By

HARVEY BRIGHT MANBECK
11
Bachelor of Science Pennsylvania State University University Park, Pennsylvania 1963

Master of Science Pennsylvania State University University Park, Pennsylvania 1965

Submitted to the Faculty of the Graduate College of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
DOCTOR OF PHILOSOPHY
July, 1970

Thesis Approved:

764169

ACKNOWLEDGMENTS

This study was conducted as a part of Oklahoma Agricultural Experiment Station Project 1429。

The author is especially indebted to his major adviser, Dro Gordon L. Nelson. This thesis could not have become reality without his capable guidance, assistance and encouragement throughout all phases of the study.

For their assistance throughout the study, my sincere apprecim ation is extended to the other members of the Advisory Committee: Professor E. W. Schroeder, Head of the Agricultural Engineering Department; Mr. G. W. A. Mahoney, Assistant Professor of Agricultural Engineering; and Dr, D. E. Boyd, Associate Professor of Mechanical and Aerospace Engineering. Their criticism and suggestions have been invaluable.

For providing facilities and assistantships during the study, I extend my appreciation to Professor E. W. Schroeder.

My thanks is extended to Jack Fryrear and Norman Griffin for assistance in preparation of the figures.

A special thanks is extended to Dro B. L. Clary, Assistant Proa fessor of Agricultural Engineering, for his encouragement throughout the study and for his critique of the manuscript.

I am grateful to Mrs. Rita Kreutziger for her efforts in typing the rough draft of the manuscript and to Mrs. Karen Metz for hex efforts in typing the final draft of the manuscript.

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION 1
Background Information 1
Objectives 3
Scope of the Study 3
Definition of Symbols 4
II. LITERATURE REVIEW 8
Stress-Strain Behavior of Granular Soils 8
Theoretical Considerations 8
Experimental Considerations 16
Stress-Strain Behavior of Small Grains 20
Discussion 22
III. EXPERIMENTAL APPARATUS 24
Composite Description 24
Stress Control Device 26
Stress Boxes 32
Basic Construction 32
Auxiliary Components 35
OildWater Tubes 35
Oil and Water Reservoirs 39
Auxiliary Equipment 39
Method of Operation 40
IV. GENERAL PROCEDURES 45
Stress Control Device Calibration 45
Test Sample Preparation 46
Data Collection 48
Reduction of Data 49
Corrections to Deformation Measurements 49
Reduction of Raw Volumetric Deformations to Strains 54
Sensitivity of the Computed Strains 55
Variations in Procedures 56
Uniformity of Strain Measurements 56
Creep Tests 56
Radial Stress Path 56
Chapter Page
V. the particulate material 58
Properties Evaluated and Methods 58
Summary of the Physical Properties 60
VI. PRELIMINARY INVESTIGATIONS 62
Size Effect and Strain Uniformity 62
Purpose and Nature of the Tests 62
Test Results 63
Discussion of Size Effect Considerations 73
Gravity, Isotropy, Load Rate, Creep, and Load History Investigations 75
Purpose of Investigations 75
Test Objectives 75
Test Descriptions 77
Test Results 77
Discussion of Load History Results 99
VII. THE EXPERIMENTAL DESIGN 100
Functional Relationship for Loading 100
Similitude and the Buckingham Pi Theorem 100
Definition of the System 101
Pi Terms 105
Prediction Equations 110
Validation 111
Functional Relationship for Unloading 113
Hypothesis 113
The Experimental Approach 114
Validation 115
VIII. PRESENTATION OF DATA AND RESUL'TS 116
The Loading Functions 116
Component Equations 116
Prediction Equations 127
The Unloading Functions 133
Slope of the Unloading Curves 133
The Prediction Equations 136
Validation Results 141
IX. DISCUSSION OF THE RESULTS 149
Theoretical Considerations 149
Total Strain 149
Contact Strain 149
Particle Reorientation 157
Comparison of Experimental and Analytical Results 159
Nature of the Stress-Strain Behavior 160
Chapter Page
Loading Function 163
Unloading Function 164
X. SUMMARY AND CONCLUSIONS 166
Sumbuary 166
Conclusions 169
SELECTED BIBLIOGRAPHY. 172
APPENDIX A 176
APPENDIX B 178
APPENDIX C 182
APPENDIX D 185
APPENDIX E 200

LIST OF TABLES

Table Page
I. Mean Values of the Physical Properties of the Wheat Used in the Testing Program 61
II. Initial Voids Ratios for the Size Effect Test Samples 63
III. Comparison of Unit Strains Between the Four and Six Inch Samples (Rep 2) 69
IV. Strain Uniformity Data for the Four Inch Sample Under Hydrostatic Compression (Reps 2 and 3) 70
V. Strain Uniformity Data for the Six Inch Sample Under Hydrostatic Gompression (Reps 2 and 3) 71
VI. Sumnary of Preliminary Tests 78
VII. Gravity Effect. Comparison of Strains at 20 psi for Rotated and Unrotated Samples 81
VIII. Isotropy. Strains Observed at Load Cylinder Pressure of 45 psi and $\sigma_{1}: \sigma_{2}: \sigma_{3}=2.33: 1.67: 1.00$ 82
IX. Characteristic Times for Wheat En Masse 90
X. Strains Observed at $P=30$ psi During First Load Cycle When $\sigma_{1}: \sigma_{2}: \sigma_{3}=2.33: 1.67: 1$ and When $\sigma_{1}: \sigma_{2}: \sigma_{3}=$ 2.63.1.44:1 95
XI. Strains Observed at the End of the Load Cycles for Preliminary Tests 15 and 16 98
XII. List of Pertinent Quantities for StressmStrain Behavior of Wheat En Masse 103
XIII. Generalized Experimental Design for the Loading Function 110
XIV. Experimental Design for the Loading Function 112
XV. Unit Strain as a Function of the Stress Ratio, $\sigma_{1} / \sigma_{3}{ }^{2}$ With π_{3} and π_{4} Held Constant 118
Table Page
XVI. Unit Strain as a Function of the Stress Ratio; σ_{2} / σ_{3}, With π_{2} and π_{4} Held Constant $\ldots \ldots$.
XVII. Unit Strain as a Function of the Stress Ratio, σ_{1} / σ_{c} With π_{2} and π_{3} Held Constant 120
XVIII. Summary of the Component Equations 126
XIX. Slope of the Unloading Curves in LogaLog Space With σ_{2} / σ_{3} Constant 134
XX. Slope of the Unloading Gurves in Logalog Space With σ_{1} / σ_{3} Constant. 135

LIST OF FIGURES

Figure Page

1. Composite View of the Experimental Apparatus 25
2. Schematic Diagram of the Experimental Appaxatus 27
3. The Stress Control Device 28
4. Schematic Diagram of the Stress Control Device 29
5. Drawing of the Load Cylinder Mounting 31
6. Vertical Section of the Assembled Stress Box 33
7. Partially Assembled Four Inch Stress Box 36
8. Assembled Four and Six Inch Stress Boxes 36
9. Location of Depth Gauges on the Rubber Membranes 37
10. Four Inch Stress Box With Micrometer Depth Gauges in Place 38
11. Definition Sketch of the Stress Plate 42
12. Sketch of Apparatus for Determination of the Deformation of a Single Layer of Grain 52
13. Sketch of Apparatus for Determination of the Total Membrane Deformation Behind a Single Layer of Grain 53
14. Hydrostatic StressmStrain Gurves Obtained With the Four Inch Stress Box. Rep 1 64
15. Hydrostatic Stress-Strain Gurves Obtained With the Four Inch Stress Box. Rep 2 64
16. Hydrostatic StressmStrain Gurves Obtained With the Four Inch Stress Boxo Rep 3 65
17. Hydrostatic Stress-Strain Gurves Obtained With the Six Inch-Stress Box. Rep 1 65
18. Hydrostatic Stress=Strain Gurves Obtained With the Six Inch Stress Box. Rep 2 66
Figure Page
19. Hydrostatic Stress-Strain Curves Obtained With the Six Inch Stress Box. Rep 3 66
20. Illustration of a Radial Stress Path in Which $\theta=30$ Degrees and $x=0$ to 3 Inches 80
21. Isotropy Experiment Results. Stressastrain Gurves for Unrotated Stresses 83
22. Isotropy Experiment Results; Stressistrain Curves for Rotated Stresses 83
23. Stress-Strain Curves in the $2-$ Direction for Hydrostatic Compression Tests Conducted at Various Load Rates 85
24. StresswStrain Curves in the lodirection for Deviatoric Stress Tests Conducted at Various Load Rates 85
25. StresswStrain Curves in the 2-Direction for Deviatoric Stress Tests Conducted at Various Load Rates 87
26. Stressistrain Curves in the $3 m$ Direction for Deviatoric Stress Tests Conducted at Various Load Rates 87
27. Strain Time Curves for the Creep Tests in Which $\sigma_{0}=20 \mathrm{psi}$ 89
28. StressmStrain Curves in the 1mDirection for a Cyclic Hydrostatic Compression Test 92
29. Log StressoLog Strain Curves for a Cyclic Hydrostatic Compression Test 92
30. StressoStrain Curve in the 1mirection for a Cyclic Deviatoric Stress State 94
31. StressmStrain Curves in the 1mDirection for a Hydrostatic Compression Stress State Superimposed Upon a Deviatoric Stress State ($\sigma_{1}: \sigma_{2}: \sigma_{3}=2 \approx 33: 1.67: 1.00$) 94
32. StressmStrain Curves in the 1 mirection for a Deviatoric Stress State ($\sigma_{1}: \sigma_{2}: \sigma_{3}=2.33: 1.67: 1.00$) Superimposed Upon a Hydrostatic Compression Stress State 97
33. StressmStrain Curve in the lmirection for a Radial Stress Path with $\theta=30$ Degrees and r Varying from 0 to 3 Inches on the Stress Plate 97
34. A Sketch of a Cubical Element of Wheat En Masse 102
35. StresswStrain Diagram for Two Loadmunload Cycles of an ElastomPlastic Medium 109
36. Component Equation. Strain in the $1 \times$ Direction vs,
Stress Ratio, σ_{1} / σ_{3}, During Loading121
37. Component Equation. Strain in the l-Direction vs.
Stress Ratio σ_{2} / σ_{3} During Loading 121
38. Component Equation, Log Strain in the lwirection vs. Log Stress Ratio, σ_{1} / σ_{c} During Loading 122
39. Component Equation. Strain in the 2mixection vs. Stress Ratio, σ_{1} / σ_{3}, During Loading 122
40. Component Equation. Strain in the $2 \times$ Direction vs.
Stress Ratio σ_{2} / σ_{3}, During Loading. 123
41. Component Equation. Log Strain in the 2 wirection vs. Log Stress Ratio $\sigma_{1} / \sigma_{c^{8}}$ During Loading 123
42. Component Equation. Strain in the 3 -Direction vso Stress Ratio, σ_{1} / σ_{3}, During Loading 124
43. Component Equation. Strain in the 3mirection vs. Stress Ratio σ_{2} / σ_{3} During Loading 124
44.: Component Equation. Log Strain in the 3-Direction vs. Log Stress Ratio, σ_{1} / σ_{c}, During Loading 125
44. Observed vs. Predicted Strain in the lodirection During Loading 131
45. Observed vso Predicted Strain in the 2-Direction During Loading 131
46. Observed vs. Predicted Strain in the 2mDirection During Loading 132
47. Observed vso Predicted Strain in the 3wDirection During Loading 132
48. Observed vso Predicted Strain in the lmDirection During Unloading 138
49. Observed vso Predicted Strain in the $2=$ Direction During Unloading 138
50. Observed vs. Predicted Strain in the 3mixection During Unloading 139
51. Observed vso Predicted Strain in the loDirection During Unloading 139
52. Observed vs. Predicted Strain in the $2-$ Direction During Unloading 140
53. Observed vso Predicted Strain in the 3mDirection During Unloading 140
54. Strain-Stress Curve in the l-Direction for the
Validation Test. 142
55. Observed vs. Predicted Strain in the lmDirection
During Loading for the Validation Tests. 143
56. Observed vs. Predicted Strain in the 1-Direction
During Unloading fox the Validation Tests 143
57. StrainoStress Curve in the 2 mDirection for the
Validation Tests 144
58. Observed vs. Predicted Strain in the 2-Birection During Loading for the Validation Tests 145
59. Observed vso Predicted Strain in the 2∞ Direction During Unloading for the Validation Tests 145
60. Strain-Stress Curve in the 3mDirection for the Validation Tests. 146
61. Observed vs. Predicted Strain in the 3-Direction
During Loading for the Validation Tests 147
62. Observed vso Predicted Strain in the 3-Direction
During Unloading for the Validation Tests 1.47
63. Sketch of a Typical Wheat Grain 152
64. An Element of a Simple Rectangular Arrangement of Wheat Grains 154
65. An Element of an Orthomparallelepipedal Arrangement
of Wheat Grains 155
66. Diagram of the Bounding Theoretical Strains in the Vertical
Stress Direction for an Element Subjected to Hydrostatic Compressive Stresses 158
67. Idealized Static Stress-Strain Diagram for Wheat En Masse o 162

CHAPTER I

INTRODUCTION

Background Information

Design loads for grain and fertilizex storage structures are cuxrently predicted by the grain pressure theories of Janssen (22) Airy (1), and Riembert (41). Janssen's theoxy has found the most widew spread acceptance in the United States, while in Europe the solution of Riembext is most commonly usedo

These theories are inadequate for the design of thin walled dem foxmable stoxage structures now commonly found in agricultural entera prises. The inadequacies result dixectly from the following limitas tions.

All existing grain pressure theories are one ox two dimensional approximations of a three dimensional state of stressa Jaky (21) proposed a two dimensional solution to grain bin loads, whereas the remaining theories are one dimensional solutions. None of the existing theories are general enough to allow the designer to considex the loads indueed by expansion and/or contraction of the stored granular media caused by changes in temperature and/or moisture content This is of importance as most granular media encountered in agriculture are hygroscopic materials. Dale and Robinson (12) observed that lateral pressures in deep bins increased nearly sixafold with moisture increases of 1 to 4 percent in wheat.

The most severe limitation of these grain pressure theories is that they assume the confining structure to be an infinitely rigid body. It has been observed by Terzaghi (52) in studies of soils that confining wall deformations of only several hundredths of an inch resulted in large changes in the pressure distribution on the wall. Similarly, Hamilton (16) noted large increases in the pressures exerted by grain on circular cylindrical bins when the bin walls were displaced towards the grain. Jenike (23) in his work with grain hoppers also noted that small wall deformations resulted in large variations in the resulting pressure distributions. Collins (9), Saul (46), and Dabrowski (11) observed that bin wall flexibilities significantly altered the magnitude and distribution of the loads on bin walls.

The inadequacy of the existing theories is further demonstrated by the discrepancies observed between measured bin loads and those predicted by theory. The studies of Hamilton (16), Stewart (51), Collins (9), Jenike (23), Dabrowski (11), Saul (46), and Isaacson (20) indicated that large differences exist between measured and predicted loads in grain storage structures.

The stress distribution in an arbitrary storage system could be obtained by application of the three dimensional theory of continuum mechanics. Such an approach to the grain pressure problem would inherently include the interaction between the bin wall and granular medium and would allow for the consideration of the expansion and contraction of the granular medium with moisture content and temperam ture.

Employment of the theory of continuum mechanics to a grain
storage system requires that the three basic conditions of mechanics be defined. These conditions are those of equilibriums kinematics, and constituency. The first two conditions are dependent solely upon the geometry of the system and are defined in any standard text of continuum mechanics. Constituency, the stressostrain behavior, is independent of the geometry, but is dependent upon the material proa perties of the system.

Generally, the stresswstrain behavior of the bin wall is known, whereas the three dimensional stressmstrain behavior of the stored granular media en masse is unknown. Thus, it is necessary that the stressostrain behavior of granular media en masse be defined before a rational solution to the grain pressure problem can be attempted.

Objectives

Based on the background information, the literature review of the following chapter, and time limitations, the objectives of this study are:

1. To define methods and techniques adequate for evaluating the three dimensional static stressostrain behavior of granular media encountered in agricultural enterprises.
2. To evaluate the three dimensional static stressostrain bew havior of a granular medium en masse.

Scope of the Study

The static stressostrain behavior of only one granular medium en masse, say wheat, at one physical state will be investigated. The initial venture into this field of study would become too unwieldy if
variations in moisture contents and/or physical properties of the medium were considered. It is more important that the feasibility of the techniques be demonstrated for one set of conditions. Generalio zation should be the goal of subsequent studies.

All stress levels are assumed to be below the level at which macroscopic failure occurs. Macroscopic failure stress is defined as the stress level at which flow comences. That is, the stress level at which strain continues to increase without boundswewithout any increase in stress level. This type of failure is differentiated from microscopic failure which occurs continuously in the form of arxested slips as individual grains slide over one another duxing the deformam. tion process.

Only normal stresses and strains were considered in the investim gation. No attempt was made to study the effects of shear stresses.

Prediction equations for strain have been developed for normal strains for the stress paths anticipated in grain storage systems. The equations are also limited to the first cycle of loading and to stress paths in which the ratio of normal stresses, $\sigma_{1}: \sigma_{2}: \sigma_{3}$ remain constant during loading and unloading.

Definition of Symbols

Many quantities appear repeatedly throughout the report, and therefore, are designated by symbols. Unless otherwise noted in the text, the symbols are defined according to the following list.

Symbol	Quantity
A_{i}	Dimensionless function of π_{2} and π_{3}
a_{i}	Slope of loading curve in logalog space in the ith direction
D	Approach of the centers of two contacting bodies under contact forces, in.
$\Delta \mathrm{V}$	Corrected volumetric deformation, $\mathrm{cu}_{0} \mathrm{~cm}$
$\Delta \mathrm{V}_{\mathrm{c}}$	Volumetric deformätion due to membrane compression, cu , $\mathrm{cm}_{\text {, }}$
$\Delta V_{\text {corx }}$	Volumetric deformation due to membrane indentation and compression, cu . cm.
Δv_{g}	Volumetric deformation due to grain deformation, cu. crae
ΔV_{I}	Volumetric deformation due to membrane indentationg cu. cmo
ΔV_{t}	Volumetric deformation due to membrane indentationo mern brane compression and grain deformation, cu. cm.
$\Delta v_{\text {raw }}$	Raw volumetric deformation, $\mathrm{cu}^{\text {. }} \mathrm{cm}$ 。
e	Base of natural logarithms
e_{0}	Initial voids ratio
ε_{1}	Principal strain in a horizontal directiong inolin.
ε_{2}	Principal strain in a horizontal direction perpendicular to ε_{1} inolin.
ε_{3}	Principal strain in the vertical direction, indin.
$\left.\varepsilon_{i}\right)_{e}$	Elastic component of strain in the ith directiong in./in.
$\left.\epsilon_{i}\right)_{H}$	Strain in ith direction due to contact stresses, inolin.
$\varepsilon_{\text {im }}$	Strain level in the ith direction at which unloading commenced, ino/in.
$\left.\epsilon_{i}\right)_{p}$	Plastic component of strain in the ith direction, inolin.
$\left.\epsilon_{i}\right)_{R}$	Strain in ith direction due to particle reorientation, in./in.
$\left.\epsilon_{i}\right)_{T}$	Total strain in the ith direction, inolin.
$\varepsilon_{\text {oi }}$	Instantaneous strain in the ith direction in a creep test, inolin.

f_{i}	Designation of an arbitrary function
G	Shear modulus, psi.
H	Height of a wheat kernels ing
i	Subscript designating principal stress directions
L	Subscript designating a loading function
$\bar{n}_{\text {h }}$	Mean slope of the unloading curve in $\log =10 g$ space in any horizontal direction
$\mathrm{n}_{\mathbf{i}}$	Slope of the unloading curve in logalog space in the ith direction
\bar{n}_{v}	Mean slope of the unloading curve in logmog space in the vertical direction
P	Pressure applied to the stress plate, psi.
ϕ	Angle of internal friction degrees
ϕ_{i}	Dimensionless coefficient in prediction equations
${ }^{\pi} 1$	The dependent pioterm. The principal stratm in the ith direction ino/in。
π_{2}	Stress ratio σ_{1} / σ_{3}
π_{3}	Stress ratio σ_{2} / σ_{3}
π_{4}	Stress ratio $\sigma_{1} / \sigma_{\text {c }}$
R	Gorrelation coefficient
r	Radial distance the load cylinder is located from the centroid of the stress plate, in.
S	Standard deviation from regression
σ_{0}	Hydrostatic compressive stress, psi.
σ_{1}	Principal stress in a horizontal directiong psio
σ_{2}	Principal stress in a horizontal direction perpendicular to σ_{1} p psi.
σ_{3}	Principal stress in the vertical direction, psi.
σ_{c}	The characteristic stress level for wheat en masse, psi.
$\sigma_{\text {im }}$	Stress level in the ith direction at which unloading commenced, psi.

t Time from application of a load, min.
$T_{i} \quad$ Characteristic time in the ith direction, min.
$\theta \quad$ Counterclockwise angle of rotation from the y maxis to the location of the load cylinder on the stress plate, degrees

U Subscript designating an unloading function

CHAPTER II

LITERATURE REVIEW

StressaStrain Behavior of Granular Soils

Theoretical Considerations

Evaluation of stresses within granular media has long been accomplished by the limiting stress approach. This approach is diso cussed in standard texts on earth pressure theory such as Terzaghi (53). The theory does not center upon the constitutive behavior of the granular medium but it is concerned with the liniting, or the active and passive, states of stress in the medium. That is, the theory is dependent upon the stress levels at which failure occurs, but says nothing about the path between the two limiting cases.

Recently, soil mechanicians have taken a more fundamental approach to the determination of stresses within granular media. Cox et.al. (10) summed up the deficiencies of the limiting stress approach to the problem of earth pressures.
"Until quite recently, an important deficit in the theory of earth pressure lay in its development without reference to stress-strain relationships, the theory being based upon the concept of states of limiting equilibe rium satisfying Coulomb's law of soil failure in conjunction with a conjectural extremum principle. This procedure altogether neglects the important fact that stress-strain relations are an essential constituent of a complete theory of any branch of the continuum mechanics of deformable bodies."

Cox, et.al. (10) investigated the deformation of granular media
with particle sizes ranging from clay to sand and for a range of soils from saturated clay to dry sand. It was found theoretically that under quasiostatic axially symmetric deformationg the behavior of natural soil is approximated by an ideal soil which obeys Coulomb"s yield criterion and associated flow rule. The soil deformations were found to be characterized by a rigidwperfectly plastic stressostraim relationship。

Other investigators studied the stresswstrain relationships of granular and cohesive medium by assuming different idealized deformam tion relationshipso For example, Biot (5) assumed that the relationm ship was viscoelastic in nature; Shield (48) assumed, as did Cox (10) that the relationship was rigidmperfectly plastic; and Druckero etoal (13) assumed that the relationship was elasticaplastic with work hardening before failure and perfectly plastic after failureo

Brown (6) cited limitations of the work hardening theory presented by Drucker. etoal. (13) since the mechanical strength of the soil due to friction is not included in work hardening. Based on the assump tions that: (1) Sand is a structure consisting of elastic grains of known geometry and properties; (2) Coulomb friction is developed at points of particle contact: (3) Changes in internal geometry in an incremental displacement are insignificant; and (4) Sand is isotropic and homogeneous, Brown deweloped an incremental stressostrain theory for sand and an associated yield functiono of interest in his study are two hypotheses relating to the behavior of sand undex deformation: (1) A purely deviatoric external agency mast do positive work on the displacements it causes (for stable deformation); and (2) The effect of straining on a sand aggregate is to transform it from one randomly
disordered configuration to anothex. The consequences of these hypow theses are that the hydrostatic component of the external agency is zero and continuing macroscopic isotropy exists in the mass of sande Roscoe, et.al. (42), in discussing the yielding of clays, assumed the soil to be an elasticoplastic continuously isotropic medium. Further, he pointed out that if stressastrain relationships of soils are desired it is necessary to define both hydrostatic and deviatoric stress parameters. These parameters are defined, respectively, by the volumetric strain and the shear strain relationships.

The Hertz theory (19) of contact stresses for spherical points of contact has been used by various authors to help define the stressstrain relationship of noncohesive granular medium. 'Briefly, this theory states that the radius of the area of contact of the two spheres is given by the relationship:

$$
\begin{equation*}
a=\sqrt[3]{\frac{3 \pi}{4} \frac{P\left(k_{1}+k_{2}\right) R_{1} R_{2}}{R_{1}+R_{2}}} \tag{1}
\end{equation*}
$$

where $a=$ radius of contact area between spheres, in.

$$
v_{1}=\text { Poisson's ratio for sphere } 1
$$

$$
\begin{aligned}
& P=\text { applied normal load between the spheres, } 1 b_{f} \text {. } \\
& R_{1}=\text { radius of curvature of sphere } 1 \text {, in. } \\
& R_{2}=\text { radius of curvature of sphere } 2 \text {, in. } \\
& k_{1}=\frac{1-v^{2}}{\pi E_{1}}, \operatorname{sq\cdot in_{0}/lb_{f}} \text {. } \\
& k_{2}=\frac{1-v_{2}{ }^{2}}{\pi E_{2}}, \mathrm{sq} \cdot i n_{0} / I b_{f} .
\end{aligned}
$$

$\nu_{2}=$ Poisson's ratio for sphere 2.
$E_{1}=$ Young's modulus for sphere $I_{\text {, }}$ psi.
$E_{2}=$ Young's modulus for sphere 2, psi.

Also, the Hertz method predicts that the compressive displacement, D, of two points along the normal to the points of contact is

$$
\begin{equation*}
D=\sqrt[3]{\frac{9_{\pi} 2}{16} \frac{\mathrm{P}^{2}\left(\mathrm{k}_{2}+k_{2}\right)^{2}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)}{\mathrm{R}_{1} \mathrm{R}_{2}}} \tag{2}
\end{equation*}
$$

Ko and Scott (27) measured the volumetric strain of a granular noncohesive material and found that it did not vary linearly with the $2 / 3$ power of external pressure as predicted by Equation 2。 They cono cluded that the discrepency was due to an increasing number of points of contact within the mass as the pressure increased. A "holey" model was suggested to describe this effect. The use of the "holey" Hertzian theory supported Ko's experimental results for hydrostatic staces of stress.

The Hertzian theory and Ko's results did not consider the effects of tangential forces between spheres. Mindling (33), in a theoretical study of the displacement of two spheres in contact subjected to a monotonically increasing tangential load, found that at a point of contact slip occurs on an annulus of outer radius, a (same radius as defined in Equation 1), and inmer radiuss

$$
\begin{equation*}
c=a\left(1-\frac{T}{f N}\right)^{1 / 3} \tag{3}
\end{equation*}
$$

$$
\text { where } \begin{aligned}
c & =\text { inner radius of annulus of slip, in. } \\
a & =\text { outer radius of annulus of slip, in. } \\
T & =\text { tangential contact force, } l b_{f} \\
N & =\text { normal contact force, } l b_{f} \\
f & =d T / d N .
\end{aligned}
$$

Mindlin (33) also developed an expression for the relative displaceo ment of the centers of two spheres

$$
\begin{equation*}
\delta=\frac{3 \mathrm{fN}(2-v)\left[1-\left(1-\frac{T}{f \mathbb{N}}\right)^{2 / 3}\right]}{8 \mathrm{Ga}} \tag{4}
\end{equation*}
$$

where $\delta=$ relative displacement of centers of two spheres, in.
$v=$ Poisson's ratio of the spheres
$G=$ shear modulus of the spheres, psi.

The tangential compliance of spheres in contact was also developed by Mindlin (33) and may be represented by the equation

$$
\begin{equation*}
S=\frac{d \delta}{d T}=\frac{2(1-v)}{8 G a\left(1-\frac{T}{f N}\right)^{1 / 3}} \tag{5}
\end{equation*}
$$

where $S=$ the tangential compliance, $i n . / b_{f}$.

Mindling et.al. (35) studied the behavior of granular particles when subjected to an oscillating tangential contact force where $T \leq f N$ and found that a stable cycle was obtained after the first quarter cycle of loading.

Mindlin and Deresiewicz (34) studied the same problem discussed above, but included the effect of a varying tangential contact force
of constant obliquity superimposed over a constant initial normal cone tact force N_{0}. They developed a theory for the first loading and unloading cycle and the subsequent stabilized cycle of loading. For the stabilized cycle, if the tangential force varies from +T \% to $-\mathrm{T} *$, the tangential compliance is defined by S_{R} for the loading cycle.

$$
\begin{equation*}
S_{R}=\frac{d \delta}{d T}=\frac{2-\nu}{4 G a}\left\{\theta+(1-\theta)\left[1-(1+\theta) \frac{L^{\psi}+L}{2(1+\theta L)}\right]^{-1 / 3}\right\} \tag{6}
\end{equation*}
$$

where $\theta=\mathrm{f} / \beta$

$$
\begin{aligned}
\mathrm{L} & =\mathrm{T} / \mathrm{f} \mathrm{~N}_{\mathrm{O}} \\
\mathrm{~L}^{*} & =\mathrm{T} * / \mathrm{f} \mathrm{~N}_{\mathrm{O}} \\
\beta & =\mathrm{dT} / \mathrm{dN} \geq \mathrm{f} \\
\mathrm{~T}^{*} & =\text { maximum value of the tangential force, } \mathrm{lb}_{\mathbf{f}^{\circ}}
\end{aligned}
$$

For the unloading cycle they found the compliance to be obtained by reversing the signs of θ and L in Equation 6. Duffy and Mindlin (14) derived the differential stressestrain relation for a medium composed of a face centered cubic axray of elastic spheres in contact. The theory was based on the theory of elastic bodies in contact and includes the effects of both normal and tangential components of contact forces. They concluded that the relation between strain and the nomal contact force is nonlinear. but elastic; and that the relation between the tangential component of force and displacement is inelastic and nonlinear. They concluded further that the stressestrain relationship is dependent upon the loading history of the medium and is necessarily incremental in nature. Duffy and Mindlin (14) derived the governing diffexential
equations for granular media by considering the equilibrium conditions and the conditions of the compatability of relative displacements. The equilibrium equations (Equations 7) were obtained by considering each sphere to have twelve points of contact with two tangential and one normal component of force at each contact point.

In Equations 7 the following notation is used. $\mathrm{dN}_{\mathrm{ij}}{ }^{*} \mathrm{dT}_{\mathrm{i} j}{ }^{9}$ and $d T_{k k}$ are the force increments for a contact with its normal in the $i m j$ plane. Consequently, $\mathrm{dN}_{i j}$ and $\mathrm{dT}_{\mathrm{ij}}$ lie in the $\mathrm{im} \mathrm{j}_{\mathrm{j}}$ plane, whereas $\mathrm{dT}_{k k}$ is normal to the imj plane, The symbol $\mathrm{dP}_{\mathrm{ij}} \mathrm{j}$ is the force incre ment applied to the face of a cubical element of particles.

For each cubical element there are 36 contact force components; only 18 of which are independent since they are diametrically opposite 18 other force componentso Also since each sphere and portion of a sphere are in equilibrium, as well as is the entire cubical element. there are only 9 independent equations of equilibrium.

Note that in Equations 7 the primed elements indicate that the contact normal is opposite in sign to the unprimed contact normal: and that the 9 equations of equilibrium are obtained by selecting any three of the four equations in Equation set 7 and cycling the subw scripts.

$$
\begin{align*}
& 4 \mathrm{dT}_{x x}^{\prime}+2 \sqrt{2}\left(\mathrm{dN}_{x z}^{\prime}+d N_{x y}+\mathrm{dT}_{z y}^{\prime}+d T_{x y}\right)=d P_{x x}+d P_{x y}=d P_{z x} \\
& 4 \mathrm{dT}_{x x}-2 \sqrt{2}\left(\mathrm{dN}_{z x}^{\prime}+\mathrm{dN}_{x y}^{\prime}-\mathrm{dT}_{z \mathrm{x}}^{\prime}+\mathrm{dT}_{x y}^{\prime}\right)=-\mathrm{dP} \mathrm{xx}^{\prime}+\mathrm{dP}_{x y}=\mathrm{dP}{ }_{z x} \tag{7}\\
& 4 d T_{x x}^{\circ}-2 \sqrt{2}\left(d N_{z x}+d N_{x y}^{\circ}-d T_{z x}+d T_{x y}^{\circ}\right)=-d P_{x x}+d P_{x y}-d P_{z x}
\end{align*}
$$

Similarly, Duffy and Mindlin (14) wrote the set of equations for compatability of relative displacements. Note that $d \alpha_{i j}$ is the dise placement corresponding to $\mathrm{dN}_{i j}{ }^{\rho} \mathrm{d} \delta_{i f}$ is the displacement corresponding to $d T_{i j}$ and $d 8_{k k}$ is the displacement correspondong to $d T_{k k^{\circ}}$ Any three of the set of Equations 8 plus six more obtained by cyclic permutation of the subscripts define the relative displacement conditions.

$$
\begin{align*}
& \sqrt{2} \mathrm{~d} \delta_{z z}=-\mathrm{d} \alpha_{\mathrm{yz}}^{\prime}+\mathrm{d} \alpha_{z x}+\mathrm{d} \delta_{y z}^{\prime}+\mathrm{d} \delta_{z x} \\
& \sqrt{2} \mathrm{~d} \delta_{z z}=+\mathrm{d} \alpha_{y z}-\mathrm{d} \alpha_{z x}^{\prime}-\mathrm{d} \delta_{y z}-\mathrm{d} \delta_{z x}^{\prime} \\
& \sqrt{2} \mathrm{~d} \delta_{z z}^{\prime}=-\mathrm{d} \alpha_{y z}+\mathrm{d} \alpha_{z x}+\mathrm{d} \delta_{y z}+\mathrm{d} \delta_{z \mathrm{x}} \tag{8}\\
& \sqrt{2} \mathrm{~d} \delta_{z z}^{\prime}=+\mathrm{d} \alpha_{y z}^{*}=\mathrm{d} \alpha_{z x}^{\prime}+\mathrm{d} \delta_{y z}^{\prime}+\mathrm{d} \delta_{z x}^{\prime}
\end{align*}
$$

Since the number of equations is less than the number of unknowns. the constitutive relationships are required. Duffy and Mindlin (14) chose to express these in terms of normal and tangential compliances, $C_{i j}$ and $S_{i j}$, as shown in the set of Equations 9.

$$
\begin{array}{ll}
d \alpha_{i j}=c_{i j} d N_{i j} & d \alpha_{j j}^{\prime}=c_{i j}^{\prime} d N_{i j}^{\prime} \\
d \delta_{i j}=S_{i j} d T_{i j} & d \delta_{i j}^{\prime}=s_{i j}^{\prime d T_{i j}^{\prime}} \\
d \delta_{k k}=S_{k k} d T_{k k} & d \delta_{k k}^{\circ}=s_{k k}^{\prime} d T_{k k}^{\prime}
\end{array}
$$

These three sets of equations, Equation $7,8_{3}$ and 9 are sufe ficient conditions for solving for the stress distributions within a granular medium. However, Mindlin (33) has pointed out earlier that the 19 equations are not linear in components of contact forces since: the equations contain compliances; the compliances are dependent upon the contact forces through the radius, a_{9} of the contact circles and
the compliances are dependent upon the load history of the element. Thus, analytical solution of the system becomes extremely difficult, if not impossible.

Experimental Considerations

Ko and Scott (25) commented on the direction taken by soil
mechanists with regard to establishing a valid earth pressure theory.

Abstract

"The analytic solutions which have been employed represent situations which are extremely idealized versions of real life counterparts. The solutions referred to are those for various simple stress disw tributions of linearly elastic isotropic homogeneous media on the one hand; and certain results derived from the upper bounds methods of ideally plastic analysis on the other. It seems to the authors (Ko and Scott) that this situation has inhibited the study of the real stressostriain behavior, or constitutive relations of soils, and that work has consequently tended to concentrate on the stress conditions at failure."

Ko and Scott (25) developed a cubical soil test box which perm mitted independent control of stress in three directions for determining the stresswstrain characteristics of soils in general. The apparatus consists primarily of a 4 inch hollow aluminum cube which serves as a housing for six rubber membranes; each of which is mounted on one inside face of the cube. Each membrane, and subsequently the granular medium, is loaded by hydraulic pressure.

The loading of the stress box is controlled by a mechanicalhydraulic analog. Ko showed that there exists an exact analog between the location of a concentrated load on a triangular plate supported at its vertices and the position of the stress point, defined by the supe port reactions, on the octahedral stress plane. The reactions at the
vertices correspond to the three principal stresses which are transe mitted to the cubical element by means of hydraulic lines. ${ }^{1}$

The advantages of this test apparatus are that: (1), Stresses are controlled in three orthogonal directions; (2) The hydrostatic and deviatoric components of stress can be separated; (3) A particulax stress history can be reproduced exactly by simultaneous and proportional changes of the stresses in three orthogonal directions; and (4) More homogeneous states of stress and strain are obtained in the soil sample than in a triaxial shear test sample.

Two other attempts to test cubical samples of soil have been made by Kjellman (24) and Bell (4). However, the testing apparatus devel= oped by these investigators contained deficiencies ranging from mechanical complexity in the former to stress inhomogeneity in the latter. Presently, Ko and Scott"s apparatus is the most sophisticated and manageable cubical soil testing apparatus available。

Ko and Scott $(26,27,28)$ conducted three dimensional loadw deformation tests on sand in which they considered hydrostatic stresses only, deviatoric stresses only, and a combination of hydrow static and deviatoric components of stress. A summary of their findings follows: (1) A sand sample never before subjected to shear stress is nonlinearly elastic and isotropic at all void ratios when subjected to hydrostatic compression; (2) The compressibility of the sand was not influenced by the shear stress history; (3) The sand remained elastic and isotropic when hydrostatic and deviatoric stress components were superimposed; (4) For straight shear stress paths in an octahedral plane deformations varied

[^0]logarithmically with octahedral shear stress; (5) Shear unloading along the same path as loading indicated that the elastic and plastic come ponents of deformation were nearly equal in magnitude; and (6) Shear loading and reloading along straight line stress paths in an octahedral plane produced deformations which varied roughly lineaxly with octahedral shear stress.

Hardin and Richart (17) determined the dynamic shear modulus of sand using a resonating triaxial column. The tests were conducted by applying an initial confining pressure and torque and then imposing an additional oscillating corque to the sample. The authors concluded that the octahedral shear stress is a measure of the deviatoric stress component. Hardin and Black (18) recorded the following equations for the shear modulus of clean, dry, round grained sand for vibrating loads of small amplitude. σ_{0} is taken as being equal to the isotropic component of initial static stress independent of the deviatoric component of stress stress history, and rate of loading. The amplitude of oscillation of shear strain was 2.5×10^{-5}, and the constants in the numerator of Equations 10 and 11 are necessarily dimensional.

$$
\begin{align*}
& G=\frac{(32.17-14.80 e)^{2}}{1+e}\left(\sigma_{0}\right)^{1 / 2} \text { for } \sigma_{o} \geq 2000 \mathrm{psF} \tag{10}\\
& G=\frac{(22.15-10.60 \mathrm{e})^{2}}{1+e}\left(\sigma_{o}\right)^{3 / 5} \text { for } \sigma_{0}<2000 \mathrm{psf} \tag{11}
\end{align*}
$$

where $e=$ voids ratio

$$
\begin{aligned}
\sigma_{0} & =\text { isotropic confining pressure } p \text { psf } \\
G & =\text { shear modulus, psi. }
\end{aligned}
$$

Saada (45) developed and tested a stress controlled triaxial testing apparatus. The true stress was applied preumatically and could be controlled either manually or automatically. The apparatus has been recomended primarily for use in rheological studies of sensitive clays.

Rowe (44) conducted shear box and triaxial shear tests on cohesionless soils in which he studied the effects of the paramerers: sample thickness, soil type, length of the slip line, type of test, soil density, confining pressure, direction of loading, ard strain history of the soil. He hypothesized that the slip line theory can be used for intermediate states of deformation (those states between the active and passive states); and contended that $\phi_{\text {, }}$ the internal angle of friction, varies with load and approaches an ultimate walve, ϕ_{u}. He concluded that in a cohesionless soil which is not failing, ϕ is dependent maialy upon the movement of a unit length of the plane subjected to maximum shear and is dependent to a lesser degree upon soil grading and rate of shear. ϕ_{0} he concluded ${ }_{0}$ varies largely with cons fining pressure, density, strain history and serain directiono

In a more recent study Rowe (43) extended his approach and applied the principle of least work to a random mass of irregular paxteles. He hypothesized that deformation of a granular medium consists of a number of arrested slides. Equation 12 represents his stressustrain relationship for intermediate stresses.

$$
\begin{equation*}
\frac{\sigma_{1}}{\sigma_{3}\left(1+\frac{d_{V}}{V_{\varepsilon_{1}}^{Q_{1}}}\right)}=\tan ^{2}\left(45+\frac{\phi_{u}}{2}\right) \tag{12}
\end{equation*}
$$

```
where }\mp@subsup{\sigma}{1}{}=\mathrm{ axial stress, psi。
\sigma}= lateral stress, psi。
    V = initial volume of the sample, cu. in.
dV = incremental rate of change in volume, cu, in.
。
\epsilon}=\mathrm{ incremental axial strain rate.
\phi
```

Stress-Strain Behavior of Small Grains

Small grains implies agricultural particulate materials such as wheat，corn，and sorghum．Most studies of the loadmeformation bew havior of small grains have been confined to the behavior of individual kernels．Furthermore，the loadmeformation behavior was usually used only as a tool to define some other property of the grain such as the modulus of elasticity or Poisson＇s ratio of the individual kernel． Nevertheless，the results of these investigations provide some useful insight into the more general three dimensional stressostrain behavior of small grains en masse。

Mohsenin（36）made the observation that biological materials are generally nonelastico Instead，they are elasticoplastic with strain hardening since the hysteresis losses associated with most biological materials were observed to decrease with repeated cycles of loadingo In the case of the loadmdeformation behavior of corn kernels，he reported that the mechanical behavior was nonlinearly elasticmplastico The hysteresis losses associated with the first and second load cycles were 45.3 and 15.6 percent，respectively．

Shpolyanskaya（49）evaluated the modulus of elasticity of wheat grains by applying the Hertz theory of contact stresses and assuming
the grains to be spherical. Upon loading the individual grain between two flat plates and measuring the resultant deformations, he deter mined the modulus of elasticity of wheat grains to be between 5.37 x $10^{5} \mathrm{psi}$ and $6.64 \times 10^{5} \mathrm{psi}$. Repeated loading and unloading of the kernel showed that after several cycles, the loadmdefoxmation behavior approached that of an elastic body.

Zoerb (54, 55) studied the loadmeformation behavior of soft wino ter wheat using small core samples of a kernel。 Nonlinear elastice plastic behavior with strain hardening tendencies, wexe observed. The hysteresis losses decreased from 46.3 in the first load cycle to 26.4 percent in the second load cycle. It was also observed that hysteresis losses increased with the moisture content of the grain. Similar trends were noted for both kernels of corn and pea beans.

Shelef and Mohsenin (47) loaded wheat kernels in various manners to obtain the elastic modulus of wheat. Whole grains were loaded between two flat plates, whole grains were loaded by a spherical indenter 0.016 inch in diameter, whole grains were loaded with a cylindrical indenter, and core samples were compressed between two parallel plates. In each test the loadmdeformation behavior was found to be elasticoplastic with strain hardening. They reported moduli of elasticity of wheat in the range of 1.57×10^{5} and $8.30 \times$ 10^{5} psi。

Arnold and Roberts (3) also loaded wheat core samples between parallel plates. Their observations confirmed the elasticoplastic nature of cereal grains.

It has been suggested by Stewart (50) that the triaxial come pression test be used to evaluate the physical properties of small
grains. He used the triaxial compression test method successfully to study the effect of moisture content and specific weight upon the internal friction properties of sorghum grain. The triaxial como pression test, however, would not suffice for obtaining the genexalized stress-strain behavior of small grains en masse, because it is confined to the case where $\sigma_{1} \neq \sigma_{2}=\sigma_{3}$ (The symbols refer to the three principal stresses。), and the stresses and strains in triaxial samples have been shown [See Lambe (31)] to be nonhomogeneous throughout the sample.

The uniaxial compression of wheat en masse in a circular cyline drical testing chamber was studied by Narayan and Bilanski (38). Vertical pressures up to 3000 psi wexe applied to the sample. The vertical stressostrain behavior was found to be logarithmic at stresses below 500 psi, but tended toward a linear relationship above a vertical stress of 500 psi. This suggested that two modes of deformation were involved. At low stresses the controling mechamism of deformation was particle reorientation; whexeas, at higher stress levels, the predominant mechanism was individual particle deformation. They abo served that unloading behavior proceeded along parallel paths with successive load cycles. Also, the unloading paths were parallel even when the stress level at which unloading commenced was varied.

Discussion

It has been observed that only limited studies have been made of the stressostrain behavior of small grains. To be sure no attempts have been made to define the three dimensional stress-strain behavior of small grains en masse.

The three dimensional stresswstrain behavior of granular soils en masse has been investigated both theoretically and experimentally. The theoretical approach has not proved to be very successful, because of the complex mechanisms controling stress-strain behavior.

Among the factors affecting the behavior are particle shape, particle size, mechanical properties of the particles, and the orienc tation of the particles within the mass. Even if elastic spherical particles of uniform size are assumed to make up the particulate array, the theoretical evaluation of the general stressostrain behavior be comes a formidable task. Since most granular media encountered in agriculture are nonspherical, nonuniform in size, and nonlinearly in elastic; the possibility of attaining a theoretical description of the stress-strain behavior of, say, wheat is remote.

In view of the complex nature of the stressestrain behavior of granular media en masse, and in view of the conclusion reached by Ko and Scott (25) (See page 16.) for granular soils, it has been concluded that an experimental evaluation of the stressestrain behavior of small grains en masse is more feasible than an analytical approach. Furthermore, the experimental apparatus designed by Ko and Scott (25) for evaluating the three dimensional stressestrain behavior of granular soils appears to be adaptable to the study of the mechanical behavior of granular media encountered in agricultural storage systems.

GHAPTER III

EXPERIMENTAL APPARATUS

Composite Description

The primary experimental apparatus used in this investigation is the system developed by Ko and Scott (25). for the study of the static stressmstrain behavior of sand. Only minor changes were made to adapt it to use in investigating the static stressmstrain behavior of agricultural materials.

Figure 1 is a photograph of the apparatus, sans the air compresm sor. in the agricultural engineering laboratory at Oklahoma state University. The apparatus was located in a temperature controlled rome -

The function of the apparatus is to independently and simultaneously apply uniform stresses to the three pairs of opposite sides of a cubical element of a granular medium and to measure the deformam tions encountered in each of the three principal stress dixections. The resulting strains are assumed to be uniform and homogeneous throughout the sample thickness in each of the three principal stress directions. The application of stresses is accomplished by a mechan-ical-hydraulic analog. This analog will be discussed in more detail in the section describing the method of operation.

The apparatus consists of eight major components. These come ponents may be located in Figure 1 according to the letter

Figure i1. Composite Wiew of the Experimental
Apparatus
designations listed below.

```
A = Stress box
B - Calibrated oilowater tubes
C Oil reservoirs
D Water reservoirs
E m Stress control device
F Rectifier for the electromagnet
G a Pressure gauges for the load cylinders
```

Another representation of the components and their relationship to one another is given in the schematic diagram in Figure 2. A des* cription of each component and its function is discussed in the folm lowing sections.

Stress Control Device

The function of the stress control device is to provide means for simultaneous, continuous, and independent application of stresses in three directions. A photograph and schematic diagram of the stress control device are presented in Figuxes 3 and 4 . The device is supm ported by three 16 gauge punched steel angle sections which are tied together at the base to form vertices of an equilateral triangle 21 inches on a side.

Three $1 / 4$ inch thick steel triangular plates 21 inches on a side are located inside the triangular frame. These plates are labeled 1_{0} 2. and 3 in Figure 4. Plates 1 and 3 are rigidly fastened to the frame. The distance between the fixed plates is determined only by the size of the cylinders between them. Plate 2 is a free or

Figure 2. Schematic Diagram of the Experimental Apparatus

Figure 3. The Stress Control Device

Figure 4. Schematic Diagram of the Stress Control Device [Redrawn from Ko and Scott (25)a]
floating, plate. The counterweights, 5 , are fastened to plate 2 and exactly balance the weight of the floating plate and any components attached to it. Three ball seats have been machined in plate 2 at the vertices of a 15 inch equilateral triangle. The ball seats serve as sockets for the piston rods of the three middle cylinders.

The cylinders L and M, which have a maximum rated pressure of 60 psi, are all Bellofram Type $10 \mathbf{- 1 0 0}$ actuators. These cylinders have a stroke of 1.03 inchess a cross sectional area of 2.26 square inchess and a nearly frictionless movement. Cylinders L and N were mounted as shown in Figure 5.

The cylinder mounting sexved to support and align the cylinder and piston rods. The linear ball bushing in the aligning lucite plate provided a nearly frictionless support for the piston rod. The ball transfer mounted on the piston rod end fits into a ball seat approp= riately located on plate 2.

Cylinders L were bolted to plate 3 by means of the threaded rods, whereas the load cylinder M was not fastened to any plate. Instead, it was free to be moved from one location to another between plates 1 and 2.

The mounting for cylinder M varied from that of cylinders L and N in that another one inch thick lucite plate was mounted below the base plate shown in Figure 5. This plate served as a housing for an elece tromagnet (Item 6 in Figure 4) which was used to hold the load cylinder M in place during a loading test.

Plate 4, which is suspended symetrically from plate 2, is a 3/16 inch thick triangular steel plate 9 inches on a side. The sus. pension rods were located at the vertices of a $7 / 1 / 2$ inch equilateral

Figure 5. Drawing of the Load Cylinder
Mounting
triangle. Cylinder N_{g} which is identical to cylinders L_{9} was bolted rigidly to plate 4. The ball transfer on the piston rod end was aligned with the centroid of plate 2 and fit into a ball seat on the underside of plate 3 .

Stress Boxes

Basic Construction

The stress box is the cubical container in which the granulax samples are held and loaded. For the study two sample boxes were constructed; one which had inside dimensions of 4 inches on a side and one which had internal dimensions of 6 inches on a side. Other than for size differences, the two boxes were identical in designo

Each stress box was constructed of six 5/8 inch thick aluminum plates. Each plate was square with 45 degree bevelled edges as shown in the vertical section of the box in Figure 6. In each bevelled sura face was machined a rectangular groove for a 0.139 inch 0 oring. Also, clearance holes for $10-24$ machine screws were drilled through each bevelled surface. In two edges of the side plates holes were drilled and tapped for $4 m 40$ machine screws. At the center of each plate a 1/4 inch NPT was drilled and tapped.

The plates for the top and bottom of the box were $9 / 32$ inch smaller on a side than the plates for the sides of the box. The difo ference in the size of these plates is a consequence of the retaining frame which rests on the top and bottom edges of the side plates.

The retaining frames are made of 0.200 inch thick aluminum and are provided with drilled and tapped holes to accommodate 4040 machine screws.- The retaining frames are fastened ${ }_{9}$ one each to the top and

Figure 6. Vertical Section of the Assembled Stcess Box [Redwawn from Ko and Scott (25). 7
bottom bevelled edges of the side plates in order to sepaxate the top and bottom plates from the side plates. This is desirable, since only the top or bottom plate need be disassembled when preparing a sample. Thus, the latex rubber membranes mounted on the side plates are held in place by the retaining frame when either the top or botom plate is removed.

On each plate is placed a latex rubber membrane The membranes were fabricated by a dip process described in a Latex Technical Bulletin entitled "Natural Latex Dipping Process" (30). Molds for the membrane fabrication were made of lucite and were of the same size and shape as the aluminum plates of the stress box sans 0 ming grooves. The thickness of the membranes was nearly uniform and was within the range of 0.014 to 0.018 inches.

The membranes were held in place on the plates by means of the 0.139 inch 0 -rings. Figure 7 shows a view of the top plate with the membrame and 0 ring in place.

Adherence to the-following assembly procedures assured a watex tight mating of the stress box. A thin coat of low viscosity gasket sealer was applied to the Owring grooves. Upon mounting the membranes and 0 rings onto each plate, the retaining frame components were fastened to each of the side plates. The four side walls were loosely fastened with 10-24 machine screws. Before tightening the screws, the bottom plate was loosely attached to the side plateso Tightening of the screws commenced sequentially until all the screws were secure. It is important that the screws not be turned in the holes or the membranes will tear during the tightening process. The top plate is attached to the box after a sample has been preparedo Again the screws
holding the top plate in place must be sequentially tightened assembled 4 inch and 6 inch box are both shown in Figure 8.

Auxiliary Components

Apparatus for measuring the uniformity of the strain within the stress box was also constructed. Five micrometer depth gauges were mounted to one of the side plates on each stress box. The $1 / 8$ Inch diameter pointers on the depth gauges protruded through clearance holes in the plate.

A series electrical circuit was mounted on the latex rubber memw brane. The circuit consisted of $3 / 16$ inch diameter pieces of 0.001 inch brass shim stock connected by fine insulated conducting wire. The wire was brought outside the box by conpressing it between the aluminum plate and rubber membrane along the-bevelled edge. The locations y f the micrometer depth gauges on the plates and the brass shim stock on the membranes are shown in Figure 9*

An ohn meter was placed in series between the circuit and the depth gauges... When all the gauges were backed away from the shim stock circuit, an open circuit resulted. By sequentially lowering the depth gauges until a finite electrical resistance was recorded on the ohm meter, the distance of the membrane from a datum could be deter mined at any measuring station. An assembled 4 inch stress box with the micrometer depth gauges in place is shown in Figure 10.

Oil-Water Tubes

The oil-water tubes were constructed of thick walled high strength glass tubes $3 / 8$ inch I. D. by $1 / 2$ inch 0 . D. The tubes were calibrated

Figure 7. Partially Assembled Four Inch Stress Box

Figure 8. Assembled Four and Six Inch Stress .
Boxes

6 INCH STRESS BOX

4 INCH STRESS BOX

Figure 9. Location of Depth Gauges on the Rubber Membranes

Figure 10. Four Inch Stress Box With Micrometer Depth Gauges in Place
to the nearest 0.1 cubic centimeter and had a range of 0 to 58 cubic centimeters.

The function of these tubes was to measure the change in volume behind the membranes of the stress box. A change in the volume would be accompanied by a change in the oilowater level in the calibrated tube. The oil used in the tube was Mobil DoT.E. oil. Caxe was taken to remove as much air as possible from both the oil and the water cono tained in the hydraulic lines.

Oil and Water Reservoirs

These reservoirs were made of regulat strength $1 / 2$ inch $0 . D$. glass tubing, The oil reservoirs were not calibrated, but the water reservoirs were calibrated to within 0.1 cubic centimeter and had a capacity of 120 cubic centimeters apiece.

The oil reservoirs served only to supply extra oil when required. The water resexvoirs were used as a supply source and also as a means for measuring the amount of water admitted between the plates and memo branes of the stress box during sample preparation. This was of impora tance in evaluating the volume and voids ratio of the test samples.

Auxiliary Equipment

The pressures applied to the load cylinders M and N wexe cone trolled by a pressure regulator and measured with bourdon tube pressure gauges. Marshalltown Test Gauges with a 6 inch dial, a- least reading of 0.5 psi and an accuracy of $1 / 4$ of one percent of the full scale reading of 100 psi was used for this purpose. A pressure gavge was placed in each of the hydrawlic lines extendiag from the cylinders L.

These gauges were also Marshalltown Test Gauges with an accuracy of $1 / 4$ of one percent of full scale of 100 psi. However, these gauges only had a 3 inch dial and a least reading of 1 psi. They served as a means for periodically checking the line pressures for a given location of the load cylinder M on the floating stress plate, During a loade deformation test each of these gauges was separated from the test apparatus by means of a small gate valve. The entrapped air inside the bourdon tube would have compressed under load, thereby inducing an error in the volumetric deformations.

The rectifier was constructed in the agricultural engineering laboratory. It served to condition the power source for the electrom magnet attached to load cylinder M.

Various gate valves were-located as show in the schematic diagram of Figure 2. These valves served to isolate portions of the hydraulic system both while prepaxing and loading the sample.

Method of Operation

The apparatus described can be used to test the load-deformation behavior of any granular medium which can be placed into the stress box. After a sample is placed into the stress box and the hydraulic lines axe connected as shown in either Figure 1 or Figure 2, the method of application of stress is accomplished by only a few simple steps.

First, a stress state and a stress path must be selected. Then the location or locations of the load cylinder M on the stress plate 2 must be determined. Ko and Scott (25) have derived the relationship between the pressure in each of the hydraulic lines leaving cylinders $L_{\text {, }}$ the location of the load cylinder, and the magnitude of the pressure
in load cylinder M.
Figure 11 is a sketch of the stress plate (Plate 2 in Figure 4). The pressures in the cylinders at the vertices of the stress plate are the principal stresses, $\sigma_{1}, \sigma_{2^{2}}$ and σ_{3}. If the distance between verm tices of the plate is given by 2ℓ, if a set of coordinates, x and y, is established with origin at the centroid of the stress plate, and if the y-axis is oriented such that it passes through the $\sigma_{1} \infty$ vertex, then the expressions for the principal stresses can be written as:

$$
\begin{align*}
& \sigma_{1}=\frac{p}{3}(1+\sqrt{3} \bar{y}) \tag{13}\\
& \sigma_{2}=\frac{p}{3}\left(1+\frac{3}{2} \bar{x}-\frac{\sqrt{3}}{2} \bar{y}\right) \tag{14}\\
& \sigma_{3}=\frac{p}{3}\left(1-\frac{3}{2} \bar{x}-\frac{\sqrt{3}}{2} \bar{y}\right) \tag{15}
\end{align*}
$$

```
where \(\mathbf{P}=\sigma_{1}+\sigma_{2}+\sigma_{3}\)
    \(=\) pressure applied to the load cylinder \(M_{0}\) psi。
    \(\bar{x}=\frac{x}{l}\)
    \(\bar{y}=\frac{y}{\ell}\)
    \(\sigma_{i}=\) principal stress in the ith direction, psi。
```

Equations 13, 14 , and 15 can be more conveniently expressed in terms of the angle θ measured counterclockwise from the yaxis, and the distance r from the centroid of the stress plate. Noting that

$$
\begin{equation*}
x=r \sin \theta \tag{16}
\end{equation*}
$$

Figure 11. Definition Sketch of the Stress Plate

$$
\begin{align*}
& y=r \cos \theta \tag{17}\\
& \bar{x}=\frac{r}{l} \sin \theta=\bar{r} \sin \theta \tag{18}\\
& \bar{y}=\frac{r}{l} \cos \theta=\bar{r} \cos \theta, \tag{19}
\end{align*}
$$

the equations for principal stresses become:

$$
\begin{align*}
& \sigma_{1}=\frac{p}{3}(1+\sqrt{3} \bar{r} \cos \theta) \tag{20}\\
& \sigma_{2}=\frac{p}{3}\left(1+\frac{3}{2} \bar{r} \sin \theta-\frac{\sqrt{3}}{2} \bar{r} \cos \theta\right) \tag{21}\\
& \sigma_{3}=\frac{p}{3}\left(1-\frac{3}{2} \bar{r} \sin \theta-\frac{\sqrt{3}}{2} \bar{r} \cos \theta\right) \tag{22}
\end{align*}
$$

The values for the principal stress, σ_{1}, σ_{2}, and σ_{3}, are tabulated in Appendix A-I for selected values of r and θ for a load cylinder pressure of 1 psi. Angles above 90 degrees are not included because of symmetry of the stresses in the other quadrants. Also included in Appendix $A-I$ are the stress ratios σ_{1} / σ_{3} and σ_{2} / σ_{3} for each set of coordinates r and θ.

Knowing the relationship between stress plate coordinates and principal stresses, it is an easy chore to locate the load cylinder and apply the desired magnitude of stress. For example, if a hydrostatic state of stress is desired, $\left(\sigma_{1}: \sigma_{2}: \sigma_{3}=1: 1: 1\right)$ the load cylinder is simply placed at the centroid of the stress plate. If a deviatoric state of stress is desired, the load cylinder is moved away from the
centroid of the stress plate.
The stresses in cylinders L are transmitted through the hydraulic lines, through the oil-water tubes, and to the six sides of the stress box. Each hydraulic line is divided at the stress box with one line going to each of a pair of opposite faces. Deformation of the granular medium under load causes water to flow into the space between the membrane and aluminum plate. The resulting change in the oilwater level in the oilmwater tubes is a measure of the deformation of the granular medium.

Separation of the hydrostatic and deviatoric stress states is the function of load cylinder N. Since plate 4 is suspended symetrically from plate 2, and since cylinder N is located at the centroid of plate 4, any load applied to cylinder N transmits a hydrostatic state of stress ta cylinders L. If cylinders M and N are both loaded with cylinder M located away from the centroid of plate 2, then both a hydrostatic and deviatoric state of stress can be applied to the stress box. The value of this feature of the stress control device becomes clear when it is realized that any arbitrary state of stress can be separated into a hydrostatic and a deviatoric component of stress.

CHAPTER IV

GENERAL PROCEDURES

The procedures discussed in this chapter are general in that they apply to all the testing programs in this study. Except where otherm wise noted, it is to be assumed that these procedures have been followed throughout the testing program.

Stress Control Device Calibration

Periodically, it was required that the line pressures, $\sigma_{1}, \sigma_{2} 0$ and σ_{3}, be calibrated to assure that they complied with the line pressures predicted by Equations 20 to 22.

For צarious locations, r and θ, on the stress plate the line pressures were computed for several values of load cylinder pressure p_{i}. The top load cylinder was placed at the various locations and loaded from 0 to $p_{\text {max }}$. At each pressure level p_{i}, the line pressures were recorded and compared to the computed line pressures. When a diso crepancy between measured and computed pressures occurred, the line pressure was adjusted to the computed pressure by altering the magnis tude of the counterweights fastened to the seress plate. The counter. weights consisted of lead shot to facilitate the calibration procedure.

The above procedure was repeated during loading and unloading of the top cylinder from 0 to $p_{\text {max }}$ to 0 until the computed and measured line pressures agreed to within 0.25 psi. Then the load cylinder was
moved to a new location and the procedure was repeated.

Test Sample Preparation

Strict adherence to the following methods of test sample preparation was required to assure that: (1) Variations between test samples were minimized; (2) The test sample was homogeneous; and (3) The shape of the sample was nearly cubical.

The first step was to remove all the entrapped air from the space between the membranes and the aluminum plates. This was done to each side of the stress box with the exception of the top side. Only after the sample was prepared and the top plate was in place could the aix space be evacuated.

The stress box was next filled with water. A clear lucite plate which had the same size and shape as the top plate was placed on top of the stress box. Water was siphoned through a hole in the lucite plate until the water level touched the plate bottom. The weight and volume of water required to fill the stress box was recorded. This volume was designated by the symbol $V_{B}{ }^{\circ}$

The box was emptied and dried with tissue paper before the hyo draulic lines were connected to the stress box. Precautions were taken to assure that the hydraulic lines were void of any air bubbles. Also, all the gate valves on the apparatus were closed before connecting the hydraulic lines. Reference will be made to Figure 2 in the following discussion.

The water level in each of the three water tubes was recorded. Valves P and T were opened and approximately 16 cu 。 cm 。 of watex was admitted behind the bottom membrane. A visual check was made for air
bubbles behind the membrane。 Enough water, approximately $4 \mathrm{cu} . \mathrm{cmog}_{\mathrm{g}}$ was admitted behind each of the side membranes to fill the membrane to a depth of 1 inch. The granular medium was then funnelled into the box in such a manner as to fill the box uniformly to a depth of 1 inch. Water and grains were admitted in this sequence until the box was filled to a level even with the bottom of the lucite plate. About 4 lifts were required to fill the 4 inch stress box, whexeas the 6 inch stress box required 6 lifts. It was necessaxy to use this filling procedure, because the side membranes would have bulged excessively near the bottom if completely filled in ome lifto. Thus, the grain sample would not have been a cubical.

When the box is filled, the water levels in the water reservoirs and the total weight of the grain samples $W_{s^{2}}$ are recorded ${ }^{2}$ the volume of water admitted behind the membranes $p_{p} V_{A^{p}}$ is computed and recorded and the sample volume, V_{T} is determined by subtracting V_{A} from $V_{B^{\prime}}$ Thus,

$$
\begin{equation*}
V_{T}=V_{B}-V_{A} \tag{23}
\end{equation*}
$$

where $V_{T}=$ total sample volume, cus cme
$V_{B}=$ volume of the empty stress box $\mathrm{cu}_{0} \mathrm{~cm}$ 。
$V_{A}=$ volume of water admitted behind the membranes, cu. cme

The voids ratio of the sample is computed during the sample preparation procedures to insure that the voids ratio of the sample is within the limits defined for the test being conducted. Equation 24 is the expression which related the sample volume and weight to the initial voids ratio.

$$
\begin{equation*}
e_{0}=\frac{\left(V_{T}\right)\left(S_{0} G_{0}\right)\left(\gamma_{W}\right)}{W_{S}}-1 \tag{24}
\end{equation*}
$$

where $e_{0}=$ initial voids ratio of the sample.
$W_{\mathrm{s}}=$ total sample weight, gms.
$\gamma_{\mathrm{w}}=$ density of water, gmso/cu. cm.

If the sample voids ratio was within the desired range, the top plate was fastened to the stress box and the air space behind the membrane was evacuated by circulating water into the center port of the plate and out of a second port located in a corner of the plate. The stress box was tilted during this operation to allow air bubbles to escape. The sample was ready to be tested as soon as the hydraulic line was connected to the top plate.

Before a test was begun the following additional steps had to be completed: (1) The load cylinder had to be properly located on the stress plate; (2) Valves P and R had to be closed; (3) Valves Q, T_{0} and S had to be opened; and (4) The initial oilowater level had to be recorded.

Data Collection

The load cylinder pressure was varied from 0 to $p_{\text {max }}$ in 3 psi increments of pxessure at uniform time intervals. The rate of loading will be determined by some preliminary investigations. At the end of each time interval, the oilowater level in each oilowater tube and the three stress levels were recorded. The same procedure was followed during unloading of the sample from $p_{\max }$ to 0 .

At the conclusion of a loading test valves S were closed and the oilmater level was recorded in each oilowater tube. Then the pressure in the load cylinder was loaded along the same path followed with valves S open. At each pressure level the oilowater levels were recorded. The change in the oilwwater level with valves S closed was the error introduced to the volumetric deformations of the grain sample due to the combined effect of compression of entrapped air in the fluid lines and expansion of the hydraulic tubes under load.

Reduction of Data

In this study all compressive deformations are assumed positive. This is in agreement with the standard sign conventions adopted in the area of soil mechanics.

The raw volumetric deformations in the ith direction at any given pressure level were obtained by calculating the difference between the oil-water levels at the given pressure level and at 0 psi in the ith direction. The resulting volumetric deformation was designated by the symbol, $\left.\Delta V_{r a w}\right)_{i}$. This is called the raw volumetric deformation, because several volumetric corrections must be applied to $\left.\Delta V_{r a w}\right)_{i}$.

Corrections to Deformation Measurements

Two volümetric corrections must be applied to the xaw volumetric deformations. These are:
a. Corrections to compensate for the compressibility of entrapped air in the hydraulic lines and the expansion of the hydraulic lines under load.
b. Corrections to compensate for the tendency of the
rubber membranes to fill the voids between individe ual grains under load; and corrections to compensate for the compressibility of the rubber membrane under load.

These corrections have been evaluated experimentally.
The first source of error has already been discussed in the seco tion entitled "Data Collection" The correction term applied to the raw deformations to compensate for the compressibility of entrapped aix and expansion of the hydraulic lines is designated by the symbol ΔV_{L}. The magnitude of ΔV_{L} is simply the difference between the oilwater levels at load cylinder pressure p and 0 psi when the hydraulic system is isolated from the test sample by the valves S in Figure 2 .

The correction curve for the effects of membrane compression and indentation are required because it is assumed that the membrane dem forms as a plane. The curve was developed on the following basis. It is asserted that any volumetric deformation behind a membrane adjacent to a single layex of granules is composed of three components: (1) Dem formation of individual particles; (2) Compression of the membrane; and (3) Indentation of the membrane. In equation form the total volu metric deformation under load of a membrane adjacent to a single layer of particles is:

$$
\begin{equation*}
\Delta v_{t}=\Delta V_{c}+\Delta V_{I}+\Delta v_{g} \tag{25}
\end{equation*}
$$

where $\Delta V_{t}=$ total volumetric deformation $\mathrm{cu}_{0} \mathrm{~cm}$. $\Delta V_{c}=$ volumetric deformation due to compressibility of the

$$
\begin{aligned}
& \text { membrane, } \mathrm{cu} \cdot \mathrm{~cm} . \\
\Delta \mathrm{v}_{\mathrm{I}}= & \text { volumetric deformation due to grain indentation, } \mathrm{cu}_{0} \mathrm{cmo} \\
\Delta \mathrm{v}_{\mathrm{g}}= & \text { volumetric deformation due to grain deformation, } \mathrm{cu} . \mathrm{cm}
\end{aligned}
$$

Manipulation of Equation 25 yielded the correction term desixed.

$$
\begin{equation*}
\Delta V_{c o r x}=\Delta V_{c}+\Delta V_{I}=\Delta V_{t}=\Delta V_{g} \tag{26}
\end{equation*}
$$

Thus it was requixed that ΔV_{g} and ΔV_{t} be defined.
The apparatus used for evaluating ΔV_{g} is shown in Figure 12. The deformation of the grains at load P was evaluated from the change in the dial gauge xeading. The stresses were evaluated simply by dividing P by the cxossosectional area of the aluminum block. For convenience in future calculations the grain deformations were cono verted to volumetric deformation per square inch of area.

The apparatus used to determine the total deformation of a memm brane adjacent to a single layer of particles. ΔV_{t} is diagrammed in Figure 13. The appaxatus consists of a hollow steel box which has its bottom side open. The open side is a $61 / 2$ inch squaxe. A rubbex membrane is placed over the open end and is secured to the sidewalls by a watertight compression fite In the top of the box is an NPT connection for admitting water and a bleed valve for removing any eno trapped air. A hydraulic line connected to the NPT fitting runs to a calibrated water tube which is connected to an air compressor.
ΔV_{t} is obtained by the following procedure, A simgle layer of grain is placed on the base plate. The box with the membrane in place is located on the four supports and then slowly lowered by adjusting

Figure 13. Sketch of Apparatus for Determination of the Total Membrane Deformation Behind a Single Layer of Grain
the bolts on the four supports until the membrane just touches the layer of wheat. The lock nuts are then tightened and the box is filled with water. Care must be taken to remove all the air from the box. After connecting the hydraulic lines and recording the initial watex level in the calibrated tube, the test commenced.

The pressure was increased from 0 to 60 psi in 5 psi increments. At each increment the change in the liquid level in the water tube was recorded. The difference between the water level at pressure p and 0 psi was the desired ΔV_{t} at pressure po The deformation, ΔV_{t} was also converted to the volume change pex square inch of membrane area.

By the procedures outlined above, an expression for $\Delta V_{\text {corr }}$ per square inch of membrane area as a function of stress level σ_{i}, was developed. To apply the correction to a membrane on a stress box it was required to multiply the value for $\Delta V_{\text {corr }} / s q$. in. by the area of the membrane. In Appendix BoII the correction curve for the wheat grains used in the testing program is given as a function of pressure level.

Reduction of Raw Volumetric Deformations to Strains

Equipped with the correction curve for membrane indentation, the reduction of data is straight forward. The true volumetric deformation behind the two membranes in the ith direction is given by the equation:

$$
\begin{equation*}
\left.\left.\left.\Delta V)_{i}=\Delta V_{x a w}\right)_{i}-\Delta V_{L}\right)_{i}=\Delta V_{\text {corr }}\right)_{i} \tag{27}
\end{equation*}
$$

The strain in the ith direction is evaluated by Equation 28.

$$
\begin{equation*}
\varepsilon_{i}=\frac{\Delta V)_{i}}{\Delta V_{T}} \tag{28}
\end{equation*}
$$

Sensitivity of the Computed Strains

The least reading of any volumetric deformation measurement is $0.1 \mathrm{cu} \mathrm{cm}_{\text {。 }}$ Since three volumetric deformations are required to com＝ pute the corrected volumetric deformation in the ith direction in the stress box，the least reading of the corrected volumetric deformation is 0.3 cu ． cm 。

If the least reading for the corrected volumetric strain is sube stituted for $\Delta V)_{i}$ in Equation 28，a measure of the sensitivity of the computed strains is obtained．

$$
\begin{equation*}
\mathrm{s}= \pm \frac{0_{.} 3}{\mathrm{~V}_{\mathrm{T}}} \tag{29}
\end{equation*}
$$

where $S=$ strain sensitivity，cmo／cm．
$V_{T}=$ volume of test sample，cu．cr．

For a 4 inch stress box the sample volume was approximately 1000 cu ． cmo For a 6 inch stress box the sample volume was approximately 3330 cu ． cm ．Thus，the sensitivity of the strains for the 4 and 6 inch stress boxes were，respectively，$\pm 0.030 \times 10^{-2}$ and $\pm 0.010 \times 10^{-2}$ $\mathrm{cm} . / \mathrm{cm}$ 。

Variations in Procedures

Uniformity of Strain Measurements

The micrometer dials and the electrical circuit described in Chapter III under the subheading "Auxiliary Components" wexe mounted and in place before the test sample was prepared. The test was cono ducted as described in this chapter. Howevex, before loading come menced, the deformation of the membrane was recorded at each of the five depth gauge stations. Then, at each increment of load, the lineax displacement at each station on the membrane was recorded by lowering the depth gauge until it closed the electrical circuit, recording the micrometer dial reading, and backing the depth gauge from the membrane.

By subtraction it was possible to determine the lineat displaceo ment of the membrane at each station for any level of stress. The uniformity of the membrane deformation was observed by comparing the linear displacement of the five stations.

Creep Tests

The only change in procedure concerned the mode of load applicao tion and the recording of data. The maximum desired stress level was applied to the stress box at the beginning of the creep test. The oilwater levels were then xecorded at time intervals.

Radial Stress Path

In these tests the magnitude of the pressure in the load cylinder remained constant. However, the location of the load cylinder was moved from the centroid of the stress plate outward along a straight
line path. That is, p and θ remained constant throughout the test. but the distance from the centroid, $r_{\text {g }}$ was varied. This had the effect of holding the sum, $\sigma_{1}+\sigma_{2}+\sigma_{3}$, constant, but causing a vaxiation in the stress ratios, σ_{1} / σ_{3} and σ_{2} / σ_{3} 。

CHAPTER V

THE PARTICULATE MATERIAL

The particulate material investigated in this study was hard wine ter wheat. The physical properties of the wheat which were deemed important to the stressustraix behavior of wheat en masse are presented in this chaptex.

Properties Evaluated and Methods

The physical properties evaluated are: (1) The size and shape of the individual grains; (2) The specific gravity of the grains; (3) The angle of internal frictiong (4) The moisture content; (5) The coefo ficient of static friction between the wheat and latex rubber; (6) The coefficient of static friction between wheat and aluminum; and (7) The voids ratio. Five samples wexe randomy selected from the wheat used in the testing program. Each sample was subjected to the physical tests described below.

The size and shape of the particles were determined by measurement of three orthogonal dimensions of the wheat graine this techmique was suggested by Mohsenin (36). The dimensions measured were the lengths of the maximum axis, $a_{\text {, the }}$ thimimum orthogonal axis, c_{p} and the maximum axis orthogonal to both and $c_{9} b$. The dimensions were obtained using a Wilder Opto $\propto M$ Model A Optical Comparator with a loX magnification and a 0.05 millimeter grid. The grain was rotated in the comparator until
the maximum dimension was observed. Then the grain was rotated about the major axis until the minimum axis was observed. The grain was finally rotated 90 degrees about the major axis to obtain the intex mediate dimension. Five kernels were selected and measured from each of the five wheat samples.

The specific gravity of the wheat kernels was determised by the large pycnometer method as described by Mohsenin (36). The angle of internal friction was evaluated by standard confined triaxial shear tests in which confining stresses of 20.84 and 27.72 psi were employed. A discussion of the confined triaxial shear test for cohesionless soils is described in Lambe (31). The coefficients of static friction were determined by the methods outlined by Brubaker and Pos (7) for grains on structural surfaces.

The grain moisture content was determined by oven dxying the samples for 24 hours at 180 degrees Fahrenheit. The moisture content of the wheat was checked periodically during the testing program to insure that the moisture content was not significantly altered. Any variation in the moisture content could have been critical since the physical properties of wheat, such as the coefficient of scatic fricm tion and internal friction, were reported by Brubaker and Pos (7) and Lorenzen (32) to vary with moisture content.

The voids ratio of the wheat varied between samples and was evalua ated independently for each sample tested. The procedure for obtaining the initial voids ratio was presented in Chapter IV undex the subo heading "Test Sample Preparation."

Sumary of the Physical Properties

The three axial dimersions of twenty-five wheat grains are prew sented in Appendix C-I. In Appendix C-II are summarized the results of the other physical properties tests.

The mean physical properties of the wheat are compared to published physical properties for wheat in Table I. The sixe of the wheat grains were smallex than the published values. The size difference could be due to seasonal andfor varietal differences. The ratio of the axial dimensions, a / b and a / c_{2} are nearly equal; and both the measured and published results agree with Shelef and Mohsenin ${ }^{1}$ (47) observation that the major axis is approximately twice as long at the other two oxthogonal axes.

The observed specific gravity was only lod percent lower than the published value of 1.42 . The coefficient of static friction of wheat on aluminum or latex rubber has not been published, howevex, Lorenzen (32) reported the static coefficient of friction between wheat at a moisture content of 11.0 percent and steel to be 0.39 . The observed value of 0.253 appears 60 be in the proper range since the aluminum used was extremely smooth. No comparison could be made for the friction coefficient between latex subber and wheat.

The angle of internal friction for wheat at 11.0 percent moisture has been published by Loxenzen (32). The observed and published friction angle differed by only +2.0 percent.

TABLE I
mean values of the physical properties OF THE WHEAT USED IN THE TESTING PROGRAM

Property	Measured Value and Sted. Dev.	Published Value and 54 d. Dev.
Length of Major Axis (in*)	$\begin{aligned} & 0.196 \\ & 0.002 \end{aligned}$	$\begin{aligned} & 0.224^{1} \\ & 0.010 \end{aligned}$
Length of Interme Axis (ino)	$\begin{aligned} & 0.098 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.129^{1} \\ & 0.010 \end{aligned}$
Length of Minor Axis (imo)	$\begin{aligned} & 0.091 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.123^{1} \\ & 0.008 \end{aligned}$
Specific Gravity	$\begin{aligned} & 1.396 \\ & 0.013 \end{aligned}$	$1.42{ }^{1}$
Internal Friction Angle (degrees)	$\begin{array}{r} 25.0 \\ 0.1 \end{array}$	24.5^{2}
Moisture Content	$\begin{array}{r} 11.38 \\ 0.28 \end{array}$	$7.80{ }^{8}$
Static Coef. of Friction on Latex Rubber	$\begin{aligned} & 0.477 \\ & 0.007 \end{aligned}$	(Not available)
Static Coef. of Friction on Aluminum	$\begin{aligned} & 0.253 \\ & 0.003 \end{aligned}$	(Not available)

${ }^{1}$ Published values are from Mohsemin (36).
${ }_{\text {Published }}$ values from Lorenzen (32).

GHAPTER VI

PRELIMINARY INVESTIGATIONS

Size Effect and Strain Uniformity

Purpose and Nature of the Tests

The purposes of this series of investigations were to determine the influence of test sample size upon the stressestrain behavior of wheat en masse, to determine the degree of uniformity of the strains encountered in the stress boxes, and to select the size stress box to be used in subsequent testing programs for wheat en masse.

Hydrostatic compression tests, in which the applied stresses varied from 0 to 20 to 0 psi, were conducted with both the 4 and 6 inch test boxes. Volumetric deformation readings were taken at stress levels of $0,1,2,3,5,8,11,14,17$, and 20 psi. The stress increm ments were applied at one minute intervals. A stress level of 20 psi was considered large enough to span both mechanisms of deformation encountered in particulate media en masse; namely particle deformation and particle reorientation. At each stress increment the linear dem formation of one of the side membranes was also measured by means of the five micrometer depth gauges. Three replications were run for each stress box.

Test Results

A summary of the voids ratios of the test samples is presented in Table II. The range of the voids ratio was 0.739 to 0.781 . This indicated that with careful sample preparation the initial voids ratio of the test samples could be closely controlled.

TABLE II

INITIAL VOIDS RATIOS FOR THE SIZE EFFECT TEST SAMPLES

Test Sample	Initial Voids Ratio
Hydrostatic Compression $m 4$ inch box	Rep $1=0.761$
	Rep $2=0.781$
Rep $3=0.765$	
Hydrostatic Compression -6 inch box	Rep $1=0.739$
	Rep $2 \infty 0.764$
	Rep $3=0.766$

The stress-strain curves for wheat in a 4 inch and a 6 inch samm ple under hydrostatic compression are presented in Figures 14 through 19. The data for these curves are tabulated in Appendix DoI. In each of these figures the σ_{1} and σ_{2} directions correspond to the stresses applied in the horizontal direction, whereas σ_{3} always refers to the stress applied in the vertical direction.

The $\sigma_{1}-\epsilon_{1}$ and the $\sigma_{2}=\epsilon_{2}$ curves were nearly identical in every test, while the $\sigma_{3}=\epsilon_{3}$ curve was displaced to the left of the other two. The maximum difference observed between ε_{1} and ε_{2} at a stress

Figure 14. Hydrostatic StressmStrain Curves Obtained with the Four Inch Stress Box * Rep 1

Figure 15. Hydrostatic StressoStrain Curves Obtained with the Four Inch Stress Box mep 2

Figure 16. Hydrostatic StresswStrain Curves Obtained with the Four Inch Stress Box * Rep 3

Figure 17. Hydrostatic Stress-Strain Curves Obtained with the Six Inch Stress Box - Rep I

Figure 18. Hydrostatic StressmStrain Curves Obtained with the Six Inch Stress Box - Rep 2

Figure 19. Hydrostatic Stress-Strain Curves Obtained with the Six Inch Stress Box - Rep 3
level of 20 psi was 3 percent, whereas ϵ_{3} was consistently 20 to 30 percent lower than either of the horizontal strains. Hysteresis losses of about 25 and 65 percent were observed in the vertical and horizontal directions, respectively.

The stress-strain curves for the 4 inch and 6 inch stress box all exhibited the same characteristic shape。 At stresses below approxim mately 8 psi the $\sigma_{i}=\epsilon_{i}$ relationship was nonlinear and large deformaw tions were experienced for small increments of pressure, but at stresses above 8 psi the $\sigma_{i}=\epsilon_{i}$ relationship tended toward a linear relationship. The wheat began to behave as a much stiffer matexial as stress level increased. The shape of the curves, therefore, lend support to the contention that two distinct mechanisms of deformation are present: one in which particle reorientation is predominant and one in which particle deformation is predominant.

The stressostrain behavior obtained with the 4 inch cubical sample of grain is shown in Figures 14, 15, and 16. The following observations were made upon superimposing the stressostrain diagrams for these three replications. The $\sigma_{i}=\epsilon_{i}$ curves for rep 2 and rep 3 nearly coincided in the respective dixections of stress. In rep 1 , however, the unit strains in each direction were about 12 percent lowex than the strains at a corresponding stress level in reps 2 and 3 . The deviation of the results of rep 1 from those of reps 2 and 3 resulted from the rep 1 sample being accidentally preconsolidated to a stress level of 2 psi and unloaded before the hydrostatic compression test was conducted. Thus, the initial voids ratio of the sample in rep 1 was reduced by the preconsolidation. As expected, the curves for rep 1 tended towards linear at a lower unit strain than in reps 2 and 3 .

The stress-strain diagrams obtained with the 6 inch samples are plotted in Figures 17, 18, and 19. Superposition of the diagrams for the three replications indicated that the respective curves were nearly identical for the three replications.

It was concluded that the strains measured by both the 4 inch and the 6 inch sample are repeatable. Thus, repeatability of results played no role in the selection of an adequate sample size for subsem quent testing.

A comparison of the $\sigma_{i}-\varepsilon_{i}$ behavior of the 4 and 6 inch samples indicated that the unit strains for the 4 inch sample were consistently higher than the corresponding unit strains for the 6 inch samples. The magnitude of these differences are shown in Table III for rep 2 of the respective sample sizes.

Inspection of the stressmstrain curves and the percent differences listed in Table III suggested that the unit strains were considerably and consistently higher in the 4 inch sample than in the 6 inch sample. Furthermore, the differences were larger at the lower levels of stress than at the higher levels of stress. At a stress of about 8 psi the percentage differences began to stabilize. This was a strong indication that the differences in the unit strains between sample sizes were taking place primarily in the realm of stresses where particle rem orientation is the predominant mode of deformation. By the time particle deformation became the predominant mode of deformation, no further increase (or decrease) in the difference between the unit strains of the respective samples was observed.

The results of the strain uniformity data are presented in Tables IV and V. In the second column of these tables the average linear

TABLE III

COMPARISON OF UNIT STRAINS BETWEEN THE

 FOUR AND SIX INCH SAMPLES (REP 2)
$1_{\%}$ Diffo $_{0}=\frac{\left(\varepsilon_{i}-4 i n_{\theta}\right)-\left(\varepsilon_{i}-6 i n_{\bullet}\right)}{\left(\varepsilon_{i}-4 i n_{\theta}\right)} \times 100$
${ }^{2}$ Stress equals the hydrostatic compressive stress.

TABLE IV
STRAIN UNIFORMITY DATA FOR THE FOUR INCH SAMPLE UNDER
HYDROSTATIC COMPRESSION (REPS 2 AND 3)

$\begin{gathered} \text { Stress } \\ (\mathrm{psi}) \end{gathered}$	Avg。 Membrane Deformation ${ }^{2}$ $\text { (in. } x 10^{2} \text {) }$		ured L Sta. 2 (i	$\begin{gathered} \text { inear De } \\ \text { Sta. } 3 \\ a_{0} \times 10^{2} \end{gathered}$	ormat Sta. 4	$\text { Sta. } 5$		Avg. Membrane Deformation ${ }^{3}$ (in. $\times 10^{2}$)	Difference Between Deformation (in. $\times 10^{2}$)
0	0	0		$\operatorname{Rep}_{0} 2$	0	0		0	0
1	1.5	1.7	1.0	$\cdots 0.9$	1.3	1.5	,	1.3	-0.2
2	1.7	1.9	1.3	1.7	2.0	1.9		1.8	0.1
3	1.9	2.2	1.7	2.1	2.2	2.2		2.1	0.2
5	2.0	2.6	2.2	2.5	2.3	2.5		2.4	0.4
8	2.6	2.9	2.5	2.9	2.6	3.1		2.8	0.2
11	2.9	3.2	2.7	3.3	3.0	3.5		3.1	0.2
14	3.3	3.5	2.9	3.7	3.3	3.9		3.4	0.1
17	3.5	3.7	3.1	3.9	3.7	4.1		3.7	0.2
-20	3.8	4.0	3.3	4.2	3.9	4.4		4.0	0.2
				Rep 3					
0	0	0	0	0	0	0		0	0
1	1.1	0.8	0.9	0.9	1.2	1.1		1.0	-0.1
2	- 1.1	1.4	1.7	1.5	1.9	1.4		1.6	0.5
3	1.9	1.6	1.8	1.7	2.3	1.9		1.9	0.0
5	2.0	1.8	2.1	2.0	2.5	2.2		2.1	0.1
8	2.5	2.2	2.6	2.6	3.6	2.7		2.5	0.0
11	2.9	2.4	2.9	3.0	3.8	3.0		3.0	0.1
14	3.2	2.6	3.1	3.3	3.9	3.3		3.2	0.0
17	3.5	2.9	3.3	3.5	4.0	3.5		3.4	-0.1
20	3.8	3.1	3.5	3.7	4.1	3.8		3.7	-0.1

${ }_{2}$ Stress equals the hydrostatic compressive stress.
${ }_{3}$ Computed from volumetric deformations
${ }_{4}$ Computed from depth gauge measurements
${ }^{\text {Difference }}$ between avg. deformations

TABLE V
STRAIN UNIFORMITY DATA FOR THE SIX INCH SAMPLE UNDER HYDROSTATIC COMPRESSION (REPS 2 AND 3)

${ }^{1}$ Stress equals the hydrostatic compressive stress.
${ }_{3}$ Computed from volumetric deformations
${ }^{3}$ Computed from depth gauge measurements
4Difference between avg. deformations
movement of the membrane as computed from the volumetric deformations is tabulated for each stress level. Columns 3 to 7 contain the linear deformations as obtained from the micrometer depth gauges, the location of which are shown in Figure 9. Column 8 is a listing of the average deformation of the membrane as measured by the depth gauges, and column 9 is a tabulation of the difference between the mean average linear deformation computed from the depth gauge measurements and the volumetric deformation measurements.

The membrane deformations were consistent in one sense. At the stations within 1 inch of the membrane edges in the 6 inch stress box and within $1 / 2$ inch of the membrane edges in the 4 inch stress box, there was a slight restriction of the membrane deformation. However, as the measuring stations moved away from the membrane edges, the variation of the deformation became random in both the 4 inch and the 6 inch stress box. Since the uniformity of the membrane deformation was not affected by sample size, it was not a contributing factor in deciding upon an adequate sample size.

The average linear deformations of the membrane as computed by the two methods were in close agreement. Except for a few isolated cases at stresses below 5 psi, the average linear membrane deformations come puted by two methods were within 0.002 inches of each other; and in many instances, the difference was 0.000 and 0.001 inch. This close agreement provided confidence in the measuring and data reduction teche niques since the two average linear deformations were obtained independently.

Discussion of Size Effect Considerations

From the standpoint of sample uniformity between test runs and the uniformity of membrane deformations, either the 4 or the 6 inch sample would have been equally satisfactory. However, the stress: strain behavior of the samples in the two boxes did indicate variation in response due to size.

It was asserted that smaller unit strains would be expected in the smallest sample if edge effects (wall effects) were responsible for the variation in response due to sample size. The basis fox this assertion was that a larger percentage of the material in a given stress plane would be restrained by a wall effect in a smaller sample than in a larger sample. Since the largest unit strains were observed in the smaller stress box, it was concluded that, although wall effects may be presentg they were overwhelmed by some other effect which is dependent upon sample size.

Above stresses of 8 psi the stressastrain diagrams for the two sample sizes mere similar in shape and slope. The differences in response due to sample size, therefore, were produced during the initial stages of deformation. That is the differences took place in that portion of deformation during which particle reorientation was the predominant mechanism.

In a finite sample it is hypothesized that particle reorientation will begin at the membranemparticle interface. As the stress is increased particle reorientation will continue at the interface and begin to occur in planes removed from the membrane As the stress is further increased, the particle reorientation will proceed towards the center of the sample. However if the mass of material is large
enough, individual particle deformation will begin to occur in partimp cles near the interface before particle reorientation has been com* pleted in the central portion of the sample. Thus, if a sample is large enough, a large strain gradient will be present.

It is concluded that the difference in the stressostrain behavior between the two sample sizes is a result of nonhomogeneous states of strain in the samples. It is also concluded that this strain nonhomogeneity will be more in evidence in the 6 inch box than in the smaller box. This conclusion is supported by the nature of the stresso strain curves.

In the 6 inch stress box particle reorientation has not been come pleted throughout the entire sample thickness before particle deformation takes place. Since the mass of grain becomes stiffer when particle deformation takes place, it is expected that the unit strains would be lower for the 6 inch box than for a 4 inch box at a given stress level. It was noted earlier that such is the case. At all levels of stress the unit strains in the 6 inch sample were smaller than the corresponding strains in the 4 inch sample.

It has not been concluded that the strains in the 4 inch box were completely homogeneous. The conclusions drawn are that the effects of strain nonhomogeneity are minimized by decreasing sample size, and that the most adequate stressastrain relationship can be obtained with the smaller sample. Since it is impractical physically to consider a sample size smaller than 4 inches, it was decided that the 4 inch stress box be used in all subsequent testing programs.

Gravity, Isotropy, Load Rate, Greep, and Load History Investigations

Purpose of the Investigations

The purpose of these investigations was to define the influence of factors such as gravity, isotropy, load rate, and load history upon the mechanical behavior of wheat en masse. The results of these tests, the objectives of which are outlined belows were used in designing the main experiments.

Test Objectives

Gravity to determine whether the difference in the stress. strain behavior in the vertical direction with respect to filling was due to particle orientation with respect to gravity or the weight of the sample.

Load Rate \quad to observe whether a variation in load rate between 3 and 6 psi/minute caused a change in the stressastrain behavior of wheat en masse when subjected to a hydroo static compressive state of stress or to a deviatoric state of stress.

Creep - to evaluate the characteristic times, $\tau_{i}{ }^{2}$ for wheat en masse under hydrostatic compressiono \boldsymbol{T}_{i} is defined in the following equation:

$$
\begin{equation*}
\frac{\varepsilon_{i}}{\varepsilon_{\infty i}}=1.0-\left(1.0-\frac{\varepsilon_{0 i}}{\varepsilon_{\infty i}}\right) e^{\infty t / \tau_{i}} \tag{30}
\end{equation*}
$$

$$
\begin{aligned}
\text { where } \epsilon_{i} & =\text { strain in ith direction at time, } t_{g} \text { in。/in. } \\
\epsilon_{o i} & =\text { instantaneous strain in ith direction, ino/ino } \\
\epsilon_{\omega_{i}} & =\text { maximum strain in the ith directiong in。/ino } \\
t & =\text { time from application of load, minutes } \\
T_{i} & =\text { characteristic time in ith direction, minutes }
\end{aligned}
$$

Isotropy－to determine the degree of elastic symmetry of wheat en masse with respect to principal stresses。

Load History＝to determine the dependence of the stresswstrain behavior of wheat en masse upon the load history to which it has been subjected．The objectives of these tests were further subdivided as follows：

1．To determine whether or not hysteresis losses decreased with increasing number of full load cycles．

2．To determine if elastic stressmstrain behavior is apm proached with increasing number of load cycles when：
（a）Complete loadmunload cycles are applied．
（b）Partial loadounload cycles are applied．
3．To detexmine whether the final strain encountered for a general stress state is affected by the order of applying the hydrostatic and deviatoric component of a general stress state．

4．To determine the effect variation of the stress ratio，$\sigma_{1}: \sigma_{2}: \sigma_{3}$ from $1: 1: 1$ to $4.00: 2.50: 1$ while holding $p=\sigma_{1}+\sigma_{2}+\sigma_{3}$ constant：had upon the stressostrain behavior；and to determine whether repeated cyclic variation of the stress ratio resulted in elastic stressmstrain behavior．

Test Descriptions

The loading tests conducted are described in Table VI. Except where otherwise indicated, σ_{1} and σ_{2} refer to horizontal stresses, whereas σ_{3} designates the vertical stress.

Test Results

The reduced stress-strain data for these investigations are presented in Appendix D. Representative stressistrain curves are included in the text for all the preliminary tests.

Gravity Effect

Rotation of the wheat sample 90 degrees about a σ_{2}-axis after film ling showed that the strains in the vertical and horizontal directions with respect to filling were not altered by the rotation. Table VII summarizes the strains observed for a rotated and nonrotated sample at a hydrostatic stress, σ_{0}, of 20 psi. The variations observed in ϵ_{i} due to sample rotation were small and were attributed to variations in sample voids ratio and experimental error.

It was concluded that the differences in the strain in the vertical and horizontal directions with respect to filling under hydrostatic compression were due to orientation of individual wheat grains with respect to gravity. Gravity orientation takes place because wheat grains are asymmetric; that is, a typical wheat grain approximates an ellipsoid which has a longitudinal axis twice as large as either lateral axis. As a result, the stable orientations of a

SUMMARY OF PRELIMINARY TESTS

Expt. No.	Effect Studied	Brief Description of Test
1	Gravity	Hydrostatic compression; stress varied from 0 to 20 psi ; sample orientation during loading identia cal to orientation during filling. (Two replicaw tions)
2	Gravity	Same as No. 1 except sample rotated 90 degrees so vertical direction with respect to filling became a horizontal direction during loading. (Two replications)
3	Isotropy	Deviatoric stress state with $\sigma_{1}: \sigma_{2}: \sigma_{3}=$ 2.33:1.67:1; p^{1} varied from 0 to 45 to 0 psi. (Two replications)
4	Isotropy	Deviatoric stress state with $\sigma_{1}: \sigma_{2}: \sigma_{3}=$ 2.33:1.67:1; p^{1} varied from 0 to 45 to $0 \mathrm{psi} ; \sigma_{1}$ was the vertical stress and σ_{2} and σ_{3} were the horizontal stresses. (Two replications)
5	Load Rate	Hydrostatic compression; stress varied from 0 to 40 to 0 psi; load rate equal to $3 \mathrm{psi} / \mathrm{minute}$ in top cylinder; load applied in increments of 3 psi.
6	- Load Rate	Same as No. 5 except load rate increased to 4.5 psi/minute.
7	Load Rate	Same as No. 5 except load rate increased to 6.0 psi/minute.
8	Load Rate	Deviatoric stress state with $\sigma_{1}: \sigma_{2}: \sigma_{3}=$ 2.33:1.67:1; load varied from 0 to 45 to 0 psi in top cylindex; load rate equal to 3 psi/minute in top cylinder: load applied in increments of 3 psi.
9	Load Rate	Same as No. 8 except load rate increased to 4.5 psi/minute。
10	Load Rate	Same as No. 8 except load rate increased to 6 psi/minute.
11	Creep	Hydrostatic stress, σ_{0}, of 20 psi applied instantaneously to the sample; strain measured at time intervals up to 1620 minutes from application of the load.
12	Load History	Gyclic hydrostatic compression test; load rate equals 3 psi/minute on top cylinder; load varied

TABLE VI (Continued)

Expt.	Effect Studied	Brief Description of Test

$$
1_{p}=\sigma_{1}+\sigma_{2}+\sigma_{3}=\text { pressure applied to top load cylinder. }
$$

Figure 20. Illustration of a Radial Stress Path in which $\theta=30$ Degrees and $x=0$ to 3 Inches

TABLE VII

GRAVITY EFFECT. COMPARISON OF STRAINS AT 20 PSI FOR ROTATED AND
UNROTATED SAMPLES

Test(∞)	Voids Ratio (\approx)	${ }^{\varepsilon} 1$	rains ϵ_{2}	\& 3
		(inolin. $\times 10^{2}$)		
Size Effect (Rep 2) ${ }^{1}$	0.781	1.89	1.82	1.36
Size Effect (Rep 3) ${ }^{1}$	0.765	1.89	1.92	1.23
Gravity Effect (Rep 1) ${ }_{2}^{2}$	0.822	2.19	2.08	1.28
Gravity Effect (Rep 2) ${ }^{2}$	0.779	1.91	1.92	1.33

$1_{\text {Unrotated }}$ sample $-\epsilon_{3}$ is vertical strain during testing and with respect to filling.
$2_{\text {Rotated }}$ sample $-\varepsilon_{3}$ direction is horizontal during testing, but vertical with respect to filling.
wheat grain in a gravity field are those in which the longitudinal axis is perpendicular to the gravity field. The orientation of the longiw tudinal axis within the horizontal plane, however, may be randomo

The effect of particle orientation with respect to gravity is that the geometry of an array of particles and the radil of contacting surfaces in the vertical direction vary from those in any horizontal direction. However, due to the random orientation of the longitudimal axis in the horizontal plane, the geometry of the array is identical in any horizontal direction. Thus, the mechanical behavior of wheat en masse is identical in all horizontal planes.

Isotropy

The results of two tests in which $\sigma_{1}: \sigma_{2}: \sigma_{3}=2.33: 1.67: 1$ are plotted in Figures 21 and 22, respectively. In the first test, σ_{1} was a horizontal stress, whereas it was a vertical stress in the second test. It must be noted that the vertical direction refers to the vertical direction with respect to filling.

Interchanging the stresses between the two tests had no effect on the characteristic shape of the $\sigma_{i} \omega_{i}$ curves. It did, however, tend to alter the magnitude of the strains in each direction. In Table VIII the magnitude of the strains in each direction are listed for a load cylinder pressure of 45 psi.

TABLE VIII
ISOTROPY. STRAINS OBSERVED AT LOAD CYLINDER PRESSURE OF 45 PSI AND $\sigma_{1}{ }^{\circ \sigma_{2}}: \sigma_{3}=2.33: 1.67: 1$

When σ_{1} was applied to the vertical direction with respect to filling, the unit strain was nearly 25 percent less than that when σ_{1} was applied to a horizontal plane with respect to filling. At the same

Figure 21. Isotropy Experiment Results. StresswStrain Curves for Unrotated Stresses.

Figure 22. Isotropy Experiment Results. StressmStrain Gurves for Rotated Stresses.
time the strain in the σ_{2} direction, which was horizontal in both tests, increased by 80 percent when σ_{1} was rotated from a horizontal to a vertical stress. In the σ_{3} direction, expansion of the sample was observed by both cases. The magnitude of the expansion was diminished by nearly 57 percent when σ_{3} was rotated from a vertical to a horizontal stress with respect to filling.

Recalling that in hydrostatic compression tests the two horizontal strains were equal, whereas the magnitude of the strain in the vertical direction was somewhat smaller, and noting that rotation of a deviam toric stress state significantly altered the magnitude of the unit strains in each direction, it was concluded that the stress-strain behavior of wheat en masse is not completely isotropic. However, the behavior was found to be independent of direction in the horizontal plane. Thus, it was also concluded that wheat en masse is orthotropic with respect to principal stresses in planes perpendicular to the direction of filling.

Load Rate

The hydrostatic compression stress-strain curves for load rates of $3,4.5$ and $6 \mathrm{psi} / \mathrm{minute}$ in the load cylinder are shown in Figure 23 for the σ_{2} direction. The curves for the σ_{1} and σ_{3} directions have been omitted since they illustrated similar trends. At a stress level of 40 psi, the strain, ε_{2}, was $0.0263,0.0258$, and 0.0266 ino/in. for load rates of $3,4.5$ and $6 \mathrm{psi} / \mathrm{minute}$, respectively. Since a similar lack of variation of strain with load rate was observed in the other stress directions; it was concluded that load rates within the range of 3 and $6 \mathrm{psi} / \mathrm{minute}$ are high enough to minimize long

Figure 23. StressoStrain Curves in the 2Direction for Hydrostatic Compression Tests Conducted at Various Load Rates

term creep effects and low enough to minimize any dynamic, or inertial, behavior. For static testing under hydrostatic compression, load rates in the range of 3 to 6 psi/minute on the load cylinder were deemed satisfactory.

The results of a deviatoric stress test conducted at load rates of 3, 4.5s and 6 psi/minute are illustrated in Figures 24,25 s and 26. The strain in the 1 -direction increased with load rate. The strain at a load rate of 3 psi/minute (the test denoted by the circled points) was about 12 percent higher than the strain at the other load rates. However, it was observed that the initial voids ratio for that sample was 0.817 , whereas the voids ratio for the other samples was in the range of 0.790 to 0.795 . Thus, another test was run at a load rate of 3 psi/minute. In this case, the initial voids ratio was 0.792 and the strain was only about 5 percent higher at a load rate of $3 \mathrm{psi} / \mathrm{minute}$ than at the other load rates. (The results of this test are denoted by x's in Figures 24, 25, and 26.) It should be noted that the variation in the strain, ϵ_{1}, for the two samples loaded at 3 psi/minute was about 0.35×10^{-2} inolin. This is nearly two thirds of the difference in strain observed between load rates.

The differences in observed strains due to load rate were also small in the 2∞ and 3 directions. For example, strain differences between the various load rates were only 0.0008 and 0.0010 inding in the 2∞ and 3 -directions, respectively. These comparisons ignored the samples which had an initial voids ratio of 0.817 .

The variation in strain with load rate was small in all cases; that is, the variation was equal to or less than 8 percent of the observed maximum strain at any stress level. It is asserted that

Figure 26. Stress-Strain Curves in the 3-Direction for Deviatoric Stress
Tests Conducted at
Various Load Rates
differences of such magnitude are attributable to variations in sample preparation, variations in wheat grains between samples, and experim mental error.

Since little variation in the magnitude of the strain was observed at load rates of $3,4.5$ and 6 psi minute in the load cylinder for identical stress paths, it was concluded that valid static stressstrain relationships for wheat en masse can be obtained by employing load rates in the range of 3 to $6 \mathrm{psi} / \mathrm{minute}$ in the top load cylinder. Since it was found to be more convenient to conduct the tests at a lower rate, a load rate of 3 psi/minute was used in all subsequent static load deformation studies.

Creep Tests

Strainmtime curves for an instantaneously applied stress, σ_{0} of 20 psi are plotted in Figure 27. The strain in each stress direction increased rapidly for the first half minute after application of the load. After one-half minute the rate of deformation rapidly decreased; and by the time one minute had elapsed, the rate of deformation was very low. It is noted that the experimental apparatus was designed primarily for gradually applied static loads. Thus, it is not a very accurate apparatus for measuring rapidly varying deformations. It is suspected that part of the time required to approach the nearly horizontal portion of the curves was due to a lag in the deformations. This lag resulted since a finite time is required to convey fluid to the membranes surrounding the sample. Once the instantaneous deformation was achieved; however, the results of the creep tests were valid and resulted in suitable estimates of the characteristic times for

Figure 27. Strain-Time Curves for the Creep Tests in which $\sigma_{0}=20 \mathrm{psi}$
wheat en masse.
The curves in Figure 27 are defined by the general equation

$$
\begin{equation*}
\frac{\epsilon_{i}}{\epsilon_{\infty i}}=1.0-\left(1.0-\frac{\epsilon_{o i}}{\epsilon_{\infty i}}\right) e^{-t / T} i \tag{31}
\end{equation*}
$$

The values of $\epsilon_{\infty i}$ and $\epsilon_{o i}$ are defined in the figure. The characteristic times were computed by evaluating τ_{i} at various levels of t. Upon selection of a time level, $t_{i} \varepsilon_{i}$ could be obtained from the curve and τ_{i} was computed by Equation 31 . The characteristic times, the instantaneous strains, and the maximum strains are sumarized in Table IX for the three stress directions.

TABLE IX

CHARACTERISTIC TIMES FOR WHEAT EN MASSE

| Stress
 Direction
 $(-)$ | Characteristic
 Time | Instantaneous
 Strain
 (minutes) | (in./in $\times 10^{2}$) |
| :---: | :---: | :---: | :---: | | Maximum |
| :---: |
| (ino/ino $\left.\times 10^{2}\right)$ |
| 1 |

The characteristic times in the two horizontal directions were 280 and 310 minutes, respectively. In view of the hydrostatic com* pression tests for the size effect and load rate studies, it is
expected that the behavior in the two horizontal directions should be identical. Thus, the difference between the horizontal characteristic times is attributed to random variations. The characteristic time in the vertical direction is 380 minutes, which is 25 to 30 percent larger than the characteristic times in the horizontal directions.

It was observed that over 80 percent of the maximum strain was achieved instantaneously. Furthermore, 3 minutes after application of the load, nearly 85 percent of the maximum strain was achieved.

It is recognized that the stressmstrain behavior of wheat en masse is somewhat dependent upon time. However, the change in the strain with time is small as compared to the instantaneous behavior; and the large characteristic times indicate a very low rate of increase in strain with time。

Load History

The stressastrain curves in the horizontal stress direction for a cyclic hydrostatic compression test are plotted in Figure 280: Again ε_{2} was nearly identical to ε_{1}. The strain in the vertical direction was about 40 to 45 percent lower than that in the two horizontal directions.

In all three stress planes the hysteresis loss ${ }^{1}$ decreased with increasing number of loading cycles. For example, in the l-direction the hysteresis losses were 69 and 48 percent in the first and second cycles, respectively. Hysteresis losses decreased as the number of load cycles increased, because less particle reorientation took place

[^1]

Figure 28. Stress-Strain Gurves in the 1-Direction for a Cyclic Hydrostatic Compression Test

Figure 29. Log Stress-Log Strain Curves for a Cyclic Hydrostatic Compression Test
in each subsequent load cycle. That hysteresis losses were present after three full load cycles indicated, however, that some particle reorientation occurred even after several loading cycles, or that individual particle deformation also exhibited hysteresis losses.

The results of the partial load cycles indicated that most of the particle reorientation occurred at stress levels between 0 and 4 psi. Partial load cycles during the third full load cycle resulted in nearly elastic stress-strain behavior between stresses of 4 and 40 psi。 However, at stress levels between 0 and 4 psi hysteresis losses were present even for the partial load eycles.

A $\log -10 g$ plot of the stress-strain curves are shown in Figure 29. In the σ_{1} direction the log-stress log-strain relationship was nearly linear for the first two cycles of both loading and unloading. This indicated that deformation during hydrostatic compression in the σ_{1} and σ_{2} directions is approximated by the general form $\epsilon_{i}=A \sigma_{i}{ }^{n}$. In the σ_{3} direction the log-stress log-strain relationship was also approximately linear, but it did have some curvature at stresses above 20 psi.

Similar to the behavior under hydrostatic compression, the hysteresis losses decreased with repeated loadmunload cycles of deviatoric stress. In Figure 30 , the $\sigma_{1}=e_{1}$ curves are presented for a cyclic deviatoric stress test in which $\sigma_{1}: \sigma_{2}: \sigma_{3}=2.33: 1.67: 1$. Whereas the hysteresis loss in the first cycle was 95 percent, the loss in the second cycle was only 83 percent. Due to continuing reorientation of particles within the sample during full load cycles, the deformation did not approach elastic behavior with increased nump ber of load cycles. In the σ_{1} and σ_{2} directions the strains became

Figure 30. Stress-Strain Curve in the lo Direction for a Cyclic Deviatoric Stress State.

Figure 31. StresswStrain Curves in the 1-Direction for a Hydrostatic Compression Stress State Superimposed upon a Deviatoric Stress State $\sigma_{1}: \sigma_{2}: \sigma_{3}=2.33: 1.67: 1.00$
increasingly larger in the positive direction with each successive load cycle, whereas the strain in the σ_{3} direction became increasingly negative (expansion) with successive load cycles.

Partial load cycles during the fourth full load cycle revealed that: ϵ_{1} was not elastic even for partial load cycles; ϵ_{2} was elastic for partial load cycles above a stress level of 5 psi; and ϵ_{3} was not elastic for partial load cycles.

Another cyclic deviatoric stxess state with $\sigma_{1}{ }^{\circ \sigma_{2}}{ }_{2}{ }^{\circ} \sigma_{3}=2.63: 1.44: 1$ ($\theta=15$ degrees and $r=2.5$ inches on the stress plate in Figure 20.) resulted in trends similar to those for the stress state described in Figure 30. The only difference in the results of the two deviatoric stress states was the relative magnitude of the strains in each direction. In Table X the magnitude of the strains in each stress direction are listed at a load cylinder pressure of 30 psi during the first load cycle for each deviatoric stress state.

TABLE X

> STRAINS OBSERVED AT $p=30$ PSI DURING FIRST LOAD CYCLE WHEN $\sigma_{1}: \sigma_{2}: \sigma_{3}=2.33: 1.67: 1$ AND WHEN $\sigma_{1}: \sigma_{2}: \sigma_{3}=2.63: 1.44: 1$

Stress State	Voids Ratio	ε_{1}	ε_{2}	ε_{3}
$\left(\sigma_{1}: \sigma_{2}: \sigma_{3}\right)$				

The result of superimposing a hydrostatic stress state upon a deviatoric stress state is illustrated in Figure 31. The result of reversing the order of application of identical stress states is plotted in Figure 32. (Only $\sigma_{1}-\epsilon_{1}$ curves are shown in Figures 31 and 32.) Comparison of these figures led to the conclusion that the sample deformation is greatly affected by the order of application of the stress components. It is further evidence that the deformations encountered in wheat en masse are highly dependent upon load history.

In Table XI the magnitude of the strains at the end of each load and unload portion of the curves are compared. At the end of each load or unload cycle, differences in the strains observed for the two tests were in excess of 70 percent of the maximum strain observed in Figure 31. The incremental nature of the stressostrain behavior precludes the separation of general stress states into hydrostatic and deviatoric components when dealing with wheat en masse. That is, the principle of superposition cannot be applied to the strain behavior of wheat en masse.

The $\sigma_{1}-\epsilon_{1}$ curves for a radial stress path test in which the stress ratio $\sigma_{1}: \sigma_{2}: \sigma_{3}$ was varied while holding $\sigma_{1}+\sigma_{2}+\sigma_{3}$ constant are presented in Figure 33. The stress path has been described in Figure 20.

The variation of ε_{2} with stress ratio was essentially 0. (See Appendix DoXII.) This is expected since the stress, σ_{2} remained constant as the load cylinder moved from $r=0$ to $r=3$ irches.

In the σ_{1} direction the stress increased from 10 to 16 psi as the load cylinder moved from $r=0$ to $r=3$ inches. The corresponding strain, ε_{1}, increased along a curved path as the stress increased。

Figure 32. Stress-Strain Curves in the l-Direction for a Deviatoric Stress State $\sigma_{1}: \sigma_{2}: \sigma_{3}=2.33: 1.67: 1.00$ Superimposed upon a Hydrom static Compression Stress State

Figure 33. Stress-Strain Curve in the 1-Direction for a Radial Stress Path with $\theta=30$ Degrees and x Varying from 0 to 3 Inches on the Stress Plate

TABLE XI
STRAINS OBSERVED AT END OF THE LOAD CYCLES FOR PRELIMINARY TESTS 15 AND 16

	Hydrostatic Over Deviatoric			Deviatoric Over Hydrostatic		
	ε_{1}	ε_{2}	ε_{3}	ε_{1}	ϵ_{2}	ε_{3}
	(in./in. $\times 10^{2}$)			(in./in. $\times 10^{2}$)		
End of 1st						
Load Cycle	3.65	0.95	-0.16	1.88	1.47	0.76
End of lst						
Unload Cycle	3.50	0.73	~ 0.18	1.72	1.17	0.64
End of 2nd						
Load Cycle	4.15	1.05	-0.22	2.37	1.70	0.67
End of 2nd						
Unload Cycle	3.89	0.85	-0.22	2.17	1.44	0.60

At $x=2.5$ and 3 inches the strain increased very rapidly with increasing stress." It is asserted that the rapid increase is due to plastic shear and particle reorientation. The sample was observed to change shape since the rapid increase in ε_{1} was accompanied by a rapid expansive increase in ε_{3}. When the stress ratio was altered towards $1: 1: 1$ as x varied from 3 to 0 inches, very little strain was recovered in the ε_{1} direction. As x is varied from 0 to 3 to 0 inches in sube sequent cycles, the increase in ε_{1} decreased with the number of cycles. However, there was still little or no strain recovery when σ_{1} decreased as a consequence of returning the load cylinder to the plate centroid. During the last cycle, r was varied only from 0 , to 2 to 0 inches. This procedure avoided the very large deformations experienced for $r>2$ inches. Consequently, irrecoverable strains during this cycle
were much smaller than in the previous cycles.
It must be concluded that wheat en masse responds nonlineaxly and nonelastically to changing states of deviatoric stress. Repeated cycling of the deviatoric stress states resulted-in a decrease in the irrecoverable strains associated with each cycle, but the rate of decrease was relatively small after the second cycle. Many more than four cyclings of the stress ratios are required before the behavior approaches elastic behavior.

Discussion of Load History Results

The stressmstrain behavior of wheat en masse was found to be highly dependent upon load history. All the test results indicated large hysteresis losses and irrecoverable deformations during repeated loading and unloading cycles. The hysteresis losses did, however, decrease slowly with repeated cycles of loading. The irreversible nature of the stresswstrain behavior was attributed generally to conw tinuing plastic deformations in which the voids ratio is constantly being reduced, to continuing particle reorientation, and to plastic deformations of individual particles.

Due to the dependence of the stressostrain relationship upon stress path, it was apparent that a general stress state for wheat en masse cannot be separated into its deviatoric and hydrostatic comm ponents for testing purposes. Instead, any desired stress state will have to be applied to the sample intact.

The load history results lead to the conclusion that wheat en masse behaves as an elastomplastic material which undergoes strain hardeninge. Unloading of the wheat mass results in pseudowelastic recovery of deformation.

CHAPTER VII

THE EXPERIMENTAL DESIGN

The three dimensional stressostrain behavior of wheat en masse is visualized as a necessary component in a rational solution for the pressure distributions in storage systems for wheat. The complicated nature of the deformation mechanism for wheat en masse precluded an analytical evaluation of the stressmstrain behavior. An experimental approach based on the theory of similitude was adopted to evaluate the stress-strain behavior of wheat en masse during monotonically in creasing stresses. For unloading, an alternate experimental procedure based on the findings of the preliminary studies was adopted. In the following chapters the term, loading function, refers to the strain prediction function for loading. Similarly the unloading function refers to the strain prediction function for unloading.

Functional Relationship for Loading

Similitude and the Buckingham Pi Theorem

The number of required experiments can be significantly reduced by application of the Pi Theorem developed by Buckingham (8). Buckingham noted that if a phenomenon is describable in equation form, then that function can be expressed as a function of dimensionless combinations of the pertinent physical quantities. The theorem is written in general equation form as:

$$
\begin{equation*}
f\left(\pi_{1}, \pi_{2}, \cdots \pi_{n}\right)=0 \tag{32}
\end{equation*}
$$

where $\mathrm{f}=$ an arbitrary function

$$
\pi_{i}=\text { any dimensionless group }
$$

The only restriction imposed upon the dimensionless groups is that they be independent. The number of dimensionless groups required to adew quately define a physical phenomenon is equal to the number of physical quantities required to define the system minus the rank of the dimen sional matrix.

Definition of the System

The physical system sketched in Figure 34 represents a cubical element of wheat grains en masse. The pertinent quantities for evalua= tion of the three dimensional static stressmstrain behavior during loading of the system are listed in Table XII.

The dependeat quantity in the group is ϵ_{i}. The variable subscript is used to demonstrate that there are three dependent quantities, each of which is dependent upon the remaining 18 quantities.

The three stress levels, σ_{i}, are pertinent because the three dimensional stressmstrain behavior of wheat is desired. It is assumed that a Poisson effect exists; that is, a stress in the jth or kth direction influences the strain in the ith direction.

The quantity σ_{c} is pertinent because of the incremental nature of the deformation of wheat en masse. To make the strain function unique it is required that the stress levels imposed be referred to a nono zero datum. In the case of plastic deformation of solids, σ_{c} would be

Figure 34. A Sketch of a Cubical Element of Wheat En Masse

TABLE XII
LIST Of PERTINENT QUANTITIES FOR STRESS=STRAIN
BEHAVIOR OF WHEAT EN MASSE

No.	Symbol	Quantity	Units
1	ϵ_{i}	Principal strain in the ith direction	ino/in。
2	σ_{1}	Principal stress in the l-direction	$\mathrm{lb}_{\mathrm{of}_{\mathrm{f}}} / \mathrm{sq} \cdot \mathrm{in}$
3	σ_{2}	Principal stress in the 2-direction	$1 \mathrm{~b} \cdot \frac{\mathrm{f}}{} / \mathrm{sq}$.in.
4	σ_{3}	Principal stress in the 3-direction	1b. $/$ /sq.in.
5	σ_{c}	Characteristic stress level Number of load cycles	1b. $\mathrm{f}_{-\infty} / \mathrm{sq}$ in.
7	e	Initial voids ratio	-
8	$\Delta \mathrm{m}$	Change in grain moisture content	-
9	ΔT	Change in grain temperature	${ }^{\circ} \mathrm{F}$
10	α	Temperature coefficient of expansion	in. $/{ }^{\circ} \mathrm{F}$
11	ϕ	Angle of internal friction	degrees
12	S.G.	Specific gravity of kernels	-
13	a	Length of major axis of kernel	in.
14	b	Length of intermediate axis of kernel	in.
15	c	Length of minor axis of kernel	in.
16	E	Modulus of elasticity of kernels	ib. $/ \mathrm{sq}$ ¢ in.
17	μ	Effective Poisson's ratio of kernels	-
18	T_{i}	Characteristic time in the ith direction	seconds
19	${ }^{2}$	Load rate	1bofisq.incosec.

the stress level at which yielding occurs under an axial state of stress. For granular noncohesive materials, the Mohr failure theory predicts yielding at $\sigma_{i}=0$ psi for an axial stress state Further, Mohr's failure theory predicts a unique failure stress for each level of σ_{1} / σ_{2} in a triaxial stress state $\left(\sigma_{1}>\sigma_{2}=\sigma_{3}\right)$. At this time a three dimensional failure surface has not been defined for wheat en masse. Thus, it does not seem feasible to define σ_{c} in terms of failure stresses. In the absence of a characteristic failure stress level the maximum stress level expected in a storage system was used for σ_{c}.

The preliminary studies on load history dependence illustrated the influence of the number of loading cycles upon the stress-strain bew havior. The quantity, n, reflects the load history dependence of the strain。

Initial voids ratio dependence of the stress-strain behavior was also illustrated in the preliminary studies. It was observed that the larger the initial voids ratio, the larger was the associated strain for a given stress state.

Items 8 through 18 in the list are material properties of the wheat grains which influence the deformation behavior of wheat en masse. Changes in both the moisture and temperature levels affect the stressostrain behavior. The level of moisture content was observed by Brubaker and Pos (7) to influence the static coefficient of friction of wheat on various surfaces, while Lorenzen (32) observed that mois* ture changes altered the angle of internal friction of wheat.

The angle of internal friction is of importance since it plays a role in the sliding of one particle over another during particle
reorientation. The value of the coefficient varies with granular medium and with the temperature, moisture content, and maturity of the granular medium.

The quantities, a, b and c define the size and shape of the granular particles. The geometry of the particulates is of importance in defining the packing arrays encountered in a mass of particles, and in evaluating the magnitude of contact stresses and deformations experienced by individual particles.

The contribution of deformation of individual particles under load is reflected by the modulus of elasticity and Poisson's ratio of the particles. Particle deformation is one of the two primary modes of deformation in a particulate mass.

The influence of time upon the load deformation behavior is included in the quantities τ_{i} and $r_{i}{ }^{\circ}$. The quantity。 $\tau_{i}{ }^{\circ}$ is the same characteristic time defined in the section entitled "Creep Tests" in Chapter VI. The subscript i denotes the directional dependence of the characteristic time。

Pi Texms

The rank of the dimensional matrix is 40 Thus, 15 dimensionless groups are required to define the system. One set of independent dimensionless quantities is listed belowo

$$
\begin{array}{ll}
\pi_{1}=\varepsilon_{i} \quad \text { (dependent) } & \pi_{5}=e_{0} \\
\pi_{2}=\sigma_{1} / \sigma_{3} & \pi_{6}=n \\
\pi_{3}=\sigma_{2} / \sigma_{3} & \pi_{7}=\Delta \mathrm{m} \\
\pi_{4}=\sigma_{1} / \sigma_{c} & \pi_{8}=\alpha(\Delta T) / a
\end{array}
$$

$$
\begin{aligned}
\pi_{9} & =\phi & \pi_{13}=\sigma_{c} / \mathrm{E} \\
\pi_{10} & =\text { SoGo } & \pi_{14}=\mu \\
\pi_{11} & =\mathrm{a} / \mathrm{b} & \pi_{15}=\sigma_{c} / r_{l}{ }^{\top} i \\
\pi_{12} & =\mathrm{b} / \mathrm{c} &
\end{aligned}
$$

In the introductory chapter the scope of the study was limited to the definition of the stressmstrain behavior of one variety of grain at one temperature and moisture content. In so doing, wheat at a given level of moisture content and temperature is likemed to an alloy of steel. The engineering properties of each alloy of steel must be evaluated experimentally. Similarly, it was proposed that the mechanim cal behavior be evaluated for one "alloy" of wheat in this study. Generalization of the functional behavior of wheat for varying physical properties may be attempted if and when it is demonstrated that the methods employed in this study are adequate.

Thus, the influence of many of the pi terms was neglected. Specifically, $\pi_{7}, \pi_{8}, \pi_{9}, \pi_{10}, \pi_{11}, \pi_{12}, \pi_{13}$, and π_{14} are all dependent upon the physical properties of the granular medium and their influence upon the functional behavior will not be considered.

The pi term reflecting the influence of load rate $\pi_{15}{ }^{\text {o }}$, was also excluded from the functional relationship for ϵ_{i}. It was noted in the preliminary investigations that the stresswstrain behavior of wheat en masse was not highly time dependent and that static behavior is achieved if the load rate is incremented at rates between 3 and 6 psi/ minute. The influence of π_{15} was held constant by applying all loads at the rate of $3 \mathrm{psi} / \mathrm{minute}$ at the load cylinder.
π_{10} the dependent π term, is the principal strain in the ith
direction. This π-term will be measured in each of the principal directions. To distinguish this term from a similar term for the unloading portion of the stressostrain relationship, it has been given the subscript L; i.e., $\left.\left.\pi_{1}\right)_{L}=\epsilon_{i}\right)_{L}$.
π_{2} and π_{3} are both ratios of principal stresses. The range of these ratios have been established by the ranges expected in storage structures containing wheat en masse. Based on published materials concerning the ratio of lateral to vertical pressures in storage structures for granular media and on the friction experienced between wheat and the confining wall, it is expected that π_{2} and π_{3} would vary within the range 0.375 to 1 . The lower limit is the lowest published value for the ratio of lateral to vertical stress in a storage structure; ${ }^{1}$ whereas the upper limit corresponds to the hydrostatic state of stress. In the experimental design, π_{2} and π_{3} were yaried from 0.326 to 2.590. The range was extended in order that the stressastrain be havior could be defined on both sides of the hydrostatic stress state.
π_{4} is an index of the ratio of the stress level in the lodirection to the characteristic stress level. Based on Janssen's equation for lateral pressures, the maximum stress level expected in a 30×100 feet grain silo containing wheat is 12.8 psi. Allowing for stress increases of two to three times those predicted by Janssen"s equation, σ_{c} has been arbitrarily set at 40 psi . Using $\sigma_{c}=40 \mathrm{psi}, \pi_{4}$ was varied from 0 to 1.0 .
π_{5}, the initial voids ratio, was held constant in this study. Initial voids ratio has a marked effect upon the stresswstrain

[^2]behavior, but in the present study its effect will not be evaluated. π_{5} will be held constant within the approximate range of 0.750 and 0.780. Any variation in e_{o} was assumed to be random.

A granular medium, such as wheat en masse, behaves as a nonlinear elasto-plastic substance. Therefore, stress-strain behavior is deperdent upon load history. Load history is characterized by $\pi_{5}=n$ in the list of π-terms. ${ }^{-1}$ This, however is an oversimplication of the elastomplastic behavior. Consider, as an example, the stress path illustrated in the stressestrain diagram of Figure 35 。

The stressastrain curve is nonsingular whenever any stress path is considered other than a monotonically increasing stress. If unloading occurs during the loading history, the stressestrain function is dependent not only upon the load cycle encountered, but also upon the maximum stress to which the material has been loaded in the nth cycle and all previous nol cycles.

As an example, if a stress path $\overline{\mathrm{OAB}}$ in Figure 35 is followed during the first load cycle, then when $n=2$ the stressostrain curve will follow the path $\overline{B G H}$. However, if the first load cycle terminates at point C and is unloaded, then the path followed during the second load cycle is $\overline{\mathrm{DEF}}$.

At this point the problem would become too wide in scope to cone sider the general nature of the stressostrain function for all variations with n greater than 1 . Therefore, it has been decided that a thorough study of the first cycle of loading and unloading is the most logical course to follow. Thus $\pi_{7}=n=1$ throughout the studye This decision is justified because the behavior of the first cycle must be established before subsequent cycles may be defined.

Figure 35. StressoStrain Diagram for Two Loadm Unload Cycles of an Elasto-Plascic Medium

Prediction Equations

The functional relationships for predicting strains are reduced considerably by the aforementioned limitations. For loading the prew diction equations reduced to:

$$
\begin{align*}
& \left.\varepsilon_{1}\right)_{L}=f_{1}\left(\pi_{2}, \pi_{3}, \pi_{4}\right) \tag{33}\\
& \left.\varepsilon_{2}\right)_{L}=f_{2}\left(\pi_{2}, \pi_{3}, \pi_{4}\right) \tag{34}\\
& \left.\varepsilon_{3}\right)_{L}=f_{3}\left(\pi_{2}, \pi_{3}, \pi_{4}\right) \tag{35}
\end{align*}
$$

The method of component equations discussed by Murphy (37) was employed to obtain the arbitrary functions f_{1}, f_{2}, and f_{3}. That is, three experimental series were conducted. In each series the three principal strains were measured, one pi term was varied, and two pi terms were held constant at a specified value. The generalized experio mental design for obtaining the prediction equation for strain during loading is summarized in Table XIII. It was assumed that there was no interaction between the pi terms in this design.

TABLE XIII
GENERALIZED EXPERIMENTAL DESIGN
FOR THE LOADING FUNCTION

Experiment Series	$\pi_{1}=\epsilon_{i}$	$\pi_{2}=\sigma_{1} / \sigma_{3}$	$\pi_{2}=\sigma_{2} / \sigma_{3}$	$\pi_{4}=\sigma_{1} / \sigma_{c}$
1	Measure	Vary	Constant	Constant 2
3	Measure	Constant Measure	Vary Constant	Constant Vary

From each experiment series three component equations were obtained; one for each principal stress direction. Equations 36, 37, and 38 are representations of the three component equations for $\left.\epsilon_{1}\right)_{L}$ Similar equations were obtained for $\left.\epsilon_{2}\right)_{L}$ and $\left.\epsilon_{3}\right)_{L}$. A bar over a pi term indicated that it was held constant.-

$$
\begin{align*}
& \left.\pi_{1}=\epsilon_{1}\right)_{L}=f_{4}\left(\pi_{2}, \bar{\pi}_{3}, \bar{\pi}_{4}\right) \tag{36}\\
& \left.\pi_{1}=\epsilon_{1}\right)_{L}=f_{5}\left(\bar{\pi}_{2}, \pi_{3}, \bar{\pi}_{4}\right) \tag{37}\\
& \left.\pi_{1}=\epsilon_{1}\right)_{L}=f_{6}\left(\bar{\pi}_{2}, \bar{\pi}_{3}, \pi_{4}\right) \tag{38}
\end{align*}
$$

Upon cormination of the component equations in each of the three orthow gonal directions, the desired stressmstrain functions were derived.

The complete experimental design for the loading function along with the specified pi term levels is outlined in Table XIV. Three replications of each experiment were run, and experiments were conm ducted in random order so that the experimental errors would be randomly distributed.

Validation

The accuracy of the experimental results was checked by two separate procedures. The accuracy of the combination procedures for developing the prediction equations was evaluated by plotting the prem dicted strains versus the observed strains used to develop the prediction equations.

Two validation experiments were conducted on a four inch cubical sample with the stress control device. A stress ratio, $\sigma_{1}: \sigma_{2}: \sigma_{3}$, of

TABLE XIV
EXPERIMENTAL DESIGN FOR THE LOADING FUNCTION

$0.91: 0.82: 1.00$ was randomly selected from those ratios within the range of the pi terms. The load cylinder pressure was varied from 0 to 60 psi. The observed strains were plotted against the strains predicted by Equations 33, 34, and 35. The standard deviation from a straight line of 45 degrees and the correlation coefficient were used as measures of the degree of agreement between the observed and predicted strains.

Functional Relationship for Unloading

Hypothesis

The preliminary studies revealed that the unloading behavior is exponential for selected loading paths. This behavior was observed for both hydrostatic and deviatoric stress states. It was therefore hypothesized that the unloading path of wheat en masse is linear in \log stress $=\log$ strain space。

Preliminary studies also indicated that unloading from any point on a given loading curve proceeded along parallel paths. That is, the unloading path $\overline{\mathrm{CD}}$ in Figure 35 is parallel to, and thus has the same characteristic shape as, unloading path $\overline{\mathrm{AB}}$. The two paths are merely shifted by an amount $\overline{\mathrm{DB}}$ 。

It is therefore hypothesized that unloading paths at a particular stress ratio $\sigma_{1}: \sigma_{2}: \sigma_{3}$ are parallel for various levels of σ_{m}. $\sigma_{m^{2}}$ the stress level at which unloading commences, is defined graphically in Figure 35. It is not known whether the unloading paths between stress ratios are parallel.

The Experimental Approach

If the hypothesis is valid，then the unloading path at any stress state can be defined by the generalized form

$$
\begin{equation*}
\left.\epsilon_{i}\right)_{U}=\varepsilon_{i m}\left(\sigma_{i} / \sigma_{i m}\right)^{n_{i}} \tag{39}
\end{equation*}
$$

where $\left.\varepsilon_{i}\right)_{U}=$ strain in the ith direction，ino／in。
$\varepsilon_{i m}=$ strain in the ith direction at which unloading comenceds ino／in．
$\sigma_{i}=$ stress level in the ith direction，psio
$\sigma_{i m}=$ stress level in the ith direction at which unloading commenced，psi．
$n_{i}=$ slope of the unloading path in log－log space in the ith direction。

In Equation 39，$\varepsilon_{i m}$ can either be the observed value of strain or the value of strain predicted from either Equation 33，34，or 35．The stress level，$\sigma_{i m^{2}}$ is a known quantity as is σ_{i} ．Since $\left.\varepsilon_{i}\right)_{U}$ is the quantity to be predicted，only n_{i} is unknown。

According to the hypothesis，the shape of the unloading path，and therefore n_{i}, is independent of the level of stress at which unloading commences for a given stress ratio．However，the variation of n_{i} with stress ratio is not known．If the variation of n_{i} with stress ratio is evaluated，then the general form of the unloading path will have been determined．

The experiments used for obtaining the loading path were also used for defining the variation of n_{i} ．The slope of the unloading curves
in $\log -\log$ space was evaluated by the least squares linear regression procedure for each experiment included in Table XIV. The variation of n_{i} with stress ratio was obtained by plotting n_{i} versus σ_{1} / σ_{3} and n_{i} versus σ_{2} / σ_{3}. If n_{i} varied with stress ratio, then the component equations for n_{i} would be combined and substituted into Equation 39 . If, on the other hand, n_{i} did not vary with $\sigma_{1}: \sigma_{2}: \sigma_{3}$, then the unloading path is defined by Equation 39 .

It is noted that all the limitations imposed upon the loading function also apply to the unloading function.

Validation

Procedures similar to those described for the loading function were employed. Only one variation was incorporated. In Equation 39 the quantity, $\epsilon_{i m}$, could be either an observed or a predicted quantity. The observed and predicted strains were plotted both when $\varepsilon_{i m}$ was an observed quantity and when it was predicted by $\left.\epsilon_{i}\right)_{L}$ 。

CHAPTER VIII

PRESENTATION OF DATA AND RESULTS

The Loading Functions

Component Equations

Early in the experimental program it was observed that flow conditions existed in the stress box at π_{2} and π_{3} levels abowe 1.392 and below 0.557. That is the deformation did not stabilize with time. Instead, the deformation continued to vary with time until either the capacity of the stress cylinders, L, was exceeded or the watex supply was depleted behind the membranes in one of the stress directions. The initiation of the flow condition was always associated with a reversal of the strains in one of the principal directions. The strain changed sign duxing flow so that expansive deformations were observed during a compressive type loading condition.

Since wheat is a noncohesive substance, flow conditions are expected at critical stress ratios. For example, when the stress ratio. σ_{1} / σ_{3}, approaches 0 while holding σ_{2} / σ_{3} constant at any finite nonmzexo level, flow conditions axe established in the direction of σ_{1}. Since σ_{1} must equal 0 for σ_{1} / σ_{3} to be 0 in this case, ϵ_{1} would be expansive and increase without limit. At the other extreme, as σ_{1} / σ_{3} increases without limit while σ_{2} / σ_{3} is held constant; it is implied that $\sigma_{1} \gg \sigma_{3}$. Expansion would be experienced in the σ_{3}
direction, and the expansion in that direction would increase without bounds as σ_{1} / σ_{3} increased without limit. Similar arguments may be developed for the case of σ_{2} / σ_{3}.

Since flow conditions commenced at π_{2} and π_{3} levels above and below 1.392 and 0.557 , respectively, these levels were considered to be the limits bounding static stressostrain behavior of wheat en masse. The data for the static stressostrain behavior of wheat en masse within these limits are presented in Tables $\mathrm{XV}, \mathrm{XVI}_{0}$ and XVII 。

The component equations for $\left.\epsilon_{i}\right)_{L}$ versus π_{2} and $\left.\varepsilon_{i}\right)_{L}$ versus π_{3} were linear in arithmetic space and did not include the origing whereas the component equations for $\left.\epsilon_{i}\right)_{L}$ versus π_{4} wexe linear in logelog space. The nine component equations, three for each principal direction, are plotted in Figures 36 through 44.

The observed values of strain are plotted in each figure. The straight line plotted in each figure is the linear regression line obtained by the method of least squares which is discussed in detail in the text by Natrella (39). The equation of the regression lines is included in each figure as is the correlation coefficient, R_{p} and the standard deviation from regression, S. A summary of the component equations is presented in Table XVIII. The lowest correlation coefo ficient was 0.967, and the highest standard deviation from regression was 0.0013×10^{-2} ino/in. in Equation 43. Thus, the largest observed standard deviation from regression was only 7.4 percent of the observed range of variation of strain.

TABLE XY

UNIT STRAIN AS A FUNGTION OF THE STRESS RATIO, σ_{1} / σ_{3}. WITH π_{3} AND π_{4} HELD CONSTANT

Run No.	$\left.\varepsilon_{1}\right)_{L}$	$\begin{gathered} \text { Unit Strain } \\ \left.\varepsilon_{2}\right)_{L} \\ \left(i n_{\circ} / i n_{0} \times 10^{2}\right. \text {) } \end{gathered}$	$\left.\varepsilon_{3}\right)_{L}$	$\begin{gathered} \pi_{2} \\ \sigma_{1} / \sigma_{3} \\ (\sigma) \end{gathered}$	```Initial Voids Ratio e (\infty)```
2 A	$\cdots 0.11$	2.46	1.62	0.557	0.751
2 B	0.07	2.44	1.34	0.557	0.755
20	0.13	2.46	1.41	0.557	0.780
17A	0.30	2.18	1.41	0.688	0.764
17 B	0.62	2.11	1.22	0.688	0.801
17 C	0.47	2.09	1.22	- 0.688	0.769
3A	0.92	1.60	0.95	0.835	0.779
3 B	0.98	1.57	0.94	0.835	0.784
3C	0.92	1.66	-0.95	0.835	0.772
4 A	1.30	1.31	0.65	1.000	0.791
4 B	-1.23	1.25	0.63	1.000	0.773
4 C	1.33	1.35	0.63	1.000	0.770
18A	1.73	0.88	0.53	1.184	0.768
18B	1.80	1.06	0.54	1.184	0.789
180	1.59	0.91	0.51	1.184	0.756
5A	2.16	0.82	0.19	1.392	0.774
5B	2.23	0.69	0.28	1.392	0.778
5 C	2.02	0.70	0.36	1.392	0.771

TABLE XVI

UNIT STRAIN AS A FUNCTION OF THE STRESS RATIO, σ_{2} / σ_{3} o WITH π_{2} AND π_{4} HELD CONSTANT

Run No.	$\left.\varepsilon_{1}\right)_{L}$	$\begin{gathered} \text { Unit Strain } \\ \left.\varepsilon_{2}\right)_{L} \\ \left(i n_{0} / i n \circ \times 10^{2}\right. \text {) } \end{gathered}$	$\left.8_{3}\right)_{L}$	$\begin{gathered} \pi_{3} \\ \sigma_{2} l \sigma_{3} \\ (-) \end{gathered}$	```Initial Volds Ratio e (a)```
9 A	1.81	0.26	1.20	0.557	0.788
9 B	1.81	0.22	1.11	0.557	0.766
90	1.64	0.21	0.95	0.557	0.759
20 A	1.66	0.45	1.04	0.688	0.782
20 B	1.66	0.40	0.97	0.688	0.760
206	1.55	0.48	0.90	0.688	0.761
10A	1.37	0.97	0.80	0.835	0.786
10B	1.47	0.82	0.80	0.835	0.773
10 C	1.42	0.91	0.83	0.835	0.770
11 A	1.29	1.31	0.63	1.000	0.775
11B	1.35	1.33	0.68	1.000	0.785
11C	1.29	1.26	0.52	1.000	0.765
21A	1.00	1.92	0.58	1.184	0.783
21B	0.96	1.87	0.57	1.184	0.775
21 C	0.95	1.93	0.54	1.184	0.768
12A	0.78	2.39	0.31	1.392	0.766
12B	0.90	2.53	0.33	1.392	0.788
12 C	0.80	2.39	0.34	1.392	0.752

TABLE XVII

UNIT STRAIN AS A FUNCTION OF THE STRESS RATIO, $\sigma_{1} \sigma_{C}$ WITH π_{2} AND Π_{3} HELD CONSTANT

Figure 36. Component Equation, Strain in the lo Direction vs. Stress Ratio, σ_{1} / σ_{3} o During Loading

Figure 37. Component Equation. Strain in the l^{-} Direction vs. Stress Ratio, σ_{2} / σ_{3} During Loading

Figure 38. Component Equation. Log Strain in the lodirection vs. Log Stress Ratio, σ_{1} / σ_{c} Duxing Loading

Figure 39. Component Equation. Strain in the 2 m Direction vs. Stress Ratio, $\sigma_{1}{ }^{k} 3^{\circ}$ During Loading

Figure 40 . Component Equation, Strain in the 20 Direction vs. Stress Ratio $\sigma_{2} \mathrm{Kr}_{3}{ }^{\circ}$ During Loading

Figure 41. Component Equation Log Strain in the $2 m$ Direction vs. Log Stress Ratio, σ_{1} / σ_{c}, During Loading

Figure 42. Component Equationo Strain in the 3Direction vs. Stress Ratio, σ_{1} / σ_{3}. During Loading

Figure 43. Component Equation. Strain in the 30 Direction vs。Stress Ratio, σ_{2} / σ_{3} 。 During Loading

Figure 44. Component Equation. Log Strain in the 30 Direction vs, Log Stress Ratio, σ_{1} / σ_{c}.
During Loading

TABLE XVIII
SUMMARY OF THE COMPONENT EQUATIONS

Component Equation	Correlation Coefficient (\quad)	Standard Deviation $\left(\operatorname{in} / \operatorname{in} \times 10^{2}\right)$	Equation No.
$\left.\varepsilon_{1}\right)_{L}=-0.0125+0.0249 \pi_{2}$	0.987	0.0012	(40)
$E_{1} \partial_{L}=0.0240-0.0115 \cdot \pi_{3}$	-0.982	0.0007	(41)
$\left.\epsilon_{1}\right\rangle_{L}=0.0255 \pi_{4}^{0.448}$	0.996	0.0006	(42)
$\left.\varepsilon_{2}\right\rangle_{L}=0.0351-0.0210 \pi_{2}$	-0.979	0.0013	(43)
$\left.\varepsilon_{2}\right)_{L}=0.0137+0.0272 \pi_{3}$	0.996	0.0007	(44)
$\left.\varepsilon_{2}\right\rangle_{L}=0.0263 \pi_{4} 0.454$	0.997	0.0005	(45)
$\left.\epsilon_{3}\right)_{L}=0.0221-0.0144 \pi_{2}$	0.971	0.0011	(46)
$\left.\epsilon_{3}\right)_{L}=0.0157-0.0089 \pi_{3}$	0.967	0.0007	(47)
$\left.\epsilon_{3}\right)_{L}=0.0141 \pi_{4}{ }^{0.520}$	0.982	0.0010	(48)

Prediction Equations

Murphy (37) noted that, if the component equations were linear in $\log \log$ space, the component equations could be combined by multipliw cation into the general form.

$$
\begin{equation*}
\pi_{1}=\phi \pi_{2}^{a} \pi_{3}^{b} \pi_{4}^{c} \tag{49}
\end{equation*}
$$

where $\quad \phi=a \operatorname{dimensionless}$ coefficient
$a_{0} b_{3} c=$ dimensionless exponents

Since the component equations for $\left.\varepsilon_{i}\right)_{L}$ consisted of two linear equations In axichnstic space and one linear equation in $\log \log$ space, the equations had to be transformed as shown in Equation 50 before they could be combined.

Component Equations 40 and 41 were transformed to linear functions in $\log \mathrm{log}$ space in the following manner. First, the observed strains were plotted against those predicted by Equation 40 and the observed strains were plotted against those predicted by Equation 41. The resulting lines were lineax with a slope of 45 degrees and an inter* cept of 0.0 and were described in equation form as

$$
\begin{equation*}
\left.\pi_{1}=\varepsilon_{1}\right)_{L}=\left(-0.0125+0.0249 \pi_{2}\right)^{1}=\left(\pi_{2}^{*}\right)_{1}^{1} \tag{50}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\pi_{1}=\varepsilon_{1}\right)_{L}=\left(0.0240 \cdot 0.0115 \pi_{3}\right)^{1}=\left(\pi_{3}^{\prime}\right)_{1}^{1} \tag{51}
\end{equation*}
$$

Equations 50 and 51 have the basic form $y=A x^{B}$, which is a linear function in $\log =10 g$ space。 Substituting π_{2}^{2} and π_{3}^{\prime} into the Equation 49 yielded the basic prediction equation for strain in the l-direction.

$$
\begin{equation*}
\left.\varepsilon_{1}\right)_{L}=\phi_{1}\left(\pi_{2}^{*}\right)_{1}^{1}\left(\pi_{3}^{*}\right)_{1}^{1}\left(\pi_{4}\right)^{0.448} \tag{52}
\end{equation*}
$$

Similarly, the general prediction equations in the other principal directions were

$$
\begin{align*}
& \left.\varepsilon_{2}\right)_{L}=\phi_{2}\left(\pi_{2}^{\prime}\right)_{2}^{1}\left(\pi_{3}^{\circ}\right)_{2}^{1}\left(\pi_{4}\right)^{0.454} \tag{53}\\
& \left.\varepsilon_{3}\right)_{L}=\phi_{3}\left(\pi_{2}^{\prime}\right)_{3}^{1}\left(\pi_{3}^{\prime}\right)_{3}^{1}\left(\pi_{4}\right)^{0.520} \tag{54}
\end{align*}
$$

The prediction equation for strain in the ith direction was complete upon evaluation of ϕ_{i} 。

Generally, the coefficient in each of Equations 52, 53, and 54 were defined by Equation 55 .

$$
\begin{equation*}
\phi_{i}=\frac{\left.\epsilon_{i}\right)_{L}^{\text {oobserved }}}{\left(\pi_{2}^{\prime}\right)_{i}\left(\pi_{3}^{\prime}\right)_{i}\left(\pi_{4}\right)^{a}} \tag{55}
\end{equation*}
$$

Utilizing Equation 55, a value of ϕ_{i} was evaluated for each data point used to develop the prediction equation. The mean values of the dimensionless coefficient were found to be:

$$
\begin{align*}
& \bar{\phi}_{1}=164.4 \tag{56}\\
& \bar{\phi}_{2}=145.1 \tag{57}\\
& \bar{\phi}_{3}=290.6 \tag{58}
\end{align*}
$$

The standard deviation of the means were $1.4,2.0$, and 5.0 , respectively。

Substitution of the values for $\phi_{i}\left(\pi_{2}^{\prime}\right)_{i}$ and $\left(\pi_{3}\right)_{i}$ into Equations 52. 53, and 54 yielded the final form of the prediction equations.

$$
\begin{align*}
& \left.\varepsilon_{1}\right)_{L}=\left(04.92+9.81 \pi_{2}+2.36 \pi_{3}-4.71 \pi_{2} \pi_{3}\right)\left(10^{-2}\right)\left(\pi_{4}\right)^{0.448} \tag{59}\\
& \left.\left.\varepsilon_{2}\right)_{L}=\left(-6.97+4.18 \pi_{2}+13.85 \pi_{3}-8.23 \pi_{2} \pi_{3}\right)\left(10^{-2}\right) \pi_{\pi_{4}}\right)^{0.454} \tag{60}\\
& \left.\varepsilon_{3}\right)_{L}=\left(10.00-6.55 \pi_{2}-5.71 \pi_{3}+3.71 \pi_{2} \pi_{3}\right)\left(10^{-2}\right)\left(\pi_{4}\right)^{0.520} \tag{61}
\end{align*}
$$

Owing to the orthotropic nature of the stressmstrain behavior of wheat en masse, Equations 59 and 60 may be written in an alternate form by interchanging subscripts on the π merms and by substituting σ_{2} / σ_{c} for $\pi_{4}{ }^{\circ}$

$$
\begin{equation*}
\left.\varepsilon_{2}\right)_{L}=\left(04.92+2.36 \pi_{2}+9.81 \pi_{3}-4.71 \pi_{2} \pi_{3}\right)\left(10^{-2}\right)\left(\sigma_{2} / \sigma_{c}\right)^{0.454} \tag{62}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\varepsilon_{1}\right)_{L}=\left(-6.97+13.85 \pi_{2}+4.18 \pi_{1}-8.23 \pi_{1} \pi_{2}\right)\left(10^{-2}\right)\left(\sigma_{2} / \sigma_{c}\right)^{0.454} \tag{63}
\end{equation*}
$$

Observed versus predicted strains have been plotted for each of the principal stress directions in Figures 45 through 48. The observed strains were those used to develop the prediction equations. Thus, these plots served only to indicate how well the component equations were combined. In Figures 45, 46, and 48 the standard prediction equations were used to evaluate the predicted strains, whereas the predicted strains in Figure 47 were evaluated by the alternate form of the prediction equation for $\left.\varepsilon_{2}\right)_{L}$. The magnitude of the slopes intere sept, and standard deviation of the regression line are given in each figure。

The largest observed intercept of the regression lines was 0.0002 and the lowest slope of the regression lines was 0.928 . The nearness of these statistics to the slope and intercept of a 45 degree line indicated that the component equations were satisfactorily combined. The high correlation coefficients (the lowest was 0.953) coupled with standard deviations from regression less than 8 percent of the range of $\left.\epsilon_{i}\right)_{L}$ in all cases also indicated that the component equations were satisfactorily combined.

By using the alternate form for predicting ϵ_{2}) (See Equation 63), the observed and predicted values of $\left.\varepsilon_{2}\right)_{L}$ agreed more closely than when the original prediction equation, Equation 60 , was used to predict $\left.\epsilon_{2}\right)_{L}$. More favorable agreement was reflected in the intercept, slope, and standard deviation from regression of the $\left.\varepsilon_{2}\right)_{L}$ oobserved versus $\left.\varepsilon_{2}\right)_{L}$-predicted regression lines. Since isotropy was established

Figure 45. Observed vs. Predicted Strain in the lo Dixection During Loading

Figure 46. Observed vs. Predicted Strain in the 2 Direc tion During Loading

> Figure 48. Observed vs. Predicted Strain in the 3mDireco tion During Loading
independent of the experimental design, and since strains in the 20 direction computed by the alternate prediction equation for $\varepsilon_{2}{ }_{L}$ were in closer agreement with observed strains than were those predicted by Equation 60, it was concluded that Equation 63 should be used to prew $\left.\operatorname{dict} \epsilon_{2}\right)_{L}$

The Unloading Functions

Slope of the Unloading Curves

The slopes of the unloading curves in $\log \log$ space for each experiment in sexies I and II were obtained by the least squares linear regression method. The results of these regressions are presented in Tables XIX and XX, The data for experiments $2 \mathrm{~A}_{8} 2 \mathrm{~B}_{3}$ and 20 in the 1 m direction were lost and are not included in the results.

All n_{i} versus σ_{1} / σ_{3} and n_{i} versus σ_{2} / σ_{3} curves $p l o t t e d$ as horit zontal lines in axithmetic space. Any variation in n_{i} with stress ratio was, therefore, assumed to be xandom and attributable to experim mental-erxors.

Studentized "totests" at the 0.05 level revealed that the mean slopes, $\bar{n}_{1} \bar{y}_{2}$, and \bar{n}_{3}, did not vary between the experiments where σ_{1} / σ_{3} was varied and the experiments where σ_{2} / σ_{3} was varied. This equality determined ${ }_{s}$ the means for $\bar{n}_{12} \bar{n}_{2}$, and \bar{n}_{3} were pooled across the two experiment series, and another studentized "twtest" was con* ducted at the 0.05 level to determine whether the slopes varied between principal stress dixectionso

The results of these tests were that: (1) The slopes of the unw loading curves in $\log \infty$ log space were equal in the two horizontal stress directions and (2) The slope of the unloading curves in logalog space

TABLE XIX
SLOPE OF THE UNLOADING CURVES
IN LOG LOG SPACE WITH
σ_{2} / σ_{3} CONSTANT

Expt.No.		slope ${ }^{1}$		
	σ_{1} / σ_{2}	n_{1}	${ }^{n} 2$	n_{3}
(*)	(${ }^{\text {) }}$		(\%)	
2 A	0.557	-	0.0437	0.0604
2B	0.557	± 0	0.0507	0.0851
20	0.557	am	0.0447	0.0588
17A	0.688	0.0385	0.0416	0.0667
17 B	0.688	0.0246	0.0460	0.0890
176	0.688	0.0399	0.0431	0.0718
3A	0.835	0.0306	0.0465	0.0756
38	0.835	0.0342	0.0512	0.0886
3 C	0.835	0.0399	0.0408	0.0724
44	1.000	0.0928	0.0994	0.2305
48	1.000	0.0850	0.0886	0.2039
40	1.000	0.0634	0.1019	0.2505
18A	1.184	0.0171	0.0183	0.0633
18 B	1.184	0.0368	0.0289	0.0905
186	1.184	0.0312	0.0452	0.0659
5A	1.392	0.0362	0.0526	0.3518
$5 B$	1.392	0.0360	0.0541	0.1035
50	1.392	0.0322	0.0487	0.0904
$\operatorname{Mean}\left(\bar{n}_{\mathrm{i}}\right)$		0.0426	0.0525	0.1177

TABLE XX

SLOPE OF THE UNLOADING GURVES
 IN LOG $-L O G$ SPACE WITH σ_{1} / σ_{3} CONSTANT

Expt. No.	σ_{2} / σ_{3}	$\text { Slope }{ }^{I}$		
(a)	(®)		(a)	
9 A	0.557	0.0435	0.0694	0.0724
98	0.557	0.0369	0.0581	0.1457
9 C	0.557	0.0249	0.0096	0.0426
20 A	0.688	0.0447	0.0519	0.0643
208	. 0.688	0.0430	0.0432	0.0706
200	0.688	0.0324	0.0388	0.1392
10 A	0.835	0.0448	0.0224	0.0749
10B	0.835	0.0359	0.0424	0.0847
106	0.835	0.0291	0.0197	0.0697
112.	1.000	0.1118	0.1109	0.2046
11 B	1.000	0.0995-	0.1001	0.2495
116	1.000	0.1095	0.1166	0.2396
21 A	1.184	0.0459	0.0279	0.0618
218	1.184	0.0369	0.0379	0.0795
216	1.184	0.0422	0.0428	0.1242
12A	1.392	0.0455	0.0385	0.0635
12 B	1.392	0.0507	0.0236	0.2756
120	1.392	0.0299	0.0235	0.0651
$\operatorname{Meam}\left(\mathrm{n}_{\mathrm{f}}\right)$		0.0504	0.0487	0.1182

${ }^{1}$ Subscripts refer to the principal stress direction.
in the vertical direction differed from the slopes in the horizontal directions. Thus,

$$
\begin{equation*}
\bar{n}_{1}=\bar{n}_{2} \neq \bar{n}_{3} \tag{64}
\end{equation*}
$$

The mean slopes encountered and the associated 95 percent confidence intervals were

$$
\begin{align*}
& \bar{n}_{1}=\bar{n}_{2}=\bar{n}_{h}=0.0486 \pm 0.0067 \tag{65}\\
& \bar{n}_{3}=\bar{n}_{v}=0.1180 \pm 0.0264 \tag{66}
\end{align*}
$$

The Prediction Equations

The generalized unloading function, Equation 39 , was presented in Chapter VII. Substitution of the values for \bar{n}_{i} into the generalized equation yielded the prediction equations for unloading.

$$
\begin{align*}
& \left.\varepsilon_{1}\right)_{U}=\varepsilon_{1 \mathrm{~m}}\left(\sigma_{1} / \sigma_{1 \mathrm{~m}}\right)^{0.0486} \tag{67}\\
& \left.\varepsilon_{2}\right)_{\mathrm{U}}=\epsilon_{2 \mathrm{~m}}\left(\sigma_{2} / \sigma_{2 \mathrm{~m}}\right)^{0.0486} \tag{68}\\
& \left.\epsilon_{3}\right)_{\mathrm{U}}=\epsilon_{3 \mathrm{~m}}\left(\sigma_{3} / \sigma_{3 \mathrm{~m}}\right)^{0.1180} \tag{69}
\end{align*}
$$

The values of $\varepsilon_{i m}$ were either the predicted strains ox the obo served strains at which unloading commenced. In the event that prem dicted strains were desired for a complete loading cycle, then the $\epsilon_{i m}$ value had to be predicted from the appropriate loading functiono The observed versus predicted unloading strains are plotted in

Figures 49, 50, and 51. In these figures the predicted strains were computed using observed values for $\varepsilon_{i m}$. The data plotted were the same data used to obtain the average slopes of the unloading curves. The results plotted in Figures 49 through 51 indicated that the techniques employed to derive prediction Equations 67, 68, and 69 were satisfactory. In this series of curves the lowest correlation coef. ficient was 0.990 , the largest standard deviation from regression was only 3.1 percent of the range of observed strains, the slopes of the regression curves were essentially 1.0 , and the intercept of the rem gression lines were all within $0.03 \times 10^{-2} \mathrm{in}$./in. of the origin. The data plotted in Figures 52 through 54 differ from those in Figures 49 through 51 in that the strain levels, $\varepsilon_{i m^{2}}$ were predicted from the prediction equation for $\left.\varepsilon_{i}\right)_{L}$. The standard deviation from regression was less than 8 percent of the range of observed strains in all cases; and the correlation coefficient ranged from 0.954 to 0.980. The slope and intercept of the regression lines for the two horizontal stress directions were essentially equal to unity and zero, respectively。

In the vertical stress direction, the intercept of the regression line was zero, but the slope of the regression line was equal to 1.236 . Noting that the slope of the regression line in Figure 51 , in which ${ }^{\varepsilon}{ }_{3 \mathrm{~m}}$ was an observed value, was only 1.064 and close to the equal value line, the divergence of the regression line in Figure 54 must be due to an accumulative type of error. That is, differences between the obe served and predicted strains in Figure 54 are the sum of differences in the observed and predicted values for $\varepsilon_{i m}$ and the error introduced by the prediction equation for strain during unloading.

Figure 49. Observed vs. Predicted Strain in the 1 Direction During Loading

Figure 50. Observed vs. Predicted Strain in the $2 m$ Direction During Unloading

Figure 51. Observed vs. Predicted Strain in the 3 -Direction During Unloading

Figure 52. Observed vs: Predicted Strain in the $1 m$ Direc tion During Unloading

Figure 53. Observed vs. Predicted
Strain in the 2m
Direction During
Unloading

Figure 54. Observed vs. Predicted Strain in the 3 Direction During Unloading

Validation Results

The results of the validation tests, in which $\sigma_{1}: \sigma_{2}: \sigma_{3}=$ 0.91:0.82:1.00, are presented in Figures 55 through 63. A stressstrain curve, a plot of the observed versus predicted strains during loading, and a plot of the observed versus predicted strains during unloading are presented for each principal direction.

In the l-direction the observed and predicted strains during loading were in close agreement. At the maximum stress level encountered in the l-direction, the difference between the observed and prem dicted strains was 6.3 percent. The observed versus predicted strains plotted in Figures 56 and 57 for loading and unloading, respectively, both approximate a 45 degree line with intercept 0.0. The divergence of the intercept and slope of the regression line in Figure 56 is due primarily to differences in the observed and predicted strains at stresses below. 4 psi. These differences were due to errors in strain measurement at small stress levels.

The results in the 2-direction are plotted in Figures 58, 59, and 60. The stressmstrain curve indicated very good agreement between observed and predicted strains as the maximum difference between observed and predicted strain was 0.001 in。/in. The slope and intercept of the observed versus predicted regression line for loading were $0.0010 \mathrm{in} . / \mathrm{in}$. and 1.078 , respectively; whereas for the unloading function an intercept and slope of 0.0 in 。/in. and 1.022 , respectively, were observed. Again the strains experienced at stress levels below 4 psi diverged considerably from the regression lines. Exclusion of those points below 4 psi would result in even better agreement between the observed and predicted strains during loading.

Figure 55. StrainmStress Curve in the l-Direction for the Validation Test

Figure 56. Observed vs. Predicted Strain in the 1-Direction During Loading for the Validation Tests

Figure 57. Observed vs. Predicted Strain in the 1 -Direction During Unloading for the Validation Tests

Figure 58. Strain-Stress Curve in the 2mDirection for the Validation Tests

Figure 59. Observed vs. Predicted Strain in the 2ω Direction During Loading for the Validation Tests

Figure 60. Observed vs. Predicted Strain in the $2-$ Direction During Unloading for the Validation Tests

Figure 61. Strain-Stress Curve in the 3-Direction for the

Figure 62. Observed vs. Predicted Strain in the 3-Direction During Loading for the Validation Tests

Figure 63. Observed vs. Predicted Strain in the $3-$ Direction During Unloading for the Validation Tests

The observed strains in the 3 -direction during loading are consistently 0.1×10^{-2} in./in. lower than the predicted strains at any given stress level. At stress levels above 8 psi, the difference between observed and predicted strain was less than 10 percent. The linear regression line in Figure 62 for observed versus predicted strains during loading had a slope of 1.045 and an intercept of -0.0014 in./in. These statistics approximated those of a 45 degree line with an intercept of $\mathbf{- 0 . 0 0 1 4}$. The observed versus predicted strains during unloading are plotted in Figure 63. The least squares regression line forced through the origin had a slope of 0.995.

Except for a few instances at stress levels between 0 and 4 psi, the observed and predicted strains differed by less than 10 percent. Furthermore, the 95 percent confidence interval for the regression lines included the equal value line in every instance. Thus, it was concluded that within the limitations imposed by the experimental design, prediction Equations $59,61,62,67,68$, and 69 were valid and could be used to predict the strains in wheat en masse subjected to three dimensional states of stress.

CHAPTER IX

DISCUSSION OF THE RESULTS

Theoretical Considerations

Total Strain

In an attempt to substantiate the results of the previous chapter, the upper and lower bounds of the strain in the vertical direction during loadings $\left.\varepsilon_{3}\right)_{L}$, were evaluated analytically for the case of hydrostatic compression. The lower limit of the strain was obtained by consideration of Hertzian contact deformations, whereas the upper bound was obtained by superimposing the strains due to particle rem orientation upon the Hertzian deformations. In general, the strain in the vertical direction during loading was written as

$$
\begin{equation*}
\left.\left.\left.\varepsilon_{3}\right)_{\mathrm{T}}=\varepsilon_{3}\right)_{\mathrm{H}}+\varepsilon_{3}\right)_{\mathrm{R}} \tag{70}
\end{equation*}
$$

where $\left.\varepsilon_{3}\right)_{T}=$ total strain in the vertical directiong in。/in. $\left.\varepsilon_{3}\right)_{H}=$ strain due to Hertzian contact stresses, ino/in。 $\left.\epsilon_{3}\right)_{R}=$ strain due to particle reorientation, ino/in.

Contact Strain

Contact strains may be computed by the Hertz theory of contact stresses. The Hertz solution assumes that: (1) The contacting bodies
are homogeneous; (2) The loads are static; (3) Hooke's Law holds;
(4) The radii of curvature of the contacting bodies are larger than the radius of the surface of contact; and (5) The particles are smooth such that tangential forces are negligible.

According to Hertz (19), the centers of two bodies in contact approach each other by an amount D along the line of action of the load

$$
\begin{equation*}
D=\frac{k}{2}\left[\frac{9 \mathrm{P}^{2} A^{2}}{\pi^{2}}\left(\frac{1}{R_{1}}+\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{2}^{\circ}}\right)\right]^{1 / 3} \tag{71}
\end{equation*}
$$

where $D=$ deformation of the centers of two contacting bodies, in.

$$
\begin{aligned}
& P=\text { contact load, } \text { lbs }_{f} . \\
& A=\frac{1-\mu_{1}^{2}}{E_{1}}+\frac{1-\mu_{2}^{2}}{E_{2}}
\end{aligned}
$$

$$
k=f(\cos T)
$$

$$
\mu_{1}=\text { Poisson }^{i} \text { s ratio for body } 1
$$

$$
\mu_{2}=\text { Poilsson's ratio for body } 2
$$

$$
E_{1}=\text { modulus of elasticity for body } 1, \text { psi }
$$

$$
E_{2}=\text { modulus of elasticity for body 2, psi }
$$

$$
R_{1}, R_{1}^{\prime}=\text { principal radii of body } 1, \text { in. }
$$

$$
R_{2}, R_{2}^{\infty}=\text { principal radii of body } 2, \text { in. }
$$

$$
\begin{equation*}
\cos \mathrm{T}=\frac{\left[\left(\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{1}}\right)^{2}+\left(\frac{1}{\mathrm{R}_{2}}-\frac{1}{\mathrm{R}_{2}^{\prime}}\right)^{2}+2\left(\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{1}^{\prime}}\right)\left(\frac{1}{\mathrm{R}_{2}}-\frac{1}{\mathrm{R}_{2}^{2}}\right) \cos 2 \eta\right]^{1 / 2}}{\left(\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{1}^{\circ}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{2}^{\circ}}\right)} \tag{72}
\end{equation*}
$$

The value of k has been tabulated by Kosma and Cunningham (29) for all levels of cos T. The angle η is the angle between the normal planes containing the principal curvatures of the contacting bodies.

A typical wheat grain is illustrated in Figure 64. It has been observed by Shelef and Mohsenin (47), and it was demonstrated in Chapter \checkmark that the longitudinal axis of a kernel of wheat is approximately twice as long as the height. That is,

$$
\begin{equation*}
L=2 H \tag{73}
\end{equation*}
$$

In Chapter V, it was shown that the length and height of the wheat grains used in this study were 0.196 and 0.098 inches, respectively.

Arnold and Roberts (2, 3) have observed the following relationships between the axial dimensions of wheat grains and their principal radii of curvature.

$$
\begin{align*}
& R_{1}=H / 2 \tag{74}\\
& R_{1}^{\prime}=\frac{H^{2}+L^{2} / 4}{2 H}=H \tag{75}\\
& R_{2}=R_{1} / 2=H / 4 \tag{76}\\
& R_{2}^{\prime}=2 R_{1}^{\prime}=2 H \tag{77}
\end{align*}
$$

It has been asserted in Chapter VI that the wheat grains will orient themselves with their longitudinal axes perpendicular to the gravity field. However, the orientation of the longitudinal axis in

Figure 64. Sketch of a Typical Wheat Grain
the horizontal plane is random.
Because of the random orientation of the longitudinal axis in the horizontal plane, many combinations of contacting surface radii are possible within an array of wheat grains. For example, in the vertical direction of an array of wheat grains contacts could be visualized in which the following combinations of principal radii would be involved: (1) A surface with principal radii of R_{1} and R_{1}^{\prime} in contact with a surface with principal radii of R_{1} and R_{1}^{\prime}; (2) A surface with principal radii of R_{1} and R_{1}^{\prime} in contact with a surface with principal radii of R_{2} and R_{2}^{\prime}; or (3) A surface with principal radii of R_{2} and R_{2}^{\prime} in contact with a surface with principal radii of R_{2} and R_{2}^{\prime}. (Note that the radii referred to are those illustrated in Figure 64。) Furthermore, the angle between the planes of principal radii, η, of two contacting bodies may vary.

Since any of these combinations of contacting cang and probably do, occur and since the limiting bounds of contact deformation were sought, the approach of two wheat kernels under load was evaluated for all the combinations of principal radii and angle, η.

Hertzian strains were evaluated for two particulate packing arrays: A simple rectangular array as shown in Figure 65, and an orthoparallelepipedal array as shown in Figure 66. The arrays sketched assume that the wheat grains approximate circular ellipsoids with major and minor axes of L and H, respectively. The first of these arrays represented the loosest possible packing arrangement of uniform ellipsoids, whereas the second array is the densest array of ellipsoids which one would expect to find in nature. Orr (40) noted that the orthorhombic arrangement of uniform spherical particles was the most

Figure 65. An Element of a Simple Rectangular Arrangement of Wheat Grains

Figure 66. An Element of an Oxthooparallelepipedal
Arrangement of Wheat Grains
dense array found in practice. This observation was extended to the case of ellipsoidal particulate arrays.

In the case of the simple rectangular array (SRA), the unit vertio cal contact strain was computed by Equation 78.

$$
\begin{equation*}
\left.\varepsilon_{3}\right)_{H}=\frac{D}{H} \tag{78}
\end{equation*}
$$

In the case of the orthomparallelepipedal array (OPA), the unit vertical contact strain was evaluated by Equation 79 .

$$
\begin{equation*}
\left.\varepsilon_{3}\right)_{H}=\frac{4 D}{\sqrt{3} H} \tag{79}
\end{equation*}
$$

Hertzian strains were evaluated for all the combinations by assuming that $E_{1}=E_{2}=4.12 \times 10^{5}$ psi [Shelef and Mohsenin (47)] and by assuming that $\mu_{1}=\mu_{2}=0.30$ [Arnold and Roberts (3)]. Of all the combinations, the maximum vertical Hertzian strain was obtained for a simple rectangular arrangement of particles. The principal radii of the contact points for body 1 were $R_{1}=0.148$ inch and $R_{1}^{0}=0.074$ inch whereas the principal radii of the contact points for body 2 were $R_{2}=0.296$ inch and $R_{2}=0.037$ inch. The angle, η, associated with the maximum Hertzian strain was 0 degrees.

The minimum contact strain was evaluated for an ortho-parallel epipedal arrangement of particles. The principal radii of contact for body 1 were $R_{1}=0.148$ inch and $R_{1}^{\prime}=0.074$ inch, whereas the principal radii of the second contacting grain were $R_{2}=0.296$ inch and 0.037 inch. The angle, η, was equal to 0 degrees. The computed -upper and lower bounds for Hertzian strains in the vertical direction
are plotted in Figure 67.

Particle Reorientation

The voids ratio for the simple rectangular array of particles was 0.910 , whereas the voids ratio of the ortho-parallelepipedal array of particles was 0.655. The unit strain encountered, assuming the initial distance between particle centers to be H and assuming no particle deformation when transforming the particles from an SR to an OP arrangement, was 0.134 ino/in. That is,

$$
\begin{equation*}
\left.\epsilon_{R}\right)_{\max }=0.134 \mathrm{in} / \mathrm{in} \tag{80}
\end{equation*}
$$

However, the observed initial voids ratios of the wheat samples, e_{0}, had an average value of 0.750 . If a linear relationship is assumed between the difference in voids ratio and the unit strains due to rearrangement, then the unit strain expected due to rearrangement from a voids ratio of 0.750 to the $O P$ array with $e=0.655$ is

$$
\begin{equation*}
\left.\epsilon_{3}\right)_{R}=\frac{e_{0}=0.655}{0.910-0.655}\left(\varepsilon_{R}\right)_{\text {max }}=5.0 \times 10^{-2} \text { ino/in. } \tag{81}
\end{equation*}
$$

The preliminary results of Chapter VI indicated that particle rea orientation was the predominant mode of deformation in a hydrostatic compression test up to a stress level of 8 psi . Above stresses of 8 psi individual particle deformation was observed to be the predominant deformation mechanism. Assuming that all the particle reorientation straing $\left.\varepsilon_{3}\right)_{R^{2}}$ has been achieved at a stress level of 8 psi , the maximum total strain at 8 psi is obtained by adding $\left.\epsilon_{3}\right)_{R}$ from Equation 81 to

Figure 67. Diagram of the Bounding Theoretical Strains in the Vertical Stress-Direction for an Element Subjected to Hydrostatic Compressive Stresses
the maximum contact strain at 8 psi. Thus, the location of point 1 in Figure 67 is established.

Now, if it is assumed that at some value of stress near 0 psi, say 0.01 psi , the maximum contact strain and the total strain are eso sentially equal, the location of point 2 on the upper limit of total strain curve is defined. Narayan and Bilanski (38) noted that the total vertical deformation of wheat en masse under axial load varied logarithnically with stress when particle reorientation was the prem dominant mode of deformation. Thus, an approximation of the upper bound of total strain between stress levels of 0.01 and 8 psi is a straight line in log-log space joining points 1 and 2 in Figure 67. Above a stress level of $8 \mathrm{psi}_{\text {g }}$ the upper bound of total strain is plotted by simply adding a constant strain of 5.0×10^{-2} ino/in. to the maximum contact strain.

Comparison of Experimental and Analytical Results

The upper and lower bounds for strain were developed independently of any experimental results except that the experimentally observed initial voids ratio was used in the development of $\left.\epsilon_{3}^{\prime}\right)_{R}$ and a stress level of 8 psi was experimentally observed as the stress level at which particle reorientation ceased to be the major mechanism of deformation.

The predicted vertical strains, which are computed by Equation 61 in Chapter VIII and are plotted in Figure 67 for the case of hydrom static compressive stresses, fell within the upper and lower bounds of strain for stress levels between 0.3 and 1000 psi. The slope of the predicted stressostrain function was 0.520 , whereas the slope of the

Hertzian stress-strain function was 0.667 . Thus, as the stress level increased, the predicted and Hertzian strains converged.

The accuracy of the strains measured by the methods proposed in this study is not proved conclusively by this independent analytical approach. However, the results of this study can be used with a greater degree of confidence with the knowledge that the predicted strains do fall within the limiting bounds. Conclusive proof of the accuracy of the method will be obtained only when the stressmstrain functions are successfully applied to the solution of the pressure distribution in a physical system.

Nature of the StressaStrain Behavior

Probably the most outstanding feature of the stress-strain behavior of wheat en masse was the directional dependence of the strains. In hydrostatic compression tests the strain in the vertical direction with respect to gravity filling was always observed to be nearly 50 percent smaller than the strains encountered in the horizontal direction. Similarly, in deviatoric stress testsg anisotropic behavior was also observed. For example, the strain in the lodirection under a stress state of $\sigma_{1}: \sigma_{2}: \sigma_{3}=\ell: m \circ m$ was always observed to be greater than the strains experienced in the 3mirection under a stress state in which $\sigma_{1}: \sigma_{2}: \sigma_{3}$ equaled m:m: h. Whereas the vertical and horizontal strains differed in hydrostatic compression tests, the strains in the horim zontal planes were identical.

The anisotropic behavior of wheat en masse has been discussed in Chapter VI in the-sections on "Isotropy" and "Gravity Effects." In sumary, the anisotropy was attributed to the asymmetric configuration
of wheat grains. Because of their asymmetric shape, a horizontal orientation of their longitudinal axis is the only stable one in a gravity field. However, the orientation of the longitudinal axis within the horizontal plane is random. Thus, due to differences in geometry between the vertical and horizontal directions, the strains in these directions differ under identical stress states; and due to the macroscopic similarity of the particulate packing arrangement in any horizontal direction, the strains in all horizontal planes are identical when subjected to identical stress stateso

Another characteristic of the mechanical behavior of wheat en masse is the presence of large residual strains upon removal of the loads. The typical stressostrain diagram for wheat en masse in Figure 68 illustrates the residual strains. The total strain at the beginning of unloading is denoted by $\left.\varepsilon_{i}\right)_{T}$ and may be separated into two components: (1) The elastic component,,$\left.\epsilon_{i}\right)^{\rho}$ and (2) The plastic comm ponent, $\left.\varepsilon_{i}\right)_{p}$. The elastic strain is that portion of the total strain which is recoverable. Previouslyt, it has been noted that the recover. able strain encountered in wheat en masse is associated with recoverm able individual particle deformations. The plastic strain is the irrecoverable portion of the total strain and has been attributed primarily to irreversible friction losses and irrecoverable work accomplished in the reorientation of individual particles from one packing arrangement to another. A minor portion of the plastic strain is a result of irrecoverable strains encountered during loading and unloading of individual grains. Axmold and Roberts (3), Zoerb (55), and Shelef and Mohsemin (47) also observed irrecoverable deformations when individual grains were loaded and unloaded; while Narayan and

Figure 68. Idealized Static StressaStrain Diagram for Wheat En Masse

Bilanski (38) observed large irrecoverable strains in wheat en masse loaded and unloaded axially in a confining cylinder.

A larger portion of the total strain is recovered in the vertical stress direction than in the horizontal stress directions. For examples in the validation experiments in which $\sigma_{1}: \sigma_{2}: \sigma_{3}=0.91: 0.82: 1$, the strain recovered in the vertical direction was 41 percent of the total strain, whereas only 17 and 20 percent of the total strain was recovered in the two horizontal directions. The anisotropic nature of wheat en masse due to particle orientation with respect to gravity was responsible for this effect.

The mechanical behavior of wheat en masse has been found to be very complex. It is classified as an amisotropic elasticoplastic material. The preliminary tests indicated that wheat en masse exhibits strain hardering tendencies with repeated loading cycleso

Loading Function

The prediction equations for the static strain during the first cycle of loading for cases where $\sigma_{1}: \sigma_{2}: \sigma_{3}$ does not vary during loading were presented in Equations $59,61_{2}$ and 62 in Chapter VIII. These equations have been verified by the results of the validation experiments and the analytical results of this chapter. All three prediction equations for strain were of the form

$$
\begin{equation*}
\left.\varepsilon_{i}\right)_{L}=A_{i}\left(\pi_{2}, \pi_{3}\right) \pi_{4} a_{i} \tag{82}
\end{equation*}
$$

$$
\text { where } \begin{aligned}
A_{1}\left(\pi_{2}, \pi_{3}\right) & =\text { dimensionless function of } \pi_{2} \text { and } \pi_{3} \\
\therefore \quad a_{1} & =\text { a dimensionless exponent }
\end{aligned}
$$

If $\left.\varepsilon_{i}\right)_{L}$ were plotted versus π_{2} and π_{3} in arithmetic space with π_{4} as a parameter, a family of parallel planes would be described. The spacing between the planes would decrease logarithuically as π_{4} increased.

The anisotropic nature of the deformational behavior is manifested in the prediction equations. For example, a_{1} and a_{2} were both equal to 0.454 , but a_{3} was equal to 0.520 . The coefficients, A_{i}, also demonstrated the directional dependence of the strains. $A_{1}\left(\pi_{2}, \pi_{3}\right)$ and $A_{2}\left(\pi_{2}, \pi_{3}\right)$ differed only in that the coefficients of π_{2} and π_{3} terms were interchanged. However, the coefficient, $A_{3}\left(\pi_{2} \pi_{3}\right)$, was completely different from A_{2} and A_{3}. For example, for the case of hydrostatic compressive stresses, the magnitudes of A_{1} and A_{2} were identical, whereas the magnitude of A_{3} was approximately one ohalf as great as A_{1} or A_{2}.

Unloading Function

Unloading strains in the ith direction are predicted by Equations 67, 68, and 69 in Chapter VIII. The hypothesis that these equations were of the form

$$
\begin{equation*}
\left.\epsilon_{i}\right)_{U}=\epsilon_{i m}\left(\sigma_{i} / \sigma_{i m}\right)^{n_{i}} \tag{83}
\end{equation*}
$$

has been verified.
Unloading behavior is of the exponential form. The coefficient in Equation 83 must be predicted from the loading function, $\left.\varepsilon_{i}\right)_{L}$ at the stress level at which unloading commenced. The slope parameter was shown to be dependent only upon the direction, $i_{\text {, }}$ of the principal
strain. Further, elastic symetry and observed results dictated that n_{i} was equal to 0.0486 in both horizontal directions. In the vertical direction the slope; $n_{3}=0.1180$, was approximately twice as large as both n_{1} and n_{2}. Thus, a larger percentage of the strain in the vertio cal direction was recovered during unloading than in either of the horizontal directions. Because of the independence of n_{i} upon both stress ratio and the value of $\varepsilon_{i m}$ all the logolog unloading curves in the ith direction were parallel straight lines with slope n_{i} o

CHAPTER X

SUMMARY AND CONCLUSIONS

Summaxy

Abstract

The primary objective of this study was to functionally define the static stresswstrain behavior of wheat en masse. Use was made of the hydraulicmechanical analog stress control device and the cubical stress box developed by K o and Scott (25) for the study of the stresso strain behavior of granular soils.

Preliminary studies were conducted with wheat en masse to evaluate the effect of sample size, gravity, time, and load history upon its mechanical behavior and to determine its degree of mechanical isotropy. It was found that a four inch cubical sample was adequate for studying the stressmstrain behavior of wheat en masse, Gravity affected the bew havior in that the wheat grains oriented themselves with respect to gravity during sample preparation. Wheat en masse was found to be anim sotropic since strains were observed to be greater in any horizontal stress direction than in the vertical stress direction during hydrom static compression tests. (Horizontal is defined as being perpendicular to the gravity filling axis.) In the first minute after application of a sustained load, the deformation of wheat en masse was observed to be highly dependent upon time. However, nearly 80 percent of the final straing ε_{∞}, was attained during the first minute of loading. After one minute the rate of increase in strain was extremely lowo Variation

of load rate from 3 to 6 psi per minute did not cause any variation in the observed strains in either hydrostatic or deviatoric tests. The stress-strain behavior was observed to be very dependent upon load hism tory, thus indicating that the stress-strain behavior was incremental in nature and, therefore, closely bound to the stress path followed.

An experimental design based upon the theory of similitude and the preliminary findings was developed to define the functional nature of the static stresswstrain behavior of wheat en masse. The following limitations were imposed by the design.

1. The physical properties of the wheat were held constant.
2. The loading rate was held constant at 3 psi/minute.
3. Only one cycle of loading and unloading was studied.
4. The stress ratio, $\sigma_{1}: \sigma_{2}: \sigma_{3}$, was held constant throughout a test while $\sigma_{1}+\sigma_{2}+\sigma_{3}$ was varied.
5. Stress ratios expected in grain storage structures were spanned.
6. All loads were below failure loads.

The six prediction equations for straing excluding those terms held constant, for loading and unloading were of the form

$$
\begin{align*}
& \left.\varepsilon_{1}\right)_{L}=f_{1}\left(\sigma_{1} / \sigma_{3}, \sigma_{2} / \sigma_{3}, \sigma_{1} / \sigma_{c}\right) \tag{84}\\
& \left.\varepsilon_{2}\right)_{L}=f_{2}\left(\sigma_{1} / \sigma_{3}, \sigma_{2} / \sigma_{3}, \sigma_{2} / \sigma_{c}\right) \tag{85}\\
& \left.\varepsilon_{3}\right)_{L}=f_{3}\left(\sigma_{1} / \sigma_{3}, \sigma_{2} / \sigma_{3}, \sigma_{1} / \sigma_{c}\right) \tag{86}\\
& \left.\varepsilon_{i}\right)_{U}=\varepsilon_{i m}\left(\sigma_{i} / \sigma_{i m}\right)^{n}, i=1,2,3 \tag{87}
\end{align*}
$$

The ranges of the variables considered were

$$
\begin{aligned}
& 0.557 \leq \sigma_{1} / \sigma_{3} \leq 1.392 \\
& 0.557 \leq \sigma_{2} / \sigma_{3} \leq 1.392 \\
& 0.000 \leq \sigma_{1} / \sigma_{c} \leq 1.000 \\
& 0.000 \leq \sigma_{2} / \sigma_{c} \leq 1.000 \\
& 0.000 \leq \sigma_{i} / \sigma_{i m} \leq 1.000
\end{aligned}
$$

Component equations were developed, transformed to linear functions, and combined by analysis of the functions to obtain the following prediction equations for strain.

$$
\begin{equation*}
\left.\varepsilon_{1}\right)_{L}=\left(-4.92+9.81 \pi_{2}+2.36 \pi_{3}-4.71 \pi_{2} \pi_{3}\right)\left(10^{-2}\right)\left(\sigma_{1} / \sigma_{c}\right)^{0.454} \tag{88}
\end{equation*}
$$

$$
\begin{equation*}
\left.\epsilon_{2}\right)_{L}=\left(-4.92+2.36 \pi_{2}+9.81 \pi_{3}-4.71 \pi_{2} \pi_{3}\right)\left(10^{-2}\right)\left(\sigma_{2} / \sigma_{c}\right)^{0.454} \tag{89}
\end{equation*}
$$

$\left.\varepsilon_{3}\right)_{L}=\left(10.00-6.55 \pi_{2}-5.71 \pi_{3}+3.71 \pi_{2} \pi_{3}\right)\left(10^{-2}\right)\left(\sigma_{1} / \sigma_{c}\right)^{0.520}$

$$
\begin{align*}
& \left.\varepsilon_{1}\right)_{U}=\varepsilon_{1 \mathrm{~m}}\left(\sigma_{1} / \sigma_{1 \mathrm{~m}}\right)^{0.0486} \tag{91}\\
& \left.\varepsilon_{2}\right)_{U}=\varepsilon_{2 \mathrm{~m}}\left(\sigma_{2} / \sigma_{2 \mathrm{~m}}\right)^{0.0486} \tag{92}\\
& \left.\varepsilon_{3}\right)_{U}=\varepsilon_{3 \mathrm{~m}}\left(\sigma_{3} / \sigma_{3 \mathrm{~m}}\right)^{0.1180} \tag{93}
\end{align*}
$$

At any stress ratio, $\sigma_{1}: \sigma_{2}: \sigma_{3}$, large irrecoverable strains are predicted upon unloading the grain since the exponents in the expres* sions for $\left.\epsilon_{i}\right)_{U}$ are much less than those for $\left.\epsilon_{i}\right)_{L}$. Based upon the results of the preliminary studies and the form of the prediction equations for strains wheat en masse has been classified as an anisow tropic elastic-plastic material.

Two tests, in which $\sigma_{1}: \sigma_{2}: \sigma_{3}=0.91: 0.82: 1.00$, were conducted in order to validate the prediction equations. The predicted and observed strains were in agreement. Also, an analytical solution of the upper and lower bounds of the vertical strain of wheat en masse during hydrostatic compression indicated that the predicted strains fell within the limiting bounds.

Conclusions

The following conclusions were drawn from the experimental results.

1. The strains in a four inch stress box are more homogeneous than those in a six inch stress box. The smaller the sample size, the more homogeneous are the observed strains.
2. Wheat en masse is not isotropic with respect to principal strains. Mechanical symmetry exists in all horizontal planes with respect to gravity, but is absent with respect to vertical normal strains. The lack of complete symmetry is a result of particle orientation with respect to gravity.
3. The stress-strain behavior of wheat en masse is time dependent. However, 85 percent of the maximum strain is attained during the first minute after application of loads. Approximately 24 hours were required to attain the maximum strain level in hydrostatic compression tests.
4. The stress-strain behavior of wheat en masse is incremental.
5. The component equations for $\left.\varepsilon_{i}\right)_{L}$ versus σ_{1} / σ_{3} and $\left.\varepsilon_{i}\right)_{L}$ versus σ_{2} / σ_{3} during the first loading cycle were linear in arithmetic space.
6. The component equations for $\left.\varepsilon_{i}\right)_{L}$ versus σ_{1} / σ_{c} were 1 inear in
log-log space. This is in agreement with the experimental results of other investigations for individual particles of wheat.
7. The equations which predict the normal strains for wheat en masse during the first cycle of loading are:

$$
\begin{align*}
&\left.\epsilon_{1}\right)_{L}=\left(-4.92+9.81 \sigma_{1} / \sigma_{3}+2.36 \sigma_{2} / \sigma_{3}-4.71 \sigma_{1} \sigma_{2} / \sigma_{3}^{2}\right) \\
&\left(10^{-2}\right)\left(\sigma_{1} / \sigma_{c}\right)^{0.454} \tag{94}
\end{align*}
$$

$$
\begin{align*}
\left.\epsilon_{2}\right)_{L}=\left(-4.92+2.36 \sigma_{1} / \sigma_{3}+9.81 \sigma_{2} / \sigma_{3}-\right. & \left.4.71 \sigma_{1} \sigma_{2} / \sigma_{3}^{2}\right) \\
& \left(10^{-2}\right)\left(\sigma_{2} / \sigma_{c}\right)^{0.454} \tag{95}
\end{align*}
$$

$\left.\varepsilon_{3}\right)_{L}=\left(10.00-6.55 \sigma_{1} / \sigma_{3}-5.71 \sigma_{2} / \sigma_{3}+3.71 \sigma_{1} \sigma_{2} / \sigma_{3}{ }^{2}\right)$

$$
\begin{equation*}
\left(1 \theta^{-2}\right)\left(\sigma_{1} / \sigma_{c}\right)^{0.520} \tag{96}
\end{equation*}
$$

8. In the ith direction the stress-strain behavior of wheat en masse during unloading proceeds along straight line paths in $\log -\log$ space. The prediction equations for strain during the first unload cycle are

$$
\begin{align*}
& \left.\epsilon_{1}\right)_{U}=\epsilon_{1 \mathrm{~m}}\left(\sigma_{1} / \sigma_{1 \mathrm{~m}}\right)^{0.0486} \tag{97}\\
& \left.\epsilon_{2}\right)_{U}=\epsilon_{2 \mathrm{~m}}\left(\sigma_{2} / \sigma_{2 \mathrm{~m}}\right)^{0.0486} \tag{98}\\
& \left.\epsilon_{3}\right)_{U}=\varepsilon_{3 \mathrm{~m}}\left(\sigma_{3} / \sigma_{3 \mathrm{~m}}\right)^{0.1180} \tag{99}
\end{align*}
$$

The exponents do not vary with stress ratio or with $\epsilon_{i m}$.
9. At stress ratios of σ_{1} / σ_{3} and σ_{2} / σ_{3} above 1.392 and below 0.557 in wheat en masse, static behavior ceases and flow conditions commence. Thus, the prediction equations should not be extrapolated beyond the limits imposed in the study.
10. The magnitude of the strains measured by the methods and apparatus described herein fall within the limiting theoretical bounds for strain.
11. Wheat en masse behaves as an anisotropic elasticmplastic material.
12. The methods and procedures described in this report are adem quate for defining the static stress-strain behavior of particulate materials en masse found in agricultural entera prises.

SELECTED BIBLIOGRAPHY

(1) Airy, W. The pressure of grain. Minutes of Proceedings of the Institution of Civil Engineers. 131:347-358. 1898.
(2) Arnold, P. C. and A. W. Roberts. Mechanical and rheological properties of Australian wheats. Part 1. Effect of variety on load-deformation characteristics. Wollongong University Colloquium Bulletin 12. 1967.
(3) Arnold, P. G. and A. W. Roberts: Fundamental aspects of loaddeformation behavior of wheat grains. Transactions of ASAE. 12:1:104-108. 1969.
(4) Bell, J. M. Stress-strain characteristics of cohesionless granular materials subjected to statically applied homogeneous loads in an open system. Ph.D. thesis. California Institute of Technology. 1965.
(5) Biot, M. A. Theory of deformation of a porous visco-elastic anisotropic solid. Journal of Applied Physics 27. 1956.
(6) Brown, E. H. A theory for the mechanical behavior of sand. Proceedings of the 11th International Congress of Applied Mechanics. 1964.
(7) Brubaker, J. E. and J. Pos. Determination of static coefficients of friction of some grains on various structural surfaces. Paper No. 63-828. American Society of Agricultural Engineers. St. Joseph, Michigan. 1963.
(8) Buckingham, E. On physically similar systems: Illustrations of the use of dimensionless equations. Physical Review. 4:10:345. 1914.
(9) Collins, R. V. Determination of pressures in cylindrical storage structures. Transactions of ASAE. 6:2:98-101, 103. 1963.
(10) Cox, A. D., G. Eason and H. D. Hopkins. Axially symmetric plastic deformation in soils. Philosephical Transactions of the Royal Society. A 254: 1-45. 1961.
(11) Dabrowski, R. Shell analysis of intermediate silo bins. Journal of the American Concrete Institute. 7:795-803. 1965.
(1-2) Dale, A. C. and R. N. Robinson. Pressures in deep grain storage structures. Agricultural Engineering. 35:8:570-573. 1954.
(13) Drucker, D. C., R. E. Gibson and D. J. Henkel. Soil mechanics and work hardening theories of plasticity. Transactions of ASCE. 122. 1957.
(14) Duffy, J. and R. D. Mindlin. Stress-strain relations and vibrations of a granular medium. Journal of Applied Mechanics, ASME. 24:585. 1957.
(15) Duffy, J. A differential stress-strain relation for the hexagonal close-packed array of elastic spheres. Journal of Applied Mechanics, ASME. 26:3:88-94. 1959.
(16) Hamilton, H. E. An analysis of lateral strain in cylindrical grain bin walls subjected to active and passive pressures. Unpublished Mos. thesis. Ok1ahoma State University. 1964.
(17) Hardin, B. O. and F. E. Richart. Elastic wave velocities in granular soils. Journal of the Soil Mechanics and Foundations Division, ASCE, 89:SM1:33-65. 1963.
(18) Hardin, B. O. and W. L. Black. Sand stiffness under various triaxial stresses. Journal of the Soil Mechanics and Foundations Division, ASCE. 92:SM2:27-42. 1966.
(19) Hertz \boldsymbol{g}^{-}H. Miscellaneous Papers. MacMillan and Company: New York. 1896.
(20) Isaacson, J. D. and J. S. Boyd. Mathematical analysis of lateral pressures in flat-bottomed deep grain bins. Transactions of ASAE. 8:3. 1965 .
(21) Jaky, J. Pressure in silos. Proceedings 2nd Int. Conference Soil Mchs. and Found. Engr. 1:103-107. Rotterdam. June, 1948.
(22) Janssen, H. A. Versuche uber Getreidedrucke in Silozellen. Zeitschrift des Vereines Deutscher Ingenieure. 39:1045-1049. 1895.
(23) Jenike, A. Wo and Jo Ro Johanson. Bin loads. Proceedings of ASCE. 94:ST4:1011-1041. 1968.
(24) Kjellman, W. Report on an apparatus for consummate investigation of the mechanical properties of soils. Proceedings of International Conference on Soil Mechanics. 2:16. 1936.
(25) Ko, H. Y. and R. F. Scott. A new soil testing apparatus. Geotechnique. 17:1:40-56. 1967.
(26) Ko, H. Y. and R. F. Scott. Deformation of sand in shear. Journal of the Soil Mechanics and Foundations Division, ASCE. 93:SM5:283-310. 1967.
(27) Ko, H. Y. and R. F. Scott. Deformation of sand in hydrostatic compression. Journal of the Soil Mechanics and Foundations Division, ASCE. 93:SM3:137-156. 1967.
(28) Ko, H. Y. and R. F. Scott. Deformation of sand at failure. Journal of the Soil Mechanics and Foundations Division, ASCE. 94:SM4:883-898. 196 .
(29) Kosma, A. and H. Cunningham. Tables for calculating the compressive surface stresses and deflections in the contact of two solid elastic bodies whose principle planes of curvature do not coincide. Journal of Industrial Mathematics. 12:1:31-40.
(30)
\longrightarrow, Natural latex dipping process. Latex Technical Bulletin. General Latex and Chemical Corporation. Ashland, Ohio.
(31) Lambe, T. W. Soil Testing for Engineers. John Wiley and Sons, Inc.: New York. 1967.
(32) Lorenzen, R. T. Moisture effect on friction coefficients of small grains. Paper No. 59-416. American Society of Agricultural Engineers. St. Joseph, Michigan. 1959.
(33) Mindlin, R. D. Compliance of elastic bodies in contact. Journal of Applied Mechanics, ASME. 71:259. 1949.
(34) Mindlin, R. D. and H. Deresiewicz. Elastic spheres in contact under varying oblique forces. Journal of Applied Mechanics, ASME. 75:327-344. 1953.
(35) Mindling R. Do, W. P. Mason, T. F. Osner, and H. Deresiewicz. Effects of an oscillating tangential force on the contact surfaces of elastic spheres. Proceedings of the First National Congress of Applied Mechanics. pp. 203-208. 1951.
(36) Mohsenin, N. N. Physical Properties of Plant and Animal Materials: Parts I and II of VoI. I. The Pennsylvania State University. University Park, Pennsylvania. 1968.
(37) Murphy, G. Similitude in Engineering. The Ronald Press Co.: New York. 1950. Chapter 3.
(38) Narayan, C. V. and W. K. Bilanski. Behavior under high pressure of wheat grains in bulk. Paper No. 66-806. American Society of Agricultural Engineers. St. Joseph, Michigan. 1966.
(39) Natrella, M. G. Experimental Statistics. National Bureau of Standards Handbook No. 91. United States Department of Commerce. Washington, D. C. 1963.
(40) Orr, C., Jr. Particulate Technology. The MacMillan Company: New York. 1966.
(41) Riembert, M. and A. Riembert. Silos Tratte Theorique et Pratique. Editions Eyrolles: Paris. 1956.
(42) Roscoe, K. H.g A. N. Schofield and A. Thurairajah. Yielding of clays in states wetter than critical. Geotechnique. 13. 1963.
(43) Rowe, Po W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proceedings, Royal Society of London, Series A. 269:174. 1963.
(44) Rowe, P. W. A stress-strain theory for cohesionless soil with application to earth pressure at rest and moving walls. Geotechnique. 4:2:70. 1954.
(45) Saada, A. S. Stress controlled apparatus for triaxial testing. Journal of the Soil Mechanics and Foundations Division, ASCE. 93:SM6:61-78. 1967.
(46) Saul, R. A. Measurement of grain pressures on bin walls and floors. Agricultural Engineering. 34:4:231-234. 1953.
(47) Shelef, Lo and N. N. Mohsenin. Evaluation of the modulus of elasticity of wheat grain. Cereal Chemistry. 44:392. 1967.
(48) Shield, R. T. Mixed boundary value problems in soil mechanics. Quarterly Applied Mathematics. 11. 1953.
(49) Shpolyanskaya, A. L. Structuralmechanical properties of the wheat grain. Colloid Journal (English Translationo). 14:1:137-148. 1952.
(50) Stewart, B. R. Effect of moisture content and specific weight on the internal friction properties of sorghum grain. Paper No. 64-804. American Society of Agricultural Engineers. St. Joseph, Michigan. 1964.
(51) Stewart, B. R. Active and passive wall pressures induced by sorghum grain in a shallow bin. Paper No. 67m920. American Society of Agricultural Engineers. St. Joseph, Michigan. 1967。
(52) Terzaghi, K. Large retaining wall test: I。 Pressure of dry sand. Engineering News-Record. 112:136-140. 1934.
(53) Terzaghi, K. Theoretical soil mechanics. Wiley and Sons: New York. 1965.
(54) Zoerb, G. C. and C. W. Hall. Some mechanical and rheological properties of grains. Paper No. 58-112. American Society of Agricultural Engineers. St. Joseph, Michigan. 1958.
(55) Zoerb, G. C. and C. W. Hall. Some mechanical and rheological properties of grains. Journal of Agricultural Engineering Research. 5:1:83-93. 1960.

APPENDIX A

STRESSES IN THE ORTHOGONAL PLANES
FOR SELECTED LOCATIONS
OF THE LOAD GYLINDER
ON THE STRESS PLATE
FOR A UNIT LOAD

APPENDIX AmI

STRESSES IN THE ORTHOGONAL PLANES FOR SELECTED LOCATIONS ON THE STRESS PLATE FOR UNIT LOAD

$\begin{gathered} \text { Angle } \\ \theta \\ \text { (deg。) } \end{gathered}$	$\begin{gathered} \text { Dist. } \\ \mathbf{r} \\ \left(\text { in。 }_{0}\right) \end{gathered}$	Stresses ${ }^{1}$			Stress Ratios	
		${ }^{\sigma}$	$\frac{\sigma_{2}}{\left(p_{I I}\right)}$	σ_{3}	$\begin{gathered} \sigma_{1} / \sigma_{3} \\ (-) \end{gathered}$	$\begin{gathered} \sigma_{2} / \sigma_{3} \\ (-) \end{gathered}$
0	0.00	0.33	0.33	0.33	1.00	
	0.50	0.37	0.31	0.31	1.18	
	1.00	0.41	0.30	0.30	1.39	
	1.50	0.45	0.28	0.28	1.63	1.00
	2.00	0.49	0.26	0.26	1.90	
	2.50	0.53	0.24	0.24	2.22	
	3.00	0.56	0.22	0.22	2.59	
30	0.50	0.37		0.30	1.22	1.11
	1.00	0.40		0.27	1.50	1.25
	1.50	0.43	0.33	0.23	1.86	1.43
	2.00	0.47	0.33	0.20	2.33	1.67
	2.50	0.50		0.17	3.00	2.00
	3.00	0.53		0.13	4.00	2.50
60	0.50	0.35	0.35	0.30	1.20	1.20
	1.00	0.37	0.37	-0.26	1.45	1.45
	1.50	0.39	0.39	0.22	1.80	1.80
	2.00	0.41	0.41	0.18	2.29	2.29
	2.50	0.43	0.43	0.14	3.05	3.05
	3.00	0.45	0.45	0.10	4.38	4.38
90	0.50		0.37	0.30	1.00	1.22
	1.00		0.40	0.27	1.11	1.50
	1.50	0.33	0.43	0.23	1.43	1.86
	2.00	0.33	0.47	0.20	1.67	2.33
	2.50		0.50	0.17	2.00	3.00
	3.00		0.53	0.13	2.50	4.00

APPENDIX B
 DATA AND CORRECTION CURVE FOR THE VOLUMETRIC DEFORMATIONS dUE TO MEMBRANE INDENTATION AND COMPRESSION

APPENDIX B

data and gorrection curve for THE VOLUMETRIC DEFORMATIONS DUE TO MEMBRANE INDENTATION AND COMPRESSION

Data are presented and the least squares best fit curve for those data is presented. The volumetric correction is for the indentation of the latex rubber membrane into the void spaces of a single layer of wheat grains. The correction term is equally valid in any of the three stress directions of a cubical element and is given in units of cu. cm. per sq. in. Thus, to apply the correction curve of Appendix BoII, the values must be multiplied by the area of the membrane.

APPENDIX B=I
reduced data for the corregtion curve FOR MEMBRANE INDENTATION

WITH WHEAT GRAINS

$\begin{gathered} \text { Stress } \\ \sigma_{i} \\ (p s i) \end{gathered}$	```Volumetric Correction \DeltaV cort (cu. cmo/sq. in*)```				
	Rep. 1	Rep. 2	Repo 3	Rep. 4	Rep. 5
0	0.000	0.000	0.000	0.000	0.000
5	0,132	0.123	0.121	0.125	0.128
10	0.167	0.164	0.167	0.169	0.169
15	0.192	0.192	0-189	0.194	0.196
20	0.212	0.198	0.209	0.209	0.214
25	0.226	0.226	0.225	0.225	0.226
30	0.227	0.227	0.227	0.227	0.228
35	0.227	0.227	0.228	0.228	0.229
40	0.228	0.228	0.229	0.229	0.229
45	0.229	0.229	0.230	0.230	0.230

Appendix BeII. Correction Gurve for Volumetric Deformation Due to Membrane Indentation

APPENDIX C
data for evaluation of the physical
PROPERTIES OF THE WHEAT GRAINS
USED IN THE TESTING PROGRAM

TABLE C-I

AXIAL DIMENSIONS OF TWENTY-FIVE RANDOMLY SELECTED WHEAT GRAINS

Grain Identification	Maximum Dimension ($\max \times 40$)	Intermediate Dimension (mon x 40)	Minimum Dimension (man 40)
A-1	315	170	150
A-2	310	150	135
A-3	290	150	130
A $=4$	315	155	140
A-5	305	150	145
$\mathrm{B}=1$	300	140	135
$\mathrm{B}-2$	320	165	145
B-3	305	145	125
B-4	295	155	140
B ${ }^{5}$	310	150	140
Q 1	305	150	140
C-2	320	155	145
C 0	290	145	130
C-4	305	145	130
C-5	315	145	140
D-1	260	110	105
D-2	310	160	145
D-3	295	145	135
D-4	295	145	130
D-5 \cdots	300	150	135
E=1	295	160	150
E-2	305	150	145
E-3	305	160	145
E-4	285	145	130
- Em 5	290	155	135
Mean	$\overline{\mathbf{a}}=301.40$	$\overline{\mathrm{b}}=150.00$	$\overline{\mathrm{c}}=139.00$
Std. deviation	13.05	10.96	9.56
Std. deviation of the mean	2.61	2.13	1.91

TABLE C-II
SELECTED PHYSICAL PROPERTIES OF WHEAT GRAINS USED IN THE

TESTING PROGRAM

Sample	Specific Gravity (-)	Angle of Internal Friction (-)	Moisture Content (\%)	Coef. of Static Friction	
				Wheran Latex Rubber (-)	Wheat on Aluminum (-)
A	1.400	24.8	10.85	0.480	0.260
B	1.388	25.4	12*00	0.478	0.253
c	1.398	25.0	12.15	0.462	0.247
D	1.355	24×6	10.90	0.500	0.260
E	1.441	25.2	11.00	0.464	0.245
Mean	1.396	25.0	11.38	0.477	0.253
Std. Dev.	0.030	0.3	0.64	0.015	0.007
Std. Dev. of Mean	0.013	0.1	0.28	0.007	0,003

APPENDIX D
 REDUCED STRAINS FOR THE PRELIMINARY TESTS

APPENDIX D
 REDUCED STRAINS FOR THE PRELIMINARY TESTS

```
    I. Size Effects (Four Inch Stress Box).
    II. Size Effects (Six Inch Stress Box).
    III. Gravity Effects.
    IV. Isotropy Studies.
    V: Load Rate Study, Hydrostatic Compressione
    VI. Load Rate Study. Deviatoric Stress State.
    VII. Creep Test.
VIII. Cyclic Hydrostatic Compression.
    IX. Cyclic Deviatoric Stress.
    X. Superposition of a Deviatoric Stress State Upon a Hydrostatic
                Stress State.
    XI. Superposition of a Hydrostatic Stress State Upon a Deviatoric
        Stress State.
XII. Gyclic Radial Stress State in which the Stress Ratio Varied
                During the Test.
```

TABLE D-I
STRESS-STRAIN DATA FOR THE SIZE EFFECT TESTS. HYDROSTATIC COMPRESSION TEST WITH THE FOUR INCH STRESS BOX

Stress	Strain								
	Rep 1			Rep 2			Rep 3		
	${ }^{6} 1$	ε_{2}	ϵ_{3}	ε_{1}	ε_{2}	ε_{3}	${ }^{6} 1$	ϵ_{2}	ε_{3}
(psi)	(in./in。 $\times 10^{2}$)			(inolino $\times 10^{2}$)			(in./in. $\times 10^{2}$)		
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.	0.286	0.286	0.206	0.753	0.715	0.618	0.543	0.477	0.445
2	0.496	0.496	0.282	0.868	0.820	0.553	0.810	0.829	-0.597
3	0.601	0.591	0.304	0.934	0.877	0.705	0.944	0.963	0.662
5	-0.677	0.658	0.250	1.001	0.944	0.716	0.972	1.011	0.640
8	0.915	0.877	0.358	1.278	1.211	0.911	1.249	1.278	0.814
11	1.163	1.106	0.477	1.430	1.364	1.030	1.402	1.449	0.987
14	1.297	1.203	0.553	1.630	1.554	1.161	1.592	1.678	1.074
17	1.468	1.487	0.629	1.754	1.688	1.258	1.754	1.812	-1.161
20	1.592	1.545	0.716	1.888	1.821	1.367	1.897	1.916	1.226
17	1.592	1.506	0.640	1. 869	1.783	1.302	1.878	1.878	1.150
14	1.564	1.468	0.618	1.821	1.735	1.248	1.821	1.850	1.117
11	1.478	1.402	0.532	1.754	1.669	1.161	1.774	1.792	1.041
8	1.449	1.364	0.477	1.688	1.602	1.063	1.659	1.688	0.922
5	1.306	1.211	0.314	1.583	1.506	0.965	1.54 .5	1.564	0.792
3	1.344	1.259	0.358	1.621^{-}	1.535	0.987	1.592	1.621	0.846
2	1.249	1.163	0.293	1.392	1.373	0.879	1.364	1.487	0.748
1	${ }_{-1.106}$	1.011	0.217	1.287	1.182	0.781	1.421	1.449	0.748
0	0.753	0.753	0.087	0.915	0.744	0.705	0.810	0.648	-0.477

TABLE D-II
STRESS-STRAIN DATA FOR THE SIZE EFEECT TESTS. HYDROSTATIC COMPRESSION TESTS WITH THE SIX INCH STRESS BOX

Stress(psi)	Strain								
	Rep 1			Rep 2			Rep 3		
	ε_{1}	${ }^{\bullet} 2$	$\varepsilon 3$	ϵ_{1}	ε_{2}	ϵ_{3}	ε_{1}	ε_{2}	ε_{3}
	$\text { (in./in. } \times 10^{2} \text {) }$			(inolin. $\times 10^{2}$)			(in./in. $\times 10^{2}$)		
0	0.0	$0.0{ }^{1}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1	0.458	0.443	0.231	0.508	0.545	0.440	0.305	0.314	0.298
2	0.698	0.584	0.381	0.613	0.624	0.504	0.604	0.616	0.437
3	0.805	0.794	0.458	0.664	0.675	0.523	0.653	0.667	0.455
5	0.825	0.814	0.529	0.763	0.763	0.553	0.723	0.740	0.461
8	1.054	1.037	0.689	1.006	1.006	0.701	0.975	0.992	0.600
11	1.234	1.223	0.833	1.144	1.144	0.790	1.138	1.161	0.713
14	1.384	1.367	0.969	1.325	1.322	0.907	1.288	1.311	0.753
17	1.494	1.472	1.107	1.455	1.446	0.984	1.418	1.444	0.895
20	1.633	1.602	1.175	1.556	1.554	1.061	1.534	1.556	0.969
17	1.619	1.596	1.107	1.562	1.548	1.018	1.548	1.559	0.938
14	1.571	1.548	1.027	1.528	1.520	0.981	1.523	1.526	0.898
11	1.514	1.523	0.935	1.466	1.455	0.904	1.452	1.452	0.858
8	1.444	1.424	0.824	1.418	1.412	0.858	1.412	1.415	0.830
5	1.356	1.339	0.716	1.294	1.288	0.750	1.305	1.314	0.689
3	1.364	1.348	0.726	1.266	1.266	0.753	1.297	1.308	0.704
2	1.308	1.291	0.673	1.172	1.181	0.720	1.243	1.249	0.673
1	1.113	1.088	0.566	1.031	1.048	0.695	1.141	1.147	0.649
0	0.774	0.743	0.443	0.667	$0_{4 \%} 698$	0.673	0.729	0.746	0.600

APPENDIX DmIII

REDUCED UNIT STRAINS FOR PRELIMINARY EXPERIMENT 3. GRAVITY EFFEGT TESTS

Hydrostatic Stress Level (psi)	Unit Strain					
	Rep. 1			Repo 2		
	${ }_{1} 1$	ε_{2}	ϵ_{3}	ε_{1}	ε_{2}	ε_{3}
	(inolino x 10^{2})					
0	0.00	0.00	0.00	0.00	0.00	0.00
1	0.77	0.70	0.58	0.58	0.62	0.47
2	1.02	0.91	0.64	0.84	0.90	0.67
3	1.18	1.07	0.69	0.95	1.01	0.73
4	1.32	1.18	0.75	1.07	1.12	0.81
5	1.42	1.27	0.78	1.20	1.25	0.88
6	1.59	1.36	0.88	-1.28	1.32	0.92
9	1.75	1.57	0.94	1.46	1.51	1.04
12	1.90	1.72	2.05	1.64	1.68	1.13
15	2.05	1.82	1.1 .9	1.78	1.79	1.23
18	2.19	1.96	1.28	1.91	1.92	1.33
21	2.32	2.08	1.28	∞	\cdots	:
18	2.29	2.06	1.27	∞	\cdots	-0.
15	2.28	2.05	1.27	1.90	1.91	1.30
12	2.24	2.03	1.29	1.89	1.90	1.28
9	2.2.1	2.01	1.31	1.86	1.91	1.24
6	2.16	1.98	1.26	1.82	1.87	1.16
5	2.10	1.92	1.27	1.78	1.83	1.13
4	2.05	1.89	1.25	1.874	1.78	1.07
3	1.98	1.84	1.24	1.68	1.74	1.01
2	1.81	1.73	1.24	1.61	1.67	0.96
1	1.70	1.53	1.07	1.43	1.49	0.81
0	1.08	0.87	0.64	0.94	1.02	0.40

APPENDIX DaIV

REDUCED UNIT STRAINS FOR PRELIMINARY

EXPERIMENTS 3 AND 4 . SSOTKOPY
AND LOAD RATE. $\left(\sigma_{1}: \sigma_{2}: \sigma_{3}=\right.$

$$
2.33: 1.67: 1.00)^{4}
$$

Cylinder Load ${ }^{1}$	Unit Strain					
	Repo 1			Rep. 2		
	${ }_{1}$	ε_{2}	ε_{3}	${ }^{6} 1$	ϵ_{2}	ϵ_{3}
(psi)	(lnofino $\times 10^{2}$)					

Experiment 3 (σ_{1} is a horimontal stress)

0	0.00	0.00	0.00	0.00	0.00	0,00
3	0.32	0.08	0.06	0.22	0.11	0.03
9	1.32	0.47	0.26	1.31	0.38	0.06
18	2.35	0.68	0.29	2.17	0.57	0.05
27	3.36	0.90	0.13	3.14	0.89	$=0.33$
36	4.00	0.96	$\cdots 0.01$	3.81	0.98	-0.0.49
45	4.60	1.02	00.17	4.31	1.09	-0.69
36	4.63	1.07	-0. 21	4.32	1.14	-0.69
30	4.63	1.09	00.24	4.36	1.16	-0.70
20	4.63	1.07	-0.44	4.40	1.17	$=0.70$
9	4.55	1.04	$=0.52$	4.35	1.17	00.71
3	4.31	0.99	-0.56	4011	1.16	-0.66
0	4.02	0.88	-0.56	3.73	1.11	-0.61

Experiment $4\left(\sigma_{1}\right.$ is a vertical stress $)$

0	0.00	0.00	0.00	0.00	0.00	0.00
3	0.35	0.36	0.03	0.14	0.24	0.09
9	1.10	0.77	0.06	0.75	0.72	0.14
18	1.80	1.24	0.08	1.37	1.10	0.20
27	2.47	1.57	-0.13	2.01	1.44	0.01
36	2.85	1.75	00.19	2.39	1.61	-0.09
45	3.21	1.89	00.27	2.73	1.78	-0.21
36	3.25	1.91	00.27	2.77	1.82	-0.22
30	3.25	1.93	00.27	2.80	1.81	-0.22
20	3.28	1.94	-0.26	2.81	1.80	-0.21
9	3.22	1.91	-0.26	2.76	1.79	-0.23
3	3.13	1.82	0.26	2.62	1.69	-0.21
0	2.97	1.71	00.26	2.44	1.61	-0.21

$$
{ }^{1} \text { Load }=p=\sigma_{1}+\sigma_{2}+\sigma_{3}
$$

APPENDIX D-V

REDUCED UNIT STRAINS FOR PRELIMINARY
EXPERIMENTS 53_{3} AND 7 .
hYDROSTATIC LOAD RATE
INVESTIGATIONS.

$\begin{gathered} \text { Stress }{ }^{1}(p s i) \end{gathered}$	Unit Strain			Unit Strain		
	$\varepsilon_{1} \quad \varepsilon_{2} \quad \varepsilon_{3}$			ε_{1}	ε_{2}	$\varepsilon 3$
	(in./ino $\times 10^{2}$)			(inofino x 10^{2})		
	Load rate $=6 \mathrm{psi} / \mathrm{min}$			Load rate $=3 \mathrm{psi} / \mathrm{min}$		
0	0.00	0.00	0.00	0.00	0.00	0.00
2	0.31	0.33	0.29	0.33	0.33	0.29
4	0.66	0.69	0.66	0.75	0.73	0.66
8	1.12	1.16	0.92	1.10	1.13	0.84
16	1.62	1.64	1.13	1.60	1.62	1.08
24	1.99	2.01	1.31	2.01	2.03	1.27
32	2.35	2.37	1.53	2.30	2.33	1.47
40	2.62	2.66	1.72	2.61	2.63	1.66
32	2.54	2.58	1.67	2.56	2.58	1.61
24	2.48	2.50	1.54	2.48	2.49	1.51
16	2.38	2.41	1.45	2.40	2.41	1.44
- 8	2.32	2.35	1.37	2.33	2.35	1.39
4.	2.21	2.25	1.33	2.27	2.28	1.40
0	2.11	2.15	1.28	2.09	2.11	1.27.
	1.92	1.96	1.19	1.94	1.96	1.19
Load rate $=4.5 \mathrm{psi} / \mathrm{min}$						
0	0.00	0.00	0.00			
2	0.35	0.33	0.20			
4	0.71	0.71	0.54			
8	1.14	1.13	0.75			
16	1.59	1.58	0.98			
24	2.05	2.06	1.18			
32	2.29	2.26	1.37			
40	2.61	2.58	1.59			
32	2.55	2. 53	1.54			
24	2.44	2.42	1.43			
16	2.35	2.33	1.34			
8	-2.30	2.27	1.26			
4	2.18	2.17	1.20			
2	2.06	2.07	1.16			
0	1.84	1.88	1.08			

${ }^{1}$ Hydrostatic stress level

APPENDIX DaVI

REDUCED UNIT STRAINS FOR PRELIMINARY EXPERIMENTS 88 9, AND 10. DEVIATORIC STRESS LOAD

RATE INVESTIGATIONS. $\left(\sigma_{1}: \sigma_{2}: \sigma_{3}\right.$

$$
=2.33: 1.67: 1.00)
$$

APPENDIX D-VII

REDUCED UNIT STRAINS FOR PRELIMINARY EXPERIMENT 11. CREEP INVESTIGATIONS.

$$
\left(\sigma_{1}: \sigma_{2}: \sigma_{3}=1: 1: 1\right)
$$

APPENDIX D-VIII

REDUCED UNIT STRAINS FOR PRELIMINARY EXPERIMENT 12. CYCLIC HYDROSTATIC COMPRESSION TEST.

$$
\left(\sigma_{1}: \sigma_{2}: \sigma_{3}=1: 1: 1\right)
$$

$\begin{gathered} \text { Stress }^{1} \\ (\mathrm{psi}) \end{gathered}$	Unit Strain			$\begin{gathered} \text { Stress }{ }^{1} \\ (\mathrm{psi}) \end{gathered}$	Unit Strain		
	${ }^{\epsilon} 1$	ϵ_{2}	ε_{3}		${ }^{1} 1$	ϵ_{2}	¢3
	(inolin. $\times 10^{2}$)				(inolin. $\times 10^{2}$)		
0	0.00	0.00	0.00	40	2.90	2.82	1.71
4	0.95	0.94	0.57	32	2.82	2.75	1.63
8	1.29	1.29	0.71	24	2.72	2.64	1.53
16	1.65	1.67	0.92	20	2.68	2.59	1.44
24	1.99	2.00	1.12	24	2.71	2.63	1.49
32	2.30	2.32	1.34	32	2.83	2.74	1.62
40	2.58	2.61	1.54	40	2.97	2.88	1.74
32	2.52	2.53	1.47	32	2.90	2.80	1.67
24	2.42	2.42	1.34	24	2.80	2.70	1.54
16	2.32	2.32	1.23	16	2.70	2.60	1.44
8	2.23	2.21	1.11	12	2.69	2.58	1.40
0	1.39	1.35	0.60	16	2.68	2.56	1.40
8	2.04	1.98	1.06	20	2.73	2.61	1.46
16	2.18	2.11	1.18	16	2.68	2.56	1.41
24	2.36	2.30	1.31	8	2.66	2.54	1.36
32	2.57	2.53	1.49	6	2.62	2.49	1.31
40	2.78	2.75	1.64	8	2.62	2.49	1.34
32	2.70	2.67	1.56	12	2.62	2.50	1.35
24	2.59	2.55	1.44	8	2.62	2.49	1.34
16	2.50	2.45	1.33	4	2.57	2.41	1.27
8	2.43	2.35	1.23	0	1.88	1.77	0.87
0	1.61	1.55	0.72	2	2.28	2.15	1.17
8	2.23 .	2.24	1.17	4	2.39	2.25	1.24
16	2.35	2.27	1.27	6	2.43	2.29	1.25
24	2.51	2.43	1.39	2	2.35	2.22	1.17
32	2.70	2.63	1.55	0	1.86	1.75	0.86

${ }^{1}$ Hydrostatic stress level

APPENDIX D-IX

REDUGED UNIT STRAINS FOR PRELIMLNARY EXPERIMENT 13. CYCLIC DEVIATORIC STRESS TEST.

$$
\left(\sigma_{1}: \sigma_{2}: \sigma_{3}=2.33: 1.67: 1\right)
$$

$\begin{gathered} \text { Cylinder } \\ \text { Load }^{1} \\ \text { (psi) } \end{gathered}$	Unit Strain			Cylinder Load ${ }^{1}$ (psi)	Unit Strain		
	ε_{1}	ε_{2}	ε_{3}		ε_{1}	ϵ_{2}	ε_{3}
	(in./in. $\times 10^{2}$)				(inolin. $\times 10^{2}$)		
0	0.00	0.00	0.00	36	5.64	1.42	-1.68
3	0.11	0.07	0.03	27	5.65	1.41	-1.68
6	0.51	0.25	0.04	18	5.65	1.45	-1.66
9	0.92	0.43	0.03	9	5.55	1.45	-1.66
18	2.03	0.69	-0.04	0	5.10	1.39	-1.64
27	2.92	0.93	-0.44	9	5.05	1.38	-1.64
36	3.56	1.05	$=0.67$	18	5.25	1.41	-1.69
45	4.27	1.11	-1.02	27	5.45	1.40	-1.75
36	4.34	1.17	-1.05	36	5.66	1.42	-1.78
27	4.37	1.18	-1.06	45	5.94	1.42	-1.84
18	4.35	1.21	-1.04	36	5.95	1.47	-1.82
9	4.25	1.21	-1.09	30	5.96	1.48	-1.81
0	3.81	1.14	-1.04	36	5.96	1.46	-1.84
9	3.59	1.17	-1.09	45	6.08	1.45	-1.88
18	3.91	1.21	-1.13	36	6.07	1. 50	-1.84
27	4.25	1.23	-1.23	27	6.08	1.50	-1.84
36	4.53	1.27	-1.30	18	6.06	1.54	-1.81
45	4.89	1.29	-1.41	15	6.04	1.54	-1.81
36	4.93	1.34	-1.43	18	6.03	1.54	1.83
27	5.02	1.34	-1.44	27	6.01	1.48	-1.88
18	4.95	1.38	-1.43	30	6.04	1.49	-1.88
9	4.85	1.38	-1.44	27	6.04	1.51	-1.87
0	4.50	1.32	-1.45	18	6.07	1.54	-1.82
9	4.59	1.28	-1.47	9	5.97	1.55	-1.80
18	4.81	1.31	-1.50	0	5.47	1.47	-1.77
27	5.05	1.31	-1.57	9	5.46	1.51	-1.80
36	5.29	1.35	-1.62	15	5.62	1.53	21.80
45	5.62	1.37	-1.67	9	5.67	1.55	-1.78
		\cdots		0	5.48	1.51	-1.77

$1_{\text {Load }}=p=\sigma_{1}+\sigma_{2}+\sigma_{3}$

APPENDIX D-X

REDUCED UNIT STRAINS FOR PRELIMINARY EXPERIMENT 15. DEVIATORIC STRESS STATE $\left(\sigma_{1}: \sigma_{2}: \sigma_{3}=\right.$

$$
\begin{aligned}
& 2.33: 1.67: 1.00) \text { SUPERIMPOSED ON A } \\
& \text { HYDROSTATIC STRESS STATE } \\
& \left(\sigma_{1}: \sigma_{2}: \sigma_{3}=1: 1: 1\right)
\end{aligned}
$$

[^3]
APPENDIX D-XI

REDUCED UNIT STRAINS FOR PRELIMINARY EXPERIMENT 16. HYDROSTATIC STRESS STATE $\left(\sigma_{1}: \sigma_{2}: \sigma_{3}=1: 1: 1\right)$

SUPERIMPOSED ON A DEVIATORIC STRESS
$\operatorname{STATE}\left(\sigma_{1}: \sigma_{2}: \sigma_{3}=2.33: 1.67: 1.00\right)$

Cylinder Load ${ }^{1}$	Unit Strain		
	ϵ_{1}	ε_{2}	ε_{3}
(psi)	(ino/ino $\times 10^{2}$)		

Deviatoric Component

$1_{\text {Load }}=p=\sigma_{1}+\sigma_{2}+\sigma_{3}$
${ }^{2}$ The first number is the hydrostatic component; the second number is the deviatoric component.

APPENDIX D-XII

REDUCED UNIT STRAINS FOR PRELIMINARY EXPERIMENT 17.
RADIAL STRESS PATH WITH $\theta=30$ DEGREES.
R VARIED FROM 0 TO 3 INCHES.

Gylinder Load ${ }^{1}$ (psi)	$\begin{gathered} \text { Distance }{ }^{2} \\ (\text { in. }) \end{gathered}$	Unit Strain		
		ε_{1}	ϵ_{2}	ε_{3}
			(inolin. $\times 10^{2}$)	
0		0.00	0.00	0.00
9	0	0.38	0.32	0.40
18	0	0.86	0.66	0.71
30		1.05	0.99	0.82
	0.5	1.15	1.01	0.85
	1.0	1.35	1.03	0.81
	1.5	1.62	1.04	0.75
	2.0	2.12	1.04	0.70
	2.5	3.21	1.05	0.40
	3.0	3.50	1.02	-0.30
	2.0	3.63	1.08	-0.41
	1.0	3.64	1.10	-0.63
	0.0	3.64	1.12	-0.60
	0.5	3.63	1.12	-0.56
	1.0	3.66	1.13	-0.53
	1.5	3.66	1.14	-0.52
30	2.0	3.71	1.14	-0.49
30	2.5	3.87	1.14	-0.54
	3.0	4.47	1.15	-1.16
	2.0	4.64	1.14	-1.26
	1.0	4.65	1.17	-1.25
	0.0	4.65	1.18	-1.13
	0.5	4.61	1.20	-1.09
	1.0	4.71	1.20	-1.08
	1.5	4.76	1.20	-1.08
	2.0	4.83	1.19	-1.12
	2.5	4.96	1.18	-1.17
	3.0	5.43	1.17	-1.61
	2.0	5.52	1.17	-1.68
	1.0	5.56	1.18	-1.68
30		5.49	1.19	-1.50
18		5.46	1.26	-1.43
9		5.35	1.25	-1.40
0	0.0	5.08	1.06	-1.41
9		5.05	1.07	-1.39
18		5.09	1.12	-1.33
30		5.10	1.17	-1.24

APPENDIX D-XII (Continued)

Cylinder Load ${ }^{1}$ (psi)	$\begin{gathered} \text { Distance }{ }^{2} \\ \text { (in.) } \end{gathered}$	Unit Strain		
		e_{1}	ε_{2}	ϵ_{3}
		(in./in. $\times 10^{2}$)		
30	0.5	5.13	1.18	- 1.21
	1.0	5.18	1.18	-1.20
	1.5	5.27	1.18	-1.23
	2.0	5.37	1.18	-1.29
	2.5	5.56	1.17	-1.44
	3.0	5.84	1.17	-1.67
	2.0	5.90	1.16	-1.74
	1.0	5.93	1.17	-1. 75
	0.0	5.88	1.18	-1.64
	0.5	5.87	1.18	-1.61
	1.0	5.86	1.17	-1.59
	1.5	5.89	1.18	-1.58
	2.0	5.91	1.17	-1.50
	1.0	5.94	1.18	-1.64
30		5.91	1.19	-1.60
18	0.0	5.90	1.24	-1.53
9	0.0	5.81	1.26	-1.49
0		5.46	1.02	-1.50

$L_{\text {Load }}=p=\sigma_{1}+\sigma_{2}+\sigma_{3}$
${ }^{2}$ Distance the load cylinder is located from the centroid of the stress plate.

APPENDIX E

DATA FOR THE VALIDATION TESTS

APPENDIX E-I

REDUCED UNIT STRAINS FOR THE VALIDATION EXPERIMENTS
IN WHICH $\sigma_{1}: \sigma_{2}: \sigma_{3}=0.91: 0.82: 1.00$

$\begin{gathered} \text { Cylinder } \\ \text { Load } \\ \text { (psi) } \end{gathered}$	Unit Strain					
	Rep. 1			Rep. 2		
	ε_{1}	ε_{2}	ε_{3}	${ }^{\boldsymbol{E}} 1$	ε_{2}	E 3
	(in./in. $\times 10^{2}$)			(in./im $\times 10^{2}$)		
0	0.00	0.00	0.00	0.00	0.00	0.00
3	0.19	0.12	0.10	0.18	0.15	0.11
6	0.48	0.31	0.25	0.44	0.33	0.27
12	0.87	0.57	0.52	0.83	0.60	0.55
18	1.10	0.73	0.68	1.06	0.73	0.73
24	1.25	0.81	0.82	1. 24	0.84	0.89
30	1.40	0.88	0.92	1.38	0.91	1.00
36	1.51	0.94	1.03	1.49	0.98	1.10
42	1.62	0.98	1.11	1.58	1.06	1.19
48	1.72	1.04	1.20	1.69	1.10	1.27
54	1.81	1.10	1.27	1.78	1.16	1.36
60	1.90	1.15	1.36	1.87	1.20	1.44
54	1.91	1.18	1.36	1.89	1.23	1.45
48	1.91	1.19	1.34	1.89	1.24	1.44
42	1.91	1.19	1.33	1.88	1.25	1.43
36	1.91	1.21	1.34	1.89	1.24	1.42
30	1.91	1.20	1.32	1.89	1.25	1.41
24	1.90	1.21	1.29	1.88	1.25	1.39
18	1.89	1.20	1.27	1.86	1.25	1.35
12	1.86	1.19	1.23	1.84	1.23	1.31
6	1.80	1.14	1.17	1.76	1.16	1.23
3	1.74	1.11	1.12	1.71	1.13	1.17
0	1.59	1.01	0.97	1.57	1.03	1.04

${ }^{1_{\text {Load }}}=p=\sigma_{1}+\sigma_{2}+\sigma_{3}$

VITA
Harvey Bright Manbeck
Candidate for the Degree of
Doctor of Philosophy

Thesis: AN EXPERIMENTAL STUDY OF THE THREE DIMENSIONAL STRESS-STRAIN BEHAVIOR OF WHEAT EN MASSE
Major Field; Agricultural Engineering

Biographical:

Personal Data: Born in West Reading, Berks County, Pennsylvania, January 11, 1942, the son of Elias R_{o} and Pearl M. Manbeck.

Education: Graduated from Conrad Weiser High School, in Robesonias Pennsylvania, in 1959; graduated from Pennsylvania State University with a Bachelor of Science degree in Agricultural Engineering in 1963; received the Master of Science degree in Agricultural Engineering from Pennsylvania State University in 1965; completed the requirements for the Doctor of Philosophy degree from Oklāhoma State University in July, 1970.

Professional Experience: Student Trainee with the Soil Conservation Service in Pennsylvania during the summers of 1962 and 1963; graduate research assistant in the Agricultural Engineering Department, Pennsylvania State University, 1964m 1965; Instructor in Agricultural Engineering Department, Pennsylvania State University, 1966; graduate research assistant in the Agricultural Engineering Department, Oklahoma State University, 1966-1970.

Professional Organizations: Associate Member of the American Society of Agricultural Engineers.

[^0]: ${ }^{\text {IThis }}$ apparatus is described in more detail in Chapter III.

[^1]: ${ }^{1}$ Hysteresis loss refers to the energy absorbed by the material during a load-unload cycle.

[^2]: ${ }^{1}$ Mohsenin (36) has summarized the published physical properties of small grains in the Appendices of his text.

[^3]: $1_{\text {Load }}=p=\sigma_{1}+\sigma_{2}+\sigma_{3}$
 2First number is the hydrostatic stress level; the second is the deviatoric stress level.

