literature Review 

In this section, literature in relevant research areas is reviewed and arranged 

according to topics. A critical appraisal is given at the end to discuss research needs and, 

more importantly, to provide insights and the motivation for the present study. 

2.1  The Concept of Resilience and Sustainability 

2.1.1 Resilience 

The word resilience derives from the Latin word resilio (the ability to rebound or 

spring back) (Klein et al., 2003), and its concept was firstly developed by researchers in the 

ecological study to describe how an ecological system withstand and recover from the 

external perturbations (Holling, 1973). Timmerman (1981) defined resilience as the ability 

of a system to withstand and recover from external shock or perturbation to the 

infrastructure. Such definition contains two key aspects: 1) resilience focuses on systems 

as a whole rather than individual components; 2) resilience does not only consider the 

ability to withstand shocks, but also the ability to recover from the disturbed state in a 

prompt manner.  

In the context of the built environment under hazards, Bruneau et al. (2003) 

proposed four core properties of resilience: robustness, rapidity, redundancy, and 

resourcefulness. Robustness refers to the ability of an individual component or system to 

withstand the external pressure or distraction without physical damage or functionality 

loss.  Rapidity refers to the ability of an individual component or system to recover 
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promptly from physical damage or functionality loss. Redundancy refers to the ability of 

an individual component or system to function as before after unprecedented events due to 

the inclusion of extra components or connections. Resourcefulness refers to the capacity to 

locate problems, setting plans, and organize material and human resources to implement 

the pre-defined plans and achieve goals.  

Bruneau et al. (2003) also conceptualized resilience in four intercorrelated 

dimensions: technical, organizational, social, and economic. The technical dimension of 

resilience is defined by the ability of systems (including the individual components, sub-

systems, and the interactions between components and sub-systems) to have an 

acceptable/appropriate performance under hazards. The organizational dimension of 

resilience is defined by the ability of organizations to manage the infrastructure system, 

make decisions, and take actions to enhance the performance of physical systems and 

achieve their pre-defined performance goals. The social dimension of resilience refers to 

specific measures that could reduce the extent to which the external hazard may bring 

negative outcomes (e.g. casualties and social disruptions) on the community due to the loss 

of functionality on critical services. The economic dimension of resilience is defined by the 

ability of systems to reduce the economic impact (both direct and indirect) under hazards.  

Recently, the community planning guideline from National Institute of Standards 

and Technology (NIST, 2015b) defined community resilience as “… the preparedness of 

the community to include prevention of incidents, mitigation of risk, protection of assets, 

and pre-event planning for response and recovery”. In sum, the concept of community 

resilience embodies a systemic approach towards hazard mitigation.  
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Thus, a holistic and interdisciplinary perspective is required to quantify community 

resilience. At the time of introducing the seismic resilience to civil engineering, Bruneau et 

al. (2003) proposed that the resilience performance of systems could be represented by the 

curve of Quality of infrastructure (b(F)) over time, as illustrated in Figure 2.1. b(F) ranges 

from 0% to 100%, i.e. 100% and 0% corresponds to no degradation in service and no 

service available, respectively.  Accordingly, the resilience of a community can be 

measured by loss of resilience, R 

																																																							7 = c d100 − b(F)e3F
fg

fh

																																																		(1) 

where Fi and Fj denote the time of hazard event and complete recovery, respectively. Such 

definition of resilience could easily be appreciated by non-expert audience, however, it 

does not answer the question of how to measure the b(F) at the time immediately after the 

hazard event and the time to complete recovery as well as how to obtain the curve of b(F). 

Further, the loss of resilience measure, 7 quantified in this way is criticized for its lack of 

physical meaning and for hard to form the basis for developing trackable enhancement 

plans. 
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Figure 2.1: Measure of resilience—conceptual definition (Bruneau et al., 2003) 

 

In the past decades, the focus of community resilience research in civil engineering 

has switched to the quantification of community resilience performance, the 

interdependency between sub-systems, and decision-making to relate the resilience gap 

(between goals and current state) with specific engineering enhancement strategies. It is 

generally agreed that the resilience of a community can be quantitatively described as the 

time-varying performance of certain community metrics (e.g. economic loss or recovery 

time) conditioned on interested hazard levels (e.g. a hazard with a 2500-year return period) 

or scenarios (e.g. the scenario that contributes most to a community’s hazard risk). 

Generally, community resilience metrics can be categorized into three kinds: (1) recovery 

time, (2) economic metrics, and (3) social well-being metrics (NIST, 2015a). Recovery 

time, which provides a measure of how long an individual infrastructure or system is 

unfunctional or operates at reduced capacity (Lin & Wang, 2017), is selected as the major 

metric of community resilience by NIST guide (NIST, 2015b), SPUR (SPUR, 2009) and 

REDi (2013). Economic-based metrics measures how hazards affect the properties and 

economic activities of communities, including the direct and indirect economic loss, jobs, 
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tax base, poverty, and income distribution. (NIST, 2015a). Direct economic loss (e.g., 

structural and non-structural failure-induced repair cost) and indirect economic loss (e.g., 

cost due to the loss of functionality) are the most widely employed economic metrics. 

Social well-being metrics reflect human needs, including survival, safety/security, sense of 

belonging, and growth/achievement. So far, systematic approaches are needed to define 

and quantify these social metrics. Some metrics reflect the combined effects of several 

basic resilience metric categories. For instance, the dislocation of the population is a 

complex social and economic process where the performance of infrastructures, social and 

economic demographic characteristics, the performance of other community services all 

affect the dislocation. Lin and Wang (2016) developed two dislocation related metrics: 

Immediate Occupancy Ratio (IOR) and Household Dislocation Ratio (HDR), where the 

former is the ratio of building portfolio that can provide safe occupancy immediately 

following a disaster and the latter is the ratio of total household displaced due to loss of 

housing habitability and short-term shelter needs. Figure 2.2 gives an example of system 

performance measures for a community with four key infrastructure elements: hospital, 

power, water, and local emergency management systems. 
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Figure 2.2: System and community performance measures in community resilience (Bruneau et al., 

2003) 

 

Another ingredient of community resilience definition is the selection of the 

appropriate hazard level(s) or scenario(s). Some frameworks assess and guide their 

resilience planning and enhancement based on specific hazard level(s). For instance, The 

NIST community resilience planning guideline encourages communities to select three 

hazard levels for resilience goals setting in terms of the hazard return period (NIST, 

2015b), thus the performance of communities under different hazard levels can be 

addressed explicitly and communities can improve own resilience more confidently and 

economically. Typically for earthquakes and hurricanes, the return period of the three 

levels are selected as 50 to 100 years for the routine, 500 to 700 years for the expected, and 

2500 to 3000 years for the extreme level (SPUR, 2009; REDi, 2013; ASCE, 2016). On the 
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other hand, some frameworks rest their methodology on specific hazard scenario(s) to 

assess and improve resilience, e.g. the SPUR Framework and the Oregon Resilience Plan. 

More discussion on hazard consideration will be provided in Section 2.2. 

Various conceptual guideline and methodologies have been proposed to assess 

communities’ resilience. HAZUS (FEMA/NIBS, 2003) is a standard natural hazard risk 

assessment methodology developed by FEMA that incorporates a geographic information 

system (GIS) to quantify the impact from multiple hazards (including  earthquake, wind, 

flood, and tsunami) to communities’ physical infrastructures, economic development, and 

social structure within the U.S. HAZUS focuses on assessing the direct and indirect 

impacts immediately after natural hazards with less consideration in the post-hazard 

functionality recovery. Though HAZUS includes modules for multiple hazard types, it 

cannot analyze the true risk of communities threatened by multiple hazards. Nevertheless, 

HAZUS’s detailed database and scientific analysis framework form the basis for other 

sophisticated research.  Some frameworks assess the community resilience from multiple 

indicators that combine the basic socioeconomic character of the community, the possible 

hazard scenarios, and the anticipated functionality loss and recovery time given by experts 

and government agencies. For instance, UNISDR Disaster Resilience Scorecard for Cities 

(Williams et al., 2014) helps cities recognize their resilience performance under natural 

hazards and forms the basis for developing future investment plan from a resilience 

scorecard system, where sub-indicator scores are aggregated by weighted sum method to 

obtain scores in each dimension. Similarly, the City Resilience Index (CRI) (Arup, 2014), 

developed by Arup and funded by Rockefeller Foundation 100 Resilient Cities initiative, 
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includes 4 categories, 12 key indicators, and 52 basic indicators. It integrates economic, 

social, and physical aspects and considers the human-driven factors as a key component. 

CRI is not hazard specific, rather, it provides an insight into the performance of cities 

under external pressure as well as facilitates the planning process. Some frameworks 

evaluate communities’ resilience based on statistical data. For example, Baseline 

Resilience Indicators for Communities (BRIC) is an empirically-based assessment 

framework (Cutter et al., 2010), which employs 49 metrics from 6 areas (social, economic, 

housing and infrastructure, organization, community capital, and environment).  BRIC 

evaluates the overall resilience performance of communities based on publicly accessible 

census data, other than the assessment of performance under hazards.  

Zhang et al. (2018) proposed a framework for probabilistically assessing the post-

hazard building portfolio functionality loss, in which, the functionality of buildings is 

affected by both the damage of buildings themselves and the availability of utility systems. 

The disruption of the utility system in their study considers the interdependenc of power 

and water network system. Cutler et al. (2016) proposed a dynamic spatial computable 

general equilibrium (DSCGE) model that integrate both the engineering and economic 

models to assess the economic, demographic, and fiscal impact of disasters. The detailed 

dynamic economic-wide effects are simulated with consideration of infrastructure physical 

damage and adjustment of the economic behavior of agents. Lin and Wang (2017) 

proposed a simulation-based, stochastic post-hazard building portfolio recovery model, 

where the functionality state transformation of an individual building over time is modeled 

by a discrete state, continuous time Markov Chain. The recovery model can predict the 
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recovery time as well as the recovery trajectory of a community building portfolio after an 

earthquake scenario. The effect of building portfolio pre-hazard retrofitting as well as the 

insurance coverage on the recovery process are considered. Masoomi and van de Lindt 

(2017) proposed a methodology to assess the infrastructure functionality loss and 

restoration under tornado hazard. Their study models water network, power network, 

school buildings, residential buildings, and business considering their spatial distribution 

and dependency.  

Other notable assessment frameworks include PEOPLES (Cimellaro et al., 2016), 

SPUR framework (2009), and Oregon Resilience Plan (OSSPAC, 2013).   

2.1.2 Sustainability 

Literally, sustainability implies the ability to sustain, maintain, and continue 

previous status, condition, and relation (Kajikawa, 2008). The earliest contents on 

sustainability appeared at the beginning of the 20th century together with the 

environmentalism (Pepper, 2005). The discussion of sustainability emerged in the 1970s 

and 1980s when the issue of environmental pollution and resource consumption related 

problems became more and more inevitable. Meadow et al. (1972) asserted that the world 

economy will fail in the next 100 years if the development pattern at that time remains and 

no additional interventions are made, after analyzing the world economic growth and 

consumption of resource at that time. The Brundtland report (United Nations World 

Commission on Environment and Development, UNWCED) (Brundtland, 1987), for the 

first time in history, gave the definition of sustainable development-“the needs of the 

present without compromising the ability of future generations to meet their own needs” - 
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and how it might be achieved. Sustainability is frequently related to the policy discussion 

and decision in the political context as a way of addressing the increasing pressure on 

environment pollution, resource consumption from economic growth within and between 

countries all over the world, especially after the publication of the Brundtland report. For 

instance, United Nations Framework Convention on Climate Change in Kyoto in 1997 

(UN, 1998) determined obligatory targets for each country in limitation of environmental 

impacts, e.g. reduction of CO2 emissions in the following decades. Some scholars 

suggested that sustainability has the just and equality in its meaning, and sustainable 

development is the one that combines economic growth, environmental protection, and 

social equity (Agyeman et al., 2002). The social equity here includes equity in different 

groups/countries as well as equity in inter-generation (Rackwitz et al., 2005; Nishijima et 

al., 2007; Lee & Ellingwood, 2017). 

Sustainability can be measured in three dimensions: economy, ecology, and 

society, each can be further measured by one or more lower-level related criteria or 

indicators (Otto, 2007). A conceptual categorization is illustrated in Figure 2.3. To 

quantify infrastructures’ sustainability performance, considerable assessment 

methodologies have been proposed. One category of methods assess sustainability 

performance based on rating. The British Building Research Establishment Environmental 

Assessment Method (BREEAM) system (BRE, 2010) launched in 1990, is the first 

sustainability rating system for buildings. The American Leadership in Energy and 

Environmental Design (LEED) system (USGBC, 2012), published in 1998, is applicable to 

individual buildings, multiple buildings, and communities. BREEAM and LEED are the 
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most widely accepted green building rating system in the world. Both BREEAM and 

LEED have a strong focus on the environmental issues, while in German DGNB system 

(GCSB, 2009) sustainability is quantified more broadly and holistically. All of these 

assessment methodologies employ pre-defined weights to combine indicators in the lower 

level to upper-level indicators. Such simplified aggregation, although necessary for 

practical use by consultants and decision-makers, causes difficulties in explaining the 

meaning and in advising enhancement decisions.  

Rating-based methods cannot directly measure the absolute impact of a building or 

an infrastructure. On the other hand, Life-cycle assessment (LCA) (ISO, 1997) could 

quantify the impacts associated with a product or building throughout its life (from cradle 

to grave). When applying to buildings, LCA typically considers multiple phases of the life-

cycle from construction to service to demolishment. LCA could help: 1) identify the 

critical phases of a product or building’s life-cycle that improvement can be made; 2) make 

decisions to select the alternative with lowest impacts throughout life-cycle; 3) select 

relevant performance indicators; and 4) market the product/building (e.g. environmental 

claim, ecolabelling). Initially developed for quantifying environmental impacts, however, 

LCA’s scope can be extended to economic and social aspects. More discussion on LCA 

will be given in Section 2.3.1. 
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Figure 2.3: Aspects of Sustainability (Bocchini et al., 2014) 

 

2.1.3 Unified Consideration of Resilience and Sustainability 

The above literature review reveals that the concept of resilience and sustainability 

are developed from distinct motivations and backgrounds. Resilience relates to the 

performance of community under hazard events and the ability to withstand unprecedented 

impacts and recover rapidly from it, while Sustainability concerns the long-term 

cumulative impact of a single structure or project, with emphasis on the impact to 

environmental aspects and long-lasting effects. However, some similarities could be found 

between these two concepts (Bocchini et al., 2014). Both resilience and sustainability (1) 

can deal with the infrastructure system; (2) take a holistic point of view on the 

infrastructure system; (3) contain social and economic aspects; (4) try to optimize the civil 

engineering system and support decision-making. 
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Some studies and reports have made tentative progress to unify resilience and 

sustainability through the LCA. For example, Ghosh et al. (2011) proposed a life-cycle 

energy assessment (LCEA) approach that takes into account the embodied energy from 

hazard exposure in the LCA of bridges by considering the hazard occurrence probability. 

Rose (2011) selected several sustainability indicators in the post-hazard rehabilitation 

measures to achieve resilient and sustainable infrastructures. The Report Card on 

American’s Infrastructure defined resilience and sustainability together as one of the three 

key factors to enhance infrastructures’ performance and grade (ASCE, 2013). Bocchini et 

al. (2014) provided a detailed review of the concept of community resilience and 

sustainability, and further proposed a unified approach to combine these two concepts in 

the well-established risk assessment framework. Padgett and colleagues (Padgett & Tapia, 

2013; Padgett & Li, 2014) developed a Life-cycle Sustainability Analysis (LCS-A) 

framework that can consider the role of natural hazard risk on the sustainability assessment 

of bridges and buildings and emphasized the importance of disaster resilience and 

sustainability in the structural design. They extended the metrics of traditional 

performance-based engineering paradigm to embodied energy, CO2 emission, human 

casualties, and functionality downtime besides the monetary cost. 

2.2  Hazard Characterization 

A major challenge of community-level resilience assessment and decision-making 

lies in how to characterize natural hazards, specifically at the community scale. Hazard 

characterization refers to how the spatial and temporal characteristics of the hazard are 
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modeled and how the uncertainties involved are properly addressed. Two types of natural 

hazard will be considered in this research, i.e. seismic and tornado hazards; existing 

methodologies in literature will be discussed and grouped for earthquakes and tornadoes, 

respectively.  

2.2.1 Seismic Hazard 

Seismic hazard is one of the major natural hazards in the U.S. and many other 

countries in the world.  Among various earthquake characterization approaches, scenario-

based methods have been widely employed by researchers in recent years in community 

resilience assessment and decision-making. In scenario-based methods, the ground motion 

field and corresponding assessment are derived from pre-defined one (or few) scenario(s) 

described by magnitude and location, which is usually obtained from probabilistic seismic 

hazard analysis (PSHA) followed by a hazard de-aggregation (McGuire, 2004). The 

scenario-based methods are comparable to the deterministic methods in quantifying the 

design ground motion in traditional risk-assessment and design of a single building/facility 

(ASCE, 2016). However, in scenario-based methods designed for resilience study, the 

emphasis is usually given in modeling the spatial correlation of ground motion field, which 

is essential for the analysis of spatially distributed systems, such as building portfolios, 

utilities, and transportation networks and the interdependency between systems. Scenario-

based method is the dominant in current community resilience studies, including resilience  

planning (e.g. SPUR, 2009), pre-hazard retrofit (Zhang et al., 2016), functionality loss 

assessment (Zhang et al., 2018), and post-hazard recovery (Bocchini & Frangopol, 2010; 

Lin & Wang, 2017; Zhang et al., 2017). However, scenario-based methods lack 
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information on the true risk under these scenarios, in which case the following resilience 

analysis and optimal decisions could be very sensitive to the initial selection of the 

scenario(s). An example of scenario-based characterization in the seismic hazard is 

illustrated in Figure 2.4. 

 

Figure 2.4: Scenario-based approach in characterizing seismic hazard (ASCE IRD, 2017) 

 

By contrast, intensity-based methods quantify the potential impact on the 

community functionality under any event of a specific level of ground motion metric (e.g. 

peak ground acceleration, PGA with 10% exceedance probability in 50 years) in 

community scale (NIST, 2015b). They can explicitly represent the ground motion in 

probability form and consider the spatial variation and correlation of ground motion within 

the community. The target ground motion level (e.g. PGA) is found by making the 

exceedance probability of (mean) ground motion metric equal to some probability level 

(e.g. 10% in 50 years). These targeted ground motions can be employed as the input of 

resilience-based pre-hazard design and retrofit of buildings/facilities. It is comparable to 

the Probabilistic Seismic Hazard Analysis (PSHA) in treatment of ground motions, where 

the final product is the probability distribution of ground motion metrics and the combined 

response spectrum of single-site (McGuire, 2004), while in intensity-based method, the 
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final product is a set of correlated ground motion fields for a group of geological closed-

related sites in a community. The intensity-based methods are recommended in ASCE IRD 

report (ASCE IRD, 2017), however, currently few studies have employed the intensity-

based method, due to the complexity and computational cost in deriving the ground motion 

fields and application in resilience analysis. 

Regarding the temporal characteristics, the occurrence of seismic events 

traditionally has been modeled as a Poisson process, and the inter-arrival time as an 

exponential distribution (e.g. Ellingwood & Wen, 2005; Gencturk et al., 2016;), which 

imply that the occurrence rate of earthquakes distributes evenly by time. However, 

historical records analysis (Wesnousky, 1994; Tuttle et al., 2002) along with the elastic 

rebound theory (Reid, 1911) suggest that the occurrence of earthquakes in a certain seismic 

source is related to previous seismic history. Characteristic earthquake model states that 

individual fault (segment) periodically generates earthquakes with near maximum 

magnitude (typically within one-half to one magnitude unit), while small to moderate 

earthquakes occur near randomly in time. For the New Madrid Seismic Zone (NMSZ) 

(Toro & Silva, 2001; Hebden & Stein, 2009) as well as the most active faults in California 

(Petersen et al., 2007) and Japan (Ishibe & Shimazaki, 2012), large-magnitude earthquakes 

can be modeled as characteristic earthquake (CE). Various non-Poisson hazard models 

(NPHM) have been proposed, for example, Semi-Markov model (Anagnos & Kiremidjian, 

1984), Markov renewal model (Kiremidjian & Anagnos, 1984), and Brownian Passage 

Time (BPT) model (Matthews et al., 2002). 



 25 

2.2.2 Tornado Hazard 

Tornado hazard is significant in the Central U.S. (Goliger & Milford, 1998) and has 

a disproportionate impact on low-rise residential buildings in wood frame structures 

(Maloney et al., 2018).  Tornadoes cause, on average, 70 deaths annually in the U.S. 

(NOAA, 2015) and $1 billion in economic losses (Changnon, 2009). For instance, 

tornadoes have brought $2.92B, $2.56B, and $2.09B direct economic loss and 72, 162, and 

25 fatalities to Joplin (2011), Tuscaloosa (2011), and Moore (2013) respectively.  

During a tornado event, the wind speed near the tornado vortex center is very high 

(>200 mph for an EF-5 tornado) (Texas Tech University, 2011), yet the wind speed close 

to the edge is relatively lower. Further, for a specific site, the annual occurrence probability 

of tornadoes is very low, in the order of 10-6 ~ 10-4 depending on the location (Reinhold & 

Ellingwood, 1982; Standohar-Alfano & van de Lindt, 2014). The Low-probability/High-

consequence (LPHC) nature of the tornado hazard poses a significant challenge in 

characterizing the hazard itself and assessing the risk of individual buildings, communities, 

and regions.  

Over the past decades, some notable research has been done on modeling the 

tornado risk for regions across the U.S. For instance, Reinhold and Ellingwood (1982) 

proposed a methodology that considers the variation of intensity along the path of tornado 

to evaluate the tornado risk for the design of nuclear structures across broad regions in the 

U.S. The classification and random errors from misclassification of tornado’s intensity are 

considered. Similarly, Schaefer et al. (1986) developed a tornado risk contour for the entire 

U.S. in terms of Fujita-scale (F-scale) intensity. However, their hazard assessment fails to 
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consider the variation of intensity along the tornado path length and path width, resulting 

in an overestimation of tornado hazard. Recently, Standohar-Alfano and van de Lindt 

(2014) incorporated the methodologies from Reinhold and Ellingwood (1982) and 

Schaefer (1986) to generate the empirically-based probabilistic tornado hazard for the U.S. 

in terms of EF-scale from historical data. They proposed a gradient model for tornado path 

by estimating the percentage of damage area associated with each Enhanced Fujita-scale 

(EF-scale) (Texas Tech University, 2011). The wind speed given a certain EF-scale is 

assumed to be normal distribution due to the lack of sufficient database on the statistics of 

tornado wind distribution for each EF-scale.  It is argued that the normal distribution can 

capture the classification error associated with the subjective definition of tornado intensity 

in terms of EF-scale (Lu, 1995). However, the wind distribution model may be modified 

easily whenever sufficient data is available. The above-mentioned methodologies are 

designed for generating tornado wind speed for a specific site, the spatial correlation of 

wind speed fields over a geological space under a tornado event is not properly addressed. 

2.3 Analysis and Decision Approaches 

2.3.1 Risk De-aggregation 

De-aggregation is a common tool in Probabilistic Seismic Hazard Analysis 

(PSHA), which identifies the contribution of each combination of epicenter distance, 

magnitude, and epsilon to overall seismic risk (McGuire, 2004). In the field of risk-

informed decision-making in engineering, risk de-aggregation was first developed in the 

nuclear industry to design, analyze, and regulate components within the complex nuclear 
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power plant to ensure consistent reliability level (IAEA, 2009). It starts from the plant 

level functionality/reliability target and derives targets for supporting systems and 

eventually individual components. Mieler et al. (2015) introduced the de-aggregation idea 

to link the community resilience goals to performance targets for individual components 

by event tree. The outcome of the framework is the target failure probability of individual 

buildings under a 500-year earthquake.  Lin et al. (2016) proposed a de-aggregation 

framework that relates the community-level resilience target and individual building 

performance target by considering the correlation between buildings’ performance due to 

location closeness and similar construction practices.  

2.3.2 Life-cycle Analysis 

Initially developed for tracking the environmental impact of industrial products 

(Hunt & Franklin, 1996), life-cycle analysis, aka. life-cycle assessment, (LCA) provides a 

rigorous tool to support decision-making for products or engineering projects over a long 

time horizon (e.g. Estes & Frangopol, 1999; Wen & Kang, 2001; Ellingwood & Wen, 

2005), and is often measured in terms of the monetary cost (e.g. Bocchini et al., 2014) or 

the environmental footprint (Carbon, Water etc.) (e.g. Padgett & Tapia, 2013) of a project 

during its service life.   Generally, LCA measures the sum of quantities of all phases within 

the life-cycle of a product or building in terms of same units (Padgett & Tapia, 2013) 

 

T>k(W) = ?lm(W) + ?fo(W) + ?p(W) + ?q_s(W) + ?q_l(W) 

															+?tp(W) + ?u(W) + ?v(W) + ?w(W)																																																																		(2.1) 
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where T>k denotes the life-cycle indicator;  ?lm, ?fo, and ?p, together form cradle-to-gate 

phases, denote the indicators from raw material acquisition, transportation, and production, 

respectively; ?q_s, ?q_l, ?tp, ?u, ?v, and ?w, together form the gate-to-grave phases, denote 

the indicators from initial construction, retrofitting, operation, maintenance, future hazard 

exposure, and demolition phases, respectively. Vector W denotes a group of design 

parameters.  

For cases where more than one indicator is employed, two solutions may be 

considered, i.e. 1) keep these indicators and employ a multi-criteria decision-making; 2) 

convert all indicators into monetary or utility (value) terms. While it is still controversial to 

convert social and environmental consequences into monetary items (Turner, 1992; Ayres 

et al., 1998), such transformation could greatly facilitate the quantification and the 

following decision-making. As a simplified version of LCA, the life-cycle cost (LCC) 

based approach (i.e. minimum expected LCC, in the presence of uncertainties) has been 

widely applied to optimize the initial design of buildings (Wen & Kang, 2001), pre-hazard 

retrofit, and post-event reconstruction of bridges (Tapia & Padgett, 2013) exposed to 

environmental effects (e.g. corrosion) or natural hazards (e.g. earthquakes and hurricanes).  

While this approach is well-accepted for engineering decision-making, other decision 

models have been developed to reflect the fact that decision-makers often find it difficult 

or impossible to monetize risk.  Among these models, cumulative prospect theory (CPT) 

(Tversky & Kahneman, 1992) maps occurrence probabilities and economic consequences 

into perceived probabilities and values, respectively to reflect the non-linear reception of 
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probability and value from different decision-makers. Notably, it is ideal to apply in 

infrastructures exposed to natural hazards as it emphasizes low-probability/high 

consequences (LPHC) events and de-emphasis high-probability/low consequences (HPLC) 

events to reflect the risk-aversion of typical decision-makers.  CPT has been successfully 

discussed in civil engineering decision-making in new construction and retrofit 

applications (e.g. Goda & Hong, 2008; Cha & Ellingwood, 2012). 

2.3.3 Multi-criteria Decision Making 

Traditionally, decision-making problems are formulated as choosing the best 

alternative among others or optimizing the design parameters concerning one 

criterion/objective. However, in reality, we are typically faced with solving decision-

making problems under multiple criteria/objectives. In general, there are two categories of 

decision-making problems in civil engineering risk management: i) choosing one or more 

alternatives from available options, i.e. multi-attribute decision making (MADM) (Hwang 

& Yoon, 1981) and ii) designing unknown or undefined prototypes by changing their 

parameters based on the multiple goals set by the decision makers, i.e. multi-objective 

decision making (MODM) (Sen & Yang, 1998).  

Specifically, for MODM problems, a multi-objective optimization (MOO) is 

appropriate to address this situation. In the MOO, the Pareto Front approach is often 

employed to explore the tradeoff surface between different objectives and yield a set of 

optimal solutions. While traditional operation research approaches such as dynamic 

programming (Bellman, 1954) and weighting approach (e.g., Saaty, 1977) can obtain the 

Pareto front, they are not designed for multi-objective application and are generally 
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inefficient. By contrast, modern heuristic techniques based on population 

search/optimization such as evolutionary algorithms (EAs) (e.g., NSGA-II (Deb et al., 

2001)) and swarm intelligence techniques (e.g., MOPSO (Reddy & Kumar, 2007)) could 

consider the complex trade-off between several criterions in its function directly.  

2.4  Critical Appraisal 

Several research needs have been identified through the literature review: 

1. The tremendous social, economic, and political impacts on communities from 

natural hazards demand effective engineering decision-making regarding the 

communities’ building portfolios over different stages of its lifetime, i.e. new 

construction, retrofitting, and reconstruction.  While studies on each of the subject 

might be abundant, there is no existing decision-framework that can provide a 

unified approach to enable systematic implementation of new construction, pre-

hazard retrofitting, and post-hazard reconstruction of building portfolios in a 

community in a consistent manner to facilitate communities to achieve their 

resilience and sustainability goals.  

2. Although resilience and sustainability ultimately should be inextricably linked and 

mutually reinforcing in building portfolio decision-making, they are not at the 

present time. While a few preliminary attempts have been made to unify these two 

dimensions in decision-making regarding retrofit and construction of individual 

structures or engineered facilities, no research has been done to develop, to the best 
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knowledge, systematically unified decision approach for a community building 

portfolio as a whole.   

3. LCA has been widely applied to measure the overall environmental impact and 

economic cost of publicly-owned facilities and to provide a rigor basis for their 

life-cycle management. However, application of LCA to residential building 

portfolios has not been explored, let alone to form the basis for developers or 

owners to make decisions regarding design, retrofit, or reconstruction, mainly due 

to frequent ownership change and little financial incentives through insurance or 

tax policies. The missing of LCA has led to the failure in quantifying the impact of 

multiple hazard events in a planning cycle and in balancing the tradeoffs between 

pre- and post-hazard risk management strategies.  

4. Codes have been traditionally developed by different organizations with different 

objectives and performance expectations. This lack of system perspective and 

coordination has led to a situation where the performance of individual buildings 

under demands from extreme natural hazards is not consistent within the 

performance expectations of the building portfolio as a whole. A fundamental 

change must occur, as a starting point, in the way that code and standard-writing 

groups approach the problem of stipulating design requirements for buildings from 

the community’s current condition, resilience requirement, and preference. While 

some studies in risk de-aggregation have been done to quantitatively relate the 

individual building performance target with community resilience target, clearly-
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defined minimum individual building performance criteria, which can be easily 

employed in the design of buildings, have yet to be developed.  

5. Traditionally, design, retrofit, and reconstruction of individual buildings are mostly 

implemented by their owners. Implementing portfolio-level strategies will pose a 

significant challenge in coordinating actions in enhancing the resilience and 

sustainability of the community, among diverse ownership groups within the 

building portfolio. MADM and MODM have the potential to systematically address 

competing objectives in satiations where multiple stakeholders are presented. More 

studies are needed to explore the application of MADM and MODM in the 

decision-making problems in buildings portfolios. 

2.5  Closure 

This review identifies research issues associated with decision-making on building 

portfolios under natural hazards. The following chapters will address the portfolio level 

decision making for new construction, pre-hazard retrofitting, and post-hazard 

reconstruction, respectively. The aim of these studies is to develop a risk-informed 

decision-making framework that can support designing strategies for communities’ 

building portfolios that consider not only functionality loss and prompt recovery under rare 

events (resilience) but also long term economic, social, and environmental efficiency 

(sustainability) in a systematic manner. 
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Chapter 3 Performance Criteria for New Constructions 

Defining the performance criteria for new constructions is of importance as they 

not only form the basis for the design of new buildings, but also could guide the pre-hazard 

retrofitting of vulnerable buildings and the post-hazard reconstruction of damaged 

buildings. The new perspective from resilience performance in community-level suggests 

that the performance criteria implied by current design codes in the U.S. are unsound and 

inadequate. 

This chapter begins with the introduction of the philosophy of Resilience-based 

Design (RBD) as compared to traditional engineering design philosophy. The concept of 

risk de-aggregation is then discussed regarding how it could help develop the performance 

criteria for individual buildings in a systematic manner that can be matched to the 

community’s socioeconomic resilience goals within the RBD framework. Afterward, the 

definition of portfolio resilience goals is established, including three ingredients: resilience 

metrics, hazard characterization, and probabilistic statement of resilience goals. The risk 

de-aggregation under tornado and seismic hazard is then developed separately due to the 

distinction in hazard characterization and performance metric setting. This chapter will 

also discuss how various factors will affect the minimum performance criteria. 

3.1 Resilience-based Design 

Buildings, as other infrastructures, are traditionally designed according to the 

minimum requirement from design codes, guidelines, and regulations. The 
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disproportionate socioeconomic loss from catastrophic hazard events in recent years and 

the continuous increasing concern from community stakeholders (e.g. government 

agencies and residents) beg a high-level community planning focusing on the functionality 

of community as a whole under hazard events. This suggests that the engineering 

community need to shift their focus to community level to reduce direct and indirect loss, 

preserve the key functionality, and recover from an interruption in a prompt manner under 

natural or man-made hazards. 

Communities in the U.S. have gradually realized the importance of considering 

community’s performance as a whole and are urging to implement community-level, long-

term resilience plans (e.g. San Francisco (SPUR, 2010)) aiming to prepare communities 

withstanding unprecedented natural and man-made hazards in future. However, those 

large-scale resilience plans generally lack quantitative measurements to link their resilience 

performance goals with the performance criteria of sub-systems and eventually of 

individual buildings. 

In addition, a survey shows that the people in hazard-prone regions have high 

expectation on the performance of buildings/communities and are willing to pay the extra 

cost, given the tremendous break-through in civil engineering in the past decades and the 

growing hazard awareness. Ideally, buildings codes, which dictate the minimum design 

and construction level of buildings, should reflect the expectation of society and citizens 

on their performance (Porter, 2016). The inconsistency between the high-level community 

resilience expectation and low-level building design codes suggests deriving the 

performance criteria from community level rather than calibrate from previous codes and 
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shifting the design objective from ensuring Life-Safety (LS) to loss reduction, functionality 

preservation, and recovery promptness. 

To achieve higher resilience performance of buildings, Porter (2016) suggested a 

simple seismic design method which employs an earthquake importance factor of 1.5, i.e. 

50% stronger than LS minimum, in which case buildings could achieve 95% shelter-in-

place objective for about 1% increase in cost. Masoomi and van de Lindt (2019) proposed 

a community resilience-based assessment and enhancement methodology, in which 

improvements are made if the performance gap between the existing community’s overall 

recovery time and the pre-defined performance goal exists. However, the process is based 

on the specific and existing community, and to achieve specific performance goals, infinite 

decision combination could be made.  

3.1.1 Current Design Codes and Guidelines 

Current seismic design codes (e.g. ASCE-7 (2016)) generally concern preventing 

fatalities and injuries (Life-Safety, LS) related to building collapse under rare earthquakes, 

which does not necessarily guarantee the functionality of buildings in this and other hazard 

levels (Bertero & Bertero, 2004). Damage to the buildings are allowed under rare 

earthquakes, since remaining elastic was believed to be unnecessary and uneconomic 

(Housner, 1956). FEMA P-695 (FEMA, 2009) suggested a 10% exceedance probability of 

collapse under maximum considered earthquake (MCE). Luco et al. (2001) proposed a 

risk-targeted design procedure, which is adopted by ASCE-7, intended to provide a 

uniform 1% collapse probability in 50 years through risk-targeted MCE, 4>(x. Such 1% 

collapse probability in 50 years is back-calibrated from buildings designed under previous 
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seismic design codes (such as ANSI A-58 (ANSI, 1972)), which is further back calibrated 

(e.g. the work by Ellingwood et al. (1980)) ultimately from the first edition of Uniform 

Building Code in 1927. The performance level implied by the generations of seismic 

design code in the U.S. seems arbitrary and lack a rational background (Porter, 2016). 

Ellingwood et al. (1980) also addressed the low reliability of buildings under seismic load 

than under gravity load, however, little studies had been done on how to rationally define 

the appropriate performance level. 

Further, in spite of the design requirements in current seismic design codes on 

structural and non-structural components, which are essential for preserving the 

functionality of buildings after seismic events, there is no explicit statement on their 

performance objectives nor the anticipated performance. Lastly, there is a lack of 

consideration on the performance of the building portfolio as a whole under hazard events.  

Regarding tornado hazards, notably, there is no nationwide design code specifying 

additional requirement for structures under tornadoes in design codes, with the only 

exemption in the City of Moore, OK,  which adopted residential building code that could 

withstand an EF2 tornado (City of Moore, 2014), however, such a requirement is not 

directly derived from community-level social, economic goals, and more studies are 

needed to investigate the community’s performance in future hazards under this new code 

(Simmons et al., 2015). 
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In sum, the shortcomings of current design codes are: 

1. Their aim is to ensure Life-Safety (LS) of occupants under rare hazards. 

Functionality preservation and loss reduction are either not considered or 

considered as a secondary by-product from fulfilling LS objective. 

2. The performance objective is not defined in a top-down and rational manner from 

communities’ own preference, rather it is obtained by back-calibration from 

previous design codes. 

3. There is no explicitly quantitative statement of the performance objectives in 

functionality nor performance criteria for structural and non-structural components. 

4. There is a lack of consideration on the performance of the building portfolio as a 

whole under specific hazard levels. 

 

It should be noted that currently the low-rise residential building structures made of  

wood light-frame are not designed but constructed according to “conventional 

construction” provisions of building codes (FEMA/NIBS, 2003; IRC, 2015), which are 

further based on ASCE 7, however, to fulfill higher community resilience goals, a top-

down design roadmap is indispensable. The purpose of the study in this chapter is to 

provide a rational basis in defining the performance level implied by design codes which 

will align with communities’ resilience performance goals. 

3.1.2 Proposed Resilience-based Design  

Resilience-based Design (RBD) is defined as a design philosophy that considers 

functionality metrics at community-level as the primary performance objective, which also 
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forms the basis in deriving the performance requirement of individual buildings according 

to their occupancy type and importance in the performance of community as a whole.  

For a specific community, as illustrated in Figure 3.1, RBD includes four steps: (i) 

defining the community level resilience goal by a diverse group of stakeholders, such 

government agencies, residents, engineers; (ii) upper-level de-aggregation (ULD) gives the 

performance requirement for each sub-system (e.g. building portfolio) from community 

resilience goal; (iii) lower-level de-aggregation (LLD) establishes the minimum 

performance criteria for individual components (e.g. buildings) from subsystem 

performance requirement; (iv) performance-based design (PBD) of individual components 

of each sub-system according to the previously obtained corresponding performance 

criteria. Among the steps, risk de-aggregations in step (ii) and (iii) are essential to obtain 

performance objectives for each sub-system and individual components and relate the 

RBD to current Performance-based Design (PBD). The risk de-aggregation framework will 

be discussed in depth in Section 3.2. 
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Figure 3.1. Proposed resilience-based design flowchart 

 

Features of proposed Resilience-based Design (RBD) 

1. Not LS, but metrics related to functionality and loss are considered as the major 

performance objectives for individual components (e.g. buildings) under specific 

hazard levels (see the illustration in Figure 3.2). Generally, the RBD will give 

higher performance level under specific hazard level. 

2. The minimum performance requirement of individual components is derived from 

portfolio level resilience requirement (LLD), which is further derived from the 

community’s resilience goals defined by community stakeholders (ULD).  

3. There is an explicit statement of the performance objectives in individual 

components, subsystem, and community level expressed in probabilistic form 

conditioned on design hazard. 
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4. Communities those construct new individual components and subsystems 

according to RBD will eventually achieve their pre-defined performance goal under 

specific hazard level. 

 

Taking the individual building level as an example, the comparison of the 

performance objectives of current code design and RBDs for individual buildings under 

seismic hazard is illustrated in Figure 3.2, which emphasizes the performance requirement 

on the Immediate Occupancy (IO) (will be discussed in Section 3.6.3) of each design 

method under various hazard level. To be consistent with current seismic design codes 

(e.g. ASCE 7-16), the occasional, design, and maximum considered hazard are defined as 

ones with the return period of 72 years, 475 years, and 2475 years, respectively. The 

details of hazard characterization will be discussed in Section 3.5.2 and 3.6.2 for tornado 

and seismic hazard, respectively.  In the example given in Figure 3.2, buildings following 

current codes are estimated to be in Restricted-Use state, while buildings following 

Basic/Enhanced IO-based design will achieve Re-occupancy/Baseline functionality under 

Design Earthquake (DE). It should be noted that for current design code, Restricted-Use is 

given approximately since no explicit functionality performance goal, but LS is given in 

those codes for DE. 
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Figure 3.2 Example performance objectives for resilience-based design (metric: Immediate 

Occupancy (IO)) and that for current code design (approximate) 

3.2  Risk De-aggregation Framework 

This section will introduce a path forward towards developing performance-based 

design (PBD) requirements for the built environment aimed at achieving community 

resilience goals. Specifically, it seeks to transform resilience goals articulated for the whole 

community into requirements that are practical to implement from an engineering 

perspective. It will be shown that at its highest level, resilience-driven PBD begins with 

community resilience goals expressed in terms of social and economic metrics. These 

goals are then used to differentiate subsystem performance objectives for a spectrum of 

building clusters and lifeline systems, and ultimately lead to PBD criteria for individual 

buildings of different occupancies and for system components of lifelines.  The 

overarching aim is to relate engineering design and practices to socioeconomic 



 42 

performance expectations and to provide a vehicle for risk-informed decision-making in 

natural hazard events.  

The resilience of a community is supported by its physical infrastructure, as 

illustrated in Figure 3.3. Community resilience assessment (Section 3.4) requires bottom-

up, multi-layered analysis at different spatial and temporal resolutions. First, it estimates 

the performance of individual infrastructure components (e.g. buildings).  It then 

aggregates the performance of these individual structures on spatial and temporal scales to 

obtain the performance of the community’s physical subsystems - building clusters and 

infrastructure networks - which are then further aggregated with the socioeconomic 

attributes of the community to obtain overall measures of community resilience as a whole.  

 

Figure 3.3: Illustration of Resilience Assessment and Goal De-aggregation 
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Now, to identify the performance objectives for individual buildings and lifeline 

components that would collectively enable a set of pre-defined overarching community 

resilience goals to be achieved, the assessment procedure is reversed, creating a top-down, 

multi-layered cascading “de-aggregation” framework shown in Figure 3.4. Ideally, this 

multi-layered de-aggregation analysis begins with a policy-driven process that sets the 

overarching community resilience goals expressed in terms of socioeconomic metrics.  

Through an upper-level de-aggregation (ULD), this set of overarching community 

resilience goals is de-aggregated to a set of performance goals for physical sub-systems 

(i.e. building inventories and infrastructure networks) that serve the social and economic 

functions of the community. This ULD can be formulated as an inverse Multi-objective 

Optimization Problem (MOOP), where we simultaneously search for the minimum 

performance goals for each subsystem that collectively enable the overarching community 

resilience goals to be achieved.  This optimization must operate on an analysis model that 

estimates the overarching community resilience metrics of interest using the community’s 

subsystem performances as input. For example, if the overarching community resilience 

goals are articulated in terms of economic measures, e.g. job, income, gross domestic 

product, among others, an economic computable general equilibrium (CGE) model (e.g. 

Rose (2004)) can be integrated into the MOOP for the ULD.  This ULD is performed at the 

community scale, and it decouples the interdependencies among the subsystems for the 

subsequent analysis.  Once the set of minimum resilience goals are obtained for the 

subsystems, they are de-aggregated further in a lower-level de-aggregation (LLD) to 

obtain the minimum performance objectives for the individual components in each 
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subsystem. The LLD is also formulated as an inverse MOOP and must operate on 

subsystem analysis models, i.e., residential building cluster resilience assessment model, 

transportation network resilience assessment model, etc.  For example, Lin et al. (2016) 

developed a cluster analysis model to assess the robustness and recovery of residential 

building clusters. Such a model can be integrated into MOOP to obtain the minimum 

performance criteria for individual residential buildings and enable the residential cluster 

resilience goals obtained from ULD to be achieved.  Finally, once the performance 

objectives for individual structures are established, performance-based design (PBD) and 

retrofit (e.g. in Chapter 4) can be implemented at the individual facility scale, in which 

building (or lifeline component) attributes can be identified and parameterized to meet the 

performance objectives resulted from the LLD.  

As discussed in the NIST Resilience Guide (2015b), community resilience goals 

include two temporal components - robustness goal and recovery goal. For a community 

subsystem, the robustness goal usually is an acceptable level of damage or loss due to the 

immediate impact of a particular hazard level, while the recovery goal, on the other hand, 

is often stipulated as an acceptable recovery target at selected points in time after a hazard 

occurrence. The robustness of a community subsystem (e.g. a building cluster, measured in 

terms of direct loss ratio), is exclusively affected by the existing physical condition of its 

buildings, which is directly tied to building design code levels.  Recovery of a building 

cluster, however, has been shown to be conditional on initial damage and is collectively 

determined by the preparedness (e.g. the speed of damage inspection, the process of design 

and permitting, the availability of finances) and resourcefulness (e.g. contractors, 



 45 

construction material and equipment) of a community, among many other factors, as 

systematically modeled in Lin and Wang (2017). Accordingly, it is emphasized that while 

de-aggregation of the robustness goals yields improvements in design criteria for buildings 

and lifeline components, de-aggregation of the recovery goals leads to organizational and 

preparedness guidelines for community resilience planning, such as, target insurance 

percentage, target inspection speed, etc.  The focus of this study is on deriving design 

criteria for buildings. This study illustrates the feasibility of the Low-level De-aggregation 

(LLD) by using a residential building cluster as the testbed subsystem.  
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Figure 3.4: The Concept of Cascading De-aggregation 
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3.3 Building Portfolio Resilience Goals 

Well-posed resilience goals should be clearly defined by three key elements: 1) 

hazard characterizations, 2) resilience metrics, and 3) goal statements articulated 

probabilistically in terms of the defined metrics conditional on the selected hazard intensity 

levels.  

3.3.1 Hazard Characterization 

Due to the distinct nature of tornado and seismic hazard in spatial and temporal 

characteristics, the hazard characterization for each hazard will be given in of Section 3.5.1 

and 3.6.1, respectively. 

3.3.2 Resilience Metrics 

To illustrate the LLD in developing the minimum performance criteria for 

residential buildings under hazards, Direct Loss Ratio (DLR), Un-Inhabitable Ratio (UIR) 

(Lin & Wang, 2016), and Immediate Occupancy Ratio (IOR) are selected as the resilience 

metrics measuring the robustness of a residential building cluster.  The DLR is defined as 

the ratio of hazard-induced direct loss of residential buildings to the overall replacement 

cost of the residential cluster; UIR is defined as the proportion of the dwelling units that 

are un-inhabitable (only consider building damage) following a hazard event to the total 

number of dwelling units in the building cluster under investigation. IOR is defined as the 

ratio of buildings that remained safe to occupy considering damage from structural and 

non-structural components (more formal definition will be given in Section 3.6.2). The 

DLR is a damage-control metric and contributes directly to the hazard-induced economic 
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impact, while the UIR and IOR, both related to population dislocation, are functionality-

control metrics relevant to the social well-being of the community following a disaster.  

3.3.3 Probabilistic Statement of Resilience Goals 

The uncertainties associated with both hazard characterization (H) and metric 

quantification (M) require community resilience goals to be expressed in a probabilistic 

form, i.e.: 

 

                            !"#$%&,( 	< +$%,(	,ℎ) 	= 	0%                                          (3.1) 

 

where #$%&,( represents a community resilience metric of interest #23 (e.g. UIR) 

evaluated under hazard (e.g. Tornados) with an intensity level ℎ (e.g. EF5), +$%&,( is the 

prescribed resilience goal corresponding to #$%&,(,  and the 0% is a prescribed confidence 

level.  The presence of the 0% in the goal statement acknowledges the uncertain nature 

associated with any community resilience assessment, reflects the risk level that a 

community is willing to tolerate, and should be aligned with a community’s preferences.  

The cluster resilience goal, +$%&,(, might be determined by different approaches or, more 

likely, a combination of the following: 1) de-aggregation of socioeconomic resilience goals 

at a higher-level (ULD) using quantitative models (e.g. population outmigration models, 

computable general equilibrium models) that relate functionally of building clusters to 

socioeconomic consequences of a disaster; 2) selections made by community resilience 

officers or a group of private and public stakeholders based on their experience, expertise 
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and public expectations; or 3) calibration against expected performance of well-performed 

building clusters.  

3.4 Resilience Assessment 

First developed in earthquake engineering research (Cornell & Krawinkler, 2000), 

and recently employed by Lin and Wang (2016) in building portfolio resilience 

assessment, Eq. (3.2) allows the probabilistic estimation of building cluster resilience 

metrics:  
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where the bold-faced notations denote vector-valued variables; from right to left,	 

<N?|F(E|ℎ) is the Probability Density Function (PDF) of the parameters defining a hazard 

scenario (?) conditioned on hazard intensity, O = ℎ; <BC|?(D|E) is the PDF of the hazard 

intensity field IM given ? = E; <=?|BC(A|D) is the PDF of damage state =? of buildings in 

the cluster conditioned on BC = D; <=>|=?(@|A) is the PDF of damage value => 

conditioned on =? = 	A; and => is the loss to individual buildings with respect to the 

resilience metric of interest as a result of its physical damage (Lin & Wang , 2016). The 

community resilience metric #, i.e. DLR, UIR, and IOR in this study, is a function of N?, 
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BC, =? and =>. Therefore, the cumulative distribution function (CDF) of # conditioned 

on O can be estimated by integrating the joint PDF of the four random vectors, namely, 

HS, IM, DS, and DV, over the multi-dimensional region where #(N?, BC,=?,=>) < 9. 

The dimension of BC, =?, and =>	is consistent with the number of buildings in the 

cluster.  Eq. (3.2) relates the performance of individual buildings (represented by building 

fragility functions, <=?|BC(A|U)) to the resilience metrics of the cluster as a whole 

(represented by #, measured in terms of DLR or UIR).  Generally, Eq. (3.2) cannot be 

evaluated in a closed-form and a multi-layered Monte Carlo Simulation (MCS) is 

employed to estimate the probability distributions of 	#. 

De-aggregating resilience goals to obtain the strength criteria for individual 

buildings and engineered facilities is an inverse process of the resilience metric evaluation 

procedure. The de-aggregation starts with a set of prescribed cluster resilience goals (and 

determines the theoretical minimum individual building performance criteria enabling the 

cluster resilience goals to be achieved).  The premise is that the de-aggregation should be 

independent of the current condition of a building cluster.  The cluster resilience goal is a 

long-term target for a community to strive for; and it is this long-term target (i.e. what is to 

achieve in future) that governs the de-aggregation, not the existing situations (i.e. where we 

are now).  In other words, de-aggregation answers the question: what is the minimum 

building performance criteria necessary for a cluster of buildings to achieve the prescribed 

cluster resilience goals?  The process of de-aggregation is illustrated in Figure 3.5. 
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(a)                                                                    (b) 

Figure 3.5:Illustration of de-aggregation, demonstrating the relation between (a) the cluster 
resilience goals and (b) the target building fragility functions 

3.5 Risk De-aggregation Under Tornado Hazards 

In this section, the minimum performance criteria for residential buildings will be 

derived from direct loss ratio (DLR) and un-inhabitable dwelling ratio (UIR) performance 

goals of residential building portfolios under EF2 and EF5 tornadoes, which is formulated 

as a multi-objective optimization problem (MOOP). 

3.5.1 Hazard Characterization 

Tornadoes have very low probability of occurrence for a specific location (at the 

order of 10XY or lower for regions in east of rocky mountain of the U.S. (Lu, 1995)), 

relatively localized impact (compared to other natural hazard, such earthquakes), and 

spatially varied wind field along and across their path.  The Enhanced Fujita (EF) scale 

(Texas Tech, 2011), modified from the original Fujita (F) scale, is the standard and well-
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accepted form of describing the intensity of tornadoes.  According to the historical data 

from 1950 to 2015 (NOAA, 2015), approximately, 90% of tornadoes are categorized as 

EF2 or below in the U.S. For most cities in the U.S., the current design wind speed for 

buildings, lies between EF1 and EF2 (van de Lindt et al., 2012), when considering straight 

winds (ASCE, 2016).   EF5 tornadoes, on the other hand, have brought massive economic 

and social impacts in the U.S. in recent years (e.g. Joplin, MO 2011 and Moore, OK 

2013).  In this study, EF2 and EF5 are considered as expected and extreme intensity levels, 

respectively, in articulating the resilience goals with respect to tornadoes. A spectrum of 

EF2 and EF5 scenario events will be considered in the LLD formulation.  

It begins with generating tornado scenarios given a pre-defined intensity level 

expressed in EF-scale (H), i.e. <N?|F(E|ℎ) in Eq. (3.2). A tornado path can be effectively 

determined by four parameters (Strader et al., 2016): initiation point (!), path angle (Z), 

path length ([) and width (\), as shown in Figure 3.6(a) on a Community A, assumed to 

be in the State of Oklahoma.  In the MCS, a Region B surrounds community A is defined, 

and its dimension in each direction is 100 miles larger than that of the community A, as 

illustrated in Figure 3.6(b). It is assumed that the tornado initiation point P is equally likely 

over Region B, and only tornados initiated in Region B can possibly pass through 

Community A. A statistical study of the historical tornado records during the period of 

1950-2015 (NOAA, 2015), as tabulated in Table 3.1 for the State of Oklahoma, indicates 

that tornado path angle Z can be described by a normal distribution, approximately with a 

mean of 35°~45° (measured counterclockwise from due east) and standard deviation (SD) 

of 31°~37°, while the path length [ and width \ can be most effectively modeled by 
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Weibull distributions with parameters tabulated in Table 3.1.  According to the probability 

distributions of the four path parameters, 4,000 tornado scenarios are generated for 

Community A, 2,000 for each EF2 and EF5 intensity level, in order to obtain a 

probabilistic quantification of the UIR and DLR.  

For each of the simulated tornado scenarios, the wind gradient (the spatial variation 

of wind speed along and across the path), i.e. ]BC|N?(D|E) is established in Eq. (3.2).  

Further, it employs the approach proposed by Standohar-Alfano and van de Lindt (2014), 

in which the spatial wind speed gradients take concentric rectangular shapes and the wind 

speed in each gradient is expressed in terms of EF-scale, as illustrated in Figure 3.6(a). The 

classification error associated with subjectively defining the wind intensity in terms of EF-

scale is captured by a normal distribution (Lu, 1995).  Accordingly, uncertainties of the 

wind speed within the gradients are modeled by a normal distribution, as tabulated in Table 

3.2, in which the upper and lower 2nd percentiles of the normal distribution coincide with 

the upper and lower bounds of the wind speed range for the corresponding gradient 

associated with an EF-scale.  For each of the 4000 simulated tornado scenarios with a 

determined path and corresponding footprint, a second-layer of MCS with 100 realizations 

is performed to capture the uncertainties in the wind speed at each of the building sites in 

the cluster.     



 54 

 

                    (a)                                                                     (b) 

Figure 3.6 Tornado Scenario (TS) simulation using MCS: (a) footprint of one TS 

and (b) the spatial region for tornado path simulation   

 

 

Table 3.1 Statistics of the path parameters for tornadoes in Oklahoma 

(From the NOAA SPC data (2015), 1950 - 2015, 400 EF2 events and 10 EF5 events) 

EF-

scale 

Length (m) 

^~`abc@dd(e, f) 

	

^~`abc@dd(e, f) 

 

Width (m) 

g~`abc@dd(e, f) 

 

 

Angle (°) 

h	~i(j, k) 

 Sample Parameters  Sample Parameter  Sample 

Mean S.D. Shape,	l Scale, 

m 

Mean S.D. Shape,	l Scale, 

m 

Mean SD 

EF2 11,032 12,993 1.125 12,458 287 327 0.945 280 34.6 31.9 

EF5 36,305 23,342 1.691 41,451 1,047 564 2.123 1,195 44.9 36.3 
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Table 3.2 Statistics of wind speed in each EF-scale 

EF-scale Wind speed (3s gust, mph) 

 

 

Speed range 

(Texas Tech, 2011) 

 

Normal dist. 

i(j, k) 

 
EF0 65-85 n(75,5.0) 

EF1 86-110 n(98,6.0) 

EF2 111-135 n(123,6.0) 

EF3 136-165 n(151,7.5) 

EF4 166-200 n(183,8.5) 

EF5 Over 200 n(220,10.0) 

 

The simulations of tornado path and spatial gradient of wind speed for each path 

result in full spatial characterizations of 100 demand fields for each of the 4000 tornado 

scenario events, Ot.  Imposing each demand field on a spatially distributed building 

cluster, the probability of each of the damage states, ut as defined in Table 3.3, can be 

estimated for each building by fragility functions.  Furthermore, the DV, conditional on DS, 

i.e. uv	wx − the loss percentage of a building with respect to its replacement cost and uv	yz 

− the un-inhabitable of a building, is tabulated in Table 3.4. 
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Table 3.3 Definition of damage state under tornado hazard (Maloney et al., 2018) 

 

 

 

Table 3.4 Damage Value, uv (FEMA/NIBS, 2003) 

Damage Value, DV 
Damage State 

1 2 3 4 

DV for direct loss (uvwx|}) 0.05 0.2 0.5 1.0 

DV for un-inhabitability (uvyz|}) 0 0 1.0 1.0 

 

Damage 
State 

Damage 
Description 

Roof Cover 
Failure 

Window & 
Door 

Failures 
Roof Deck 

Exterior 
Wall 

Damage 

Roof 
Structure 

Wall 
Structure 

Failure 

0 
None to 

Very Minor 0-15% 
Shingle 
Failure 

No Damage No Roof 
Panel Loss 

Cracking on 
1-2 Sides No Damage No Damage 

1 Minor 
15-50% 
Shingle 
Failure 

1-3>20% No Roof 
Panel Loss 

Cracking on 
3-4 Sides No Damage No Damage 

2 Moderate 
50%+ 

Shingle 
Failure 

3≥0% - 50% 1 - 25% 
Panel Loss - No Damage No Damage 

3 Severe - ≥50% 25% - 50% 
Panel Loss - No Damage No Damage 

4 Destruction - - ≥50% Roof 
Panel Loss - Rafter-Sill 

Failure 

Foundation 
Connection 

Damage 
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3.5.2 Resilience Metrics 

Accordingly, the DLR and UIR can be obtained by aggregating the corresponding 

DV for each building over the entire building cluster, as:  

																																						#wx~,( 	= 	
∑ CÅ ∙ ∑ uvwx

|} ∙ É(
Å,|}Y

|}ÑÖ
zÜ
ÅÑÖ 	

∑ CÅzÜ
ÅÑÖ

																																								(3.30) 

																																						#yz~,( = 	
∑ UÅ 	 ∙ ∑ uvyz

|} ∙Y
|}ÑÖ É(

Å,|}zÜ
ÅÑÖ 	

∑ UÅ	zÜ
ÅÑÖ

																																								(3.3á) 

 

in which àâ is the number of buildings in the cluster;  É(
Å,|} is the probability of damage state 

equal to Gä ∈ (1,2,3,4)	of the i-th building obtained from fragility functions with respect to 

tornado intensity level ℎ ∈ (åç2, åç5);  CÅ is the total replacement cost of the i-th building; 

UÅ is the number of dwelling units in the i-th building.   

From Eq. (3.3) for all the 4 ×105 simulated tornado demand fields, the full 

probabilistic distributions of #wx~,( and #yz~,( (the UIR and DLR for T1-T4 tabulated in 

Table 3.5 are the 95th percentile values estimated using this procedure) are obtained.  It 

should be noted that while each building has its own characteristics with respect to its 

response to a tornado load, the performance of these buildings during a disaster are 

positively correlated due to the extended spatial footprint of the common hazard, and the 

common building design and construction practices within a community. While such 

positive correlation in hazard demands at all building sites is preserved in this two-layer 

MCS procedure, this study neglects the positive correlation in building capacities by 

eliminating a third-layer simulation of building damage states conditional on a demand 
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field.  This simplification reduces the computational effort of the MCS, which is justified 

by the fact that the uncertainty in # is dominated by the hazard characterization, and 

comparatively, the impact of uncertainties in building capacities is secondary.  This 

justification will be further illustrated in Section 3.5.3.  

3.5.3 Resilience Goals 

The uncertainties associated with both hazard characterization (H) and metric 

quantification (M) require community resilience goals to be expressed in a probabilistic 

form (has been given in Eq. (3.1)) and is re-written below for tornado hazards. For 

instance, when the metric of interest is UIR 

 

 

                																!"#yz~,( 	< +yz~,(	,ℎ) 	= 	0%                                        (3.4) 

 

where #yz~,( represents a community resilience metric UIR evaluated under tornadoes 

with an intensity level of ℎ ∈ (åç2, åç5), +yz~,( is the prescribed resilience goal 

corresponding to #yz~,(,  and the 0% is a prescribed confidence level.  A similar definition 

could be easily obtained when the metric of interest is u[è. An example of the goal 

statement expressed in Eq. (3.4) is !"#	yz~,êëí 	< 2%	,åç5) 	= 	95%, meaning “less than 

2% of the residential buildings are uninhabitable immediately following any EF5 tornado 

event with 95% probability. 
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In this study, the calibration method is employed to establish the cluster resilience 

goals with respect to UIR and DLR for residential building clusters subjected to tornadoes.  

Four hypothetical clusters are considered, each consisting of 5000 identical archetype 

buildings distributed over a 20-mile by 20-mile area.  The four archetypes, T1-T4, that 

employed to populate the four hypothetical clusters are typical well-built, IRC-complied 

wood residential buildings introduced in Amini and van de Lindt (2013). The basic 

attributes of the four archetypes and the resilience metrics evaluated for the four 

hypothetical clusters are tabulated in Table 3.5.  The probabilistic analysis procedure to 

estimate the cluster DLR and UIR has been given in Section 3.5.2.  It is observed that for 

these four clusters the 95th percentile of DLR is in the range of 0.23%~0.42% and 

2.64%~2.99% for EF2 and EF5 tornadoes, respectively; and the 95th percentile of UIR is in 

the range of 0.22%~0.44% and 2.64%~3.08% for EF2 and EF5 tornadoes, respectively.  

Accordingly, for the subsequent illustration, the resilience goals proposed in the last three 

columns in Table 3.5 for the 20-mile by 20-mile benchmark residential building cluster 

will be utilized.  The last three columns of Table 3.5 each corresponds to a specific code 

level: Level 1 – Baseline Code (focus on life-safety), Level 2 - Enhanced Code (focus on 

reparability), and Level 3 – Continued Use (focus on continued occupancy and use).  It is 

emphasized that when the community area (AC) varies from 20 mile2 to 600 mile2, the 

DLR and UIR will decrease monotonically, as illustrated in Figure 3.7 for DLREF5. This is 

because tornadoes are localized hazards when compared to other natural hazards such as 

hurricanes or earthquakes.  The impact of an EF5 tornado on a small-area community can 

be much more overwhelming than its impact on a large community. This correlation 



 60 

between DLR (or UIR) and AC suggests that the cluster goal (G) expressed in term of DLR 

(or UIR) should be a function of AC, as shown in the solid lines. The effect of community 

size AC on the de-aggregated minimum building performance objectives will be further 

discussed in the case study in Section 3.5.5.  

 

Table 3.5: UIR and DLR estimated for four 20-mile by 20-mile hypothetical building clusters 
consisting of well-performed building archetypes and proposed building cluster goals 

Building 
Cluster 
Metrics 
(M) 

Hazard 
Intensity 
Levels 

(H) 

Building Archetypes Included in Each 
Hypothetical Cluster 

(No. of story/No. of dwelling unit) 

(Amini & van de Lindt, 2013) 

Proposed Goals (G) 

T1 

(1/1) 

T2 

(1/1) 

T3 

(2/4) 

T4 

(2/2) 

Code  

Level 1 

(Baseline) 

Code  

Level 2 

(Enhanced) 

Code  

Level 3 

(Cont’d 

Use) 

DLR 

EF2 0.23% 0.42% 0.41% 0.37% 0.18% 0.10% 0.08% 

EF5 2.64% 2.99% 0.99% 2.87% 2.50% 1.80% 1.50% 

UIR 
EF2 0.22% 0.40% 0.44% 0.36% 0.18% 0.10% 0.08% 

EF5 2.64% 2.98% 3.08% 2.84% 2.50% 1.80% 1.50% 

• T1 - Single family dwelling w/o basement; T2 - Single family dwelling; T3 - Multifamily dwelling; T4 - 
Multifamily dwelling.  

• Code Level 1 – Baseline Code; Code Level 2 – Enhanced Code; Code Level 3 – Continued Use 
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Figure 3.7: 95th percentile of #	yz~,êëí as a function of community area (AC) 

 

3.5.4 Formulation 

De-aggregating resilience goals to obtain the strength criteria for individual 

buildings and engineered facilities is an inverse process of the resilience metric evaluation 

procedure presented in Section 3.4. The de-aggregation starts with a set of prescribed 

cluster resilience goals (Section 3.5.3) and determines the theoretical minimum individual 

building performance criteria enabling the cluster resilience goals to be achieved.  The 

premise is that the de-aggregation should be independent of the current condition of a 

building cluster.  The cluster resilience goal is a long-term target for a community to strive 

for; and it is this long-term target (i.e. what to achieve) that governs the de-aggregation, not 
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the existing situations (i.e. where we are).  In other words, de-aggregation answers the 

question: what is the minimum building performance criteria necessary for a cluster of 

buildings to achieve the prescribed cluster resilience goals? 

Accordingly, the de-aggregation problem is formulated as an inverse optimization 

problem, where the decision variables are building performance criteria expressed 

probabilistically in terms of lognormal fragility functions (Rosowsky & Ellingwood, 

2002): 

 

																												çì|}(î) = !(ut ≥ Gä|î) = ñ ó
ln(î) − m~,|}

õ~,|}
ú 																																		(3.5) 

 

where	î denotes the hazard demand;	ut denotes the random variable of damage state;  Gä ∈

(1,2,3,4)  denotes the realization of ut ;  m~,|}  denotes the logarithmic median (or log-

median) capacity, i.e., the median capacity equals ùûü†  for each damage state Gä ; 

õ~,|}	denotes the logarithmic standard deviation for damage state Gä.  The analysis of typical, 

IRC-complied (IRC, 2015) wood residential buildings presented in the literature (Rosowsky 

& Ellingwood, 2002; Amini & van de Lindt, 2013) indicates that the õ~,|} is usually in the 

range of 0.10 – 0.17 under wind load.  The source of this uncertainty includes component 

strength, connection details, modes of failure, construction quality, etc., which are less 

controllable in design than m~,|} . Accordingly, it is conservatively assumed that õ~,|}	is 

consistently 0.17 for all four damage states to focus the de-aggregation process on 

determining the target for m~,|}.    
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De-aggregation is formulated as a multi-objective optimization problem (MOOP) 

in which the minimum building strength parameter, f°¢ = [m~Ö
% , m~§

% , m~•
% , m~Y

% ] is to be 

sought, as illustrated in Figure 3.5, that enables a residential cluster to achieve its resilience 

goals expressed in Eq. (3.4).  The MOOP formulation is summarized in Table 3.6. Eq. 

(3.6) defines the decision variables. Eq. (3.7) defines the objectives of the de-aggregation, 

i.e. searching for the minimum f°	 	 that enables the set of four cluster resilience goals 

expressed in Eq. (3.8) to be satisfied simultaneously.  The values of +ß,( are given in Table 

3.5 for the three considered code levels, respectively. Eq. (3.9) is a local constraint, which 

ensures consistency between the relative magnitudes of the four elements in vector f°	  and 

the characteristics of the four damage states presented in Table 3.3 (Maloney et al., 2018).  

This constraint reduces the number of decision variables from four to two. 

Table 3.6 De-aggregation Formulation under Tornadoes 

Item                Expression Eq. # 

Decision Variables: ®°
	 = [λ~Ö

	 , λ~§
	 , λ~•

	 , λ~Y
	 ] Eq. (3.6)  

Objectives  ™´¨	®°
	 = min	([λ~Ö

	 , λ~§
	 , λ~•

	 , λ~Y
	 ]) Eq. (3.7) 

Constraints !"#ß,( 	< +ß,(	,ℎ) 	= 	0%;	 

∞ ∈ (±àè, u[è); ℎ ∈ (åç2, åç5)	 

Eq. (3.8) 

m~,|} = 0 + á ∗ ln(Gä) Eq. (3.9) 

 

The Multi-objective Particle Swarm Optimization (MOPSO) method is employed 

to find the optimal f°	 .  Particle Swarm Optimization (PSO) is easy to apply and converges 

rapidly when applied to MOOPs (Kennedy & Eberhart, 1995).  The PSO starts with a 
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group of randomly generated population dubbed particles and the movement of particles is 

determined by three factors: Inertia (I), Cognitive influence (C) and Social influences (S), 

which are presented mathematically by the three terms in Eq. (3.10), respectively 

(Kennedy & Eberhart, 1995):  

 

 															v∞¥+1 = à + 	3 + t = \à ∙ v∞
¥ + µ1 ∙ ì1 ∙ "!∞ − ∂∞

¥ ∑ + µ2 ∙ ì2 ∙ "!∏ − ∂∞
¥ ∑				(3.10) 

 

where vßπ∫Ö = "ªßÖ
π∫Ö, ªß§

π∫Ö, … , ªßw
π∫Ö∑, ∞ = 1,2, … , Ω is the velocity of particle q at time ¥ +

1; Q is the size of the swarm population; D is the dimension of decision variables (which is 

4 in the above multi-objective optimization problem); ∂ßπ = "îßÖ
π , îß§

π , … , îßw
π ∑, ∞ =

1,2, … , Ω is the position of particle q at t. 	!ß = "ÉßÖ, ÉßÖ, …	, Éßw∑ ∈ ℝwis the individual 

history best position of particle q and !ø ∈ ℝw is the swarm’s global best position; 	ìÖ, ì§ are 

random numbers which follow uniform distribution ±(0,1); µÖ  and µ§  are acceleration 

constants; \z denotes the “inertia weight” of the particle.  Then the position of the particle 

at time ¥ + 1 is updated by:  

 

                                           ∂ßπ∫Ö = ∂ßπ + vßπ∫Ö                                                  (3.11) 

 

To convert the original single-objective PSO into MOPSO, the approach proposed by Reddy 

and Kumar (2007) is employed. In their approach, a Pareto dominance criterion is employed 

for selecting non-dominated solutions, a crowing distance operator is used for ranking and 

creating elective pressure among the particles, and an elitist-mutation (EM) strategy is used 
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to introduce randomness to escape from locally optimal solutions. A flowchart of the 

MOPSO algorithm to solve the de-aggregation problem formulated in Table 3.6 is presented 

in Figure 3.8. 
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Figure 3.8 Flowchart of the MOPSO 

 

Evaluate fitness of each particle using evaluation 
function. Set the individual best (!") to #"$

Identify non-dominated solutions, save 
elite particles and corresponding 
fitness value in external repository 
(ERP) and ERPValue

At time % (t=1, 2,…), for q=1,2, …Q, do:
1. Select randomly a global best (!&) from the ERP;
2. Update the '"()$ and #"()$using Eqs. (9) and (10);
3. Evaluate fitness of particle q; update !"

Update the ERP and ERPValue 
by non-dominated operator

The size of ERP exceeds a 
predefined desired size?

Use the crowding 
distance operator to rank 
and select desired 
particles based on 
predefined ERP size

Yes

No

Perform Elitist Mutation on specified number of 
particles.

Fulfill the termination criteria?

End and output the non-dominated 
solution set from ERP

Yes

No

Initialize population 
position #"* and velocity '"*
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3.5.5 Illustration 

MOPSO is employed to de-aggregate the cluster resilience goals presented in the 

last three columns of Table 3.5, resulting in the minimum performance criteria for 

residential buildings expressed in terms of optimal ®°	 	for each of code levels. Figure 8 

presents the Pareto Front from the MOPSO for the Code Level 3 – Continued use, showing 

the trade-off between the m~Ö	  and Δm~	  (i.e. m~Y	 − m~Ö
	 ). It is observed that +wx~,êëí	governs 

the lower right portion of the Pareto Front where the optimal f°	 	set is relatively narrowly 

spaced with a comparatively larger m~Ö	 ; +yz~,êëí		dominates the upper left portion of the 

Pareto Front where there is larger spacing between individual fragility functions of the 

optimal set starting with a comparatively smaller  m~Ö	 	; and in between, +wx~,êë§ 

determines the Pareto Front boundaries.  This observation can be explained by the fact that 

all four damage states contribute to DLR while only ut•	and utY contribute to UIR (c.f.  

Table 3.4); thus UIR-related goals require larger values of m~•	  and m~Y	  

(corresponding to smaller m~Ö	 	and larger Δm~Ö	 ) and DLR goals require larger values of  

m~Ö
	 .    

Further, to select a target f°¢  set from the Pareto Front, the typical value of Δm~	  for 

existing well-built, IRC-complied wood residential building archetypes is considered, as 

listed Table 3.5. The gray-shaded horizontal band in Figure 3.9 shows the typical range of 

Δm~
	 	of these archetypes being 0.26 ~ 0.39.  This range is determined by the underlying 

structural mechanics of different failure modes (or damage states), which will remain 

unchanged as long as the damage state definition in Table 3.3 remains the same. Therefore 
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the optimal f°	 	set within that band on the Pareto Front associated with the smallest m~Ö	 , 

i.e. red-highlighted f°	 	set on Figure 3.9, is selected as the target f°¢	 for building design, 

since the minimum performance objectives is to be sought. As shown in Figure 3.9, the 

target  m~Ö%  falls to the right side of the vertical dash-line bounded area, which is the typical 

range of m~Ö	  for the wood residential building archetypes listed in Table 3.5, suggesting 

that the cluster resilience goals associated with Code-Level 3, do impose more strict 

requirement on building performance than those in the current building practice only aimed 

at ensuring life safety. The f°¢  for Code Level 1 (Baseline) and Code Level 2 (Enhanced) 

are derived similarly. The target  f°¢  sets for all three code levels are tabulated in Table 3.7, 

corresponding to the three sets of target fragility functions in Figure 3.10.   

 

Figure 3.9: The trade-off between f°¡ and ¬f° for Code level 3 – Continued Use 
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Table 3.7: Minimum performance objectives (Target f°¢  )for individual residential buildings for the 
three code levels  

Code Levels Performance 

Objective 

f°¡
¢  f°√

¢  f°ƒ
¢  f°≈

¢  

Baseline Code (BC) f°
¢,∆« 4.53 4.72 4.82 4.90 

Enhanced Code (EC)  f°
¢,»« 4.67 4.86 4.97 5.05 

Continued Use (CU) f°
¢,«… 4.74 4.93 5.01 5.11 

 

 

 

Figure 3.10: Target fragility functions for the three code levels 
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The sensitivity of the target f°¢  to (a) the sample size of MCS of tornado scenarios 

(n$& ), (b) the number of buildings in a cluster (nÀ), and (c) the logarithmic standard 

deviation of the target fragility functions (õ~) are further investigated. Figure 3.11 shows 

the sensitivity analysis results of  f°¢  for Code-Level 1 (Baseline). Figure 3.11(a) and (b) 

indicate that the MCS sample size and the number of buildings have little impact on the 

target f°¢  , especially when n$& 	> 1000 and nÀ > 2500 (which are the cases for most 

typical size communities in the U.S.).  Figure 3.11(c) shows that f°¢ ,  i.e. the logarithmic 

median of the target fragility function set, is not affected by the logarithmic deviation, õ~, 

assumed in the de-aggregation.  This is because the dominant source of uncertainty in the 

cluster resilience metrics is in the tornado hazards (i.e. path length and width, approaching 

angle, wind gradient and velocity); the impact of uncertainties in structural capacities of 

the buildings is secondary in importance.  Finally, communities of different area (AC) 

should stipulate different cluster resilience goals (+), as illustrated earlier in Table 3.7. 

Once the area of a community is reflected in its stipulation of +, as shown in Figure 3.12, 

the resulting target f°¢  is invariant across communities of different areas. 

The target f°¢ , calibrated as such, can be used as the minimum performance 

objectives in performance-based design and retrofit of individual buildings.  In a 

concurrent study by Maloney et al. (2018), practical retrofit design of three residential 

building archetypes with typical construction in Norman, OK, are devised to realize the 

specified target fragilities derived herein.   
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(a) 

 

(b) 
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(c) 

Figure 3.11: Target f°¢	vs (a) sample size of MCS of tornado scenarios (n#3t); (b) No. of 
buildings in the cluster (ná); and (c) logarithmic deviation  Õ° of fragility functions (illustrated for 

Code Level 1). 
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Figure 3.12:  Target f°¢	 as a function of the cluster (or community) area, AC (illustrated for Code 
Level 1). 

 

3.6  Risk De-aggregation Under Seismic Hazard 

In this section, the performance of the portfolio under the design earthquake events 

is of interest, thus it will first give the definition and formulation of design earthquake for a 

portfolio. Then, Immediate-occupancy Ratio (IOR) is introduced as the primary performance 

metric for a building portfolio. The portfolio resilience goal is then defined probabilistically. 

Similar to Section 3.5, the risk de-aggregation under seismic hazard is formulated as an 

inverse optimization problem. The methodology is illustrated in a hypothetical 

homogeneous community.  
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3.6.1 Hazard Characterization 

Definition of Portfolio Design Earthquake 

The intensity of natural hazards (e.g. earthquake, hurricane) is traditionally 

represented in return period (e.g. 1000 year) for the hazard themselves as well as for specific 

sites. For civil engineering structures subjected to seismic hazard, ASCE-7 (ASCE, 2016) 

defines design earthquake intensity (in terms of spectrum acceleration, Sa, with a return 

period of about 475 years) as 2/3 of the intensity of risk-targeted maximum considered 

earthquake (MCER, with a return period of about 2475 years). Such definition of design 

earthquake intensity is tailored for designing individual buildings (or other engineered 

facilities) to achieve uniform failure probability associated with collapse and fatality. Neither 

portfolio-level resilience performance nor community scale hazard characterization is 

considered. 

Generally, during an earthquake, ground motion intensities in various sites are 

different due to different site-to-epicenter distance, site soil amplification, and aleatory 

uncertainties, and are correlated due to location closeness. Here, it is proposed that the 

Portfolio Design Earthquakes (PDEs) is defined as the earthquake events of which the 

arithmetic mean PSA value within a portfolio has a return period of approximately 475 years. 

The ground motion realizations with mean ground motion metric closely matched with the 

target ground motion level are selected as the PDEs that have uniform exceedance 

probability consistent with the pre-defined probability level. 
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Formulation of Portfolio Design Earthquake  

All possible seismic Faults (F), magnitudes (M) and epicenter locations (L) are 

considered to derive the portfolio design earthquake (PDE). From each scenario t = (#, [), 

an attenuation model is employed to predict the median of intensity measure, BC as well as 

inter and intra-residual in each site. The joint CDF of BC can be written as 

 

							çBC	(D) = !(BC ≤ D) = Éâê +ŒÉë(<) ∙œ <BC|?(D|E) ∙ <?|ë(E|<)GDGä
C	–D

ëÜ

Ö

				(3.12) 

 

in which, Éë(<) denotes the probability mass function (PMF) of the earthquake occurrence 

rate of fault < ∈ (1,2, … , çâ), i.e. annual occurrence rate of earthquake in that fault; çâ 

denotes the total number of faults; Éâê denotes the probability of no earthquake in any faults 

annually, i.e. 	Éâê = 1 − ∑ É
ç
(<)ëÜ

Ö ; <?|ë(E|<) denotes the PDF of scenario parameter ? = E 

conditioned on certain fault f; <BC|?(D|E) denotes the PDF of BC  conditioned on ? = E 

according to the ground motion attenuation model. The bold-faced notion in BC  and E 

denotes vector-valued intensity measure and scenario parameter. Generally, the above 

equation cannot be solved in closed-form in most real applications.  To evaluate the above 

multi-layer conditional probability problem, one may employ the multi-layered Monte Carlo 

Simulation (MCS). The joint CDF of IM conditioned on specific hazard level O = ℎ is 

denoted by çBC	(D|ℎ) , which is obtained by letting çz$————(“—) = 1 − 1/2~ , where à#———— =
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Ö

z
∑ à#Å
z
ÅÑÖ  denotes the random variable of mean ground motion field, “— = Ö

z
∑ “Å
z
ÅÑÖ  denotes 

the realization of à#————, 2~ denotes the return period corresponding to hazard level O = ℎ. 

Specifically, for fault < ∈ [1,2, … , çâ], the possible magnitude ™ between M5 and 

M8 is sampled evenly into #â segments, with the annual rate of earthquake ‘’÷,in which 

™ ∈ [1,2, … ,#â], is modeled by certain magnitude-frequency relationship (e.g. Gutenberg 

& Richter (1944)). It is assumed that ‘’÷ at any location of the fault f is equal. The fault line 

is further divided into G segments evenly. For scenario s, the ground motion at site i is 

modeled as (Atkinson & Boore, 1995; Jayaram & Baker, 2010): 

 

																																														◊¨"tÿ†,Ÿ∑ = ◊¨"tÿ̅†,Ÿ∑ + €}õ},Å + ‹}›}																																							(3.13) 

 

where tÿ†,Ÿ represents the spectral acceleration (at certain period) at site i during earthquake 

scenario s; t̅ÿ†,Ÿ  represents the median spectral acceleration predicted by ground motion 

attenuation model; õ},Å  represents the normalized intra-event residual at site i, and ›} 

represents the normalized inter-event residual. Both õ},Å and ›} follow a 1-d standard normal 

distribution. €} and ‹} denote standard deviation terms, generally given in ground motion 

attenuation model. €}õ},Å denotes the intra-event residual, whose value varies for different 

sites; ‹}›} denotes inter-event residual, which is a constant for a given scenario s. Due to 

geographic closeness, correlation is considered in õ},Å (Jayaram & Baker, 2010).  
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3.6.2 Resilience Metrics 

Suppose an individual building fulfills Immediate Occupancy (IO) performance 

limit if it has up to minor damage in structural components and up to moderate damage in 

non-structural components as introduced in Lin and Wang (2017) (they defined it as Re-

occupancy). The functionality mapping of individual buildings is shown in Figure 3.13. In 

individual building level, indicator àfiÅ = 1 or 0 denotes the IO is fulfilled or not in 

building i. For simplicity, t2Å, nflÅ, and nuÅ denote the damage state of structural 

components, non-structural components acceleration-sensitive, and non-structural 

components drift-sensitive of building i. The definition of damage states for each 

component are tabulated in Table 3.8.  

 

Figure 3.13 Functionality state mapping of individual buildings (Lin & Wang, 2017) 
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Table 3.8 Definition of damage state of each component under seismic hazard (FEMA/NIBS, 2003) 

Item Description 

Slight Structural Damage 

tuÅ = 1 

Small plaster or gypsum-board cracks at corner of door and 

window openings and wall-ceiling intersections; small cracks in 

masonry chimneys and masonry veneer. 

Moderate damage on non-structural 

draft-sensitive components 

nuÅ = 2 

Partition walls: larger and more extensive cracks requiring 

repair and repainting; some partitions may require replacement 

of gypsum board or other finishes 

Exterior wall panels: the movements are more extensive; 

connections of panels to structural frame are damaged requiring 

further inspection and repairs; some window frames may need 

realignment 

Piping, Ducts: piping leaks at few locations 

Moderate damage on non-structural 

acceleration-sensitive components 

nflÅ = 2 

Electrical-Mechanical Equipment: Movements are larger, and 

damage is more extensive 

 

Thus, the probability of IO of building i at ground motion level à# = î, Éz‡
Å  can be 

obtained by 

Éz‡
Å (î) = !"àfiÅ = 1|à# = î∑ = ! ·"t2Å ≤ 1∑ ∩ "nflÅ ≤ 2∑ ∩ "nuÅ ≤ 2∑|à# = î„ 

= !"t2Å ≤ 1|à# = î∑ ∙ !"nflÅ ≤ 2|à# = î∑ ∙ !"nuÅ ≤ 2|à# = î∑	 

= ·1 − !"t2Å ≥ 2|à# = î∑„ ∙ ·1 − !"nflÅ ≥ 3|à# = î∑„ ∙ ·1 − !"nuÅ ≥ 3|à# = î∑„ 

= ·1 − çì %|z$
Å (2|î)„ ∙ ·1 − çìâ‰|z$

Å (3|î)„ ∙ ·1 − çìâw|z$
Å (3|î)„																																						(3.14) 
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where !"t2Å ≤ Gä|à# = î∑ denotes the probability of structural component, ST being not 

exceeding ds damage state,	Gä ∈ [1,2,3,4], given the ground motion level à# = î, similar 

definition could be given for !"nflÅ ≤ Gä|à# = î∑ and !"nuÅ ≤ Gä|à# = î∑; 

çì %|z$
Å (Gä|î) denotes the CDF of structural component, ST being exceeding damage state 

Gä or higher, given the ground motion à# = 	î,  i.e. the fragility function of ST, similar 

definition could be given for çìâ‰|z$Å (Gä|î) and çìâw|z$Å (Gä|î). Eq. (3.14) implies that the 

failure probability of ST, NA, and ND components are independent. It is recognized by the 

authors that the performance of these components is indeed correlated, further study is 

needed to assess its effect on individual building IO performance and risk de-aggregation. 

The probability of un-occupancy (UO) of building i is defined by Éy‡Å = 1 − Éz‡
Å , of which 

the mean value is denoted by É̅y‡. 

Further, the conditional joint probability of all component of all buildings ∆=? =

"ÂutÖ, Âut§, … , ÂutÅ, … , ÂutzÜ∑, ÂutÅ = (t2Å, nflÅ, nuÅ)	being in or exceeding 

damage state vector	ÊE = [Gä]Bi×ƒ, Gä ∈ (0,1,2,3,4)	for the portfolio under the hazard 

level O	 = 	ℎ is obtained by 

																																			!(∆=? ≥ ÊE|ℎ) = ;çì=?|BC(ÊE|D)<BC|F(D|ℎ)GD																								(3.15) 
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where the bold-faced notations denote vector-valued variables. In Eq.(3.15), 

çì=?|BC(ÊE|D) is the joint CDF of damage state =? being in or exceeding ÊE given 

intensity measure D (e.g. spectrum acceleration tÿ), i.e. fragility function. 

3.6.3 Resilience Goals 

According to Eq. (3.1), when IOR performance is of interest, the resilience goals 

for a portfolio subjected to seismic hazards can be expressed as  

 

èz‡~ = !(#z‡~ ≥ +z‡~) = ! ÁŒàfiÅ

zÜ

ÅÑÖ

≥ +z‡~Ë 

= Œ ÈÍ!"àfiÅ∑

zÜ

ÅÑÖ

∙ Î
∑ àfiÅzÜ
ÅÑÖ

àâ
≥ +z‡~ÏÌ = 0%

‰ÓÓ	Ô}}ÅÀÓÒ	z‡	}πÿπÒ}	
’Ú	ÿÓÓ	ÀÛÅÓ|ÅÙø}

																																					(3.15) 

 

where [2] is the Iverson bracket, which returns 1 if it is true, and 0 otherwise; #z‡~ 

represents a ratio of building in the portfolio fulfill IO under design earthquake DE, DE is 

dropped in #z‡~ for simplicity; +z‡~ denotes the prescribed resilience goal corresponding 

to #z‡~, and the èz‡~ = 0% is a prescribed confidence level (reliability goal). For 

instance, !(#z‡~ ≥ 80%|uå) = 90%  means “Not less than 80% of the residential 

buildings are reached the IO performance limit under any design earthquake events with 

90% probability”.  The selection of target resilience goals will be discussed in Section 

3.6.5. 
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3.6.4 Formulation 

The de-aggregation problem is treated as an inverse optimization problem such that 

the decision variables are the building performance criteria in the form of fragility 

parameters (Wang et al., 2018). In Section 3.5.4, formulation of fragility function has been 

given in Eq. (3.5), here modification is needed, as ST, NA, and ND components are 

considered. For instance, the fragility function for structural components ST can be 

formulated as 

 

																	çì %,|}(î) = !(t2 ≥ Gä|î) = Φ ó
ln(î) − m %,|}

õ %,|}
ú																														(3.16) 

 

where m %,|} denotes the logarithmic median capacity for ST at damage state Gä ∈

(1,2,3,4); õ %,|} denotes the logarithmic standard deviation for ST at damage state	Gä. For 

simplicity, the subscript R is dropped in m %,|} and õ %,|}. Everything else is the same as 

Eq. (3.5). As in Eq. (3.5), Õ° = ˆõzπÒ÷,|}˜,	 à¥ù™	 ∈ (t2, nfl,nu), Gä ∈ (1,2,3,4) is treated 

as a constant and convert the problem into one that solves the value of f° = ˆmzπÒ÷,|}˜. 

However, the number of decision variables are still large, i.e. 12.  

More constraints are desirable to facilitate optimization. Firstly, from the 

examining of the existing wood-frame building in HAZUS, it is found that f° can be well 

expressed in terms of DS as in Section 3.5.4, due to the definition of fragility function and 

physical damage mechanism. That gives the second constraint of Eq. (3.20) in Table 3.9. 
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For given Gä, parameter 0 %, á %, 0¨G	¯ % collectively define m %,|}. Further, as the IO state 

of individual building are collectively defined by its SD, NA, and ND (c.f. Eq. (3.14)),  it 

is proposed that optimal performance of individual building is achieved when the mean 

failure probability of SD, NA, and ND of all buildings within the portfolio under all 

selected portfolio design earthquake (PDE) scenarios ä˘ (total number n}) are identical, 

which gives the third constraint of Eq. (3.21) in Table 3.9. 

Table 3.9 Formulation of risk de-aggregation as an inverse optimization under seismic hazard 

Item Expression Eq. # 

Decision 

Variables 
f° = ˆmzπÒ÷,|}˜, à¥ù™ ∈ (tu,nfl,nu), Gä ∈ (1,2,3,4)   (3.17) 

Objectives minf° = min"ˆmzπÒ÷,|}˜∑ (3.18) 

Constraints èz‡~ = !(#z‡~ ≥ +z‡~|uå) = 0% (3.19) 

 mzπÒ÷,|} = 0zπÒ÷ + ázπÒ÷ ∙ (Gä)˙˚¸˝˛ (3.20) 

 

Œ Œ!"tuÅ ≤ 1∑

zÜ

ÅÑÖ

â†

‰ÓÓ	ˇwê	
 ˙ÒÙÿÚÅ}	}˘

= Œ Œ!"nflÅ ≤ 2∑

zÜ

ÅÑÖ

â†

‰ÓÓ	ˇwê	
 ˙ÒÙÿÚÅ}	}˘

= Œ Œ!"nuÅ ≤ 1∑

zÜ

ÅÑÖ

â†

‰ÓÓ	ˇwê	
 ˙ÒÙÿÚÅ}	}˘

 

(3.21) 

 

3.6.5 Illustration 

In this part, the risk de-aggregation framework is applied to a hypothetical 

community with homogeneous building portfolio under seismic hazard to illustrate the 

methodology and examine key factors that may affect the results of risk de-aggregation. By 
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default, the community is a 20km * 20km square located in Middle and East U.S. (MEUS). 

Suppose there is only one fault lies on the left side of the community with a length of 100 

km.  The distance d from the center of the community to the fault is 50 km. The layout of 

the community and the location of the fault line is illustrated in Figure 3.14. In this case 

study, uniform design objectives are considered throughout the portfolio, i.e. all buildings 

within the portfolio are associated with the same f°. 

To model the uncertainties within the fault rupture location, 30 possible epicenter 

locations are considered evenly distributed on the fault line. The magnitude, m ranging 

from 5.0 to 8.0 is partitioned into 15 discrete intervals. Stratified sampling is applied to 

increase the samples on large magnitudes. From tentative simulations, 500 MCS is 

employed for each (M, L) pair to generate random fields from ground motion attenuation 

model (Atkinson & Boore, 1995).  

 

Figure 3.14 A hypothetical community with homogeneous portfolio and the seismic fault line 
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Firstly, the relation between the system reliability of the portfolio IO performance, 

èz‡~ and mean individual building probability of un-occupancy, É̅y‡ under different 

resilience goals, +z‡~, is investigated, as illustrated in Figure 3.15. For given +z‡~, when 

É̅y‡ decreases, èz‡~ increase monotonically. For fixed É̅y‡, higher +z‡~ corresponds to 

lower èz‡~. In addition, it is obtained the É̅y‡ = 0.16 for a homogeneous portfolio with 

W1 type (high code in HAZUS), and if +z‡~ = 0.8, then èz‡~ = 0.65 (65% confidence 

that 80% percent of the buildings within the portfolio will be in Immediate Occupancy or 

above under design earthquakes). The Target performance level for individual buildings is 

further defined as É̅y‡ = 0.0928, which corresponding to èz‡~ = 0.8 given +z‡~ = 0.8. 

Table 3.10 list the fragility parameters from Default (W1 in HAZUS) and Target 

performance. In the rest of this section, unless otherwise indicated, the combination of 

system reliability of the portfolio IO performance èz‡~ = 0.8 and resilience goal +z‡~ =

0.8 is selected as the Target. 

Next, the relation between  èz‡~  and f is examined. As illustrated in Figure 3.16, 

the value of f° for all of three components (ST, NA, and ND) increase non-linearly when 

èz‡~ increases, given +z‡~ = 0.8.  

Table 3.10 The comparison of fragility parameters between Default (W1 high code in HAZUS) and 
Target performance 

 Structural (ST) Non-structural   

Drift-sensitive (ND) 

Non-structural 

Acceleration-sensitive (NA) 

 DS1 DS2 DS3 DS4 DS1 DS2 DS3 DS4 DS1 DS2 DS3 DS4 

Default 0.51 1.84 5.45 12.48 0.50 1.20 3.10 6.80 0.31 0.61 1.29 2.46 

Target 0.72 3.51 11.08 25.82 0.61 2.04 5.94 13.53 0.30 0.58 1.18 2.22 
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Figure 3.15 the relation between individual building probability of un-occupancy the system 
reliability of the portfolio IO performance,	èz‡~, given different resilience goals, +z‡~ 
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(c) 

Figure 3.16 The relation between individual building probability of IO and fragility parameter, f° 
for (a)ST, (b) ND, and (c) NA components and the system reliability of the portfolio IO 

performance, èz‡~, given the resilience goal, +z‡~ =	0.8 

 

Some key parameters that may affect the result of de-aggregation are examined. 

Firstly, the effect of portfolio sample size (number of buildings sampled in the portfolio) is 

examined. As illustrated in Figure 3.17, the portfolio sample size has little effects on the 

value of fragility parameter, f°. 
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Figure 3.17 The effects of portfolio size (No. of buildings within portfolio): the value of fragility 
parameters, f°. associated with different portfolio sample size given building portfolio system 

reliability, èz‡~ = 0.8	and resilience goal, +z‡~ = 	0.8.  

 

Next, the effect of community expansion (e.g. due to economic and population 

growth) on risk de-aggregation is assessed. Here, two types of expansion pattern P1 and P2 

are investigated, as illustrated in Figure 3.18(a) and (b) respectively. In Figure 3.19, for 

both P1 and P2, the expansion of the community tend to require lower fragility parameter, 

given the same building portfolio system reliability. Alternatively, if the fragility 

parameters keep the same (same individual building probability of un-occupancy), 

expansion of community will increase the building portfolio system reliability.  
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(a) 

                               

(b) 

Figure 3.18 Portfolio expansion in (a) Pattern 1 (P1) and (b) Pattern 2 (P2) 
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(a) 

 

(b) 

Figure 3.19 The effects of size of community for P1 ((a)) and P2 ((b)). (a) and (b) show the relation 
between value of fragility parameters,  f° and size of community, given building portfolio system 
reliability, èz‡~ = 0.8 and resilience goal, +z‡~ = 	0.8 for Pattern 1 and Pattern 2, respectively.  
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Lastly, the effects of the portfolio to fault distance is investigated. In Figure 3.20,  

the fragility parameters,  f° decrease monotonically when the distance increases. Further, 

when the distance is not greater than 40 km, the value of f° become not sensitive to 

distance. 

   

 

Figure 3.20 The effects of portfolio to fault distance on the fragility parameter b, given  building 
portfolio system reliability, èz‡~ = 0.8 and resilience goal, +z‡~ = 0.8. 
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3.7 Closure 

This section has proposed the concept of resilience-based design and tentatively 

established the link between the overarching community resilience goals and the minimum 

performance criteria of individual buildings for performance-based design, through a 

multi-layered, cascading de-aggregation framework. Resilience-based design emphasizes 

the design criteria of sub-systems and individual components should be linked to the 

requirement from global social and economic related community resilience goals. An 

essential part of the resilience-based design, de-aggregation consists of two parts: upper-

level de-aggregation (relates sub-systems’ performance goals to community’s performance 

goals) and lower-level de-aggregation (relates individual components’ minimum 

performance criteria to sub-systems’ performance goals). It has been suggested that the 

performance criteria of buildings should be derived directly from the robustness portion of 

the community (or cluster) resilience goals, while de-aggregating the recovery portion of 

the resilience goals could yield organizational and preparedness guidelines for community 

resilience planning. This study has focused on the robustness and building performance 

criteria aspects. The feasibility of the de-aggregation framework has been verified by the 

residential building cluster exposed to tornadoes and earthquakes. Due to the distinct 

hazard characteristics and damage state definitions, different methodologies have been 

developed for portfolios under tornadoes and earthquake. The final outcome of the 

decision framework is a group of minimum fragility parameters that are ready to be applied 

to the development of new prototypes of residential buildings and form the basis for a new 

generation of design codes. 
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Chapter 4 Pre-hazard Retrofit Strategy 

Chapter 3 has developed minimum performance criteria for designing of new 

residential buildings under natural hazards; however, existing buildings present even 

higher vulnerability as many of them are constructed in early times, when the design codes 

for residential buildings either did not exist or required lower performance levels than 

present ones. Traditionally, retrofit activities were limited in individual level and various 

guidelines have been published (e.g. FEMA 273 (FEMA, 1997) and FEMA 547 (FEMA, 

2006)). It has been a great challenge for communities in hazard-prone regions to 

investigate the vulnerability of existing buildings and develop effective pre-hazard 

mitigation policies/incentives to enhance the performance of communities to avoid 

undesired outcomes such as economic recession and population outmigration in future 

hazards.  

Aiming to minimize the gap between the “anticipated” and “desired” resilience 

performance for building portfolios, this chapter will develop a pre-hazard retrofit decision 

framework for existing building portfolios subjected to tornadoes. Retrofit is referred to as 

a pre-hazard mitigation strategy to enhance the robustness performance of individual 

components, which further contributes to a higher performance level in subsystems and 

communities as a whole. Retrofitting does not directly address the post-hazard recovery 

promptness, however, by eliminating the functionality drop and economic loss 

immediately after extreme hazards, communities can recover its functionality more quickly 

due to higher initiation point and more available resource. The minimum building 
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performance objectives derived from cluster resilience goals in Section 3.5 will be utilized 

to formulate the building cluster retrofit scheme.  Two socioeconomic objectives: direct 

loss ratio (DLR) and un-inhabitable dwelling ratio (UIR) will be selected as the 

performance metrics. The task will result in a set of retrofitting recommendations and 

discuss how the preference of decision-makers and characteristics of buildings and their 

spatial distribution would affect the retrofitting strategies. 

4.1  Decision Framework for Building Portfolio Retrofit 

Led by proactive communities in California and Florida, there has been a growing trend of 

implementing large-scale, building cluster retrofit programs to enhance the resilience of 

under-performed community building clusters, however, to which extent such retrofit plan 

could close the gap between the anticipated resilience performance and desired 

performance goal is unknown. Limited studies have been done to investigate the optimal 

pre-hazard retrofit strategies for infrastructures in the context of community resilience. 

Cimellaro et al. (2010) compared four retrofit strategies for a hospital network consists of 6 

hospitals in terms of the total cost (retrofit cost and expected earthquake loss), recovery 

time, and resilience value. Four strategies are considered for each structural type: (1) no 

action; (2) retrofit to life safety level (moderate code level in HAZUS); (3) retrofit to 

immediate occupancy level (high code level in HAZUS); (4) construction of a new 

building (a special high code level). In their assessment, the total cost is essentially a life-

cycle loss. The expected earthquake loss in their study is obtained from loss-hazard curves 

with a control period (life-cycle) of 30 years. Jennings et al. (2015) proposed a seismic 
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retrofit optimization framework by considering four engineering and socioeconomic 

variables: morbidity rates, repair costs, relocation costs, and repair times. Pareto-optimal 

set of retrofit solutions are derived in a way that all metrics are first weight-summed to a 

single metric and minimized by genetic algorithm (GA). Zhang and Nicholson (2016) 

developed optimal retrofit strategies for a community with residential and commercial 

portfolios under a limited budget. The retrofit problem is formulated as a multi-objective 

linear programming (LP) mathematical model with two objectives: direct economic loss 

and population dislocation. However, their optimal strategies are conditioned on a pre-

selected earthquake scenario, the effectiveness of such strategies for other scenarios is 

unclear. A decision framework for portfolio level retrofitting is needed that can incorporate 

the real hazard risk as well as target building performance criteria that fulfill community-

level resilience goals. 

This study, from a holistic perspective embodied in community resilience concept, 

develops a decision framework for building portfolio retrofit with the ultimate goal of 

enabling communities to achieve their resilience objectives under hazards. The decision 

framework includes three major steps, as illustrated in Figure 4.1:  i) define community-

level resilience goal(s), ii) de-aggregate the community-level goal to obtain individual 

building performance criteria as the building-level retrofit target, and iii) develop optimal 

retrofit strategies for existing building portfolios that minimize the gap between anticipated 

performance and the community-level resilience goals under specific hazard level.  
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Figure 4.1: Flowchart of the decision framework for designing building portfolio retrofit strategies 

 

In Step (i), community resilience goals with respect to building performance are 

defined by communities’ stakeholders based on their risk perceptions, existing community 

infrastructure and available resources.  Resilience goals “help a diverse set of stakeholders 

develop strategies for achieving the stated goals and prioritize supporting administrative 

and construction solutions, and guide the setting of specific goals for the desired 

performance of building and infrastructure systems” (NIST, 2015b). Three key 

components are needed in establishing the community resilience goals: a) appropriate 

resilience metrics (M), b) hazard levels and characterization (H), and c) acceptable risk 

threshold (G). 

In Step (ii), with the resilience goals defined in (i), the individual building-level 

performance target (e.g. in terms of fragility parameters) is determined for retrofit 

constructions. A multi-layered risk de-aggregation algorithm could be developed to first 

de-couple the over resilience objectives to minimum performance requirements for each 

key functionality cluster, which further link to the minimum performance requirement of 

individual buildings that can facilitate these goals.  
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In Sept (iii), based on the building-level performance target derived in Step (ii), the 

optimal retrofit strategies for existing building portfolios are developed.  Typically, it is 

desired more than one community-level performance goals (e.g. economic loss and 

population dislocation) could be achieved, thus the pre-hazard retrofit planning can be 

modeled as a multi-objective optimization problem (MOOP) under limited resources (e.g. 

budget). This decision step yields a set of recommended retrofit strategies that will enable 

the community to minimize the gap between its current resilience performance and its 

prescribed resilience goals (determined in Step (i)) under resource constraints.  

This multi-step decision framework can facilitate communities’ resilience planning 

over a long-time horizon through systemically designed, portfolio-level retrofit activities, 

and assist public decision makers (e.g., government agencies, building authorities, etc.) in 

creating policy incentives that can lead building owners towards decisions that collectively 

enhance community’s resilience.  As Chapter 3 has given a thorough discussion on Step (i) 

and (ii), the rest of this chapter will focus on Step (iii). For illustration purpose, the retrofit 

decision framework is implemented in residential building portfolio under tornado hazards. 

By employing the de-aggregated building performance criteria in Section 3.5 as the target 

for building retrofit construction, optimal retrofit strategies for building portfolios under 

limited resource (e.g. budget) are explored.  Assessment of resilience metrics regarding 

different retrofit strategies forms the basis for optimization. Probabilistic assessment of 

community resilience metrics in Section 3.4 will be employed to evaluate and compare 

candidate retrofit strategies.  
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4.2  Resilience Metric 

To be consistent with Chapter 3, two portfolio-level performance metrics - direct 

loss ratio (DLR) and un-inhabitable dwelling ratio (UIR) - are selected to represent the 

desire of communities to eliminate the adverse impact of extreme hazards on the economic 

development, social wellbeing, and long-term prosperity.  

4.3  Retrofit Cost 

A major challenge in the pre-hazard retrofit is to reasonably determine the retrofit 

cost, which can greatly determine the optimal retrofit strategies. Generally, the retrofit cost 

of the Type k building (3!~Òπ) depends on an array of factors: the original building 

resistance (è!"), the target resistance (è!%), building characteristics (e.g. roof type), local 

labor cost, availability of material, etc. Various studies have been done to estimate the 

retrofit cost. For instance, Stewart and Li (2010) assumed the retrofit cost to be 1% -50% 

for retrofit of buildings under cyclone hazard in Australia. FEMA P804 (FEMA, 2010) 

gave the retrofit cost ratio to be 1%-16%. Regarding the seismic hazard, Galanis et al. 

(2018) employed the retrofit cost to be varied from 5% to 30%. Kanda and Ellingwood 

(1991) suggested the retrofit cost for buildings might be approximated by a linear function 

of the difference between the target resistance and current resistance. Based on their work, 

in this study, the following formulation is proposed to model the retrofit cost: 

 

                                     3!~Òπ = 3 ∙ fl! ∙ (ùû
#
$
%
− ùû#$

&
)                                       (4.1) 



 99 

																																																																			m—l
2
=
1
4
Œ m!,|}

%

Y

|}ÑÖ

																																																								(4.2) 

																																																																	m—l
0
=
1
4
Œ m!,|}

"

Y

|}ÑÖ

																																																									(4.3) 

 

where m—l
0 and  m—l

2 are the mean of the logarithmic mean of capacity with respect to the four 

damage states for the Type k building of existing and target state, respectively;  m!,|}"  and 

m!,|}
%  are the logarithmic mean capacity of the logarithmic mean of capacity with respect to 

damage state ds for the Type k building of existing and target state, respectively.  m!,|}%  has 

been derived in Section 3.5.  C is a constant associated with other characteristics of Type k 

building; fl! is the square footage of the Type k building. 

4.4  Formulation 

Generally, for existing building portfolios, communities seek to enhance their 

performance under future extreme hazard event by designing incentives to encourage 

individual building owners to implement pre-hazard mitigation activities. Thus, 

community decision-makers usually face the problem of allocating limited resources to 

support such mitigation activities to best close the gap between the target resilience goals 

and anticipated resilience performance under specific hazard intensity. This study will 

provide the basis for designing the incentives by determining the number of buildings to be 

retrofitted in each type in each zone. 



 100 

Accordingly, the planning of retrofit strategies is formulated as an optimization 

problem to minimize DLR and UIR simultaneously under the limited financial budget 

subjected to EF5 tornadoes; The decision variables are the number of each type of building 

in each zone to be retrofitted to the performance level determined by risk de-aggregation. 

This optimization problem will be treated as a multi-objective integer programming 

problem (MOIPP) since all the decision variables are integers. Laskari (2002) compared 

the performance of particle swarm optimization (PSO) with branch and bound (BB) and 

found PSO to be an efficient optimization technique for solving integer programming 

problem even for a problem with high dimension cases. In most cases, PSO outperforms 

the BB approach and is not likely to suffer from search stagnation. Thus, the multi-

objective particle swarm optimization (MOPSO) introduced in Section 3.5.4 is employed 

here with minor modification. 

As tabulated in Table 4.1, Eq. (4.4) defines decision variables D = ˆî',!˜, where 

î',! ∈ ℤ is the number of Type k buildings in Zone j to retrofit, in integer; n',!  denotes the 

total number of Type k buildings in Zone j. Eq.(4.5) and Eq. (4.6) define the two objectives 

for the cluster retrofit strategy, i.e. minimizing 95 percentiles of DLR and UIR, 

respectively, under EF5 tornadoes. The calculation of #wx~,êëí and #yz~,êëí can be 

referred to Section 3.5.2.  Eq. (4.7) defines the constraint that the total retrofit cost (3%~Òπ) 

should be not greater than the given budget B. Eq. (4.8) defines the constraint that the 

number of buildings to be retrofitted in Type k located in Zone j should not be greater than 

n',!. 
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The outcome of this task will be a Pareto-front curve that will give the trade-off 

between DLR and UIR performance conditioned on a specific financial budget.  

Table 4.1 Decision variables, objectives and constraints of pre-event retrofit  

Item Equation Equation No. 

Decision Variables D = ˆî',!˜, î',! ∈ ℤ Eq. (4.4) 

Objectives  min. "#wx~,êëí∑	 

min. "#yz~,êëí∑ 

Eq. (4.5) 

Eq. (4.6) 

Constraints 3%
~Òπ = 	Œ Œ î',! ∙ 3!

~Òπ	
	

!'
≤ B	 Eq. (4.7) 

 î',! ≤ n',! Eq. (4.8) 

 

4.5  Illustration 

The cluster retrofit planning concept is illustrated by a hypothetical residential 

cluster with existing buildings distributed over 20 miles by 20 miles area and located in 

mid-west U.S., which consists of two residential zones (Z1 and Z2) and filled with two 

types of buildings:  single-family houses (E1) and multi-family apartments (E2, with 4 

dwelling units).  Detailed attributes and spatial distributions of E1 and E2 are summarized 

in Table 4.2 (FEMA/NIBS, 2003; Amini & van de Lindt, 2013). The target performance 

for building retrofit construction is the Code Level 3 obtained in Section 3.5.5, i.e.  f°¢ =

f°
«…, for this illustration. 
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Figure 4.2 Illustration of a hypothetical community with two types of buildings in two zones 

 

Table 4.2 Attributes of Existing Buildings 

Type Sq. 

Ft. 

Roof 

type 

Total 

Assessed 

Value (¢*>e) 

(USD) 

f°
+  Õ°

+  «e
°a, 

(USD) 

Number of buildings 

 Zone 1 Zone 2 Total 

1 1,253 Gable $203,223 [4.52,4.70,4.77,4.81] 0.12 $3,600 2,800 1,200 4,000 

2 3,180 Hip $308,317 [4.42,4.51,4.60,4.69] 0.12 $13,800 800 200 1,000 

 

 

 Figure 4.3 presents the tradeoffs between the two optimization objectives and 

Prato-front of the “optimal” retrofit schemes (RS) under the budget limit of U.S. $12.0 

Million (M).  In all optimal schemes on the Prato-front, the absolute number and 

percentage of buildings to retrofit in Z1 (with higher building density) is much larger than 

that of Z2 (with lower building density). The relative proportion of retrofitted buildings 
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between E1 and E2 varies among the optimal schemes. For example, in the DLR-driven 

RS1, detailed in the upper left subplot, the majority of buildings to retrofit are of Type E1 

located in Z1, while in the UIR-driven RS3, most retrofit activities are allocated to Type 

E2 buildings in Z1. 

 

Figure 4.3 The trade-off between DLR and UIR in optimal retrofit scheme with $12 Million budget 
limit and distribution of retrofitted buildings in each zone and type from three typical locations of 

the curve. 
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Figure 4.4 shows the optimal retrofit scheme for a range of budget from U.S. $4M 

to $28.3M (full retrofit, i.e. all buildings in the portfolio can be retrofitted). Naturally, both 

DLR and UIR decrease monotonically when the available retrofit budget increases. When 

the budget is very low (e.g. $4M) or very high (e.g. $28.3M), the range of trade-off 

between the DLR and UIR is very limited with less-varying optimal strategies. On the 

contrary, a mid-range budget (e.g. $12M, about 42.4% of full retrofit budget) offers more 

alternative retrofit schemes with a wide range of relative preference between the two 

objectives. The proportion of buildings (in average for multiple retrofit schemes) 

recommended for retrofit between the two zones and two building types are summarized in 

Figure 4.5, indicating when the budget is in low to moderate range(i.e. $4M - $16M), 

almost all of the retrofit budget is allocated in Z1, and as the budget increases to over 

$20M, one start to observe a portion of buildings in Z2, mostly type E1, being 

recommended for retrofit.  Regardless of the zones, type E1 buildings are the majority to 

be retrofitted for all the budgets investigated here.     

Although these results are specific to the characteristics of the hypothetical 

community and the assumed retrofit cost estimation method, such methodology can 

provide a rich array of information to support community’s hazard mitigation and policy 

design activities toward a hazard-resilient built environment that fully considers the 

uncertainties in future hazard.  
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Figure 4.4 Trade-off between DLR and UIR in optimal retrofit schemes under different budget limit 

 

 

Figure 4.5 Average retrofitted buildings for each building type in each zone under different 
budgets 
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4.6  Closure 

This chapter has proposed a decision framework for designing large-scale building 

portfolio retrofit strategies with an ultimate goal of achieving community resilience 

objectives under high uncertainties of future extreme hazard events. As an illustration, 

tornado hazards, specifically EF5 tornadoes, are selected to estimate the resilience 

performance and guide the retrofit strategies. Two performance metrics - direct loss ratio 

and un-inhabitable dwelling ratio - have been utilized to illustrate the condition when more 

than one performance metrics are selected by a group of stakeholders. The retrofit problem 

has been formulated as a multi-objective integer programming problem under a limited 

financial budget, solved by the algorithm of multi-objective particle swarm optimization. 

The outcome of this framework is a set of near-optimal retrofit strategies regarding the 

number of buildings to be retrofitted for each type in each zone.  These retrofit schemes 

can facilitate communities’ resilience planning over a long-time horizon through 

systemically designed, portfolio-level retrofit activities, and assist public decision-makers 

(e.g., government agencies, building authorities, etc.) in creating policy incentives which 

can lead building owners towards decisions that collectively enhance community’s 

resilience.   
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Chapter 5 Post-hazard Reconstruction Strategy 

For building portfolios just experienced catastrophic damage from severe natural 

hazards, it is imperative to implement post-hazard reconstructions. In addition, a given 

building portfolio would experience multiple hazard events over a long-time horizon. It is 

desirable to incorporate the hazard mitigation plan into the reconstruction decisions. The 

fact of future hazard exposure and considerable investment involved in implementing 

reconstruction suggest that the reconstruction of damaged building portfolios could be 

framed under the umbrella of life-cycle analysis (LCA). However, currently, the 

reconstruction of building portfolios after hazards tends to simply reconstruct the damaged 

buildings as before by individual owners. Further, no quantitative decision-making model 

has been developed to adequately address the difficulties in defining the optimal 

reconstruction levels as well as the resource allocation over a long-time horizon. 

This task will scale the life-cycle analysis (LCA) from individual buildings to 

building portfolios and propose a framework that could support communities’ building-

back-better (BBB) decisions after major hazard events. It will first propose a post-hazard 

reconstruction decision framework followed by the development of building portfolio LCA 

(BPLCA) measured by expected building portfolio life-cycle cost (EBPLCC) and 

cumulative prospect value (EBPCPV) with two key ingredients: building portfolio life-

cycle (BPLC) and renewal rate (BPRR). It will then discuss how to apply the BPLCA in 

seismic hazard considering the temporal characteristics of earthquakes. Further, the 

decision-making for reconstructions is modeled as an optimization problem by minimizing 
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the EBPLCC or maximizing the EBPCPV.  It will discuss how the BPLC, risk averseness, 

and hazard characteristics would affect the BPLCA results and optimal reconstructions. 

5.1  The Post-hazard Reconstruction Decision Framework 

This section will propose a risk-informed decision framework that could enable a 

community to rebuild its damaged building portfolio to achieve pre-defined resilience 

and/or sustainability goals in the future in a most efficient way.  

Firstly, it is proposed that BBB should be defined by the efficiency in the post 

hazard reconstruction process. Post-hazard reconstruction process is a large-scale 

investment issued by government agencies or private owners, in either way, decision-

makers seek to find the strategy that minimizes overall monetary cost or maximizes value 

depending on their risk-attitude. Due to long time-horizon of future lifetime, life-cycle 

assessment (LCA) that scales to portfolio level (building portfolio LCA, BPLCA) will be 

employed to evaluate the total impact from the reconstruction, natural renewal, and future 

hazard exposure. The optimal post-hazard reconstruction strategy is the one that minimizes 

the expected building portfolio life-cycle cost (EBPLCC) or maximizes the expected 

building portfolio cumulative prospect value (EBPCPV).  

Secondly, the optimal reconstruction strategy should also fulfill the performance 

requirement on resilience and/or sustainability. Resilience requirement ensures that the 

functionality loss and economic cost immediately after extreme hazard events are under 

control (Robustness) and the recovery process is in a prompt manner (Rapidity) to reduce 

indirect social-economic impact and avoid the grave result of population permanent 
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outmigration. Similarly, sustainability requirement ensures that the reconstruction strategy 

does not enforce excessive environmental pressure and financial burden on future 

generations. In this study, both resilience and sustainability are considered. It should be 

noted that the resilience and sustainability aspects of a certain strategy are evaluated in 

different time-frame. For the resilience assessment, only extreme events (e.g. M7 - M8 

earthquakes) are considered and there is no “time” involved or limited to post-hazard 

recovery time. On the other hand, LCA is generally required in sustainability assessment 

and some resilience assessment, thus the BPLCA are needed for the portfolio level 

assessment. 

Figure 5.1 illustrates the workflow of the post-hazard reconstruction decision 

framework. The framework begins with the given post-hazard damage state of each 

building in the portfolio as well as the hazard model of the geological location. Then, a 

reconstruction strategy (can be arbitrary at first) is generated, i.e. the reconstruction action 

for a certain type of building in certain damage state. After that, the feasibility of the 

strategy is checked in resilience aspect. For feasible strategies, BPLCA is conducted over 

the BPLC. The framework stops when the optimal reconstruction strategy is found with 

minimum EBPLCC or maximum EBPCPV, otherwise, a new strategy is generated by 

some algorithm (e.g. Genetic Algorithm). 
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Figure 5.1: Illustration of the BBB decision framework 

 

5.2  The Life-cycle of a Building Portfolio 

Buildings in a community are continuously experiencing a dynamic renewal 

process and amending the existing building portfolio, i.e. constantly being constructed, 

maintained, repaired, retrofitted, damaged, demolished and rebuilt, as illustrated in Figure 

5.2. A natural disaster is a temporary detour in this long-term process - to an extent, it 

accelerates the renewal of building portfolios, and well-designed building-back strategies 

could even help enhance future hazard preparedness of portfolios. This section will derive 
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two key ingredients for the BPLCA framework: 1) the “life-cycle” of a building portfolio 

(BPLC) and 2) its renewal rate (BPRR). 

 

Figure 5.2 Illustration of portfolio renewal under natural hazard events over a long-time horizon 

 

5.2.1 Life-cycle Length of Building Portfolios  

Conceptually, the BPLC is defined as the time-span during which a building 

portfolio has been renewed completely, as shown in Figure 5.2, due to natural turnover and 

rebuilding, unrelated to hazard exposure. The renewal process is stochastic and affected by 

many variables, including the life-cycle of individual buildings (BLC), community’s 

economic development, socio-demographics, etc.  
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Now it is assumed that the life-cycle of building portfolio (BPLC), 2̌  is only a 

function of the BLC,  2Ó	 ,  ◊ ∈ (1, 2, … , [), and [ is the number of buildings in (or the size 

of) the portfolio. Further, let 2̌ ,Ú denote the time in which r% of buildings being replaced 

(e.g. the time takes for 90% of the portfolio being renewed is 2̌ ,-"). The PDF of 2̌ ,Ú,

<%.,/(¥)	 for a portfolio containing buildings, each with identical BLC, is (Larsen & Marx, 

2011): 

 

																								<%.,/(¥)	 = [" xXÖ
ÚxXÖ∑<Ö(¥)[çÖ(¥)]

ÚxXÖ[1 − çÖ(¥)]xXÚx                     (5.1) 

 

in which, ì ∙ [ denotes the number of buildings that are replaced; çÖ(¥) and <Ö(¥) are the 

CDF and PDF of BLC, respectively.  Eq. (5.1) can be extended to portfolios containing 

buildings with different BLCs.  For realistic communities with a complex mix of buildings 

with different BLCs and built years, Monte Carlo Simulation (MCS) is generally needed to 

obtain the BPLC. Define	¥Ô,Ú˙ = åˆ2̌ ,Ú˜ as the characteristic BPLC.  

For example, consider a portfolio with 2 types of BLCs (BLC1 and BLC2, 

tabulated in Error! Reference source not found.) in which the ratio of the two types is 

¨1/¨§ = 2.0. MCS is employed to obtain ¥Ô,Ú˙  and its sensitivity to different portfolio sizes.  

Figure 5.3 shows the mean and c.o.v. of the BPLC ¥Ô,Ú˙  from MCS.  As the portfolio size 

increases, the mean of  ¥Ô,Ú˙  is quite stable while the c.o.v. of decreases monotonically. 

Thus, the ¥Ô,-"˙  obtained from a small building portfolio size is also applicable to large 
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portfolio size if ¨Ö/¨§ is kept the same.  By the end of BPLC, many buildings may already 

have been reconstructed for two times or more, since the mean BLC are much shorter than 

the BPLC as given in Eq. (5.1). For simplicity, 2̌ 	is defined as the BPLC and subscript r is 

dropped in the rest of this study. 

Table 5.1 The statistics of two BLC types 

BLC type Mean BLC 

BLC1 50 

BLC2 30 

 

 

                         (a)                                                                  (b) 

Figure 5.3 The (a) mean and (b) c.o.v. of BPLC ¥Ô,Ú˙  with different portfolio size 

 

5.2.2 Renewal Rate of Building Portfolios (BPRR) 

Let n(¥) = the number of building in the portfolio at time t, ṅ(¥) = growth rate of 

n(¥) at time t, ṅâ(¥) and ṅw(¥) as the rate of new construction (renewal rate) and 
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demolition, respectively, within the portfolio. The equilibrium of portfolio renewal is 

written as 

 

																																						ṅ(¥) =
n(¥ + Δ¥) − n(¥)

Δ¥
= ṅâ(¥) 	− ṅw(¥)																																	(5.2) 

 

If the population of the community remains relatively stable, the size of the portfolio 

within a stable community is nearly constant over time, which implies ṅ(¥) = 0 and  

ṅâ(¥) = ṅw(¥). The renewal rate  ṅâ
Å (¥) of buildings of Type i BLC is:  

 

																																																	ṅâ
Å (¥) = ¨Å ∙ ; ℎÅ(¥, ‹)<ÿÅ(¥, ‹)G‹

1

"
																																								(5.3) 

 

where ℎÅ(¥, ‹) = <Å(¥, ‹)/"1 − çÅ(¥, ‹)∑ is the probability of demolition (due to natural 

replacement)  of buildings with  Type i BLC at time ¥ (at age of ‹) conditioned on no 

demolition prior to time ¥ , where <Å(¥, ‹) and çÅ(¥, ‹) are the PDF and CDF of Type i BLC 

evaluated in time ¥ with an age of ‹; <ÿÅ(¥, ‹) is the PDF of age ‹ for Type i BLC in time ¥; 

and ¨Å is the number of buildings with Type i BLC in the portfolio. For a portfolio with I 

types of BLC, the total renewal rate of the portfolio (BRR) is: 
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																																																																ṅâ(¥) = Œṅâ
Å (¥)

z

ÅÑÖ

																																																				(5.4) 

To illustrate the proposed approach, it is assumed that the renewal process of 

individual buildings is a Poisson process. Thus, the Type i BLC follows the exponential 

distribution with ℎÅ(¥, ‹) = 1/mÅ, here mÅ is the mean value of BLC of Type i.  Eq. (5.4) 

now becomes ṅâ
Å (¥) = ¨Å ∙ (1/mÅ) ∙ ∫ <ÿÅ(¥, ‹)G‹

1

"
= ¨Å/mÅ if <ÿÅ(¥, ‹) is independent of 

time (i.e. <Å(¥, ‹) = <Å(‹)).  

5.3  Building Portfolio Life-cycle Analysis 

Building portfolio life-cycle analysis (BPLCA) is defined as a technique to analyze 

the impact of specific metric (e.g. monetary cost) associated with all stages of a building 

portfolio, which is extended from the concept of life-cycle assessment (LCA) for 

individual buildings (Simonen, 2014).  BPLCA may include not only the direct economic 

impact from post-hazard reconstruction and repair, but also indirect impact from the loss of 

building functionality, fatality, population dislocation, and reduced economic activities etc. 

(NIST, 2015b). In the following, a BPLCA formulation is introduced with the objective of 

facilitating decision-making in post-event reconstruction. 

5.3.1 Expected Building Portfolio Life-cycle Cost 

The building portfolio LCC (BPLCC) may be expressed as a function of 

reconstruction actions 3 : 
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																3x&&
ˇ (3) = 3~Ò(3) + 3âÒ4

& (3) + 3wÿ÷
& (3) + 3&ÿ}

& (3) + 3zÙ|
& (3)																	(5.5) 

 

in which 3~Ò(3) denotes the cost of reconstruction and repair of the damaged portfolio at 

¥" (immediately following the hazard event);  ¥ = 0 is the time of last characteristic 

earthquake event (c.f. Figure 5.2). 3~Ò(3) depends on the number of each building type 

(defined by structural system, occupancy type and number of stories) in each of damage 

state, DS (total of four damage states: minor (ut = 1), moderate (ut = 2), extensive 

(ut = 3), complete (ut = 4)) following the disruptive event. The superscript C on the rest 

of the terms represents that the corresponding cost is accumulated throughout the entire 

BPLC, 2̌ .  Specifically, 3âÒ4& (3) is the cumulative construction cost of new buildings due 

to natural renewal;	3wÿ÷& (3) and 3&ÿ}& (3)	 are the cumulative costs of building damages 

and casualty due to future hazard exposure, respectively; 3zÙ|& (3) is the cumulative 

indirect loss due to disruptions of local economy and social well-being caused by 

functionality loss of buildings following future disasters.  All items in Eq. (5.5) depend on 

the reconstruction action 3  at ¥". The expected BPLCC (EBPLCC) is:  

 

	å[3x&&
ˇ (3)] = å[3~Ò(3)] + å[3âÒ4

& (3)] + (5 + 1) ∙ å[3wÿ÷
& (3)] + å[3&ÿ}

& (3)]					(5.6) 

 

in which å[3zÙ|& (3)]	is assumed to equal 5 times å[3wÿ÷& (3)]	 (Crowther & Haimes, 

2005);  å[3~Ò(3)] can be expressed as: 
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																																																				å[3~Ò(3)] = ŒŒ¨Å,',6 ∙ 3~Ò
Å,'(î)

Y

'ÑÖ

z

ÅÑÖ

																																		(5.7) 

 

in  which ¨Å,',6 denotes the number of Type i buildings in j-th damage state at ¥" with 

rebuilt action î	; 3~Ò
Å,'(î) denotes the reconstruction (or structural repair) cost of the ¨Å,',6 

buildings. å[3âÒ4& (3)] in Eq (5.6) is expressed by: 

 

å[3âÒ4
& (3)] = ; ŒùXÚü(πXπ&) ∙ 3&Ù

Å (î) ∙ ¨Å,6 ∙ ṅâ
Å (¥)

z

ÅÑÖ

π&∫2!

π&

G¥ = 	Œ
3&Ù
Å (î) ∙ ¨Å,6
mÅ ∙ ì|

"1 − ùXÚü∙2!∑

z

ÅÑÖ

			(5.8) 

 

in which  3&ÙÅ (î) denotes the construction cost of Type i building with action î	; ¨Å,6 

denotes the number of Type i buildings in the portfolio with rebuilt action î; ṅâ
Å (¥)  

denotes the renewal rate of Type ´ building at time t (derived in Section 5.2.2); ì| denotes 

the discounting rate; and ùXÚü(πXπ&) denotes the discounting of all future new construction 

cost to the current cost at ¥" (which is the time of current earthquake, as shown in Figure 

5.2). 

The last two terms in Eq. (5.6), 3wÿ÷&  and 3&ÿ}& , depend on the future hazard 

exposure of the community.  This hazard is modeled by discretizing the mean annual 

frequency vs intensity into K frequencies and intensity levels, with each level l ∈

(1,2, … ,7) represented by the median value of the interval. Accordingly, å[3wÿ÷& (3)] can 
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be obtained by calculating the discounted annual building damage cost over the BPLC,  2̌  

(derived in Section 5.2.1). Alternatively, å[3wÿ÷& (3)] can be expressed as: 

 

å[3wÿ÷
& (3)] = Œå[3wÿ÷(l,3)] ∙ ; ŒùXÚü(πXπ&) ∙ ‘!

F(¥)
z

ÅÑÖ

π&∫2!

π&

G¥

8

!ÑÖ

= Œå[3wÿ÷(l,3)] ∙ å[nF(l)] =

8

!ÑÖ

Œå[3wÿ÷
& (l,3)]

8

!ÑÖ

											(5.9) 

 

where 3wÿ÷(l,3) denotes the building damage due to hazard level l with rebuilt action  

3; ‘!F(¥) denotes the occurrence rate of hazard level l at time ¥. Eq. (5.9) implies that the 

3wÿ÷(l,3) is time-independent (assume complete repair after damage). For  3&ÿ}& (3) in 

Eq. (5.6), calculations are similar. The cost from demolition has not been considered due to 

lack of available data, but such cost can be added to the framework easily when data 

becomes available. 

5.3.2 Expected Building Portfolio Cumulative Prospect Value 

The key assumptions underlying minimum expected life cycle cost analysis are that 

all risks can be monetized (e.g. Wen & Kang, 2001; Ellingwood & Wen, 2005), and that 

decision-makers are risk-neutral (Raiffa & Schlafer, 1961; Tversky & Kahneman,1992).  

However, decision-makers often value monetary consequences nonlinearly according to 

their risk tolerance; even large companies and governments exhibit this behavior when the 

consequence of damage is large relative to their wealth or available resources.  In addition, 
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low-probability/high-consequence hazard events pose difficulties for decision-makers in 

reasonably assessing their risk and designing post-hazard reconstruction strategies because 

estimates of likelihood and consequences for low-probability, high-consequence events are 

biased.  Cumulative Prospect Theory (CPT), which is based on cognitive research on real-

world decision-making, converts objective consequences and probability into subjective 

ones (Tversky & Kahneman,1992) and addresses the difficulties in perception encountered 

when dealing with events for which there is little or no experience. 

CPT was proposed by Tversky and Kahneman (1992) based on cognitive 

researches on real-world decision-making evidence.  In CPT, firstly n&  consequences are 

ranked in ascending order (i.e. 9Ö < ⋯9; ≤ 0 ≤ 9;∫Ö < ⋯ < 9â< ). Then, the monetary 

cost 9Å and probability ÉÅ of i-th event are converted into value ‘(9Å) and decision weight 

=Å, respectively (Eqs. (5.10) - (5.12)) to reflect the subjective utility and perception of 

probability of decision-makers. CPT is the generalized form of the expected LCC (ELCC) 

and expected utility theory (EUT) models (Von Neumann & Morgenstern, 1944). The 

status quo is commonly selected as the reference point (the point differentiates gain and 

lose), then the total value of n&  events (Goda & Hong, 2008) is 

 

																								v = vX + v∫ = Œ‘(9Å) ∙ =Å
X

;

ÅÑÖ

+ Œ ‘(9Å) ∙ =Å
∫

â<

ÅÑ;∫Ö

																												(5.10) 
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where ‘(9Å) is the value of the consequence of i-th event. To reflect the loss-averse nature 

of the decision-maker, the value function ‘(∙) (Eq. (5.11)) is different for gain (9 ≥ 0) and 

loss (9 < 0), with parameter Z	controlling the difference and > and ? being exponent 

parameters. 

 

																																			‘(9) = @
9A , ´<	9 ≥ 0

−Z(−9)B , ´<	9 < 0
																																														(5.11) 

 

The decision weight (subjective probability) of the i-th positive or negative event 

(=Å∫ or =ÅX ) are calculated by Eq.(5.12a), where CX and C∫ are nonlinear subjective 

probability functions for loss and gains (obtained from Eq.(5.12b) and Eq.(5.12c)). The 

parameters DX, D∫, and µ control the shape of the curve mapping from real probability É to 

nonlinear subjective probability function CX and C∫(Goda & Hong, 2008).  The 

contribution of rare events to value function, adjusted by the subjective probability 

function, not only depends on the magnitude of the impact but also the occurrence 

probability. For typical risk-averse decision makers, an inverse-S shaped transformation 

function (D∫ = 1.0	, DX = 1.0, and 0 < µ < 1.0, e.g. as shown in Figure 5.4; See Cha & 

Ellingwood (2012)) implies that the decision-maker subjectively elevates the importance 

of LPHC events, which is the case for decision-making under earthquake hazards (and 

many other extreme natural events).  
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	=Å
X = CX ÁŒÉ'

Å

'ÑÖ

Ë − CX ÁŒÉ'

ÅXÖ

'ÑÖ

Ë				=Å
∫ = C∫ ÁŒÉ'

â<	

'ÑÅ

Ë − C∫ Á Œ É'

â<	

'ÑÅ∫Ö

Ë	(5.120) 

																																				CX ÁŒÉ'

Å

'ÑÖ

Ë = ùîÉ E−DXF−◊¨ÁŒÉ'

Å

'ÑÖ

ËG

H

I 																										(5.12á) 

																																	C∫ ÁŒÉ'

â<	

'ÑÅ

Ë = ùîÉ E−D∫F−◊¨ÁŒÉ'

â<

'ÑÖ

ËG

H

	I 																										(5.12¯) 

 

 

Figure 5.4 The decision weight of cumulative prospect theory (CPT) when DX = 1.0	0¨G	µ = 0.8. 
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In this study, the reference point of the value function is set equal to v = 0, and it 

is assumed the value function is linear, i.e. ‘(9) 	= 	9. Thus, the expected BPCPV 

(EBPCPV) under decision 3 is: 

 

			å[v&ˇJ
ˇ (3)] = å[3~Ò(3)] + å[3âÒ4

& (3)] + (1 + 5)å[vwÿ÷
& (3)] + å[v&ÿ}

& (3)]				(5.13) 

 

in Eq. (5.13), å[3~Ò(3)] and å[3âÒ4& (3)] are taken as deterministic given the 

reconstruction and renewal are events with probability 1, thus =ÅX = ÉÅ = 1 from Eq. 

(5.12).			vwÿ÷& (3) and v&ÿ}& (3) denote EBPCPV of building damage and casualty, 

respectively.  Only loss is considered in Eq. (5.13) (as by Cha & Ellingwood (2012)).  For 

simplicity, the negative sign “−” in å[v&ˇJˇ (î)] is neglected in this study. The EBPCPV of 

damage due to a future level k hazard,		å[vwÿ÷& (l,3)], can be expressed as 

 

		å[vwÿ÷
& (l,3)] = å[3wÿ÷(l,3)] ∙ ; ùXÚü(πXπ&) ∙ [›! ∙ ‘!

F(¥)]
π&∫2!

π&

G¥

= å[3wÿ÷(l,3)] ∙ ›! ∙ å[nF(l)]																																																		(5.14) 

 

where ›! is the probability adjustment factor for level k hazard. å[v&ÿ}& (l,3)] could be 

calculated similarly. Comparing Eq. (5.14) to Eq. (5.9), the original ‘!F(¥) and å[nF(l)] 
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are replaced by ›! ∙ ‘!F(¥) and ›! ∙ å[nF(l)];  everything else is the same. ›! can be 

obtained by  

 

																																																						K		
›! =

=!
X

É!
						

É! = ‘!
F(¥)

																																																										(5.15) 

 

where =!X is obtained by substituting the É! in Eq. (5.15) into Eq. (5.12). 

5.4  Building Portfolio Life-cycle Analysis Under Seismic Hazards 

The BPLCA poses a new challenge in modeling the spatial and temporal 

characteristics of natural hazards. In this study, the BPLCA framework is illustrated under 

seismic hazards. Traditionally, the occurrence of seismic events has been modeled as a 

Poisson process, implying that the inter-arrival time can be described by an exponential 

distribution. However, analysis of historical records (Takahashi et al., 2004) suggests that 

the occurrence of earthquakes in a certain seismic source may be related to previous 

seismic history, and that the Poisson occurrence model may not be appropriate in such 

cases. The optimal post-hazard portfolio-level BBB decisions should be conditional on the 

characteristics of the event that as just occurred, which is the motivation for incorporating 

the more sophisticated non-Poisson occurrence model in the BPLCA. 

This study adopts the methodology developed by Takahashi et al. (2004) with the 

modification that employs the log-normal distribution (an approximate model to BPT 
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model) to model the inter-arrival time for characteristic earthquakes (CE) (Nishenko & 

Buland, 1987; Jara & Rosenblueth, 1988).  The comparison of the EBPLCA results and 

optimal BBB strategies from non-Poisson hazard model (NPHM) and Poisson hazard 

model (PHM) will be made in Section 5.7 and 5.8.  

Consistent with Section 5.3, the magnitude of earthquakes # is discretized into K 

intervals, 		l ∈ (1,2, … ,7 − 1) for non-characteristic earthquake (NCE), and l = 7 for 

characteristic earthquake (CE) (Takahashi et al., 2004).  Eq. (5.9) is re-written as  

 

å[3wÿ÷
& (3)] = Œå[3wÿ÷(™! ,3)] ∙ ; ŒùXÚü(πXπ&) ∙ ‘8

ê(¥, ¥")	

z

ÅÑÖ

π&∫%.

π&

G¥

8

!ÑÖ

= Œå[3wÿ÷(™! ,3)] ∙ å[nê(™! , ¥")] =

8

!ÑÖ

Œå[3wÿ÷
& (™! ,3)]

8

!ÑÖ

					(5.16) 

 

¥" is considered in nê(™! , ¥") to designate the time of current earthquake; When all 

seismic sources (faults or zones) are considered for each ™!, the å[3wÿ÷˙ (¥",L)] becomes: 

 

																																	å[3wÿ÷
˙ (L)] 	= Œ Œå[3wÿ÷

& (™! ,3)]
8

!ÑÖ

	
ÿÓÓ	}ÛÚ˙Ò}

																												(5.17) 
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Let 2ß, ∞ ∈ (1,2, … ) be the inter-arrival time between the (∞ − 1)th and ∞th events of 

magnitude ™!, for simplicity, l is omitted. Thus 2Ö, 2§, … , 2ß, …	are independent and 

identically distributed (i.i.d.) random variables. \ß = ∑ 2ß
ß
Ö  is the waiting time to the qth 

earthquake.  From Takahashi et al. (2004), å[nê(™!)] is  

 

å[nê(™! , ¥")] = ; ŒùXÚü(πXπ&) ∙ ‘8
ê(¥, ¥")

z

ÅÑÖ

π&∫2!

π&

G¥

= ; ùXÚü(πXπ&) ∙ Œ<MN(¥,™!|\Ö > ¥")
1

ßÑÖ

π&∫2!

π&

G¥																											(5.18) 

where <MN(¥,™!|\Ö > ¥") denotes the PDF of \ß at time ¥ given there is no CE between 

¥ = 0 and ¥". The summation of <MN(¥,™!|\Ö > ¥") over all ∞, ∞ ∈ (1,2, … ) yields 

‘8
ê(¥, ¥").  

For the CE ™8,  according to Takahashi et al. (2004),  

 

									<MN(¥,™8|\Ö > ¥") = ; <%O∫⋯∫%N(¥ − ‹,™8)
π

π&

<MP(‹,™8|\Ö > ¥")G‹				(5.19) 

 

in which 2ß~[n	(m8 , Q8), ∞ = 1,2, …, where LN stands for the log-normal distribution. Eq. 

(5.19) becomes 
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<MN(¥,™8|\Ö > ¥")

=
1

1 − Φ R
ln(¥") − m8

Q8
S
; T

1
‹ ∙ (¥ − ‹)

Uµ Î
ln(¥ − ‹) − m8

ßXÖ

Q8
ßXÖ Ï

π

π&

µ Î
ln(‹) − m8

Q8
Ï G‹			(5.20) 

 

Figure 5.5(a) illustrates the <MN(¥,™8|\Ö > ¥") for ∞	 = 1, 2, 0¨G	3 and ‘8ê(¥, ¥") 

when the ¥" = 1. The mean and c.o.v. for inter-arrival time of CE are 500 years and 0.3, 

respectively.  In the first 300 years, ‘8ê(¥, ¥") is lower than the mean occurrence rate of 

0.002 in the Poisson model;  ‘8ê(¥, ¥") reaches its highest value near ¥ = 500 and reach 

second highest value near ¥ = 1000. As ¥ increases, ‘8ê(¥, ¥") approaches the mean 

occurrence rate 0.002. Figure 5.5(b) shows ‘8ê(¥, ¥") for CE when ¥" =

1, 100, 300, 0¨G	500. It is found that the ¥" value will greatly affect the ‘8ê(¥, ¥")  in the 

log-normal inter-arrival time model. For example, when ¥" = 500 and 500 ≤ ¥ ≤ 700,  

the ‘8ê(¥, ¥") is higher than the mean occurrence rate. 
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                  (a)                                                               (b) 

Figure 5.5(a) Conditional PDF of waiting time to the q-th event of log-normal occurrence time 
model <MN(¥,™8|\Ö > 1) and ‘8ê(¥, 1)(black line); (b) the sum of these PDF functions ‘8ê(¥, ¥") 
when ¥" =  1, 100, 300, and 500 for CE. The shadowed area marks the mean occurrence rate CE. 

 

For the NCEs,  ™! , l = 1,2, … ,7 − 1 with exponential inter-arrival times, the term 

in Eq (5.18),  ∑ <MN(¥,™!|\Ö > ¥")
1
ßÑÖ 	= ‘!

ê (Takahashi et al., 2004). Thus, Eq. (5.18) is 

simplified: 

 

																																														å[nê(™!)] = ‘!
ê 	 ∙

1
ì|
(1 − ùXÚü∙2!)																																								(5.21) 

 

To quantify å[3wÿ÷(™! ,3)] in Eq. (5.16), one must consider uncertainties in 

magnitude M, the source to site distance R, ground motion attenuation, local soil condition, 

and building fragilities (related to 3).  For each seismic fault, it is assumed that the 
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location of future earthquake epicenter is uniformly distributed over the fault.  To reduce 

the sample points, Latin Hypercube Sampling (Stein, 1987) is employed with a sample size 

of 100 for R.  Further, for each hazard scenario (in combination of M and R), 1000 

simulations are employed to consider the uncertainty in ground motion attenuation at each 

building site (Campbell, 2003), considering the correlation between sites by an exponential 

function (Wang & Takada, 2005). The mean loss is calculated at a given hazard demand 

from a total of 7 × 100 × 1000 simulations. 

The total damage cost 3wÿ÷(™! ,3) = 3 (™! ,3) + 3â‰(™! ,3) + 3âw(™! ,3) +

3&%(™! ,3), where S, NA, ND, and CT denote structural, non-structural acceleration 

sensitive, non-structural drift sensitive component, and contents damage, respectively. 

3wÿ÷(™! ,3) in s-th scenario can be calculated by 

 

							3wÿ÷(™! , ä,3) = Œ Œ¨Å,6 ∙ Á3&Ù
Å (î) ∙ŒuvzπÒ÷

Å,' ∙ ÉzπÒ÷
Å,' (™! , ä, î)

Y

'ÑÖ

Ë

z

ÅÑÖÅπÒ÷

							(5.22) 

 

In Eq. (5.22),  ÉzπÒ÷
Å,' (™! , ä, î) denotes the probability of the j-th damage state for 

component item∈ (t, nfl,nu, 32) of Type i building under the s-th scenario of 

magnitude ™! earthquake under decision îÅ' (for simplicity, i and j are dropped in 

subscript of î); uvzπÒ÷
Å,'  denotes the damage to Type i building  with respect to 
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component ´¥ù™ due to physical damage in j-th damage state (Lin & Wang, 

2016; Wang et al., 2018).Similarly, for 3&ÿ}(™! , ä,3) 

 

																											3&ÿ}(™! , ä,3) = 	Œ¨Å,6 ∙ Án‡
Å ∙Œuv̇ÿ}

Å,' ∙ É %
Å,'(™l, ä, î)

Y

'ÑÖ

Ë

z

ÅÑÖ

															(5.23) 

 

where uv̇ÿ}
Å,'  denotes the casualty loss in Type i building due to physical 

damage in j-th damage state; n‡
Å  is the number of occupants in Type i building. Thus, 

the mean damage loss due to ™! earthquake is  

 

																																								å	[3wÿ÷(™! ,3)] =
1
n 

Œ3wÿ÷(™! , ä,3)

â†

}ÑÖ

																																		(5.24) 

 

in which n  denotes the total number of MCS for each magnitude ™!. The mean casualty 

loss due to ™! earthquake,	å	[3&ÿ}(™! ,3)] can obtained similarly. 

As introduced in Section 5.2.2, the only difficulty in EBPCPV-based methodology 

lies in the quantification of  ›!, which relates to ‘!ê(¥). For CE ™8, ‘8ê(¥, ¥") is time-

dependent, which causes difficulties in defining ›!. In this study, we employ the mean 
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occurrence rate ‘!ê for both NCE and CE,	l = 1,2, … ,7,  i.e. ‘!F(¥) = ‘! = É!, when 

quantifying ›!. Then ›! can be obtained by Eq. (5.15).  

5.5  Building Portfolio Resilience Goal 

To avoid tremendous socio-economic consequences in communities exposed to 

natural hazards, reconstructing portfolio to achieve certain resilience goal is desirable. The 

probabilistic form of resilience goal statement has been given in Section 3.3. This chapter 

employs the Direct Loss Ratio (DLR), i.e. the ratio of direct economic loss of portfolio due 

to hazard damage to total portfolio replacement cost as the resilience metric. Under 

earthquake magnitude ™!, the DLR can be represented as 

 

																																								#wx~,! 	= 	
3wÿ÷(™! ,3)	

∑ ¨Å ∙ 3&Ù
Åz

ÅÑÖ

,										l ∈ (1,2, … ,7)																				(5.25) 

 

in which 3wÿ÷(™! ,3) = damage loss due to earthquake ™! under decision,3 (Eq (5.9));  

¨Å = number of buildings of Type i; and  3&ÙÅ  =  replacement cost of each building in Type 

i. #wx~,! must be calculated by MCS (c.f. Section 4.1 of Wang et al. (2018)). Thus, Eq. (3.1) 

is re-written as 

 

																																!"#wx~,÷$
	< +wx~,÷$

	,™!) 	= 	0%                                    (5.26) 
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where #wx~,÷$
 denotes the resilience metric of DLR conditioned on hazard level ™!; 

+wx~,÷$
 denotes the prescribed resilience goal corresponding to #wx~,÷$

; and the 0% is a 

prescribed confidence level.  An example of Eq. (5.26) is !"#	wx~,÷V
< 20%	,™• =

	7.5) 	= 	95%, meaning “with 95% probability, the direct loss in the residential buildings 

are less than 20% of the overall portfolio replacement cost,  given the occurrence of any 

earthquake event with a magnitude Mw = 7.5. The presence of the 0% in the goal statement 

acknowledges the uncertain nature associated with any community resilience assessment, 

reflects the risk level that a community is willing to tolerate, and should be aligned with a 

community’s preferences. 

5.6  Formulation 

As formulated in Eqs. (6) and (13), the EBPLCC and EBPCPV is conditioned on 

portfolio level reconstruction decision X.  An optimal reconstruction strategy for a building 

portfolio damaged by a major event should be determined such that the sum of 

reconstruction cost, nature renewal cost, and discounted future hazard loss during the 

BPLC is minimized in the EBPLCC framework (or the value is maximized in the EBPCPV 

framework).  

Ideally, after a major earthquake event, there should be optimal reconstruction 

decision for each building k. To simplify the optimization problem and considering the 

situation in a real-world implementation, it is assumed that for each Type ´ ∈ (1, … , à) 
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building under damage state 	W ∈ (1,2,3,4), there is only one reconstruction decision îÅ' ∈

{0,1,2} (Eq. (27)). In other words, the reconstruction decision of specific building, îÅ' is 

determined by its Type i and post-hazard damage state W. Three reconstruction levels are 

defined in the below 

 

0:  Rebuild as before (lower than any current code) 

1: Rebuild to Enhanced Level 1 (E1) (current high design code) 

2: Rebuild to Enhanced Level 2 (E2) (higher than any current code) 

 

The decision matrix X define the post-hazard reconstruction strategy for each 

(building type, damage state) pair. The mathematical formulation of the optimization 

problem is tabulated in Table 5.2. The objective of the problem is to minimize 

EBPLCC,	å[3x&&ˇ (3)] (Eq. (5.28)) or maximize EBPCPV, å[v&ˇJˇ (3)] (Eq. (5.29)) under 

the constraints of portfolio level resilience performance goals (formulated in Eq. (5.32)) 

given the formulation of å[3x&&ˇ (3)] (Eq. (5.30)) and å[v&ˇJˇ (3)] (Eq. (5.31)). 
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Table 5.2 Post-hazard Reconstruction Problem Formulation 

Item                Expression Eq. # 

Decision 

Variables: 

X, element îÅ' ∈ {0,1,2};  ´ ∈ (1,2, … , à), W ∈ (1,2,3,4) Eq. (5.27)  

Objectives  min	å[3x&&
ˇ (3)]) or  Eq. (5.28) 

 max å[v&ˇJˇ (3)] Eq. (5.29) 

Constraints 3x&&
ˇ (3) = 3~Ò(3) + 3âÒ4

& (3) + (5 + 1)3wÿ÷
& (3) + 3&ÿ}

& (3) Eq. (5.30) 

 v&ˇJ
ˇ (3) = v~Ò(3) + vâÒ4

& (3) + (5 + 1)vwÿ÷
& (3) + v&ÿ}

& (3) Eq. (5.31) 

 !"#wx~,! 	< +wx~,! 	,™!) 	= 	0% Eq. (5.32) 

 

The optimization problems in this study is formulated as a single-objective, integer 

programming problem, illustrated in Fig. 2, which can be solved using a Genetic 

Algorithm (GA) (Goldberg & Holland, 1988). The matrix X is converted into a one-

dimensional array as the “gene”. The GA based algorithm for searching the optimal 

reconstruction strategy is illustrated in Figure 5.6. As the iterative GA algorithm runs, 

better reconstruction strategies are found with lower å[3x&&ˇ (3)] or higher å[v&ˇJˇ (3)]. 

Here, it is prescribed that the algorithm stops when no better solution is found in 100 

consecutive steps. The typical convergence of the algorithm is illustrated in Figure 5.7.  
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Figure 5.6 Flowchart of the GA-based optimization algorithm for BBB decision 
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Figure 5.7 The typical convergence route of the optimization algorithm 

 

5.7  Illustration 1– Centerville BPLCA 

The community investigated in this study is Centerville, a hypothetical community 

for resilience-related analyses and decision-making of physical, social and economic 

infrastructure systems (Ellingwood et al., 2016; Lin & Wang, 2016).  Centerville 

represents a community with moderate population (50000) and size (8 km by 13km), 

located in Midwest of the U.S. As shown in Figure 5.8, Centerville includes 7 residential 

zones (Z1-Z7) with approximately 13,500 single and multi-family residential units. 

Notably, Z1 is a high income/low density (HI/LD) area near the western hills, Z2-Z4 are 

zones with moderate income (MI), Z5-Z6 are low-income (LI) residential areas close to the 
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business/retail district, and Z7 is a mobile home zone abutting industrial facilities.  All 

residential buildings in Centerville are light frame wood structures with different 

occupancy types, stories, and built year (denoted as W1 – W6 in Table 5.3). The fragility 

and capacity parameters of each types of buildings are given in Appendix A and B. To 

reduce computational time, 1,500 buildings are randomly sampled from the portfolio. The 

results in this case study are all based on this reduced sample. 

 

Table 5.3 Building characteristics  

Bld. 

ID 

Occup. 

class 

# of 

occupants 

Story Year 

built 

Area 

(ft2) 

Building value 

(2003 estimate) 

# in 

Centerville 

BLC, ¢d  

W1 SF1 2 1 1945 – 

1970 

1,400 $139,426 6,190 50 

W2 SF1 3 1 1985 – 

2000 

2,400 $239,016 4,000 50 

W3 SF1 5 2 1985 – 

2000 

5,200 $318,816 50 50 

W4 SF1 3 1 1970 – 

1985 

2,400 $239,016 3,196 50 

W5 MF2 90 3 1985 36,000 $3,918,960 102 50 

W6 MH3 2 1 NA NA $61,800 1,352 30 

1. SF: Single-family dwelling 
2. MF: Multi-family dwelling 
3. MH: Mobile home 
4. Assume content value is 50% of building value according to HAZUS (FEMA/NIBS, 2003) 
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Figure 5.8 The location of Centerville, earthquake fault line and current earthquake location 

 

The characteristic BPLC, ¥Ô,-"˙  is calculated first, assuming that the mean BLC of 

an individual building relates to the occupancy type. Single-family dwelling units (SF) and 

multi-family dwelling units (MF) are assumed to have the same mean BLC - å[2Ö] =	50 

years - while mobile homes (MH) have mean BLC å[2§] =	30 years (tabulated in Table 

5.3).  ¥Ô,Ú˙ = 115 years is obtained by MCS. Notably, since the portfolio is dominated by 

SF and MF buildings, the portfolio lifetime is almost identical to the BPLC of a portfolio 

with one type of BLC (2Ö). In rest of this study, 2̌ = ¥Ô,Ú˙ = 115 years is employed for 

BPLCA by default. 
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Suppose that the building portfolio is severely damaged by a destructive Mw = 8 

earthquake with an epicenter (Point A in Figure 5.8) located southwest of Centerville with 

a distance of to 22.5 km to the centroid of Centerville.  Assume that Centerville is situated 

on Site Class B soil (ASCE 7-16). A summary of the post-hazard damage states of 

buildings is shown in Table 5.4. Most of the residential buildings in Centerville are 

damaged to some extent and require either repair or reconstruction. The mean occurrence 

rate of future earthquakes is tabulated in Table 5.5. It is assumed that the c.o.v. in inter-

arrival time = 0.3 for CE (Wesnousky et al., 1984; Takahashi et al., 2004). The low mean 

hazard occurrence rate is meant to represent the low probability/high consequence natural 

of earthquakes in mid-America (e.g. sites near the New Madrid Seismic Zone) (Toro & 

Silva, 2001). Since the optimal reconstruction decisions are unknown now, unless 

otherwise indicated, in this section, it is assumed that the decisions are rebuilding to 

current performance levels (îÅ' = 0) regardless of their post-hazard damage states.  More 

discussion on optimal decisions will be given extensively in illustration 2 in Section 5.8. 

The costs of reconstruction and casualties are tabulated in Table 5.6 and Table 5.7. In 

addition,  5 = 1.0 is employed as the default value for indirect loss in Eqs. (5.6) and 

(5.13). 

 

 

 

 



 139 

Table 5.4 Number of building in each damage state after a Mw - 8 earthquake event 

Bld. ID DS0 DS1 DS2 DS3 DS4 Total 

W1 11 76 207 192 122 608 

W2 9 80 166 133 40 428 

W3 1 2 2 0 0 5 

W4 8 49 109 93 55 314 

W5 0 1 5 2 1 9 

W6 0 6 35 56 39 136 

 

 

Table 5.5 Mean annual occurrence rate of each magnitude representative ‘!ê  (Toro and Silva, 
2001) and amplification factor ›! in BPCPV model 

Item  \¡ = ].] \√ = ^.] \ƒ = _.] 

‘!
ê  0.033 0.0033 0.002 

›! 

DX = 1, µ = 0.9 1.31 1.86 2.82 

DX = 1, µ = 0.8 1.60 2.98 6.70 

DX = 1, µ = 0.7 1.82 4.16 13.77 

DX = 1, µ = 0.6 1.93 5.14 25.08 

DX = 1, µ = 0.5 1.91 5.66 41.33 
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Table 5.6 Reconstruction cost (only structural part) of each building in each post-hazard damage state (based on 2003 estimate) 

(FEMA/NIBS, 2003)  

Bld. 

ID 

Post-hazard Damage State 

!"#$ !"%$ !"&$ !"'$ 

Orig. E1 E2 Orig. E1 E2 Orig. E1 E2 Orig. E1 E2 

W1 697 5,591 10,485 3,207 8,101 12,995 16,313 21,207 26,101 32,626 37,520 42,413 

W2 1,195 9,585 17,974 5,497 13,887 22,276 27,965 36,354 44,744 55,930 64,319 72,709 

W3 1,594 12,785 23,975 7,333 18,523 29,714 37,301 48,492 59,682 74,603 85,793 96,984 

W4 1,195 9,585 17,974 5,497 13,887 22,276 27,965 36,354 44,744 55,930 64,319 72,709 

W5 11,757 92,879 174,002 54,865 135,988 217,110 270,408 351,531 432,653 540,816 621,939 703,061 

W6 247 2,509 4,771 1,483 3,745 6,007 4,511 6,773 9,035 15,079 17,341 19,603 

1. Assume the reconstruction cost (structural part) of E1 is 15% higher than Orig. and E2 is 30% higher than Orig. structural cost 

2. The actual reconstruction cost for building in specific damage state are calculated as a percentage of full reconstruction cost in the table  

3. Assume the additional reconstruction cost to enhance the building from Orig. to E1 and E2 is same for post-state ()*+, , ∈ (1,2,3,4). 
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Table 5.7 Monetary value of human casualty (FEMA/NIBS, 2003; FEMA,2015) 

Severity Level S1 S2 S3 S4 

Cost $1,000 $5,000 $100,000 $6,600,000 

 

With !" = #$,&'( = 115 years and portfolio post-hazard damage state, the EBPLCA is 

conducted, i.e. )[+,--" (/)] and )[2-"3" (/)] for  different discount rates 45 of economic 

losses and keep 0.01 for the discount rate of casualties.  A non-Poisson hazard model 

(NPHM) with #' = 1, and 89: = 0 is employed as the default condition. Figure 5.9 shows 

the curves of )[+,--" (/)] and )[2-"3" (/)] when the time increases from 0 to !" = 115 

years under different discount rates for economic losses. It is found that when time # = 0, 

)[+,--" (/)] = )[2-"3" (/)] = $23.41B, which is the reconstruction cost +CDE(/) (given in 

Table 5.8). The BPLCA curves diverge as time increases.  In all cases, the curves from 

EBPCPV-based methodology incorporating risk aversion are greater than those from 

EBPLCC-based methodology due to FG. When the discount rate is relatively high (e.g. 

5%), the )[+,--" (/)] and )[2-"3" (/)] become almost constant after # = 60 years while for 

low discount rates (e.g. 1% or less), the BPLCA results increase even after !" = 115 

years, indicating that more risk is being assumed by the present generation.    
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Figure 5.9 )[+,--" (#', /)] and )[2-"I" (#', /)] grow with time under different discount rate for 
economic loss  

 

Table 5.8 summarizes the BPLCA results from different hazard models and values 

of #' when the discount rate on economic losses and human casualties are 3% and 1%, 

respectively.  The EBPLCA value and the contribution from each component are greatly 

affected by #'  under NPHM for both methodologies.  For instance, if #' = 1 (the current 

earthquake is a CE), the )[+JKL- ] from MN = 7.5  interval is zero, which can also be seen 

from the near-zero hazard rate (PQR(#, #')) of CE in Figure 5.5(a) within #$,&'( . When the #' 

increases, the contribution of MN = 7.5  interval becomes higher.  For instance, when #' =

500, for )[+JKL- (/)] and )[2JKL- (/)], the contributions from MN = 7.5 interval are 

56.4% and 81.0% respectively; for )[+-KS- (/)] and E[2-KS- (/)], the contribution from 
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MN = 7.5  interval are 82.7% and 92.52% respectively.  The trend of the )[+,--" (/)]  and 

)[2-"3" (/)]  with different #' and contribution of each component are illustrated in Figure 

5.10, which shows that the contributions from +JKL- (/), +-KS- (/), and +TU5- (/) in 

EBPLCC (or 2JKL- (/), 2-KS- (/), and 2TU5- (/) in EBPCPV) increase when #' increases.  

For rest of this section, unless otherwise indicated, the NPHM with #' = 1 as well as 3% 

and 1% discount rate on economic loss and human casualty, respectively. 
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Table 5.8 The BPLCA decomposition from different hazard models (when !"# = 0, for ∀	(	)*+	,) in million dollars 

Hazard Model Metric 

-./0	

or 

1./0 

-234-  

or 

1234-  

-567-  or 1567-  --68-  or 1-68-  -239-  

or 

1239-  

:;<<=  

or 

><=?=  

7@

= A. A 

7C

= D. A 

7E

= F. A 
Sum 

7@

= A. A 

7C

= D. A 

7E

= F. A 
Sum 

Poisson hazard 

model (PHM) 

EBPLCC 23.41 202.04 10.84 4.92 7.61 23.38 0.19 0.43 1.16 1.78 23.38 273.98 

EBPCPV 23.41 202.04 17.39 14.66 7.61 39.65 0.31 1.27 1.16 2.73 39.65 307.49 

Non-

Poisson 

hazard 

model 

(NPHM) 

GH

= @ 

BPLCC 23.41 202.04 10.84 4.92 0.00 15.77 0.19 0.43 0.00 0.62 15.77 257.60 

EBPCPV 23.41 202.04 17.39 14.66 0.00 32.04 0.31 1.27 0.00 1.57 32.04 291.11 

GH

= EHH 

BPLCC 23.41 202.04 10.84 4.92 7.19 22.96 0.19 0.43 1.27 1.89 22.96 273.25 

EBPCPV 23.41 202.04 17.39 14.66 48.19 80.23 0.31 1.27 8.53 10.11 80.23 396.02 

GH

= AHH 

BPLCC 23.41 202.04 10.84 4.92 20.41 36.18 0.19 0.43 2.92 3.53 36.18 301.34 

EBPCPV 23.41 202.04 17.39 14.66 136.77 168.81 0.31 1.27 19.54 21.12 168.81 584.19 

• The values in the table are all expected values, due to lack of space, notation I[∙] and M are omitted. 
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                          (a)                                                                 (b) 

Figure 5.10 (a) The de-composition of ![#$%%
& (()]and (b) ![+%&,

& (()] under NPHM with different 
-. (each shadowed area corresponding to a component of the BPLCA formulation) 

 

Next, the effect of /& on ![#$%%
& (0)] and ![+%&,

& (0)] is investigated.    Since 

/& depends on BLC /1 for Type I and the corresponding number, 21, a group of mean 

BLC for SF and MF (/3) is employed and fix the mean BLC of MH (/4) as ![/4] =

![0.6/3] to obtain an array of  /&. Table 5.9 illustrates the effect of /& on the 

![#9:;
% (0)]	=2>	![+9:;

% (0)] under Poisson and non-Poisson hazard models (with 

different values of ?@), showing that ![#$%%
& (0)] and ![+%&,

& (0)] both decrease 

monotonically as /& increases.  While this behavior seems counter intuitive, it results 

from the cumulative new construction cost (#9:;
% (0)	or	+9:;

% (0)), as the other 

components either remain the same (#C:D(0)	EF	+C:D(0)) or increase (#GHI
% (0) or 

+GHI
% (0), #%HJ

% (0) or +%HJ
% (0), and #KLM

% (0) or +KLM
% (0)) when /& increases.  Eq. (5.8) 

shows that the ![#9:;
% (0)] (equal to ![+9:;

% (0)]) is proportional to 1/P1, where P1 is 

the mean BLC of a Type i building;  when mean BLC is short, the cumulative cost due 
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to natural updating within the /&, ![#KL1
% (0)]	is high since demolition and 

reconstruction occur in a short period with high discount factor (larger QRST(URUV)), and 

vice versa. This supports the idea that individual buildings and portfolios with longer 

life-cycles will lead to lower LCA values and are considered as more sustainable.  

Figure 5.11 also illustrates the effect of   /& length on the ![#9:;
% (0)] and	![+9:;

% (0)] 

with Poisson hazard model (PHM) or non-Poisson hazard model (NPHM) (under 

different ?@). In Figure 5.11, LCC-P denotes the case for EBPLCC-based methodology 

in PHM, while CPV-NP-300 denotes the EBPCPV-based methodology in NPHM with 

?@ = 300 years. 

Table 5.9 The BPLCA de-composition with different BPLC 

 
• The values in the table are all expected values, due to lack of space, notation ![∙], ?@, and 0 are omitted. 

 

BLC 

(![/3], ![/4]) 

BPLC 

/& 
Metric 

Z[\]	 

or 

^[\] 

Z_\`
Z   

or  

^_\`
Z  

Zabc
Z   

or 

 ^abc
Z  

ZZbd
Z   

or 

 ^Zbd
Z  

Zefg
Z   

or 

 ^efg
Z  

ZhZZ
i   

or 

^Zi^
i  

(30,18) 69 
EBPLCC 23.41 303.89 14.23 0.45 14.23 356.20 

EBPCPV 23.41 303.89 28.92 1.15 28.92 386.28 

(50,30) 115 
EBPLCC 23.41 202.04 15.77 0.62 15.77 257.60 

EBPCPV 23.41 202.04 32.04 1.57 32.04 291.11 

(100,60) 230 
EBPLCC 23.41 104.23 16.27 0.82 16.27 160.99 

EBPCPV 23.41 104.23 33.07 2.12 33.07 195.90 

(150,90) 345 
EBPLCC 23.41 69.55 16.29 0.93 16.29 126.47 

EBPCPV 23.41 69.55 33.12 2.64 33.12 161.84 
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Figure 5.11 ![#$%%
& (()] and ![+%&,

& (()] under different /& with different metrics and hazard 
models 

 

Further, the sensitivity of ![+%&,
& (0)] on the CPT parameters is investigated. 

Specifically, the effect of different j (0.5 to 1.0) is investigated with kR = 1.0.  Figure 

5.12 shows that lower j value leads to higher ![+%&,
& (0)] because it implies that the 

decision-maker is overestimating the probability of an extreme event and is more risk-

averse. Notably, the contribution of ![+GHI
% (lm, 0)] from the (CE) (n = o) is more 

sensitive to the j than that from the lower magnitude non-characteristic earthquake 

(NCE) (n = 1, . . , o − 1). A comparison of Figure 5.12 (a) and (b) reveals that the 

which the effect of different j on ![+GHI
% ] also depends on ?@. Note that when j = 1, 
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![+%&,
& (0)] = ![#$%%

& (0)] because of the assumption (Eq. (10)) that the value function 

is linear. 

 

 

                   (a)                                                                         (b) 

Figure 5.12 ![+%&,& (()] under different j by using non-Poisson hazard model  

with (a), ?@ = 1 and (b)	?@ = 300 

 

Lastly, the impact of different reconstruction decisions on BPLCA values is 

explored. Since no decision tools have been developed in this study, the BPLCA from 

three decision matrix 0 - (a). all q1r = 0, (b). all  q1r = 1, and (c). all q1r = 2 - are 

compared under different hazard rate factors. The ![#$%%
& (0)] and ![+%&,

& (0)] under 

different 0 are illustrated in Figure 5.13(a) and (b), respectively. In both methodologies, 

decision	0 = [.] has the lowest value in low hazard rate factor (e.g. 0.2) while decision 

0 = [t] has the lowest value in high hazard rate (e.g. 10). In addition, decisions 0 that 
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have the lowest BPLCA value in medium hazard rate factor (e.g.1 to 4) are different 

according to different methodologies. For instance, when the hazard rate factor is 4, 

![#$%%
& (0)] is lowest at  0 = [u] while ![+%&,& (0)] is lowest at  0 = [t]. In other words, 

the EBPCPV-based methodology (in which risk aversion of decision-makers can be 

considered) tends to favor higher reconstruction levels.  A more complete analysis of 

optimal reconstruction decision-making will be given in Section 5.8.  

 

        (a)                                                                      (b) 

Figure 5.13 (a) ![#$%%
& (()] and (b) ![+%&,

& (()] for different reconstruction decision ( under 
different hazard rate factors 

 

5.8  Illustration 2 – Centerville Reconstruction Decision-making 

As illustration 1, Centerville is employed to exemplify the application of developed 

methodology. Suppose the residential building portfolio of Centerville is severely damaged 

in a destructive Mw = 8 earthquake with epicenter distance equal to 22.5 km. The spatial 

distribution of the post-hazard damage state of the portfolio is shown in Figure 5.14 and 
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summarized in Table 5.4. Most of the buildings are damaged needing either repair or 

reconstruction. For future earthquakes, the mean hazard occurrence rate is tabulated in 

Table 5.5. The low mean hazard occurrence rate is meant to represent the low-frequency, 

high consequence natural of earthquakes in mid-America (e.g. sites near the New Madrid 

Seismic Zone, NMSZ) (Toro, 2001). The cost of reconstruction and casualty are given in 

Table 5.6 and Table 5.7. The BPLC is obtained to be 115 years in Section 5.7. v = 1.0 is 

employed as the default value for indirect loss in Eq. (5.6) and Eq. (5.13). 

 

Figure 5.14 Damage state distribution of building portfolio after a M8 earthquake event 

 

Firstly, the optimal post-hazard strategy is derived when EBPLCC is the only 

objective to minimize (Eqs. (5.27) and (5.29)), no resilience goal is considered.  Different 

discount rates are employed for economic losses and human casualties, i.e. 3% and 1%, 

respectively by default (Lee & Ellingwood, 2015). The effect of Poisson hazard model 

(PHM) (Figure 5.15 (a)) and the non-Poisson hazard model (NPHM) (Figure 5.15(b) - (e)) 
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on the optimal reconstruction strategy is investigated. For the latter case, the c.o.v. of the 

return period of m3 = 7.5 representative earthquake is assumed to be 0.3. ?@ =

1	(=2>	100), 200, 300, and	500 is considered respectively in Figure 5.15(b) - (e) to 

investigate its effect.  In Figure 5.15(b), ?@ = 1 (when last major earthquake occurs last 

year), NPHM relates to lower reconstruction level than the PHM does.  Further, the 

optimal strategy for  ?@ = 1 and ?@ = 100 is the same, due to the fact that the occurrence 

rate of next CH is very low when the time to last CH is short in the NPHM (see Figure 

5.5). From Figure 5.15 (c) – (e), one finds that as the ?@ increases, the reconstruction level 

trends to be higher. However, no (building type, damage state) pair needs to rebuild to E2, 

implies that when minimizing EBPLCC is the only objective, rebuild to high-code level 

according to current seismic design code is sufficient. For rest of the case study, unless 

otherwise indicated, the NPHM with ?@ 	= 	1 and original hazard rate is employed as the 

default. 

 

 

(a)                       (b)                         (c)                         (d)                      (e)     

Figure 5.15 The optimal post-hazard reconstruction strategy based on EBPLCC when the hazard 
occurrence model is (a) Poisson model; non-Poisson model with (b) ?@ = 1, 100, (c) ?@ = 200,  (d) 

?@ = 300, and (e) ?@ = 500 
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Then, the effect of mean hazard occurrence rate on optimal reconstruction strategy 

is examined based on EBPLCC (shown in Figure 5.16). When the hazard rate is low (e.g. 

in Figure 5.16(a)), all optimal decisions are q1r 	= 	0 (rebuild as before), by contrast when 

the hazard rate is high (e.g. Figure 5.16(e)), most optimal decisions are q1r 	= 	2 (rebuild to 

E2).  Figure 5.16 suggests that for regions with low annual hazard rate (e.g. (a) – (c)), 

current high design code (E1) is sufficient to ensure BBB when minimizing EBPLLC only. 

 

 

               (a)                        (b)                        (c)                          (d)                         (e)     

Figure 5.16 The optimal post-hazard reconstruction strategy based on EBPLCC when the mean 
hazard occurrence rate is (a) 0.5 time, (b)1 time, (c) 2 times, (d) 3 times, and (e) 5 times of the 

default value in Table 3. 

 

Further, the resilience metric/goal introduced in Section 5.5 is incorporated into the 

optimization and its effect on optimal reconstruction strategy as well as the trade-off 

between reduced DLR and increased EBPLCC are investigated.  Case a-1 is defined as all 

q1r 	= 	0, related to portfolio resilience performance metric ~	G$C,I� = 249.57/460 =

54.3%; Case a-5 is defined as all q1r 	= 	2, ~	G$C,I� = 110.83/460 = 24.1%. Thus, Case 
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a-2 is the optimal strategy with corresponding resilience ~	G$C,I� = 179.5/460 =

39.0%.		Case a-3 and a-4 have moderate resilience goal Ö	G$C,I� . As the resilience goal 

becomes more and more strict, the optimal rebuild strategy yields more pairs with q1r 	=

	1	or 2 (rebuild to E1 or E2). Further, the EBPLCC and its decomposition is investigated 

under different cases. From Table 5.10, it is also found that ![#9:;
% (0)] constitutes 78.4% 

- 79.9% of ![#$%%
& (0)], ![#C:D(0)] is the second largest item, then followed by 

![#GHI
% (0)] and ![#KLM

% (0)]. ![#%HJ
% (0)] are negligible in all cases. When the resilience 

goals decrease from 54.3% to 24.1%, the ![#$%%
& ] increases insignificantly ($11.75M, 

4.56%). In Table 5.10,  the net cost is defined as the additional ![#C:D(0)] and 

![#9:;
% (0)] while net benefit is defined as reduced ![#GHI

% (0)]	, ![#%HJ
% (0)], and 

![#KLM
% (0)], when compared to the baseline (Case a-1). Generally, a benefit-cost ratio 

greater than 1 is preferred in decision-makings. The cost-benefit suggests that strict 

resilience goals (e.g. Ö	G$C,I� = 130 or lower) will lead to lower than 1 of the benefit-cost 

ratios in the EBPLCC-based methodology.  

The optimal EBPCPV-based strategies with different resilience goals/performance 

levels are compared in Figure 5.17(b) and Table 5.11. Case b-1 and Case b-5 are minimum 

and maximum reconstruction level as before; in Case b-2, EBPCPV is the only objective to 

minimize for reconstruction strategy; In Case b-3 and b-4, different levels of resilience 

goals are considered. As a baseline, the parameter of the CPT model is Ü = 1, j = 0.8 

corresponding to an inverse-s shaped probability transformation function (c.f. Eq. (5.12) 

and Figure 5.4). From the comparison of Case a-1-5 in Table 5.10 and Case b-1-5 in Table 

5.11, it is found that the contribution of damage loss, casualty and indirect loss is amplified 
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in Table 5.11 due to the risk aversion reflected in the EBPCPV methodology. Further, the 

benefit-cost ratios for Case b-2 – b-5 in Table 5.11 are all greater than 1, suggesting that 

even though considering the resilience goals will associate with higher EBPCPV, it is 

worthwhile to do so. In other words, the EBPCPV-based methodology justifies higher 

level reconstruction strategies with higher resilience performance with rigor basis. 

 

 

                                                      (a) 
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                                                       (b) 

Figure 5.17 The optimal post-hazard reconstruction strategy under different resilience goals based 
on (a) EBPLCC, (b) EBPCPV (Ü = 1, j = 0.8) 
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Table 5.10 The EBPLCC decomposition and cost-benefit analysis under different resilience metrics/goals 

Case !	#$%,'(.*/'	#$%,'(.* +$++,  +%-. +/-0+  +#12+  ++13+  +456+  Net Benefit Net Cost Benefit-Cost Ratio 

a-1 249.57/460	 = 54.3% 257.60 23.41 202.04 15.77 0.62 15.77 N/A N/A N/A 

a-2 179.50/460	 = 39.0	% 254.37 29.22 205.79 9.58 0.22 9.58 12.78 9.56 1.34 

a-3 150.00/460 = 32.6% 257.10 33.46 208.61 7.45 0.13 7.45 17.13 16.62 1.03 

a-4 130.00/460 = 28.3% 260.90 37.32 211.07 6.21 0.09 6.21 19.65 22.94 0.86 

a-5 110.83/460 = 24.1% 269.35 43.58 215.32 5.20 0.05 5.20 21.71 33.45 0.65 

• The LCA results in the table are all expected values, due to lack of space, notation D[∙] is omitted. 

 

 

Table 5.11 The EBPCPV decomposition and cost-benefit analysis under different resilience metrics/goals 

Case !	#$%,'(.*/'	#$%,'(.* H+,H,  H%-. H/-0+  H#12+  H+13+  H456+  Net Benefit Net Cost Benefit-Cost ratio 

b-1 249.57/460	 = 54.3% 291.11 23.41 202.04 32.04 1.57 32.04 N/A N/A N/A 

b-2 145.13/460	 = 31.6% 270.30 33.14 208.32 14.27 0.29 14.27 36.82 16.01 2.30 

b-3 130.00/460 = 28.3% 273.79 37.24 211.10 12.62 0.21 12.62 40.20 22.89 1.76 

b-4 120.00/460 = 26.1% 277.21 40.59 213.26 11.59 0.17 11.59 42.30 28.40 1.49 

b-5 110.83/460 = 24.1% 280.27 43.58 215.32 10.62 0.12 10.62 44.29 33.45 1.32 

• The LCA results in the table are all expected values, due to lack of space, notation D[∙] is omitted. 
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Then, the impact of risk aversion (represented by ! and keeping "# = 1)  on the 

EBPCPV of optimal reconstruction decisions is investigated. Resilience performance goal 

is not imposed, instead, the resilience performance &	()*,,-
	is estimated corresponding to 

each optimal strategy. The comparison of the optimal strategy from different ! under ./ =

1 and ./ = 200 are illustrated in Figure 5.18(a) and (b) respectively. In Figure 5.18(a), 

when !	 = 1.0 (identical to EBPLCC-based methodology), 3[5678
7 (:)] = $254.37M is 

the lowest while resilience performance &	()*,,-
= 39.02% is the highest indicating great 

loss in extreme events. On the other hand, when ! = 0.5 (very conservative on LPHC 

events), the 3[5678
7 (:)] = $284.93M is the highest while resilience performance &	()*,,-

 

= 30.84% is the lowest. Also, it is found that for ! = 0.9 or smaller, the &	()*,,-
 is not 

sensitive to ! value. One observes similar trend in Figure 5.18(b), expect that the optimal 

strategies becomes higher in all cases and &	()*,,-
 is very sensitive to ! value. Thus, 

different risk preference of decision makers can lead to a spectrum of optimal 

reconstruction strategies corresponding to different resilience performance.  
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(a) 
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(b) 

Figure 5.18 The optimal post-hazard reconstruction strategy given different ! (keep "# = 1) when 
(a) ./ = 1 and (b) ./ = 200 

 

The effect of BPLC length on EBPCPV (D = 0.8	and	! = 1) and optimal 

reconstruction strategy is examined under different hazard models: (a). PHM, and NPHM 

with (b) ./ = 1	HI	100,  (c) ./ = 200, and (d) ./ = 300, as illustrated in Figure 5.19. No 
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resilience goal is considered. One can find that the optimal strategy is sensitive to BPLC 

length in all cases, longer BPLC generally requires higher reconstruction level and verse 

versa. Further, the classical way of assuming infinite life-cycle length (e.g. Wen & Kang, 

2001) and the optimal decision based on may be problematic and over-conservative.  The 

cases with different discount rate for economic loss (e.g. 2% and 5%) are examined 

further, similar trends are observed. However, it is recognized that the conclusion may not 

be general and need more researches to be done. 

 

Figure 5.19 The optimal post-hazard reconstruction strategy for different hazard model and BPLC 
combinations based EBPCPV 
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Lastly, the optimal decisions for individuals and the portfolio are compared. For 

illustration purpose, W4 building with post-hazard JK	 = 	4 (complete damage) is selected 

as an example. Figure 5.20 gives the Expected LCC (ELCC) value for two individual 

building in different zones under different hazard rate factor. In both Figure 5.20(a) and 

(b), the ELCC curve from L = 0 trends to have lower value at low hazard factor and grow 

quickly when hazard factor increases; by contrast, the ELCC curve from L = 2 trends to 

have higher value at low hazard factor and grow slowly when hazard factor increases; the 

ELCC curve from L = 1 lies between those from L = 0 and L = 2. In addition, the ELCC 

curves from Zone1, Building MJ	 = 	4 are higher than that from Zone3, Building MJ	 =

	46, due to that the former is closer to the seismic fault. In Figure 5.16 and Figure 5.20, it is 

found that from both individual buildings’ and portfolio’s perspective, the optimal decision 

is 0 (rebuild as before) when the hazard factor is low (e.g. equal to 0.5); while the optimal 

decision is 2 (rebuild to E2) when the hazard factor is high (eq. equal to 5). However, for 

the hazard factor between these two extremes, the portfolio decision and individual 

decisions (with lowest ELCC) could be different. For instance, when hazard factor equals 

to 2, for the portfolio, LOO = 1 is the optimal decision. In individual building level, the 

optimal decision is  L = 2 for building ID = 4 at Zone 1 and  L = 1 for building ID = 46 at 

Zone 3. Such difference of optimal decisions between portfolio and individual buildings 

could provide basis for communities designing reconstruction incentives to achieve its 

performance goals with the cooperation from building owners. 
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                           (a)                                                                 (b) 

Figure 5.20 The ELCC corresponding to three different reconstruction strategies of W4 building 
with post-hazard DS = 4 (a)Zone 1, Building MJ	 = 4; (b) Zone 3, Building MJ = 46  

 

5.9  Closure 

Reconstruction of a community building portfolio after a major hazard event, in the 

light of similar impacts from future hazards, has motivated the development of optimal 

post-hazard reconstruction strategies based on building portfolio life cycle analysis in 

which costs from reconstruction, natural urban renewal, and future hazard exposure are 

considered.  The concomitant needs for quick post-hazard recovery and recovery of 

functionality require the portfolio resilience goal to be satisfied.  This chapter has 

developed a methodology for life-cycle analysis of a building portfolio and presented a 

framework that can support the post-hazard reconstruction process by establishing the 

optimal reconstruction strategies based on minimizing expected building portfolio life 

cycle costs or maximizing cumulative prospect values while fulfilling resilience goals. The 
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life-cycle analysis methodology and decision-framework developed in this chapter can be 

directly applied to post-hazard reconstruction of building portfolios by assisting 

communities in post-hazard planning and incentives/policies designing. The decision-

framework could support building back better following earthquake (or other severe 

natural hazard events with minor modification) and guide a community toward achieving 

resilience goals in an efficient manner.
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Chapter 6 Summary, Contributions, and Recommendations 

6.1  Summary 

Building portfolios form the physical basis and essential part of a community and 

their performance is critical to the resilience and sustainability of a community: reduction 

of socioeconomic loss, preservation of integrity, acceleration of functionality recovery 

under natural hazards, and relief of financial and environmental burden on future 

generations. However, currently, there is no explicit consideration on the performance 

requirement of individual buildings directly related the performance objectives on the 

community level. Rather, typically buildings are designed, retrofitted, and reconstructed 

individually according to codes/standards to ensure Life Safety under rare hazard events.  

In addition, community-level hazard prevention and mitigation strategies involve 

considerable financial and organizational resources, bear a long-term impact on the 

wellbeing of future generations, and could greatly affect the hazard performance and the 

prosperity of communities. Decision-making framework that can systematically support 

developing the hazard mitigation strategies to enhance the resilience and sustainability of 

communities in different stages of life-cycle does not exist. 

This dissertation has proposed a risk-informed decision-making framework for 

building portfolios under natural hazards. It could help communities identify their 

resilience performance goals corresponding to the selected performance metrics, assess the 

performance of community in current condition, and develop disaster prevention and 

mitigation decisions in a most efficient and sustainable way. This study has explored three 
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categories of decision-making problems for residential buildings - new construction, pre-

hazard retrofit, and post-hazard reconstruction decision - that can be directly utilized to 

help communities achieve their long-term resilience and sustainability goals. 

The first element of the decision-making framework is the derivation of the 

minimum performance criteria of individual buildings, which will form the basis for new 

construction as well as for retrofitting and reconstruction. Currently, the aim of design 

codes/standards is to ensure Life Safety of occupants under rare hazards. The performance 

criteria for buildings implied in these codes were obtained by back-calibrating the 

performance of buildings designed by previous codes without rational justification on the 

permitted failure probability as well as relating to higher-level resilience performance 

goals expressed in socioeconomic metrics. Thus, current design codes/standards are not 

sufficient to protect communities from the natural hazards and avoid grave consequences 

(e.g. permanent population out-migration). This part of the study firstly proposed a 

resilience-based design philosophy, with key features including: 1) functionality and loss 

are considered as the major performance criteria defined at the community-level; 2) the 

minimum performance criteria of individual buildings are derived from a risk de-

aggregation methodology, which consists of a lower level and a higher level de-

aggregation and eventually links the performance criteria of individual buildings to the 

community-level resilience goals; and 3) explicit statement of the performance requirement 

for individual buildings, clusters, and the community. The probabilistic assessment of a 

building portfolio’s performance under specific hazard level (e.g. design hazard) poses 

significant challenges in characterizing the spatial variation and correlation of hazard 
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fields. A simulation-based hybrid methodology has been proposed to generate a spectrum 

of hazard scenarios of specific hazard level to capture the uncertainties in hazard demand. 

The lower level de-aggregation has been formulated as an inverse optimization problem to 

derive the minimum performance criteria for individual buildings in terms of fragility 

function parameters. Owing to different hazard characterizations, damage state definitions, 

and performance preferences under tornadoes and earthquakes, risk de-aggregation 

methodologies have been developed for communities under tornadoes and earthquakes. 

These methodologies shows that it is possible to design individual buildings by 

performance-based design with performance criteria calibrated with the performance 

requirement of the community as a whole. 

The second element of the decision-making framework is the pre-hazard retrofit 

strategy. Many communities in the U.S. have implemented or about to implement large-

scale community-level pre-hazard retrofit plans, either mandatory or voluntary, hoping to 

significantly enhance the performance of vulnerable existing building portfolios, protect 

the properties and occupants, and prevent detrimental consequences in future extreme 

hazards. However, it is unclear to which extent such large-scale retrofit plan could close 

the gap between the anticipated performance and the desired performance objective under 

specific hazard level, and more importantly. Further, it is unclear on how to design the 

retrofit plan such that the performance gap could be mostly closed with limited resources 

(e.g. budget and work crew). The proposed pre-hazard retrofit framework includes three 

steps: (1) defining building cluster resilience goals; (2) implementing risk de-aggregation 

to obtain the target performance criteria for individual buildings; and (3) developing 
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retrofit strategies by modeling the retrofit planning as an optimization problem and solving 

it by optimization tools. As Chapter 3 had given a thorough discussion of steps (1) and 2), 

this task focused on step (3). The retrofit planning problem has been formulated as a multi-

objective optimization problem, specifically, a multi-objective integer programming 

problem, as a community may interest in achieving more than one performance goal (e.g. 

economic loss and population dislocation). The final outcome is a group of optimal retrofit 

strategies defining the level of target performance for each building type in each zone. 

The third element of the decision-making framework regards the post-hazard 

reconstruction strategies. Destructive hazard events provide valuable opportunities for 

communities to re-think the performance level of current infrastructure systems and rebuild 

in a more rational way. However, few studies had been done to develop comprehensive 

reconstruction policies supporting building back better.  As the outcomes of these 

decisions would have a long-term impact on the hazard resilience, financial healthiness, 

and sustainability of communities, optimal reconstruction decisions should consider both 

the resilience and sustainability performance. It started with the introduction of post-hazard 

reconstruction decision-framework. Then, it extended the concept of life-cycle analysis to 

a cluster of buildings, which includes two key ingredients: 1) the length of building 

portfolio life-cycle and 2) the renewal rate of a building portfolio. It then formulated the 

life-cycle analysis of building portfolios in terms of the expected building portfolio life-

cycle cost and cumulative prospect value, which could consider the risk averseness of 

decision-makers. The building portfolio life-cycle analysis and reconstruction decision-

making have been applied to portfolios under seismic hazards. The example of rebuilding 
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Centerville after a severe earthquake has revealed that considering risk-averse of decision-

makers (by utilizing cumulative prospect value) could lead to higher reconstruction level.  

6.2  Conclusions 

The thorough quantitative assessment of building portfolios’ performance on both 

resilience and sustainability metrics, and the exploration of optimal decision-making 

strategies for building portfolios located in hazard-prone regions have provided some 

essential findings regarding decision-making in different stages, i.e. new construction, pre-

hazard retrofitting, and post-hazard reconstruction. While it is recognized that these 

findings are preliminary due to limited data and case studies, however, they provide a basis 

for future inquiries and studies. 

For New Construction Performance Criteria 

1. In resilience-based design, not Life-safety (LS), but Immediate Occupancy (IO) is 

considered as the major performance objective for buildings, which should be 

related to the overall community resilience goals. 

2. The links between the overarching community resilience goals and the performance 

objectives of individual buildings, could be built through a multilayered, cascading 

de-aggregation framework. 

3. Through a lower-level de-aggregation methodology, it is possible to derive a group 

of minimum fragility parameters that are ready to be applied to the development of 

new prototypes of residential buildings from performance-based design and form 

the basis for a new generation of design codes. 



 169 

4. The minimum performance criteria of buildings depend on the size of the 

community, in both tornado and seismic hazards, larger communities tend to have 

lower minimum performance criteria for individual buildings, given the same 

community-level resilience goal. 

 

For pre-hazard retrofit decision-making 

5. Resilience performance of portfolios in multiple aspects could be enhanced 

simultaneously by organized pre-hazard retrofitting strategies from a group of 

optimal strategies, from which decision-makers could select their strategy 

according to their preference over multiple performance metrics. 

6. At moderate budget level, communities have more flexibility on optimal retrofit 

strategies, i.e. a large number of feasible strategies is available to give a wide range 

of trade-off between two performance levels.  

7. Given a limited budget, optimal strategies tend to place the majority of retrofit 

actions in the zone with higher density under tornado hazards to maximize 

resilience performance. 

 

For Post-hazard Reconstruction Decision-making 

8. Post-hazard reconstruction should be planned from the perspective of the whole 

life-cycle of building portfolios to support building back better decisions that can 

enhance the performance of communities in future hazards. 
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9. Integrating the risk averseness into the portfolio life-cycle analysis will lead to 

higher reconstruction level and has the potential to unify the building portfolio 

resilience and sustainability requirements into one.  

10. The optimal reconstruction strategy is sensitive to the life-cycle length of building 

portfolios. Traditional treatment of infinite life-cycle length will overestimate the 

life-cycle impact and be too conservative in reconstruction. 

11. The optimal reconstruction decisions for individual buildings could be different 

from those for the portfolio as a whole. Such discrepancy may help communities 

develop financial incentives and policies. 

12. For regions susceptible to characteristic earthquakes, it is important to consider 

their non-uniform annual occurrence rates, which can greatly affect the optimal 

reconstruction strategies.  

 

6.3  Recommendations 

The research conducted in this dissertation has identified several topics worth 

further investigation as listed below. 

1. This study focused on the decision-making for individual buildings based on 

given cluster performance goals, thus skipped the upper-level risk de-

aggregation and decision-making. Studies are needed to explore the risk 

management of functionality clusters (e.g. building, transportation, utility 
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network), which would need a thorough understanding of the performance of 

each cluster as well as the interdependencies between them. 

2. While the decision-making framework for communities subjected to single 

hazard has been developed in this study, the proper consideration of multiple 

hazards (e.g. earthquake and flood) is in great need to better understand the 

interaction of multiple hazards, and their impact on optimal strategies. 

3. One assumption of this study is that the external hazards are stationary, which 

is problematic in some cases. For instance, due to climate change, the number 

and intensity of extreme hurricanes are increasing, thus assuming stationary 

hazard intensity and frequency becomes inappropriate. Proper treatment of such 

non-stationary hazards in the decision-framework is needed. 

4. One limitation of the portfolio life-cycle analysis in this study that it assumes 

the number of buildings within the communities to be invariable. However, 

communities in the real-world trend to expand in size due to population growth 

and economic development. Further studies are needed to integrate this into the 

portfolio life-cycle analysis and decision-making. 

5. This study focused on how the decision-making of the physical built 

environment could help communities achieve their resilience and sustainability 

goals. More studies are needed to assess and design non-engineering measures 

in assisting communities to achieve their performance goals. 

6. In the risk de-aggregation under seismic hazards, one assumption is that the 

failure probability of structural and non-structure components is independent. 
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More researches are needed to better model the correlation of failure mode 

between components and its effect on risk de-aggregation results and 

performance-based design of individual buildings. 
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Appendix A. Fragility Parameters for Residential Buildings 

Table A.1 Original fragility parameters (structural part) of each building type 

Bld. ID Fragility parameters 

DS1 DS2 DS3 DS4 

PQ RQ PS RS PT RT PO RO 

W1 0.32 1.01 0.80 1.05 2.47 1.07 6.05 1.06 

W2 0.50 0.93 1.25 0.98 3.86 1.02 9.45 0.99 

W3 0.50 0.84 1.25 0.86 3.86 0.89 9.45 1.04 

W4 0.40 1.01 1.00 1.05 3.09 1.07 7.56 1.06 

W5 0.86 0.97 2.14 0.90 6.62 0.89 16.2 0.99 

W6 0.48 0.91 0.96 1.00 2.88 1.03 8.40 0.92 

 

Table A.2 Original fragility parameters (non-structural drift sensitive) of each building type 

Bld. ID Fragility parameters 

DS1 DS2 DS3 DS4 

PQ RQ PS RS PT RT PO RO 

W1 0.50 1.07 1.01 1.11 3.15 1.11 6.30 1.14 

W2 0.50 0.98 1.01 0.99 3.15 1.02 6.30 1.09 

W3 0.50 0.89 1.01 0.91 3.15 0.90 6.30 1.04 

W4 0.50 1.07 1.01 1.11 3.15 1.11 6.30 1.14 

W5 0.86 1.01 1.73 0.97 5.40 0.93 10.80 1.03 

W6 0.48 0.96 0.96 1.05 3.00 1.07 6.00 0.93 
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Table A.3 Original fragility parameters (non-structural acceleration sensitive) of each building 
type 

Bld. ID Fragility parameters 

DS1 DS2 DS3 DS4 

PQ RQ PS RS PT RT PO RO 

W1 0.16 0.72 0.32 0.70 0.64 0.67 1.28 0.67 

W2 0.20 0.71 0.40 0.68 0.80 0.66 1.60 0.66 

W3 0.25 0.73 0.50 0.68 1.00 0.67 2.00 0.64 

W4 0.20 0.72 0.40 0.70 0.80 0.67 1.60 0.67 

W5 0.20 0.67 0.40 0.67 0.80 0.70 1.60 0.70 

W6 0.20 0.65 0.40 0.67 0.80 0.67 1.60 0.67 

 

Table A.4 Fragility parameters (structural part) of two enhanced levels for each occupancy class 

Occup. class Code level DS1 DS2 DS3 DS4 

    PQ RQ PS RS PT RT PO RO 

SF 
E2 0.60 0.80 1.81 0.81 6.05 0.85 15.12 0.97 

E1 0.50 0.80 1.51 0.81 5.04 0.85 12.60 0.97 

MF 
E2 1.03 0.81 3.11 0.88 10.37 0.90 25.92 0.83 

E1 0.86 0.81 2.59 0.88 8.64 0.90 21.60 0.83 

MH 
E2 0.70 0.91 1.38 1.00 4.15 1.03 12.10 0.92 

E1 0.58 0.91 1.15 1.00 3.46 1.03 10.08 0.92 

1. Assume the mean fragility parameter  P of E2 is 1.2 times that of E1 
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Table A.5 Fragility parameters (non-structural drift sensitive) of two enhanced levels for each 
occupancy class 

Occup. class Code level DS1 DS2 DS3 DS4 

    PQ RQ PS RS PT RT PO RO 

SF 
E2 0.50 0.85 1.01 0.88 3.15 0.88 6.30 0.94 

E1 0.50 0.85 1.01 0.88 3.15 0.88 6.30 0.94 

MF 
E2 0.86 0.87 1.73 0.89 5.40 0.96 10.8 0.94 

E1 0.86 0.87 1.73 0.89 5.40 0.96 10.8 0.94 

MH 
E2 0.48 0.96 0.96 1.05 3.00 1.07 6.00 0.93 

E1 0.48 0.96 0.96 1.05 3.00 1.07 6.00 0.93 

 

Table A.6 Fragility parameters (non-structural acceleration sensitive) of two enhanced levels for 
each occupancy class 

Occup. class Code level DS1 DS2 DS3 DS4 

    PQ RQ PS RS PT RT PO RO 

SF 
E2 0.36 0.73 0.72 0.68 1.44 0.68 2.88 0.68 

E1 0.30 0.73 0.60 0.68 1.20 0.68 2.40 0.68 

MF 
E2 0.36 0.73 0.72 0.68 1.44 0.68 2.88 0.68 

E1 0.30 0.70 0.60 0.67 1.20 0.67 2.40 0.68 

MH 
E2 0.36 0.73 0.72 0.68 1.44 0.68 2.88 0.68 

E1 0.30 0.65 0.60 0.67 1.20 0.67 2.40 0.67 

1. Assume for E1 and E2,  P is 1.2 and 1.44 times that of W2  
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Appendix B. Capacity Parameters for Residential Buildings 

Table B.7 Original capacity parameters of each structural type 

Bld. ID Yield capacity point Ultimate capacity 

point 

Dy (in) Ay (g) Du (in) Au (g) 

W1 0.16 0.10 2.35 0.25 

W2 0.24 0.20 4.32 0.60 

W3 0.36 0.30 6.48 0.90 

W4 0.24 0.20 4.32 0.60 

W5 0.16 0.10 2.35 0.25 

W6 0.18 0.15 2.16 0.30 

 

Table B.8 Capacity parameters for enhanced performance of each structural type 

Occu. class 
 

Code 

level 
 

Yield Capacity Point Ultimate Capacity Point 

Dy (in) Ay (g) Du (in) Au (g) 

SF 
E2 0.60 0.50 13.81 1.50 

E1 0.48 0.40 11.51 1.20 

MF 
E2 0.95 0.60 15.00 1.50 

E1 0.63 0.40 12.53 1.00 

MH 
E2 0.30 0.25 3.50 0.50 

E1 0.24 0.20 3.00 0.40 

 


