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HIGHLIGHTED ARTICLE
| INVESTIGATION

Genetic Variation for Ontogenetic Shifts in
Metabolism Underlies Physiological Homeostasis

in Drosophila
Omera B. Matoo,1 Cole R. Julick, and Kristi L. Montooth

School of Biological Sciences, University of Nebraska-Lincoln, Nebraska 68502

ORCID ID: 0000-0001-9456-6694 (K.L.M.)

ABSTRACT Organismal physiology emerges from metabolic pathways and subcellular structures like the mitochondria that can vary
across development and among individuals. Here, we tested whether genetic variation at one level of physiology can be buffered at
higher levels of biological organization during development by the inherent capacity for homeostasis in physiological systems. We
found that the fundamental scaling relationship between mass and metabolic rate, as well as the oxidative capacity per mitochondria,
changed significantly across development in the fruit fly Drosophila. However, mitochondrial respiration rate was maintained at similar
levels across development. Furthermore, larvae clustered into two types—those that switched to aerobic, mitochondrial ATP pro-
duction before the second instar, and those that relied on anaerobic, glycolytic production of ATP through the second instar. Despite
genetic variation for the timing of this metabolic shift, metabolic rate in second-instar larvae was more robust to genetic variation than
was the metabolic rate of other instars. We found that larvae with a mitochondrial-nuclear incompatibility that disrupts mitochondrial
function had increased aerobic capacity and relied more on anaerobic ATP production throughout development relative to larvae from
wild-type strains. By taking advantage of both ways of making ATP, larvae with this mitochondrial–nuclear incompatibility maintained
mitochondrial respiratory capacity, but also had higher levels of whole-body reactive oxygen species and decreased mitochondrial
membrane potential, potentially as a physiological defense mechanism. Thus, genetic defects in core physiology can be buffered at the
organismal level via physiological plasticity, and natural populations may harbor genetic variation for distinct metabolic strategies in
development that generate similar organismal outcomes.

KEYWORDS development; mtDNA; metabolism; oxidative phosphorylation; reactive oxygen species

METABOLISM is the sum total of biochemical processes
that organismsuse to sustain life and fuel reproduction,

and an individual’s metabolic rate is often interpreted as an
integrated measure of its “pace of life” (Glazier 2005, 2014,
2015). Early surveys of natural molecular variation revealed
a surprising amount of variation at loci encoding these bio-
chemical processes (Harris 1966; Hubby and Lewontin 1966;
Lewontin andHubby 1966)—a pattern that has been historically
used to advocate both for the predominance of classical mu-

tation, drift, and purifying selection forces (Kimura 1983), and
for the maintenance of variation through selection (Gillespie
1999; reviewed by Charlesworth and Charlesworth 2016).
Subsequent surveys revealed substantial quantitative genetic
variation in metabolic enzyme activities within species, arising
from molecular variation at enzyme-encoding loci, as well as
trans-acting and epistatic variation throughout the genome
(Laurie-Ahlberg et al. 1980, 1982; Clark et al. 1995a,b; Clark
and Wang 1997; Mitchell-Olds and Pedersen 1998; Montooth
et al. 2003). In a few cases, this biochemical variation has been
linked to variation at higher levels of physiological perfor-
mance (Laurie-Ahlberg et al. 1982; Watt et al. 1983;
Montooth et al. 2003; Crawford and Oleksiak 2007), and, in
some cases, may be adaptive (Watt 1977; Tishkoff et al. 2001;
Verrelli and Eanes 2001;Watt et al. 2003). However, we lack a
mechanistic understanding of how genetic variation in the
pathways of metabolism is transformed up the hierarchical
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levels of biological organization to result in variation in organ-
ismal performance traits that determine fitness. This is impor-
tant for consideration of metabolism as an adaptive phenotype
and for predicting how selection on metabolic performance
will shape variation in genomes.

A challenge to connecting genetic variation in biochemical
processes to metabolic performance, is that metabolism is an
emergent property of interacting biochemical, structural, reg-
ulatory, and physiological systems, often arranged in hierar-
chical functional modules (Jeong et al. 2000; Strogatz 2001;
Ravasz et al. 2002; Barabási and Oltvai 2004). In addition,
metabolic enzymes and metabolites have potential “moon-
lighting” functions in the signaling that underlies metabolic
homeostasis (Marden 2013; Boukouris et al. 2016). The ca-
pacity for homeostasis in physiological systems also suggests
that genetic variation in biochemical processes may not nec-
essarily result in organismal fitness variation. The regulatory
processes that maintain energy homeostasis may provide
stability in metabolic trajectories in an analogous way to
the canalized developmental trajectories envisioned by
Waddington (1942, 1957) and Meiklejohn and Hartl (2002).
Furthermore,multiple biochemical pathwaysmay be available
to achieve similar energetic outputs. Finally, the hierarchical
biological processes that contribute to metabolism are influ-
enced by both extrinsic (e.g., temperature, resource availa-
bility, habitat) and intrinsic (e.g., genotype, life stage, sex,
reproductive status) factors (reviewed by Glazier 2005), such
that genetic variation in biochemical processes may affect or-
ganismal performance andfitness in only a subset of conditions.
Such conditionally neutral variation is expected to experience
less effective selection (Van Dyken and Wade 2010).

Development is a potentially important context for the
expression of genetic variation in metabolism. During devel-
opment, organisms partition resources between the competing
demands of growth, development, maintenance, and storage
for future reproduction. Energy homeostasis during develop-
ment is largely achieved by feedback controls where energy-
demand processes increase the concentration of ADP, which is
thenavailable forenergy-supplyprocesses togenerateATP.The
mitochondria play a central role in the energy supply-demand
balance. Not only the abundance and activity of mitochondria,
but also the surface area,membrane composition, andnetwork
structure of mitochondria have been reported to affect metab-
olism (Porter and Brand 1993; Porter et al. 1996; Miettinen
and Björklund 2017). Oxidative phosphorylation (OXPHOS),
which drives aerobic ATP production, requires proteins from
both the mitochondrial and nuclear genomes, creating the
potential for intergenomic epistasis to underlie variation in
metabolic phenotypes. Our understanding of the underlying
genetic architecture of metabolism is incomplete, but studies
indicate that both nuclear DNA (nDNA) (Montooth et al. 2003;
Nespolo et al. 2007; Tieleman et al. 2009), mitochondrial DNA
(mtDNA) (Martin 1995; Ballard andRand2005; Arnqvist et al.
2010; Kurbalija Novičíc et al. 2015), and interactions between
genomes and environment affect metabolism (Hoekstra et al.
2013, 2018).

Energy balance is particularly challenging for holometab-
olous species with rapid and massive larval growth that
requires simultaneous accumulation of the resources needed
to fuel metamorphosis. Drosophila melanogaster is an espe-
cially powerful system to study developmental metabolism,
given the genetic resources and an �200-fold increase in
body mass across three larval instars (Church and Robertson
1966). There is evidence of significant genetic variation for
metabolic rate within Drosophila (Montooth et al. 2003;
Hoekstra et al. 2013), and individuals with mitochondrial–
nuclear genotypes that disrupt mitochondrial function have
increased larval metabolic rate and delayed development
(Hoekstra et al. 2013; Meiklejohn et al. 2013). Transcrip-
tomic and metabolic profiling in D. melanogaster reveal the
dynamic nature of energy metabolism that draws on both
aerobic and anaerobic energy production, as well as the
presence of proliferative metabolic programs during larval
development (Graveley et al. 2011; Tennessen et al. 2011).
Despite this wealth of data, we lack a detailed understanding
of the links between genome variation, mitochondrial func-
tion, and organismal metabolic rate during development in
Drosophila.

In the present study, we tested whether metabolic strate-
gies inD. melanogaster varied across larval instars, using both
wild-type larvae and larvae with a mitochondrial-nuclear ge-
notype that compromises mitochondrial function. We obser-
ved significant variation in the ontogeny of metabolism at
the level of mitochondrial aerobic capacity and ATP produc-
tion, but also observed that this variation was buffered at
higher levels ofmetabolic performance via physiological plas-
ticity. Thus, there may be multiple genotypic and physio-
logical paths to equivalent organismal outcomes within
populations.

Methods

Drosophila stocks and maintenance

We used four Drosophila mitochondrial-nuclear (hereafter
referred to as mito-nuclear) genotypes generated by
Montooth et al. (2010). Individuals with the (mtDNA);-
nuclear genotype (simw501);OreR have a genetic incom-
patibility that decreases OXPHOS activity putatively via
compromised mitochondrial protein translation, resulting in
delayed development, decreased immune function, and
reduced female fecundity (Hoekstra et al. 2013, 2018;
Meiklejohn et al. 2013; Holmbeck et al. 2015; Zhang et al.
2017; Buchanan et al. 2018). The mito-nuclear incompat-
ibility is between naturally occurring single nucleotide
polymorphisms (SNPs) in the mt-tRNATyr gene and the
nuclear-encoded mt-tyrosyl-tRNA synthetase gene Aatm
that aminoacylates the mt-tRNATyr (Meiklejohn et al.
2013). Individuals with the mito-nuclear genotypes—(ore);-
OreR, (simw501);Aut, and (ore);Aut—serve as genetic controls
that enable us to test for the effects of mitochondrial and
nuclear genotypes, and their interaction on developmental
physiology. Additionally, we measured traits in two inbred
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isofemale fly strains sampled in Vermont (VT4 and VT10) as
representatives of natural populations that were not manip-
ulated to generate specific mito-nuclear genotypes (for de-
tails see Cooper et al. 2014).

Flies from all strains were raised on standard cornmeal-
molasses-yeast Drosophila medium and acclimated to 25�
with a 12:12 hr dark:light cycle for at least three generations
prior to all experiments. To collect first-, second- and third-
instar larvae, adults were allowed to lay eggs for 3–4 hr on
standard media, and larvae from these cohorts were staged
based on developmental time and distinguishing morpholog-
ical features.

Larval metabolic rate

Routine metabolic rate was measured as the rate of CO2 pro-
duced by groups of 20 larvae of the same instar and strain
using a flow-through respirometry system (Sable Systems In-
ternational, Henderson, NV) (Hoekstra et al. 2013). Groups
of larvae were collected onto the cap of 1.7 ml tube contain-
ing 0.5 ml of fly medium and placed inside one of four res-
pirometry chambers that were housed in a temperature-
controlled cabinet (Tritech Research, Los Angeles, CA) main-
tained at 25�. Between 8 and 13 biological replicates for each
strain and instar were randomized across chambers and res-
pirometry runs, during which each group of larvae was sam-
pled for CO2 production for two 10-min periods. CO2 that
accumulated in the chambers as a result of larval metabolism
was detected using an infrared CO2 analyzer (Li-Cor 7000
CO2/H2O Analyzer; LI-COR, Lincoln, NE). _VCO2was calcu-
lated from the mean fractional increase in CO2 at a constant
air-flow rate of 100 ml/min over a 10-min time interval for
each replicate after baseline-drift correction. The wet weight
of the group of larvae was recorded using a Cubis microbal-
ance (Sartorius AG, Göttingen, Germany) at the beginning
of each respirometry run.

Larval water and lipid content

We measured larval whole-body water content using a pro-
tocol modified from Grefen et al. (2006). Six groups of 10 lar-
vae each were collected for each strain at each instar, rinsed
with larval wash buffer (0.7% NaCl and 0.1% Triton X-100),
and blotted dry. The wet weight of the group of larvae was
recorded (60.01 mg) using a Cubis microbalance (Sartorius
AG, Göttingen, Germany). Larvae were dried at 60� over-
night and reweighed. The mass of whole-body water was
calculated by subtracting dry mass from wet mass.

Larval whole-body lipid content was measured using a
protocol modified from Bligh and Dyer (1959). Six groups
of 10 larvae each were collected for each strain at each instar,
rinsed with larval wash buffer, blotted dry, and weighed
(60.01 mg). Larvae were homogenized in a chloroform/
methanol mixture (2:1 v/v) using tissue:solvent proportion
of 1:20 w/v. Samples were sonicated for 1 min using a Sonic
Dismembrators (ThermoFisher Scientific), vortexed for 1 hr
at room temperature, and then centrifuged for 5 min at
13,000 3 g. The supernatant was transferred in a new tube,

mixed with ultrapure water (0.25 vol of the supernatant),
vortexed for 2 min, and centrifuged for 5 min at 13,000 3 g.
The lower phase (chloroform) was transferred into a pre-
weighed microcentrifuge tube and chloroform was allowed
to evaporate to determine the dry mass of extracted lipids
using a microbalance.

Isolation of mitochondria

Mitochondria were isolated from larvae following a protocol
modified from Aw et al. (2016); 100–200 larvae for each
biological replicate were collected and rinsed with larval
wash buffer (0.7% NaCl and 0.1% Triton X-100). Larvae
were gently homogenized in 300–500 ml of chilled isolation
buffer (154 mM KCl, 1 mM EDTA, pH 7.4) in a glass-teflon
Thomas� homogenizer on ice. The homogenate was filtered
through a nylon cloth into a clean, chilled, microcentrifuge
tube. The homogenate was then centrifuged at 1500 3 g for
8 min at 4�. The resulting mitochondrial pellet was sus-
pended in 40–50 ml of ice-cold mitochondrial assay solution
(MAS: 15 mM KCl, 10 mM KH2PO4, 2 mM MgCl2, 3 mM
HEPES, 1 mM EGTA, FA-free BSA 0.2%, pH 7.2). Unless
otherwise stated, all chemicals were purchased from Sigma
Aldrich (St Louis, MO) or Fisher Scientific (Pittsburgh, PA)
and were of reagent grade or higher.

Mitochondrial respiration

Oxygen consumption of freshly isolated mitochondria was
measured using the Oxygraph Plus System (Hansatech In-
struments, Norfolk, UK) in 3 ml water-jacketed glass cham-
bers equipped with a magnetic stirrer and Clark-type oxygen
electrodes. Temperature of the respiration chambers was
kept constant at 25� using a Fisher Isotemp 4100 R20 refrig-
erated water circulator (Fisher Scientific, Hampton, NH). A
two-point calibration of electrodes using air-saturated dis-
tilled water and sodium sulfite was done for establishing
100% and zero oxygen levels in the chamber, respectively.
The assay was completed within 2 hr of mitochondrial iso-
lation, and six or seven biological replicates were measured
for each larval stage of each strain. Mitochondrial suspension
(50 ml; �1.5 mg protein) was added to 950 ml of MAS in
the respiration chamber. Pyruvate (5 mM) and malate
(2.5 mM) were used as respiratory substrates at saturating
amounts. Maximum respiration (State 3) was achieved by
adding 400 mM of ADP, and State 4ol respiration was calcu-
lated as described by Chance and Williams (1955) by adding
2.5 mg ml21 oligomycin. Oligomycin is an ATPase inhibitor
and State 4ol gives an estimate of oxygen consumption linked
to mitochondrial proton leak, rather than to ATP production,
at high membrane potential (Brand et al. 1994). Uncoupled
respiration (State 3u), indicative of maximum respiration
or electron transport system (ETS) capacity, is achieved by
adding 0.5 mM of carbonyl cyanide m-chlorophenyl hydra-
zone (CCCP). CCCP is a protonophore that increases proton
permeability in mitochondria and effectively disconnects
ETS from ATPase. Data were acquired and respiration rates
were corrected for electrode drift using the OxyTrace+
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software. The respiratory control ratio (RCR+) was calcu-
lated as the ratio of State 3 over State 4ol (Estabrook
1967). Respiration rates were normalized by unit mitochon-
drial protein added. Protein concentrations were determined
using Bio-Rad Protein Assay Dye Reagent Concentrate
(5000006; Bio-Rad) and bovine serum albumin (BSA) as a
standard.

Mitochondrial membrane potential (DCm)

Mitochondrial membrane potential was measured using the
JC-1 indicator dye (Fisher Scientific) following a protocol
modified from Villa-Cuesta et al. (2014); 100 mg of larvae
were weighed and used to isolate mitochondria as described
above. Approximately 1.4 mg of mitochondrial protein was
added, and the final volume was increased to 300 ml using
MAS. Next, 3 ml of a 1 mg/ml solution of JC-1 dissolved in
dimethyl sulfoxide (DMSO) was added to the suspension.
Mitochondrial samples were incubated for 30 min at 37�
protected from light. At the end of incubation, samples were
centrifuged for 3 min at 6000 3 g and suspended in 600 ml
of fresh MAS. Mitochondrial membrane potential was
expressed as the ratio of fluorescence for aggregate:mono-
meric forms of JC-1 at red (excitation 485 nm, emission
600 nm) and green (excitation 485 nm, emission 530 nm)
wavelengths respectively; 50 mM of CCCP was added to col-
lapse membrane potential as a negative control.

Citrate synthase activity

Citrate synthase activity wasmeasured following the protocol
from Meiklejohn et al. (2013); 100–200 larvae were homog-
enized in 1 ml chilled isolation buffer (225 mM mannitol,
75 mM sucrose, 10 mM MOPS, 1 mM EGTA, 0.5% fatty
acid-free BSA, pH 7.2) using a glass-teflon Thomas� homog-
enizer. The homogenate was centrifuged at 300 3 g for
5 min at 4�. The supernatant was transferred into a clean
tube and centrifuged again at 6000 3 g for 10 min at 4�.
The resulting mitochondrial pellet was resuspended in 50 ml
of respiration buffer (225 mM mannitol, 75 mM sucrose,
10 mM KCl, 10 mM Tris-HCl, and 5 mM KH2PO4,
pH 7.2). All samples were stored at 280� till further
analysis.

Maximum citrate synthase activity (Vmax) of the mito-
chondrial extracts was measured spectrophotometrically at
25� using a Synergy 2 plate reader (BioTek); 6 mg of mito-
chondrial protein was added to the assay mixture containing
100 mM Tris-HCl (pH 8.0), 2.5 mM EDTA, 100 mM Acetyl
Co-A, and 100 mM of DTNB [5,59-dithiobis (2-nitrobenzoic
acid)]. The reaction was monitored for 2 min as a back-
ground reading. The reaction was then started by adding
500 mM oxaloacetate to the assay to generate CoA-SH.
CoA-SH was detected by its reaction with DTNB to form a
yellow product (mercaptide ion) that was measured using
absorbance at 412 nm. Enzyme activity was normalized by
protein concentration of the sample added. Six biological
samples per strain and instar were measured, each with
two technical replicates.

Lactate quantification

Whole-body lactate concentrations were measured by an
NAD+/NADH-linked fluorescent assay following the protocol
of Callier et al. (2015); 100–200 larvae were homogenized in
100–500 ml of 17.5% perchloric acid and centrifuged at
14,000 3 g for 2 min at 4�. Following precipitation of pro-
teins, the clear supernatant was transferred into a clean tube
and neutralized with a buffer containing 2 M KOH and 0.3 M
MOPS, and again centrifuged at 14,000 3 g for 2 min at 4�.
Neutralized sample (20–50 ml) was added to the assay buffer
(pH 9.5) containing a final concentration of 1000 mM hydra-
zine, 100 mM Tris-base, 1.4 mM EDTA, and 2.5 mM NAD+

in a 96-well plate. The assay was performed in fluorescence
mode (Ex/Em = 360/460 nm) using a Synergy 1H Hybrid
Reader (BioTek). After incubating the plate for 5 min at room
temperature, a background reading was taken. Lactate dehy-
drogenase (17.5 U/well; L3916; Sigma) diluted with Tris
buffer was then added to each sample, and the reaction mix-
ture was allowed to incubate at 37� for 30 min protected from
light. A second reading was taken to measure NADH levels,
after correcting for background fluorescence. Six biological
samples per strain and instar were measured, each with two
technical replicates. Sodium lactate was used as a standard for
the assay. Lactate concentrations in the samples were normal-
ized by the wet weight of the larvae.

Hydrogen peroxide quantification

Larvae (100–200) were weighed, rinsed with larval wash
buffer (0.7% NaCl and 0.1% Triton X-100), and homogenized
in 500 ml of prechilled assay buffer (pH 7.5) containing 20 mM
HEPES, 100 mM KCl, 5% glycerol, 10 mM EDTA, 0.1% Triton
X-100, 1 mM PMSF (P7626; Sigma), and 1:10 (v/v) protease
inhibitor cocktail (P2714; Sigma) using a glass-teflon Thomas
homogenizer. The homogenate was centrifuged at 200 3 g for
5 min at 4�, and the supernatant was stored at280�. Hydrogen
peroxide (H2O2) concentration was determined with a fluoro-
metric H2O2 Assay Kit (MAK 165; Sigma) following the manu-
facturer’s protocol in a 96-well plate using the SynergyH1Hybrid
Reader. Six biological samples per strain and instar were mea-
sured, eachwith two technical replicates. H2O2 concentrations in
the samples were expressed as nM/mg of protein. Themitochon-
dria serve as both source and sink of reactive oxygen species
(ROS) in the organism (Munro and Treberg 2017). Thus, we
used this whole-body measure of H2O2 as an estimate of the
organismal consequences of mitochondrial function.

Statistical analyses

All statistical analyses used the statistical package R version
2.15.1 (R Development Core Team 2011). We implemented
standard major-axis regression in the R-package SMATR
(Warton et al. 2006; Hoekstra et al. 2013) to estimate the
relationship between log-transformed mass and _VCO2, and
to test for larval-instar and genetic effects on the slope of this
relationship. When there was statistical evidence for a com-
mon slope among genotypes or strains, we fit the common
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slope to test for effects of genotype or strain on the y-intercept
(i.e., genetic effects on the mass-specific metabolic rate). We
removed a single observation where a first-instar replicate had
a _VCO2 value less than zero. We also used SMATR to analyze
the scaling of total lipid plus water content with dry body mass.
ANOVAwas used to test for the fixed effects of mtDNA, nuclear
genome, larval instar, and all interactions on lactate accumula-
tion, H2O2 concentration, mitochondrial physiology (State3,
State4ol, uncoupled respiration, RCR+, and DCm) and citrate
synthase activity using averages across technical replicates. Post
hoc comparisons among instars within a genotype or strain, and
among genotypes or strains within instar were evaluated using
Tukey HSD tests that were corrected for multiple testing.

Data availability

Stocks and strains are available upon request. Supplemental
files including all phenotype data are available at FigShare.
Supplemental material available at FigShare: https://
doi.org/10.25386/genetics.7946795.

Results

Metabolic rate scaling with mass varies across larval
instars and strains

Metabolic rate scales with mass according to the power func-
tion R= aMb, where a is the constant scaling coefficient,M is

mass, and b is the scaling exponent (Kleiber 1932). The scal-
ing exponent b, estimated by the slope of the relationship
between log-transformed metabolic rate and mass, differed
significantly across larval instars (Figure 1A) (LR = 18.1,
df = 2, P = 0.0001). Metabolic scaling with body mass
was hypermetric in first-instar larvae [b (CI) = 1.42 (1.21,
1.67)], isometric in second-instar larvae [b = 1.04 (0.95,
1.15)], and hypometric in third-instar larvae [b = 0.85
(0.71, 1.01)]. Within first- and second-instar larvae, there
was no evidence that metabolic scaling with mass differed
significantly among strains, nor were there significant effects
of strain on the elevation of the fitted relationship (i.e., on the
mass-specificmetabolic rate) (Figure 1, B and C and Table 1).
However, there was more variance among strains in mass-
specific metabolic rate in first-instar larvae relative to sec-
ond-instar larvae (Figure 1, B and C and Table 1). Metabolic
scaling with mass in third-instar larvae differed significantly
among strains, as evidenced by significantly different slopes
(Figure 1D and Table 1). The variation in metabolic scaling
with mass did not result from natural strains differing from
mito-nuclear genotypes, but rather from variation in the scal-
ing exponent within both groups. The pattern was significant
regardless of the inclusion of several data points that, while
not statistical outliers, did appear as outliers in the relation-
ship between metabolic rate and mass (Figure 1D and Sup-
plemental Material, Table S1).

Figure 1 Metabolic scaling with
mass varied across larval develop-
ment and among strains. (A) The
mass-scaling exponent for routine
metabolic rate ð _VCO2Þ differed sig-
nificantly among larvae from differ-
ent instars (LR = 18.1, df = 2,
P = 0.0001), with the relationship
between metabolic rate and mass
becoming more shallow across de-
velopment. (B and C) There was
more genetic variation for meta-
bolic rate in first-instar larvae, rel-
ative to second-instar larvae. (D)
Mass-scaling exponents differed
significantly among strains in the
third instar of development (Table
1 and Table S1).
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To get an estimate of the extent to which changes in body
composition were underlying ontogenetic differences in the
mass scaling of metabolic rate, we tested whether the re-
lationship between lipid plus water content and dry mass
differed among instars. Lipid andwater are metabolically less
active components of body mass, and we predicted that the
decreased scaling of metabolic rate with mass in third-instar
larvae could be the result of a greater amount of this meta-
bolically less-active mass. We found a significant effect of
instar on the y-intercept of the relationship between lipid plus
water content and dry mass (Figure S1 and Table S2). Third-
instar larvae did have greater lipid plus water content as a
function of dry mass relative to second-instar larvae. How-
ever, first-instar larvae had values of this parameter similar to
third-instar larvae.

Mitochondrial respiration is similar across larval instars
and strains

Despite these ontogenetic and genetic differences in the
scaling of organismal metabolic rate with mass, second-
and third-instar larvae had similar rates of mitochondrial
oxygen consumption linked to ATP production (i.e., State 3
respiration) per unit of mitochondrial protein in both mito-
nuclear genotypes (instar, P = 0.13) and natural strains (in-
star, P = 0.12) (Figure 2) (Table S3). Measures of State 3
respiration from first-instar larvae mitochondria were either
below our detection limits or of low-quality, even when in-
cluding similar amounts of larval mass in the preparation.
This indicates that there is an increase inmitochondrial quan-
tity or functional capacity between the first- and second-
larval instars. Furthermore, larval State 3 respiration did

not differ significantly among mito-nuclear genotypes or nat-
ural strains, nor were there any significant interactions be-
tween instar and genetic factors (Table S2). Maximum
respiratory capacity of mitochondria (or CCCP- induced
uncoupled respiration, State 3u) was also maintained across
larval instars in all mito-nuclear genotypes (instar, P = 0.18)
(Figure S1A and Table S2). However, the natural strain VT10
had a significantly elevated maximal respiratory capacity in the
second instar that resulted in a significant instar-by-genotype
interaction (P = 0.001) (Figure S2A and Table S3).

Healthymitochondria have high rates of oxygen consump-
tion and ATP production when ADP is abundant (i.e., State
3 respiration), but low rates of oxygen consumption in the
absence of ATP synthesis (i.e., State 4ol respiration). The
ratio of these two measures is called the respiratory control
ratio (RCR+). While the RCR+ was generally maintained at a
ratio of 2–3 across strains and instars, mitochondria of larvae
from two strains, (ore);OreR and VT10, had elevated RCR+ in
the third instar that contributed to a significant instar-by-
genotype interaction in both mito-nuclear genotypes
(instar 3 nuclear, P = 0.004) and natural strains (instar 3
strain, P = 0.0001) (Figure S2B and Table S3). This was
due to decreased State 4ol respiration in second-instar mito-
chondria from these strains (Figure S2C and Table S3).

Certain genotypes and strains use anaerobic ATP
production further into development

We measured the activity of citrate synthase, a nuclear-
encoded enzyme located in the mitochondrial matrix. As
the first step in the tricarboxylic acid (TCA) cycle, the activity
of this enzyme is often used as an indicator of oxidative

Table 1 Ontogenetic and genetic effects on the scaling of routine metabolic rate (RMR) as a function of mass

Phenotype Strain Slope (95% CI)a Y-interceptb

First-instar RMR H0: equal slopes (LR = 4.61, df = 5, P = 0.46) H0: no elevation difference (Wald = 9.28, df = 5, P = 0.10)
Common slope 1.29 (1.10, 1.54)
VT10 0.66 (0.54, 0.77)
VT4 0.75 (0.64, 0.86)
(ore);Aut 0.62 (0.51, 0.73)
(ore);OreR 0.61 (0.43, 0.79)
(simw501);Aut 0.50 (0.26, 0.75)
(simw501);OreR 0.59 (0.42, 0.75)

Second-instar RMR H0: equal slopes (LR = 3.99, df = 5, P = 0.55) H0: no elevation difference (Wald = 2.58, df = 5, P = 0.76)
Common slope 1.01 (0.90, 1.13)
VT10 0.65 (0.55, 0.75)
VT4 0.71 (0.6, 0.81)
(ore);Aut 0.67 (0.58, 0.75)
(ore);OreR 0.62 (0.51, 0.73)
(simw501);Aut 0.67 (0.55, 0.79)
(simw501);OreR 0.67 (0.57, 0.76)

Third-instar RMR H0: equal slopes (LR = 20.1, df = 5, P = 0.001)
VT10 1.16 (0.65, 2.06)
VT4 0.78 (0.54, 1.10)
(ore);Aut 0.81 (0.65, 1.00)
(ore);OreR 1.00 (0.81, 1.24)
(simw501);Aut 0.36 (0.25, 0.52)
(simw501);OreR 0.41 (0.19, 0.89)

a Either strain-specific slopes or a common slope with confidence interval, when justified by the test for equal slopes among strains.
b In no case was there evidence that there was a shift in mass along the x-axis among strains (P . 0.09).
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capacity. Citrate synthase activity per unit of mitochondri-
al protein increased across development in larvae of all
mito-nuclear genotypes and strains (Figure 3) (mito-nuclear
genotypes: instar, P , 0.0001; natural strains: instar,
P , 0.0001). There were also genotype-specific effects on
citrate synthase activity. Larvae with the incompatible
(simw501);OreR genotype had elevated citrate synthase activ-
ity relative to other genotypes across all three instars (Figure
3), resulting in significant mito-nuclear variance for this mea-
sure of oxidative capacity (mito 3 nuclear, P = 0.022) (Ta-
ble S4). Interactions between instar and strain significantly
affected citrate synthase activity in the natural strains, as well
(instar 3 strain, P = 0.010). Larvae of particular genotypes
and strains could be categorized as those for which citrate
synthase reaches its maximal level by the second instar (e.g.,
VT10 and (ore); Aut) and those for which second-instar mi-
tochondria have citrate synthase activity levels intermediate
to first- and third-instar mitochondria [e.g., VT4 and (ore);-
OreR] (Figure 3).

In addition to aerobic, oxidative ATP production, D. mela-
nogaster larvae use anaerobic, glycolytic ATP production that
results in the production of lactate. There was significant
genetic variation in the extent to which larvae accumulated
lactate during development. Second-instar larvae of some
strains accumulated lactate, while larvae of other strains
did not accumulate any lactate across development (Figure
4A). This variation was observed within both the mito-
nuclear genotypes (instar 3 mtDNA 3 nuclear, P = 0.033)
and the natural strains (instar 3 strain, P = 0.009). Larvae
with the incompatible (simw501);OreR genotype accumu-
lated the highest amounts of lactate in the second instar,
relative to other genotypes, resulting in a strongmito-nuclear

interaction (Figure 4B and Table S5). Larvae from the
natural strain VT4 also accumulated high levels of lactate in
the second instar (Figure 4A). Furthermore, larvae from
strains that had intermediate levels of citrate synthase activ-
ity during the second instar [e.g., VT4 and (ore);OreR] also
tended to have increased lactate accumulation during the
second instar.

Larvae with a mito-nuclear incompatibility accumulated
more ROS

Larvae from all strains had significantly increased levels of H2

O2 by the third instar, relative to earlier instars (P , 0.0001)
(Figure 5A and Table S6). However, larvae with the incom-
patible (simw501);OreR genotype had significantly elevated
levels of H2O2 in the second instar, both relative to other
strains and to first- and third-instar larvae of the same
genotype. This resulted in a significant effect of the
instar 3 mtDNA 3 nuclear interaction on levels of H2O2

(P , 0.0001) (Figure 5B and Table S6).
We tested whether mitochondrial membrane potential

(DCm) was disrupted in (simw501);OreR larvae. DCm pro-
vides the driving force that is utilized by complex V of
OXPHOS to make ATP, and is used as an indicator of mito-
chondrial viability and cellular health. Larvae from all strains,
except (simw501);OreR, maintained high levels of mitochon-
drial membrane potential in the second and third instar (Fig-
ure 6A and Table S6). Larvaewith the incompatible (simw501);
OreR genotype had significantly lower DCm relative to control
genotypes in both the second and third instars. The effect of
the mito-nuclear interaction on DCm was particularly pro-
nounced in second-instar larvae (instar 3 mtDNA 3 nuclear
P , 0.0001) (Figure 6B and Table S7).

Figure 2 Oxygen-coupled ATP production, mea-
sured by the State 3 mitochondrial oxygen con-
sumption per unit of mitochondrial protein, was
maintained at statistically similar levels across strains
and instars (Table S3).
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In summary, the maintenance of mitochondrial respira-
tion in larvaewith the incompatible (simw501);OreR genotype
across second and third instars was coincident with signi-
ficant increases in oxidative capacity of mitochondria, in-
creased lactate and ROS production during the second
instar, and decreased mitochondrial membrane potential,
relative to larvae with control genotypes.

Discussion

Ontogenetic shifts in the relationship between
metabolic rate and mass

Metabolic rates scale allometrically with mass, but the pa-
rameters that define this relationship vary among taxa, ge-
notypes, life stages and environments (Glazier 2005;
Greenlee et al. 2014). We found that the relationship be-
tween mass and metabolic rate differed significantly among
larval instars of D. melanogaster. Metabolic scaling in devel-
oping animals has been described as an “impasse of princi-
ples,” wherein the basic tenant of metabolic allometry—that
the physiological principles of organisms are relatively con-
served—is at odds with the basic tenant of development
that the physiological state of organisms is dynamic across

ontogeny (Burggren 2005). Insect development involves
complex changes in cellular energy demand and body com-
position that likely affect how metabolic rate scales with
mass. Thus, models and principles of interspecific allometric
scaling may not be applicable to ontogenetic scaling.

We observed a shift from hypermetric scaling in first-instar
larvae (b . 1), to isometric scaling in second-instar larvae
(b = 1), followed by hypometric scaling in third-instar lar-
vae (b , 1). This shift in metabolic scaling toward lower
mass-specific metabolic rates in larger instars, was in spite
of our observation that larger instars had seemingly greater
oxidative capacity, as indicated by increased levels of citrate
synthase activity per unit of mitochondria. Nevertheless, mi-
tochondrial oxygen consumption linked to ATP production
was maintained at similar levels across second- and third-in-
star larvae. These patterns suggest that although there may
be increased oxidative capacity of mitochondria as develop-
ment progresses, mitochondrial respiration and organismal
respiration are not simple reflections of oxidative capacity,
but rather are emergent properties of organellar, cellular,
and organismal processes.

The ontogenetic change in metabolic scaling that we ob-
served may reflect a change in energy demand across devel-
opment as larval growth transitions from cell proliferation to

Figure 3 Oxidative capacity, measured by citrate synthase activity (Vmax) per unit of mitochondrial protein, increased significantly across instars and was
largest in larvae with the incompatible (simw501);OreR genotype. While larvae of all mito-nuclear genotypes increased oxidative capacity throughout
development, there was significant variation among genotypes. (simw501);OreR larvae had significantly higher oxidative capacity than larvae with the
nuclear genetic control (ore);OreR in the second (*PTukey’s = 0.015) and third instars (**PTukey’s = 0.008). The simw501 mtDNA had no effect in the Aut
background (P Tukey’s . 0.833 in both instars), resulting in a significant mtDNA 3 nuclear interaction (P = 0.022). Natural strains from Vermont also
varied significantly in the extent to which oxidative capacity reached its maximal level in the second vs. third instar of development (Table S4). Different
letters within mito-nuclear genotypes and strains denote significantly different means at P Tukey’s , 0.006, and asterisks designate significant differences
between mito-nuclear genotypes and strains of the same larval instar.
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cell growth. Hypermetric metabolic-scaling exponents
(b . 1), where metabolic rates of larger individuals are
greater per unit mass, could result from the increased ener-
getic costs associated with the rapid cell proliferation and
increase in cell number early in Drosophila development
(O’Farrell 2004; Vollmer et al. 2017). Later in development,
larval accumulation of mass occurs primarily via increases in
cell volume (O’Farrell 2004), reducing the surface area to
volume ratio of cells and potentially limiting metabolism.
These observations support studies, collectively grouped un-
der Resource Demand (RD) models, that suggest that meta-
bolic scaling is driven by an intrinsic metabolic demand from
the cellular level to tissue growth potential (Von Bertalanffy
and Pirozynski 1953; Shin and Yasuo 1984, 1993; Ricklefs
2003; Glazier 2005). In this way, an organism’s metabolic
rate across development is a reflection of the potential of
tissues for proliferation and growth (Ricklefs 2003). Our ob-
servations also contribute to a small, but growing, number of
insect studies that support a conceptual framework where
completion of growth in holometabolous insects is correlated
with decreased mass-specific metabolic rates (Glazier 2005).
In both the tobacco hornworm Manduca sexta, and the silk-
worm Bombyx mori, metabolic-scaling exponents also de-
crease across ontogeny (Blossman-Myer and Burggren
2010; Callier and Nijhout 2011, 2012; Sears et al. 2012).

Metabolic scaling with mass may also be influenced by the
biochemical composition of the body. System Composition
(SC) models hypothesize that ontogenetic changes in meta-
bolic scaling reflect shifts in body composition and the relative
proportions of metabolically active vs. inert or “sluggish”
tissues (Glazier 2005; Isler and VanSchaik 2006; Greenlee
et al. 2014). Lipid composition and storage change across

development in Drosophila, with a net increase of metaboli-
cally inert storage lipids like triacylglycerides across deve-
lopment (Carvalho et al. 2012). While third-instar larvae in
our study did have increased lipid plus water content per unit
dry mass relative to second instars, first-instar larvae had
values of this parameter similar to third-instar larvae. Thus,
accumulating more water and lipid per unit dry mass cannot
fully explain the observed pattern of increasingly hypometric
metabolic scaling with mass across development. Another
possibility is that changes in relative tissue sizes contribute
to ontogenetic change in how metabolic rate scales with
mass. In Manduca, the contribution of metabolically active
gut tissue to the body decreases across development, which
may contribute to an increasingly hypometric metabolic scal-
ing with mass across development (Callier and Nijhout
2012).

Genetic variation in body composition across development
could also underlie the genetic variation in metabolic scaling
thatwe observed in third-instar larvae. If larvaewith different
genotypes differ in the degree to which they accumulatemass
in the third instar via different types of energy storage, this
could generate genetic variation for howmetabolic rate scales
with mass. Midway through the third instar, D. melanogaster
membrane-lipid accumulation is paused, while levels of stor-
age lipids like triacylglycerides increase (Carvalho et al.
2012). This suggests a transition in the third instar from me-
tabolism supporting membrane synthesis and cell prolifera-
tion to metabolism supporting mass accumulation via lipid
storage. If larvae with different genotypes vary in the timing
or extent of this switch, this could contribute to the greater
genetic variation for metabolic scaling that we observed in
this developmental stage.

Figure 4 (A) Lactate levels per gram weight of larvae varied significantly among strains in second-instar larvae and were highest in larvae with the
incompatible (simw501);OreR genotype. Genetic variation for second-instar larval lactate levels was also observed among natural strains from Vermont
(instar3 strain, P = 0.009) (Table S5), with VT4 larvae having significantly more lactate than VT10 larvae (*PTukey’s = 0.014). (B) There was a significant
instar 3 mtDNA 3 nuclear interaction effect for lactate levels (P = 0.033) (Table S5). (simw501);OreR larvae had significantly higher lactate levels than
did larvae from all other mito-nuclear genotypes and strains in the second instar (***P Tukey’s , 0.0003). Different letters within mito-nuclear genotypes
and strains denote significantly different means at P Tukey’s , 0.036, and asterisks designate significant differences between mito-nuclear genotypes
and strains of the same larval instar.
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Physiological compensation in larvae with a mito-nuclear
incompatibility comes at a cost

Mitochondrial respiration coupled to ATP production was
maintained in larvae with the mito-nuclear incompatible ge-
notype at in vitro levels similar to control genotypes, despite
compromised OXPHOS in flies with this genotype (Meiklejohn
et al. 2013). The maintenance of mitochondrial respiration in
these larvae was accompanied by increases in mitochondrial
oxidative capacity, measured by citrate synthase activity, and
glycolytic ATP production, measured by lactate accumulation,
relative to larvae with control genotypes. These increases may
reflect physiological compensation to maintain ATP levels in
larvae whose mitochondria consume similar levels of oxygen
but are less efficiently generating ATP. This compensation does
not appear to occur in adult males of this genotype that have
decreased mitochondrial respiration and decreased citrate
synthase activity (Pichaud et al. 2019). We suggest that by
using the functional complementation of both glycolytic and
mitochondrial ATP production (i.e., both substrate-level and
oxidative phosphorylation), larvae of this mito-nuclear incom-
patible genotype are able to synthesize the ATP needed to
support development.

Physiological compensation can sometimes have counter-
intuitive costs paid over the lifespan. While larvae with the
(simw501);OreR genotype appear to use physiological com-
pensation to support larval development, these larvae have
significantly delayed development and compromised pu-
pation height, immune function, and female fecundity
(Meiklejohn et al. 2013; Zhang et al. 2017; Buchanan et al.
2018). Additionally, while in vitro mitochondrial respiration
in larvae of this genotype was maintained similar to other

strains, whole-organism metabolic rate in larvae with this
genotype was elevated (Hoekstra et al. 2013), potentially
via compensatory upregulation of citrate synthase and the
TCA cycle to supply ATP. Thus, even when drawing on both
glycolytic and oxidative ATP production, individuals with this
mito-nuclear incompatibility may produce energy supplies
very close to energetic demand. Previous results from our
laboratory support this model; conditions that normally ac-
celerate larval development, significantly magnified the de-
velopmental delay of (simw501);OreR larvae, suggesting that
larvae with this genotype have limited capacity to compen-
sate the defect in OXPHOS (Hoekstra et al. 2013, 2018).
Larvae with the incompatible (simw501);OreR genotype may
use a majority of their aerobic scope to complete normal de-
velopment, limiting the resources available to allocate to
other aspects of fitness. Once the demands of growth are
removed, adults with this mito-nuclear incompatibility ap-
pear to regain some aerobic scope, as larvae that survived
to pupation also completed metamorphosis and had normal
adult size and metabolic rates (Hoekstra et al. 2013, 2018).
However, the costs paid out during development appear to
have significant impacts on adult fecundity. Both female and
male fecundity were severely compromised in adults with
this genotype that were developed at warmer temperatures
that increase biological rates and energy demand (Hoekstra
et al. 2013; Zhang et al. 2017).

At the cellular level, physiological compensation in
(simw501);OreR larvae may be a source of oxidative stress,
indicated by higher levels of H2O2 in larvae of this genotype,
relative to other genotypes. H2O2 is a byproduct of the mito-
chondrial electron transport chain (ETC) that supports

Figure 5 (A) ROS levels, measured as the concentration of H2O2 per gram wet weight of larvae, increased significantly across instars, and were highest
in second-instar larvae with the incompatible (simw501);OreR genotype. (B) There was a strong effect of instar on ROS levels (instar, P = 2.347e212),
but this pattern varied among mito-nuclear genotypes (instar3 mtDNA3 nuclear, P = 5.166e205) (Table S5). Second-instar (simw501);OreR larvae had
significantly higher ROS levels relative to larvae from all other mito-nuclear genotypes (***PTukey’s , 0.0001), while larvae from all other mito-nuclear
genotypes had similar patterns of increasing ROS throughout development. The interaction between instar and strain did not affect ROS levels among
larvae from natural strains (Table S5), which had a similar pattern to larvae from the control mito-nuclear genotypes. Different letters within mito-nuclear
genotypes and strains denote significantly different means at P Tukey’s , 0.041, and asterisks designate significant differences between mito-nuclear
genotypes and strains of the same larval instar.
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OXPHOS in healthy cells, and we observed increases in H2O2

as oxidative capacity increased across development in all lar-
vae of all strains. However, compromised electron flow
through the ETC can increase H2O2 levels and generate oxi-
dative stress (Somero et al. 2017), and isolated mitochondria
from adults with the mito-nuclear incompatible genotype did
have higher rates of H2O2 production (Pichaud et al. 2019).
There are two ways that this may be occurring. First, upre-
gulation of the TCA cycle to supply more NADH for ATP pro-
duction via the ETC may increase production of superoxide
anion at Complex I. Second, there may be stoichiometric
imbalance in the ETC due to presumably normal levels of
cytoplasmically translated Complex II but compromised lev-
els of the mitochondrially translated downstream OXPHOS
complexes in larvae with this genotype. This could result in
backflow of electrons that can produce superoxide ions
when the ratio of reduced:unreduced coenzyme Q becomes
elevated. The idea that individuals with the incompatible
(simw501);OreR genotype are experiencing oxidative stress
suggests an alternative interpretation of the elevated citrate
synthase activity that we observed in larvae with this geno-
type. Levels of citrate synthase were increased in the blue
mussel Mytilus trossulus in response to heat stress, a change
that was coupled with increases in isocitrate dehydrogenase
(IDH), which generates NADPH to support H2O2-scavenging
reactions in the mitochondria (Tomanek and Zuzow 2010).
This highlights the importance of considering that TCA
cycle enzymes provide important functions beyond their role

in OXPHOS, as they provide substrates for biosynthesis,
support antioxidant reactions, and act as signaling mole-
cules (Marden 2013; Boukouris et al. 2016; Somero et al.
2017).

Finally, we observed that mitochondria from larvae with
the incompatible (simw501);OreR genotype could support mi-
tochondrial oxygen consumption linked to ATP production at
wild-type levels despite the fact that their membrane poten-
tial was significantly reduced. There is precedence for this
observation. Mitochondrial diseases with OXPHOS defects
are correlated with a suite of metabolic phenotypes that in-
clude upregulated glycolysis, lactate accumulation, elevated
ROS, and decreased mitochondrial membrane potential, but
stable ATP levels (Szczepanowska et al. 2012; Frazier et al.
2019). ROS act as essential secondary messengers in cellular
homeostasis, but above a certain threshold level can be dan-
gerous and lead to apoptosis (Giorgio et al. 2007; Bigarella
et al. 2014). A potential defensemechanism is to decrease the
mitochondrial membrane potential (e.g., by uncoupling) to
reduce further ROS production and protect the cell from ox-
idative damage (Dlasková et al. 2006). Our data cannot dis-
tinguish whether upregulation of citrate synthase and
decreased membrane potential in the mitochondria are the
cause or the consequence of oxidative stress in larvae with
the mito-nuclear incompatibility. However, new models from
ecophysiology (Tomanek and Zuzow 2010), developmental
physiological genetic (Tennessen et al. 2011, 2014; Li et al.
2017, 2019), and disease (Ward and Thompson 2012)

Figure 6 Larvae with the incompatible (simw501);OreR genotype had significantly decreased mitochondrial quality, as measured by the mitochondrial
membrane potential (DCm). (A) Both mito-nuclear control genotypes and natural strains from Vermont generally maintained high membrane potential
in second- and third-instar larvae. However, (simw501);OreR larvae had significantly lower mitochondrial membrane potential than did larvae with the
nuclear genetic control (ore);OreR in the second (***PTukey’s , 0.0001) and third instars (*PTukey’s = 0.016). (B) This effect of the simw501 mtDNA was
not evident in the Aut background, where it increased membrane potential in second-instar larvae and had no effect in third-instar larvae (PTukey’s = 0.167).
This resulted in a significant instar 3 mtDNA 3 nuclear interaction effect (P = 1.580e205) (Table S6). Values .2 typically indicate healthy mitochondria.
Different letters within mito-nuclear genotypes and strains denote significantly different means at P Tukey’s , 0.002, and asterisks designate significant
differences between mito-nuclear genotypes and strains of the same larval instar.
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systems provide promising paths for future dissection of
the mechanisms by which mitochondrial-nuclear genetic
variation scales up to organismal fitness variation.

Genetic variation in cellular metabolism supports similar
organismal outcomes

Aerobic organisms can generate ATP via mitochondrial
OXPHOS, but also anaerobically via glycolytic pathways that
are supported by fermentation-generated NAD+ (e.g., by lac-
tate production).While larvaewith (simw501);OreR genotype
showed a striking pattern of both increased oxidative capac-
ity and increased reliance on lactate metabolism, we wanted
to determine the extent to which components of aerobic and
anaerobic metabolism were correlated among the wild-type
control and natural strains that we measured. Across instars
there was a significant positive correlation between mito-
chondrial State 3 respiration and citrate synthase activity
among wild-type strains (r = 0.87, P = 0.005), consis-
tent with multiple aspects of oxidative capacity increasing
in concert across development (Figure 7A). Within the sec-
ond instar there was a similar magnitude, but nonsignificant
correlation between State 3 respiration and citrate synthase
activity among strains (r = 0.8, P = 0.107) (Figure 7C) that

was not evident in the third instar (r = 0.49 P = 0.406).
Thus, both aspects of oxidative metabolism increase together
across development, but there is also a signature of genetic
covariance for multiple aspects of oxidative metabolism
within the second instar.

Across instars, there was a significant negative correlation
betweencitrate synthase activity and lactate levels (r = 20.87,
P = 0.001) and between State 3 respiration and lactate levels
among strains (r = 20.90, P = 0.0003) (Figure 7B), consis-
tent with high reliance on anaerobic glycolytic ATP production
when oxidative capacity is low. These correlations were most
evident within the second instar (CS-lactate: r = 20.91,
P = 0.033, State3-lactate: r = 20.98, P = 0.004) (Figure
7D), and in the same direction, although not significant, within
the third instar (CS-lactate: r = 20.45, P = 0.452, State3-
lactate: r = 20.61, P = 0.278). Including traits from larvae
with the (simw501);OreR genotype weakened these correlations
(State3-CS: r = 0.43, P = 0.163; CS-lactate: r = 20.07,
P = 0.829). Thus, the mito-nuclear incompatibility breaks
the genetic-physiological negative correlation between oxida-
tive and glycolytic ATP production by significantly increasing
both citrate synthase activity and lactate levels, relative to
wild-type strains.

Figure 7 Components of metabolism were strongly
correlated among wild-type strains, particularly in sec-
ond-instar larvae. Each point represents the mean phe-
notype for the five wild-type strains (three mito-nuclear
control genotypes and two natural strains) in second-
instar (squares) and third-instar (diamonds) larvae. The
Pearson’s statistic r and associated P value are provided
for each correlation. State 3, mitochondrial O2 con-
sumption linked to ATP production; CS, citrate syn-
thase activity. (A and B) Across instars, (C and D) 2nd
instars.

548 O. B. Matoo, C. R. Julick, and K. L. Montooth



Finally, wild-type strains differed significantly in the
amount of variance specifically for lactate accumulation in
second instar larvae (Levene’s test, P = 0.002). Thus, the
second instar appears to be a time in development when both
strains and individuals within strains differ in their reliance
on glycolytic ATP production as they switch over to oxidative
metabolism. This pattern is consistent with genetic variation
for a metabolic switch from glycolytic to mitochondrial pro-
duction of ATP regulated by the Drosophila estrogen-related
receptor dERR (Tennessen and Thummel 2011; Tennessen
et al. 2011). Yet, despite this genetic variation for how sec-
ond-instar larvae generate ATP, the organismal metabolic
rate of second-instar larvae appeared more robust to genetic
variation than were the metabolic rates of other instars. We
also observed that, despite this developmental switch from
glycolytic to mitochondrial ATP production, in vitro mito-
chondrial respiration rates per unit mitochondrial protein
remained constant across second- and third-instar larvae.
Again, this highlights that organellar and organismal meta-
bolic rates are not simple reflections of the underlying meta-
bolic pathways being used. In this way, higher levels of
biological organization may buffer and potentially shelter ge-
netic variation in metabolism from selection.

dERR is responsible for a vital transcriptional switch of car-
bohydrate metabolism in second-instar larvae (Tennessen
et al. 2011) that coincides with increases in lactate dehydro-
genase (dLDH) and lactate accumulation (Li et al. 2017).
dLDH activity recycles NAD+ which allows for continued gly-
colytic ATP production and supports the TCA cycle in generat-
ing cellular building blocks to support normal cell proliferation
and larval growth during development (Tennessen and Thum-
mel 2011). Furthermore, dLDH expression and lactate produc-
tion results in the accumulation of the metabolic signaling
molecule L-2-hydroxyglutarate (L-2HG). L-2HG affects ge-
nome-wide DNA methylation and coordinates glycolytic flux
through epigenetic modification, heterochromatin formation,
and changes in gene expression (Li et al. 2017).We found that
lactate accumulation in second-instar larvae was strongly af-
fected by genotype, suggesting differential timing of this
switch among both natural strains and mito-nuclear geno-
types. Investigating potential epigenetic, bioenergetic, and
life-history consequences of this genetic variation may reveal
whether different metabolic strategies at the subcellular level
fund similar or distinct fitness outcomes at the organismal
level. This is critical for understanding whether populations
harbor genetic variation in biochemical pathways that ulti-
mately has similar fitness outcomes, or whether we should
expect to see the signatures of selection acting on enzymes
that control shifts in metabolic flux (e.g., Flowers et al. 2007;
Pekny et al. 2018).

In conclusion, the dramatic and rapid growth ofDrosophila
during ontogeny requires a precise and genetically determined
metabolic program that enhances biosynthesis and prolifera-
tion coupled with a tight temporal coordination. Here, we
have shown how genetic variation influence patterns of me-
tabolism in larvae of both natural strains and mito-nuclear

genotypes of Drosophila during developmental. Our study sup-
ports that genetic defects in core physiology can be buffered at
the organismal level via physiological plasticity (Li et al. 2019),
and that natural populations likely harbor genetic variation for
distinct metabolic strategies in development that may generate
similar organismal outcomes.
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