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ABSTRACT

The author’s intent through this work is to shed light on the current methods of
predicting the onsets of liquid loading and to clarify that there is a difference in critical
gas rate predictions between horizontal and vertical wells.

A new model that predicts the critical gas rates for horizontal and deviated wells is
presented. Literature data comprised of 69 horizontal and deviated wells reported in
various studies in addition to experimental data from two horizontal wells are used to
test the accuracy of the model and compare it to currently available models.

Results using literature data show that the new model is capable of predicting the
critical gas flow rates in horizontal wells within 15.7% of the actual values, a 2—6%
improvement over the currently available horizontal well models, and 8-20%
improvement over the currently available vertical well models. Results from the
experiment tend to support the finding from literature comparison with a deviation of
5% from actual observed rates, an 18-24% improvement over the current horizontal
well models, and 23-35% improvement over the current vertical well models. The New
model yield best results for rates less than 10,000 Mscf/d and BUR's between 4 and
30100 ft. The Conventional models (such as the Turner and Coleman) are not suitable
for usage in horizontal wells and should only be used for vertical wells. The new model
accounts for the effect of geometry on flow especidly particle impact with the flow
conduit wall as a result of change in geometry present in horizontal wells. When this
effect is accounted for, as in the new model, the estimation of the critical gas rate is

more accurate and yields optimized production performance from horizontal wells.

XV



CHAPTERII

Introduction

11  Problem statement

Multiple wells are drilled and put on production each year, with the mgjority flowing a
multiphase gas and liquids mixture. Initially, a multiphase gas dominated well has
sufficient energy to flow naturally. Wallis (1969) stated that at very high velocities, the
liquid film thickness approaches zero and all liquids are entrained in the gas stream, and
asthe gas velocity decreases, fluids accumulate to form athicker film surrounding a gas
core with entrained droplets. However, as production continues for a certain flow
period, the well starts to lack the necessary energy to move liquids out of the wellbore
(Fig. 1.1). The latter creates conditions conducive for the entrained liquid droplets to
fall and accumulate and therefore, the formation of a hydrostatic column in the wellbore
causes the well to flow at lesser than capacity rate or to load up and eventually cease to
flow.

Multiple drawbacks are associated with wells flowing below the critical rate. These
drawbacks are not limited to the loss of production, but are also extended to affect
reservoir deliverability through the possible change of relative permeability, which in
turn damages the formation. Loading also causes the well to veer off its natural decline,
hence undermining the economic model that approved and justified the viability of the

well in terms of reserves and return on investment.



Flowing

Critical
Gas Rate

|

Loading

Intermitting

Production Rate

Loaded

Time
Figure 1.1: Liquid loading occurs when the gas rate is no longer sufficient to maintain
an upward movement of entrained liquid droplets throughout the wellbore

In terms of the bigger picture, having multiple wells that exhibit loading problems and
remain unattended to has significant effects on natural gas supply and demand. The
latter can be a major driving mechanism behind gas price instability and the continuous
need to drill for new prospects to maintain production profiles that can keep up with the
continually rising demand. In the United States, for example, competitive market
aggressiveness of companies drilling and marketing natural gas, along with a significant
lack and availability of qualified manpower, are the main drivers behind continuous
drilling programs. Each company has to achieve its production target goals within their
budget capabilities. Therefore the drilling model, whether efficient or not, has been a
model of necessity rather than a model of choice to achieve production targets because
in most cases, it realizes acceptable returns on investments. The aggressive drilling
model is not a permanent solution; however, it can be very efficient if used as away to

tend to existing wells. If given enough attention to either optimize production or restore



production, the majority of wells can contribute a fair amount of production to the
bottom line. An increase of few Mscf/d and few BOPD from each well can have a
significant impact on how the world manages its energy balance and evaluates supply
and demand, which in turn affects market stability. Since the vertical models do not
accurately predict the critica gas rate, usualy under-predict it, it is suspected that the
change in geometry in horizontal wells causes an effect that is not accounted for by the
vertical models. The hypothesis is that the droplets entrained in the gas stream impact
the wall of the flow conduit due to continuous change in the build rate throughout the
curved section which causes the droplets to lose a fraction of their energy. If the
hypothesis is true, then there should be an increase in the required velocity to keep the
droplets from falling and accumulating in the wellbore. Accounting for this effect will
yield better prediction of the critical gas rate. Chronologically, the transformation of
flow regime goes from the initial annular mist flow to churn flow, to slug flow, to
bubble flow, and finally, to a non-flowing well (see Fig. 1.2). For well production
management purposes, it is important to benchmark each well with its critical rate to

respond appropriately prior to the well reaching its critical rate and starting to load up.

;

Bubble Flow Slug Flow Churn Flow Annular Mist Flow

0
000

o
o
o
o
o

00

Figure 1.2: Succession of flow type leading to aloaded condition, Brill (2005)



1.2 Dissertation outline

This research studies the critical gas rate needed to maintain well flow, with an

emphasis on horizontal and deviated wells. Although extensive research and

development have been performed in this general area, most of the focus has been on

vertical wells. Recently, with the emergence of horizonta drilling, more efforts are

oriented to tending to these types of wells.

This work includes the following aspects:

Conduct a literature review and understand the status quo with its
advantages and disadvantages.

Examine and understand the underlying causes of liquid loading in
horizontal and deviated wells.

Provide a model that helps predict the critical gas rate for horizontal and
deviated wells.

Test the model against other available models using data from the literature.
Set up apractica experiment to observe and identify the critical gas rate for
horizontal and deviated wells.

Test the model predictions of the critical gas rate against the observed rates.

This dissertation is outlined as follows:

Chapter 2 defines the critical gas velocity concept and its importance. It aso
discusses common methods of artificial lift currently used to combat liquid

loading.



Chapter 3 presents an extensive literature review which starts with the
original work by Turner et a. (1969), considered to be the foundation of the
critical gasrate prediction theory.

Chapter 4 introduces the effect of impact and rebound on flowing droplets
and used this concept to derive the new model for predicting the critical gas
rate in horizontal and deviated wells.

Chapter 5 uses literature data from current horizontal models and tests the
new model using their data. A total of 69 horizontal wells and 162 vertical
wells data were used for comparison.

Chapter 6 describes the experimental setup and how it works in addition to
offering solutions to some of the issues encountered during its operation.
Chapter 7 compares the observed critical gas rate from two horizontal wells
with the predicted critical gas rate from the new model. A comparison with
other models from the literature is also presented in this chapter.

Chapter 8 discusses the effect of geometry on liquid holdup and offers a
proposal for how to adjust the liquid holdup calculation for horizontal and
deviated wells. It also discusses the effect of the adjusted holdup on tubing
design and placement within the wellbore.

Chapter 9 provides conclusions and recommendations for further

investigation of the critical gas flow rate in horizontal and deviated wells.



CHAPTER II

Critical velocity

2.1  Critical velocity theory

Numerous papers have been published regarding critical gas velocity, and several of
them addressed the issue of liquid loading in the wellbore. The main reason liquid
loading occurs is because the gas velocity becomes no longer sufficient to keep liquid
droplets present in the stream suspended and moving upward. It is important to predict
when the latter condition occurs in order to take appropriate measures. The most
common method of calculating that velocity is the Turner equation. The theoretical
work lies mainly on the required velocity of the streaming gas to offset the terminal
velocity of a spherical liquid droplet with a diameter d, (see Fig 2.1). The velocity
where the particle becomes stationary is called the critical velocity below which the
particle would settle further and above which the particle will start moving upward. The
critical velocity at which the forces are balanced is derived by equating the gravitational

force, buoyancy, and the drag force.

Droplet with
diameter d, N

Figure 2.1: Force balance on aliquid droplet with diameter d, flowing in agas
stream



In Fig. 2.1, Fy is the drag force exerted on the droplet by the flowing gas, Fy is the
buoyancy force action on the droplet, and F isthe force of gravity.

The droplet is subjected to different forces, when these forces are equal, the droplet
becomes stationary and the force balance is expressed as follows:

Fg=Fp+Fq oo (21)

where, for aspherical liquid droplet with density p; in a gas stream with density py:

1
Fa =55 PgCaAgVe —  -rmmmmmmmmmmmmoommoeooo e (2.2
d3
Fp=p,m ?p ------------------------------------ (2.3
and
7
Fy=pm ?p (2.4

Replacing EqQ. 2.2 through 2.4 into Eq. 2.1 and rearranging leads to

d3 1
(o, —pg) 7 o T ag Pg CaAq Ve - (2.5)

Solving for V¢, EQ. 2.5 can be written as:

_ /i (impg) 4o ..
Ve=039 "0 < (2.6)

where, p; is liquid density, pgq is gas density, Cq is the drag coefficient, d, the droplet
diameter, and g isthe acceleration of gravity.
Equation 2.6 represents the required gas velocity to offset the droplet terminal velocity.

Because the particle diameter is unknown, Turner used the Webber number (We) from
Hinze (1949) to represent the change in diameter as function of velocity. The Webber
number measures the ratio of inertia to surface tension; while inertia tries to break up

the droplet, the surface tension keeps it together.



_ Pgdp Ve

We=PLE2 oo 27)
where, ¢ isthe surface tension, and g is gravitational factor 32.17 Ibm-ft/Ibf-sec.
Re-arranging Eqg. 2.7 to represent the droplet diameter leads to:
Weage

= o2 28)
Replacing d with its value alows EqQ. 2.6 to be re-written as:

Vo= |ty Wee) L Wweoge 2.9)

RV g Pg Ca PgXVCZ '

Turner elected the use the highest value of the Webber number, 30, to represent the
biggest particle diameter. Later, he revised that number to 60 to better fit the observed
data. Turner reported the flowing condition of the wells to be in the turbulent region

where the drag coefficient Cy for a solid spherical particle is constant at 0.44 (see Fig.

2.2).
100,000 \
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Figure 2.2: Drag coefficient of different particle shapes as function of Nrep



Replacing We, Cq and converting o from Ib/ft=6.852 10™ dyne/cm, Eq. 2.9 can be

expressed as follows:

V. = 1593 (@a) .................................... (2.10)

Pg
Equation 2.10 is the Turner equation expressed as function of liquid density p; in
lbm/ft®, gas density pg in lbm/ft®, and o surface tension in dynes/cm.
Because it is common to express production in terms of flow rates and not velocity, the
critical velocity can be converted to the critical rate at standard conditions for a given

pressure, P, and tubular dimensions using the following equation:

Vo A
Gc =—-  TTTTTTTTITTmTosoosossosooooooeos (2.12)
g
where Byis the gas formation volume factor defined as follows:
ZTPstd
g = PX—Ts:: (2.12)

Substituting for standard conditions, pressure Pyq= 14.65 psi and temperature Tgq = 520

°R, Eq. 2.11 can be written as:

__3.067PAV,
CT Txz

.................................... (2.13)

where V. is critical gas velocity in ft/sec, A is the flow conduit cross sectional areain
ft?, P is the pressure at the evaluation point in psi, T is the temperature at the evaluation

point in °R, and Z is the gas compressibility factor.

2.2 Overview of artificial lift methods

Artificia lift (AL) techniques are used to maintain well flow status, and they can be
divided into two major categories. The first category manages to use the well’s own
energy to keep it flowing, i.e., by using plunger lifts, intermitters, or velocity strings.

9



The second category adds external energy to the system, mechanical or non-mechanical,
i.e, in gas lift, ESP, or compression. Hybrid methods of AL are also available and
typicaly include a mixture of both categories. The selection of the appropriate AL
method is based on numerous factors ranging from well type to economics. Following is
a brief description of different methods of AL that are commonly used in the oil and gas

industry.

2.21 Managed energy AL methods

a. Veocity string
Velocity string is smaller interna diameter (ID) tubing, or coil tubing, used to reduce
the required critical gas velocity to lift liquids. The main advantage of using this method
is that there is no additional associated operating cost, and it is relatively maintenance
free. Some of the drawbacks are the initial installation cost and the additional friction, a
potential scaling associated with the decreased tubing ID. Velocity string can aso be a
hybrid form of lift.

b. Plunger lift
A plunger lift consists of a plunger, bottom hole assembly or bumper spring, lubricator,
plunger catcher, arrival sensor, control valve, and the control logic. This method can
only be applied to wells that satisfy certain conditions related to the well own ability to
build pressure and the gathering system for available pressure. Plunger lift, once
optimized, can be operated at low cost and minimum maintenance. While running, the
plunger can aso maintain the tubing clean of scale, paraffin, or other causes of

restriction. On the other hand, the shut-in period associated with this operation means

10



deferred production unless a bypass plunger can aso be run. Also, plunger lift is not
preferable for high fluid volume wells, especialy deep wells, wells with a low gas to
liquid ratio (GLR), and wells with high deviations. Plunger lift can aso be a hybrid
form of lift.
c. Chemicals

Chemicals, especialy foamers, are used to lighten the hydrostatic column in the well
and reduce the water surface tension. The foaming agent is introduced to the system
either in a solid form (soap sticks) or a liquid form by means of a chemical pump that
discharges it downhole through a capillary string. Periodic batch treatment is also used
if needed. Thisis alow cost method that is readily available and easy to use. However,
care has to be taken to ensure that the chemicals will dissolve and will not form a
residue downhole that could act as an obstruction to the flow. Also, in the case of
capillary string application, access to the wellbore becomes limited.

Chemicals can also be a hybrid from of lift.

2.2.2 Added energy AL methods

a. Swabbing
This is a quick method to mechanicaly remove the liquid column that is causing back
pressure on the formation. Swabbing is the easiest, quickest, and most convenient
method to resume production from a completely loaded non-flowing well. On the other
hand, this operation has an associated cost, requires a low pressure environment, and
does constitute a permanent solution for liquid loading. Swabbing is not a hybrid form

of lift.
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b. Electric Submersible Pumps (ESP)
This is a downhole pump used to lift high liquid rate wells by means of a centrifugal
force created by the rotation of impellers. A typical ESP consists of downhole motor,
intake, pump with lift stages, electric cable, and power drive. Multiple other
components can be added if necessary for the better handling of gas or solids. The ESP
keeps fluid aways moved out of the wellbore, ensuring low bottom hole flowing
pressure (BHFP). Some of the drawbacks of an ESP are poor gas and solid handling
capacity and high cost; they also require electricity and stringent design criteria.

c. Rod pumping
This is the most widely used form of lift. The energy from the electric or natural gas
fired prime mover is transferred to the up-and-down-movement of the rod string and
pump to mechanically move fluids from the wellbore. This operation is simple,
effective, and well-understood. On the other hand, instaling a rod pump requires a
relatively higher initial cost, especially for electric units. Rod pump efficiency is
reduced at higher depths and higher deviations; also, they do not operate well in the
presence of both solids and gas. From a safety standpoint, having moving parts can
constitute a danger while operating.

d. Gaslift (GL)
During gas lift operations, a desired amount of gas is added to the well through the
mean of injection to lighten the hydrostatic head caused by liquid accumulation in the
wellbore; this allows the formation to continue producing a a lower BHFP and the
liquid to move outside the wellbore. The advantage of gas lift is its capacity for

handling both gas and solids in addition to the absence of downhole moving parts that
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can restrict the flow from the reservoir. Disadvantages include requiring a compressor
at the surface, areliable supply gas source, and installation cost.

Gas lift can be either conventiona or unconventional. Conventional GL requires the
installation of a packer set below a series of gas lift valves spaced along the tubing to
act as ports for gas entry. Unconventional GL only requires open-ended tubing where
the end of tubing is considered to be the injection point, and gas is allowed to enter and
lift fluid from that depth. Unconventional GL is aso referred to in the industry as
continuous gas circulation (CGC).

In this study, CGC was used to add gas to the well to identify the effective gas rate for

horizontal and deviated wells.
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CHAPTER I11

Literaturereview

3.1 Vertical well models
Turner et a. (1967; 1969) pioneered the effort to understand the causes of liquid
loading. In their work, they pursued both a film model and a droplet model and
concluded that the film model was not adequate because it did not fit their data
However, the droplet model, when compared to the 106 wells included in their data set,
had a good fit after adjusting it by a certain factor. Turner suggested increasing the
Webber number to 60 to better fit the observed data. This increase resulted in, as
mentioned earlier, approximately 20% upward adjustment to the derived Eg. 2.10.
Turner believed that the increase compensates for the assumptions made while deriving
the equation, such as:
- Theuse of the drag coefficient for solid spheres.
- The effect of natural gas on the Webber number as opposed to air as developed
by Heinz (1949).
- Assuming the particle becomes stationary when the critical condition is
satisfied.

Therefore, the adjusted Turner equation is as follows:

V, = 1.912 (“’%g)a)" ------------------------------------ (3.9)

where, V. is critical gas velocity, ft/sec, p; is the liquid density, lbm/ft, pg is the gas
density, Ibm/ft®, and o is the surface tension, dynes/cm. Turner further simplified his

equation by using standard values for gas specific gravity, temperature, and the Z factor
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to calculate gas density, pg, from the real gas law in addition to assuming a constant
water density and surface tension.

The gas density is obtained from the real gaslaw as follows:

P
pg =2.715y, rravrrsy At (32

where y4 is the gas specific gravity, T is the evaluating point temperature in °F, P is the
evaluating point pressurein psia, and Z is the Gas Deviation Factor.

Substituting yq = 0.6, T=60 °F, Z= 0.9 into Eq. 3.2 and simplifying, we get:
pg=0.0031P (3.3)
Equation 3.1 can then be re-written using Eq. 3.3 and the typical values of water density
pw= 67 Ibm/ft3, il density p, = 45 Ibm/ft®, water surface tension o, = 60 dynes/cm, and
oil surface tension o,= 20 dynes/cm as follows:

Therefore, for condensate, the equation is:

1
_4.043 (45—0.0031P)%

Ve (0.0031P)/2  TTTTTTTTTTmmmmmmmmmmmmmmmmmmmmmmTmT (3.4)
and for water:

1
I/C — 5321 (67-0.0031P)4 (35)

(0.0031P)1/2
Equations 3.4 and 3.5 are the ssimplified version of the Turner equation for both
condensate and water. They yield approximate values. However, for more accuracy, it is
advised to use the appropriate correlations for PVT calculations or, if available, to use
actual values as described in the original equations. If both phases, oil and water, are
produced, it is recommended to use the water equation to account for the heavier phase.
Turner used surface as the evaluation point and therefore, did not account for the effects
of pressure and temperature changes with depth, or changes in tubular dimensions on
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the critical velocity. Turner et al. calculated the critical gas rate for the 106 vertical
wellsincluded in their data set.

The results from the calculation were compared to the well status to check if the Turner
model predicts the actual well flow condition. For example, if the calculated Turner
value was higher than the actua flow rate while the well status shows it to be unloaded,
then the model did not predict the well condition, and “F’ for a false prediction was
recorded in the column. On the other hand, if the calculated Turner value was higher
than the actual flow rate while the well status shows it to be |oaded, then the model was
able to predict the well condition, and “T” for a true prediction was recorded in the
column. However, if the calculated Turner value was lower than the actual flow rate
while the well status show that the well was loaded, then the model was not able to
predict the well condition, and “F’ for a false prediction was recorded in the column.
Finally, if the calculated Turner value was lower than the actua flow rate while the well
status show that the well is unloaded, then the model was able to predict the well
condition and “T” for a true prediction was recorded in the column. Table 3.1
summarizes the comparison method used by Turner et al.

Table 3.1: Turner et a. critical gas rate predictions compared to actual observed rates

Qrurer VS- Qactual Well Status Prediction
Qrurner > Qactual Loaded T
Qrurner > Qactual Unloaded F
Qrurner < Qactual Loaded F
Qrurner < Qactual Unloaded T

Coleman et a. (1991) presented a series of papers discussing liquid loading onset for

low pressure wells, i.e., less than 500 psi. Their study included 56 data points. They
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conducted 17 tests in wells that would normally have stable gas rates are above the
critical rate. They continuously changed the wellhead flowing pressure (WHFP) of
these wells until showing signs of liquid loading. Then they obtained the remaining 39
data points from other gas wells showing a similar trend to determine their critical gas
rates. Coleman et al. (1991) then compared the Turner equation to al 56 wells and
concluded that the 20% adjustment suggested by Turner is not necessary for wells
flowing at less than 500 psi. They also proposed, like Turner, that the water equation
should aways be used, even if only condensate is produced. This is because water
vapor is aways present due to water condensation throughout the wellbore length as
both pressure and temperature drop. Coleman et al. (1991) stated that liquid load up
effects can be far more severe than amere drop in daily production rate and may cause a
reduction of reservoir deliverability. They also stated that, in some cases, water
condensation can cause formation damage in formations that contain swelling clays.

Hence, the Turner Eg. 2.10 should stay unchanged (without the 20% upward

adjustment). Therefore, for condensate, the equation is:

1
_3.369 (45-0.0031P)4

VC (0.0031P)/2 T (36)
and for water,

1
V= 4434 (67-0.0031P)* 3.7)

(0.0031P)1/2
Coleman et al. (1991) mentioned that temperature, gas and liquid specific gravities, and
interfacial tension do not have as significant effect on critical velocity as tubular
dimension and flowing pressure. They stated that the surface conditions can be used as

acontrol point to determine the critical rate. However, if the end of the tubing is set at a
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significant distance from the producing interval, the larger diameter should be used for

the calculation.

Nosseir et al. (2000) noted that the turbulent flow regime assumed by Turner, 10* < NRrep
< 2x10°, is not necessarily truein all cases. In addition, in some low flow rate wells, the
flow regime is rather transitional. In the latter case, the use of Allen’s method, Eq. 3.8,
for the purpose of calculating the critical gas velocity is more appropriate. The proposed

equation is asfollows:

0.21

V. =146 goss _Pmpe) — . (3.8)

) 0426
pO134xp,

where, density p in lbm/ft’, gas density py in Ibm/ft’, and o surface tension in
dynes/cm, and viscosity p in lbm/ft/sec..

Nosseir et al. (2000) calculated the particle Reynolds number (Ngrey) for Turner’'s data
and another set of data provided by Exxon. They found that the Reynolds number for
the Turner data exceeded the 200,000 value and for those conditions, the drag
coefficient is 0.2 (see Fig. 2.2). However, for Exxon's data, the calculated Ngep fell
within the Turner assumed region and, in that case, the drag coefficient was indeed
0.44. The results from incorporating the calculation of Nge, Causes the estimation of the
critical gas velocity to increase by 5% compared to the method proposed by Turner et

al. The new proposed equation is as follows:

0.25

V. =213 0025 ipg) . (3.9)

pgo.s
Their results showed that while the Turner model had a 23.5% error and the adjusted

Turner model had an 11.5% error, their model, on the other hand, was able to reduce the
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error to 8.3% (see Figs. 3.1 and 3.2). Nosseir et a. (2000) aso recommended that the
calculations be carried out at the wellhead because that is where gas sippage and

velocity is at its maximum value. Furthermore, the water properties should be used to
account for the denser phase.
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Figure 3.1: Rates from the adjusted Turner model compared to the actual Turner
observations, Turner et a. (1969)
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Figure 3.2: Rates from the Nosseir model compared to actual Turner observations,
Nosseir et a. (2000)
Li et al. (2002) showed that a liquid droplet entrained in a high velocity gas stream will
experience a pressure difference between its fore and aft regions, causing it to deform
and flatten to a convex bean shape with unequal sides (see Fig. 3.3). This deformation
affects the drag on the droplet as the spherical form has a lower surface area compared

to flat shapes, and which requires areduced drag to counter the force of gravity.

VC=‘*\/4(”’—"’§)><9><J ------------------------------------ (3.10)

CpxPyg

Based on the new shape, Li et a. (2002) suggested that a disk-shaped curve be used on
the drag coefficient chart (Fig. 2.2) for the applicable Nge, range that Turner suggested.
Therefore, the drag coefficient will be close to 1. Substituting Cq = 1 and g = 9.8 m/sec?

into Eq.3.10 which isreferred to asthe Li equation, we get:

V. =2.5x 4/% O e (3.11)
g

where, density p; in Kg/m?®, gas density pq in Kg/m?®, and o surface tension in N/m.
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Figure 3.3: Shape of entrained drop movement in high-velocity gas, Li et a. (2002)

They aso presented a simplified form of the equation in the same manner as Turner et
al. that is based on fixed values of gas specific gravity, temperature, Z factor, water
density, and surface tension. Li et al. (2002) compared data from 16 wells to the Turner
model and concluded that the latter overestimates the critical rate while their approach
has a better match which, in their view, might explan why some wells are still

operating at the sub-Turner critical rate.

Unlike Li et a.’s (2002) view that Turner equation overestimates the critical gas rate,
Guo et a. (2006) stated that the Turner equation underestimates the minimum critical
gas rate. They presented a 4-phase kinetic energy model to estimate the minimum gas
lift energy needed to maintain continuous liquid removal from the well. They started

with the Turner equation and used the kinetic energy formulato arrive to the following:

= e (3.12)
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Equation 3.12 represents the minimum kinetic energy required to keep liquid droplets
from faling. Guo et a. (2006) substituted the Turner critical velocity in Eq. 3.12 and
used 0.44 as the vaue of the drag coefficient. They neglected the effect of gas density;

therefore, the equation was reduced to:

Ex = 0.04,/op; e (3.13)

where, density p; in Ibm/ft*and o surface tension in dynes/cm.

By assuming values for water-gas and condensate-gas interfacial tensions to be 60 and
20 dynes/cm respectively, and water and condensate densities to be 65 and 45 Ibm/ft®
respectively, Guo et al. (2006) stated that the minimum kinetic energy value for gas
wells producing water should be 2.5 Ibf-ft/ft> and for condensate, to be 1.2 Ibf-ft/ft.
Guo et a. (2006) subsequently deduced that the 20% adjustment proposed by Turner is
the velocity needed to transport the particle from stagnation. Therefore, he proposed the
following equation as the minimum kinetic energy needed to transport liquid droplets:
Exm = 0.0576 \/Oop;  cemmme e (3.194)

Thus, Guo et a. (2006) proposed that the minimum required kinetic energy value for
gas wells producing water to be 3.6 Ibf-ft/ft> and for condensate, only to be 1.73 Ibf-
ft/ft. They calculated gas kinetic energy from any given gas well as compared to the
minimum required kinetic energy to determine the loading status of the well. To
evauate the kinetic energy of a given well, Guo et al. (2006) proposed substituting the
gas density by using theideal gaslaw and refined the gas kinetic energy as follows:

_13 YgxXTxqg?
Ek=646x 10783 28 (3.15)

where, vyq is the gas specific gravity, qq is gas rate in scf/day, A is the flow conduit
cross-sectional areain ft?, and P is the pressurein psia, and T is temperature in °R.
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Equation 3.15 indicates that the controlling conditions for liquid loading calculations
are bottom hole, which is contrary to Turner et a.’s view that surface conditions are in
most cases the controlling point.

Guo et a. (2006) proposed a correlation to calculate pressure variation aong the
wellbore and used it for the critical rate calculation. Then they compared their method
to the 106 data points in Turner’s paper and found that their method predicted 6 loaded
points in the unloaded region, as compared to 9 from the Turner method (Fig. 3.4).
Therefore, they concluded that their method is more accurate in estimating the required

minimum gas flow rates.
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Figure 3.4: The minimum flow rate calculated using Guo et.al method mapped against
the test flow rate, Guo et a. (2006)
Wang and Liu (2007) presented the shape of the liquid droplet as a disk rather than a
sphere, with Nge, ranging from 10* to 10°, and the Morton number (a dimensionless
number used to distinguish droplet shape) for the low viscosity liquid in gas wells as

possibly between 10™° and 10™2. The corresponding drag coefficient for these
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conditions is approximately 1.17. They presented their version of the critical velocity

caculation as follows;

V, = 0.5213 (@a)‘* .................................... (3.16)

Pg
where, density p, in Kg/m®, gas density pyin Kg/m®, and o surface tension in N/m.
Needless to say, their method predicts critical values significantly lower than the Turner

method. Therefore, caution needs to be taken while using this method.

In 2010, Zhou et a. investigated the effect of liquid amount on the critical velocity
calculation. They stated that the Turner model, even after the 20% adjustment, till
underestimates the critical velocity, causing wells with liquid loading issues to continue
to be loaded up. Zhou et al. (2010) stated that there is athreshold value of liquid amount
in gas-liquid mixtures, above which liquid loading might appear even if the critical gas
velocity of the well is higher than the calculated values by the Turner model. They
stated that in high velocity gas wells, the flow is turbulent and the droplet may move
irregularly in all directions, which might cause droplets to coalesce and start falling,

only to break and be repeatedly picked up again by the gas stream (see Fig. 3.5).
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Figure 3.5: Encountering two liquid droplets in turbulent gas stream, Zhou et al. (2010)

Zhou et a. (2010) used both Turner et a. (1969) and Coleman et a. (1991) data to
calculate the B, factor as the droplet concentration and set the threshold value of 0.01.
They aso relied on Barnea's (1987) work, which states that the flow regime changes
from mist flow to a slug or churn flow pattern when the liquid holdup value is higher

than 0.24. Zhou et al. (2010) defined H, as follows:

_ Vsi
L=
Vsgt+Vsi

where, Vg is superficial liquid velocity, and Vg is superficial gas velocity.

Therefore, they stated that the Turner equation should be used when H__ is less than or
equa to 0.24, and their equation should be used at values higher than 0.24. Their
proposed equation included an additional term to the origina Turner equation (also

referred to as the Coleman equation) as follows:

H
VC—N = VC—Turner + In (ﬁ_i) + a, ~ T TTTTTTTTTTTTTTTTTTTTTTTTTT (318)
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where 3, = 0.01, and a, = 0.6, as estimated from Turner’s data. 3., as mentioned earlier,
isthe GLR, and alphais a curve fitting constant.

While comparing their model to Coleman’s data, all calculated 3, values were less than
the threshold (Fig. 3.6). Therefore, the model prediction is the same as the Turner model
which, in turn, is better than the adjusted Turner model. The latter conclusion was
similar to the conclusion that Coleman deduced. However, when using the original
Turner et a. data, the Zhou et al. (2010) model showed an improvement in prediction
from both Turner and adjusted Turner models. The Zhou modd had 12 incorrectly
predicted wells, as opposed to 24 from the Turner model and 13 from the adjusted

Turner model (see Fig. 3.7).
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Figure 3.6: Application of the Zhou et al. model to Coleman et a. data, Zhou et al.
(2010)
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Guohua et a. (2012) introduced an energy loss factor. To arrive a their conclusion,
they started with Li’s equation and relied on both Wei et d.’s (2007) experiment with
high speed photographic techniques (Fig. 3.8) and Awoulsi’s (2005) laboratory data
(Fig. 3.9). They concluded that the reason why Turner equation over predicts the critical
velocity is because Turner does not account for droplet deformation in low pressure
conditions. They also invalidated Li’s model, citing that it under predicts the critical gas
rates because it does not take into account the rollover of the flat shaped droplet, which
causes it to have areduced bearing area. Guohua presented the following equation:

Ves = Vewi S X (Verurner = Vi) -mmmmmmmmmmmmmmmmmmmmmmmooooee (3.19)
Equation 3.19 reduces to Li’s equation when the loss factor, S, is equal to zero, and the

larger the Sfactor, the closer the model isto the Turner model.
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Figure 3.8: Rollover of the flat-shaped droplets in the process of rising, Wei et al.
(2007)

Figure 3.9: Critica gas flow rates comparison between different models, Awolusi

(2005)
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To determine the value of the S factor in Eqg. 3.19, Guohua et al. (2012) used data from
300 wells to estimate the loading condition. They fitted their model to actual data by
changing the S factor value. Their results showed that the S factor ranges from 0.75 to
0.83. Therefore, they used the upper limit of the Sfactor for their model as follows:

Ves = Ve +0.83 % (Ve rurner — Vo) --------mmmmmmmmmmmmmmmmmmmes (3.20)

When Guohua et al. (2012) used Coleman’s data to compare their model predictions to
Coleman et a.'s (1991) results (Fig. 3.10), they found that their model’s average
absolute relative error (Table 3.2) is 0.2553, which is less than both Coleman, 0.2806,
and Li, 0.4945. Therefore, they concluded that their model is more suitable for critical
velocity prediction in low pressure gas wells less than 500 psi.

Table 3.2: Average absolute relative error from the Guohua et al. model using Coleman
et a. data, as compared to Li and Turner models, Guohua et a. (2012)

TABLE 2—ERROR ANALYSIS OF THE THREE MODELS
Average Absaolute Coarrelaticon
Maodel Name R elative Deviation Coefficient
Turmmers Maodel 0.2806 0.8033
Li's Model 0.4945 D.77E0
MNew Model 0.2553 0.8033
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Figure 3.10: Comparison of the different models using Coleman et a. data, Guohua et
al. (2012)

3.2  Horizontal well models

Veeken et al. (2009) investigated the influence of reservoir parameters and well

parameters on the critical rate value. They found that the strongest correlation exists

between the Turner Ratio (TR) and the observed critical rate (qc) by using a quadratic

fitting (Fig. 3.11). The Turner Ratio is expressed as follows:

TR=—1 (3.21)

dTurner

They proposed a hew equation to identify the relationship between the critical rate and

the calculated Turner critical rate asfollows:

_ {(1—bQTurner)_[(bQTurner_l)z+4a-C-QTurner2] 0'5}

_ 10-00rumen) [(0Qrurmer—D* +4a¢Qrurmer® 7} (322

2a.Qrurner

qc
where, a=-2.17x10°, b = 3.09x103, and ¢ = 1.02.
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Equation 3.22 is referred to as modified Turner and is limited t0 Qrume l€SS than
300x10° m*/d (both gc and Grume arein 10°m/d).

Based on their study, they stated that inflow performance has no significant effect on
liquid loading, while deviation has limited influence, a 15% increase in criticd rate at
30-35 degree inclination. They also concluded that the outflow performance is not
affected by larger interna diameter (ID) if the length is less than 10% the total well
length. Veeken's multiphase study using the modified Gray (1978) equation for BHFP
calculation agreed with the modified Turner critical rate calculation and showed that the
rate increase is not necessary for low gas rate wells, which is in line with the Coleman
finding for low pressure wells. Lastly, based on both flow loop testing and transient
multiphase flow modeling, Veeken et a. (2009) concluded that liquid loading is not
controlled by droplet flow reversal, as conventionally understood, but is rather triggered

by liquid film flow reversal.
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Figure3.11: The Turner Ratio as function of observed critical rate, Veeken et al.

(2009)

Belfroid et a. (2008) stated that steady state models, like Turner, underestimated the
critical rate of gas wells. They discussed the effects of hole inclination, flow regime
transition, and the interaction between the tubing outflow and reservoir performance on
liquid loading. They used the work by C.A.M. Veeken NAM (2009) (Fig. 3.12) and the
definition of the Turner Ratio (Eq. 3.21) to compare the calculated critical rate to the
actual rate. They defined a reservoir parameter function, A, as a proxy of reservoir
permeability and reported that high permeability wells (low reservoir parameter A) do
not respond well to dynamic disturbances and may require twice the Turner criterion,
while high A parameter wells seem to cope better with dynamic conditions.

Subsequently, they conducted an experiment where they subjected both high and low A
parameter type wells to multiple GLR changes and then measured the liquid holdup
over time. Their results showed that the high A parameter wells were able to move the

liquid up the tubing while for the low A parameter wells, liquid dropped and
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accumulated at the bottom of the well. The latter wells could not restart or reverse this
trend, which caused them to cease flowing (Figs. 3.13 and 3.14).

As far as the influence of the inclination angle (Fig. 3.15), Belfroid et al. (2008)
believed that the influence of gravity diminishes as the well moves towards a horizontal
geometry. They stated that for a horizontal well, no liquid loading can occur because of
the absence of forces on the liquid that can counter the gas flow. They also mentioned
that the change from horizontal stratified flow to vertical distributed flow driven by
inclination allows for the liquid film to be progressively thicker at the bottom compared
to the top of the tube. Therefore, both the diminishing effects of gravity and the film
thickening affect the critical gas rate such that it increases with medium inclination as a
proxy to increased film thickness, while the lower effect of gravity is sensed at higher
inclinations (Fig. 3.16). The maximum required rate is identified to occur at a 50°
inclination, at which the critical velocity required is 40% higher than that predicted by

vertical models.
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Figure 3.12: Liquid loading point made dimensionless with the Turner criterion, as

function of reservoir parameter A, Veeken et al. (2009)
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Figure 3.13: Liquid holdup as function of time for high reservoir parameter A, Belfroid
et al. (2008)

Figure 3.14: Liquid holdup as function of timein low reservoir parameter A, Belfroid
et a. (2008).



| —5— Experimental data TU Delft |

[5/u)] Auoo)aa seb jeanun

Inclination angle (O = vertical) [degrees]

Figure 3.15: Critical gas velocity as function of inclination angle, Belfroid et al. (2008)

Figure 3.16: Comparison between experiment and model predictions, Belfroid et al.

(2008)
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In order to incorporate the inclination dependency, Belfroid et a. turned to the Fiedler
shape function from flooding experiments because it captures the dependence on the
inclination angle, ®. They concluded that a modified Turner model that incorporates the
Fiedler shape function would be better at predicting the critical rate in deviated wells.
The resulting equation is as follows:

1
0.38

V, = 1.593 ((”’_’Z’g) 0‘)4 BT T . (3.23)
g 0.78

Finally, predictions from Eq. 3.23 were compared to the experimenta results from their
air-water experiment and two gas wells. They found that the equation predicts the

observed loading point within 20% accuracy (see Table 3.3).

Table 3.3: Comparison of the Belfroid model in the form of Turner Ratio to actual field
data, Belfroid et al. (2008)

Inclination Experiment Commercial | TNO dynamic | Turner
Angle ffield data dynamic model (bottomhole,
model [-] angle adapted)
[-]
Well-1 40 90000
Sm*/day 2.1 - 1.2
Well-2 40 45000
Sm*/day 16 - 0.9
Air -Water 0 13.3 mfs 13 09 1.1
30 17.5mfs 09 0.9 1.1
60 15.5 m/s 0.9 0.7 1.2
80 11 mfs 1.0 0.4 1.1
Error +110% -60% 1+20%
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Among al literature discussed earlier, only Belfroid et al. (2008) and Veeken et al.
(2009) work specificaly is focused on dealing with horizontal and deviated wells. For
this study, in addition to our experimental data and the data from both of these authors
will be evaluated using our method and compared to the Turner model. The change of
parameters such as density, surface tension, and the Z factor with respect to pressure
and temperature is significant and should be taken into account when attempting to
calculate the critical rate. Therefore, this study will not rely on static values for these
parameters and will instead use the Sutton et a. (2010) recommended practice of using

appropriate correlations to cal culate each of these components.

This study will propose a new model for critical gas rate predictions in horizontal and

deviated wells and demonstrate that vertical well models should not be used in

horizontal and deviated cases.
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CHAPTER IV

New model development

41  BUR definition
Before discussing the flow in horizontal wells, it is important to understand how the
geometry of this kind of wells is achieved. The subsequent discussion is a high level

summary of how the curved section of awell is constructed.

Horizontal wells require drilling a curved section that connects the vertical section of
the wellbore to the horizontal section where the desired reservoir is targeted. Normally,
deviation does not present an issue in the vertical section (in pad drilling, deviation can
present lift issues due to shallow nudges moving the well to the desired interval).
However, during the drilling of the curved section, a succession of variable buildup
rates (BUR) is utilized to achieve the desired horizontal target. The BUR is the rate of
change in angle or deviation in the drilling path, and it is normally measured in
degrees/100 ft (see Fig. 4.1). The measurement while drilling tool, MWD, is deployed
as part of the drilling bottom hole assembly at a close proximity to the drill bit to
provide an inclination and azimuth that, among other things, alows the rea-time
tracking of the well path and helps the drillers stay on course with the planned well
trgectory. The degree of buildup depends on the final desired geometry and should
consider both completion and production requirements to maximize the life of the well.
Three types of well profiles are:

- Short radius, 5to 10°/3 ft
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- Medium radius (most common), from 6 to 35°/100 ft

- Longradius, 2 to 6°/100 ft

BUR (°/100 ft)
0 5 10 15 20

7400

7600 1

7800

000

MD,(ft)

8200

8400 J—

8800

Figure 4.1: Change of BUR versus measure depth (MD) in horizontal and deviated
wells
As drilling of the curved section continues, aternating between dliding, using an
oriented bent downhole mud motor, and rotating, using the rotation of the entire drill
string without directional orientation, allows an average BUR or dog leg severity (DLYS)
over agiven interval. In addition to providing the three-dimensional survey datato track
the wellbore progress, the MWD tool transmits the bit's orientation to the
surface. Orienting the motor in a particular direction alows for steering the drill bit
while in slide mode to stay on target or adjusting it to get back on target. In rotation, the

bit is allowed to drift freely in any particular direction. Therefore, the desired BUR is
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attained by controlling the ratio of sliding to rotating. Motors can have different bend
angles, and 100% dliding gives a uniform BUR for that particular bend setting.
However, rotation frequency and duration will control and adjust that theoretical 100%
slide BUR down to a lower BUR due to the tangent or uncontrolled well path during
that rotation period. Therefore, a 100-ft survey showing 10°/100 ft does not necessarily
mean a uniform BUR. It means that on an average, the BUR is 10° /100 ft—part of that
section could be 15°/100 ft while sliding and 5°/100 ft while rotating, hence, an average

of 10°/100 ft.

4.2  Effectsof geometry on flow stream

The deviation and change in the wellbore geometry will affect the flow because the gas
and entrained droplets stream do not react to the change in geometry until it is affected
by it; in other words, the stream does not know that there is a change in geometry
coming up ahead, it will only react to it onceitisinit. In addition, not all the dropletsin
a given surface area are going to be directly affected by the change in geometry. Some
droplets will be in direct contact with the wall or film, causing a series of impacts and
rebounds with a restitution velocity, Vy,, and then change direction (see Fig. 4.2). The
latter will create aregion with slower droplets positioned in the direct path of upcoming
streams, which triggers other series of impacts that cause slowdowns of impinging
droplets and their reorientation, allowing the whole stream to adjust to the new

geometry.

40



0; isthe incidence angle
0y isthe rebound angle
Vi isthe particleinitial velocity

Vy isthe particle rebound velocity

Figure4.2: BUR effect on particle rebound after impact

Jayaratne et al. (1964) studied the coaescence and bouncing of water droplets at an
air/water interface. Their experimental work indicated that for uncharged drops,
regardless of the droplet diameter, the fractional energy loss increases with an
increasing angle of incidence. For droplets impacting at normal incidence, the fractiona

energy loss convergesto alimiting percentage of approximately 95% (see Fig. 4.3).
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Figure 4.3: Fractional loss of energy suffered by a bouncing drop during impact
as function of the angle of impact, Jayaratne et a. (1964)

Jayaratne et al. (1964) also conducted an experiment where the droplets were alowed to
impinge almost tangentially on a water surface to simulate low impact angles and
concluded that the fractional energy loss is smaller for low impact angles because less
energy is consumed to deform the impacted surface. Data for the largest droplet used in
their experiment will be used for this study to account for maximum impact. Jayaratne
et a. (1964) data are fitted with a power regression model to correlate the fractiona
energy loss as function of the angle of incidence. Figure 4.4 shows the curve fit with R

of 0.98 indicating very good and adequate representation of the data. Therefore, the
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fractional energy loss at different angles of incidence can be calculated and used to

determine the effect of geometry changes on particle movement post impact.

(VAN

1 = 0.95
0.9 1 y = 0.0406x075%7
08 - R2 = 0.982
0.7 4
0.6 1
0.5 1
0.4 - ¢ Jayaratne and Mason (1964)
0.3 1 —— Regression Curve
0.2 - = = Maximum Limit
0.1 -
0 T T ) )
0 20 40 60 80

Angle of Impact (8;)

Figure 4.4: Power law fit of the fractional loss of energy suffered by a bouncing drop

4.3

during impact as a function of the angle of impact

Effective velocity derivation

At the critical condition, gas is flowing at a critical velocity of V4 = V. that alows the

particles to be suspended with V, = 0. To understand the effect of impact and rebound,

the particle will be alowed to travel at a velocity, V4, while the gasis stationary. When

the particle experiences an impact and rebound, it will slow down and have arestitution

velocity that is lower than V4 At this new condition, a stationary particle will

experience a drag from the gas that is representative of the restitution condition that is

lower than the critica condition; in which case will cause the particle to settle.

Therefore, to offset this effect, there should be an "expandable drag" built-in to the
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initial condition such that the drag will still alow for the critical condition to exist
should an impact occur. Failure to maintain the critical condition will cause the droplet
to settle and accumul ate.

During the impact process, it is assumed that the droplet does not endure a physica
change that affects the force of gravity, i.e.

Fg,before (4 1)

g.after ~ "Tomooooosososoooosooo-oooooooo
To determine the extra energy needed to maintain the critical condition, the following
steps should be taken:

1. The critical gas rate should be calculated using the Turner method (Eg. 2.10).
The calculated V. will subsequently be used to cal culate the effective velocity as
follows:

Verr = Vet Vinup mmmmmmmmmmmmmmm e (4.2)
where, V¢ is the effective lift velocity (ft/sec), V. is the critical velocity as expressed
by Turner's derivation (ft/sec), and Vyp is the additional velocity above the critical
velocity necessary to maintain the critical condition after arebound (ft/sec).

2. The maximum BUR or DL Sis obtained from the survey. Most surveyswill have
DLS.

3. The fractiona energy loss at the maximum BUR or DLS is determined using

Jayaratne et a. data, either graphicaly (Fig. 4.4) or numerically using the power

fit equation as follows:

2
(EV5) — 0.0406 x 607537 << e oL 43
2 i
V,

c



Note that the maximum fractional energy loss is set to an upper limit of 0.95. The latter
occurs at high impact angles, 0;>70° which is not a typically encountered BUR in
horizontal wells.

4. Therestitution velocity is determined from the fractional energy loss

%:aorllb=a><Vc -------------------------------- (4.4)

c

5. Thedrag on the particle under the new condition is then determined:

1
Fd,after = Z_QC Py Cq Ad (aVc)Z """""""""""""" (45)
Simplifying,

O_’Z 2
Fqafter = 29e Py Cq Ad e (4.6)
or,
Fd,after =a® x 1:"d,before ________________________________ (47)

6. The makeup drag, which is the result of the initia drag and the post impact drag
that is needed to offset the fractional energy loss, can then be determined.
Famup = Fapefore = Faafter = (1 — @®) Fapefore --------- (4.8)

7. The makeup velocity is then obtained from the makeup drag.
Vip=A—a®)VE (4.9)
Voup = BX Vo (4.10)

where 3 is the effective velocity factor.

‘8 _ \/m _____________________________ (4 11)

8. Finadly, by substituting Eq. 4.10 into Eq. 4.2, the effective velocity is calculated
to incorporate the makeup velocity in the critical velocity.

Veff = VC + ﬁVC -------------------------------- (412)



or,
Vorp = (L4 B) X Vo mmmmmmmmme e (4.13)
Equation 4.13 represents the critical velocity needed to offset the effect of geometry that
is present in horizontal and deviated wells. Note that in vertical case where the BUR, in
theory, should be or is close to zero, the model collapses back to the Turner model and

no further adjustments are needed.

44  Example using the new model

The example presented in this section shows the steps mentioned earlier for a medium-
radius horizontal well with a maximum BUR of 20°/100 ft. The droplets in their path
out of the wellbore will then face that buildup section and will impact and rebound.

Applying Eq. 4.3, the particle will experience aloss of 38.8% of itsinitial energy.

(ch—VbZ) = 0.0406 X (20)0.7537 = 0.388 (4 14)
vZ ’ 900 m-------o---o--o- .

or,

Vy =078V.. e (4.15)

The impinging droplet is then rebounded with an effective coefficient of restitution of
about 0.78.

The drag on the rebounded droplet reduces after impact; this change can be expressed

as:

Faafter = @*Fapefore ~ cmmmmmmmmmmeemmeeeeeeeee (4.16)
or,

Faafter = (0.78)*Fgpefore ~ ==m==mmmmmmmmmmmmmm e (4.17)
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Simplifying,
Fd,after = 0-608Fd,before """""""""""""""" (418)

The needed makeup drag to reinstate the critical conditioniis:

1:"d,mup = 1:"d,before - Fd,after = 0-392Fd,bef0re """""""" (419)

Hence,
Vi = 0392V . (4.20)
or, Voup = 0.6258V,.  mommmmmomomomomooomomomoo oo (4.21)

Therefore, EQ. (4.2) becomes:
Verr = Ve + 0.6258V,  —oommome e (4.22)
Vers = 1.6258V,.  smemmmmeemeemeemeeeeooe (4.23)

Substituting Eq. 2.10 into Eq. 4.23 leads to:

1
Vers = 1.625 % [1.593 (0);;%9)0)] ----------------------- (4.24)
Thus,
1
Ve = 2.589 ((”;gzﬂ ) (4.25)
Finally,
L .26

¢ TxZ

In Eq. 4.26, V; is the effective gas velocity in ft/sec, p; is the liquid density in Ibm/ft®,
pg is the gas density in Ibm/ft®, o is the surface tension in dynes/cm, A is the conduit
cross sectional area in ft?, P is the pressure at the evaluation point in psi, T is the

temperature at the evaluation point in °R, and Z is the gas compressibility factor.
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It is noteworthy to mention that a particle, when it falls in a vertical geometry, will go
an ample distance before it reaches the bottom. The case is different for horizontal and
deviated geometries because, after the impact and rebound, the particle reaches the
bottom very quickly. The latter case can create favorable conditions of coalescence

either with other particlesto start forming afilm or as a part of the existing film.

Coaescence occurs if the impact exceeds the force required to expel the thin air film
acting as a barrier between the two colliding droplets. Jayaratne and Mason (1964)
observed in their study that as the droplet size increases, the critical velocity and impact
angle required for coalescence decrease. It is not desirable for coaescence to occur
because it significantly affects the force balance for the critical condition, therefore
causing a large change in the required critical velocity. For example, in the case of two
identical droplets coalescing, the mass of the resulting droplet is double the origina
droplet, which in turn causes the force of gravity to double. On the other hand, because
the newly formed droplet will have a higher volume and, by default, a larger surface

2% \which

areathan the origina droplet, the drag force will only increase by a factor of
is not quite as much of an increase on the gravity force, assuming a direct relationship
between the two forces. This imbalance would alow the force of gravity to dominate

and cause the droplet to fall.

48



CHAPTER YV

New model comparison using literature data

51  Horizontal wells

As discussed in the literature review, two authors, Belfroid et a. (2008) and Veeken et
al. (2009), have presented data from horizontal wells and the observed critical flow
rates associated with them. In this section, the predictions of the effective flow rate from
the new model are presented and compared to the critical rate of other models available

from the literature.

5.1.1 Comparison at 20%100 ft

The first set of data used was taken from the Veeken et al. (2009) paper. They provided
67 data points, including well parameters and their observed critical rates. The new
model was applied to data sets of each well. Table B1 in Appendix B shows the wells
data and the calculated predicted critical rates, along with a comparison to the observed
critical rates. Conventional vertical models were also used to test their validity in
horizontal and deviated wells.

Figure 5.1 shows the deviation of the new model and the Veeken model from the actual
observed data. The new model appears to have closer predictions to the observed data
with an overall deviation of 19% compared to Veeken model which has 21% deviation.
The latter observation is especialy true for gas rates less 10,000 Mscf/d where the new
model shows even better performance and a reduced deviation of 17.5% from actual.

However, For rates higher than 10,000 Mscf/d , the Veeken model shows less deviation
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from the observed data than the new model. Under the latter condition, the absolute
deviation from the new model is 34% versus 25% for the VVeeken model.

The underlying cause behind the shift above 10,000 Mscf/d rate can be due to the fact
that at higher flowing gas rates the droplets are broken down and become very small
that the effect of gravity becomes minimal and therefore, even after impact and rebound

the drag force can still outweighs the gravity force.
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Figure5.1: Veeken model versus the new model using observed Veeken et al. data
at 20°/100 ft BUR
Table 5.1 summarizes the critical gas rate predictions in the form of absolute average
percent deviation that each mode yields for al 67 wells provided by Veeken et a.
(2009). While Table 5.2 shows the results only using wells flowing below 10,000
Mscf/d. The new model is shown to more accurately predict the critical gas rates in both
cases compared to al other models. It is also demonstrated that the conventiona

models, Turner and Coleman, both under-predict the critical gas rate and respectively
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have 26% and 39% deviation while using all data, and 24% and 36% deviation while
using only data less 10,000 Mscf/d. Therefore, these conventional models are unfit for

usage in horizontal and deviated wells.

Table5.1: Absolute average deviation using all Veeken et al. dataat 20%100 ft

Turner | Coleman | New model | Veeken

Absolute Average

Percent Deviation % 26 39 19 21

Table 5.2: Absolute average deviation using rates less than 10 MMscf/d from Veeken
et al. data at 20%100 ft

Turner | Coleman | New model | Veeken

Absolute Average

o 24 36 17.5 21
Percent Deviation %

The second set of datais obtained from the Belfroid et al. (2008) paper. They observed
and reported the critical gas rates for two gas wells and provided their own predicted
critical rates in adimensionless form as aratio of the observed critical gas rate and their
predicted critical gas rate. They referred to the ratio as a modified Turner Ratio, bottom
hole angle adapted by using the Fiedler shape function. For the first well they reported a
TR of 1.2, and for the second well they reported 0.9. These ratios trandate to a
predicted critical gas rate of 2,648 Mscf/d for Well 1 and 1,766 Mscf/d for Well 2.
Table 5.3 shows the reported data of the two wells included in the Belfroid et a. (2008)
paper, including well parameters, fluid parameters, and the observed critical gas rate.

These data were used to calculate the predicted critical gas rate for each well using the
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new model. Table 5.4 shows the comparative results between the new, Belfroid, and
Turner models prediction for both wells. For Well 1, the new model predicts a model
TR of 1.0, while both the Belfroid and Turner models predict a TR of 1.2. For Well 2,
both the new model and Belfroid model predict a TR of 0.9, while the Turner model
predicts a ratio of 1.1. These results indicate that the new model has better prediction
capabilities of the critical gas rates than the Belfroid model, and the Turner model has
the lowest prediction accuracy of the three models. Thus, based on the comparison of
data from both Veeken et a. (2009) and Belfroid et a. (2008), it is clear that the new
model shows an improvement in predicting the critical gas rates in horizontal and
deviated wells.

Table5.3: Belfroid et al. data (2008)

Well 1 | Well 2
Inner Diameter [m] 0.112 0.074
Length [m] 3743 3545

Inclination Angle [°] Variable | Variable

Gas[glmole] 18.6 175
Wellhead Pressure [bara] 14 21
Wellhead temperature [°C] 45 30
Reservoir temperature [°C] 120 110
Water density [kg/rn’] 1020 1050
Gas Rate [m”] 90000 | 45000

52



Table 5.4: Comparing different models using Belfroid et al. dataat 209100 ft

Turner Ratio, TR

New model Belfroid Turner
Well 1 1.0 1.2 1.2
Well 2 0.9 0.9 1.1

512 Comparison at 12°/100 ft

To enforce the conclusion from the previous comparison at 20%100 ft, the model was
also tested at a different condition. This time, a BUR of 12°100 ft was used to predict
the critical gas rate for the 67 wells from Veeken's work and the two wells from
Belfroid's work. Table B2 in Appendix B shows the well data and the calculated
predicted critical rates, along with a comparison of the predicted and observed critical
rates.

Figure 5.2 shows the deviation of the new model and the Veeken model from the actual
observed data. Once again, the new mode appears to have closer predictions to the
observed data with an overal deviation of 18% compared to Veeken model which has
21% deviation. The latter observation is especialy true for gas rates less 10,000 Mscf/d
where the new model shows even better performance and a reduced deviation of 15.7%

from actual.
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Figure5.2: Veeken model versus the new model with observed Veeken et al.

data using 12%100 ft BUR
Table 5.5 summarizes the critical gas rate predictions using a BUR of 12°100 ft in the
form of absolute average percent deviation that each modd yields for al 67 wells
provided by Veeken et a. (2009). Table 5.6 shows the results using only wells flowing
below 10,000 Mscf/d. In both cases the new model is shown to more accurately predict
the critical gas rates when compared to al other models.

Table5.5: Absolute average deviation using all Veeken et al. dataat 12°100 ft

Turner | Coleman | New model Veeken

Absolute Average

Percent Deviation % 26 39 18 21




Table 5.6: Absolute average deviation using rates less than 10 MMscf/d from Veeken
et al. dataat 12°/100 ft

Turner Coleman | New model | Veeken

Absolute Average

Percent Deviation % 24 36 15.7 21

The comparison of the new model predictions with the Belfroid et a. (2008) moddl in
Table 5.7 shows that for Well 1, the new model predicts aratio of 1.1, while both the
Belfroid and Turner models predict aratio of 1.2. In the meanwhile, for well 2, both the
new model and Belfroid model predict aratio of 0.9, while the Turner model predicts a
ratio of 1.1. Again, the new model shows that it has better prediction capabilities of the
critical gas rates than both the Belfroid model and the Turner model.

Table 5.7: Comparing different models using Belfroid et al. data at 12°/100 ft

Turner Ratio
New model Belfroid Turner
Well 1 11 12 12
Well 2 0.9 0.9 11

5.1.3 Comparison at different buildup rates
In order to determine the extent of improvement and usage range, the new model was
applied to a range of BUR from 3 to 30 /100 ft. Figure 5.3 shows the results of the

comparison of the new model’s critical gas rate predictions to the Veeken model. The
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model appears to have better performance from 4 to 29 °/100 ft, while Veeken’'s model

is better at less than 4 /100 ft and more than 29 °/100 ft.
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Figure5.3: Veeken model versus the new model with observed Veeken et a. data at
different °/100 ft BUR
For flow rates less than 10 MMscf/d, Fig. 5.4 shows that the model performance
significantly outperforms Veeken's model throughout the investigated range of BUR
from 3 to 30 /100 ft. The possible underlying cause behind the improved performance

of the new moded at rates less than 10 MM scf/d was discussed earlier.
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Figure5.4: Veeken model versus the new model with observed Veeken et a. dataless
than 10 MMscf/d at different °/100 ft BUR

Similar to the comparison with Veeken's model, Fig. 5.5 shows the result of the
comparison of the new model critical gas rate predictions to the Belfroid model. The
new model appears to have better performance from 4 to 30 %100 ft, while Belfroid’s
model is more accurate at less than 4 °/100 ft.
Therefore, it is recommended to use the new model only within BUR range values of 4
to 30 %100 ft. This range covers most of the medium radius wells, which are the most
common type of wells currently drilled. Thus, based on the comparison of data from
both Veeken et al. (2009) and Belfroid et al. (2008), it is clear that the new model shows

an improvement in predicting the critical gasratesin horizontal and deviated wells.

S7



16 1
15 o .
14 » B
13 + \ .
124 #
c b 4
=]
g M 4
o) \ { P
0 10 ¢
4
97 4 4 +-=New Model
8 000’0””’ === Befroid Mode!
*
VS o
v L & 4
6 - L] - - - - L}
0 5 10 15 20 25 30 35
BUR (°/100 ft)
Figure5.5: Belfroid model and the new model versus observed Belfroid et al. data at
different /100

52  Vertical wels

In vertical wells, the new model collapses to the Coleman model. However, it was
desired to compare the mode! results with a 20 %100 ft BUR to the vertica case. In
other words, it is desired to predict what the critical gas rate should be if the same
vertical well were horizontal. This can occur if a sidetrack program is started in a
vertical well’s field. Understanding the critical gas rates needed prior to sidetracking a
vertical well’s field is important when planning to upgrade the infrastructure, especially
if gas lift will be implemented. Both Coleman and Turner presented data sets for

vertical wells in their work. Table 5.8 shows the data from the 56 wells presented by
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Coleman et al. (1991), and Table 5.9 shows the deviation of the new model compared to
both the Coleman and Turner models. It is clear that both traditional vertical models
show better predictions than the new model for vertical wells (see Fig. 5.6).

Table 5.8: New model versus Coleman model predictions using Coleman data

Critical Rate (M scf/d)

Test | WHFP (psia) | Observed | Coleman | Turner New model
1 275 726 874 977 1017
2 205 660 744 844 867
3 212 585 737 858 859
4 150 468 618 722 720
5 185 573 691 802 806
6 145 593 619 710 723
7 145 617 619 710 723
8 70 250 412 494 481
9 140 607 580 698 675

10 138 600 575 693 670
11 130 635 586 673 684
12 125 583 563 660 657
13 165 649 628 758 732
14 395 647 1,031 1169 1199
15 255 612 821 941 957
16 355 952 962 1109 1119
17 105 430 520 605 605
18 99 396 494 587 577
19 70 164 410 494 481
20 43 329 323 387 377
21 52 267 356 426 416
22 352 640 983 1104 1143
23 225 615 780 884 909
24 495 1072 1,174 1307 1363
25 94 748 488 572 571
26 65 276 395 476 460
27 59 500 371 454 432
28 50 366 348 418 407
29 39 324 311 369 364
30 97 90 484 581 565
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Test | WHFP (psia) | Observed | Coleman | Turner New model
31 60 220 389 457 454
32 90 355 478 560 556
33 50 338 341 418 397
34 60 401 398 457 464
35 80 450 460 528 537
36 107 471 508 610 591
37 135 372 553 686 644
38 131 518 590 675 688
39 130 330 562 673 654
40 82 511 460 535 536
41 90 558 461 560 537
42 100 493 491 590 572
43 183 627 676 798 789
44 120 518 542 646 632
46 47 358 349 405 407
46 315 885 924 1045 1075
47 165 712 638 758 743
48 75 408 438 511 511
49 380 666 924 1147 1072
50 155 648 630 734 734
51 145 564 608 710 710
52 235 781 782 903 910
53 225 755 764 884 890
54 165 620 610 758 710
55 49 430 335 413 392
56 59 397 372 454 434

Table 5.9: Absolute average percent deviation comparison for Coleman’s 56 wells

Absolute Per cent Deviation %

Coleman | Turner New model

28 45 7

60



1200 =
[ | X
. 1000 + X
° X
# 800 1
é [ | X
S 600 ; amiiant
B
>
g 400 +
Q == Observed
o B Coleman model
200 » Turner model
4 X New Mode
O - - - L}

0 200 400 600 800 1000 1200 1400 1600
Calculated g, (M scf/d)

Figure 5.6: New model versus conventional models predictions using observed
Coleman data
In the case of Coleman’s 56 data points, the absolute average percent deviation for the
new model is 77%, while Coleman is 28% and Turner is 45% (see Table 5.9). Coleman
data represents low pressure wells, i.e. less than 500 psi. This finding agrees with
Coleman’s statement that the 20% adjustment suggested by Turner is not necessary.
Similar conclusions as those from the Coleman comparison are drawn when comparing
the new model with the Turner model using Turner et a. data. Figure 5.7 and Table B3
in Appendix B show the data from the comparison. Out of 106 data points, 16 were
reported by Turner as questionable, while 6 were reported as near loaded, 30 as |oaded
up, and 54 as unloaded. If the questionable data are disregarded from the comparison,
the Turner model missed 26 data points out of 90 (see Fig. 5.8). On the other hand, the
new model missed 34 out of 90, with most predictions being overestimated (see Fig.

5.9).
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Figure5.7: The new model versus the Turner model predictions using observed Turner
data

These results show that the Turner model has better prediction capabilities than the new
model in vertical wells. The reason why both traditional vertical models outperform the
new model is because, when using a deviation, the new model overestimates the gas
critical rate. Also, it isimportant to note that the tested wells are al vertical in which the
effects of geometry are quasi-absent.

In conclusion, vertical well models are suitable for vertical wells only and the new
model collapsing back to the vertica models in vertica well cases is appropriate.
However, if a vertical well geometry is changed, i.e. sidetrack, the new model will
provide better solution to account for the required increase in gas volumes and plan the

appropriate infrastructure to account for the changed condition.
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Figure 5.8: Turner model missed data compared to observed Turner data
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Figure 5.9: New model missed data compared to observed Turner data
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CHAPTER VI

Experimental setup

To identify the critical rate needed to maintain continuous production from the wells,
experimental work on two horizontal wells operating at an intermittent state below the
critical gas rate was conducted. Overdl, two different types of setups were used
depending on different factors, including usability, availability, and proximity of the
source gas, compressor type and availability, line pressure, and economics. The
objective, however, remained the same—to know the total gas rate at which these wells
will start flowing continuously in a stable condition. This is accomplished by using
continuous gas circul ation techniques. In the latter operation, compressed gas is injected
down the tubing-casing annulus through open-ended tubing, preferably set just above
the producing interval, where the injected gas will assist formation gas in lifting the
liguids. The increased Gas Liquid Ratio (GLR) reduces the hydrostatic backpressure on
the formation and allows more reservoir contribution therefore, helping lift the liquids.
The injection gas rate is then varied until atota gas rate that causes the production rate

to stabilize isidentified. That rate is then considered to be the critical rate.

6.1  First setup

The setup shown in Fig. 6.1 consists of a gas makeup source connected through a poly
pipe to the inlet of a gas-powered compressor where the supply gas goes through three
stages of compression to obtain the desired discharge pressure before exiting through

the compressor discharge line to the casing—tubing annulus. The desired injection rates
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and pressures are controlled and automated using equal percentage motor valves (see
Figs. 6.2 and 6.3) through the SCADA system that uses an Electro-Pneumatic
Transducer, current to pressure (12P) (Fig. 6.4). The discharge, in this case, has a
bifurcation where the first line is connected to the casing tubing annulus, referred to as
the backside or injection line, and the second line is connected to the sales line. A rate
controlled valve is set on the injection line to allow the desired flow through the gas
injection meter. For example, if the desired injection rate is 500 Mscf/d, the valve will
provide a flow area large enough to alow that gas volume to flow through it, and if the
rate becomes increasingly higher, the valve will automatically adjust and reduce the
flow area to reduce the flow rate back to the desired rate. The pressure control valve
was installed to maintain the desired discharge pressure from the compressor. This was
necessary to allow continuous operation above the line pressure, which was routinely
high, i.e.,, more than 600 psi. Both I2P controlled valves have bypass in case of
malfunction. The bypass allowed for manual control over the operation by means of a
choke. This, however, is not idea because the rate through the choke cannot be
maintained constant and will fluctuate with pressure. A valve was set downstream of the
separator and upstream of the sales line to act as arelief valve to the sales line in case

the gas intake was higher than the desired suction pressure in the compressor.
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Figure6.1: Thefirst experimental setup



Figure 6.2: The control valve used for pressure and rate control, Courtesy of

Kimray

Figure 6.3: Cutaway of the control valve, Courtesy of Kimray

Figure 6.4: Electro-pneumatic transducer, current to pressure (12P), Courtesy of
Fisher
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Figure 6.5: High-speed 3-stage compressor, Courtesy of NGSG

All piping is 2 inches ID schedule 80. The installation of the pulsation plate helped to
reduce the vibration on the line caused by the compressor, especially with the sensitive
telemetry equipment at proximity of the discharge line. This setup enabled better and
more accurate control over the operation because it ensured a stable rate and pressure
with minimum operational fluctuations. On the other hand, it required good
telecommuni cation infrastructure in addition to reliable equipment.

The compressor used in this case was a 3-stage reciprocating high speed compressor
(Fig. 6.5). Injection gas came in from the supply source through the poly pipe, and its
pressure was regulated down to the desired suction pressure using the suction controller
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valve. The reduced pressure gas then entered the suction scrubber to dry off by
knocking off as much liquid as possible. The stripped liquids were dumped from the
bottom of the scrubber to the producing tanks while the dry gas exited the top of the
scrubber towards the first stage of compression. The dual reciprocating piston
compressed the gas until it reached the discharge pressure from the first stage. The hot
compressed gas was sent towards the cooler to go through series of heat exchangers to
dissipate the heat from first compression stage. As the gas temperature dropped, it
reached the dew point and started dropping liquids. This is not desired, and therefore,
the gas was sent to a second scrubber where these liquids were accumulated at the
bottom of the vessdl and sent to the producing tanks while the dryer gas once again
exited at the top of the scrubber and flowed towards the second stage of compression.
The gas entered the compression chamber at a higher pressure than thein first stage and
was compressed further until it reached the discharge pressure of the second stage.

At this point, the gas was flowing at a higher pressure and temperature than the inlet
pressure at the second stage. Following the second stage of compression, the gas was
sent towards the cooler again to reduce its temperature and then continued, along with
the dropped liquids, towards the scrubber for the third stage. The remaining liquids
were again accumulated at the bottom of the scrubber and dumped into the producing
tanks, while the gas exited at the top and continued flowing towards the third stage of
compression where it was further compressed until it reached the final desired discharge
pressure. At this point, the gas was hotter and was flowing at higher pressure than the
first and second stages. This high pressure gas exited the compressor skid towards the

well and was injected down the tubing-casing annulus.
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The set up is build to handle the occasional high line pressure through the use of flaring
system that is activated when line pressure reaches s certain threshold. Gas is re-routed
to the flare system to avoid venting it to atmosphere.

Also, there might be periods of low gas supply towards the compressor. In the latter
case, the fuel recycle valve will open and continues supplying fuel gas to the
compressor engine in order to keep it from shutting down until the gas supply reached
itsnormal level once again. If supply gas levels remain low for an extended time period,
the compressor engine temperature will continue rising and will eventually reach high
enough level that will force the compressor to shut down. Safe guards to protect the
compressor from exceedingly high temperatures that can damage it are put in place and

will betriggered if such event occurs.

6.2  Second setup

The second setup, as shown in Fig. 6.6, is more basic and did not have the injection
meter or the rate and pressure control valve as part of the instalation. In this case,
supply gas came from an offset well where it went through compression to reach higher
pressure; then it was discharged to the injection well tubing-casing annulus to assist in

the lifting operation.
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NB: BPV: back pressure valve; BV: ball valve; MV: motor valve; and CV: check valve. With the exception of the 3" poly pipe

suction line, all piping was 2" Schedule 80.



Not al types of gas can be used for injection. There are stringent specs of gas that need
be met before it is suitable (see Table. 6.1). The source gas has to be sweet gas, that is,
it has to contain less than 50 ppm of H,S. Gas at higher concentrations than that will
cause damage to the engine. Also, it is preferable that the gas heating value is less than
1400 BTU; otherwise, residue will be deposited from inefficient burning of the rich gas.
Table6.1: Typica gasanaysis needed for compression design and selection

FRACTIONAL ANALYSIS
CALCULATED @ 14.650 PSIA AND 60F

MOL% GPM (REAL)
HYDROGEN SULFIDE. .. 0.008
NITROGEN........... 1.915
CARBON DICXIDE..... O%.;gg
METHANE............ &l.
ETHANE. ...... .o 9.378 2.502 CORRECTED H23 PPMV = 75
PROPANE. ... ...vovun 3.902 1.072
ISO-BUTANE......... g.ggg g.%ig
NOR-BUTANE......... . ;
ISO-PENTANE. . ...... 0.179 0.065 'Z' FPACTOR (DRY) = 0.9989
NOR-PENTANE........ 0.255 0.092 '%Z' FACTOR (WET) = 0.9965
HEXANEE .......... 0.1?% g‘ggg
HEPTANES + ........ 0.19 .
—————————————— 26 LB. R.V.P. = 0.495
TOTALS ... cvouiany 100.000 4,357
. .CALCULATED SPECIFIC GRAVITIES.. . .CALCULATED GRCSS HEATING VALUES..
IDEAL, DRY...... 0.6976 BTU/CF - IDEAL, DRY ..... 1165
IDEAL, WET ..... 0.6963 BTU/CF - IDEAL, WET ..... 1145
REAL, DRY ..... 0.6995 BTU/CF - REAL, DRY ..... 1169
REAL, WET ..... 0.6984 BTU/CF - REAL, WET ..... 1149

The supply of gas from the offset well will eventually phase away and be used only for
restart operations. Because the well-produced liquids and both formation and injection
gas, the total stream was taken to a 2-phase separator where the liquids dropped to the
bottom of the vessel and were sent to the central tank battery. The gas was taken out of
the outlet of the scrubber and plumbed back to the suction line where the pressure was
regulated before it entered the compressor. Another line was laid from the separator to
carry the excess gas to the sales line to avoid backups due to higher than anticipated

gas volumes that exceeded the compressor capacity or unplanned shut downs and
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upsets of the compressor. In absence of automation, the injection rate was inferred
from the compressor performance curves and was manipulated by varying suction and
discharge pressures. Figure 6.7 shows the compressor performance curve used in this

experiment (Courtesy of Compresco PartnersL.P.).

Figure 6.7: Compressor performance curves
6.3 Operational issuesand solutions
Few issues can arise during this operation. They could be surface or bottom hole
related. Followingisalist of potentia problems and solutions to rectify them.
6.3.1 Compressor down on maximum discharge pressure
In case the compressor repeatedly goes down on high discharge, the following causes
should be investigated. The volume of liquid accumulated in the wellbore may be high.
This can be resolved by reducing the liquid volume in the well before starting the

compressor injection, which can be done either by swabbing the well or using the
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compressor injection down both the casing annulus and tubing to push the fluid level
back to the reservoir. This could also be caused by the lifting point in the wellbore
being too deep; in which case, it is necessary to move the injection point to a shallower
depth by introducing new tubing perforations. This solution is not optimal because it
still leaves the section below the injection point exposed to the potential of liquid
loading. If this issue keeps occurring, then conventional gas lift might be a better
solution. Other causes could be as simple as a malfunctioning discharge vave can. In
that case, a routine check and maintenance of the valve to ensure proper functioning
would suffice.

6.3.2 Compressor down on low suction pressure

Issues such as low gas supply to the compressor or a malfunctioning suction valve will
cause the compressor to continuously go down on low suction. To avoid these
interruptions to the operation, it is important to keep the supply gas steady by adding a
recirculation line or gas buyback meter in addition to having a maintenance program to
routinely check the suction control valve to ensure proper functioning. Hydrate
formation, especially in cold weather conditions, will cause an interruption in supply
gas or freeze the controls of the valve. In the latter case, heat tracing the lines and
valves and/or injecting methanol will help the lines stay clear and ensure that the valve
functions normally.

6.3.3 Monitoring pressure

Monitoring casing and tubing pressure was al so used to evaluate the effectiveness of the
process. The following are some observations noted during the operation:

- Equalized casing and tubing pressures
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- Equalized or quasi-equalized volume of both injection and produced gas

- Low to no fluid production observed at the surface

- Low fluid level in the well, confirmed by a pressure gradient survey or fluid

shot.

The combination of the conditions described above is typically an indication of reduced
inflow performance due to either “in-reservoir conditions’ such as low reservoir
deliverability caused by depletion or skin, or “in-wellbore conditions’ caused by
blockage due to scaling from incompatible water sources, paraffin, or sand from the
fracturing treatment or formation. lowering the tubing to reach a new fluid level or
cleaning the well out and/or re-stimulating it to re-establish reservoir deliverability are
all potential solutions to resolve the low deliverability issue. Another issue that can be
encountered, especialy after the initia startup, is climbing casing and tubing pressures.
The latter issue is mainly caused by higher injection volume and discharge pressure
than necessary and/or the presence of restrictions causing back pressure. To resolve this
issue, it is recommended to reduce the injection volume or reduce the discharge
pressure. The latter can be done if a back pressure valve is set downstream from the
compressor discharge. The restrictions and/or pressure drop points could also be
reduced, i.e. by opening the choke and reducing elbows. Low casing and tubing
pressures can also occur, especidly in the presence of a thief zone or injection line
leaks. Typically, raising the tubing above the thief zone or inserting circulating holes
above it while reducing the discharge pressure and/or injection rate can resolve the low
pressure problem. As for injection line leaks, implementing routine maintenance and

visual inspectionsisthefirst line of defense to resolve theissue.
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CHAPTER VII

Experimental results

The previous chapter described the experimental setup and equipment used in order to
execute the procedure to identify the effective lift rate. In this chapter, data gathered
from the experiment are analyzed and compared to the predictions from the critical gas
rate models including the new model, the horizontal well models, Veeken model and
Belfroid model, and the conventional vertical well models, Turner model and Coleman
model. As discussed in the literature review chapter, Belfroid’'s model is a merger
between the Turner model and the Fiedler shape function which attaches a dependency
of the model to the deviation angle . The latter dependence results in a maximum of
35% rate increase over the critical gas rate calculated using the Turner model and this
peak increase occurs at 53° inclination. At the latter inclination, the Belfroid model
critical gas rate prediction is ailmost similar to the new model. However, the error from
the Belfroid model can have a large range depending on the inclination angle of the
evaluation point. For example in Horizontal Well 1, the range is from zero to 37%, and
for Horizontal Well 2, it is from 5 to 41%. For the purpose of this work, the maximum
build up angle of each of the two horizonta wells is implemented when using the
Belfroid model. Table 7.1 shows the properties of the two horizontal wells. The actual
production data from these wells were recorded and only days with valid data were
used. Valid data means data collected for days when the wells did not experience any
problems and had 100% run time without compressor problems, such as mechanical

problems, gas supply issues, or freezing due to weather conditions. Also, after the
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injection rate was changed, the well was alowed to become stable before the data were
recorded so that the results were not skewed by unsteady state conditions.

Table 7.1; Datafrom Horizontal Wells1 and 2

Horizontal Well 1 | Horizontal Well 2
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7.1  Horizontal Well 1
The recorded production data for the first horizontal well are captured and presented in
Table 7.2. Figure 7.1 depict the data in graphical form showing Well 1 response to the

different injection rates applied to determine the gas rate needed to keep it unloaded.
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Figure 7.1: Critical gasrate for the Horizontal Well 1
Table 7.2: Horizontal Well 1 production data

Days (B(()):DlD) (Mc;?fsld) (évvsLeer) P(r:;swn?e ;grge InJGe:tSed -l;l(\)/}:lzf(/;da)s
(psia) | (psia) |(Msch/d)
1 17 257 13 637 11 | 250 | 507
2 25 256 13 631 111 | 250 | 506
3 17 254 13 637 12 | 250 | 504
4 17 252 12 643 114 | 250 | 502
5 25 250 13 637 114 | 250 | 500
6 25 262 12 540 120 | 30 | 612
7 25 255 12 562 120 | 350 | 605
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Casing Tubing |Injected

Days (ngD) (Mi(?fsld) (|\3Nv3tpe|r3) Pressure | Pressure | Gas T(l?/}:lzf(/;da;s
(psa) | (psia) |(Mscifd)
8 038 254 15 566 120 | 350 | 604
9 0.0 263 13 551 116 | 350 | 613
10 17 264 17 542 116 | 350 | 614
11 17 261 13 542 118 | 350 | 6u
12 01 261 15 542 118 | 350 | 611
13 0.0 256 10 543 118 | 350 | 606
14 26 256 16 557 118 | 350 | 606
15 58 258 9 883 116 | 350 | 608
16 038 261 10 781 116 | 350 | 6u
17 17 261 13 802 116 | 350 | 6u
18 17 259 16 802 114 | 350 | 609
19 25 266 16 473 120 | 400 | 666
20 17 266 15 467 120 | 400 | 666
21 17 267 14 457 120 | 400 | 667
22 17 268 14 452 120 | 400 | 668
2 25 268 13 452 120 | 400 | 668
2 17 266 13 452 120 | 400 | 666
25 17 265 14 495 120 | 400 | 665
26 25 264 13 491 120 | 400 | 664
27 25 264 13 485 120 | 400 | 664
28 17 262 13 493 120 | 400 | 662
29 17 265 13 493 120 | 400 | 665
30 17 263 13 496 120 | 400 | 663
31 0.8 259 12 491 120 | 400 | 659
2 17 278 16 412 120 | 450 | 728
3 25 278 13 403 114 | 450 | 728
34 0.0 279 14 393 118 | 450 | 729
35 | 08 284 14 301 120 | 450 | 734
36 17 277 14 305 114 | 450 | 727
37 17 284 14 299 116 | 450 | 734
3B | 08 279 13 305 114 | 450 | 729
39 | 08 283 14 280 99 a9 | 732
40 17 282 14 203 114 | 450 | 732

An initial total rate of 500 Mscf/d (250 Mscf/d sold and 250 Mscf/d injected) did not
help stabilize the well, and the production rate showed a continuous decline. The rate
was increased to 610 Mscf/d (260 Mscf/d sold and 350 Mscf/d injected). At this rate,
the wells started cycling, as is evident in both the water and gas rates. Note that at day

13, the gas rate dropped, followed by a drop in water production the following day; then
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at day 14, a surge in water production was followed by an increase in gas rate. The
heading behavior was indicative of the well operating below its critical rate. The total
rate was increased again to 670 Mscf/d (270 Mscf/d sold and 400 Mscf/d injected). At
that rate, the cycling effect started to wane; however, the total production trend was still
descending. The latter observation indicates that the critical rate condition was almost
achieved. Therefore, the total rate was further increased to 730 Mscf/d (280 Mscf/d sold
and 450 Mscf/d injected). At this rate, the production started to show signs of stability
for both water and gas. Therefore, a total rate of 730 Mscf/d was considered to be the
critical rate.

Table 7.3: Observed critical gas rates and percent deviation for Horizontal Well 1

Actual Lift Rate, Mscf/d | 730 | Absolute Percent
Deviation, %
Coleman CR, Mscf / d 455 38
Turner, Mscf / d 541 26
New model, Mscf / d 692 5
Belfroid, Mscf / d 495 32
Veeken, Mscf / d 579 21

Table 7.3 shows the calculated critical rates and deviations with respect to the actual
observed criticd rate from both conventional vertical and horizontal models. Compared
to the vertical model's, Coleman (455 Mscf/d and 38% deviation), Turner (541 Mscf/d
and 26% deviation), it is clear that the new model shows better prediction of the critical
rate. Also, when compared to the horizonta models, Veeken (579 Mscf/d and 21%
deviation) and Belfroid (495 Mscf/d and 32% deviation), the new model (692 Mscf/d

and 5% deviation) clearly outperforms both in predicting the critical rate.
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7.2  Horizontal Well 2
A similar process to that described for Horizontal Well 1 was applied to the second

horizontal well. The production datais presented in Fig. 7.2 and Table 7.4.
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Figure 7.2: Critical gasrate for Horizontal Well 2
Table 7.4: Horizontal Well 2 production data
. . Injection | Total Avg | Avg
Gas oil Water | Fluid
Days Rate Gas Csg Thg
(M scf/d)|(BOPD) | (BWPD) | (BFPD) (Msci/d) | (Msctid)| (psi) | (psi)
1 190 44 25 69 509 699 419 94
2 174 62 0 62 503 678 420 91
3 187 69 0 69 503 690 416 9
4 172 59 0 59 501 673 412 91
5 184 48 13 61 504 688 411 92
6 181 56 6 61 498 679 406 91
7 194 54 0 54 588 782 393 99
8 157 60 0 60 587 745 397 98
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9 182 60 0 60 610 791 394 101
10 157 68 0 68 588 745 392 96
11 148 59 0 59 588 736 393 96
12 137 60 0 60 611 748 391 99
13 150 51 1 52 432 582 390 83
14 141 52 0 52 429 570 391 72
15 154 49 1 50 430 584 385 78
16 165 53 2 55 434 599 387 74
17 162 51 1 52 454 616 381 79
18 158 50 1 51 451 609 382 81
19 160 40 4 44 411 571 387 24
20 189 55 4 59 935 724 382 84
21 155 52 2 %4 576 731 371 90
22 125 55 0 55 520 645 363 80

The initia total rate of 684 Mscf/d (181 Mscf/d sold and 503 Mscf/d injected) yielded
an average of 64 BFPD with a Flowing Tubing Pressure (FTP) of 92 psi. Increasing the
injection rate to a total rate of 758 Mscf/d (162 Mscf/d sold and 595 Mscf/d injected)
did not yield an increase in production; in fact, it reduced the total average liquid rate to
60 BLPD. Thiswas an indication of over-injection, which is also evident in the increase
in FTP to 98 psig. The injection rate was subsequently dropped to simulate lower total
gas closer to the predicted flow rates from vertical models. The production response at a
rate of 590 Mscf/d (156 Mscf/d sold and 434 Mscf/d injected) was not favorable and
dropped to an average liquid rate of 51 BFPD, a loss of 13 BOPD and 26 Mscf/d. To
verify the reversibility of the production drop and the dependence of production rate on
total gas rate, the injection rate was subsequently increased. The production response
was clear and swift, as the liquid rate increased back up to 55 BFPD, which is clear
evidence that at lower gas rates, the liquid drop inside the wellbore is due to low lift

force as a proxy to the lack of critical gas velocity. This confirms Wallis (1969) work,
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which states that at very high velocities the liquid film thickness approaches zero and all
liquids are entrained in the gas stream. As the gas velocity decreases, fluids accumulate
to form a thicker film surrounding a gas core with entrained droplets. If the latter
condition continues or worsens, the well will eventually load up.

Based on the results discussed earlier, atotal rate of 684 Mscf/d is considered to be the
critical rate. Table 7.5 shows the calculated critical rates and deviations with respect to
the actual observed critical rate from both conventional vertical models and two
horizontal models. Compared to the vertical models, Coleman (404 Mscf/d and 41%
deviation), and Turner (481 Mscf/d and 30% deviation), it is clear that the new model
shows better predictions of the critical rate. Also, when compared to the horizontal
models, Veeken (512 Mscf/d and 25% deviation) and Belfroid (506 Mscf/d and 26%
deviation), the new model (648 Mscf/d and 5% deviation) clearly outperforms both in
predicting the critical rate.

In conclusion, it is recommended that the conventional models of Turner and Coleman
not be used outside the vertical application and the new model presented here should be
applied for horizontal and deviated wells.

Table 7.5: Observed critical gas rates and percent deviation for Horizontal Well 2

Actual Lift Rate, Mscf /d | 684 Absolute Percent
Deviation, %
Coleman CR, Mscf / d 404 41
Turner, Mscf / d 481 30
New model, Mscf / d 648 5
Belfroid, Mscf / d 506 26
Veeken, Mscf / d 512 25
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CHAPTER VIII

Liquid holdup theory

8.1  Pressuretraverseand liquid holdup
Liquid holdup, H,, refersto the fraction of liquid present in a cross sectiona areaof a
pipe. Multiple correlations are currently used by the industry to calculate the liquid
holdup. Some of these correlations consider slippage and some do not. Brill et a.
(1999) classified the current empirical pressure gradient correlations into three
categories:

- Category a no dlip, no flow pattern

- Category b: considers dip, but no flow pattern

- Category c: considers both dslip and flow pattern
Slippage occurs because there are differences in flowing vel ocities between the
different flowing phases. Therefore, the H. istypically different from the input liquid

fraction. The liquid fraction at a given depth is defined as follows:

H === (8.1

where A isthe cross-sectional area occupied by the liquid phase, and A is the total

cross-sectional area of the pipe.

It isimportant to determine the liquid holdup because it is used to compute the pressure
gradient throughout the wellbore and to define how the flow patterns should be mapped.

The governing equation for the pressure gradient is determined by applying the
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concepts of conservation of mass and conservation of linear momentum for steady state

flow. The resulting mechanical energy balanceis as follows:

AProtqr = AP, Hydrostatic T APpriction + APgcceteration  ------------ (8.2
Equation 8.2 has three components—the friction pressure |oss component, the
hydrostatic pressure component, and an accel eration component. The friction and
hydrostatic components are the most influential, with gravity being the dominant player,

while the acceleration component is typically negligible.

8.1.1 Thefriction component
The friction component is a function of the friction factor, fluid density and velocity,

and conduit diameter and is defined in psi using the Fanning friction factor as follows:

2fpnViih
APfriction = gtdm -------------------------------- (8-3)

where f'is the Fanning friction factor, py, isthe non-slip mixture density, V, isthe
mixture velocity, histhe elevation, g is gravitational correction factor constant, and d

isthe flow conduit inside diameter.

The single phase flow friction factor, for gas or liquid, is determined either graphically
or numerically. Figure 8.1 shows the Moody diagram used to determine the Moody
friction factor for a given Nge and pipe relative roughness. Note that the Moody friction

factor isfour times the Fanning friction factor.
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An empirical equation to compute the Fanning friction factor was presented by Chen

(1979) asfollows:

1 k 5.0452 k
7= —4log [0.2698 (3) - 22log {0.3539 (5

)1.1098
Re

5.850
R
where, f isthe Fanning friction factor, k is the pipe absolute roughness, k/d is the

relative roughness, and Nge is the Reynolds number, defined as follows:

where, p is the mixture density, V, iSthe mixture velocity, d isthe flow conduit inside

diameter, and 1 is the mixture viscosity.
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For multiphase flow cases, the single phase friction factor is till adapted. This
adaptation differs from one correlation to another. For example, Gray (1978) uses a
pseudo-wall-roughness to incorporate the effect of H, on friction loss, while Hagedorn

and Brown (1965) uses a two-phase Nge to determine the friction factor.

8.1.2 Thehydrostatic component
The hydrostatic component is afunction of the fluid density and the changein

elevation. It is defined as follows:

APHydrostatic = ngh """""""""""""""" (86)

where, h is the elevation, pp, iSthe mixture density, and g is acceleration of gravity.

For multiphase flow cases, the mixture density is obtained after H_isidentified, which
represents the in-situ condition. The no-slip density isnot used in this case because it
represents the input condition, not the in-situ. The mixture density isidentified as

follows:

Pm = pLHL + pg(l - HL) ________________________________ (87)

where, H, isthein-situ liquid volume fraction (liquid holdup), pm is the mixture density,

pu is the liquid density, and pyiS the gas density.

8.2 Liquid holdup adjustment

The effect of buildup rate (BUR) and dog leg severity (DLS) is manifested through a
change in the liquid holdup. As droplets exit one section of the pipe towards a new
section with a different BUR, they will experience an impact and rebound that positions

them in the way of upcoming droplets. That situation will cause droplets to collide with
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each other and change direction, resulting in gradual reorientation of all droplets to the
new geometry. The latter process will be repeated throughout the build section as the
BUR changes until the vertical section above the kick off point is reached. At that point,
the changes in BUR are usually insignificant, typically less than 3 degree deviation (see

Fig. 8.2).

BUR (%/100 ft)
0.0 2.0 4.0 6.0 8.0 100 120 140

0

2000 ¢

4000 1

6000 ¢

MD (ft)

8000

10000

12000 1§

R

14000 1

16000 -

Figure 8.2: Change of inclination versus MD in horizontal and deviated wells

The effect of impact and rebound is more stringent in horizontal and deviated wells,
especially at the curve or build section, than it isin vertical wells. This can be explained
by the available distance the droplet has to travel downward before it reaches a rest

surface, i.e, wall or plug back true depth. In vertica wells, that distance can be
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significant, tens to thousands of feet. The case is different for horizontal and deviated
wells because of the very limited time and space the droplet might have before it can

reach arest surface, typically inches to tens of feet.

To illustrate the influence of the BUR, Fig. 8.3 shows the lowest portion of the cross
sectiona area at the pivot point where change in geometry occurs. The reduction of the
droplets velocity at these locations makes these areas act as a collection ground for
droplets. If the droplet collection process continues, it will eventually gather enough
liquid to fill up the pivot point and use it as a liquid buildup base. Having water
occupying that portion of the pipe affects the liquid holdup. Therefore, a new liquid
holdup that takes into account the presence of a watered out portion of the cross
sectional areawill need to be considered.

A few steps are taken to determine the new H, :

1. ldentify the portion of the cross sectiona area that is submerged under liquid.
That area, A, is a direct function of the BUR angle o and can be computed
from the deviation survey.

2. Compute the liquid holdup using one of the many available correlations. For this
study, the Gray correlation (1978) was used.

3. Finaly, the calculated H, is adjusted to account for the liquid accumulation, and

anew Hy, referred to as Hy new, IS computed.
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Figure 8.3: The effect of BUR on liquid holdup
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In order to determine A, first we need to determine the height, L,, of the cross sectional
area that is filled up with water. For any given o, using one projection of the flow
conduit diameter, d, L, is caculated as follows:

Ly =d Xsina = ceemeemmeemeeceoeoooo (8.8)

L, is the length difference between the flow conduit radius and the wet chord peak L1

defined as follows:

Ll + LZ = g -------------------------------- (89)
or,

d
L2 = E - Ll -------------------------------- (810)

Once L, isidentified, the area A, can be computed as the resultant of the interna flow

conduit area and twice the area of the triangle A; defined as (bé (d/ 2)) asfollows:

Ag=ExTd)—2A (8.12)
or,

Ao= (Exd?) =24, (812)
where,

Cosf=gn=1-20 ormeresemeenoen (8.13)

Replacing Egs. 8.8 and 8.10 into Eqg. 8.13 and solving for 0 leadsto:
0 = Acos(1 — 2Sin@) —--mmmmm e (8.19)

The area of the triangle A; is defined as:

A= bxL, (8.15)
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The Pythagorean Theorem can be used to calculate b as follows:

= (9 (8.16)

Rearranging, and replacing Eq. 8.10 into Eq. 8.16 we get:

b=ydl—1Z e 617

Replacing b with its value from Eqg.8.17 and L, with its value from Eg. 8.10 into Eq.

8.15 leads to:

28 = (5= Ly) ALy —[Z - (8.18)

Substituting Egs. 8.8, 8.14, and 8.18 into Eqg. 8.12, we get:

Ag

_az? (Acos(l—Zsina)
) 2

) — (1 - 2sina)(sina(l - sina)%] ----- (8.19)

Therefore, the liquid fraction that should be added to compensate for liquid

accumulation, H, ,, is calculated asfollow:

Hyo=2%  mmeeesesesssossoeeoeeooeen (8.20)

_Ad

Finally, the adjusted liquid holdup, Hy new, iS obtained as follow:

Hiyew = Hyoq + Hg ~ —-mmmmmmmmmmmmmmmmmmmmooo oo (8.21)
where,
Ly = the height of the area affected by the changein BUR in ft;
L, = droplet radius minus L, in ft;
d = droplet diameter in ft;
b = the chord of the area affected by the changein BUR in ft;
a =the BUR anglein deg;

A,  =theareaaffected by the changein BUR in ft%
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A; = the volume of the triangle with the chord as a base and the sides as droplet
radiusin ft>;

H;, =additional H_normalized to the flow conduit arez;

H;new = the adjusted new holdup value

H;01qa = the holdup calculated using any given correlation i.e. the Gray correlation

8.3  Theeffect of H new ON flow correlations

This section demonstrates how the BUR is used to modify the method implemented to
compute H._. As an example, the Gray correlation is used to illustrate this effect. Gray
(1978) used 108 well test data to develop a pressure drop correlation for two-phase flow

in vertica wet gas wells. The resulting equation is as follows:

dp _ fonVep
=Pt (8.22)

Currently, modifications of the Gray correlation alow its usage in horizontal wells,
mainly by changing the manner in which the hydrostatic and friction components are
computed. The Gray correlation considers slippage and uses dimensionless numbers
when calculating the liquid holdup; this H. will be subject to modification using the
effect of the BUR as explained earlier. The modified H, will be referred to as Hy new and

will be compared to the original H,.

| 6

R+1
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As described by the Eq. 8.23, H,. depends on the three dimensionless numbers—N,, Np,
and B, and the ratio of the superficial velocity of the liquid and gas. The dimensionless

numbers require a good estimation of the PVT and flow conduit data and are defined as

follows:
— _PRVIR
Ny, = goi(pi-pg) (8.24)
2 —
Ny = eee) (8.25)
gy
730R
B = 0.0814 [1 — 0.05541n (1 + m)] --------------------- (8.26)

The superficia velocity ratio is defined as follows:

Ry=2% (8.27)
Vsg
where,
oBo+(aw—Wconda* By, e a -
Vy == (@ e ) (8.28)
and,
q (ag—aoRs)B
sg = ﬁ = W -------------------------------- (8.29)

Oncethe H, isidentified, the well’s deviation survey is used to correct for the effect of

the BUR.
—2.314 1+5—
(1375 |
Hjpew = [1 - 1_6[ e i } + 0.6367 [(M) - ((1 — 2sina) (sina(1 —
sina)t| e (8.30)

where Vg is the superficial liquid velocity, Vg is the superficial gas velocity, Vy is the
mixture velocity, Weong is the water of condensation, g, oil production, gy is water
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production, g, is gas production, q. is total liquid production, B, is the oil formation
volume factor, By is the water formation volume factor, By is the gas formation volume
factor, Rs is the solution gag/oil rétio, py is the gas density, p is the liquid, and o is the
gas/ liquid surface tension.

Equation 8.30 is referred to as the adjusted liquid holdup and should be used to
calculate Hinew for any given BUR.

The Hinew Value is used to identify areas throughout the wellbore that are prone to carry
higher liquid fractions and cause a transition outside the mist flow region. Barnea
(1986; 1987) stated that the flow regime changes to a slug or churn flow pattern when
the liquid holdup value is higher than 0.24. The proposed H, adjustment is not unique to

the Gray model and can a so be expanded to other pressure traverse models.

84  Exampleusing Horizontal Wells1 and 2
84.1 Horizontal Well 1

Table B4 in Appendix B shows the calculated H, distribution along the wellbore using
the Gray correlation and the adjust Gray correlation, Hinew, coupled with the
conventional models and the new model for critical gas rate predictions for Horizontal
Well 1.

Using the conventional models, Turner and Coleman, coupled with the H_ from the
Gray correlation (Fig. 8.4) suggests that the well is supposed to be flowing in the mist
flow region and no liquid accumulation is occurring, as suggested by an H; of 0.13. The
same is shown when using the new model for critical gas rate predictions, coupled with
the H_ from Gray (Fig. 8.5). The new model shows better H, distribution along the
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wellbore than the conventional models with a maximum H of 0.10. Using the adjusted

Hinew, Coupled with either the conventiona models or the new model for critical rate

predictions shows the emergence of an area around the curved section from 12,681 to

12,808 ft as having liquid holdup values higher than 0.24 (see Figs. 8.6 and 8.7).

Therefore, the latter identified area is the location that is prone to liquid accumulation

and should be taken into account when planning to run production equipment.

Depth (ft)

BUR (°/100 ft)
0 2 4 6 8 10 12 14
0 - - - -
2000 B BUR (deg/100)
e=iy==H|Gray Turner
4000 e=@==H| Gray Coleman
6000
8000
10000

12000
14000
16000
18000 +

0.14 0.12 0.10 0.08 H 0.06 0.04 0.02 0.00
L

.li'-rr}ﬂ mE =

Figure 8.4: Conventional models for critical gas rate prediction coupled with H,_ from

the Gray correlation, Horizontal Well 1
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Figure 8.5: New model for critical gas rate prediction coupled with H_ from the Gray
correlation, Horizontal Well 1
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Figure8.6: Conventional modelsfor critical gas rate prediction coupled with Hi ney
from the adjusted Gray correlation, Horizontal Well 1
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Figure 8.7: New model for critical gas rate prediction coupled with H ey from the
adjusted Gray correlation, Horizontal Well 1

Once the problem areas in the wellbore are identified, designing the tubing, both sizing
and placement, becomes clear and provides a good solution for resolving liquid
accumulation in these areas. Figure 8.8 shows the H, distribution for 2 7/8” tubing
coupled with the new model’ s critical gas rate prediction value calculated for Horizontal
WEeélls 1 and the adjusted Hinew. The latter combination shows a good distribution of
liquid holdup throughout the wellbore, with all values below 0.24 and a maximum value
of 0.19. Figure 8.9 shows the overlay of all models and the progressive improvement of
the well liquid holdup when moving away from conventiona models and the Gray H.
towards the new model and the adjusted Gray H,. For the same method of critical gas
rate prediction, both the Gray and adjusted Gray holdup models overlap in the vertica
section of the wellbore; however, in the curved and horizontal sections, the Gray

correlation projects a constant value for TD, while Hi_neyw Shows variation as function of
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deviation. The latter is what leads to the identification of areas along the wellbore that

are more likely to be triggers of liquid loading.

BUR (/100 ft)
0 2 4 6 8 10 12 14
0 ‘ A N - R o -
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2000 —-—HLnasv eNglt-.w M)odel w/ 2.875 tubing

4000
- 6000
£ 8000
=
& 10000
(@]

12000
14000
16000

18000 + v v " .
0.20 0.15 0.10 0.05 0.00

Hy

Figure 8.8: Tubing placement and its effects on H_ using the new model critical gas
rate prediction coupled with H e, the adjusted Gray correlation, Horizontal Well 1
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Figure 8.9: Overlay showing differences between H. and Hy ey USiNg the new model
for critica gasrate, Horizontal Well 1
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84.1 Horizontal Well 2

Similar to Horizontal Well 1, Table B5 in Appendix B shows the calculated H.
distribution aong the wellbore using the Gray correlation and the adjusted Gray
correlation, Hinew, coupled with the conventional models and the new model for critical
gas rate predictions for Horizontal Well 2. Using the conventional models, Turner and
Coleman, coupled with the H. from the Gray correlation (see Fig. 8.10) suggests that
the well is supposed to be flowing in the mist flow region, and no liquid accumulation is
occurring (according to a maximum calculated H of 0.22). The same is shown when
using the new model for critical gas rate predictions coupled with the H, from Gray (see
Fig. 8.11). The new model shows better H, distribution aong the wellbore than the
conventional models, with a maximum H_ of 0.18. All models show a drop in H.

starting at the top of the liner because of the change in casing size from 7” to 4.5” OD.

BUR (°/100 ft)

0 5 10 15 20
2000 . . ’
B BUR (degree/100 ft)
3000 HLGray Turner
=== H| Gray Coleman
4000
— 5000
< 6000
o
8 7000
|
8000 " ".i l‘ mn " =
| [ |
9000 m r ul m
D= Hg
10000 [ | u
0.600 0.400 H 0.200 0.000
L

Figure 8.10: Conventional models for critical gas rate prediction coupled with H; from
the Gray correlation, Horizontal Well 2
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Figure 8.11: New model for critical gas rate prediction coupled with H_ from the Gray
correlation, Horizontal Well 2
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Figure 8.12: Conventiona modelsfor critical gas rate prediction coupled with H newy
from the adjusted Gray correlation, Horizontal Well 2
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Figure 8.13: New model for critical gas rate prediction coupled with H ey from the
adjusted Gray correlation, Horizontal Well 2
Using the adjusted H, e coupled with either the conventional models or the new model
for critical rate predictions shows the emergence of an area around the curved section
from 7,590 to 8,689 ft as having liquid holdup values higher than 0.24 (see Figs 8.12
and 8.13). Therefore, the latter identified area is the location that is prone to liquid
accumulation and should be taken into account when planning to run production
equipment. Once again, the emergence of these zones as prone to liquid loading is
completely missed by the Gray method estimation of liquid holdup, especially when

coupled with the conventional critical rate models.
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Thus, the area identified earlier is the ideal location to place the end of tubing. Results
with the 2 7/8" tubing (Fig. 8.14) show that the well now has better H, distribution
along the wellbore. The mgjority of the wellbore sections have gas velocities above the
critical rate and therefore are able to keep the liquid droplets moving upward with H.
less than 0.24. There are only three points showing H, values higher than 0.24 which is
atremendous improvement over the other models.

This is in agreement with the experimental data which proves that coupling the new
model for critical gas rate calculation with H ney provides the best chance in keeping the
wells following a high enough rates to keep liquid droplets from settling and
accumulating in the wellbore therefore, interfering with the wells true production
potential.

Figure 8.15 shows the overlay of all models and the progressive improvement of the
liquid holdup distribution aong the wellbore. Moving away from the conventional
critical gas rate and the standard H, models towards the new critical gas rate and the
adjusted Hy new Clearly yields better performance.

The results from the two horizontal wells indicate the importance of using the correct
models while preparing to produce a well. If the inappropriate models are used, there
will be discrepancies between how the well should be performing and how it is actually
performing. Using the new critical gas rate prediction model coupled with the adjusted
liquid holdup method will help improve planning and producing horizontal wells
therefore, resolving the disconnection between the modeling expectation and redlity

typically encountered in this type of wells.
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Figure 8.14: Tubing placement and its effects on H, using the new model for critical gas
rate prediction coupled with H, ., from the adjusted Gray correlation, Horizontal Well 2
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Figure 8.15: Overlay showing differences between H, and Hy new using the new model
for critical gasrate, Horizontal Well 2
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CHAPTER IX

Conclusons and Recommendations

This chapter is composed of two sections. Thefirst section consists of conclusions that
are deduced from the theoretical and experimental work to identify the effective gas rate
to lift horizontal and deviated wells. The second section proposes future work to

improve the understanding of liquid loading in horizontal and deviated wells.

9.1 Conclusions

Critical gasrate in horizontal and deviated wells was studied through theoretical and
experimental means. A predictive model was established and proposed as the model to
use by the industry to ensure proper planning for horizontal and deviated wells. The
following conclusions are made:

1. The new mode accounts for the effects of wellbore geometry on liquid
loading and predicts the critical rate for horizontal and deviated wells.

2. The new model accuracy of predicting the critical gas rates was tested with
data set comprised of 67 wells from literature. Results showed that the new
model prediction is within 15.7% from actual which outperforms the
horizontal well models, Veeken model and Belfroid model, and the
conventional vertical models, Turner model and Coleman mode!.

3. Experimental work using two horizontal wells supports the finding from the
literature comparison and confirms the superiority of the new model. The

results showed the new model prediction to be within 5% from actual which,
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when compared to the horizontal models, represents an improvement of 24%
over Belfroid model and 18% over Veeken model. On the other hand, when
compared to the conventiona vertical model, the improvement is 23% over
Turner model and 35% over Coleman model.

4. The new model yields best results for gas rates less than 10,000 Mscf/d and
for BUR's between 4° and 30100 ft.

5. Invertical wells, the new model collapsesto Coleman model.

6. Conventional vertical models should not be used for horizontal and deviated
wells.

7. An adjusted liquid holdup, Hinew Was proposed to help identify the best
location for tubing placement in order to prevent areas prone to liquid

accumulation from causing the well to load up.

9.2 Recommendations for futureresearch

Simplification and assumptions have been adopted to solve the liquid loading problem.
As aresult, there are discrepancies between the predictive critical gas rate models and
the actual observed rates. Improvements can be made by building a mechanistic model
based on laboratory apparatus that mimic the continuous change in geometry from the
horizontal section through the curved section to the vertical section. This will alow
obtaining actua in-situ real time sampling and measurement of the rate of accumulation
of liquid as function of the geometry change along the wellbore and its effect on the

critical gasrate.
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Finally, it is recommended that the effect of undulations in the horizontal section on
different well layouts be investigated, i.e., toe up, toe down, or flat geometries. It is
believed that these undulations act as traps for liquids and can block the perforations
laying at the bottom part of the casing from contributing, especialy in low pressure toe

down wells, thus impairing both reservoir and production efficiency.
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NOMENCLATURE

A = conduit cross sectional area, ft*

A,  =adjusted liquid holdup aress, ft*
BHFP = bottom hole flowing pressure, psia
BFPD = barrelsof fluid per day

Bg = gas formation volume factor

Bo = oil formation volume factor

Bw = water formation volume factor

BUR = build up rate, °/100 ft

CP  =casing pressure, psia

Cq = drag coefficient

DLS = dogleg severity, %100 ft

dg = droplet diameter, in.

Ex = kinetic energy function defined by Guo d al., Ibf-ft/ft>
f = Fanning friction factor

FTP =flowing tubing pressure, psia
Faater = drag force on particle after impact
Fa,0efore = drag force on particle prior to impact

Famyp = difference indrag before and after impact

Hy = liquid hold up
g = acceleration of gravity 32.17 ft/sec?, or 9.8 m/sec?
Oc = gravitational conversion factor 32.17 |bm-ft/Ibf-sec?

GOR =gasoil ratio, scf/bbl
Nre = pipe Reynolds number

Nrep = particle Reynolds number

P = pressure at the evaluation point, psia
Oc = critical gasrate, Mscf/d

Jo = oil rate, BOPD

Ow = water rate, BWPD

S = Guouaet al. energy loss factor
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T = temperature at the evaluation point, °R

TR  =Turner Ratio

Vi = particle restitution velocity, ft/s

Ve = critical velocity as expressed by Turner’s derivation, ft/s

Vi = effectivelift velocity, ft/s

Vi = particle Initial velocity, ft/s

Vmp = additional velocity above the critical velocity necessary to maintain the critical
condition post rebound, ft/s

Vg  =superficial gas velocity, ft/s

Vy = superficia liquid velocity, ft/s

R = superficia velocity ratio

We = Webber number

Z = gas compressibility factor

Greek Symbols

o = angle of deviation, degrees

oz = Zhou et al. (2010) constant for liquid rate calculation
B = effective velocity factor

B2 = Zhou et a. (2010) concentration thereshold
oI = liquid density, [bm/ft®

pm = mixture density, Ibmy/ft®

ps  =dipdensity, Ibm/ft®

pns = non-slip density, lbrm/ft®

pg = gasdensity, Ibm/ft®

o = surface tension, dynes/cm

0 = incidence angle in degrees

Op = the rebound angle in degrees

Yg = gas specific gravity

= viscosity, |bm/ft/sec

® = inclination angle from the Belfroid model
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APPENDIX A

Thiswork did not rely on static valuesfor calculations. I nstead, the recommended
correlationsto compute the dynamic values for input parameterswere adopted.
This appendix presentsthe algorithm used for computation of parameters used by
the new critical gasrate model and the adjusted liquid holdup using the Gray

(1978) correlation as an example.

NEW MODEL ALGORITHM FOR CRITICAL GASRATE

PREDICTIONSIN HORIZONTAL AND DEVIATED WELLS
Function CRa(p, t, g, N2, Co2, H2S, gw, d, MaxDLS)
Zf = z(p, t, g, N2, Co2, H2S)
sigmaW = SigmaWater(p, t, g, N2, Co2, H2S, gw)
rhoWater = rhoW(gw, p, t)
rhogas = rhog(p, t, g, N2, Co2, H2S)
If MaxDLS =0 Then
veff = 1.593 * (sigmaWw * (rhoWater - rhogas) / (rhogas” 2)) * 0.25
End If
M = (0.0406 * MaxDLS” 0.7537)
If M >0.95 ThenM =0.95
End If
K=(1-M)”"0.5"K isaobtained from Jayarathe and Mason (1964), 1st read value x
at given angle, 2nd 1-X gives (Vi2-Vb2)/Vi2 or 1-(Vb2/Vi2), '3rd take 0.5 of 3rd is
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the current drag velocity, 4th is 3rd"2 is current drag, 5th is (1-4th) is makeup drag, 6th
is 5th"0.5 is make up velocity, 7th is Turner* 6th is Veffective
g=(1+(1-K"2)"0.5)
veff = q* 1.593 * (sigmaW * (rhoWater - rhogas) / (rhogas ™ 2)) * 0.25
gt =3.067 * p* Ap(d) * veff / ((t + 460) * Zf)
CRa=qt* 10" 3

End Function

ADJUSTED HOLDUP ALGORITHM: USING THE GRAY

CORRELATION

Function HL New(qgo, gw, qg, p, t, API, g, gws, Absroughness, d, N2, Co2, H2S,
angle, dls)

Rs = StandingRs(p, t, API, Q)

bo = StandingBo(Rs, t, API, Q)

Bgas=Bg(p, t, g, N2, Co2, H2S)

Bw = McCanBw(p, t)

gw = gws/ Bw

goR =qo* bo* cfpb() / spd() 'thisisoil ratein ft*3/sec

glR=(go* bo+ qw * Bw) * cfpb() / spd() thisisliquid rate in ft"3/sec

gar =((gg* 10" 3) - (qo * Rs)) * Bgas/ spd() 'thisisgasratein ft*3/sec

ilf =qlR/ (IR + qgr)

vsl = gIR/ ((WorksheetFunction.Pi() / 4) * (d/ 12) ~ 2)

vsg = qgr / ((WorksheetFunction.Pi() / 4) * (d/ 12) ~ 2)
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vm = vl + vsg 'cal culate mixture velocity vm use eq.3-12
R=vd /vsgg
Cl =vd / vm"input liquid volume fraction
igf =vsg/vm ' input gas volume fraction
fo=qoR/qIR
fw=1-fo
sigmaO = QilTension(p, t, API) * 0.00220462
sigmaW = WaterTension(p, t) * 0.00220462
'sigmal = (((fo* sigmaO) + (0.617 * fw * sigmaW)) / (fo + 0.617 * fw)) 'sigmal is
in Ibf/s*2. Hence multiplying sigmalL by 0.00220462 dynes/cm=1Ibf/sec2
sigmal. = Graylnterfacia Tension(wor) * 0.00220462
If go=0Then
rhol = rhoW(gw, p, t)
mul = McCainmuw(p, t)
Else
If qw = 0 Then
rhol = DensityQil(p, t, API, g)
mul = BeggsRobinsonmuo(p, t, API, g)
Else
wor = qw / o
rhol = fw * rhoW(gw, p, t) + DensityQil(p, t, API, g) * fo
mul = fw * McCainmuw(p, t) + BeggsRobinsonmuo(p, t, API, g) * fo

End If
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End If
mugas = viscosityGas(p, t, g, N2, Co2, H2S)
rhogas = rhog(p, t, g, N2, Co2, H2S)
rhon = rhol * Cl + rhogas* (1 - Cl) 'Calculate non slip mixture density rhon use eq.
3.23
muMix = mul * Cl + mugas™* (1 - Cl)
Nv =rhon”2* vm~ 4/ (gr() * sigmaL * (rhol - rhogas))
ND =gr() * (rhol - rhogas) * (d/12) ~ 2/ sigmalL
w = 0.0554 * WorksheetFunction.Ln(1 + (730 * R/ (R + 1)))
b=0.0814* (1-w)
HL =1- ((1- Exp(-2.314* (Nv * (1 + (205/ ND))) * b)) / (R + 1))
disradiant = (dis* WorksheetFunction.Pi / 180)
Theta = WorksheetFunction.Acos(1 - (2 * Sin(dlsradiant)))
La=(d/12) * Sin(dIsradiant)
Lb=((d/12)/2)- La
At=(1/2)* Lb* ((d/12)* La)-La”2)~ 05
Area=((Theta/ 4)* (d/12) " 2) - (2* At)
HLa=1* Area/ ((WorksheetFunction.Pi() / 4) * (d/ 12) ~ 2)
HLn=HL + HLa
HLNew =HLn
End Function
Function WetArea(d, dls)

disradiant = (dis* WorksheetFunction.Pi / 180)
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Theta = WorksheetFunction.Acos(1 - (2 * Sin(dlsradiant)))
La=(d/ 12) * Sin(dlsradiant)

Lb=((d/12)/2)-La

At=(1/2)*Lb* ((d/12)* La) -La"2)" 0.5

Area= ((Theta/ 4)* (d/12) " 2) - (2* At)

WetArea= Area

End Function
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APPENDIX B

Table B1: Comparing different models using Veeken et al. data 20%100 ft

Critical Rate (Mscf/d)

Completion

Reservoir

Dev

Qturner

Pressure

FTHT

ID (m) ID (m) (deg) SG (103m3/d) (psia) (F) dc Qturner Qcoleman Amodel Qveeken
4.41 6.28 20 0.59 40 58 61 1306 1412 1136 1844 1636
4.96 4.41 20 0.59 50 58 61 1589 1766 1437 2332 2114
2.81 2.35 24 0.59 19 79.75 61 742 671 542 879 726
2.87 2.36 21 0.59 20 87 61 918 706 590 958 767
2.99 4.42 0 0.59 22 87 61 918 777 641 1040 849
2.99 6.28 23 0.59 22 87 61 918 777 641 1040 849
2.87 2.35 14 0.59 20 79.75 61 847 706 565 917 767
3.96 6.88 27 0.59 39 87 61 1766 1377 1124 1823 1590
4.89 4.42 22 0.59 60 87 61 2154 2119 1714 2781 2622
4.89 4.42 15 0.59 60 87 61 2401 2119 1714 2781 2622
4.89 4.42 20 0.59 60 87 61 2507 2119 1714 2781 2622
4.89 4.42 29 0.59 60 87 61 3072 2119 1714 2781 2622
2.99 6.88 27 0.59 22 87 61 918 777 641 1040 849
1.75 2.44 16 0.59 8 87 61 388 282 219 356 295
4.89 6.88 21 0.59 60 87 61 1942 2119 1714 2781 2622
4.89 4.42 17 0.59 60 87 61 2225 2119 1714 2781 2622
4.89 4.42 30 0.59 60 87 61 2507 2119 1714 2781 2622
4.89 4.42 47 0.59 60 87 61 2613 2119 1714 2781 2622
4.89 6.88 19 0.59 60 87 61 2225 2119 1714 2781 2622
3.96 2.06 42 0.59 42 101.5 61 1871 1483 1215 1971 1729
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Completion | Reservoir Dev G OTurner Pressure | FTHT
ID (m) ID (m) (deg) (103m3/d) (pSIB) (F) dc Qrurner Qcoleman AMmodel Qveeken
4.41 6.09 13 0.63 67.4 217.5 144 3531 2380 1932 3135 3018
4.28 6 37 0.63 84.5 348 113 4237 2984 2402 3897 4006
6.09 3.83 18 0.63 125 217.5 163 7768 4414 3595 5834 6763
4.41 3.92 20 0.63 123 667 120 4590 4343 3529 5727 6613
4.41 3.92 20 0.63 165 1189 115 7062 5826 4802 7793 10039
4.28 6 22 0.63 65 217.5 129 3884 2295 1852 3006 2888
6.09 6.09 31 0.63 302 1174.5 138 | 10946 | 10664 8773 14236 | 22475
4.28 3.83 0 0.59 168 1421 122 7062 5932 5024 8153 10303
4.28 3.83 0 0.59 157 1232.5 122 7062 5544 4677 7589 9346
4.28 3.83 0 0.59 112 725 163 6003 3955 3369 5467 5813
4.28 3.83 0 0.59 157 1232.5 122 6356 5544 4677 7589 9346
6.09 4.28 15 0.61 217 667 167 | 18714 | 7662 6408 10399 | 14825
6.09 4.28 15 0.61 190 493 156 | 13771 | 6709 5575 9046 12297
6.09 6 39 0.61 233 739.5 154 | 14477 | 8227 6868 11144 | 16331
6.09 6 39 0.61 202 565.5 160 | 13065 | 7133 5949 9654 13414
6.09 6 39 0.61 168 391.5 162 | 10946 | 5932 4926 7993 10303
6.09 6 39 0.61 166 319 108 | 12359 | 5861 4756 7717 10127
4.28 6.09 63 0.61 118 667 109 5297 4167 3424 5556 6244
4.28 6.09 63 0.61 99 478.5 115 4590 3496 2864 4647 4925
4.28 6.09 63 0.61 84 319 91 4943 2966 2400 3894 3976
4.41 3.92 43 0.65 64 174 109 6003 2260 1773 2878 2834
4.41 3.92 35 0.65 80 282.75 120 4767 2825 2239 3633 3736
4.41 3.83 30 0.65 111 522 108 4943 3919 3120 5063 5742
4.41 3.83 30 0.65 92 348 100 4061 3249 2556 4147 4472
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Completion | Reservoir Dev G OTurner Pressure | FTHT
ID (m) ID (m) (deg) (103m3/d) (pSIB) (F) dc OTurner Ccoleman OModel Qveeken
4.41 3.83 30 0.65 85 304.5 104 3884 3001 2375 3853 4036
4.41 3.83 30 0.65 80 261 97 3354 2825 2215 3595 3736
4.41 3.83 30 0.65 79 290 138 3531 2789 2216 3597 3677
6.09 441 40 0.63 170 365.4 132 8298 6003 4863 7892 10481
6.18 3.83 18 0.63 121 174 131 7062 4273 3442 5585 6464
6.09 3.83 26 0.63 114 174 153 7768 4025 3255 5282 5955
4.41 3.92 30 0.64 124 638 104 5650 4378 3506 5689 6688
4.41 6 21 0.64 119 652.5 133 5120 4202 3405 5525 6317
4.41 4.28 19 0.63 84 355.25 158 4237 2966 2432 3947 3976
4.28 4.28 26 0.63 82 391.5 163 6709 2895 2390 3879 3855
4.28 4.28 26 0.63 97 522 154 5297 3425 2799 4542 4793
4.28 4.28 26 0.63 81 362.5 151 4590 2860 2336 3790 3796
4.28 6.09 32 0.65 154 1261.5 140 7062 5438 4425 7180 9090
4.41 3.83 29 0.61 76 275.5 145 6003 2684 2209 3584 3502
4.41 3.83 31 0.66 85 275.5 77 2825 3001 2323 3769 4036
4.28 4.28 48 0.59 88 362.5 100 5650 3107 2572 4173 4221
4.67 4.67 62 0.58 115 391.5 72 2966 4061 3340 5419 6027
2.88 2.88 49 0.56 45 435 90 2048 1589 1329 2157 1871
4.28 4.28 64 0.6 104 449.5 68 4449 3672 2983 4840 5259
3.92 3.92 56 0.58 77 336.4 61 2860 2719 2210 3585 3560
4.41 4.41 46 0.6 105 449.5 95 3990 3708 3047 4945 5327
6.18 4.28 30 0.66 370 1609.5 127 | 19950 | 13065 10577 17163 | 27564
6.09 6.18 15 0.65 326 1319.5 127 | 26023 | 11511 9351 15174 | 24392
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Table B2: Comparing different models using Veeken et d. data at 12°/100 ft

Critical Rate (Mscf/d)

Completion | Reservoir Dev G Oturner Pressure | FTHT
ID (m) ID (m) (deg) (103m3/d) (p5|a) (F) dc OTurner Ccoleman OModel Qveeken
441 6.28 20 0.59 40 58 61 1306 1412 1136 1720 1636
4.96 441 20 0.59 50 58 61 1589 1766 1437 2176 2114
2.81 2.35 24 0.59 19 79.75 61 742 671 542 820 726
2.87 2.36 21 0.59 20 87 61 918 706 590 893 767
2.99 4.42 0 0.59 22 87 61 918 777 641 970 849
2.99 6.28 23 0.59 22 87 61 918 777 641 970 849
2.87 2.35 14 0.59 20 79.75 61 847 706 565 855 767
3.96 6.88 27 0.59 39 87 61 1766 1377 1124 1701 1590
4.89 4.42 22 0.59 60 87 61 2154 2119 1714 2594 2622
4.89 4.42 15 0.59 60 87 61 2401 2119 1714 2594 2622
4.89 4.42 20 0.59 60 87 61 2507 2119 1714 2594 2622
4.89 4.42 29 0.59 60 87 61 3072 2119 1714 2594 2622
2.99 6.88 27 0.59 22 87 61 918 777 641 970 849
1.75 2.44 16 0.59 8 87 61 388 282 219 332 295
4.89 6.88 21 0.59 60 87 61 1942 2119 1714 2594 2622
4.89 4.42 17 0.59 60 87 61 2225 2119 1714 2594 2622
4.89 4.42 30 0.59 60 87 61 2507 2119 1714 2594 2622
4.89 4.42 47 0.59 60 87 61 2613 2119 1714 2594 2622
4.89 6.88 19 0.59 60 87 61 2225 2119 1714 2594 2622
3.96 2.06 42 0.59 42 101.5 61 1871 1483 1215 1838 1729
441 6.09 13 0.63 67.4 2175 144 3531 2380 1932 2924 3018
4.28 6 37 0.63 84.5 348 113 4237 2984 2402 3635 4006
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Completion | Reservoir Dev G OTurner Pressure | FTHT
ID (m) ID (m) (deg) (103m3/d) (p5|a) (F) dc OTurner Ccoleman OModel Qveeken
6.09 3.83 18 0.63 125 2175 163 7768 4414 3595 5442 6763
441 3.92 20 0.63 123 667 120 4590 4343 3529 5342 6613
441 3.92 20 0.63 165 1189 115 7062 5826 4802 7269 10039
4.28 6 22 0.63 65 217.5 129 3884 2295 1852 2804 2888
6.09 6.09 31 0.63 302 11745 138 10946 | 10664 8773 13279 | 22475
4.28 3.83 0 0.59 168 1421 122 7062 5932 5024 7605 10303
4.28 3.83 0 0.59 157 12325 122 7062 5544 4677 7079 9346
4.28 3.83 0 0.59 112 725 163 6003 3955 3369 5099 5813
4.28 3.83 0 0.59 157 12325 122 6356 5544 4677 7079 9346
6.09 4.28 15 0.61 217 667 167 18714 | 7662 6408 9700 14825
6.09 4.28 15 0.61 190 493 156 13771 | 6709 5575 8438 12297
6.09 6 39 0.61 233 739.5 154 14477 | 8227 6868 10395 | 16331
6.09 6 39 0.61 202 565.5 160 13065 | 7133 5949 9005 13414
6.09 6 39 0.61 168 3915 162 10946 | 5932 4926 7455 10303
6.09 6 39 0.61 166 319 108 12359 | 5861 4756 7199 10127
4.28 6.09 63 0.61 118 667 109 5297 4167 3424 5183 6244
4.28 6.09 63 0.61 99 478.5 115 4590 3496 2864 4334 4925
4.28 6.09 63 0.61 &4 319 91 4943 2966 2400 3633 3976
441 3.92 43 0.65 64 174 109 6003 2260 1773 2684 2834
441 3.92 35 0.65 80 282.75 120 4767 2825 2239 3389 3736
441 3.83 30 0.65 111 522 108 4943 3919 3120 4723 5742
441 3.83 30 0.65 92 348 100 4061 3249 2556 3868 4472
441 3.83 30 0.65 85 304.5 104 3884 3001 2375 3594 4036
441 3.83 30 0.65 80 261 97 3354 2825 2215 3353 3736
441 3.83 30 0.65 79 290 138 3531 2789 2216 3355 3677




144"

Completion | Reservoir Dev G OTurner Pressure | FTHT
ID (m) ID (m) (deg) (103m3/d) (p5|a) (F) dc Qturner Qcoleman OModel Qveeken
6.09 441 40 0.63 170 365.4 132 8298 6003 4863 7361 10481
6.18 3.83 18 0.63 121 174 131 7062 4273 3442 5210 6464
6.09 3.83 26 0.63 114 174 153 7768 4025 3255 4927 5955
441 3.92 30 0.64 124 638 104 5650 4378 3506 5306 6688
441 6 21 0.64 119 652.5 133 5120 4202 3405 5153 6317
441 4.28 19 0.63 84 355.25 158 4237 2966 2432 3682 3976
4.28 4.28 26 0.63 82 3915 163 6709 2895 2390 3618 3855
4.28 4.28 26 0.63 97 522 154 5297 3425 2799 4236 4793
4.28 4.28 26 0.63 81 362.5 151 4590 2860 2336 3535 3796
4.28 6.09 32 0.65 154 1261.5 140 7062 5438 4425 6697 9090
441 3.83 29 0.61 76 2755 145 6003 2684 2209 3343 3502
441 3.83 31 0.66 85 2755 77 2825 3001 2323 3516 4036
4.28 4.28 48 0.59 88 362.5 100 5650 3107 2572 3892 4221
4.67 4.67 62 0.58 115 3915 72 2966 4061 3340 5055 6027
2.88 2.88 49 0.56 45 435 20 2048 1589 1329 2012 1871
4.28 4.28 64 0.6 104 449.5 68 4449 3672 2983 4515 5259
3.92 3.92 56 0.58 77 336.4 61 2860 2719 2210 3344 3560
441 441 46 0.6 105 449.5 95 3990 3708 3047 4613 5327
6.18 4.28 30 0.66 370 1609.5 127 19950 | 13065 10577 16009 | 27564
6.09 6.18 15 0.65 326 1319.5 127 26023 | 11511 9351 14154 | 24392
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Table B3: New model versus Turner model predictions using Turner data

wsa | m | obgny | CUn | Viad | View | AR | pe( | osaus (s | Foe | e | SO |
725 | 2441 | 2375 495 6 0| e3g| 644 Near LU. [ 779 1841 Loaded Up | Loaded Up
400 | 1.995 18 1.995 0 6739 Near LU. 417 583 957 Loaded Up | Loaded Up
108 | 2.041 9% 124 | e43| 699 Near LU. 568 306 516 Unloaded | Unloaded
540 | 1.995 105 105 | 708 6700 Near LU. 712 661 1116 Unloaded | Loaded Up
450 | 1.995 113 0 61 6770 Near LU. 442 419 1016 Unloaded | Loaded Up
3607 | 1.995 37.4 0 61 | 11200 Loaded Up 1525 1156 2707 Unloaded | Loaded Up
3434 | 1.995 374 0 6L | 11200 Unloaded 2926 1160 2668 Unloaded | Unloaded
3773 | 1.995 36.8 0 58 | 11340 | Questionable 2494 1158 2741 Unloaded | Loaded Up
3660 | 1.995 36.8 0 sg | 11340 Unloaded 8126 1142 2718 Unloaded | Unloaded
3340 | 2.992 130.8 0| 64| 11416 Loaded Up 2611 2412 5949 Unloaded | Loaded Up
3205 | 2992 130.8 0| s64| 11416 | Questionable 3264 2401 5923 Unloaded | Loaded Up
3280 | 2.992 130.8 0| s64| 11416 | Questionable 4095 2395 5915 Unloaded | Loaded Up
3540 | 2.441 1135 0| s64 | 11417 L oaded Up — 1635 4030 Unloaded | Loaded Up
3330 | 2.441 1135 0| 564 | 11417 | Questionable 2915 1600 3956 Unloaded | Loaded Up
3525 | 1.995 106.9 0 55 | 11426 Unloaded 1792 1108 2689 Unloaded | Loaded Up
3472 | 1995 1069 0 55 | 11426 | Questionable e 1085 2676 Unloaded | Loaded Up
3338 | 2441 1176 0 55 | 11355 Unloaded 2261 1623 3959 Unloaded | Loaded Up
3045 | 2.441 117.6 0 55 | 11355 L oaded Up 2503 1610 3923 Unloaded | Loaded Up
3092 | 2.441 117.6 0 55 | 1135 | Questionadle 3351 1574 3861 Unloaded | Loaded Up
3556 | 1.995 1043 0 55 | 11390 Unloaded 2069 1091 2696 Unloaded | Loaded Up
3455 | 1.995 104.3 0 55 | 113% L oaded Up 2769 1082 2672 Unloaded | Unloaded
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wsa | m | obgny | CUn | Viad | View | AR | pe( | osaus (s | Foe | e | SO |
3665 | 2.441 68.3 0 80 8690 Unloaded 2542 1860 4071 Unloaded | Loaded Up
3644 | 2.441 68.3 0 60 | 869 Loaded Up 3182 1654 4064 Unloaded | Loaded Up
3615 | 2441 68.3 0 60 | 8690 Questionable 3890 1648 4055 Unloaded | Loaded Up
3012 | 2441 54.8 0 60 | 8840 Unloaded 2 1604 3910 Unloaded | Loaded Up
3025 | 2.441 54.8 0 g0 | 8840 Questionable 3517 1569 3833 Unloaded | Loaded Up
8215 | 2.441 10.8 0| e75| 1180 Unloaded s 1956 4762 Unloaded | Loaded Up
7950 | 2441 10.8 0| e75| 1180 L oaded Up 48% 1941 4740 Unloaded | Unloaded
7405 | 2441 10.8 o| 75| 11850 | Questionable 6346 1930 4692 Unloaded | Unloaded
2335 | 1.995 17.9 0 65 | 6995 Unloaded 1116 936 2318 Unloaded | Loaded Up
2226 | 1.995 17.9 0 65 | 699 Unloaded 1959 910 2071 Unloaded | Loaded Up
2182 45 6.184 25 0 70| 5 L oaded Up 5501 3767 11454 Unloaded | Loaded Up
2175 45 6.184 25 0 70| 575 Questionable 6405 3757 11438 Unloaded | Loaded Up
2169 45 6.184 25 0 70| 57 Unloaded 7504 3747 11424 Unloaded | Loaded Up
1500 | 3.958 131 0 65 | 9515 Loaded Up 3009 3081 7638 Loaded Up | Loaded Up
1550 | 3.958 131 0 65 | 9515 Questionable 3551 3033 7543 Unloaded | Loaded Up
1520 | 3.958 131 0 65 | 9515 Unloaded 4150 319 7470 Unloaded | Loaded Up
1245 2.875 6.184 103 0 67 | 6180 Loaded Up 4441 4920 3564 Loaded Up | Unloaded
1184 2.875 6.184 103 0 67 | 6180 Loaded Up 4843 4793 3473 Unloaded | Unloaded
1117 2875 6.184 103 0 67 | 6180 Unloaded 5513 4649 3371 Unloaded | Unloaded
1058 2.875 6.184 24.8 0| e25| 6031 Loaded Up 8185 5031 4452 Unloaded | Unloaded
1938 2875 6.184 248 0| e25| 6031 Questionable 9039 5902 4431 Unloaded | Unloaded
1013 2875 6.184 248 o| e25]| 6031 Unloaded 9897 5857 4405 Unloaded | Unloaded
2040 2875 6.184 318 0 65 | 592 L oaded Up 6702 6082 4537 Unloaded | Unloaded




LCT

wsa | m | obgny | CUn | Viad | View | AR | pe( | osaus (s | Foe | e | SO |
1993 2875 6.184 318 0 65 | 592 Questionable 8210 6015 4489 Unloaded | Unloaded
1053 2875 6.184 318 0 65 | 9%2 Unloaded 9289 5057 4447 Unloaded | Unloaded
2284 35 6.184 15.1 o| er5| 595 Loaded Up 7109 5590 7067 Unloaded | Unloaded
2271 35 6.184 15.1 0| ers| 596 Questionzble 8406 5550 7050 Unloaded | Unloaded
2256 35 6.184 15.1 0| 675 | 5%6 Unloaded 97 5535 7030 Unloaded | Unloaded
2352 35 6.184 37 0 70 | 994 Loaded Up 6361 5641 7156 Unloaded | Loaded Up
2338 35 6.184 37 0 70| 594 Questionable 8057 5671 7138 Unloaded | Unloaded
2223 35 6.184 37 0 70| 594 Unloaded 9860 5485 6985 Unloaded | Unloaded
2003 33 6.184 37 0 70| 594 Unloaded 1767 5212 5928 Loaded Up | Loaded Up
2042 45 6.184 26.7 0 65 | 6850 L oaded Up e 3613 11120 Unloaded | Loaded Up
1818 45 6.184 26.7 0 65 | 6850 Questionable 4998 3412 10535 Unloaded | Loaded Up
1600 45 6.184 26.7 0 65 | 68%0 Unloaded 6423 3199 9904 Unloaded | Loaded Up
1835 | 1.995 27.8 04| 527 | 3% Unloaded 8672 1239 2080 Unloaded | Unloaded
2421 | 1.995 27.8 04| 527 | 3% Unloaded 6654 1407 2353 Unloaded | Unloaded
2705 | 1.995 278 04| 27| 7346 Unloaded 5136 1467 2459 Unloaded | Unloaded
2834 | 1995 278 04| 27| 7346 Unloaded 8917 1502 2502 Unloaded | Unloaded
5056 | 1.995 7.5 14| 439 | 893 Unloaded 3376 1770 2938 Unloaded | Unloaded
4931 | 1.995 75 14| 439 | 8963 Unloaded 4830 1732 2023 Unloaded | Unloaded
4786 | 1.995 75 14| 439 | 8%63 Unloadled 6221 1705 2905 Unloaded | Unloaded
4575 | 1.995 75 14| 439 | 8%3 Unloaded 7192 1659 2876 Unloaded | Unloaded
1902 | 1.995 30.9 0 71| 524 Unloaded 1138 851 2115 Unloaded | Loaded Up
1737 | 1995 3 0 71| 524 Unloaded 1712 814 2026 Unloaded | Loaded Up
1480 | 1.995 09 0 71| 524 Unloaded 2473 750 1873 Unloaded | Unloaded




8¢1

wsa | m | obgny | CUn | Viad | View | AR | pe( | osaus (s | Foe | e | SO |
1246 | 1.995 09 0 71| 524 Unloaded 2965 686 1717 Unloaded | Unloaded
1895 | 1.995 54.1 o| 717| 524 Unloaded 1797 875 2112 Unloaded | Loaded Up
1861 | 1.995 54.1 o| 77| 524 Unloaded 2502 859 2004 Unloaded | Unloaded
1784 | 1.99 54.1 0| 717| 534 Unloaded 3460 832 2054 Unloaded | Unloaded
1680 | 1.99% 54.1 0 717 5234 Unloaded 4439 803 1996 Unloaded Unloaded
2814 | 175 33 1| s35| 7639 Unloaded 1596 1216 1920 Unloaded | Loaded Up
2582 | 175 3.3 1| 335 7639 Unloaded 2423 1176 1858 Unloaded | Unloaded
214 | 175 33 1| 35| 769 Unloaded 3598 1070 1705 Unloaded | Unloaded
1575 | 175 33 1| 535 7639 Unloaded 4410 018 1486 Unloaded | Unloaded
2783 | 175 34 0| 524 | A5 Unloaded 2939 834 1012 Unloaded | Unloaded
2655 | 175 3.4 0| 24| TATS Unloaded 4140 817 1878 Unloaded | Unloaded
2406 | 175 34 0| 524 | A5 Unloaded 5820 770 1806 Unloaded | Unloaded
2205 | 175 34 0| 524 T Unloaded 6871 746 1740 Unloaded | Unloaded
2574 | 175 41 06| 522| 7% Unloaded 1943 899 1856 Unloaded | Unloaded
2224 | 175 4.1 06| 522| 7% Unloaded 2910 833 1747 Unloaded | Unloaded
1839 | 175 41 06| 22| 76 Unloaded 3742 755 1602 Unloaded | Unloaded
1509 | 175 41 06| 22| 76 Unloaded 4485 683 1455 Unloaded | Unloaded
2611 | 1.995 55 0| 526 7753 Unloaded 3436 1082 2425 Unloaded | Unloaded
2527 | 1.995 55 o| s26| 778 Unloaded 4471 1058 2304 Unloaded | Unloaded
2556 | 1.995 7.7 o| 37| 8162 Unloaded 1550 1026 2405 Unloaded | Loaded Up
2415 | 1.995 77 o| 57| 8162 Unloaded 1804 996 2351 Unloaded | Loaded Up
2149 | 1.995 7.7 0| se7| 8162 Unloaded 2385 941 2236 Unloaded | Unloaded
1765 | 1.995 7.7 0| se7| 8162 Unloaded 2949 856 2042 Unloaded | Unloaded




6¢T

wsa | m | obgny | CUn | Viad | View | AR | pe( | osaus (s | Foe | e | SO |
2862 2.375 4.974 5 0| s22| 7810 Unloaded S 5008 3558 Loaded Up | Loaded Up
2823 2.375 4974 5 o| so2| 7810 Loaded Up 3863 5045 3540 Loaded Up | Unloaded
760 | 2441 46.1 451 | 549 7531 Loaded Up 1247 1148 1992 Unloaded | Loaded Up
704 | 2441 316 408 | 49| 7531 Loaded Up 1313 1099 1915 Unloaded | Loaded Up
822 | 2441 26.7 %3 | 549 | 31 Loaded Up 1356 1197 2075 Unloaded | Loaded Up
1102 | 2441 26.1 238 | 549 | 31 Loaded Up 1365 1419 2413 Loaded Up | Loaded Up
552 | 2441 25.1 223 | 549 7531 Near LU. 1607 958 1690 Unloaded | Loaded Up
315 | 7.386 10 0 0| 3278 Loaded Up 5740 5093 11612 Unloaded | Loaded Up
422 | 7.386 10 0 50 | 3278 Loaded Up 3890 5923 13481 | LoadedUp | Loaded Up
459 | 7.386 10 0 50 | 3278 Loaded Up 2780 6186 14073 | Loaded Up | Loaded Up
484 | 7.386 10 0 50 3278 Loaded Up 1538 6359 14461 Loaded Up | Loaded Up
500 2.375 4974 14 0 50 | 9080 Loaded Up 400 2184 1520 Loaded Up | Loaded Up
500 2.375 4,052 0 5 o| 720 L oaded Up 800 1726 1520 Loaded Up | Loaded Up
660 2.375 6.276 0 35 o| 676 L oaded Up 4300 6367 1754 Loaded Up | Unloaded
280 2.375 4974 0 28 o| 3077 Loaded Up 500 2083 1131 Loaded Up | Loaded Up
210 2.375 6.276 0 24 o| 220 Loaded Up 470 3048 977 Loaded Up | Loaded Up




OcT

Table B4: Horizontal Well 1 deviation survey showing H, variation with BUR

H H Hinew New

Depth | TVD Angle BUR Hieray | Hiray | Huinew Hinew NLSC‘VV NL(:;V/“ Model w/
(ft) (ft) | (degrees) (°/100 ft) | Coleman | Turner | Coleman | Turner Model | Model 2.8?5

Tubing

0 0 0.00 0.0 0.09 0.08 0.09 0.08 0.06 | 0.06 0.01
840 840 0.20 0.0 0.09 0.08 0.09 0.08 0.07 | 0.07 0.02
1151 | 1151 0.20 0.1 0.09 0.08 0.09 0.08 0.07 | 0.07 0.02
1947 | 1947 0.20 0.0 0.10 0.09 0.10 0.09 0.07 | 0.07 0.02
2514 | 2514 0.30 0.1 0.10 0.09 0.10 0.09 0.07 | 0.07 0.02
11865 | 11864 1.75 0.1 0.13 0.12 0.13 0.12 0.10 | 0.10 0.03
12149 | 12148 1.86 0.1 0.13 0.12 0.13 0.12 0.10 | 0.10 0.03
12180 | 12179 1.85 0.2 0.13 0.12 0.13 0.12 0.10 | 0.10 0.03
12212 | 12211 1.72 0.4 0.13 0.12 0.13 0.12 0.10 | 0.10 0.03
12243 | 12242 2.39 3.7 0.13 0.12 0.16 0.15 0.10 | 0.13 0.06
12275 | 12274 4.24 6.3 0.13 0.12 0.19 0.18 0.10 | 0.16 0.09
12306 | 12305 6.59 7.7 0.13 0.12 0.21 0.20 0.10 | 0.18 0.11
12338 | 12337 9.05 7.7 0.13 0.12 0.21 0.20 0.10 | 0.18 0.11
12369 | 12367 11.47 7.8 0.13 0.12 0.21 0.20 0.10 | 0.18 0.12
12401 | 12398 13.99 8.0 0.13 0.12 0.22 0.20 0.10 | 0.19 0.12
12432 | 12428 16.53 8.4 0.13 0.12 0.22 0.21 0.10 | 0.19 0.12
12464 | 12459 19.03 8.1 0.13 0.12 0.22 0.21 0.10 | 0.19 0.12
12496 | 12489 21.30 7.6 0.13 0.12 0.21 0.20 0.10 | 0.18 0.11
12528 | 12518 23.68 7.9 0.13 0.12 0.22 0.20 0.10 | 0.19 0.12
12555 | 12543 25.62 7.4 0.13 0.12 0.21 0.20 0.10 | 0.18 0.11
12587 | 12571 27.97 7.5 0.13 0.12 0.21 0.20 0.10 | 0.18 0.11




TET

H H Hinew New
Depth | TVD Angle BUR Hicray Hicray Hinew Hinew NLS:‘VV NL(:;V/“ Model w/
(ft) (ft) | (degrees) (°/100 ft) | Coleman | Turner | Coleman | Turner Model | Model 2.8?5
Tubing
12618 | 12598 30.36 7.7 0.13 0.12 0.21 0.20 0.10 | 0.18 0.11
12650 | 12626 32.87 8.0 0.13 0.12 0.22 0.21 0.10 | 0.19 0.12
12681 | 12651 36.32 11.2 0.13 0.12 0.17
12713 | 12676 40.20 12.2 0.13 0.12 0.19
12745 | 12700 44.14 12.3 0.13 0.12 0.19
12776 | 12722 47.96 12.3 0.13 0.12 0.19
12808 | 12742 51.36 10.6 0.13 0.12 0.16
12839 | 12761 53.82 7.9 0.13 0.12 0.22 0.20 0.10 | 0.19 0.12
12871 | 12780 55.67 5.8 0.13 0.12 0.19 0.17 0.10 | 0.16 0.09
12902 | 12797 57.82 6.9 0.13 0.12 0.20 0.19 0.10 | 0.17 0.10
12934 | 12813 59.87 6.4 0.13 0.12 0.19 0.18 0.10 | 0.17 0.10
12966 | 12829 60.88 3.2 0.13 0.12 0.15 0.14 0.10 | 0.12 0.06
12997 | 12844 62.32 4.7 0.13 0.12 0.17 0.16 0.10 | 0.14 0.07
13029 | 12858 65.00 8.4 0.13 0.12 0.22 0.21 0.10 | 0.20 0.13
13060 | 12870 67.62 8.7 0.13 0.12 0.23 0.22 0.10 | 0.20 0.13
13092 | 12882 70.40 8.7 0.13 0.12 0.23 0.22 0.10 | 0.20 0.13
13123 | 12892 72.46 7.2 0.13 0.12 0.21 0.19 0.10 | 0.18 0.11
13186 | 12909 75.81 5.3 0.13 0.12 0.18 0.17 0.10 | 0.15 0.08
13218 | 12916 77.61 5.7 0.13 0.12 0.18 0.17 0.10 | 0.15 0.08
13249 | 12923 78.88 4.2 0.13 0.12 0.17 0.15 0.10 | 0.14 0.07
13281 | 12928 80.12 3.9 0.13 0.12 0.16 0.15 0.10 | 0.13 0.06
13312 | 12933 81.31 3.8 0.13 0.12 0.16 0.15 0.10 | 0.13 0.06




et

HLGray

I-anew

Hinew New

Depth | TVD Angle BUR Hicray Hicray Hinew Hinew New New Model w/
(ft) (ft) | (degrees) (°/100 ft) | Coleman | Turner | Coleman | Turner Model | Model 2.8?5
Tubing
13344 | 12938 82.52 3.8 0.13 0.12 0.16 0.15 0.10 | 0.13 0.06
13375 | 12941 84.07 5.0 0.13 0.12 0.18 0.16 0.10 | 0.15 0.08
13407 | 12944 85.19 4.0 0.13 0.12 0.16 0.15 0.10 | 0.13 0.06
13439 | 12947 86.61 4.7 0.13 0.12 0.17 0.16 0.10 | 0.14 0.07
13470 | 12948 88.28 5.4 0.13 0.12 0.18 0.17 0.10 | 0.15 0.08
13501 | 12949 90.22 6.3 0.13 0.12 0.19 0.18 0.10 | 0.16 0.09
13533 | 12948 92.16 6.1 0.13 0.12 0.19 0.18 0.10 | 0.16 0.09
13565 | 12946 93.70 4.8 0.13 0.12 0.17 0.16 0.10 | 0.14 0.07
16971 | 12934 88.80 0.9 0.13 0.12 0.14 0.12 0.10 | 0.11 0.04
17003 | 12935 89.01 0.9 0.13 0.12 0.14 0.12 0.10 | 0.11 0.04
17034 | 12935 89.38 1.3 0.13 0.12 0.14 0.13 0.10 | 0.11 0.04
17096 | 12936 89.38 0.0 0.13 0.12 0.13 0.12 0.10 | 0.10 0.03




eet

Table B5: Horizontal Well 2 deviation survey showing H, variation with BUR

Depth | TVD | Angle BUR Hiory | Moy | Hiew | Hiew | iy | Hinew | Hinew New
(ft) (ft) (degrees) | (°/100ft) | Coleman | Turner | Coleman | Turner New New Model W./
Model | Model | 2.875 Tubing
0 0 0 0 0.109 | 0.099 | 0.109 | 0.099 | 0.082 | 0.082 0.014
1758 1758 2.17 0 0.140 | 0.128 | 0.140 | 0.128 | 0.109 | 0.109 0.026
1882 1882 2.2 0.19 0.142 | 0.130 | 0.142 | 0.131 | 0.111 | 0.112 0.027
1976 1975 2.2 0.03 0.143 | 0.132 | 0.143 | 0.132 | 0.113 | 0.113 0.028
2071 2070 1.3 0.95 0.145 | 0.133 | 0.148 | 0.137 | 0.114 | 0.118 0.032
7304 7303 0.6 0.11 0.217 | 0.201 | 0.216 | 0.200 | 0.175 | 0.174 0.071
7399 7398 0.7 0.12 0.218 | 0.202 | 0.217 | 0.201 | 0.176 | 0.175 0.072
7477 7476 0.5 0.27 0.218 | 0.203 | 0.218 | 0.202 | 0.177 | 0.176 0.073
7493 7492 0.4 0 0.219 | 0.203 | 0.218 | 0.202 | 0.177 | 0.176 0.073
7559 7558 1.8 2.6 0.219 | 0.203 | 0.235 | 0.219 | 0.177 | 0.193 0.089
7590 7589 3.8 6.45 0.220 | 0.204 0.178 | 0.239 0.136
7622 7621 6.2 7.52 0.220 | 0.204 0.178 | 0.255 0.152
7653 7652 8.5 7.54 0.220 | 0.204 0.178 | 0.256 0.152
7685 7683 10.2 6.17 0.221 | 0.205 0.178 | 0.236 0.133
7716 7714 12 6.13 0.221 | 0.205 0.179 | 0.236 0.132
7748 7745 13.4 4.39 0.221 | 0.205 0.179 | 0.214 0.110
7779 7775 14.8 4.52 0.222 | 0.206 0.179 | 0.216 0.112
7811 7806 17.2 7.76 0.222 | 0.206 0.179 | 0.261 0.157
7842 7835 19.9 8.97 0.222 | 0.206 0.180 | 0.281 0.177
7873 7864 21.7 5.82 0.223 | 0.206 0.180 | 0.233 0.129
7905 7894 22.6 2.85 0.223 | 0.207 0.180 | 0.199 0.095




veET

Depth TVD Angle BUR Hcray Hicray

(ft) (ft) (degrees) | (°/100ft) | Coleman | Turner
7936 7922 23.8 3.92 0.223 0.207
7968 7951 26.5 8.73 0.224 | 0.207
8000 7980 28.7 7.03 0.224 | 0.208
8010 7988 29.2 5.55 0.224 | 0.208
8020 7997 29.6 5.27 0.224 | 0.208
8032 8008 30.4 6.98 0.224 | 0.208
8063 8034 33.7 11.47 0.225 0.208
8094 8059 36.8 10.55 0.225 0.208
8126 8084 39.1 7.49 0.225 0.209
8158 8109 40.9 5.63 0.225 0.209
8189 8132 42.9 6.47 0.164 | 0.148
8220 8154 46.6 12.11 0.165 0.149
8252 8175 51.2 14.8 0.165 0.149
8283 8193 55.9 16.11 0.165 0.149
8314 8210 61.1 18.34 0.165 0.149
8346 8224 65.5 14.64 0.165 0.149
8377 8236 68.4 9.36 0.165 0.149
8408 8247 70.7 7.44 0.165 0.149
8424 8252 72.2 9.54 0.165 0.150
8469 8265 74.3 4.67 0.166 | 0.150
8500 8273 77.5 10.37 0.166 | 0.150
8530 8278 81 13.54 0.166 | 0.150
8561 8283 82.9 9.81 0.166 | 0.150

HLnew
Coleman

HLnew
Turner

HiGray Hinew Hinew New
New New Model w/
Model | Model | 2.875 Tubing
0.181 | 0.210 0.106
0.181 | 0.278 0.174
0.181 | 0.252 0.148
0.181 | 0.231 0.127
0.181 | 0.227 0.123
0.181 | 0.251 0.147
0.181 | 0.327 0.223
0.182 | 0.310 0.206
0.182 | 0.260 0.156
0.182 | 0.233 0.129
0.124 | 0.186 0.141
0.124 | 0.281 0.236
0.124 | 0.336 0.290
0.124 | 0.364 0.318
0.124 | 0.414 0.369
0.124 | 0.333 0.287
0.124 | 0.233 0.187
0.124 | 0.202 0.157
0.124 | 0.236 0.191
0.125 | 0.164 0.118
0.125 | 0.251 0.205
0.125 | 0.311 0.311
0.125 | 0.241 0.241




GET

Depth | TVD | Angle BUR Homy | Hiosy | Huoow | Hiew | e | Hinew o) Hiew New
(ft) (ft) (degrees) | (°/100ft) | Coleman | Turner | Coleman | Turner New New Model W./
Model | Model | 2.875 Tubing
8593 8286 83.9 6.95 0.166 | 0.150 0.220 | 0.125 | 0.195 0.195
8625 8289 85.7 5.84 0.166 | 0.150 0.205 | 0.125 | 0.179 0.179
8657 8291 87.7 6.62 0.166 | 0.150 0.216 | 0.125 | 0.190 0.190
8689 8292 89.9 7.21 0.166 | 0.150 0.224 | 0.125 | 0.199 0.199
8721 8291 91.3 5.97 0.166 | 0.150 | 0.223 | 0.207 | 0.125 | 0.181 0.181
9985 8304 88 5.32 0.166 | 0.150 | 0.214 | 0.198 | 0.125 | 0.173 0.173
10009 8305 87.8 4.66 0.166 | 0.150 | 0.206 | 0.190 | 0.125 | 0.164 0.164
10050 8306 87.8 0 0.166 | 0.150 | 0.167 | 0.151 | 0.125 | 0.126 0.126




