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a b s t r a c t

The hydrological community often turns to widely available spatial datasets such as the NRCS Soil Survey
Geographic database (SSURGO) to characterize the spatial variability of soil properties. When used to spa-
tially characterize and parameterize watershed models, this has served as a reasonable first approxima-
tion when lacking localized or incomplete soil data. Within agriculture, soil data has been left relatively
coarse when compared to numerous other data sources measured. This is because localized soil sampling
is both expensive and time intense, thus a need exists in better connecting spatial datasets with ground
observations. Given that hydrogeophysics is data-dense, rapid, non-invasive, and relatively easy to adopt,
it is a promising technique to help dovetail localized soil sampling with spatially exhaustive datasets. In
this work, we utilize two common near surface geophysical methods, cosmic-ray neutron probe and elec-
tromagnetic induction, to identify temporally stable spatial patterns of measured geophysical properties
in three 65 ha agricultural fields in western Nebraska. This is achieved by repeat geophysical observations
of the same study area across a range of wet to dry field conditions in order to evaluate with an empirical
orthogonal function. Shallow cores were then extracted within each identified zone and water retention
functions were generated in the laboratory. Using EOF patterns as a covariate, we quantify the predictive
skill of estimating soil hydraulic properties in areas without measurement using a bootstrap validation
analysis. Results indicate that sampling locations informed via repeat hydrogeophysical surveys, required
only five cores to reduce the cross-validation root mean squared error by an average of 64% as compared
to soil parameters predicted by a commonly used benchmark, SSURGO and ROSETTA. The reduction to
five strategically located samples within the 65 ha fields reduces sampling efforts by up to �90% as com-
pared to the common practice of soil grid sampling every 1 ha.

� 2018 Elsevier B.V. All rights reserved.

1. Introduction

Soil spatial datasets are important in different contexts. For
instance, the hydrological community often turns to widely avail-
able datasets such as the NRCS Soil Survey Geographic database
(SSURGO) (Soil Survey Staff, 2016) to characterize the spatial vari-
ability of soil across a field, watershed, or landscape of interest.
When used to spatially characterize and parameterize watershed
models (e.g. Soil and Water Assessment Tool, Neitsch et al.,
2002), this approach has served as a reasonable first approximation
when lacking localized soil data. Within agriculture, soil informa-
tion plays a key role in the effort to increase efficiency in water
and nutrient use, and in this effort an ever-increasing amount of
information is being collected by farming implements (e.g. seed
planters, weed sprayers, and yield monitors). However, in both

use cases (watershed modeling and farming operations) soil infor-
mation is often either left qualitative or informed from SSURGO as
localized soil sampling is both expensive and time intense, partic-
ularly as average farm size continues to increase in the USA. Given
that hydrogeophysical methods are data-dense, rapid, non-
invasive, and relatively easy to adopt, they are valuable approaches
to help dovetail localized soil sampling with spatially exhaustive
datasets (Binley et al., 2015). Indeed, much work has been done
to refine large scale surveys (i.e. SSURGO) as well as to identify
and delineate smaller scale soil units (Doolittle and Brevik, 2014;
Parsekian et al., 2015).

In order to parameterize watershed models one common prac-
tice is to combine SSURGO data (e.g. texture and bulk density) with
a pedotransfer function (PTF) like ROSETTA (Schaap et al., 2001) to
generate the required soil hydraulic parameters. While serving as a
reasonable first approximation, this can be problematic for several
reasons. First, soil properties provided by SSURGO (e.g. texture and
bulk density) often are sourced from a limited number of soil cores
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extracted within a county. Land use and other local factors are well
known to impact soil properties on the field to subfield level
(Blanco-Canqui and Lal, 2007; Cambardella et al., 1994). Second,
SSURGO zones are often delineated with covariates that are not
necessarily causally linked with soil hydraulic properties. For
instance, vegetation differences observed from aerial photographs
are not necessarily the result of soil hydraulic properties driving
differences in soil water content (SWC) but rather differences
may be due to soil chemical properties (cation exchange capacity,
pH, etc.). Lastly, soil properties may be gradational within a
SSURGO zone due to topography-driven soil formational processes
(Moore et al., 1993) as opposed to steep transitions.

Soil water content is well-known to govern key hydrological
processes (runoff, infiltration, irrigation, drainage, etc.). Within
agriculture, SWC is being aggressively monitored and managed
(Irmak et al., 2010) across large areas and on a spatial scale finer
than most current watershed models (Neitsch et al., 2002). This
is in part due to water conservation regulation motivating farm
management operations to reduce irrigation pumping volumes
(Butler et al., 2016).

In need of finer scale information, additional information such
as apparent electrical conductivity (ECa) and topography are com-
mercially produced and/or utilized to create irrigation manage-
ment zones for producers. In areas with similar ECa or elevation,
soil properties are assumed to be reasonably similar and efforts
are focused on sampling areas with variations. However, these
covariates often produce noisy relationships with SWC patterns
in part due to ECa being a function of not just SWC but also soil
physical properties, solute concentration, and temperature
(Haghverdi et al., 2015; Rodríguez-Pérez et al., 2011; Samouelian
et al., 2005; Zhu et al., 2010). Mapping ECa over a range of temper-
ature and SWC can lead to different maps due to these confounding
factors (McCutcheon et al., 2006; Zhu et al., 2010). Despite this, the
industry standard remains to produce one map per field. Here, we
survey over a range of conditions, and then statistically contextu-
alize the observed relative differences in the measured geophysical
property throughout the field.

Based on our knowledge that soil migration/formation pro-
cesses and soil water content redistribution often follow the same
topographic gradients (albeit on different timescales) (Minasny
and McBratney, 2016), we hypothesize that the time series of
high-resolution geophysical measurements will provide the oppor-
tunity to derive high-resolution spatial maps of soil hydraulic
properties which may later be used in more accurate quantitative
modeling of soil water fluxes. Previous work has shown SWC pat-
terns to be good predictors of soil physical properties (Korres et al.,
2010; Pedrera-Parrilla et al., 2016), and while these soil physical
properties are often correlated with soil hydraulic parameters
(Patil and Singh, 2016; Vereecken et al., 2010; Wosten et al.,
2001) a gap exists in explicitly linking spatial SWC patterns and
soil hydraulic parameters. Addressing this gap will likely better
constrain flux estimates as a wide range of fluxes can occur within
a single soil textural class (Groenendyk et al., 2015).

In order to approximate and quantify the spatial pattern of the
time history of SWC, we utilize two common hydrogeophysical
methods; SWC measured via a cosmic ray neutron probe (CRNP),
and apparent bulk electrical conductivity (ECa) measured by elec-
tromagnetic induction (EMI). These measurements were taken
over a wide range of SWC conditions in order to utilize an empir-
ical orthogonal function (EOF) with the purpose of identifying tem-
porally stable sub-field (less than 1 km2) spatial patterns. Our
study site consisted of three 65 ha agricultural fields located on
the western fringe of the United States Corn Belt in the state of
Nebraska. This selected study area is an ideal location for testing
our hypothesis in a real world setting for three reasons. 1) The
fields are located in a river valley where soil units are often hetero-

geneous and create complex patterns due to fluvial formational
processes. 2) The proximity to the river valley makes the fields
highly utilized for commercial agriculture via sprinkler irrigation.
3) Given the aridity of the region and demand for water resources
precision agriculture techniques are actively being tested and
adopted for optimizing irrigation management. This natural
resource dependent socio-economic environment is a critical loca-
tion for demonstrating the validity and utility of these approaches.

The primary objectives of this study are to: 1) identify tempo-
rally stable spatial patterns using hydrogeophysical methods and
statistical techniques, 2) measure and compare water retention
functions of soil cores extracted from the range of identified SWC
regions that are relatively wet, average, and dry, and 3) quantify
and benchmark the skill of using identified SWC patterns as a
covariate to predict soil hydraulic parameters. The objectives were
carried out on three fields with varying soil types and topography
in the study region of western Nebraska. Results of this analysis are
then compared to water retention functions determined from a
standard and widely used benchmark, SSURGO and ROSETTA.
Lastly, a framework for carrying out these objectives in novel envi-
ronments is presented, specifying the likely number of hydrogeo-
physical maps and soil cores needed.

2. Materials and methods

2.1. Description of study sites

The study area is located in western Nebraska where the South
Platte River enters the state (Fig. 1) (N 41.007�, W 102.192�). The
three study sites are each approximately 65 ha and 10 km apart
primarily under irrigated maize production. The study area is
semi-arid where annual crop referenced (maize) evapotranspira-
tion (ETc) is significantly higher than precipitation (P) (HPRCC,
2016). The 10-year average annual P is 440 mm/yr and average
annual ETc is 820 (mm/yr), as measured by the High Plains Regio-
nal Climate Center weather station (HPRCC, 2016) located within
the study area near Brule, Nebraska. Data obtained from SSURGO
(Soil Survey Staff, 2016) indicates that soil texture in the area falls
within two USDA textural classes: sandy loam and loam. LIDAR
elevation rasters at 1 m resolution for each field were obtained
from the USGS (USGS, 2016). Using the elevation data, relative ele-
vation was calculated by subtracting the lowest elevation in the
field from all elevations in order to investigate the influence of
local topography.

2.2. Near surface hydrogeophysics

2.2.1. Electromagnetic induction
Between March 2016 and May 2017, a minimum of three

hydrogeophysical surveys were collected at each of the three study
sites using an all-terrain vehicle (ATV). See Table 1 for exact dates
of data collection. Bulk electrical conductivity (ECa) maps were col-
lected using a Dualem-21S electrical magnetic induction (EMI)
sensor (DUALEM, Milton, Canada). The EMI sensor has dual-
geometry receivers at separations of 1 and 2.1 m from the trans-
mitter, which provided four simultaneous depth estimates of ECa
(mS m�1) every second (Dualem Inc., 2013). Here we use the sen-
sor with an exploration depth of �1 m. The EMI boom was towed
behind an ATV on a plastic sled at speeds of 8–15 km hr�1 with 8–
10 row spacing (�7–9 m) taking about 90 min to complete each
survey. A Hemisphere GPS XF101 DGPS (Juniper Systems, Inc.,
Logan, UT) unit recorded the location of each measurement. Fol-
lowing basic quality assurance and quality control of the raw ECa
data (Franz et al. 2011), a spatial map with 5 by 5 m resolution
was created using an inverse-distance weighting procedure. We

J. Gibson, T.E. Franz / Journal of Hydrology 561 (2018) 372–383 373



note here that temporal differences in ECa mapping stem from soil
temperature, SWC, and soil solute concentration (Franz et al.,
2015; Robinson et al., 2009). SWC has been shown to account for
approximately 50% of this variability (Brevik et al., 2006). We take
advantage of this fact here to use changes in ECa as an indicator of
relative change in SWC spatial patterns.

2.2.2. Cosmic-ray neutron probe
The mobile CRNP has been used to quantify spatial patterns of

SWC across a range of spatial scales, from transects across the state
of Hawaii to mesoscale maps around Tucson Arizona and central
Nebraska (Chrisman and Zreda, 2013; Desilets et al., 2010; Franz
et al., 2015). Here we use the mobile CRNP to map the spatial vari-
ability of SWC within each 65 ha field over relatively short time
periods (�1.5 h) using the same ATV and collection pattern as
described above. We also note that minimal vegetation present
at the time of sampling (<0.5 kg/m2) due to crop planting and har-
vest schedules on site. The mobile CRNP records epithermal neu-
tron intensity integrated over one minute counting intervals. The
change in epithermal neutron intensity is inversely correlated to
the mass of hydrogen in the measurement volume (Zreda et al.,
2012). The authors note that SWC changes are by far the largest
change in hydrogen mass (McJannet et al., 2014). Numerous vali-

dation studies across the globe (Bogena et al., 2013; Franz et al.,
2016, 2011; Hawdon et al., 2014) have shown the CRNP to have
area-average measurement accuracies of root mean square errors
(RMSE) less than 0.03 cm3 cm�3 against a variety of industry stan-
dard SWC point scale probes. The measurement volume is roughly
a disk, with a �130–250 m radius and a penetration depth of
0.15–0.40 m (Köhli et al., 2015) depending on local conditions
(e.g. elevation, water vapor, soil water content etc.). For simplicity,
a constant penetration depth of 0.3 m was assumed for all surveys.
In order to provide a SWCmap, first a spatial map of neutron inten-
sity was estimated, then a calibration function was applied follow-
ing details in Franz et al. (2015) for use in agricultural fields. We
note that if spatial patters are of only of interest, then the spatial
neutron field could be used directly. However, the quantitative
difference in SWC patterns may provide insight to the investigator
to decide if differences between surveys are meaningful, whereas
differences in neutron counts may be opaque. The neutron inten-
sity map is created in two steps. First, a drop-in-the-bucket prepro-
cessing step is applied (Chan et al., 2014), where a dense grid is
generated (here 20 by 20 m) and all raw data points are found
within a certain radius (here 50 m). Then, the average of all raw
data found within the search radius is assigned to the grid center.
This oversampling approach is necessary for sharpening the image

Fig. 1. Location of the three study fields in Nebraska (state border in black) and SSURGO boundaries (white lines). T1S1 is the field furthest west, T1S3 is in center and T1S4 is
furthest to the east.

Table 1
Summary of geophysical survey dates and explained variance of the 1st EOF.

Field CRNP
Survey Dates

Explained Variance
of 1st EOF (%)

ECa
Survey Dates

Explained Variance
of 1st EOF (%)

T1S1 2016: 03/11, 03/22, 05/09 2017: 05/02, 05/03 73.3 2016: 03/11 2017: 05/02, 05/03 95.9
T1S3 2016: 03/11, 03/22, 06/07, 06/08 2017: 05/02, 05/03 65.8 2016: 03/11 2017: 05/02, 05/03 91.4
T1S4 2016: 03/11, 03/22, 06/07, 06/08, 10/16, 10/17 2017: 05/02 67.1 2016: 03/11 2017: 05/02, 05/03 80.6

374 J. Gibson, T.E. Franz / Journal of Hydrology 561 (2018) 372–383



quality and is a common strategy used in remote sensing analyses
(Chan et al., 2014) when overlapping area average observations are
collected, as is the case with the CRNP in this study. Next, an
inverse-distance-weighted approach is used on the resampled
20-m grid to provide the 5-m neutron intensity estimate. Finally,
the neutron intensity gridded estimate is converted to SWC follow-
ing Franz et al. (2015). The authors refer the reader to the rapidly
growing CRNP literature (see Andreasen et al., 2017; Zreda et al.,
2012) in lieu of providing full details of the methodology here.

2.3. Soil hydraulic property measurement

In each field, up to 18 soil cores were extracted at locations that
encompassed the range of variability determined by the geophysi-
cal surveys and elevation (see supplementary data (DS02) for core
locations). The sampling strategy was informed based of visual
inspection of the maps (EOF and elevation), and sample locations
were prioritized based on: 1) ensuring that the numerical scale of
each data source had at least three locations sampled in the high,
low, and mid values, 2) areas were avoided near known distur-
bances in soil (e.g. irrigation recirculation pits, center pivot roads)
and 3) large areas with similar EOF values were prioritized over
small areas with significant variability. These cores were undis-
turbed and extracted at a depth of 20 cm, inside a steel cylinder of
volume 250 cm3 with a height of 5 cm (UMS, GmbH, Munich,
Germany). Cores were placed in cold storage (4�C) until they were
sampled in the laboratory. Water retention data was determined
using two Decagon devices: a HYPROP and a WP4C to cover a wide
range of soil tension values. The combination of both devices has
been shown to produce reasonably continuouswater retention data
for a range of soil textures (Schelle et al., 2013). The HYPROP is a
benchtop evaporation system that produces continuous measure-
ment of both SWC and soil tension from saturation (pF � 0) to a
pF of 3, where pF is the log10 of the absolute value of soil tension
in units of cm. The WP4C utilizes the chilled mirror technique
(Gee et al., 1992; Scanlon et al., 2002) and has ameasurement range
frompF 3 to pF 6, whichwas used tomeasure two points near a pF of
4.2 (typically one below and one above). Water retention data was
fit using the constrained van Genuchten-Mualem model (Mualem,
1976; vanGenuchten, 1980). Saturated hydraulic conductivity (Ksat)
measurements were taken on the same core using a Decagon KSAT
device under falling head. Soil bulk densities were taken after soil
hydraulic parameters were measured, by dividing the dried mass
(dried at 105 �C for 24 h) by the known volume of the core.
Saturated water contents (hs, cm3 cm�3) were calculated by:

hs ¼ 1� qs

qg

 !
ð1Þ

where qs was measured soil dry bulk density (g cm�3) and qg is
mineral grain density, assumed here as 2.65 g cm�3. Because hs is
a direct conversion of bulk density, only bulk density will be corre-
lated with environmental covariates hereafter. Although bulk den-
sity can be a dynamic parameter (e.g. land management changes,
compaction by traffic, erosion) we note here that conditions were
fairly consistent over the approximately 1 year the surveys were
conducted over. This combined with the extracted depth of 20 cm
we do not expect significant changes to have occurred.

The remainder of the van Genuchten-Mualem model (Mualem,
1976; van Genuchten, 1980) soil hydraulic model is:

hðhÞ ¼ hr þ hs�hr
ð1þjahjnÞm ; h < 0

hs; h P 0

(
ð2Þ

KðSeÞ ¼ Ksat � S1=2e � ½1� ð1� S1=me Þm�2 ð3Þ

where h is SWC (cm3 cm�3); hr (cm3 cm�3) and hs (cm3 cm�3) are
residual and saturated SWC, respectively; h (cm) is pressure head;
K (cm day�1) and Ksat (cm day�1) are unsaturated and saturated
hydraulic conductivity, respectively; and Se is saturation degree
(–) calculated as:

Se ¼ ðh� hrÞ
ðhs � hrÞ ð4Þ

With respect to the fitting factors, a (1/cm) is inversely related
to air entry pressure, n (–) measures the pore size distribution of a
soil with m = 1–1/n, and l (–) is a parameter accounting for pore
space tortuosity and connectivity, assumed to be equal to 0.5 here.

2.4. Statistical methods

2.4.1. Empirical orthogonal function (EOF)
To identify the spatial variability of ECa from EMI measure-

ments and SWC from CRNP measurements, an EOF analysis was
used on both the EMI ECa and CRNP SWC geophysical property
maps. Full details on the multivariate statistical EOF analysis are
provided in previous literature (Korres et al., 2010; Perry and
Niemann, 2007) and only a summary is provided here. The EOF
analysis decomposes the observed SWC and ECa variability mea-
sured by the hydrogeophysical surveys into a set of orthogonal
spatial patterns (EOFs), which are invariant in time, and a set of
time series called expansion coefficients (ECs), which are invariant
in space (Perry and Niemann, 2007). Multiplication of the EOFs and
ECs will exactly reconstruct the original data. Often the number of
necessary coefficients (i.e. eigenvectors) to reconstruct most of the
data is less than the original dataset (i.e. determined by the ranked
eigenvalues), thus the procedure can be used to reduce the dimen-
sionality of the dataset while preserving the key information, here
dominant geophysical property spatial patterns. The authors note
that EOF is nearly identical to Principal Component Analysis
(PCA) save the splitting of axes of variation into spatial and tempo-
ral coefficients instead of arbitrary linear combinations.

Using this approach, the EOF analysis is able to contextualize the
behavior of geophysical property at any given point in the field rel-
ative to the mean geophysical property of the field as a whole. For
example, points that are persistently dry relative to the mean will
be represented with a negative reprojected coefficient. Similarly,
points that are persistently wet relative to the mean will be repre-
sentedwith a positive coefficient. Themagnitude of each coefficient
is assigned based on the difference between the mean behavior of
the field and themean behavior of each respective point. Each point
is then spatially reprojected and a continuous surface is created.
EOF surfaces from the ECa and CRNPmapping along with the LIDAR
elevation data will serve as the three environmental covariates uti-
lized in this study following (Franz et al., 2017).

2.4.2. Regression of environmental covariates and soil hydraulic
parameters

Following the EOF analysis, measured soil hydraulic parameters
were regressed with the environmental covariates using a simple
linear model to determine correlation. This provides the ability
to spatially estimate soil hydraulic parameters using the exhaus-
tive spatial datasets. Similar approaches have been carried out in
other studies (Pedrera-Parrilla et al., 2016) referring to this as
PCA instead of EOF. We note here that because the EOF analysis
provides results that are both invariant and incommensurate,
regressions from one study field will not be comparable to another.

2.4.3. Bootstrap validation
In order to determine 1) the accuracy of the regressed

parameter relative to measured parameter and 2) how many
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Fig. 2. Repeat CRNP surveys taken at T1S4 (approximately 65 ha in size). Black lines indicate SSURGO soil unit boundaries. Black circles indicate locations where soil samples
were extracted in the field. Surveys are presented in chronological order. See Table 1 for survey dates. See supplementary data 1 for survey data.
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samples are necessary for a RMSE to converge, we utilized a boot-
strap validation analysis using the statistical package R (Version
3.3.3 2017). This was carried out by randomly selecting n-1 sam-
ples (where n is the number of samples extracted at each study
site), building a simple linear model, and then determining the
RMSE of the remaining validation samples relative to the model
predicted value. This process was repeated 1000 times, and then
repeated again with n-2 for the training set and so on until only

3 samples were used as a training set, with the rest used as a val-
idation set. Results are also contextualized with a comparison of
using SSURGO soil texture (sand, silt, and clay percentages) and
bulk density data as inputs to the ROSETTA pedotransfer function
model to estimate soil hydraulic parameters. We assumed this
framework is a reasonable benchmark given the widespread use
of ROSETTA (Schaap et al., 2001) with the hydrological and agricul-
tural communities.

Fig. 3. The underlying spatial patterns identified by the 1st EOF (T1S4 - approximately 65 ha in size). Initially, as more surveys are included into the EOF analysis, new
features emerge in the spatial pattern. This is followed by the spatial pattern converging with only minor changes in the spatial boundaries. Black lines are SSURGO soil unit
boundaries and black circles are locations where soil cores were extracted. See supplementary data 1 for survey data.
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3. Results and discussion

3.1. Near surface hydrogeophysical surveys

Fig. 2 illustrates seven CRNP rover surveys along with the
accompanying calculated 1st EOF within field T1S4, serving as an
example case to present the EOF result along with the underlying
spatial data. Table 1 presents geophysical survey summary data
collected in each field, along with the associated statistical infor-
mation from the EOF analyses. In the case of T1S4, the southwest
edge of the field tends to be relatively dry (SWC 0.15–0.20 cm3

cm�3). The north central part of the field tends to be relatively
wet (SWC 0.35–0.40 cm3 cm�3) when compared to the southwest
edge of the field. Both of these patterns are highlighted in the 1st
EOF result demonstrating the efficacy of the method. We note that
similar results were found in the other two field sites so only the
EOFs of the geophysical properties will be presented. A supplemen-
tal table (DS01) is provided with the 5 m processed data for all sur-
veys and study sites.

While there are similarities amongst all the CRNP surveys, the
location of the wettest areas varies from survey to survey. This
observation underscores the need for repeat geophysical mapping.
To highlight this further, Fig. 3 illustrates how the EOF analysis
evolves as more maps are added into the analysis. Of particular
note we find that between the two and three survey analysis,
new wet features emerge. As more surveys are added in, the
boundaries of EOF features tend to converge with the five and
seven survey EOF analyses being fairly similar. This underscores
the need for multiple surveys in the attempt to link hydrogeophys-
ical techniques with soil properties, particularly where fine scale
information is desired for agricultural management decisions.

3.2. Soil hydraulic parameter measurements

Raw observations from the soil water retention function (WRF)
measurements are presented in Fig. 4. While data obtained from
SSURGO indicated 2 textural classes for each field, we note the
wide range of water retention functions. The nature of an evapora-
tion experiment provides significantly denser data in the relatively
wet portion of the WRF which is critical for constraining its shape.
A wide range of soils were collected during the sampling effort as
reflected by the spread of WRFs and sample hydraulic property
results can be found in the supplementary data. Measurement of
saturated hydraulic conductivity produced a wide range of values.
This is consistent with similar studies often finding a range of at
least one order of magnitude (Gwenzi et al., 2011; Papanicolaou
et al., 2015). Residual water content only ranged from 0 to 0.05
cm3 cm�3 with most samples set to 0 in the fitting process. Due
to the lack of variability in residual water content, this variable
was not regressed against the environmental covariates.

3.3. Separation of WRFs using hydrogeophysics

Fig. 5 presents the fittedWRFs of cores extracted from each field.
In both T1S1 and T1S4, both hydrogeophysical methods were able
to separate the range of WRFs. For example, in the upper right plot,
theWRFs with a low CRNP EOF value (represented with a red color)
group together and those with a high CRNP EOF value (represented
with a blue color) group together. The coarser textured samples
haveWRFs that group lower and finer samples group higher, which
was consistent with the EOF values. T1S3 had little spatial variabil-
ity in the WRFs sampled across the field (except for bs), and as a
result proved difficult for any method to describe the variability.
This speaks to the limitation of the method – in fields with no to
minimal soil property variability, the hydrogeophysical methods

may not provide a robust correlation to predict small variations.
We also note that in this same field, WRFs of coarse textured soil
samples were observed in higher relative elevations and vice versa
for finer textured soils. However, this is contrasted with the oppo-
site trend observed in the other two fields and this highlights the
challenge of predicting small variation in soil properties from eleva-
tion alone. We also note that the performance of relative elevation
was likely enhanced by the hydrogeophysical surveys informing
ideal sampling locations. If relative elevation was used as the only
covariate, performance may have been reduced.

Given that the environmental covariates were able to separate
fitted WRFs, we further investigated the correlation between the
environmental covariates, the laboratory estimated WRF parame-
ters, and bulk density. However, we note that correlations may
be somewhat limited or weak due to equifinality associated with
the fitting process and nature of soil water flow (Beven and
Freer, 2001; Binley et al., 1989) as well as the scale mismatch
between the geophysics measurement volumes (5 by 5 m) and
the extracted soil cores. Correlations between all three covariates
are presented in Table 3. The three environmental covariates were
all correlated amongst themselves (Pearson’s r ranging from 0.63
to 0.95). Given the tendency for topographically low areas to typ-
ically be relatively wet and often the most clay rich in the field,
the results were not unexpected.

Correlations between the environmental covariates and both a
and Ksat were low ranging from 0.1 to 0.45. Both of these parame-
ters (a and Ksat) are defined in the wet range of SWC and previous
work has shown that both parameters drive fluxes under wet con-
ditions (Jiménez-Martínez et al., 2009; Wang et al., 2015; Wang
and Franz, 2015). Because high SWC within a field limits the prac-
tical feasibility of mapping (too wet for a vehicle to travel), we are
unable to capture geophysical patterns on the very wet end of the
curve. The lack of our ability to map in wet conditions may limit
our ability to predict these parameters (a and Ksat) spatially and
deserves more attention in future studies. We speculate the spatial
pattern for the very wet end is likely different (follows topography
more closely) and persists for a much shorter period of time. Future
work should focus on collecting spatial datasets during these wet
short time periods using unmanned aerial systems and multi-
spectral data as summarized by (Minasny and McBratney, 2016).

Fig. 4. Data cloud of all laboratory measurements from both the HYPROP (hollow
circles) and the WP4C (solid squares) for 53 samples collected within the three field
sites. Water retention functions are then fitted to each set of observations to
estimate the van Genuchten parameters: hs, hr, n and a. See supplementary data 2
for van Genuchten parameter fit of each sample.
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3.4. Bootstrapping validation

Results of the bootstrapping validation are illustrated in Fig. 6.
In general, most cross validation RMSE reduction values converged
after 5 samples selected within the training set of up to 18 samples
per site. This is a significant finding considering each site was
approximately 65 ha. In most agricultural soil sampling, �1 ha grid
sampling is recommended (http://cropwatch.unl.edu/ssm/soil-
sampling), requiring 65 samples to cover this area. This highlights
the potential savings in cost, time, and labor of a priori hydrogeo-
physical mapping being able to reduce the sampling effort by up to
90%. Often, densely gridded strategies are carried out in order to
ensure the variability in a field is captured, given that the underly-
ing spatial variability is unknown. However, by using the proposed
environmental covariates, the range of the variability can be
rapidly identified within a field, and then sampled strategically.
We note that additional research is needed to validate this finding

of 5 sample locations per 65 ha, particularly where underlying soil
heterogeneities and correlation length scales of soil texture vary.

Additional summary statistics are presented in Table 2. To serve
as a reference benchmark to compare RMSE values, average
parameters were calculated from all samples in each field. RMSE
reduction relative to SSURGO was calculated as:

RMSE Reduction ¼ 1� RMSEcovariate

RMSESSURGO

� �
� 100 ð5Þ

Where RMSEcovariate is the RMSE using the covariate prediction
obtained by bootstrapping (with a training set of 17 samples), and
RMSESSURGO using the SSURGO based PTF prediction. Across all
parameters, RMSE values were reduced on average by 64% relative
to predictions from SSURGO (and ROSETTA where applicable). Even
in fields with low correlations between the parameters and envi-
ronmental covariates, low RMSEs were also obtained. In these cases,

Fig. 5. Water retention functions of extracted cores from 3 study sites. Color of each line is a function of each environmental covariate (CRNP EOF, ECa EOF, and relative
elevation) at each sampled location. Dashed lines are water retention functions predicted by ROSETTA from texture and bulk density data from SSURGO for the dominant soil
types in each field.
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while the environmental covariates may not have served as a better
estimate relative to using the mean value of measured parameters,
they likely reduced the number of samples necessary to obtain a
representative mean value compared to a gridded sampling strat-
egy. Therefore, even in fields with relatively little soil variability,
these methods are still useful to ensure the range of soil variability
is sampled.

3.5. Prediction of Ksat and a parameters

Given the practical restrictions of driving a vehicle over very
wet soil, the geophysical methods were unable to capture the
extreme wet end of the range of SWC. We speculate that capturing
the very wet spatial pattern may be key to spatial prediction of

both Ksat and a as these parameters control the magnitude of fluxes
at the wet end of soils. With this in mind, future work may test this
hypothesis by placing a CRNP on a rotating center pivot lateral that
is able to more efficiently move through the field under wet condi-
tions. In non-irrigated areas, a dense SWC sensor grid may be able
to capture spatial patterns. Using the combination of these envi-
ronmental covariates to inform placement of sensors shows some
promise to aid in experimental design (Barker et al., 2017).

3.6. Informing management decisions in agriculture

Current agricultural practices are shifting to finer and finer scale
management given the advent of Real Time Kinematic GPS. Soil
hydrology is often a key underlying factor in yield differences

Fig. 6. Bootstrap validation results where the 3 environmental covariates (CRNP EOF, ECa EOF, and elevation) were regressed against 1000 randomly selected training sets of
sizes 3 to n � 1.
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within a field. However, most producers lack soil data that is of the
same resolution that their planters, sprayers, and yield monitors
provide. While commercial products such as VERIS (Tualatin, OR)
exist to help bridge this gap, such technologies currently only
map each field once, and are therefore more susceptible to
temperature and soil solute differences impacting ECa and soil
property correlation.

Numerous commercial modeling efforts (The Climate Corpora-
tion, Encirca, ClearAg etc.) are currently attempting to inform both
SWC and nitrogen management. As these models and others
capable of dense geospatial simulation (e.g. Foster et al., 2017)
move toward subfield simulation, it is critical that they are able
to spatially map soil hydraulic parameters. At a minimum, the
methods presented here could help inform field calibration sites
aiding in model development, calibration, validation, and evalua-
tion. Hydrogeophysics may provide a critical link to inform the

number and location of SWC sensors in the effort to connect point
sensors with the information spatially discretized models need.
Here we illustrate its utility to bound the variability of WRFs,
and even considering equifinality we demonstrate reasonable sta-
tistical skill when predicting parameters. Previous work has con-
nected time-lapse EMI observations with predicting soil
properties and states in variably saturated landscapes (Franz
et al., 2017). This paper serves as a next step connecting spatial
observations of state variables with parameters that control water
flux.

3.7. Framework for use at novel sites

As best practice for use in novel settings we recommend the fol-
lowing procedure. Conduct a minimum of four hydrogeophysical
surveys over a range of wet and dry field conditions. Franz et al.

Table 2
Correlation matrices of environmental covariates and soil hydraulic parameters. Correlations greater than 0.6 are marked in bold.

T1S1
Relative Elevation CRNP EOF ECa EOF Ksat a n Bulk Density

Relative Elevation – �0.88 �0.81 0.02 0.10 0.72 0.67
CRNP EOF �0.88 – 0.95 �0.11 �0.06 �0.64 �0.67
ECa EOF �0.81 0.95 – 0.01 0.08 �0.67 �0.78
Ksat 0.02 �0.11 0.01 – 0.57 �0.16 �0.41
a 0.10 �0.06 0.08 0.57 – �0.06 �0.26
n 0.72 �0.64 �0.67 �0.16 �0.06 – 0.75
Bulk Density 0.67 �0.67 �0.78 �0.41 �0.26 0.75 –

T1S3
Relative Elevation CRNP EOF ECa EOF Ksat a n Bulk Density

Relative Elevation – 0.63 0.41 �0.19 0.15 �0.21 �0.72
CRNP EOF 0.63 – 0.63 �0.17 �0.41 �0.45 �0.53
ECa EOF 0.41 0.63 – �0.35 �0.43 �0.43 �0.23
Ksat �0.19 �0.17 �0.35 – 0.55 �0.06 �0.20
a 0.15 �0.41 �0.43 0.55 – 0.11 �0.20
n �0.21 �0.45 �0.43 �0.06 0.11 – 0.44
Bulk Density �0.72 �0.53 �0.23 �0.20 �0.20 0.44 –

T1S4
Relative Elevation CRNP EOF ECa EOF Ksat a n Bulk Density

Relative Elevation – �0.78 �0.81 �0.12 0.45 0.61 0.64
CRNP EOF �0.78 – 0.89 0.27 �0.23 �0.89 �0.85
ECa EOF �0.81 0.89 – 0.06 �0.18 �0.86 �0.78
Ksat �0.12 0.27 0.06 – 0.08 �0.06 �0.18
a 0.45 �0.23 �0.18 0.08 – 0.28 0.11
n 0.61 �0.89 �0.86 �0.06 0.28 – 0.77
Bulk Density 0.64 �0.85 �0.78 �0.18 0.11 0.77 –

Table 3
Summary statistics for the cross-validation analysis.

T1S1 T1S3 T1S4

Parameter Metric SSURGO Relative
Elevation

CRNP
EOF

ECa
EOF

SSURGO Relative
Elevation

CRNP
EOF

ECa
EOF

SSURGO Relative
Elevation

CRNP
EOF

ECa
EOF

Bulk Density Average (g/cm3) 1.60 1.60 1.60 1.60 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54
RMSE (g/cm3) 0.25 0.08 0.09 0.07 0.19 0.07 0.09 0.11 0.24 0.11 0.07 0.09
RMSE/Average (%) 16 5 5 4 13 5 6 7 15 7 5 6
RMSE Reduction (%) – 70 67 72 – 63 52 45 – 56 69 63

n Average (-) 1.422 1.422 1.422 1.422 1.25 1.25 1.25 1.25 1.23 1.23 1.23 1.23
RMSE (-) 0.265 0.144 0.147 0.129 0.28 0.03 0.03 0.03 0.21 0.08 0.05 0.05
RMSE/Average (%) 19 10 10 9 22 3 2 2 17 7 4 4
RMSE Reduction (%) – 46 44 51 – 88 89 90 – 60 74 77

a Average (1/cm) 0.016 0.016 0.016 0.019 0.012 0.012 0.012 0.012 0.019 0.019 0.019 0.019
RMSE (1/cm) 0.008 0.003 0.003 0.003 0.036 0.003 0.002 0.002 0.009 0.008 0.008 0.009
RMSE/Average (%) 53 21 21 18 311 22 19 18 51 43 45 46
RMSE Reduction (%) – 60 60 60 – 93 94 94 – 16 12 10

Ksat Average (cm/day) 51 51 51 51 15 15 15 15 330 330 330 330
RMSE (cm/day) 141 13 12 14 165 13 12 14 406 311 281 276
RMSE/Average (%) 276 26 24 27 1103 88 82 92 123 94 85 84
RMSE Reduction (%) – 91 91 90 – 92 93 92 – 23 31 32
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(2017) found that 4–5 maps at varying water contents established
1st EOF coefficients within 5%. Fig. 3 also illustrated minimal
changes in EOF values and zone locations following 3–4 SWCmaps.
Following completion of these surveys, we recommend extracting
5–7 cores (i.e. �1 core per 10 ha) spanning the range of observed
1st EOF values and elevation data. Here we found that this number
of local samples reduces RMSE by approximately 50%. We note that
greater number of samples did not significantly reduce the cross
validation RMSE and illustrate a diminishing return on information
gained. We note that additional research is needed to validate
these recommendations, particularly in study sites where the
underlying soil heterogeneities and correlation length scales of soil
texture may vary.

3.8. Environmental covariate selection

Within this work three environmental covariates were corre-
lated with soil hydraulic parameters. The two geophysical methods
have uncertainties inherent to measurement with changing state
variables (e.g. temperature, SWC, etc.). While the EOF analysis
helps reduce the impact of these time varying factors, a portion
of the spatial variance remains unexplained. With regards to the
error in the geophysical data, we believe that the first EOF axis of
explained variance serves as a proxy (Table 1). While relative ele-
vation is often correlated with soil textures, in areas with lower
relief this correlation may not be as dependable (as was the case
in T1S3). For these reasons selecting one data source to predict soil
hydraulic parameters can be challenging, and best-case use will
likely incorporate a portfolio of environmental covariates.

4. Conclusions

In this work, we tested different environmental covariates to
help constrain the spatial variability of WRFs and to predict soil
hydraulic parameters where no measurement information was
used in a cross-validation experiment. We note that using hydro-
geophysics to inform a more strategic sampling approach would
drastically reduce the number of extracted samples, cutting the
number by up to �90% compared to current soil sampling strate-
gies presented by agricultural extension. Using these approaches,
we were able to reduce the RMSE of soil hydraulic parameters
described in SSURGO (and using ROSETTA where applicable) by
64% on average. We anticipate that such datasets will provide a
key missing piece of information to better evaluate the next gener-
ation of watershed and crop models to aid in real-time manage-
ment decisions. Future work will focus on collecting geophysical
data over very wet SWC in order to help better predict a and Ksat.
Furthermore, future modeling work will evaluate the impact of
these different soil hydraulic parameters on both water fluxes
and the fate of fertilizers.
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