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We propose a new structure for piezoelectric gyroscopes. It is made from multilayered thin films of AlN or ZnO
with alternating c-axes along the film thickness. It is shown theoretically that when such a film is electrically
driven into higher-order overtone thickness-shear vibration in one of the two in-plane directions of the film and
is rotating about the film normal, the Coriolis force due to the rotation causes a higher-order overtone thickness-
shear vibration in a perpendicular direction with an electrical output that can be used to measure the angular rate
of the rotation. Different from existing thickness-shear mode piezoelectric gyroscopes which are based on the
fundamental or the second overtone thickness-shear mode, the proposed gyroscope operates with higher-order
overtone thickness-shear modes with higher frequencies and hence potentially higher sensitivity. Because of the
overtone modes, the Coriolis force acting on the gyroscope forms a self-equilibrated system and does not transmit
a net force or torque to the mounting structure. This implies higher device quality factor and better performance.

1. INTRODUCTION

Piezoelectric materials can be used to make vibratory gyro-
scopes or angular rate sensors.1 They make use of two vibra-
tion modes of a piezoelectric body, in which material particles
moving in perpendicular directions are coupled by the Coriolis
force when the gyroscope is rotating. When the gyroscope is
excited into vibration by an applied alternating voltage in one
of the two modes (the primary mode) and rotates with an an-
gular rate, the Coriolis force from the primary mode excites
the other mode (the secondary mode) through which the angu-
lar rate can be detected from electrical signals (voltage or cur-
rent) accompanying the secondary motion. Many piezoelectric
gyroscopes are based on flexural vibrations in perpendicular
directions of beams. References on beam gyroscopes can be
found in a review article.2

This paper is concerned with piezoelectric gyroscopes oper-
ating with thickness-shear (TSh) modes in perpendicular di-
rections of a plate3–9 which have several advantages. TSh
modes of a plate have higher frequencies than flexural modes
of a beam with a comparable size. For vibratory gyroscopes,
higher frequencies imply potentially higher sensitivity.2 In ad-
dition, TSh modes have an important behaviour called energy
trapping,4, 5 in which the vibration is confined in the central
part of the plate. Near the edges of the plate there is little vi-
bration where mounting can be designed without affecting the
operation of the device. Most TSh mode gyroscopes operate
with the fundamental TSh mode of a plate.3–8 Recently, it was
pointed out9 that for the fundamental TSh mode, although the
energy trapping confines the TSh vibration to the central part of
the plate, the Coriolis force due to rotation forms a torque on
the gyroscope which has to be balanced by a reactive torque

from the mounting or support. This causes energy leakage
to the support and lowers the device quality factor. A TSh
piezoelectric gyroscope was then proposed9 based on the sec-
ond overtone TSh mode of a lithium niobate plate with an in-
version layer whose Coriolis force forms a self-equilibrated
system and does not transmit to the support, which is helpful
for raising the device quality factor.

The lithium niobate plate with an inversion layer9 was eff-
ective for exciting the second overtone of TSh, but not the
higher-order TSh overtones. The higher-order TSh overtones
are also attractive for gyroscope applications. They have
higher frequencies and hence potentially higher sensitivity.2
Recently, micromachined, multilayered thin films of AlN and
ZnO have been produced for acoustic wave resonator applica-
tions.10 They belong to micromachined devices11–15 and are
much thinner than conventional crystal plate TSh gyroscopes
of quartz or lithium niobate. This leads to higher frequencies
and potentially higher sensitivity. In these multilayered thin
films, the c-axis of each layer can assume different and inde-
pendent directions. This offers the opportunity for exciting
higher-order overtone TSh modes16 conveniently with even
higher frequencies and self-equilibrated Coriolis forces. In
this paper we demonstrate theoretically the advantages of using
a multilayered thin film of AlN or ZnO to make a piezoelectric
gyroscope operating with higher-order overtone TSh modes.

2. STRUCTURE

Consider the four-layered thin film of AlN or ZnO in
Fig. 1 as an example. The reference frame is attached to the
film and is rotating with it. The analysis below can be gener-
alized to thin films with more layers. The thicknesses of the
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Figure 1. A four-layered thin film of AlN or ZnO with alternating c-axes.

layers are shown in c1 through c4, and the c-axes of the lay-
ers are either along x3 or minus x3, as shown by the arrows
in the figure. The film has four separate electrodes on its four
sides. Across the electrodes where x1 = ±a, a time-harmonic
driving voltage, V1, is applied, producing an in-plane or lateral
driving electric field E1 = −V1/(2a).

Due to the specific material anisotropy of AlN or ZnO which
both belong to the crystal class of 6mm, E1 drives the plate
into the primary TSh motion described by u1(x3, t). When the
plate is rotating about the x3-axis with an unknown angular
rate Ω which is to be measured, the related Coriolis force drives
the plate into the secondary TSh motion described by u2(x3, t)
which produces an electric field E2 and a related output volt-
age V2 across the electrodes at x2 = ±b, withE2 = −V2/(2b).
The electrodes at x2 = ±b are joined by an output circuit
whose impedance is Z in harmonic motions. The output cur-
rent in this circuit is denoted by I . It will be shown that V2
(and I) are related to Ω and can be used to measure it.

3. GOVERNING EQUATIONS
Plate TSh devices have large length/thickness and

width/thickness ratios in order to produce nearly pure
TSh modes with fewer couplings to other unwanted modes
and fewer in-plane variations along x1 and x2. Therefore,
we neglect edge effects and use a one-dimensional model
depending on the film thickness coordinate, x3, and time.
This is sufficient for showing the operation principle and
the basic behaviour of the proposed gyroscope. Since the
material changes from layer to layer, we need to treat each
layer separately and then apply continuity conditions at their
interfaces and boundary conditions at the film’s top and
bottom surfaces.

For TSh vibrations of the top layer with the c-axis along x3,
the relevant displacement and electric potential fields are:9

u1 = u1(x3)eiωt;

u2 = u2(x3)eiωt;

u3 = 0;

φ = −E1x1e
iωt − E2x2e

iωt. (1)

The relevant equations of motion for a rotating piezoelectric
body take the following form:2, 9

T31,3 = ρ(
∂2u1
∂t2

− 2Ω
∂u2
∂t

− Ω2u1);

T32,3 = ρ(
∂2u2
∂t2

+ 2Ω
∂u1
∂t

− Ω2u2); (2)

where the shear stresses T31 and T32 are related to the displace-
ment gradients and the electric fields through:9, 17

T31 = c55u1,3 − e15E1;

T32 = c55u2,3 − e15E2. (3)

Since for steady-state motions all of the electromechanical
fields are time harmonic, we use the usual complex notation.
The same exponential time factor is dropped for simplicity. To
calculate the charge on the driving and output electrodes, we
need:9, 17

D1 = e15u1,3 + ε11E1;

D2 = e15u2,3 + ε11E2. (4)

The substitution of Eq. (3) into Eq. (2) gives:

c55u1,33 = ρ(−ω2u1 − 2iωΩu2 − Ω2u1);

c55u2,33 = ρ(−ω2u2 + 2iωΩu1 − Ω2u2). (5)

The above equations are also valid for the third layer from
the top with the c-axis also along x3.

Similarly, for the second layer from the top with the c-axis
along minus x3, Eqs. (1), (2) and (5) remain the same. Since
the piezoelectric constants change their signs when the c-axis
is reversed, Eqs. (3) and (4) become:

T31 = c55u1,3 + e15E1;

T32 = c55u2,3 + e15E2; (6)

and:

D1 = −e15u1,3 + ε11E1;

D2 = −e15u2,3 + ε11E2. (7)

The equations for the bottom layer are the same as those of
the second layer from the top.

The traction-free boundary conditions at the film top surface
are:

T31(c1 + c2) = 0;

T32(c1 + c2) = 0. (8)

The continuity conditions at the interfaces among the four
layers with x3 = c2, x3 = 0, orx3 = −c3 are:

u1(c+2 ) = u1(c−2 ); u2(c+2 ) = u2(c−2 );

T31(c+2 ) = T31(c−2 ); T32(c+2 ) = T32(c−2 );

u1(0+) = u1(0−); u2(0+) = u2(0−);

T31(0+) = T31(0−); T32(0+) = T32(0−);

u1(−c+3 ) = u1(−c−3 ); u2(−c+3 ) = u2(−c−3 );

T31(−c+3 ) = T31(−c−3 ); T32(−c+3 ) = T32(−c−3 ). (9)
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The boundary conditions at the film bottom surface are:

T31(−c3 − c4) = 0;

T32(−c3 − c4) = 0. (10)

The free charge on the output electrode at x2 = b is given
by:

q = 2a

∫ c1+c2

−c3−c4
−D2∂x3. (11)

Then the current that flows out of the electrode is:

I = −∂q
∂t

= −iωq. (12)

The equation for the output circuit is:

V2 = IZ. (13)

There are sixteen boundary and continuity conditions in
Eqs. (8), (9), and (10), plus the circuit equation in Eq. (13).
They will be used to determine the sixteen undetermined con-
stants in the solutions from Eq. (5) (four from each layer) in
the next section, plus the unknown output voltage V2.

4. ANALYTICAL SOLUTION

Consider the top layer first. Equation (5) is a system of ordi-
nary differential equations with constant coefficients. Its gen-
eral solution can be obtained in a systematic manner without
any mathematical challenge. The result can be written as:

u1 =

4∑
m=1

A(m)e(ζ
(m)x3);

u2 =

4∑
m=1

α(m)A(m)e(ζ
(m)x3); (14)

where A(m) (m = 1, 2, 3 and 4) are four undetermined con-
stants. The values α(m) are determined from Eq. (5) as:

α(m) =
2iρωΩ

c55(ζ(m))2 + ρω2 + ρΩ2
. (15)

ζ(m) are the four roots of:

∣∣∣∣c55ζ2 + ρω2 + ρΩ2 2iρωΩ
−2iρωΩ c55ζ

2 + ρω2 + ρΩ2

∣∣∣∣ = 0. (16)

Similarly, for the second layer from the top, the general so-
lution to Eq. (5) can be written as:

u1 =

4∑
m=1

Ā(m)e(ζ
(m)x3);

u2 =

4∑
m=1

α(m)Ā(m)e(ζ
(m)x3); (17)

where Ā(m) are four undetermined constants. For the third
layer from the top, the general solution to Eq. (5) can be written
as:

u1 =

4∑
m=1

Â(m)e(ζ
(m)x3);

u2 =

4∑
m=1

α(m)Â(m)e(ζ
(m)x3); (18)

where Â(m) are four undetermined constants. For the fourth
layer from the top, the general solution to Eq. (5) can be written
as:

u1 =

4∑
m=1

Ã(m)e(ζ
(m)x3);

u2 =

4∑
m=1

α(m)Ã(m)e(ζ
(m)x3); (19)

where Ã(m) are four undetermined constants.
With Eqs. (14) and (17) through (19), the output current

I can be calculated from Eq. (12) using Eqs. (4), (7) and (11).
The substitution of Eqs. (14), (17) through (19) and the expres-
sion of the current I into Eqs. (8), (9), and (10) and Eq. (13)
results in seventeen equations forA(m), Ā(m), Â(m), Ã(m) and
V2. These equations are solved on a computer.

5. NUMERICAL RESULTS
As a numerical example, consider an AlN film with c1 =

c2 = c3 = c4 = 0.01 mm and 2a = 2b = 1 mm. The
length/thickness ratio of the film is 25, indicating a very thin
film, hence edge effects can be neglected. The elastic, piezo-
electric, and dielectric constants of AlN are available.18 To
take material damping into consideration, in the numerical cal-
culation, a complex elastic stiffness c55(1 + iQ−1) was intro-
duced where i is the imaginary unit and Q is a real, positive,
and large number (the material quality factor). Q = 102 was
used. We also introduced the following impedance Z0 and fre-
quency ω0 as units for the load impedance Z and the driving
frequency ω:

Z0 =
1

iω0C0
;

C0 =
ε11(c1 + c2 + c3 + c4)2b

2a
;

ω0 =
π

c1 + c2 + c3 + c4

√
c55
ρ

; (20)

where ω0 is very close to the fundamental TSh frequency of
the four-layered film. In Eq.(20), c55 is kept real. With the
above data, we found that ω0 = 4.7252 × 108 1/s and Z0 =
−7.4694 × 105i ohm, and ω0 is an order of magnitude higher
than that of a typical quartz or lithium niobate plate TSh mode
resonator. For the applied voltage, V1 = 1 volt was used in the
calculation.

Figure 2 shows the normalized output voltage versus the
normalized driving frequency. At some frequencies there are
significant output (the peaks in the figure), indicating reso-
nances. The gyroscope is supposed to operate with the fourth
overtone TSh mode because the specific film under consider-
ation has four layers with a special arrangement of the orien-
tations of the c-axes. Therefore, we expect the first peak, or
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Figure 2. Output voltage V2 versus driving frequency ω (Ω = 0.02ω0, Z =
0.3Z0).

resonance, to be close to 4 which is indeed shown in the fig-
ure. A closer look at the peak near ω

ω0
= 4 shows that in fact

it consists of two peaks when magnified locally (also shown in
the figure). Despite that the peak near ω

ω0
= 12 still appears

as one peak when magnified, we believe that it in fact consists
of two overlapped peaks from our knowledge on gyroscopes in
general.2

Next, we examine the displacement distribution along the
film thickness corresponding to the peaks in Fig. 2. Figure 3 (a)
and (b) show u1(x3) corresponding to the left peak and the
right peak near ω

ω0
= 4, respectively. u2(x3) is qualitatively

similar. When the film is not rotating, u1 and u2 represent
two uncoupled higher-order overtone TSh modes along x1 and
x2, respectively. One has u1 only and the other has u2 only.
When the film is rotating about its normal, u1 and u2 are cou-
pled by the Coriolis force. In Fig. 3 (a) the imaginary part
of u1 is much larger than the real part, but in (b) the situa-
tion is the opposite. This indicates a phase difference between
the two modes in (a) and (b). The distribution of the velocity
∂u1/∂t = iωu1 along the film thickness is similar to that of
u1. In Fig. 3, the area bounded by u1 with u1 > 0 is the same
as the area with u1 < 0. In addition, u1 is symmetric about the
film middle plane. Therefore, we have:

∫ c1+c2

−c3−c4
u1∂x3 = 0;∫ c1+c2

−c3−c4
x3u1∂x3 = 0. (21)

Since the Coriolis force associated with ∂u1/∂t is propor-
tional to ∂u1/∂t and hence proportional to u1, Eq. (21) im-
plies that the resultant and the moment of the Coriolis force
associated with u1 are both zero. Therefore, the Coriolis force
forms a self-equilibrated system and does not require a reac-
tive force or moment from the supports of the device. We note
that the Coriolis force is in fact not a real force. It is a fictitious
force needed in the rotating reference frame used. In the fixed
inertial reference frame, the Coriolis force does not exist and
instead we have the Coriolis acceleration.

The distribution of u1 along the film thickness correspond-
ing to the peak near ω

ω0
= 12 in Fig. 2 is shown in Fig. 4.

It is a higher-order TSh mode which also results in a self-
equilibrated Coriolis force system. Geometrically, ∂u1/∂x3

Figure 3. Distribution of u1 along the film thickness (Ω = 0.02ω0, Z =
0.3Z0). (a) Corresponding to the left peak near ω

ω0
= 4 in Fig. 2. (b) Corre-

sponding to the right peak near ω
ω0

= 4 in Fig. 2.

describes the TSh strain due to u1(x3). In Fig. 4, the TSh strain
changes its sign within each of the four layers. This causes
cancellation of the charge (or voltage) produced by the shear
strain across the output electrodes through piezoelectric cou-
pling. Hence the output voltage is relatively low near ω

ω0
= 12

in Fig. 2.
In Fig. 5, we plot the output voltage of the left resonance

near ω
ω0

= 4 versus Ω, the angular rate to be measured. The fig-
ure shows that a higher output voltage corresponds to a larger
Ω than expected. In particular, when Ω is relatively small com-
pared to ω0, there is an essentially linear relationship between
the output voltage and Ω which is ideal for a sensor. The plate
is very thin with a very high ω0. Therefore, the essentially lin-
ear range with Ω << ω0 covers a wide range of applications.

Figure 6 shows the effect of Z, the impedance of the output
circuit, on the output voltage for the left resonance near ω

ω0
=

4. For small Z, the output circuit is nearly shorted. In this case,
although the output voltage is low, the output current must be
high which can also be used to measure Ω. As Z increases
from zero, there is an essentially linear range. When Z is large,
the output circuit is nearly open. In this case the output voltage
is large and saturates, and the output current is small.
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Figure 4. Distribution of u1 along the film thickness near ω
ω0

= 12 in Fig. 2
(Ω = 0.02ω0, Z = 0.3Z0).

Figure 5. Output voltage versus Ω for the left peak near ω
ω0

= 4 in Fig. 2.

For a complete view, we plot the output voltage versus both
the angular rate and the load impedance in Fig. 7. It can be
seen that the output voltage is an increasing function of both
Ω and Z, and is essentially linear when they are low values.

Figure 8 shows the effects of layer thicknesses on the output
voltage near ω

ω0
= 4. The solid line is for the case of identical

layer thickness. For the dotted line, the total film thickness is
kept the same as that of the solid line but the thicknesses of
the individual layers were varied slightly. In this case the TSh
strain corresponding to the modes in Fig. 3 no longer change
its sign exactly at the interfaces among different layers. As
a consequence, there is some charge cancellation at the output
electrodes, which lowers the peaks. The resonant frequencies
are also affected by the layer thicknesses. These frequencies
mainly depend on the material density, the relevant shear elas-
tic constant c55 and the film total thickness. However, since
the material is piezoelectric, the frequencies also depend on
the electric field in the film and the related piezoelectric stiff-
ening effect. Varying layer thicknesses changes the electrical
state in the layers and thus affect the frequencies.

In Fig. 9, the solid line represents the case of a square film
with 2a = 2b. For the dotted line, the dimension of the film
along x2 is increased a little. This affects the electric field
and the output voltage through E2 = −V2/(2b). Since the

Figure 6. Output voltage versus Z for the left peak near ω
ω0

= 4 in Fig. 2.

Figure 7. Output voltage versus both Ω and Z for the left peak near ω
ω0

= 4

in Fig. 2.

electrical state in the structure is affected, the frequencies and
the output voltage also change accordingly.

6. CONCLUSIONS

It is shown that a piezoelectric gyroscope can operate with
higher-order overtone TSh modes in a multilayered thin film of
AlN or ZnO. The gyroscope has an important advantage, i.e.,
the Coriolis force due to rotation forms a self-equilibrated sys-
tem and does not cause reactions at mounting points. There-
fore, the device has little energy leakage through mounting and
potentially has a high quality factor. The proposed gyroscope
has high resonant frequencies and potentially high sensitivity.
The output voltage of the gyroscope is sensitive to the struc-
tural parameters which can be used to optimize its design. The
analysis in the present paper can be generalized to thin films
with more than four layers, and similar results can be expected.
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Figure 8. Effect of layer thickness near ω
ω0

= 4 (Ω = 0.02ω0, Z = 0.3Z0).

Figure 9. Effects of film size near ω
ω0

= 4 (Ω = 0.02ω0, Z = 0.3Z0).
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