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Discussion

Comment on “A reappraisal of the Kalman filtering technique,

as applied in river flow forecasting” by Ashan, M.,

O’Connor, K.M., 1994. Journal of Hydrology 161, 197–226

Jozsef Szilagyi*

Conservation and Survey Division, University of Nebraska-Lincoln, Lincoln, NE 68588-0517, USA

Received 10 December 2002; revised 6 May 2003; accepted 23 May 2003

The authors reviewed the application of the Kalman

filter (1960) in river flow forecasting. They correctly

pointed out that application of the Kalman filter does

not improve upon traditional, Box and Jenkins-type

time series forecasting techniques when the station-

ary data (i.e. the difference between forecasts and

observations) is considered perfectly free of measure-

ment errors. It must be noted here, however, that

there are no such things as error-free measurements.

One can nonetheless generate such hypothetical

measurements by a computer, as is done below,

and in such a case the two techniques are indeed

identical. The authors further asserted that, in case

of measurement errors, the Kalman filter “results

in reduced forecast efficiency” because during

traditional optimization the measured flow values

are implicitly assumed to be error-free, since model

performance is inferred upon comparing the esti-

mates to measured values, however, corrupted by

measurement error, in a mean-squared-error sense

(Ahsan and O’Connor, 1994). As the Kalman filter

indeed assures that the estimates obtained by its

application are optimal with regard to the unknown

error-free signal, the above authors claim that

the resulting estimates can/will not be optimal in

comparison with the measured, error-laden values.

The present author, however, will point out below,

through theoretical considerations and through

numerical experiments, that this latter claim is

incorrect. In fact, the Kalman filter will always result

in better estimates than traditional Box and Jenkins-

type forecasts even if model performance is based on

comparing model estimates with error-biased

measurements.

The prerequisites of the original digital form of

the Kalman filter to result in optimal estimates of

the state vector are (Meditch, 1969): (a) the state

vector ðxÞ be a Gauss–Markov sequence; (b) the

model ðwÞ and measurement ðvÞ errors be gaussian

white sequences independent of each other, and; (c)

the initial state vector be independent of w and v: If

these prerequisites are met, then the following will

also be true (Meditch, 1969): (1) wðk $ jÞ is

independent of xðjÞ and zðjÞ; j ¼ 0,1,…, where z

denotes the measurement values, and; (2) vðkÞ is

independent of xðkÞ for all k; and also independent

of zðj , kÞ: Using these properties of the measure-

ment error and knowing that the Kalman filter

results in a minimum in the following model

performance-test

J1 ¼ E½ðxðkÞ2 kxðkÞlÞ2�; k ¼ 1; 2;…; ð1Þ
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where the sharp brackets designate a priori

(i.e. forecasted) estimates of x and E denotes

the expectation, it can quickly be shown that it

must minimize the following traditionally employed

model performance test as well

J2 ¼ E½ðzðkÞ2 kzðkÞlÞ2�; k ¼ 1; 2;… ð2Þ

Since zðkÞ ¼ HxðkÞ þ vðkÞ; where H is the measure-

ment matrix, and kzðkÞl ¼ HkxðkÞl; Eq. (2) can be

written as

E½ðHxðkÞ þ vðkÞ2 HkxðkÞlÞ2�

¼ HE½ðxðkÞ2 kxðkÞlÞ2� þ E½ðvðkÞÞ2� ð3Þ

since the expected value of the terms that contain

the product of x or kxl and v vanish due to

independence, the latter because the a priori

estimate, kxl; of x can be expressed as a linear

combination of the measurements prior to the time

ðkÞ of the measurement error (Meditch, 1969).

Consequently, a minimization of Eq. (1) means the

minimization of Eqs. (2) and (3), since the last term

in Eq. (3) is given. It is immediately clear also, that

in the absence of the measurement noise, Eqs. (1)

and (2) are identical up to a multiplier of H; which

is unity in case of a first-order scalar autoregressive,

AR(1), sequence when written in a state-space form,

so in this latter case the two performance statistics

are strictly equal.

To illustrate the above claim, stationary scalar

AR(1) sequence values were generated by the

computer

xðk þ 1Þ ¼ FxðkÞ þ wðkÞ; k ¼ 0; 1;… ð4Þ

where F is the prescribed AR(1) sequence parameter.

The xðkÞ values were disturbed to simulate the effect

of the measurement process such as

zðkÞ ¼ xðkÞ þ vðkÞ; k ¼ 1; 2;… ð5Þ

with w and v being gaussian white sequences with

zero means and prescribed variances.

The parameter F was then estimated by the

Yule-Walker equations (Bras and Rodriguez-Iturbe,

1993)

r1 ¼ kFlr0 ¼ kFl ð6Þ

where r0 ¼ 1; and rI are the lag-zero and lag-one

sample autocorrelation coefficients, respectively.

With the help of the estimated F value, kFl;
lag-one forecast values were created by (Bras and

Rodriguez-Iturbe, 1993)

kzðkþ 1Þl¼mþ kFlðzðkÞ2mÞ k ¼ 1;2;… ð7Þ

where m denotes the sample mean. For long sequences

(kmax is in the order of 104) the so derived estimates

indeed minimize Eq. (2), meaning that no other

systematically chosen trial value of F when used with

Eq. (7) results in better model performance as

calculated by Eq. (2).

To see if the Kalman filter can improve upon these

estimates, systematically chosen trial values of F

were created (simply increasing the trial value of F

from a minimum value up to a maximum value [i.e. 1]

with a prescribed increment, in the order of 1024) and

applied in the filter equations as described by Meditch

(1969) and Szollosi-Nagy (1989). A summary of the

filter algorithm used is such

Initial values:

Q ¼ variance of w (prescribed in the random

number generator); R ¼ variance of v (prescribed in

the random number generator); P ¼ sample variance

of x; X ¼ sample mean of x;

Start with k ¼ 1:

X¼ kFlX;kxðkÞl¼X;P¼F2PþQ;K ¼PðPþRÞ21;

X¼XþKðzðkÞ2XÞ;P¼ð12KÞP;

Increase k by one, return to start until k, kmax.

For each trial value of F; Eq. (2) was evaluated

with the filter calculated kxðkÞl values being sub-

stituted for kzðkÞl; and finally the F value (and the

corresponding Kalman filter obtained forecasts)

declared as optimal that resulted in the minimum

value of Eq. (2). The so obtained F values and lag-

one forecasts or a priori estimates of zðkÞ were

always superior to the one obtained by the Box and

Jenkins-type forecasts of Eq. (7). See Table 1 for a

comparison. Table 1 also displays how uncertainties

in the values of Q; R; and of P (since these are

generally not known with real data) affect the filter

estimates. From Table 1 it can be seen that the

Kalman filter results in robust forecasts with

stationary data which means that it is not very

sensitive to errors in its initial input. As expected, its

superiority over traditional time-series forecasts

J. Szilagyi / Journal of Hydrology 285 (2004) 286–289 287



Table 1

Performance statistics of the Box and Jenkins-type (BJ) and the Kalman filter (K) optimized forecasts

kmax ¼ 10,000 kQl ¼ Q ¼ 1,

kRl ¼ R ¼ 1

kQl ¼ Q ¼ 1;

kRl ¼ R ¼ 0:5

kQl ¼ Q ¼ 0:5;

kRl ¼ R ¼ 1

kQl ¼ 2Q ¼ 2;

kRl ¼ 0:5R ¼ 0:5

kQl ¼ 0:5Q ¼ 0:5;

kRl ¼ 2R ¼ 2

kQl ¼ Q ¼ 1;

kRl ¼ R ¼ 0

F ¼ 0:8 kPð0Þl ¼ VðxÞ kPð0Þl ¼ VðxÞ kPð0Þl ¼ VðxÞ kPð0Þl ¼ VðxÞ kPð0Þl ¼ VðxÞ kPð0Þl ¼ VðxÞ

kFlBJ ¼ 0.59 0.69 0.48 0.59 0.60 0.80

kFlK ¼ 0.80 0.81 0.80 0.69 0.90 0.80

JK
1 =J

BJ
1 ¼ 0.93 0.96 0.90 0.96 0.99 1

Jk
2=J

BJ
2 ¼ 0.96 0.97 0.95 0.97 0.99 1

kPð0Þl ¼ 2VðxÞ kPð0Þl ¼ 2VðxÞ kPð0Þl ¼ 2VðxÞ kPð0Þl ¼ 2VðxÞ kPð0Þl ¼ 2VðxÞ kPð0Þl ¼ 2VðxÞ

kFlBJ ¼ 0.59 0.68 0.47 0.59 0.60 0.79

kFlK ¼ 0.80 0.81 0.80 0.69 0.90 0.79

JK
1 =J

BJ
1 ¼ 0.93 0.96 0.91 0.96 0.98 1

Jk
2=J

BJ
2 ¼ 0.96 0.97 0.95 0.98 0.99 1

kPð0Þl ¼ 0:5VðxÞ kPð0Þl ¼ 0:5VðxÞ kPð0Þl ¼ 0:5VðxÞ kPð0Þl ¼ 0:5VðxÞ kPð0Þl ¼ 0:5VðxÞ kPð0Þl ¼ 0:5VðxÞ

kFlBJ ¼ 0.58 0.68 0.47 0.56 0.59 0.80

kFlK ¼ 0.80 0.80 0.80 0.66 0.89 0.80

JK
1 =J

BJ
1 ¼ 0.93 0.97 0.90 0.96 0.98 1

Jk
2=J

BJ
2 ¼ 0.96 0.98 0.95 0.98 0.99 1

F ¼ 0:95 kPð0Þl ¼ VðxÞ kPð0Þl ¼ VðxÞ kPð0Þl ¼ VðxÞ kPð0Þl ¼ VðxÞ kPð0Þl ¼ VðxÞ kPð0Þl ¼ VðxÞ

kFlBJ ¼ 0.87 0.91 0.81 0.85 0.87 0.96

kFlK ¼ 0.95 0.95 0.95 0.90 0.98 0.96

JK
1 =J

BJ
1 ¼ 0.85 0.92 0.75 0.90 0.93 1

Jk
2=J

BJ
2 ¼ 0.90 0.94 0.85 0.94 0.96 1

kPð0Þl ¼ 2VðxÞ kPð0Þl ¼ 2VðxÞ kPð0Þl ¼ 2VðxÞ kPð0Þl ¼ 2VðxÞ kPð0Þl ¼ 2VðxÞ kPð0Þl ¼ 2VðxÞ

kFlBJ ¼ 0.88 0.91 0.81 0.87 0.85 0.95

kFlK ¼ 0.95 0.95 0.95 0.92 0.97 0.95

JK
1 =J

BJ
1 ¼ 0.85 0.93 0.75 0.90 0.97 1

Jk
2=J

BJ
2 ¼ 0.91 0.95 0.86 0.93 0.99 1

kPð0Þl ¼ 0:5VðxÞ kPð0Þl ¼ 0:5VðxÞ kPð0Þl ¼ 0:5VðxÞ kPð0Þl ¼ 0:5VðxÞ kPð0Þl ¼ 0:5VðxÞ kPð0Þl ¼ 0:5VðxÞ

kFlBJ ¼ 0.87 0.90 0.79 0.86 0.86 0.95

kFlK ¼ 0.95 0.95 0.95 0.91 0.98 0.95

JK
1 =J

BJ
1 ¼ 0.85 0.93 0.75 0.90 0.91 1

Jk
2=J

BJ
2 ¼ 0.90 0.94 0.87 0.94 0.94 1

The sharp brackets denote estimates, and V designates the sample variance. Note that altogether 6 £ 6 ¼ 36 pieces of Gauss-Markov sequences were generated, each consisting

of 10,000 values.
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decreases with diminishing measurement errors, to

give identical forecasts with the latter in the complete

absence of measurement errors, which again, it must

be stressed, is never the case with any kind of

measured data.

It is believed by the present author that the

Kalman filter, as has been in the past, will continue

to be an important tool for the practicing

hydrologist even though, as was shown above, its

performance is routinely inferred (by default) from

comparing the filter forecasts to error-laden

measurements. Caution has to be taken though

during parameter optimization in general. The

relatively large difference in the optimized value

of the parameter, F; in Table 1 between the two

techniques underlines the importance of performing

model optimization together with the Kalman filter

and not separately in order to get truly optimal

estimates.
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