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UNIQUE FRONTAL SINUSES IN FOSSIL AND LIVING HYAENIDAE
(MAMMALIA, CARNIVORA): DESCRIPTION AND INTERPRETATION

R. M. JOECKEL
Department of Natural Sciences, Bellevue University, Bellevue, Nebraska 68005-3098, and University of Nebraska State

Museum, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0514

ABSTRACT-Unique, caudally elongated frontal sinuses 2' (terminology of Paulli, 1900c) are present in the living
hyaenine hyaenids (Crocuta crocuta, Parahyaena brunnea, Hyaena hyaena) and in at least four fossil hyaenids (Ad­
crocuta eximia, Hyaenotherium wongii, Palinhyaena reperta , and lctitherium viverrinum). In Crocuta crocuta, Para­
hyaena brunnea, Hyaena hyaena. and Adcrocuta eximia , the elongated frontal sinuses completely overlie the brain
cavity, a condition apparently unique in the history of the Carnivora. Elongated frontal sinuses are conspicuously absent
in the extant aardwolf iProtcles cristatusi , however. The c1adogenetic distribution of these fossil and living hyaenid
species is broad enough to indicate a persistent difference in skull architecture between proteline and hyaenine hyaenids
through time . The elongated frontal sinuses in all hyaenids examined in this study except for Proteles is an impressive
pattern, and its potential function is unlikely to be related to shock dissipation. brain cooling. olfaction, or maximization
of muscle attachment area . With the application of basic structural engineering principles, however, the elongated
frontal sinus can be modeled as a shell structure that provides better resistance to muscular load than the cantilever
plate geometry of the typical plate-like mammalian sagittal crest.

INTRODUCTION

Adults of the three extant species of hyaenine hyenas, the
spotted hyena (Crocuta crocutai, brown hyena (Parahyaena
brunneai, and striped hyena (Hyaena hyaena), have caudally
elongated frontal (frontoparietal) sinuses that completely overlie
the brain cavity (Figs. 1, 2C, D, 3). These elongated sinuses
extend caudad far enough to actually overhang the occiput.
Elongated frontal sinuses of the grade of development apparent
in adult hyaenine hyenas are conspicuously absent in young
juvenile hyenas (Fig. 2C). Elongated frontal sinuses are also
absent in mature individuals of the aardwolf (Proteles crista­
tusi, the fourth living hyaenid species (Fig . 3) . Caudal elonga­
tion is one of two trends in frontal sinus evolution in hyaenids,
the other being the anterior enlargement or "vaulting" (Wer­
delin, 1989) of the sinus directly dorsal and caudal to the orbits,
which produces the characteristic profile of living hyaenine
hyaenids.

The peculiar caudal extension of the frontal sinuses visible
in Crocuta crocuta, Parahyaena brunnea, and Hyaena hyaena
is not limited to those living species alone, however. Elongated
frontal sinuses also appear in at least four fossil hyaenids: Ad­
crocuta eximia, Hyaenotherium wong ii, Palin hyaena reperta,
and Ictitherium viverrinum (Figs. 3, 4), species that appeared
as early as the early late Miocene in the Old World (L. Wer­
delin, pers. comm.). The fossil hyaenid Adcrocuta eximia and
the living hyaenids Crocuta crocuta, Parahyaena brunnea, and
Hyaena hyaena. which are closely related in a cladistic analysis
(Werdelin and Solounias, 1991), appear to be the only carni­
vorans ever to elongate the frontal sinuses enough to overlie
the brain cavity completely. These four species all have the
characteristic modem non-proteline hyaenid lateral skull profile,
which is produced by the enlarged anterior part of the frontal
sinus and the resultant "vaulted" forehead (Werdelin, 1989;
Werdelin and Solounias, 1991). Markedly enlarged anterior
frontal sinuses and vaulted foreheads also appear in certain fos­
sil canids presumed to be ecological vicars of living bone­
cracking hyenas (Werdelin, 1989), but the skulls of these canids
lack comparable caudal extension of the frontal sinuses.

The remaining three fossil hyaenid species discussed herein
(Ictitherium viverrinum, Hyaenotherium wongii, Palinhyaena

reperta) show lesser similarity to the modem hyaenine skull
profile than Adcrocuta eximia does, although the skull (AMNH
129667) assigned by Werdelin and Solounias (1991) to Palin­
hyaena reperta clearly resembles the modem hyaenine skull
form, and may actually be a juvenile of Adcrocuta eximia.

Paulli (1900c:501) described the frontal sinus as "eine recht
groBe pneumatische Hohle" (literally: "a right large pneumatic
hole") in a young adult specimen of Hyaena hyaena; this cau­
dally elongated sinus became sinus 2' in his terminology (Paul­
li, 1900c :figs. 4, 5, 8-10). Buckland-Wright (1969), however,
appears to have been the first researcher to publish significant
anatomical details of the caudally elongated frontal sinuses of
living hyaenids. Subsequent work by Buckland-Wright (1971,
1978) and Werdelin (1989) discussed the possible architectural
significance of anterior expansion of the frontal sinuses in car­
nivores, primarily by analyzing their potential role in the dis­
tribution of premolar biting stresses through the cranium. The
evolutionary history of hyaenid frontal sinuses, however, has
not been documented, and a comprehensive review and analysis
of frontal sinuses in both living and fossil hyaenids is lacking.
Consequently, the purposes of this study are to : 1) document
the internal cranial morphology of selected fossil Hyaenidae; 2)
provide a comprehensive comparison of cranial morphology in
both fossil and living Hyaenidae; and 3) hypothesize the evo­
lutionary significance of the elongated frontal sinus in the
Hyaenidae. In approaching the evolutionary significance of the
elongated frontal sinuses, I have attempted to examine possible
functional relationships between the frontal sinuses, cranial ar­
chitecture, ontogeny, the jaw musculature, and the olfactory
apparatus.

MATERIALS AND METHODS

Computed tomography (CT) methods used in this study are
similar to those used in Joeckel and Stavas (1996a, b), but sev­
eral measurement methods were applied to both CT scan im­
ages and actual skulls. In order to assess any potential relation­
ship of frontal sinus enlargement to increased muscle attach­
ment area on the skull, I measured temporal area (i .e., the ap­
proximate attachment area of the temporalis muscle) on the
skulls of representative species of camivorans. These measure-

627
Published online 24 Aug 2010



628 JOURNAL OF VERTEBRATE PALEONTOLOGY, VOL. 18, NO.3, 1998

FIGURE I. Skull of Hyaena hyaena (KU 82296, sex unknown), showing anterior part of frontal sinus (Sf') with bony trabeculae; caudally
elongated part of frontal sinus (Sf"), or sinus 2' of Paulli (I900c), with maximum caudal extent marked by white arrow; brain cavity (be), over
which frontal sinus extends; orbit (0) ; auditory bulla (ab), and upper can ine (C). Other abbreviations for anatomical features used in this paper:
petrosal (P), pterygoid (Pt), sagittal crest (sc) , sphenoid sinus (Ss), zygomatic arch (z) ,

ments were made by applying thin sheets of aluminum foil to
each skull and then successively shaping the foil by hand and
trimming it with a fine blade to produce an exact contact model
of the temporal surface area of the skull . Each foil model was
carefully removed from its skull , pressed flat, and optically
scanned to produce a PICT computer graphics file. These PICT
images were scaled to actual size and measured in " NIH Im­
age," a free measurement program for the personal computer,
circulated by the United States National Institutes of Health.
Linear measurements (lengths and widths of sinuses) were
made directly from CT scan images and conventional X-ray
images of skulls, and from the skulls themselves using metric
calipers, and area measurements of sinuses were made from
images scanned as PICT files and analyzed in the computer
graphics program Canvas@>. Facial flexion measurements were
made from both CT scan scout images (lateral images used to
position the scanning interval through a given specimen) and
conventional radiographs by replicating the basicranial and pal­
atal axes on tracing paper using a straightedge, and then mea­
suring the angle between these axes . In this method, the basi ­
cranial axis is relatively easy to represent as a straight line, but
the palatal axis is more difficult to determine because the palate
itself is concave, arching dorsad. Therefore, as a general rule,
I drew the palatal axis as a straight line in the sagittal plane ,
extending from the caudal margin of the palate to the incisor
alveoli at the termini of the premaxillaries. Tracings of the ba­
sicranial and palatal axes were optically scanned as PICT files
and their angular orientations were measured using the line tool
in Canvas@).

Crania of living hyaenids and other carnivorans were ob­
tained from the American Museum of Natural History
(AMNH), University of Nebraska State Museum (UNSM and
UNSM-ZM), University of Kansas Mamrnalogy Collection
(KU), and the Field Museum of Natural History (FMNH). The
fossil hyaenid crania examined in this study are from the col­
lections of the American Museum of Natural History (AMNH).
Systematics used in this study follow the recent revisions of
Werdelin and Solounias (1991).

RESULTS

I examined specimens from eight fossil and living hyaenid
species (Crocuta crocuta, Hyaena hyaena, Parahyaena brun-

nea, Proteles cristatus, Adcrocuta eximia, Hyaenotherium won­
gii, lctitherium viverrinum, and Palinhyaena reperta; see Ap­
pendix), which together represent much of the range of body
size (Table 1) and morphological diversity expressed by the
Hyaenidae since the middle Miocene (see Werdelin and So­
lounias, 1991). There are no easily recognizable hyaenids in the
fossil record prior to 18 Ma (Hunt, 1996), so it is likely that
the above species do, in fact, constitute an representative sam­
pling of morphotypes. lctitherium viverrinum is flat-skulled
compared to modern hyaenids and Hyaenotherium wongii has
a canid-Iike skull profile (Fig. 4), whereas Adcrocuta eximia,
Crocuta crocuta, Hyaena hyaena, and Parahyaena brunnea
(Fig. 3) all have large, very robust skulls with strongly vaulted
foreheads (sensu Werdelin, 1989; Werdelin and Solounias,
1991), broad palates, large premolars, and robust mandibles (the
typical skull form of extant hyaenids excluding Proteles) . Pal­
inhyaena was a small animal compared to modern non-proteline
hyenas, but it has a skull form that grades towards the extant
hyaenine hyaenid skull in its moderate expression of forehead
vaulting (Werdelin and Solounias, 1991). Finally, the skull of
Proteles has : 1) a generalized (i.e., not hyaenine-like) carni­
voran lateral skull profile lacking a vaulted forehead; 2) a
much-reduced dentition; and 3) weak dentaries compared to the
robust ones of hyaenine hyenas. Relative to skull length, the
attachment area of the temporalis muscle in hyaenids is greater
than in the representative canids measured in the study , but it
is not strikingly different from representatives of other carni­
voran families (Felidae and Ursidae) having similar skull size
(Fig . 5).

Facial flexion in the fossil and living hyaenids examined var­
ies in all between +80 (Palinhyaena reperta) and -160 (Para­
hyaena brunnea), but results show that facial flexion can vary
widely within an individual species (Table 2). Almost all of the
hyaenid specimens examined show low to moderate negative
(ventrad) facial flexion . A near-adult specimen assigned by
Werdelin and Solounias (1991) to Palinhyaena reperta (AMNH
129667) shows the most positive facial flexion and also the
least extension of the frontal sinus over the brain cavity among
the adult hyaenids examined (except for Proteles cristatus); this
specimen, however, is a juvenile. Likewise, lctitherium viver­
rinum (AMNH 129665) shows the second most pos itive facial
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FIGURE 2. CT scout images of felids and hyaenids, oriented with basicranial axis approximately horizontal. A, skull of male Panthera tigris
(ZM 14583), showing typical arrangement of frontal sinus (Sf) and brain cavity (be) in aeluroid carnivorans. B, skull of cheetah (Acinonyx jubatus,
ZM 16913, sex unknown), showing unusual arrangement of frontal sinus (Sf), which affects dome-like skull profile. C , skull of juvenile Crocuta
crocuta (ZM 5102), showing frontal sinus (Sf) which has not yet elongated to overlie brain cavity (be) but which will follow growth trajectory
indicated by black arrows. D, skull of adult Crocuta crocuta (KU 145515, sex unknown), showing anterior part of frontal sinus (Sf") with bony
trabeculae and caudally elongated part of frontal sinus (Sf"), or sinus 2 ' of Paulli (190Oc), extending over brain cavity (be). Scale bars (shown
with arrows in B, C, and D) all represent 5 em .
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Frontal sinuses
Hyaenidae Other taxa

~
" .,.,.."",.",,,,,,,,,,,,l.c.titherium viverrinum

.'." ,.,.. 10em
be oJ

____ .Hyaenotherium wongii

Crocuta crocuta

~-

~
Protelescristatus

Arctictisbinturong

~
Daphoenus

~
~~

Canis latrans

Helarctos malayanus

~
Procyon lotor

Zalophuscalifornicus

FIGURE 3. Frontal sinuses (shaded) in selected fossil and living carnivorans, traced from CT scout images. Note large, caudally elongated
frontal sinuses in all adult hyaenids shown except for Protele s cristatus . Zalophus californicus (sea lion), diving marine mammal, lacks frontal
sinus, and plate-like sagittal crest (se) directly overlies the brain cavity (be). Scale bars all represent 10 ern .

flexion and also the second least extension of the frontal sinus
over the brain cavity (Figs . 3, 6) .

Living Hyaenidae

In the living non-proteline (i.e., hyaenine) hyenas, the trans­
verse cross-sectional area of the elongated frontal sinuses can
exceed 45% of the transverse cross-sectional area of the brain,
even in the posterior third of the skull (Fig . 7A-C). In this
group, the elongated sinus 2' is generally a patent, albeit irreg­
ularly-shaped, space extending caudad from the olfactory
chamber to the inion; it lacks any continuous transverse septa
or consistent partitioning into separate sub-chambers. There
may be an irregular "pocket" or sub-sinus toward the anterior
end of sinus 2' (e.g. , Crocuta crocuta, AMNH 114226) in some
individuals. There is a thin floor of bone separating sinus 2'

from the brain cavity below, giving the paired elongated sinus
the distinct appearance of a large attic atop the brain. The right
and left sinuses are partially to completely (e.g., Crocuta cro­
cuta, AMNH 169448) separated at the midline by a very thin
bony partition. In one specimen (Crocuta crocuta, AMNH
114226), the right and left sinuses are not separated from each
other posteriorly by such a partition. The right and left sinuses
are frequently asymmetrical in the living hyaenine hyaenids,
and there is considerable variation in the geometry of the si­
nuses between individuals. In some of the adult hyaenine hy­
enas examined, the walls of sinus 2 ' are smooth, but in others
(e.g., AMNH 114226) they are densely and finely grooved,
probably by blood vessels in life . This latter condition probably
indicates active sculpting of bone in the walls of sinuses by
resorption during particular intervals of time .
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FIGURE 4. A. skull of fossil hyaen id Ict itherium viverrinum (AMNH 129665 ), showing caudally-el ongated front al s inus (Sf"). B, skull of foss il
hyaenid Hya en oth er ium wongii (AMNH 129666), showing caud all y elonga ted frontal sinus (Sf"'). In both spec imens, posterodorsal extent of
frontal sinuses indicated marked by white arro ws . whi ch lie parti all y on the plate -like part of the sagitta l cres t. Scale bars represent 2 cm .

TABLE I. Condylobasal length in living and fossil hyenas; Proteles
crista tus is only spec ies lack ing caud ally elongated frontal sinuses .

Lateral CT scout images and conventional lateral radiographs
of Crocuta crocuta, Parahyaena brunnea, and Hyaena hyaena
(but not Proteles cristatus) show that the enlarged anterior part
of the frontal sinus ("vaulted forehead" of Werdelin, 1989)
contains conspicuous bony trabeculae (Figs. I . 20). which are
actually incomplete to complete partitions subdividing four to
six bilaterally symmetrical divi sions of the frontal sinus into
which the scrolls of the ethmoturbinates partially extend. Thi s
geometry is actually much more complicated than that pre ­
sented by Paulli (l90Oc), and , in fact, it is indecipherable from
either his schematic illustrations or his descriptions.

Species

Adcrocuta ex imia (AMNH 129664)
Crocuta croc uta
Hva ena hvaena
Hya enoth erium wong ii (AMNH 129666)
Ictith erium viverrinum (AMNH 129665)
Palinhyaena reperta (AMNH 129667)
Parahya ena brunnea
Proteles cristatus

Condylobasal length
(e rn)

21.7
18.25-25 .0
20.6-22.4

14.0
12.5
12.5

22 .1-22.9
12.64-14.26

Fossil Hyaenidae

A specimen of Ictitherium viverrinum (AMNH 129665) has
a transversely broadened brain cavity that matches the low pro­
file of the skull (see Werdelin and Solounias, 1991). This skull
is slightly damaged, but details of CT scans and the general
symmetry of the skull, both externally and internally, indicate
that the effects of diagenetic crushing are minor and that the
head of the animal probably did have a very low profile in life
(Fig. 4A). AMNH 129665 has nearly symmetrical left and right
sinuses 2 '. each of which is roughly right triangle-shaped in
tran sverse cross section through the sagittal crest (Fig. 8B) . The
sinuses extend caudad as far as the transverse level of the mid­
dle of the auditory bull ae ; the sinu ses disappear caudad at the
dorsal apex of the tentorium. at which point the left sinus is
larger than the right sinu s. There is a continuous median bony
partition between the paired sinuses, and the floor of the sinu ses
(also the roof of the brain cavity) is nearly perfectly horizontal.
Curiously, in AMNH 129665 the cross-sectional area ratio of
the elongated frontal sinuses to the brain cavity is not the lowest
among the hyaenids examined. despite its low skull profile and
its lack of a vaulted forehead (Table 3).

A juvenile specimen with CI ju st erupting (AMNH 129667).
assigned by Werdelin (1988a) to Palinhyaena reperta, has elon­
gated sinuses 2', which extend to a point just caudad from the
transverse level of the anterior end of the auditory bullae. dis-
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- 6°
- 3_- 10°
-3_-5°

- 4°
+ 5°
+ 8°

-7_-16°
- 6--T

Facial flexion

auditory bulla
occipital condyle

Comparisons With Non-hyaenid Carnivorans

The relative posterior extent of the elongated sinus 2' in
hyaenids can be expressed as the percentage of the length of
the brain cavity that is overlain by the sinus (Fig . 9) . The per­
centage overlap of the brain cavity by the frontal sinus in a
variety of extant carnivorans measured in this study is 8-36%.
Proteles cristatus fits well within this range, as does a neonatal
Crocuta crocuta, which showed only 26% overlap (Fig . 9). The
cheetah (Acinonyx jubatus) is considered separately because a
specimen of that species demonstrated approximately 46%
overlap of the brain cavity by the frontal sinus (Figs . 2B, 3, 9) ;
cheetahs are already known to have an atypical frontal sinus
and skull profile compared to other living felids (Joeckel and
Stavas, 1996b). Despite even the anomaly presented by the
cheetah, the elongated frontal sinuses of non-proteline hyaenids
stand out among all other carnivorans examined in this study:
the living and fossil non -proteline hyaenids examined all have
overlap percentages '2:.75%, and reaching 100% in adults of
Adcrocuta eximia, Crocuta crocuta, Hyaena hyaena and Par­
ahyaena brunnea (Fig . 9). The complete overlap of the brain
cav ity by the elongated sinus 2' in the latter group of species
is accentuated by the extension of the parietals caudad so far
as to overhang the occiput; the elongated sinus 2' actually pro­
ceeds caudad with the enclosing parietal bone.

The sagittal crests of primitive mammals (e.g., Didelphis vir­
ginianus) and many living carnivorans are simple bony ridges
or plates extending dorsad from the midline of the skull. This
normal type of sagittal crest-skull relationship contrasts with
the pneumatized skull roof formed by the elongated sinuses 2'
at the root of the sagittal crest in living hyaenine hyaenids.
Sagittal crests in Hyaenotherium wongii, Palinhyaena reperta,
Ictitherium viverrinum, and Adcrocuta eximia all retain some

Relative
positions of
CT images,

by figure
number

FIGURE 6. Approximate location of CT scan images presented in this
study.

7B 70 8B 8A
7e 7A

Adcrocuta eximia (AMNH 129664)
Crocuta crocuta
Hyaena hyaena
Hyaenotherium wongii (AMNH 129666)
Ictitherium viverrinum (AMNH 129665)
Palinhyaena reperta (AMNH 129667)
Parahyaena brunnea
Proteles cristatu s

TABLE 2. Facial flexion in living and fossil hyenas.

Species

o Hyaenidae

o Ursidae

Vivo+Herp.

¢ Felidae

o Canidae

x Procyonidae

t:. Mustelidae

300

250

Tem- 200
porat
surface
area 150
(cm2)

100

o~l"Trrrn"""'TTTI"TTTTTT1-rrrTTT'1rrrrrrnTTTrT'TT'1
o 5 10 15 20 25 30 35 40 45

Condylobasallength (ern)

50

FIGURE 5. Plot of temporal surface area of skull versus condylobasal
length in camivorans (Viv. + Herp . = Viverridae + Herpestidae). Over
measured ranges of skull ranges, there is no significant difference in
temporal surface area between hyaenids and felid s.

appearing anterior to the dorsal apex of the tentorium (Fig. 3).
The forehead of this specimen is vaulted, however, and the an­
terior half of the frontal sinus complex contains partitioning
bony trabeculae like those in living non-proteline hyaenids.

A specimen of Hyaenotherium wongii (AMNH 129666) has
sinuses 2' that extend caudad to the inion and form a low
"attic" over the braincase (Fig. 4B) . In transverse cross section,
however, these elongated sinuses in AMNH 129666 occupy rel­
atively little area compared to the brain cavity, unlike the other
fossil hyaenids and living hyaenids examined (Table 3).

A specimen of Adcrocuta eximia (AMNH 129664) shows the
same grade of frontal sinus extension and enlargement as living
non-proteline hyaenids (Figs . 7D, 8A) : even in the posterior
half of their length, the elongated frontal sinuses have a trans­
verse cross-sectional area equivalent to as much as 45% of the
transverse cross-sectional area of the brain cavity (Table 3).

The fossil hyaenid genera Plioviverrops and Tungurictis
could not be examined in this study, yet the condition of the
frontal sinuses in these genera would be of great interest be­
cause of the position of species belonging to these genera in
the hyaenid phylogeny proposed by Werdelin and Solounias
(1991). In a c1adogram provided by Werdelin and Solounias
(1991 :fig. 38), Plioviverrops and Tungurictis, like Proteles, are
excluded from a major clade of hyaenids that includes all of
the fossil and living hyaenids examined by radiographic meth­
ods in the present study. It is impossible to determine from
published photographs (Dietrich, 1927 ; Beaumont, 1969 :pl. I;
Hunt and Solounias, 1991 :fig. 2) alone whether Plioviverrops
and Tungurictis have elongated frontal sinuses, yet it appears
unlikely that they do. In the very least, it can be said unequiv­
ocally that the skull forms of these genera are markedly less
robust than those of living hyaenine hyaenids and their close
fossil relatives.
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FIGURE 7. Transverse CT images of hyaenid frontal sinuses . A, anterior part of frontal sinus (Sf) in Hyaena hya ena (KU 82296), abo ve anterior
part of brain cavity (be) formerly occupied by olfactory lobes . Note ethmoturbinate scro lls in sphenoid sinus (Ss) . B, posterior. caudally elongate
part of front al sinus (Sf'" ) in Hya ena hyaena (KU 82296), a few mm anterio r to foramen magnum. showing remnant of plate-l ike part of sagi tta l
crest (sc) atop frontal sinu s. C, posterior, caudally elongate part of frontal sinu s (Sf") in Hya ena hyaena (KU 82296). showing its "attic-like"
geometry relative to brain cavity (be). D, posterior, caudally elongate part of frontal sinus (Sf") in fossil hyaenid Adcrocuta ex imia (AMNH
129664) at position of tentorium (t) and posterior terminus of aud itory bull a (ab). A. B. and C are approximately natural size. See Figure 6 for
position of these images.

vestige of a normal sagittal crest, that is, a low, thin plate of
bone extending dorsad from the parietals in the sagittal plane
of the skull and joining posteriorly with the occipital cre sts at
the inion, rather than a completely pneumatized skull roof. The
skull roof in Adcrocuta eximia and Palinhyaena reperta is par­
tially pneumatized, and both of these species have markedly
vaulted foreheads (Werdelin and Solounias, 1991). Adcrocuta
eximia and the living hyaenine hyaenids have fully pneumatized
parietals due to the extension of the frontal sinuses, and, hence,
the sagittal crest is thin and plate-like only where the parietals
extend caudad over the occiput.

Lateral CT scout images and conventional radiographs of the
living non-proteline hyenas show that this enlarged anterior part
of the frontal sinus ("vaulting" of Werdelin, 1989) contains
partitioning bony trabeculae (Figs. I, 2D): there is no obvious
parallel to this variation on frontal sinus architecture in any of
the other living Carnivora examined in this study, including
several species of viverrids, felids, canids, mustelids, and ur­
sids. Among the fossils examined in this study, scout images
of Adcrocuta eximia (AMNH 129664) are too opaque to reveal

the contents of the anterior part of the frontal sinuses, although
the same complex architecture seen in living hyaenine hyaenids
might be expected in that species; the near-adult specimen
(AMNH 129667) assigned to Palinhyaena reperta by Werdelin
and Solounias (1991), possibly a juvenile of Adcrocuta eximia,
does show trabeculae within the anterior part of the frontal si­
nuses, and , indeed, a vaulted forehead, as well.

DISCUSSION

Overview of the Mammalian Frontal Sinus

As a general term, "frontal sinus" refers to any pneumati­
zation or group of pneumatizations originating in the frontal
bone as components of the paranasal sinus system-a complex
of sinuses that includes not only the frontal sinuses but the
maxillary sinuses as well (e.g., Evans and Christen sen, 1979:
159) . Edinger (1950) concluded: I) that the parallel elaboration
and enlargement of frontal sinuses in several mammalian taxa
is predominantly a post -Eocene phenomenon, and 2) that frontal
sinus geometries and relative sizes (i .e. frontal sinus size rel-
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FIGURE 8. A. transverse CT scan image of fossil hyaenid Adcrocuta
eximia (AMNH 129664 ) through posterior part of zygomatic arches (z)
showing elongated front al sinus (Sf00 ) above brain cavity (be). B. tra ns­
vers e CT scan image of fossi l hyaenid Ict itherium viverrinum (AMNH
129665) at position of auditory bullae (ab) and petrosa l (P) showing
paired . nearl y symmetrical e longated frontal sinuses (Sf00 ) above brain
cavity (be). See Figure 6 for pos ition of the se ima ges.

ative to overall skull size) are highly variable among both fossil
and living mammals. Furthermore, Edinger (1950:486) main­
tained that cranial sinuses have no particular function, being, in
her estimation, merely the res ult of "disharmonious growth of
. . . the capsules of the brain and sen se organs, the tooth ap­
paratus , and the outer plates of the skull." In detailed studies
of living mammals half a century before, Paulli (1990a, b, c)
had already demonstrated the complexity of frontal sinus mor­
phology and devised a numbering scheme for the paranasal si­
nuses, thereby abandoning the single term "frontal sinus" for

a system of sinus identification that is precise and intended to
reflect the presumed homologies of different pneumatizations
originating in the frontal bone. Because Paulli 's numbering
scheme for frontal sinuses is dependent on their position rela­
tive to different ethmoturbinals (more speci fically, "endoturbin­
als "), it can be difficult to apply to fossils, in which the eth­
moturbinals may be poorly preserved, difficult to see , or even
missing entirely, and in which de tai led , invasive (and therefore
destructive) examination of rare skulls is, in the very least, not
encouraged. Nonetheless, Paulli (l900c) es tablished that the
elongated frontal sinus of living hyaenids opens anteriorly be­
tween ectoturbinals 2 and 3, making it sinus 2 ' in his termi­
nology (e .g., Paulli, 1900c:figs. 4 , 5, 8-10), which is typically
the largest of the two or three pneumatizations that make up
each of the bilaterally paired frontal sinuses complex in carni­
vorans. It is of further note that the lateral part of ectoturbinal
2 extends slightly into sinus 2' both in the hyaenid specimen
examined and illu strated by Paulli and in the two felids he
examined (Paulli, 1900c:501-505), whereas in the several can­
iform carnivorans he examined, it is the medial part of ecto­
turbinal 3 that enters sinus 2 ' (Paulli, 1900c:figs . 4, 5, 8, 10) .
These observations already suggest a significant difference in
ectoturbinal morphology between the caniform and feliform
Carnivora worthy of further examination in the fut ure .

To be sure, other carnivorans have large fro ntal sinuses (e.g .,
Barbourofelis fricki [Joeckel and Stavas, 1996b]), but the ge­
ometry of the elongated frontal sinuses in hyaenids appears to
be unique. Even more greatly enlarged and elaborated frontal
sin uses appear in other, non-carnivoran mammalian taxa, but
almost all of these taxa, such as proboscideans (e .g., Zittel,
1925:fig. 335) and ground sloths (S tock, 1925; Joeckel and Sta­
vas, 1997) are much larger than any fossil or living hyaenids.

Many ungulates have enlarged and elaborated sinuses (some­
times referred to as the "caudal frontal sinus") in the roof of
the cranium that overlie part or all of the brain cavity (Flower,
1870 ; Edinger, 1950 ; Negus, 1958 ; Berg, 1974; Moore, 1981).
In bovids, the " caudal frontal sinus" typically extends into the
horns or is closely associated with other sinuses in the roof of
the cranium (Berg, 1974:89, 94-96). Paulli (l900b) painstak­
ingly documented the complexity of paranasal sinus elaboration
in ungulates, which resulted in a somewhat confusing array of
identifications for supposed ly distinct and homologous pneu­
matic chambers. Sinuses in the skull roof of many ungulates
are commonly presumed to strengthen the skull without adding
significant weight and, in artiodactyls, to support the cranial
appendages or protect the brain from shocks incurred through
intraspecific combat. Since the first appearance of artiodactyl
cranial appendages in the late Eocene, however, not all cranial
appendage-bearing species have had such sinuses. Even two
species within the same family of artiodactyls may show mark­
edly different degrees of fron tal sinus development. For ex ­
ample, there are very large sinuses in the frontals , parietals, and
supraoccipitals of Giraffa cam elopardalis that have been inter­
preted to cushion the shock of blows incurred during combat
between males, but comparably enlarged sinuses are absent in

TABLE 3. Cross-sectional measurem ents (e rn) for fossil hyaenas of elongated fronta l sinuses 2 ' at tran sverse level of anterior end of auditory
bullae.

Specimen SH SW BH BW HR AR

Adcrocuta eximia (AM NH 129664) 2.2 4.4 4 .5 5.6 0.49 0.45
Hyaen otherium wongii (AMNH 129666) 1.1 2.1 4. 1 5 . 1 0.27 0.09
lctitherium viverrinum (AMNH 129665) 1.5 3.2 2.5 4.9 0.60 0 .26
Palinhyaena reperta (AMNH 129667) 1.4 2.8 3.7 5.0 0.38 0.10

SH = median sinus height, SW = sinus width at its bas e. BH = brain cavity height . BW = maximum width of brain cavity. HR = SH : BH . AR
= ratio of total cross-sectional area of fronta l s inuses to cross-sectional are a of brain cavity.
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Crocuta crocuta
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Hyaena brunnea

(Parahyaena brunnea)
Hyaena hyaena
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FIGURE 9. Length of front al sinuses in different carnivoran taxa expressed in terms of percent of brain cavity ove rlapped dor sally by front al
sinus. Note strik ing difference between adult hyaenids and other carnivorans , but compliance of juvenile Crocuta crocuta with carnivoran norm.

the skull of Okapia johnstoni, which nonetheless has cranial
appendages of proportionately similar size (Churcher, 1990) .

It is apparent that there a number of different skull architec­
tural strategies in mammals which involve enlargement and/or
elaboration of the frontal sinu ses, implying unique evolutionary
histories and , quite possibly, unique fields of morphological ad­
aptation. Thu s, the question of the evolutionary significance of
frontal sinuses in mammals, including any conjecture regarding
function, remains wide open to further inquiry.

Edinger (1950:490) concluded that the post-early Tertiary
evolution of frontal sinuses in Mammalia was due, in general,
to the negative allometry of the brain cavity and eye and ear
capsules relative to the skull during overall body size increase
within an evolving lineage. Nonetheless, she was quick to point
out that : 1) many large mammals of the early Tertiary did not
have extensively pneumatized skulls as their modem equiva­
lents in body size do; and 2) pneumatized skulls characterize
some modem mammals that are considerably smaller than their
early Tertiary relatives, which lack well-pneumatized skulls.
Nearly a half-century later, Edinger's observations still indicate
that the evolution of frontal sinuses in different mammalian
clades has not been controlled by a single, uniform mechanism
and therefore cannot be described by a single, explicit scenario
(Edinger, 1950:486). It is difficult, though, to accept the long­
standing interpretation that frontal sinuses have no function
when they vary so extensively in size and shape and figure so
prominently in the design of particular mammalian skulls. Cra­
nial pneumatization, without a doubt, serves some function, al­
beit perh aps not an " active" or "discrete" one : cranial sinuses
must be viewed as essential components of skull architecture.

Hyaenid Frontal Sinuses

The morphological contrast between neonatal and adult
hyaenine hyaenid crania demonstrates that the development of
elongated frontal sinuses in hyaenine hyaenids is associated
with ontogenetic changes in the proportions of the skull, brain
cavity, and nasal cavity during ontogeny (Fig . 3: Crocuta cro­
cuta juveline and adult). Reduction of the entire issue of elon­
gated frontal sinuses to a matter of simple intrafamilial allom­
etry alone (i.e., larger hyaenids having the most elongated fron-

tal sinuses and smaller hyaenids the least), however, is not only
unsatisfying, but also incorrect. While the largest hyaenids do
have the most caudally elongated frontal sinuses, each of the
smaller hyaenids examined in this study, except for Proteles
cristatus, has a frontal sinus that is more caudally elongated
than the carnivoran norm (Fig . 3) . This trend indicates a basic
and persistent significance of the hyaenid elongated frontal si­
nus. It is essential, however, to reiterate the distinction between
the caudal elongation of the frontal sinuses and their anterior
enlargement (forehead-vaulting): most of the non-proteline
hyaenids examined exhibit anterior enlargement to some de­
gree, but all exhibit caudal elongation.

For heuristic purposes, six functional hypotheses are ad­
vanced herein to rationalize the function of caudally elongated
frontal sinuses in non-proteline hyenas: 1) protection of the
brain from external shock to the head; 2) brain-cooling; 3) ol­
faction ; 4) enlargement of the attachment area of the temporalis
muscle; 5) space-filling to maintain a characteristic head shape
(given a relatively small brain) ; and 6) load resistance. Some
of these hypotheses are potentially interrelated, and all of them
should be tested in some way .

Hypotheses 1-5-The shock protection hypothesis, which is
based on the analog of cranial appendage-bearing ungulates,
appears to be dismissable from the start . Published accounts of
hyaenid behavior contain no references to head-butting in Cro­
cuta crocuta (e.g., Kruuk, 1972) , or in the other living hyena
species (Nowak and Paradiso, 1983): such behavior is appar­
ently unknown in any living carnivoran.

Any direct role of the elongated frontal sinuses in cooling
the brain would be nearly impossible to test directly in live
specimens, but the presence of a fully developed orbital rete in
hyaenids and other feliform carnivorans (Tandler, 1899; du
Boulay and Verity, 1973), which regulates the temperature of
the blood supply to the brain (cf. Baker, 1979), renders the
potential for a selective brain-cooling function highly unlikely.
An olfactory function for the elongated front al sinuses is dis­
missable as well. The sense of smell in living hyaenine hyaen­
ids is keen (Kruuk, 1972) , but there is no anatomical evidence
that the caudal extension of the frontal sinuses in hyaenids
could play any active role in olfaction. In Carnivora as a group,
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olfactory mucosa appears only in the anterior part of the frontal
sinus on the extensions of certain ethmoturbinates (Paulli,
1900c ; Read, 1908; Negus, 1958) . These ethmoturbinates, how­
ever, very clearly do not extend throughout the elongated sinus
2' . Furthermore, explaining the caudad elongation of the frontal
sinu ses as a pleiotropic effect of some elaboration of the olfac­
tory apparatus would be entirely speculative.

It is also highly unlikely that the elongated frontal sinuses of
hyaenids have ever played a direct role in increasing the surface
area of temporal muscle attachment on the skull, relative to the
norm for carnivorans in general or to feliform carnivorans in
particular. The temporal area of the skull (approximate area of
attachment of the temporalis muscle) is, proportional to the
length of the skull, no larger in the hyaenids measured than it
is in the sample of felids measured (Fig . 5), and felids lack
hyaenid-like elongated frontal sinu ses! Whether a pneumatized
skull roof has some broader functional role relative to the jaw
musculature, though, must also be considered (see discussion
below).

The significance of elongated frontal sinuses in brain:skull or
brain:body allometry must be considered, especially in the light
of Edinger's interpretation of the frontal sinuses as passive
space-filling entities. Gittleman (1986) examined brain weight
in living carnivorans relative to body weight and head + body
length. It is noteworthy that Gittleman found hyenas to have
the second smallest brain sizes relative to head + body length
among the living Carnivora; by the same relative measure, viv­
errids (sensu lato) have the very smallest brains, and ursids
have the largest (Gittleman, 1986:fig. 2) among the living Car­
nivora. Visual comparisons between adult hyaenid and felid
skulls (Fig . 2A, B, D) also seem to support small relative brain
size in hyaenids. Small relative brain size in living hyenas is
apparently significant as a family-level pattern, and might be
considered as support for the origin of an enlarged frontal sinus
as a space-filling device within the skull. By itself, however,
this argument could easily be undermined by a single, pointed
question: why should the frontal sinus be elongated over the
brain cavity to "fill up space" when the ance stral (and indeed
more typical) mammalian cranial Bauplan, repeated time and
again in taxa with small braincases, merely involves the devel­
opment of a high plate-like sagittal crest without any extension
of the frontal sinuses over the brain? Small relative brain size
probably is an important factor in the evolution of the elongated
frontal sinuses, but it is unsatisfying as the only explanation.

The Structural Hypothesis (Hypothesis 6)-Using the
work of Buckland-Wright (1971 , 1978) on force transmission
in carnivoran skulls as a starting point, Werdelin (1989) inter­
preted the vaulted foreheads of presumed bone-cracking fossil
canids and bone-cracking living hyaenids as mechanical adap­
tations for a strong premolar bite . The vaulted forehead that
produces the characteristic profile of non-proteline hyaenids and
borophagine canids is the direct result of the enlargement of
the anterior part of the frontal sinus. Werdelin (1989:395) in­
terpreted the vaulted forehead and enlarged anterior frontal si­
nus as providing " a single, unbroken, strengthened tract of bone
along the force trajectories emanating from the teeth . . . and
blending into the top of the skull," which can dissipate the
compressive forces produced by premolar bone-cracking.

Increased structural support provided by the elongated frontal
sinuses could well be compatible with the Werdelin's (1989)
results, but his hypothesis explains only the anterior enlarge­
ment ("valuting") of the frontal sinus in bone-crushing hyaen­
ids, and not the elongation of the frontal sinus seen in all hyaen­
ids examined in this study. lctitherium viverrinum, Hyaenoth­
erium wong ii, and Palinhyaena reperta show significant caudal
extension of sinus 2/, but these species lack forehead vaulting
of the grade evident in the living hyaenine hyaenids and Ad­
crocuta eximia (see Werdelin and Solounias, 1991 :fig. 49), as

well as enlarged, robust premolars. Thus, a sweeping and large­
ly unqualified statement about the specific function of elongated
frontal sinuses, relative to specific dietary habits through hyaen­
id evolution, would be difficult to accept.

Despite the cautions mentioned above, structural engineering
principles may illuminate the significance of elongated frontal
sinuses relative to cranial mechanics. The theoretical argument
is centered around the interpretation of the sagittal crest: the
pneumatized skull roof of non-proteline hyaenids is equivalent
to the "shell" of the civil engineer (Gould, 1988 ; Scott, 1993) ,
while the common plate-like sagittal crest of many other car­
nivorans is simply a cantilever plate (Fig . 10). Shells have clear
advantages over other structures with regard to loading (loading
in the case of the skull being produced by the masticatory mus­
cles, particularly the temporales) and compressive forces gen­
erated by premolar biting (see Werdelin, 1989) . In the most
simple case of symmetrical compressional loading, a vertical
plate subject to compression in the vertical axis (say, by the
temporales) concentrates all of that loading along its base,
whereas only half of that force would be concentrated on either
side of a shell structure of comparable dimensions (Fig . 10) .

If loaded on only one side, or bilaterally but asymmetrically,
as might be expected of the sagittal crest in unilateral masti­
cation, a vertical plate develops a moment (M) directly propor­
tional to its length (l) and height (d) :

M = fl(d/2); where f = load/length (see Fig . 10)

With further analysis, it is clear that the longer, higher, and
thinner the vertical plate (b = plate thickness; see Fig . 10), the
greater the bending stress (<Tb) :

<Tb = (MC)/I,

where

C = bl2 and I = moment of inertia = 1/12(I(b3»
Analyzing for asymmetrical stress in a shell is exceedingly
complex, and the reader is referred to Gould (1988) for a com­
plete discussion. It is an established fact, however, that shells
minimize shear as well as bending and twisting moment relative
to other structures; instead, shells efficiently resist applied load
primarily by producing thrust along their curvature in a fashion
very similar to a simple arch (Gould, 1988) . Both arches and
shells resist load primarily by extension, as opposed to the flex­
ural behavior of beams and plates; but, whereas an arch is a
one-dimensional flexural member, a shell is a two-dimensional
flexural member capable of "remain(ing) virtually momentless
for a variety of loadings" (Gould, 1988 :6). Thus, a shell is an
extremely resistant, yet very lightweight and material-conser­
vative structure. Presumably, a shell would be an ideal element
in cranial architecture under the bounding constraints of brain :
body allometry, head :body proportionality, skull weight, and
cranial function. The hypothesis that explains the elongated
frontal sinuses of non-proteline hyaenids as a load-resisting
shell is compatible with other aspects of the hyaenine Bauplan
as well as with the interpretations of Werdelin (1989) regarding
cranial function . Furthermore, the elongation of the frontal si­
nus during ontogeny (as seen in neonatal vs. adult Crocuta cro­
cuta) indicates a dynamic interaction between growing and re­
shaping bones, enlarging cranial muscles, and resultant cranial
mechanics during life, rather than the development of the elon­
gated frontal sinus as a completely passive, space-filling struc­
ture .

In this structural interpretation, the caudal elongation of
hyaenid frontal sinuses and the resulting pneumatization of the
skull roof provides resistance to various stresses acting on the
skull, and not merely masticatory muscle forces . The elongated
sinuses can be viewed as a buttress between the braincase and
the face, particularly the frontal region, which would resist any
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A Schematic transverse cross-sections
Plate-like

Elongated frontal sinuses: sagittal crest,
pneumatized skull roof no sinus elongation

(Hyaenidae) (other taxa)

Fm =force exerted by temporalis muscle
Fc =compressive force developed by premolar

biting (anteroventrad-posterodorsad)

B Structural modeling
cantilever
plate

compressive stress for vertical load, where f =load/length

o - fl
c - 2(b/2)1

f
b

fl _ f
°c= bI b

FIGURE 10. A, schematic modelin g of caud ally-elongated frontal sinuses (pneumatized skull roof) in non-proteline hyaenids discussed in this
paper, versus typical mammalian plate-lik e sagi tta l cre st found in other carnivora ns. Co mpressi ve force (Fe) generated by premolar biting follows
analysis of Werdelin (198 9). B, struc tura l modeling of pneumati zed skull roo f/ca uda lly elonga te frontal sinus as shell structure versus cantileve r
plate of typical plate-like mammalian sagi tta l cres t. Shell structure present ed by elongated frontal sinus in hyaenids can resist bending from many
directions, part icularly any bending imposed by masticator y mustulature (Frn) and by premolar biting (Fe) .

dorsal torque imposed on the face during biting (see Werdelin,
1989). Enlargement and elong ation of the frontal sinuses would
seem to be the only effective way of buttressing the skull with­
out adding weight or greatly modifying its external form , par­
ticularly in term s of bone-muscle relationship s.

CONCLUSIONS

Caudally elongated frontal sinuses are probably a synapo­
morphy of a large clade within the Hyaenidae. Thi s clade would
exclude Proteles and possibly Plioviverrops and Tungurictis, as
well. Nonetheless, the absolute verificat ion of elongated frontal
sinuses as a synapomorphy awaits the discovery and/or descrip ­
tion of more complete crania of several genera that fall in be­
tween Ictitherium, Hyaenotherium , Palinhyaena, Parahyaena ,
Hya ena. Adcrocuta, and Crocuta in a cladistic analysis (see
Werdelin and Solounias, 1991:fig. 38) . The degree of caudal
elongation of these sinuses in the Hyaenidae is apparently
unique among the Carnivora. Caudally elongated frontal sinuses

appear in some form in small Miocene hyaenids that lack the
typical features (e .g., strongly vaulted forehead/enlarged ante­
rior frontal sinus, out-bowed zygomatic arches/voluminous tem­
poral fossa, robu st premolars, robu st skull, heav y jaws, etc.) of
the large r, mod em hyaenine hyaenids. Elongated front al sinuses
(increasing in length to cover the entire brain cavity) are main­
tained, together with an enlarged anterior frontal sinus (vaulted
forehead), in the large " typical" hyaenid genera Adc roc uta,
Cro cuta , Hyaena. and Parahya ena . Positive facial flexion is
negatively related to frontal sinus extension in fossil hyaenids;
therefore, there is no eviden ce that the frontal sinus grow s and
enlarges caudad due to some backward displacement or reor­
ganization of cranial compartments prompted by rotation of the
face .

The presence of elongated front al sinuses in all of the hyaen­
ids examined in this study except Proteles is a striking pattern
that is amplified greatly in the appearance of modem hyaenines.
Several possible functional/adaptive scenarios for the evolution
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of elongated frontal sinuses, though, are dismissable as far­
fetched, trivial, or otherwise unsatisfactory. The work of Git­
tleman (1986) suggests that hyaenids have relatively small
brains, yet the elongated frontal sinuses are unlikely to be sim­
ply a passive space-filling phenomenon. Basic engineering prin­
ciples suggest that the elongated frontal sinus is an architectural
imporvement over the simple plate-like sagittal crest common
in many mammalian taxa. This interpretation, while teleologi­
cal, is highly compatible with the development of the modern
hyaenine cranial Bauplan. In the very least, it has been dem­
onstrated that the caudally elongated frontal sinus was present
in small, early hyaenids such as lctitherium, and that it in­
creased in prominence with the development of the vaulted
forehead and other characteristic features of the modern hyaen ­
ine-like skull form .

Many questions remain unanswered in the assessment of the
hyaenid frontal sinus , but two questions are particularly nag­
ging . First , considering that other anatomical features (e.g., sa­
ber canines, vaulted foreheads, bone-crushing premolars)
evolved in parallel between different groups with no close re­
lationship, why do no other groups of carnivorous mammals,
living or extinct, show a caudal extension of the frontal sinus
completely over the brain ? Second, was the caudally-elongated
frontal sinus merely a preadaptation (a phylogenetic constraint
on skull morphology established near the base of the hyaenid
radiation) to the mechanics of the modern hyaenine hyaenid
cranial Bauplan? These questions tempt speculation, but their
answers lie outside the currently available data. Regardless of
possible functional significance and evolutionary implications,
however, the morphology of the frontal sinus in non-proteline
hyaenids stands out as a unique feature among Carnivorans, if
not non-ungulate eutherian mammals as a whole .
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APPENDIX. In earlier public ations, fossil hyaenids discussed in this study are referred to by their origin al AMNH field numbers. The following
table correlates those field numbers with newly assigned perm anent AMNH numbers and indicates the publication in which each specimen is
assigned to a particular species.

Specimen

Adcrocuta eximia (AMNH 129664)
Hyaenotherium wongii (AMNH 129666)
/ctith erium viverrinum (AMNH 129665)
Palin hyaena reperta (AMNH 129667)

Field number

35-B216
94-L779
57-L549
42-L338

Identification

Werdelin and Solounias (1990)
Werdelin (l988a); Werdelin and Solounias (1991)
Werdelin (1988b)
Werdelin (1988a)
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