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Abstract
Extensive research has shown that elementary students struggle to learn the ba-
sic principles of length measurement. However, where patterns of errors have been 
documented, the origins of students’ difficulties have not been identified. This study 
investigated the hypothesis that written elementary mathematics curricula con-
tribute to the problem of learning length measurement. We analyzed all instances 
of length measurement in three mathematics curricula (grades K–3) and found a 
shared focus on procedures. Attention to conceptual principles was limited overall 
and particularly for central ideas; conceptual principles were often presented after 
students were asked to use procedures that depended on them; and students often 
did not have direct access to conceptual principles. We also report five groupings of 
procedures that appeared sequentially in all three curricula, the conceptual princi-
ples that underlie those procedures, and the conventional knowledge that receives 
substantial attention by grade 3. 
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From the primary grades forward, many students in the United States, 
as well as in other countries (Bragg & Outhred, 2001; Hart, 1981; Nunes 
& Bryant, 1996), struggle to learn measurement. More than 30 years of 
empirical research, both large-scale studies and smaller more focused 
studies targeting student reasoning, have shown substantial weaknesses 
in students’ understanding of measurement. In the United States and 
other countries, children work in the elementary grades to measure many 
quantities, including time, weight/mass, capacity/volume, and temper-
ature. But more attention is devoted to measuring space—length, area, 
and volume—than other quantities, starting in the first year of formal 
schooling.1 Despite frequent everyday experiences with spatial quanti-
ties, many students do not understand units of measure, how the iter-
ation of units produces spatial measures, or how commonly used tools 
(rulers and computational formulas) generate measures (Battista, 2003; 
Lehrer, 2003; Lehrer, Jenkins, & Osana, 1998; National Research Council, 
2001, 2007). U.S. elementary students’ performance on the National As-
sessment of Education Progress (NAEP) has been lower in measurement 
than in most other domains (Thompson & Preston, 2004), even when im-
portant aspects of measurement have not been assessed (Blume, Galindo, 
&Walcott, 2007). The NAEP performance gap between White students 
and students of color has been greater for measurement than any other 
content domain (Lubienski, 2003). Though case studies have shown that 
deeper and more robust learning is possible with the right classroom ex-
periences and teaching practices (Lehrer, Jaslow, & Curtis, 2003; Stephan, 
Bowers, Cobb, & Gravemeijer, 2003), we know little from empirical re-
search about the factors that contribute to weak learning of spatial mea-
surement in typical classrooms. 

This article explores the hypothesis that the nature of current elemen-
tary curriculum materials, especially their procedural and conceptual con-
tent and how they express that content to students, is one factor contrib-
uting to students’ difficulties to learn length measurement. We will not 
claim a causal relationship between curricular content and students’ doc-
umented learning challenges. Indeed, we devote substantial space to pre-
senting a framework that identifies multiple factors that interact to cause 
the patterns of weak learning. Rather, our central claim is that a strong 
correlation exists between students’ challenges and the content of cur-
rent U.S. elementary mathematics curricula, particularly with the docu-
mented challenges that students face understanding length measurement. 

1 In the United States, the first year of formal schooling is Kindergarten; in other countries, 
it is grade 1.   
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To introduce and frame our curricular analysis, we first review the prob-
lem of learning spatial measurement, then summarize what research has 
revealed (and not yet explained) about children’s understanding of length 
measurement specifically, and last describe a framework of factors that 
are jointly responsible for weak measurement learning. 

Measurement and Evidence of Weak Learning 

Our analysis focuses on length measurement, but the problem of learn-
ing measurement extends beyond that specific quantity. That said, the 
measurement of space begins with length measurement, and more atten-
tion is given to length measurement in the primary grades in the United 
States than any other quantity, as judged by state standards (Kasten & 
Newton, 2011). At its core, measurement is the assignment of a numerical 
value to a continuous quantity. Given a suitable unit, all similar contin-
uous quantities (e.g., all lengths) are made discrete by segmenting them 
in unit parts. So all measures of continuous quantities have two compo-
nents, the unit of measure and the number of those units that fill out or 
exhaust the particular quantity measured. 

In the United States, NAEP has consistently provided evidence of weak 
student learning of measurement. One indicator is performance on mea-
surement items relative to other content domains. Although fourth graders 
have performed comparatively well on measurement, eighth graders’ mea-
surement performance has remained low since 1990, along with geome-
try and spatial sense (Thompson & Preston, 2004). Similarly, on the Third 
International Mathematics and Science Study (TIMSS), eighth grade U.S. 
students also scored significantly lower on measurement, both relative to 
other countries and to their own performance on other content domains 
(National Center of Educational Statistics, 1997). A second indicator has 
been performance on items requiring explanation or solution of nonroutine 
problems. Where U.S. fourth graders have been generally successful read-
ing a ruler when one end of the object is aligned with the zero mark, they 
performed very poorly (20–25% correct over multiple assessments) when 
the object was aligned at a nonzero unit mark and the zero mark was not 
shown—frequently called the broken ruler task (Kloosterman, Rutledge, & 
Kenney, 2009). This result suggests that students do not understand the 
structure of rulers and may be simply reading off the ruler number at the 
end of the object whether it is appropriate or not. The performance gap be-
tween White and minority students noted above was greatest for nonrou-
tine items like the broken ruler task (Lubienski & Crockett, 2007). 
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Smaller-scale studies targeting students’ reasoning have provided 
more insight into the nature of their struggles with measurement. Mul-
tiple studies have shown that middle school students do not distinguish 
the perimeter (a length) from the area of simple geometric shapes (Chap-
pell & Thompson, 1999; Woodward & Byrd, 1983). They take equal pe-
rimeters as evidence of equal areas, apparently applying “same A, same 
B” reasoning (Stavy & Tirosh, 2000), and area responses have been at-
tractive distracters on perimeter items (and vice-versa). In studies of 
length and area measurement, students are frequently drawn to count 
points rather than intervals of space, whether these are ruler marks for 
length (Bragg & Outhred, 2004) or geoboard pegs for area (Kamii & Kysh, 
2006), suggesting interference from their experience of counting sets 
of discrete objects. Substantial evidence has also indicated that compu-
tational formulas for area and volume are weakly understood (Battista, 
2003). Even adults report that “area is length times width,” apparently 
as a general definition, where that formula only applies to rectangles 
(Schifter & Szymaszek, 2003). 

Weak measurement learning carries significant costs for subsequent 
learning of mathematics and science. Measurement gives elementary stu-
dents’ direct contact with continuous quantities to complement their ex-
tensive experience with discrete quantities in learning base-10 number 
and operations. Even before they encounter the mathematical and sci-
entific content in middle and high school that depends on the measure-
ment of continuous quantities (e.g., density, work, force, torque), stu-
dents are expected to learn about fractions and rational numbers in the 
upper elementary grades—a topic that is difficult to teach and learn solely 
from a basis of discrete quantity (Freudenthal, 1983; Thompson & Sal-
danha, 2003). Weak understanding of measurement, particularly of how 
unit iteration transforms continuous quantities into discrete quantities, 
may also limit students’ ability to understand calculus, where the inter-
play between continuous and discrete quantities is so central (Thomp-
son, 1994a). 

Reviewing research on length and area measurement, Stephan and 
Clements (2003) have commented, “‘Something is clearly wrong with 
[measurement] instruction’ (Kamii & Clark, 1997) because it tends to 
focus on the procedures of measuring rather than the concepts under-
lying them” (p. 3). Though the character of classroom instruction may 
be strongly shaped by curriculum materials, no study to date has ex-
amined the nature and quality of length measurement content (or spa-
tial measurement more generally) in current U.S. elementary curriculum 
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materials. This study examined the character of the written curriculum 
for length measurement to assess the evidence that curricular limitations 
contribute to the problem of weak learning. 

Research on Children’s Understanding of Length Measurement 

A significant body of empirical research has examined the development 
of students’ understanding of length measurement and the teaching prac-
tices that support and limit it. We emphasize four main themes in this 
literature, each representing a major challenge to student learning: (a) 
understanding length as a stable and measurable quantity, (b) under-
standing the properties of manipulable units of length, (c) understand-
ing the structure of rulers, (d) measuring complex paths (not single line 
segments). In each case, we also consider important issues that this re-
search has left open. 

Piaget’s Work: Length Conservation and Transitive Inference 

Research on children’s understanding of length measurement began with 
Piaget’s foundational studies (Piaget, Inhelder, & Szeminska, 1960). He 
claimed that the conservation of length as a quantity and the understand-
ing of transitive inference were prerequisites to understanding units and 
“metric” measurement, including the use of rulers. Piaget also asserted 
that young children experience length, an amount of “filled” space occu-
pied by an object or path of travel, and distance, an amount of “unfilled” 
space, as different quantities, and only later come to see them as equiv-
alent. He argued that children’s understanding of length measurement 
proceeds sequentially from comparative judgments of length (by direct 
comparison and visual inspection), to the use of intermediate objects to 
compare objects by transitive inference when visual inspection does not 
suffice, to the use of iterable units as universal intermediate objects. He 
argued that two basic mental processes were involved in the construc-
tion of length units: the conservation of length when subdivided into 
parts and the coordination of subdivision with the order of spatial po-
sition of the iterated part. For Piaget, measurement only became “met-
ric” when the child understood length units conceptually; only then was 
counting units sensible for measuring and comparing lengths. Under-
standing length units conceptually was seen as prerequisite to under-
standing and using rulers. 
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Where researchers have not questioned the conceptual importance 
of conservation and transitivity, they have debated their status as de-
velopmental prerequisites to length measurement (Clements & Sarama, 
2009). Kamii and Clark’s (1997) study of grade 1–5 students provided 
support for Piaget’s claim. When presented with two equal-length seg-
ments in an inverted T shape that appeared unequal due to perceptual il-
lusion, many primary grade students failed to compare the segments be-
cause they could not use either a larger intermediate object (and thereby 
transitive inference) or a smaller one (unit iteration) effectively. Kamii 
(2006) has argued that transitivity must be mastered before unit itera-
tion becomes conceptually meaningful. In contrast, Hiebert (1981, 1984) 
reported that some length measurement competencies such as indirect 
comparison and the iteration of units were not dependent on conserva-
tion and transitivity. His first graders who conserved length and used 
transitive inference only differed from those who failed in those tasks in 
their understanding of the inverse relation between the size of a length 
unit and the number of units required—a key measurement concept that 
Piaget did not address. 

Informed by Piaget’s work, educators have consistently argued for a 
sequence of instructional activities for length measurement that begins 
with qualitative comparison (e.g., which of two objects is longer?); moves 
to indirect comparison and the repeated use of body parts, everyday ob-
jects, and manipulatives as nonstandard units; and finally introduces 
standard units and rulers (National Council of Teachers of Mathematics 
[NCTM], 2000, 2006; Van de Walle, 1994; van den Heuvel-Panhuizen & 
Buys, 2008). The argument for nonstandard units preceding standard 
units—an issue of sequence that Piaget did not address—is that the di-
versity of and variation within nonstandard units (e.g., body parts) mo-
tivates the need for standard units (NCTM, 2000; Van de Walle, 1994). 
Although this sequence has deeply influenced curriculum and instruc-
tion, it has not gone unchallenged. Boulton-Lewis and colleagues (1996) 
and Clements (1999) have provided evidence that primary students can 
effectively work with both nonstandard and standard units simultane-
ously. Nunes, Light, and Mason’s (1993) primary students performed bet-
ter with rulers than with suitable everyday materials like string in some 
length measurement contexts. 

Piaget’s foundational work and the educational practice that has fol-
lowed are not without their limitations. As with other parts of his re-
search, Piaget’s data did not clearly indicate the particular mental oper-
ations that he claimed to underlie and explain children’s development. 
The construction of units from subdivision and change/order of position 
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remains covert in children’s activity and therefore difficult for educators 
to see. The prerequisite role of conservation and transitivity has been 
questioned on empirical grounds. Piaget offered little evidence for the ex-
periential distinction between length and distance, and his work was si-
lent on the use of rulers and whether they introduce any new challenges 
for children. Subsequent research has taken up some of these issues. 

Length Units and Their Properties 

Where Piaget saw length units as the synthesis of partitioning and order/
change of position,2 more recent research has identified different con-
ceptual components of length units and examined how students strug-
gle to coordinate them in their measurement activity. These elements are 
that: (a) all instances of a unit must be identical, (b) a collection of units 
must exhaust the entire space to produce a length measure (tiling), (c) 
the count of those units is the length measure, (d) the careful successive 
placement of a single unit (iteration) can produce the equivalent of an ex-
haustive tiling, and (e) the size of a length unit is inversely related to the 
number required to measure any object or path (Lehrer, 2003; Stephan & 
Clements, 2003). This research has generally shown that students master 
these ideas gradually; their early use of length units frequently satisfies 
some elements while violating others. For example, students, especially 
in the primary grades, (a) can mix different-sized units in measuring sim-
ple lengths (Clements & Sarama, 2009), even when enough same-sized 
units are available (Lehrer et al., 1998); (b) can partition lengths into 
“equal” segments that are in fact unequal (Clements, Battista, & Sarama, 
1998); (c) can align units with the endpoints of objects, leaving spaces 
between units (Lehrer, et al., 2003; National Research Council, 2007); 
(d) fail to complete length measurements if their supply of units is in-
sufficient (Bragg & Outhred, 2001; Lehrer, 2003); (e) resist placing a fi-
nal unit if that unit will overlap that endpoint of the space (Clements & 
Sarama, 2009); and (f) struggle to coordinate the counts of units (and 
fractions of units) with their placement or use (Lehrer, 2003; Lehrer et 
al., 1998; Stephan, et al., 2003). Some of Hiebert’s (1984) first graders 
who conserved length but did not understand the inverse relation be-
tween unit size and measure treated different size length units as equiv-
alent. Lehrer (2003) has suggested the opposite is also possible: under-
standing the inverse relationship without making all units identical. In 

2 This explanation paralleled his argument for cardinal numbers as the synthesis of classifi-
cation and seriation (order relationships). 



Smith et  al .  in  Co gnit ion  and  Instruction  3 1  (2013)         8

sum, these observations show that mastering length units is not an easy 
achievement for many children, because it involves the coordination of 
many interrelated conceptual elements. 

On the other hand, where studies have enriched our understanding of 
the challenge and understanding of length units, they have not revealed 
much about the dynamics of learning. For example, cross-sectional stud-
ies have shown that older children (e.g., fifth graders) are more success-
ful than younger children in always using identical units (Lehrer et al., 
1998), but longitudinal studies of the progressive development of unit 
have been absent. Recently, Barrett and colleagues (2012) carefully ex-
amined the length measurement work of a small group of grade 2 stu-
dents over 7 months of schooling, frequently assessing their learning 
using tasks designed to challenge and build from their current under-
standings. One case provided explicit evidence that some children can tile 
consistently before they can iterate a single unit and that physical motion 
(sweeping a finger along the path) appears to support the understanding 
of unit iteration. This study has shown how the coordination of physical 
motion, marks locating intervals of space, and counts of those intervals 
remains challenging for some students, even with carefully chosen tasks 
and supportive interactions with an interviewer. 

Understanding and Using Rulers 

Most cultures provide children with physical tools (foot rulers, yard and 
meter sticks, and tape measurers—collectively rulers) specifically de-
signed for measuring length. Understanding rulers as length measure-
ment tools includes knowing that they are composed of identical units 
(and subunits), that their marks indicate the beginning and end of units 
(and subunits), and that any unit mark can serve as zero in measuring 
lengths. But extensive evidence has shown that students’ ability to use 
rulers in the standard way—aligning the object at zero and reading their 
measures from the ruler mark opposite the other end—does not imply 
their understanding of how and why they work. Because the standard 
use of rulers can be learned in a rote fashion, one common test of under-
standing, in both large-scale and small-scale studies, has been to pres-
ent objects to be measured not aligned at the ruler’s zero mark (Barrett 
et al., 2012; Bragg & Outhred, 2001, 2004; Kamii, 2006; Lehrer et al., 
1998; Levine, Kwon, Huttenlocher, Ratliff, & Deitz, 2009; Nunes & Bry-
ant, 1996). In some studies, the part of the ruler with the zero mark has 
been broken off (e.g., Kamii, 2006). 
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Elementary students find these tasks difficult and make two common 
errors: counting the marks on the ruler, not intervals separating them and 
reading the number adjacent to the end of the object at the “large” end of 
the ruler without compensating for the object’s displacement from zero. 
Bragg and Outhred (2001) reported this task was challenging even for 
fifth- and sixth-grade students, who also struggled to identify the length 
units on their rulers. More generally, Battista (2006, 2012) has shown that 
the presence of marks segmenting linear space into equal intervals (e.g., 
dots and tick marks) leads many students to count marks rather than in-
tervals to determine lengths. Another grade 2 student in Barrett and col-
leagues’ longitudinal study (2012), who was able to iterate units vacillated 
for some time between counting intervals and counting unit marks on rul-
ers when objects were not aligned at zero. Levine and colleagues’ training 
study (2009) showed that grade 2 students whose training involved physi-
cally placing units on ruler intervals and comparing aligned and misaligned 
length measurements were more successful on length measurement than 
other students whose training involved only rulers and objects aligned at 
zero. Many did not initially see that measuring the same object with rulers 
and with physical standard units necessarily produced the same measure. 

A second task assessing students’ understanding of rulers gives chil-
dren the choice of measuring with either “correct” rulers (all equal inter-
vals) or “incorrect” rulers (some unequal intervals). First grade children 
have been content to use incorrect rulers, where most third graders have 
selected only correct rulers (Lehrer et al., 1998; Pettito, 1990). 

This research has shown that many elementary students may not un-
derstand that the ruler marks divide equal intervals of space (so any unit 
mark can server as zero), even when they have successfully used rulers 
in the conventional way for some time. Knowledgeable use of rulers re-
quires children to coordinate intervals of space (units), the marks used 
to indicate and count those units, the accumulated distance associated 
by those counts, and the numeral marks on rulers (Barrett et al., 2012). 
This coordination takes time and repeated experience and may crucially 
depend on the character of tasks and instructional support. But as yet, 
research has only begun to explore the instructional conditions that ef-
fectively support such growth. 

Complex Paths and Perimeter 

In Piaget’s early work, some children who were successful reasoning 
about the length of simple straight-line paths failed when paths had 
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corners (Piaget et al., 1960). Some who conserved length for two straight-
line paths that were not aligned opposite each other failed to conserve 
when the one path was bent. They instead attended to the relative po-
sition of endpoints. Hiebert (1981, 1984) replicated this result. For the 
bent path, distance along the path was greater than the distance between 
the endpoints. In addition, when measuring complex paths (both closed 
and open) that are drawn on grids, students frequently count squares as 
units of length. Generally, each square corresponds to one unit length 
(the side of the square), but corners create problems. Some students 
count squares that touch the path at the corner but account for no dis-
tance or fail to double count “inside” corner squares that have two sides 
on the path (Battista, 2006, 2012). These responses indicate either loss 
of attention to the length attribute or failure to distinguish the side (as 
a length unit) from the more visually salient square. It is another exam-
ple of how the material conditions of length measurement tasks can in-
fluence students’ reasoning. 

Similarly, Barrett and Clements (2003) showed that elementary stu-
dents’ reasoning about the length of simple segments was not a good pre-
dictor of their reasoning about the perimeter of rectangles. Even with 
supportive instruction, some fourth graders struggled to coordinate the 
marks partitioning line segments with their counts of the correspond-
ing length units, reasoned inconsistently with length units around cor-
ners, and could not coordinate the spatial properties of rectangles (e.g., 
opposite sides are equal in length) with their judgments of side lengths. 
In a subsequent cross-sectional analysis of elementary to high school 
students, the older students focused more on part–whole numerical re-
lationships involving lengths but often lost the coordination of number 
with space (e.g., making drawings whose parts summed correctly but 
were disproportionate in length; Barrett, Clements, Klanderman, Pennisi, 
& Polaki, 2006). Overall, both open and closed paths with corners pres-
ent new challenges for students that do not arise in the measurement of 
simple segments and objects. 

Finally, once two-dimensional shapes are the focus of length mea-
surement work (e.g., to determine their perimeter), students struggle 
to distinguish linear measurement from area measurement. This confu-
sion is indicated by the frequency with which perimeter responses are 
given to area questions (and vice-versa). Attention to area as the quan-
tity of space contained “inside” a two-dimensional shape may lead to the 
faulty assertion that perimeter is what is “outside” (Clements & Sarama, 
2009). Yet it is unclear how frequently the perimeter-area confusion re-
sults from vague classroom discourse (where speakers fail to distinguish 
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which quantity in a two-dimensional figure they are referring to) and 
from a deeper struggle to distinguish linear and area measurement. What 
is clear is that complex paths, both open and closed, introduce new chal-
lenges for students in measuring length. 

Conceptualizing the Relationship Between Curriculum and 
Learning 

We now present the main theoretical constructs that shaped our methods 
for analyzing written measurement curricula, including (a) the meaning 
of the term curriculum, especially the relationship between written and 
enacted curriculum; (b) the factors that have been implicated in creat-
ing the problem of weak learning of measurement; (c) the core distinc-
tion between mathematical concepts and procedures; and (d) the role of 
a specific tool (rulers) in length measurement. The concepts, procedures, 
and tools of length measurement directly informed how we structured 
our scheme for coding the content of written curricula. 

Conceptualizing Curriculum 

Students’ experience with school mathematics is a joint product of cur-
riculum that presents that content and the teaching practices that enact 
that curriculum. What students learn from that experience is substan-
tially shaped by their prior knowledge used to make sense of the given 
content (National Research Council, 2001). We use the term written cur-
riculum to mean published resources that present mathematics content 
and have been designed for teachers’ use in classrooms (Stein, Remillard, 
& Smith, 2007). Written curriculum includes traditional print materials 
(textbooks and Web-based activities and lessons that take similar form) 
as well as technology that presents or frames specific mathematics work 
and activity for students. Following Stein et al. (2007), we distinguish the 
written curriculum from the intended curriculum and the enacted curric-
ulum.3 The former references the teachers’ plans for how they will pres-
ent written lessons to their students, while the latter refers to the les-
sons that actually unfold in their classrooms. Two important aspects of 
the intended curriculum are the deletions of parts of the written curricu-
lum (e.g., lessons and particular activities or elements of lessons) as well 

3 See also the framework developed by the Center for the Study of Mathematics Curriculum 
available at http://www.mathcurriculumcenter.org  

http://www.mathcurriculumcenter.org
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the addition of written materials drawn from other sources. To complete 
this series of transformations, the experienced curriculum designates the 
mathematics content that students actually engage. The enacted and ex-
perienced curriculum would coincide were it not for students’ potential 
to selectively attend and filter what is happening in their classroom. Fig-
ure 1 summarizes this process of curriculum transformation. 

Factors Influencing Weak Learning of Measurement 

This view of curriculum (and curriculum transformation) informs a more 
specific framework for understanding the different factors that are jointly 
responsible for the problem of weak learning of measurement. Figure 2 
identifies seven factors that research has indicated, either explicitly or 
inferentially, are responsible for shaping the enacted measurement cur-
riculum. Factors indicated with (C) are features of written curriculum; 
factors indicated with (T) are features of the intended or enacted curric-
ulum or teachers’ knowledge that shape it. 

Three factors concern mathematics curriculum broadly and measure-
ment curriculum specifically: written curricula, state standards and as-
sessments, and static representations. Written curricula are one likely 
factor of influence, given the evidence that mathematics teaching in many 
classrooms is strongly influenced by the content of teachers’ assigned 
textbooks (Grouws, Smith, & Sztajn, 2004; Silver, 2009; Weiss, Pasley, 
Smith, Banilower, & Heck, 2003). If textbooks do strongly influence in-
struction and students’ struggle with measurement, some influence of 
written curricula is likely. Two different features of written curricula are 
likely involved: textbooks may lack important elements of measurement 
content (Smith et al., 2008) and they also typically place measurement 
content late in their materials, decreasing the likelihood that teachers 
will teach that content before the school year ends. Late placement may 
also signal lower importance to teachers. State standards and assess-
ments have also influenced the elementary mathematics content, espe-
cially since the passage of No Child Left Behind legislation. In some class-
rooms, daily instruction has been strongly shaped, if not determined by 

Figure 1. Major steps in curriculum transformation. 
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particular standards, so content that does not appear in those standards 
may not be taught. The new Common Core State Standards in Mathemat-
ics may come to have an equal or even greater influence (Common Core 
State Standards Initiative, 2010). Where the content of written curricula 
and state standards and assessments influence all of school mathemat-
ics, a third factor applies specifically to measurement: the dominance of 
static representations of space, units, and space-filling actions. It is diffi-
cult to represent the movement (iteration) of units through space within 
the confines of the printed page, yet bodily motion and the movement of 
units may be an important, even essential element in students’ learning 
(Barrett et al., 2012; Lehrer, 2003). The development of dynamic geom-
etry software can be seen as a response to this limitation (Clements et 
al., 1998; Sinclair & Jackiw, 2002), but these tools are not widely used in 
elementary classrooms. 

Four other factors concern the nature of measurement teaching. Time 
and timing of instruction concerns the duration and location of instruc-
tional time during the school year. The presence of measurement content 
in the curriculum does not translate into students’ opportunity to learn 
until teachers allocate significant instructional time to that content. Ele-
mentary teachers report heavy emphasis on number and operations far 

Figure 2. Factors contributing to the problem of weak measurement learning. “C” 
indicates curricular factors; “T” indicates factors that concern teaching or teachers. 
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more often than they do for measurement (Gehrke, Knapp, & Sirotnik, 
1992; Smith, Arbaugh, & Fi, 2007). The late placement of measurement 
content in textbooks may also decrease the time devoted to teaching that 
content. With respect to the focus of instruction, many researchers have 
reported elementary teachers’ emphasis on teaching procedures (Gehrke, 
et al., 1992) and to numerical calculation (Thompson, Philipp, Thomp-
son, & Boyd, 1994) in carrying out those procedures. This characteriza-
tion, and a related absence of attention to conceptual issues, has been 
cited for the teaching of measurement specifically (Kamii & Clark, 1997; 
Kamii & Kysh, 2006; Lehrer, 2003). Where a strong procedural focus in 
instruction may not be inherently problematic for students’ learning, 
conceptual issues can be productively addressed in work on procedures 
(Thompson et al., 1994), but many elementary teachers lack the deep un-
derstanding that would support thoughtful attention to connections be-
tween measurement procedures and concepts (see below). 

Teachers’ work to lead classroom discussions that deeply engage stu-
dents in mathematics can be difficult in any topic area, but measure-
ment poses specific discourse challenges. Some basic spatial measure-
ment terms lack clear meaning and patterns of use. Length is difficult 
to define accurately and accessibly for elementary students, and length-
related terms have multiple and intersecting meanings (Battista, 2006). 
For example, the width and length of rectangles are both lengths, and 
the adjective long can refer either to linear paths or temporal durations. 
Base and height can refer either to geometric features of rectangles and 
parallelograms or to the algebraic expressions (B and H) that stand for 
their lengths (Herbel-Eisenmann & Otten, 2011). Complex and shifting 
patterns of reference likely add to students’ challenges in learning from 
classroom discussions of measurement. Last, because written curricula 
must be enacted by teachers, and these enactments can change the na-
ture and demand of mathematical tasks and activities for learning (Stein, 
Grover, & Henningsen, 1996), teachers’ understandings of measurement 
shape and constrain students’ opportunities to learn. Substantial evidence 
indicates that both practicing and preservice elementary teachers’ under-
standing of measurement is limited, often in ways that reflect students’ 
limitations (Baturo & Nason, 1996; Chappell & Thompson, 1999; Simon & 
Blume, 1994; Woodward & Byrd, 1983). Teachers’ knowledge can be lim-
ited in their mastery of measurement content and in their understand-
ings of how and why students struggle with that content. 

Although interactions among factors are not explicitly represented in 
Figure 2 and have not explicitly explored in research, they are likely. For 
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example, late placement of measurement content in textbooks likely in-
fluences “downward” pressure on the overall time that teachers devote 
to teaching measurement. Similarly, teachers’ understandings are likely 
influenced, in the past and present, by the content of written curricula 
and state standards and assessments that structure their teaching envi-
ronments. Where the nature and force of these interactions remain to 
be explored; we have not presented Figure 2 to indicate a set of disjoint, 
noninteracting factors. 

Students’ Opportunity to Learn 

Figure 2 represents the main factors implicated by prior research in 
the weak learning of measurement. These factors can also be seen as 
sources of limitation in students’ opportunities to develop deep under-
standings of measurement. Prior work on students’ opportunity to learn 
(OTL) has focused on the written curriculum and examined and ana-
lyzed broad topics or problem types, such as “measurement units” or 
“measurement estimation and errors” (Floden, 2004; Schmidt, McK-
night, & Raizen, 1997). But given recent theoretical work in mathemat-
ics and science learning (diSessa, 1993; Siegler, 1996; Smith, diSessa, 
& Roschelle, 1993/94), topics and problem types may be too coarse a 
grain size to understand OTL in detail. If learning depends on acquir-
ing and coordinating many different elements of content knowledge, 
as some measurement studies have directly suggested (e.g., Barrett et 
al., 2012), then focusing the analysis of OTL on more specific ideas and 
processes in measurement may be more productive. Independent of the 
grain size of target content, explicit statements of the ideas and pro-
cesses in the written curriculum provide students some access to those 
ideas, and their absence restricts if not eliminates their opportunities. 
Generally speaking, when particular ideas and processes are mentioned 
more often in written curricula, students’ OTL increases—particularly 
when that content appears in materials that students see and work 
with (i.e., in student editions of textbooks). Although very low OTL in 
written curriculum for any particular idea or process of measurement 
may not radically undermine students’ ability to develop deep under-
standings, such limits for many elements would be problematic. That 
pattern would put more pressure on students’ independent construc-
tive activity, and most elementary teachers lack the resources to make 
up for those deficits. 
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Procedural and Conceptual Knowledge 

The distinction between mathematical procedures (and procedural knowl-
edge) and mathematical concepts (and conceptual knowledge) is implicit 
in numerous factors in Figure 2 above. Typical measurement instruction 
has been characterized as procedurally focused, with infrequent attention 
to basic measurement concepts (e.g., Stephan & Clements, 2003). Teach-
ers’ understandings are more centered on procedures, and the content of 
written curricula may be as well. But how do these terms apply to mea-
surement, especially length measurement? Hiebert and Lefvre (1986), 
whose work is frequently cited, defined conceptual knowledge as “knowl-
edge that is rich in relationships . . . as a connected web of knowledge” 
(p. 3) and procedural knowledge as consisting of two parts—”the formal 
language, or symbol representation system, of mathematics” and “the al-
gorithms, or rules, for completing mathematical tasks” (p. 6). Where we 
agree that conceptual knowledge must be richly interconnected to con-
stitute deep understanding, such connections may not singularly define 
conceptual knowledge but may apply to procedural knowledge as well 
(Star, 2005). Moreover, the central characteristic proposed for concep-
tual knowledge, “rich in relationships,” is vague and apparently appli-
cable only to clusters of related elements, not individual conceptual ele-
ments. Similarly, procedural knowledge may include a broader range of 
mathematical processes than well-defined algorithms alone. 

As we will describe in more detail below, we use the term concepts 
(and conceptual knowledge) to designate the general principles that un-
derlie and justify procedures. In measurement, two important sets of 
principles concern the nature of spatial quantities (length, area, and vol-
ume) and the properties of units applied to measure those quantities. 
Where it is important that students learn interrelationships among these 
ideas, these and other conceptual principles can be stated individually. 
For example, a key conceptual principle in measurement is the inverse 
relationship between the size of the unit and size of the resulting mea-
sure (in our coding scheme, Unit- Measure Compensation): When measur-
ing the same quantity, larger units will produce smaller measures (and 
vice-versa). We use the term procedures (and procedural knowledge) to 
refer both to well-specified algorithms (e.g., the formula for computing 
the perimeter of rectangles) and to other more weakly specified mea-
surement actions that students are asked to carry out. For example, the 
Visual Estimation of Length is a measurement procedure in our analysis, 
even though its constituent steps—choosing a unit, mentally iterating that 
unit through the object (or some part of it), and composing the resulting 
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estimate—are often not made explicit in written curricula (Chang, Males, 
Mosier, & Gonulates, 2011).We also include very simple measurement 
actions (e.g., the visual comparison of two lengths) that may be unitary 
acts, rather than ordered sequences of steps. 

Physical Tools 

Length measurement is relatively unique in spatial measurement in that 
the culture provides a class of related physical tools, rulers in the broad-
est sense, that directly support the production of length measures. Rul-
ers are “given” in the practices of the adult culture (Vygotsky, 1978), 
practices carried out both in school and outside of school. Where it is 
important to recognize that rulers of various sizes and shapes (foot rul-
ers, yard and meter sticks, tape measurers) are widely used, their struc-
ture, as we have seen, often remains opaque. Tools are not knowledge 
per se, either procedural or conceptual, though concepts structure them 
and procedures engage them. They introduce the contingent and cultur-
ally defined dimension of measurement that we incorporated in our cod-
ing scheme as Conventional knowledge, along with other conventions of 
length measurement. 

Curriculum Analysis Methods 

Oriented by this perspective, our study assessed elementary students’ op-
portunity to learn length measurement based on a detailed analysis of 
the content of elementary written curricula (textbooks). We focused on 
describing, with substantial precision, what length measurement con-
tent appeared in these materials and how that content was expressed in 
text. We carefully distinguished different length measurement concepts, 
procedures, and conventions and searched for all instances of them in 
the curricula. This analysis allowed us to address the following research 
questions, which each address students’ opportunity to learn length mea-
surement from written curricula at successively finer levels of detail. 

First, how much attention do written elementary mathematics curri-
cula give to length measurement? Where the vast majority of our analy-
sis focused on particular sentences in the text and knowledge elements, 
we also carried out a coarser analysis at the lesson level as a rough mea-
sure of how much space was devoted to length measurement in each cur-
riculum and grade. It also allowed us to characterize where, in general 
terms, length measurement content appeared in each curricula. 
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Second, how do elementary curricula present length measurement 
content in grades K–3? That is, in what sequence do the curricula pres-
ent length measurement topics and what specific concepts and proce-
dures structure these topics? In answering this question we examined 
the similarity in the topic sequences of the different curricula and the de-
gree to which they either match or deviate from the epistemological se-
quence proposed by Piaget. 

Third, we examined how directly the curricula addressed four specific 
challenges that prior research has shown many students face in learn-
ing to measure length: How do curricula address the challenge of help-
ing students understand length as a stable and measurable attribute? 
What opportunities do they provide for learning the conceptual proper-
ties of units? What opportunities do they provide for understanding the 
structure of rulers? And what opportunities do they provide for learn-
ing to measure complex paths (curvilinear and “jagged”) in comparison 
to simple paths? In each case, we consider the frequency of specific con-
cepts and procedures that provide opportunities to address and deal with 
those challenges. We also consider issues of order among concepts and 
the procedures they underlie and constrain. 

There were five major steps in our method that addressed these ques-
tions: (a) our choice of mathematics curricula, (b) our process for lo-
cating length measurement content in those curricula, (c) our concep-
tualization of students’ opportunity to learn, (d) our coding scheme for 
characterizing the content and expression of length measurement on 
textbook pages, and (e) our process for applying that scheme to the text-
book data. These methods have also been described in prior work (Lee & 
Smith, 2011; Smith et al., 2008). 

Selecting Written Curricula 

Many different elementary mathematics curricula presently are used in 
U.S. classrooms (Dossey, Halvorsen, & McCrone, 2008), some with non-
trivial differences in content (Stein et al., 2007). Given the fine-grained 
nature of our analysis, sampling from this population of written mate-
rials was necessary; we could not analyze all elementary curricula cur-
rently in use. After lengthy consideration, we selected three elementary 
textbook series: Everyday Mathematics, third edition, published by the 
University of Chicago School Mathematics Project (2007)—henceforth 
EM; Mathematics, Michigan edition (Charles, Crown, & Fennell, 2008), 
published by Scott-Foresman/Addison-Wesley—SFAW; and Saxon Math 
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(Larson, 2004)—Saxon. Curricula written in the spirit of NCTM’s (1989) 
Curriculum and Evaluation Standards for School Mathematics (like EM) 
have been characterized as significantly different from more traditional, 
publisher-developed materials (like SFAW; Stein et al., 2007; Trafton, 
Reys, & Wasman, 2001). We chose EM and SFAW as examples of stan-
dards-based and publisher-developed curricula respectively, because they 
ranked first and second in national market share for elementary math-
ematics textbooks when we began our analysis (Dossey et al., 2008). 
Saxon materials were not as widely used, but their direct instruction ap-
proach and curriculum structure made them quite different from both 
EM and SFAW.4 

We also analyzed one Singapore elementary mathematics curriculum 
that is also widely used (60% of that nation’s elementary schools): My 
Pals are Here! Math—MPAH (Fong, Ramakrishnan,& Lau, 2007).We se-
lected a Singapore curriculum to widen our focus from U.S. curricula and 
because that country’s generally strong performance on cross-national 
comparisons of achievement in mathematics (Mullis et al., 1997; Mul-
lis, Martin, & Foy, 2008). That said, Singapore’s grade 4 students per-
formed significantly less successfully in the geometric shape and mea-
sure domain than they did in number and data display in a recent TIMSS 
study—while outperforming U.S. students in all three domains (Mullis et 
al., 2008). We used the same methods in the Singapore analysis that we 
applied to the U.S. curricula (see below).We report some of the results 
from the MPAH analysis below (see also Lee & Smith, 2011), but primar-
ily for purposes of top-level comparison to U.S. curricula. 

Last, we examined more cursorily the more recent editions of two 
of the U.S. curricula, EM’s Common Core edition (University of Chicago 
School Mathematics Project, 2012) and SFAW’s EnVision Math curricu-
lum (Charles et al., 2011) to assess whether these newer materials had 
substantially changed students’ opportunity to learn measurement while 
our analysis of their prior materials was underway. In both cases, these 
editions were written by the same author team that produced the prior 
versions. We were unable to procure a more recent edition of the Saxon 
curriculum from the publisher. Our more limited analysis of these mate-
rials explored the question: Were there significant differences between 
more recent and prior editions in terms of overall content and placement 
of length measurement content? 

4 Stein and her colleagues (2007, pp. 325–326) characterized EM as “standards-based” and 
SFAW and Saxon as “conventional.” 
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Locating the Length Measurement Content in the Texts 

We first located all the curricular content in the grades K through 3 ma-
terials of the three main U.S. curricula that could reasonably be taken to 
provide opportunities to learn length measurement. We found significant 
content in all four grades in each textbook series. We stopped at grade 
3, not because length measurement was absent from subsequent grades, 
but because the central processes, concepts, and tools for length measure-
ment have been presented by grade 3 (Kasten & Newton, 2011; NCTM, 
2000). It did not appear that adding additional grades would fundamen-
tally influence our answers to the questions posed above. If there were 
problems with opportunity to learn in grades K through 3, it seemed un-
likely that those problems would be corrected in later grades. Since kin-
dergarten is not mandatory in Singapore, the MPAH curriculum did not 
produce materials for that grade, so we analyzed the length measure-
ment content in primary 1, 2, and 3, equivalent to grades 1 through 3 in 
the United States.  

Our criterion—“reasonably be taken to provide OTL for length mea-
surement”—meant that locating length measurement content involved 
much more than simply finding the units and lessons that explicitly tar-
geted that topic. U.S. curricula systematically distribute topic-specific 
tasks and problems throughout their materials, so length measurement 
tasks could be (and were) present in lessons focusing on other topics. 
Our criterion also led us to include content that some mathematics edu-
cators might not recognize as concerning length measurement. For ex-
ample, we included the partitioning of one-dimensional objects and seg-
ments into equal-size parts and the construction and interpretation of 
bar graphs—when the bars were not “unitized” to support counting to 
determine their height—because these topics required students to rea-
son about length. We adopted this broader and more inclusive criterion 
to decrease the likelihood that we would miss opportunities for learn-
ing about length measurement; the costs of excluding relevant content 
seemed to outweigh by far the costs for coding more data. 

We included all teacher lesson guide pages and all student pages if 
these pages contained at least one instance of length measurement con-
tent. We also included all pages from other printed elements of the cur-
riculum (e.g., student workbooks) if they were explicitly referenced on 
teacher lesson guide pages and included at least one such instance. EM 
and SFAW teacher lesson guide pages explicitly included particular stu-
dent pages in a “wrap-around” format. In Saxon, which did not follow 
this format, teacher lesson guide pages were followed by student problem 
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pages in most all lessons, first “guided practice” and then “homework.” 
Two coders examined every textbook page from each curriculum and 
grade, applied the criterion above, and resolved any disagreements about 
the presence of length measurement content as a pair. Activities and 
problem types that seemed questionably related to length measurement 
were brought to the larger research team for discussion and resolution. 
One particular recurring challenge was deciding where the counting of 
discrete quantity was more likely than reasoning about length as a con-
tinuous quantity. This challenge was addressed by carefully examining 
and judging particular problem types where the discrete/continuous chal-
lenge arose. For example, we excluded bar graphs with unitized bars be-
cause we judged that counting the collection of units as a set was more 
likely than reasoning about length, but we included bar graph content 
when bars were not segmented and bar heights had to be determined by 
qualitative comparison or estimation relative to a numerical scale. The 
outcome of this phase of the analysis was a large collection of textbook 
pages that contained some length measurement content, one set of pages 
for each curriculum and grade (K–3). 

Specifying Dimensions of Opportunity to Learn 

We tracked OTL in two complementary ways—as access to particular ele-
ments of measurement knowledge and via the different textual forms that 
express or call for that knowledge. First, OTL involves access to the math-
ematical ideas and processes involved in length measurement. We identi-
fied length measurement knowledge at the level of individual ideas, cre-
ating long lists of different elements of length measurement knowledge 
that could be expressed in single sentences or problems. But the measure-
ment ideas and processes must be expressed in some textual form, and 
forms of textual expression also influence students’ OTL. First and most 
basically, some parts of the written curriculum are presented directly to 
students in student materials; other parts are presented to teachers and 
reach students only through teachers’ speech and/or action. Equally im-
portant, whether students meet ideas and processes directly on the writ-
ten page or indirectly through their teachers’ activity, forms of expres-
sion vary, and these variations also have implications for students’ OTL. 
Ideas and processes may be stated to students, they may be demonstrated 
or modeled for them, or students may be assigned tasks that engage an 
idea or require a process. Substantial evidence indicates that listening 
and viewing alone may provide insufficient support for many students 
to learn mathematics and that more direct activity and engagement is 
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productive, if not necessary (Carpenter, Franke, & Levi, 2003; Hiebert 
et al., 1997; Lehrer, 2003; National Research Council, 2001; Stevenson & 
Stigler, 1992). If so, our analysis of OTL should address both knowledge 
content and expression. 

Coding the Knowledge Content of Textbook Pages 

Coding the textbook pages required carefully identifying different ele-
ments of length measurement knowledge. We knew of no such frame at 
the start of our study, so we developed one. Our scheme consisted of two 
independent dimensions: a list of individual elements of length measure-
ment knowledge (e.g., all length measurements involve error) and a set of 
textual forms that textbooks use to express that knowledge, (e.g., state-
ments, questions, demonstrations). We developed our list of knowledge 
elements from three sources: the mathematics itself, research on stu-
dents’ learning of measurement (e.g., Lehrer, 2003; National Research 
Council, 2001; Stephan & Clements; 2003), and careful inspection of the 
textbook materials, especially for procedural knowledge. Since research-
ers had argued that U.S. instruction in measurement has often been con-
ceptually deficient ( Kamii & Kysh, 2006; Lehrer, 2003; Stephan & Cle-
ments, 2003), we focused first on identifying elements of conceptual 
knowledge, then procedural knowledge, and finally a separate category 
of conventional knowledge. Our coding scheme was developed iteratively, 
as we sought to account for all instances of length content in our data. 

Types of Length Measurement Knowledge and of Textual Expression 

We viewed conceptual knowledge as expressions of basic principles that 
underlie and justify measurement procedures, systems, notations, and 
tools. Such knowledge provides the rationale for measurement proce-
dures and practices. We understood procedural knowledge to refer to 
the actual methods for producing length measures, including measuring 
with tools, estimating, and computing. This category included (a) quali-
tative procedures (e.g., comparing which of two objects is longer by plac-
ing them side by side), (b) nonstandard and standard measurement pro-
cedures that produce length measures for simple segments or objects 
(such as aligning and moving physical units and using rulers, respec-
tively), and (c) procedures for reasoning with lengths (e.g., determin-
ing the perimeter of a polygon from its side lengths). But we found con-
ceptual and procedural knowledge insufficient to account for all length 
measurement content and developed a third category to code our data 
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completely. Conventional knowledge concerns the systems, notations, 
and tools that cultures have invented to carry out measurement (e.g., the 
actual size of individual units like inches and centimeters, the abbrevi-
ation of units, and the placement of numerical scales on rulers). Since 
these conventions are mathematically arbitrary, they are epistemolog-
ically distinct from conceptual knowledge. In its final form our coding 
scheme contained 103 different knowledge elements (43 conceptual, 52 
procedural, and 8 conventional). Due to its length, we have not included 
the complete scheme but exemplify it repeatedly, below and in Results. 

We identified five basic textual forms that expressed length measure-
ment content: Statements, Demonstrations, Worked Examples, Questions, 
and Problems. Statements are particular assertions about the nature of 
length, length units, and length measurement. They may express ele-
ments of Conceptual, Procedural, or Conventional knowledge. For exam-
ple, Conceptual statements include explicit definitions of concepts such 
as the following for perimeter: “The distance around a figure is its pe-
rimeter” (SFAW, grade 3, p. 484A). Demonstrations are displays of mea-
surement knowledge, almost always procedures, by teachers or students 
designated by teachers. In Saxon, grade 2, the text directed the teacher 
to demonstrate how to measure a four-inch line segment using a centi-
meter ruler: 

Let’s measure our line segment using centimeters. There is usu-
ally a line near the beginning of the ruler that shows where to 
begin measuring. We will put this line on the first endpoint. 
Look along your ruler until you come to the other endpoint. 
About how many centimeters long is this line segment? Write 
“10 centimeters” below the line segment. (Lesson 102, page 5)5 

Worked Examples present the solutions to measurement problems and 
therefore, like Demonstrations, generally expressed procedural knowl-
edge. Questions are queries posed to students that require little reason-
ing, may be answered by one student, or are under teacher direction. For 
example, we coded the embedded query from the teacher in the Demon-
stration cited above as a Question. By contrast, Problems are queries to 
students that require a greater amount of reasoning and/or activity. Most 
students, if not all, are expected to respond, and the immediate context 
suggests that students are given time to respond. We coded the following 

5 The Demonstration by the Teacher code was applied to the entire text, but here and in other 
cases, we also applied additional codes to particular constituent sentences.  
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task in SFAW’s grade 3 cumulative review of chapter 7 as a Problem: “An-
gie used all of her string to make jewelry. She used 8 inches of string to 
make a bracelet. She used 14 inches to make a necklace. How much string 
did Angie start with?” (p. 416). 

Generally, we report our results for these five types only—with two ex-
ceptions. One concerns Statements. We coded instances that included all 
or most of the content of knowledge elements as articulated in our cod-
ing scheme as Full Statements. When omissions were quite significant, 
we coded those as Partial Statements. For example, we stated the key con-
ceptual principle of Unit Iteration as, “Measures of length are produced 
by iterating a length unit (repeatedly adjoining) from one end of an ob-
ject, segment, or distance to the other and then enumerating the number 
of iterations (e.g., by counting). Iterated units may not overlap or leave 
gaps.” We coded the following text in EM Grade 1 as a Partial Statement: 
“There may have been gaps between units or accidental overlapping of 
units when measuring” (p. 283). This reference stated one component 
in Unit Iteration explicitly—the need to avoid gaps or overlaps between 
units—but not others (e.g., end-to-end placement). Second, Statements, 
Questions, and Problems were located either in the teacher lesson guides 
that students do not see or in the student materials that they do see. For 
those three textual types, we also coded each instance for location—in 
the Teacher (T) or Student (S) materials—because location could influ-
ence students’ OTL. By definition, Demonstrations were given in Teacher 
materials, and Worked Examples in Student materials.    

Making reliable distinctions between Questions and Problems required 
considerable discussion, operationalization, and in some cases, recoding. 
We used three equally weighted criteria: (a) Is the cognitive demand of 
the query more than simple recall or observation? (b) How many stu-
dents does the curricular context suggest are expected to respond? and 
(c) Does the curricular context suggest that students can work autono-
mously on the task or under teacher’s guidance? Queries were coded as 
Questions if (a) only simple recall or observation was required, (b) one 
student could answer, and (c) the context suggested that the query was 
embedded in a sequence of activity that the teacher should control. By 
contrast, queries were coded as Problems if (a) cognitive demand sur-
passed simple recall or observation, (b) response from most, if not all, 
students was expected, and (c) the context suggested that teachers should 
provide time and space for students to produce a response. In most cases, 
the last criteria was inferred when no evidence of teacher control (the 
third criterion for Questions above) was found. These criteria did not 
always align perfectly; in mixed cases, outcomes on two of three of the 



Smith et  al .  in  Co gnit ion  and  Instruction  3 1  (2013)        25

criteria decided the issue. But this operationalization of the distinction 
was certainly imperfect and involved significant coder judgment. A sec-
ond limitation is that our definition of Problem set a low threshold for 
cognitive demand and, as a result, combined simple “exercises” (Schoen-
feld, 1992) and more nonroutine and potentially demanding “problems.” 
On the other hand, we felt that some effort to distinguish among text-
book queries was necessary and worthy of a principled effort. We return 
to this thorny issue in the Discussion. 

Applying the CCS to the Textbook Data 

Typically, the coded unit of curricular content was a single sentence or 
clause; less frequently, it was two or more consecutive sentences. Occa-
sionally (e.g., for Worked Examples) it was a short paragraph. Each such 
content unit was assigned a knowledge element code and a textual ele-
ment code. Since most textbook pages contained numerous units of text 
that expressed length measurement content, the result of coding a text-
book page was a list of ordered trios (knowledge element, textual ele-
ment, frequency), where frequency was the number of times a particu-
lar knowledge and textual element pair were identified on that page. The 
number of coded content units on a given textbook page ranged widely, 
from one to more than 40. Pages with one or two codes were typically 
single problem pages; pages with large numbers of codes were usually 
pages in length measurement lessons. 

The coding proceeded sequentially through the four grades (K–3) be-
ginning with Kindergarten, and at each grade, the corpus of pages and 
codes increased. Two members of the research team coded each text-
book page. The total number of pages for any grade was divided among 
these two-person teams (three teams for grade K, four teams for all other 
grades); each team received an approximately equal-size fraction of the 
grade corpus and an equal share of the pages from each curriculum. In 
dividing the textbook pages into equal-sized parts, we avoided dividing 
length measurement lessons between different teams. All coders either 
held a bachelor’s degree in mathematics (or a higher degree) or were 
within a year of earning a bachelor’s degree. The majority had experi-
ence teaching precollege or collegiate mathematics.6 Most had multiple 
years of teaching experience in K–12 classrooms. Coders first coded their 

6 The two undergraduate students in the final year of their teacher education program and 
two of the seven graduate students lacked classroom teaching experience; the other six 
coders had that experience. 
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assigned pages separately, then compared their preliminary work with 
their partner and resolved any disagreements. Coding disagreements that 
could not be resolved within the pair were presented, discussed, and re-
solved in discussion among the entire research team (all coders). To min-
imize bias due to particular pairings, the pairing of coders was system-
atically permuted across grades, so at each grade, coders worked with a 
different partner. 

One analyst completed the more cursory analyses of the length mea-
surement lessons in grades K through 3 in EM’s Common Core edition 
and SFAW’s enVision Math materials. The analysis of EM’s Common Core 
edition (2012) involved a lesson-by-lesson comparison with their third 
edition (2007), carried out by an experienced undergraduate research 
assistant whose work was reviewed by the first author. The first author 
completed the analysis of the enVision Math materials. 

Results 

Our research questions address students’ opportunity to learn from writ-
ten curriculum at successively finer levels of detail, and our results fol-
low that order. We first examine the proportion of lessons devoted to 
length measurement in grades K–3—as a crude measure of opportunity 
to learn. Then we draw on our more detailed analysis of knowledge and 
textual elements to examine the broad sequence of length measurement 
content presented in the three main U.S. curricula, making comparisons 
with the other curricula as appropriate. We do that in two steps, first 
with an overview by knowledge type and textual type and then by char-
acterizing in greater detail the most common procedures and related con-
cepts. Finally, we address the general question of how much and how di-
rectly the curricula address five challenges identified in prior research 
on students’ learning. This analysis considers the frequency and location 
of specific conceptual elements and procedures that are directly related 
to those challenges. 

Relative Attention to Length Measurement 

A simple measure of students’ opportunity to learn any specific content 
is the number of daily lessons that focus on that content. Table 1 pres-
ents this measure of opportunity to learn length measurement, for the 
three main U.S. curricula and for MPAH and enVision. EM’s Common Core 
edition (2012) is not included because its length and total lesson counts 
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were unchanged from the third edition (2007). Each cell entry presents 
the percentage of length lessons of total lessons for that grade, as well 
as the frequencies of each. 

All curricula, not only the three main U.S. curricula, were quite con-
sistent on this measure. Length measurement lessons accounted for less 
than 10% of the yearly content prior to grade 3, and slightly more than 
10% at grade 3. The grade 3 increase was partly due to lessons that fo-
cused on making and interpreting bar graphs (with nonunitized bars), 
plotting points on coordinate grids and reviewed prior length content. 
Some curricula also introduced fractions via the partitioning of one-di-
mensional quantities in grade 3. MPAH allotted slightly more attention 
to length measurement than the U.S. curricula, via a smaller number of 
lessons, but relative to a much smaller yearly total—roughly half of U.S. 
totals. Neither recent revision of two U.S. curricula (EM and SFAW) in-
creased attention to length relative to their prior versions. In all curri-
cula and grades, much more attention was given to base-10 number and 
operations. 

This simple analysis also showed where length measurement content 
was placed in each year’s list of lessons. In three curricula (SFAW, Saxon, 
and enVision), no length measurement lesson appeared in the first half 
of the year in grades K to 2. EM placed six of its 10 length lessons in the 
first half of its grade 1 content, and MPAH placed six of its seven length 
lessons just before the midpoint of its grade 2 content. But in the other 
primary grades, EM placed most, and MPAH placed all of their length 
measurement content in the second half of the year’s content. In grade 3, 
all curricula but MPAH deviated from this pattern and presented length 
measurement content in the first third of the year. 

The lesson-level analysis shows that length measurement has gener-
ally received modest curricular attention, especially in grades K through 

Table 1. Percentage of Length-Focused Lessons to Total Lessons by Curriculum and Grade 

Curriculum 	 Grade K 	 Grade 1 	 Grade 2 	 Grade 3 

EM 	 6%; 8 of 134 	 8%; 10 of 120 	 7%; 8 of 123 	 12%; 14 of 121 
SFAW 	 3%; 4 of 127 	 6%; 9 of 157 	 6%; 9 of 159 	 10%; 16 of 162 
Saxon 	 6%; 8 of 135 	 4%; 7 of 160 	 7%; 11 of 160 	 11%; 18 of 160 
MPAH 	 N/A 	 8%; 5 of 66 	 10%; 7 of 71 	 13%; 8 of 72 
enVision 	 6%; 7 of 120 	 4%; 5 of 130 	 7%; 9 of 130 	 11%; 12 of 110 

Note. EM= Everyday Mathematics, SFAW= Scott-Foresman/Addison-Wesley’s Mathematics (Michi-
gan edition), Saxon = Saxon Math, MPAH= My Pals Are Here! Math, envision = Scott-Foresman/
Addison-Wesley’s enVision Math. 
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2 when the basic concepts and procedures are presented and that length 
measurement lessons have been generally positioned in the second 
half of the year’s content, after extensive work on base-10 number and 
operations. 

Overview by Knowledge and Textual Type 

To frame our results on content sequence, we address four basic ques-
tions: (a) How do curricula distribute attention over Conceptual, Proce-
dural, and Conventional knowledge? (b) How do they use Statements, 
Demonstrations, Worked Examples, Questions, and Problems to express 
that knowledge? (c) How does textual expression vary by knowledge 
type? and (d) How is length content distributed between Teacher versus 
Student materials? 

Knowledge Type. Table 2 presents the percentage of Conceptual, Proce-
dural, and Conventional codes, of total codes for the three main U.S. cur-
ricula and the Singapore curriculum in grades K–3. Recall that MPAH did 
not produce materials for grade K. 

For the most part, curricular attention to length measurement content 
increased in each successive grade. Length measurement content of each 
knowledge type appeared in all curricula and grades. But the clearest 

Table 2. Percentage of Length Measurement Codes by Knowledge Type, Curriculum, and Grade 

 		  Conceptual	 Procedural	 Conventional	 Total

EM	 K	 16.5	 79.1	 4.4	 206
	 1	 11.1	 79.7	 9.2	 404
	 2	 6.4	 79.6	 14.0	 769
	 3	 6.8	 74.6	 18.6	 1,425
Saxon	 K	 1.1	 97.1	 1.7	 174
	 1	 3.5	 93.0	 3.5	 263
	 2	 6.4	 89.0	 4.6	 392
	 3	 1.4	 80.4	 18.2	 858
SFAW	 K	 1.7	 98.0	 0.3	 300
	 1	 14.8	 80.2	 5.0	 1,013
	 2	 10.0	 84.6	 5.4	 877
	 3	 5.6	 87.2	 7.1	 2,002
MPAH	 1	 8.9	 85.8	 5.3	 302
	 2	 9.7	 89.0	 1.3	 390
	 3	 8.6	 88.7	 2.7	 627

Note. Entries in the Total column are the total length measurement codes for each curriculum and 
grade. The MPAH curriculum did not include materials for grade K.
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pattern in Table 2 is the dominance of Procedural knowledge across curri-
cula: At least 75% of all length measurement content in all curricula and 
grades (and generally much more) was Procedural. Conceptual knowl-
edge accounted for no more than 17% of that content in any curriculum 
or grade. It was generally less frequent in Saxon than the other curricula. 
Conventional knowledge appeared less frequently in the early grades, but 
rose significantly by Grade 3 to surpass Conceptual knowledge in all three 
U.S. curricula. EM gave more attention to Conventional knowledge in all 
grades, but particularly in grades 1 and 2. 

Textual Expression 

With one exception (Saxon, grade K), Problems were used most frequently 
to express length measurement content (see Table 3 for details). The rel-
ative frequency of Problems rarely fell below 50%; for EM and SFAW 
in grades 2 and 3 it was 60% or more. Saxon used Questions more fre-
quently in all grades, especially in grades K and 1. Taken together, Prob-
lems and Questions accounted for at least 70% of all codes in all cur-
ricula and grades. Each curriculum used Demonstrations, especially in 
grade K, but Saxon used them more frequently than the other curricula 
in later grades. Saxon was the only curriculum not to use Worked Ex-
amples. All curricula included Statements at each grade, but EM did so 
more frequently at each grade. In grades 1 and 3 EM included twice as 
many Statements as the other curricula. In comparison, MPAH generally 
used even greater proportions of Problems (between 65% and 82% of all 
codes in all three grades) and more Worked Examples than U.S. curricula. 

Knowledge Type by Textual Expression. How curricula present length 
measurement knowledge in their materials matters to students’ opportu-
nities to learn. Table 3 presents the cross-tabulation of knowledge type 
by textual expression: Within each knowledge type, how often were the 
five textual forms used to express length measurement knowledge? Tex-
tual types are ordered in columns by frequency (e.g., P for Problems, Q 
for Questions); the entries in each row sum to 100%. Because of the den-
sity of information in Table 3, we have left the essentially zero frequency 
cells (≤0.5% of total codes) blank for ease of viewing. Since the percent-
ages are relative frequencies computed from different numbers of total 
codes, care must be exercised in comparing corresponding values across 
curricula or grade. 

Despite the density of information in Table 3, some important pat-
terns are evident. The presentation of Procedural knowledge was quite 
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uniform across curricula; all curricula most frequently expressed Proce-
dural knowledge in Problems and Questions. In most curricula and grades 
Problems were more frequent (especially so for MPAH); in Saxon grade K, 
Questions were the dominant form. Conceptual knowledge, by contrast, 
was most frequently expressed in Statements, Questions, or Problems. If 
Questions and Problems are combined as “queries,” EM and SFAW asked 
about Conceptual knowledge more often than they stated it. But for both 
curricula, Conceptual Questions and Problems repeatedly referenced a 
small number of knowledge elements. For example, in EM, grade K, 18 
of 21 Conceptual Questions were posed about only three knowledge el-
ements—Unit-Measure Compensation, Additive Composition of Lengths, 
and Greater Means Longer. In SFAW, grade 1, 67 of 70 Conceptual Prob-
lems and 49 of 53 Conceptual Questions addressed Greater Means Lon-
ger, Unit-Measure Compensation, and Rulers Measure Length. Within the 
trio (P, Q, S), EM and Saxon presented more Statements and Questions 
than Problems, and SFAW presented more Problems and Questions than 
Statements. These differences become more significant given the location 
of Conceptual knowledge in Student vs. Teacher materials (see below). 
The presentation of Conventional knowledge was also relatively uniform 
across curricula and grades. In most curricula/grades Statements domi-
nated the expression of length measurement conventions. 

Table 3. Percentage of Length Measurement Codes by Knowledge Type, Textual Type, Curriculum, and 
Grade 

                              Conceptual                                 Procedural                                 Conventional 

		  P	 Q	 S	 D	 W	 P	 Q	 S	 D	 W	 P	 Q	 S	 D	 W

EM	 K	 1	 10	 4	 1		  51	 10	 1	 16				    4	
	 1	 1	 5	 5			   51	 16	 3	 8	 2	 1	 1	 8	
	 2	 3	 2	 3			   64	 9	 1	 2	 1	 1	 2	 11	 1
	 3	 1	 2	 3			   57	 8	 2	 2	 3	 1	 2	 17	
Saxon	 K			   1			   33	 44	 4	 16			   1	 1	
	 1		  1	 2			   43	 39	 1	 11			   2	 1	
	 2	 1	 2	 3			   62	 18	 3	 8				    4	
	 3						      51	 24	 2	 5		  1	 7	 7	 3
SFAW	 K	 1	 1				    47	 28	 3	 19	 1	
	 1	 8	 6	 2			   49	 16	 1	 7	 4		  1	 4	
	 2	 6	 2	 4			   69	 5	 1	 4	 3			   5	
	 3	 4	 2	 1			   69	 10	 1	 1	 4	 1	 2	 6	
MPAH	 1	 6	 1	 2			   59	 14	 3	 7	 4			   5	
	 2	 6	 2	 1		  1	 68	 7	 4	 4	 5			   1	
	 3	 7		  1			   75	 5	 2	 1	 5			   3	

Note. P = Problems, Q = Questions, S = Statements, D = Demonstrations, W = Worked Examples. The 
MPAH curriculum did not include materials for grade K.
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Location in Student Versus Teacher Materials 

Figure 3 shows how frequently Problems, Questions, and Statements were 
presented in Teacher and Student materials. It excludes Worked Exam-
ples and Demonstrations because, by definition, the former appears only 
on student pages and the latter only on teacher pages. 

Generally speaking, the proportion of length measurement content in 
Teacher materials in U.S. curricula decreased across the grades. In later 
grades, more content appeared in Student materials, indicating that older 
students have more direct access to that content, without the mediation 
of teachers. The pattern in Saxon was again different; in grades 1 and 3 
about the same amount of content appeared in Teacher and Student ma-
terials. In contrast, over 80% of MPAH’s length content in all three grades 
appeared in Student materials, though the proportion was greatest in 
grade 3. So students had consistently greater direct access to length con-
tent in MPAH than in the U.S. curricula. 

But Figure 3 does not show how the three most frequent textual types, 
Statements, Questions, and Problems, separately appeared in Student vs. 
Teacher materials. This distinction proved important for Statements. In 
all but two curricula/grades (EM and SFAW, Grade 3), Statements ap-
peared more often in Teacher materials than Student materials. In par-
ticular, Statements of Conceptual knowledge appeared more frequently in 
Teacher materials in most grades, with the exception of grade 3. In Saxon, 
all Conceptual Statements in all grades appeared in Teacher materials. 
This result is important because it shows that students’ direct access to 
Statements of Conceptual Knowledge was limited. For students to have 

Figure 3. Percentage of length measurement codes in Teacher and Student materi-
als by curriculum and grade. 
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access to explicit statements of conceptual principles for length measure-
ment in grades K–2, teachers needed to voice those statements. MPAH 
was quite similar to U.S. curricula: Conceptual Statements appeared more 
often or entirely in Teacher materials in grades 1 to 3.  

The Sequence of Procedures and Associated Concepts 

Table 2 showed the general dominance of procedural content in all grades 
and curricula, but not surprisingly, the curricula focused on different 
types of length measurement procedures at different points across the 
four grades. To understand how procedures and related concepts were se-
quenced and therefore how length measurement was presented across the 
grades, we aggregated procedures into five groups: Qualitative Judgments, 
Measurement of Simple Paths (using nonstandard units or rulers), Visual 
Estimation, Sums and Differences (including perimeter and word prob-
lems), and Multiplicative Relationships (including unit conversion and dis-
tance-speed-time relationships). Procedures in each of these groups en-
gaged similar reasoning. Qualitative Judgments involved only comparative 
judgments of longer, shorter, and same lengths. Measurement of Simple 
Paths included procedures that used nonstandard or standard units to mea-
sure or draw straight-line paths along segments or objects, and all proce-
dures for using rulers. Visual Estimation involved the visual projection of 
units to estimate the length of objects without using physical units or tools. 

Figure 4. Percentages of codes for ruler procedures and procedures using other 
tools for measuring simple paths. 
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Table 4 shows the percentage of Procedural content by group across cur-
ricula and grades. The Other group represents all residual procedural con-
tent. We have left zero cell entries blank for ease of viewing. 

These five groupings collectively accounted for most of the procedural 
content in all curricula and grades—at least 80% of all procedural codes, 
and generally more. Therefore they effectively “covered” most all of the 
dominant procedural content reported in Table 2. 

We now examine these entries from the perspective of sequence, here 
with a broad brush and below in more detail: How did attention to these 
procedures flow across grades? Qualitative Judgment procedures were 
most frequent in grades K and 1. EM gave attention less to these proce-
dures than the other curricula; SFAW’s attention was strongest in grade 
K, but it dropped dramatically in subsequent grades. Procedures for Mea-
suring Simple Paths appeared frequently in all four grades, but particu-
larly so in grades 1 and 2. The relatively high frequency of these proce-
dures in grade 3 was due to measuring one or more segments as the first 
step in computing the perimeter of polygons. Taken together, Qualitative 
Judgment and Measurement of Simple Path procedures made up a very 
large part of the length measurement content; in only one curriculum-
grade (SFAW, grade 3) did the combined percentage fall below 50%. At-
tention to the task of Visual Estimation was less consistent across cur-
ricula. EM focused on estimation in grade 1 only. Saxon gave it much 
less attention overall, where SFAW gave it significant attention in all but 
grade 3. Procedures for finding Sums and Differences and for reasoning 
with Multiplicative Relationships were more frequent in grades 2 and 3, 
with the latter primarily a focus in grade 3. 

Table 4. Percentage of Length Measurement Procedural Codes by Procedural Group, Curriculum, and 
Grade 
                                                                                     Procedural Group 

		  Qualitative 	 Simple 	 Visual	  Sums & 	 Multiplicative 
Curr	  Gr	  Judgments 	 Paths 	 Estimation 	 Differences 	 Relations 	 Other 

EM	 K	 29	 63	 2	 2		  4
	 1	 27	 33	 16	 7	 5	 12
	 2	 13	 43	 5	 15	 13	 11
	 3	 10	 43	 7	 13	 19	 8
Saxon	 K	 63	 34	 2			   1
	 1	 52	 45	 2			   1
	 2	 8	 70	 5	 7		  10
	 3	 13	 63	 5	 11	 4	 4
SFAW	 K	 68	 18	 10	 1		  3
	 1	 18	 45	 18	 13		  6
	 2	 10	 46	 17	 21	 1	 5
	 3	 14	 29	 5	 16	 16	 20
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The content of Table 4 shows very substantial, but not complete, 
agreement in the sequence in which length measurement procedures 
are presented to students in the U.S. curricula. All three focused initially 
on qualitative comparisons before introducing and using length units, 
both nonstandard and standard. Using those units to measure simple 
paths became a major focus in all grades and curricula, but especially in 
grades 1 and 2. In part at least, the results cohere with Piaget’s proposed 
development sequence: Curricula have accepted the premise that com-
parative judgments should precede metric determinations of length. We 
now examine these procedures and the concepts closely related to them 
in greater detail. 

Qualitative Judgment 

We found seven procedures that involved reasoning about length in 
purely qualitative terms. In Direct Comparison, two objects are placed 
side by side to determine if one is longer by visual inspection; Visual 
Comparison involves the same judgment when objects are not physically 
aligned. Indirect Comparison uses a third intermediate object and direct 
comparison of two objects to determine if one of the pair is longer. We 
also included procedures for partitioning lengths into equal parts. Fi-
nally, we included procedures for drawing segments equal to, longer, or 
shorter than another. 

Direct Comparison was the dominant procedure in this group. Where 
Direct and Visual Comparison together accounted for most of the Qualita-
tive Judgment procedures in all curricula and grades, in most grades Di-
rect Comparison appeared far more often. It was the most frequent proce-
dure in all curricula in grade K—and in EM and Saxon in grade 1 as well. 
In grades K and 1, these two procedures were directed at pairs of objects 
present in the classroom or drawn in the text. But beginning in grade 1, 
Direct Comparison was also used in early work on bar graphs when stu-
dents were asked to compare the heights of bars. Instances of Indirect 
Comparison and Draw Segment Shorter/Longer/Equal were infrequent. 
The lone exception was Saxon grade K, where Indirect Comparison ac-
counted for about 9% of procedural content at that grade, and Draw Seg-
ment Longer/Shorter/Equal for about 8%. 

Qualitative judgment procedures make minimal conceptual demands 
beyond an intuitive understanding of the length attribute. Three concep-
tual elements in our coding scheme were directly related to qualitative 
length judgments: Definition of Length, Conservation Under Motion, and 
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Conservation Under Partitioning. We discuss their frequency and varia-
tion (for definitions) below when we consider how the curricula faced 
the challenge of defining length as a measurable quantity. 

Measurement of Simple Paths 

Procedures for measuring simple paths—the length of single segments, 
objects, and distances—were more common than any other group in most 
all curricula and grades (Table 4). These procedures represent the heart 
of length measurement—choosing, placing, and enumerating a number 
of length units in a given linear space. This group combined two sub-
groups: Procedures for placing and interpreting nonstandard length units 
and procedures for applying standard units, typically measurement with 
rulers. Both include procedures for measuring simple paths and draw-
ing segments whose length is a given number of units, though the for-
mer were much more frequent than the latter. Unit Iteration is the pri-
mary conceptual foundation for procedures for measuring simple paths. 
As indicated earlier, we stated Unit Iteration as, “Measures of length are 
produced by iterating a length unit (repeatedly adjoining) from one end 
of an object, segment, or distance to the other and then enumerating the 
number of iterations (e.g., by counting). Iterated units may not overlap 
or leave gaps.” 

Although this statement implicates a procedure for placing and enu-
merating physical units to produce length measures, it is not stated in 
procedural terms, and we carefully distinguished references to the proce-
dures for placing units from references to constraints on the placement of 
units. We include specific examples that illustrate this distinction below. 

Measuring Simple Paths With Nonstandard Units. All three U.S. cur-
ricula first addressed length measurement with nonstandard units (e.g., 
paper clips, square tiles, and linking cubes) before introducing standard 
units and rulers. Measuring simple paths with nonstandard units involves 
placing units along a path adjacent to the object or distance to be mea-
sured from one end to the other so that the linear space is filled without 
leaving gaps or overlaps between units—that is, it involves the physical 
enactment of Unit Iteration. We distinguished two such procedures, one 
where sufficient numbers of units are available and one where the supply 
is insufficient so some units must be reused (moved). The first procedure 
produces tilings of paths where the measured space is completely filled 
by the end of the procedure (Lehrer, 2003). The second involves iterating 
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a unit one or more times to achieve a tiling. With iteration, the measurer 
must reuse some physical units one or more times and keep track of the 
total number of units placed (e.g., by counting each placement or mark-
ing the location of prior placements) because the whole space is never 
completely filled at any point in the procedure. 

All three curricula included situations where sufficient numbers of 
nonstandard units were available for measuring simple paths and those 
where they were not, but with different order and emphasis. EM pro-
vided more situations involving insufficient units in grades K and 1 be-
fore shifting toward sufficient situations in the later grades. The pattern 
for SFAW and Saxon was opposite: More situations supplied sufficient 
numbers of units in grades K, 1, and 2, where situations requiring itera-
tion were slightly more common in grade 3. Across grades, EM roughly 
balanced the number of situations of each type, where sufficient situa-
tions were more common in Saxon and SFAW. 

Both procedures depend on Unit Iteration, though our statement does 
not explicitly distinguish tiling from iterating. Overall, Unit Iteration was 
infrequently expressed; we found only 21 instances in all three curricula 
and grades. Of these, 11 were located in grade 1 materials. EM materials 
contained half of all instances (n = 11), and the other two curricula about 
a quarter each (Saxon, n = 6; SFAW, n = 4). Placement in grade 1 was 
generally consistent with the appearance of procedures for using non-
standard units, though EM presented situations with insufficient units in 
grade K. More problematic was the fact that half of all instances of Unit 
Iteration (n=10) were Partial Statements—most emphasizing the need to 
avoid gaps and overlaps between units. All Statements (10 Partial and 2 
Full) were located in Teacher materials. Only three instances of Unit Iter-
ation were located in Student materials; these were Problems that drew 
students’ attention to the conceptual dimensions of unit placement. In 
sum, the opportunity to learn the principle of Unit Iteration, especially 
in the Student materials, was very limited. 

Measuring Simple Paths With Rulers. All curricula moved quickly from 
qualitative comparisons and simple path measurement with nonstandard 
units to introduce rulers to measure the same simple paths in whole num-
bers of inch or centimeter units. EM and Saxon introduced ruler mea-
surement in grade K; SFAW did so in grade 1. Throughout the grades the 
curricula generally interleafed the use of rulers and nonstandard units in 
measuring simple paths. As Figure 4 shows, ruler use generally increased 
across the grades and dominated the measurement of simple paths by 
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grade 3. “Other tools” included nonstandard units and materials that sup-
ported the drawing of segments (e.g., dot paper and grid paper). 

In measuring simple paths with rulers, all three curricula presented 
paths that were shorter than the ruler with some that were longer. Paths 
that were longer require students to iterate the ruler at least once to com-
plete their measurement work. Most instances of measuring longer paths 
were located in grades 1 and 2; their frequencies were about one quar-
ter of the corresponding frequencies of measuring shorter paths. EM ad-
dressed both tasks in grade K with about equal frequency (n = 14 [longer 
paths] to n = 18). Also, EM and SFAW provided a small number of oppor-
tunities for measuring objects that were not aligned with the zero mark 
on the ruler (n = 15 and n = 3, respectively). All were Problems or Ques-
tions. No U.S. curricula stated a procedure for measuring with a ruler 
when the object was not aligned at the zero mark, and nine of EM’s 15 
instances were Problems on a single grade 3 page. Saxon materials did 
not address this situation. 

Although ruler use was widespread, support for understanding how 
rulers represent a sequence of length units was not. We coded three con-
ceptual knowledge elements that provide meaning for rulers and their 
use: (a) The simple idea that rulers measure lengths (Rulers Measure 
Length), (b) the notion that marks on rulers represent units of length 
(Rulers Represent Iterated Units), and (c) the notion that any point on 
the ruler can serve as the zero point (Zero/Scale on Rulers). The lat-
ter concept supports use of the broken ruler procedure, where counting 
starts at a nonzero ruler mark adjacent to one end of the path. All cur-
ricula addressed each of these ideas at least once in the four grades. But 
there were only six instances of Rulers Represent Iterated Units, all in 
Teacher materials, half of which appeared in grade 3, long after all cur-
ricula had asked students to use rulers to measure lengths. Likewise, all 
six instances of Zero/Scale on Rulers were found in grade 3; three were 
Partial Statements. More frequent attention was given to Rulers Measure 
Length, and its placement—most frequently in grade 1—was consistent 
with the appearance of ruler procedures. That said, both EM and Saxon 
introduced rulers in Grade K. In all three cases, the appearance of rele-
vant Conceptual knowledge lagged behind calls to use procedures justi-
fied by that knowledge. 

We found a similar trend with two Conventional knowledge elements 
related to rulers. The first concerned the construction of most rulers 
used in schools where the customary (inch) and metric (centimeter) 
scales appear on opposite sides or opposite edges of the ruler. The second 
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concerned the convention that larger marks indicate whole units of length 
and smaller marks indicate subunits.7 Table 5 presents the frequency of 
these Conventional knowledge elements across curricula and grades. As 
before, we have left zero cells entries blank. 

Although all curricula addressed Basic Ruler Construction at least once 
in grades K and 1 when students are first asked to use these tools, most 
instances (64%) appeared late, in grade 3. Similarly, the vast majority 
of instances of Units/Subunits on Rulers appeared in grade 2 and 3. This 
placement matches the curricula’s attention to greater precision in ruler 
measurement in the later grades (i.e., to the nearest 1/4 and 1/8 inch). 
However, since the same rulers were presumably used in grades K and 1, 
any questions students might have about the nature of these marks were 
left unaddressed in the curricula for a long period. 

Visual Estimation 

In contrast to the other groups, Visual Estimation was a single procedure 
that called for selecting a length unit, nonstandard or standard, and iter-
ating it visually to produce an approximate measure of the length of an 
object, segment, or distance. As shown in Table 4, Visual Estimation ap-
peared in grade K in all curricula and continued at each grade. The pro-
cedure addressed two types of situations: calls for approximate length 
measures for given objects, segments, or distances and the generation or 
location of objects, segments, or distances approximately equal to a given 
length. In typical instances of the first type, the text depicted the object 
(e.g., a pencil or ribbon) or described a distance such as “the distance 

Table 5. Frequency of Conventional Knowledge Codes Related to Ruler Construction by Curriculum 
and Grade 

Curriculum                                    EM                                    Saxon                               SFAW 

Knowledge Element/Grade	 K	 1	 2	 3	 K	 1	 2	 3	 K	 1	 2	 3
Basic Ruler Construction	 2	 3	 1	 12	 2		  6	 15	 1		  2	 5
Units/Subunits on Rulers		  3	 12	 22			   3	 7			   1	 3

7 This conventional issue is different than the conceptual issue of how smaller subunits nest 
within larger units. The Conventional Knowledge element refers to the marks on rulers as 
indicators of whole length units and subunits. 
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from your classroom to the library.” Sometimes the target attribute and/
or length unit was left unspecified (Chang et al., 2011). A typical instance 
of the latter case was “Find an object that is 1 meter long.” 

Generally, Visual Estimation appeared more frequently in EM and 
SFAW than in Saxon. SFAW addressed estimation more frequently in all 
grades, at least doubling the number of instances in EM grades K through 
2 and in Saxon in all grades. It was the most frequent single procedure 
in SFAW grades 1 and 2. Frequently, SFAW’s calls to estimate followed a 
fixed pattern: An object was depicted in the text and students were asked 
first to “estimate” and then to “measure” the object, using the same unit. 
In all curricula, Visual Estimation was predominantly presented in Prob-
lems or Questions. Despite the frequent calls to estimate lengths, little at-
tention was given in any curriculum to specifying the estimation process, 
either in Student or Teacher materials. EM grade 1 included one noted 
exception: Estimation was introduced and the process of using a refer-
ence object to obtain an estimate was discussed in the Teacher materi-
als. However, that description appeared after students had been asked 
to estimate lengths numerous times. A similar concern applied to SFAW, 
where students were frequently asked to estimate with nonstandard units 
in grade K, prior to the definition of nonstandard units. 

Sums and Differences 

All three U.S. curricula also presented opportunities for students to work 
with additive combinations of two or more lengths. Additive relationships 
appeared in two main forms: word problems that asked students to de-
termine sums or differences of lengths and computations of (or from) 
problems involving lengths. These were frequent in grades 2 a the pe-
rimeter of polygons. All three curricula presented additive word nd 3, es-
pecially in EM and SFAW (Table 4). Saxon’s frequencies were lower—5% 
of procedural codes at grade 3.We found four different forms of word 
problems, those presented in (a) words only; (b) words with the objects 
represented (e.g., two pencils); (c) words with lengths represented in 
units; and (d) words and numerical representations (e.g., tables of val-
ues). Types (a) and (b) were most frequent in all curricula. Their loca-
tion in the text and their constituent numerical values suggested that 
their role was “applied” practice for whole number addition as much as 
for learning about length. 

Three additive procedures involved perimeter, the most frequent by 
far was Find Perimeter by Adding Lengths. It first appeared in grade 1 in 
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SFAW, and by grades 2 and 3 it was relatively frequent in all curricula 
(≥5% of procedural content in that grade). Draw a Figure with a Given 
Perimeter was infrequent, appearing only in EM and SFAW, grade 3, and 
in most of those cases (88%), some structured space (e.g., dot paper) 
facilitated students’ construction of the appropriate polygon. EM and 
SFAW provided occasions for Determining the Side Length of a Regular 
Polygon, but very infrequently and generally in grade 3. Saxon did not 
present this procedure. 

The conceptual principles most directly related to additive relation-
ships were again sparse in the curricula. Of four Conceptual elements, 
only one (Definition of Perimeter) appeared in all three curricula. EM and 
SFAW repeatedly defined perimeter, starting in grade 1 and with increas-
ing frequency at each successive grade. Saxon defined perimeter only at 
grade 3 but did so repeatedly (n = 6 times). All three curricula asked stu-
dents to determine perimeter before the term was explicitly defined. Only 
EM addressed the principle of Additive Composition—that sums and dif-
ferences of lengths must themselves be lengths—and did so early; seven 
of eight instances appeared in grade K. No curriculum addressed the nu-
merical extension of that idea (Numerical Sums/Differences) that sums 
and differences can be computed only when the lengths are measured 
in the same units. Finally, EM and SFAW addressed the issue that Perim-
eter is Not Area, primarily in grades 2 and 3 when perimeter computa-
tions were frequent. But they did so infrequently (n = 14 overall; n = 7 
in grade 3); Saxon never did. However, when EM and SFAW did address 
the issue in grades 1 and 2, the discussion was in close proximity to work 
on perimeter computations. 

Multiplicative Relationships 

Relative to additive relationships, multiplicative relationships are con-
ceptually diverse (Schwartz, 1988; Thompson, 1994b; Vergnaud, 1994), 
and this diversity extends to relationships involving lengths. One type 
involves scalar multiplication and multiplicative comparisons of lengths, 
which produce ratios. There are also products of a scalar and a length 
(e.g., “three times as long as this length”) that produce a second length 
that is longer or shorter. Two lengths can also be compared multiplica-
tively (e.g., “how long is this length relative to this length?”). As long 
as the two lengths are measured in the same unit, the resulting ratio is 
a scalar (e.g., “three times as long”). More generally, multiplicative re-
lationships exchange or equate length measures for other quantities, 



Smith et  al .  in  Co gnit ion  and  Instruction  3 1  (2013)        41

including other length measures; these relationships are often called 
rates (Thompson, 1994b). In length measurement, these exchanges in-
clude unit conversions in both customary and metric systems (e.g., “two 
feet is the same as 24 inches”). They also include exchanges of lengths for 
time in distance-speed-time relationships. Finally, lengths can be com-
posed multiplicatively with other quantities to produce new spatial quan-
tities. Most commonly in elementary mathematics, the product of two (or 
three) length measures produces area (or volume) measures. 

By grade 3, all three curricula asked students to convert lengths mea-
sured in one unit into another unit (Unit Conversion). EM and SFAW pre-
sented this procedure in grade 2, and by grade 3 these frequencies were 
significant (13% of all procedural codes in EM and 12% in SFAW). Saxon 
gave limited attention to this procedure (only 1.4% in grade 3). All cur-
ricula also presented the procedure for producing a length from a given 
length and a ratio relating the two (between 2% and 3% of grade 3 pro-
cedural content in all three curricula). Beyond those two procedures, EM 
and SFAW gave some attention to determining a ratio from two lengths 
and to finding a missing quantity when two of three terms in a distance–
speed–time trio was given, primarily at grade 3. Saxon presented neither 
procedure. In sum, all curricula gave some attention to the procedures 
involving multiplicative relationships among lengths, mostly at grade 3 
and with greatest attention to Unit Conversion. 

Conceptual support for understanding multiplicative relationships was 
once again sparse. Of seven Conceptual elements in our coding scheme, 
we found instances of only two. Units Can Be Converted appeared in EM 
and Saxon at grade 3.8 EM also addressed the issue that the circumfer-
ence is a ratio of the circle’s radius at grade 3; no other curriculum did 
so. But the fact that multiplying lengths by any other quantity (length 
or not) produces quantities that are not lengths (Multiplicative Compo-
sition) was never mentioned, nor was the fact that a length compared 
multiplicatively with another length produces a ratio (or scalar), not a 
length. More generally, no attention was given to unpacking how ratios 
as scalars and lengths interact multiplicatively. In sum, there were few 
direct opportunities to explore conceptual diversity of multiplicative re-
lationships involving length in grade K through 3. 

8 Our coding scheme distinguished the concept that units can be converted from the pro-
cedure for carrying out such conversions. The concept that all length units can be con-
verted to any other length unit was stated in length terms, but this principle applies gen-
erally to all quantities. 
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Specific Conceptual Challenges 

We now turn to the specific question of how frequently and directly the 
curricula addressed particular challenges that students face in learning 
length measurement. In each case, we consider the attention given to par-
ticular concepts and procedures that address those challenges. 

Understanding Length as a Stable and Measurable Quantity 

Piaget’s early work indicated that, for young children at least, length 
may not be a stable attribute of objects, that displacing one of two equal 
length objects can make them unequal (nonconservation), and that bent 
and straight paths with aligned endpoints can be seen as equal in length 
(Piaget et al., 1960). More generally, transitivity and length conserva-
tion were proposed as conceptual prerequisites to understanding units 
of length (and measurement via units). To assess how the curricula ad-
dressed these issues, we aggregated all instances of 11 Conceptual knowl-
edge elements that addressed either explicit attempts to define length 
or conceptual properties of length as a quantity that did not require the 
identification or understanding of units. Their frequencies are presented 
in Table 6 by grade, not by curriculum (for reasons of space). As above, 
we have left grade cells with zero frequency blank. Significant differ-
ences between curricula, where they exist, are noted below. We included 
knowledge elements for Varieties of Paths and Relation to Distance to 
code any attention the curricula gave to distinguishing different types of 
paths (e.g., simple, curved, bent) and distinguishing or relating length 
and distance. 

Table 6. Frequency of Conceptual Knowledge Codes for Definition and Basic Properties of Length 

                                                                                                                               Grade 

Group 	 Element 	 K 	 1 	 2 	 3 	 Total 

Definition 	 Definition of Length 		  2 	 13 	 3 	 18 
	 Varieties of Paths 					     0 
	 Relation to Distance			   1	  1 	 2 
Basic Properties 	 Positive Values		   1 			   1 
	 Order/Equality 	 2				     2 
	 Conservation under Partitioning		   2	  1	  8	  11 
	 Conservation under Motion	  2			    8	  10 
	 Transitivity 		  1	  5		  6 
	 Trichotomy				     1 	 1 
	 Additive Composition 	 7 	 1 			   8 
	 Measurement involves Error 	 3	  2	  1 	 4 	 10  
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All three curricula explicitly defined length. EM and SFAW did so re-
peatedly (n = 9 and n = 8 times, respectively); Saxon did so only once. 
But these definitions appeared well after students were asked to com-
pare and measure lengths. EM and Saxon defined length once in grade 1; 
SFAW did not do so until grade 2, where all its instances appeared. More-
over, the vast majority of Definition codes (16 of 18) appeared in grades 
2 and 3. No curriculum addressed the issue of different types of linear 
paths; and the relation between length and distance was essentially not 
addressed (one instance each in EM and SFAW). This pattern held gener-
ally for basic properties as well; they were infrequently addressed over-
all. When they were addressed (e.g., Conservation Under Partitioning 
and Conservation Under Motion), the instances appeared in later grades. 
All instances of Additive Composition, an exception to this pattern, ap-
peared in EM; seven of the 10 instances of Measurement Involves Error, 
also appeared in EM materials. Saxon never addressed either property. 

While the frequency and location of Definitions are relevant to our 
question, so is the content of those definitions. Table 7 presents five 
representative examples quoted from the curricula, including the single 
Saxon instance and two instances each from EM and SFAW. We coded the 
Saxon definition as a Partial Statement because it did not directly address 
the nature of the length quantity. All five instances appeared in Teacher 
materials. Italics indicate emphasis in the text. 

These examples suggest that authors struggled with the task of de-
fining length. Four instances made reference to objects but did not clar-
ify how to locate the length attribute (or “the ends”) of objects—a non-
trivial issue for some objects (e.g., shoes or feet). The first SFAW grade 2 
definition could be interpreted as suggesting that length and height are 

Table 7. Examples of Length Definitions 

Curriculum, Grade 	 Statement in the Text 	 Textual Code 

EM, 1 	 Length is the size of something from 	 Full Statement, Teacher  
	    one end to the other. 
EM, 3 	 Remind children that the measure of 	 Full Statement, Teacher  
	    a distance between two points is  
	    called length. 
Saxon, 1 	 Sometimes we need to tell someone 	 Partial Statement, Teacher  
	    how long or wide something is. 
SFAW, 2 	 Length tells how long an object is. 	 Full Statement, Teacher  
	    Height tells how tall an object is. 
SFAW, 2 	 length How long something is from 	 Full Statement, Teacher     
	    one end to the other. (Statement in  
	    vocabulary review)



Smith et  al .  in  Co gnit ion  and  Instruction  3 1  (2013)         44

different spatial quantities, without clarifying that heights are lengths. 
Only the EM grade 3 statement was relatively well formed mathematically 
and resembled definitions we have found elsewhere (e.g., in dictionar-
ies of mathematics and mathematic texts written for elementary teach-
ers). But it appeared late in students’ work on length. All definitions are 
consistent with length along a simple path (connecting two points); ex-
tension to more complex paths (e.g., jagged, polygonal, and curvilinear) 
was not explicitly addressed. 

Understanding the Conceptual Properties of Units 

Prior research has shown that the appropriate use of length units re-
quires understanding numerous properties and constraints on their use 
as well as the ability to coordinate them in measurement activity. In 
learning to measure length, students may satisfy some properties and 
constraints in a particular effort while violating others. Some will suc-
cessfully tile with units before they can iterate them. Eight Conceptual 
elements in our coding scheme addressed the properties of length units; 
Table 8 presents their frequencies across grades. 

Compared to definitions and basic properties, curricular attention 
to unit properties was markedly greater but very uneven. Instances of 
Greater Means Longer, the basic idea that greater numerical measures 
(that is, counts of units) indicate longer lengths, accounted for 37% of 
all Conceptual content. EM and SFAW addressed this idea in all grades, 
but SFAW did so much more, accounting for 73% of all instances. Saxon 
only addressed it in grade 2. EM and SFAW also addressed Unit-Measure 
Compensation in all grades; SFAW did so most frequently (70% of all in-
stances). Saxon did so less frequently and only in grades 2 and 3. Other 
concepts received markedly less attention. 

Table 8. Frequency of Conceptual Knowledge Codes for Length Units by Grade 

                                                                                                                Grade 

Group 	 Element 	 K 	 1 	 2 	 3 	 Total 

Units 	 Greater Means Longer 	 5 	 74 	 59 	 94 	 232 
	 Unit-Measure Compensation 	 11 	 56	  26 	 11 	 104 
	 Numerical Sums/Differences					      0 
	 Meaning of Length Measure 	 1 	 1	  1 	 4 	 7 
	 Standard vs. Nonstandard Units	  2	  13	  4	  4 	 23 
	 Unit Iteration	  4	  11 	 4 	 2 	 21 
	 Length Measure Requires Length Units		   1	  8 	 7	  16 
	 Units Can Be Converted 				    5 	 5
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Our statement of Unit Iteration expressed multiple conceptual prop-
erties of units (the reuse of units, exhaustion, and avoidance of gaps). As 
noted above, half of the observed instances were Partial Statements that 
primarily focused on avoiding gaps and overlaps between units. Only 4 
of 21 instances explicitly referenced the need for units to be identical; 
only three addressed the need for unit placement along a path parallel 
to the measured object, although 10 did address the need to exhaust the 
entire linear space via end-to-end placement of units. All curricula also 
presented some situations where student had to iterate their rulers to 
measure paths that were longer than their rulers. These could have been 
contexts for students to learn the Unit Iteration principle by interpreting 
their rulers as length units. But longer paths were presented far less of-
ten than shorter paths, and none of those occasions merited a Unit Iter-
ation code in addition to the procedural code.

One instance of Unit Iteration merits specific mention (see also Di-
etiker, Smith, & Gonulates, 2011). A grade 1 EM assessment task pre-
sented four different “measurements” of the width of a sheet of paper 
using buttons—that is, pictures of four different placements of buttons 
across the sheet. One was the correct tiling that filled space along a path 
straight across the paper; the other three each violated some constraint 
in Unit Iteration, either by overlapping units, leaving gaps between units, 
or placing units along a diagonal path. Students were asked to choose and 
justify the “best measurement” (though they were not asked to explain 
why the other measurements were deficient). This was the only coded 
instance of Unit Iteration that asked students to choose among different 
placements of units and therefore to consider the conceptual properties 
and constraints of units on correct placement. 

Understanding the Structure of Rulers 

Prior research has shown that students can learn to use rulers in a rote 
manner, without understanding how marks indicate equal intervals of 
linear space. When the zero mark/end of the ruler has been removed and/
or the objects to be measured are aligned at nonzero unit marks, students 
may read the length off the ruler incorrectly. As stated above, attention 
to the relationship between ruler marks and length units (Rulers Repre-
sented Iterated Units) was infrequent and late in appearance (half of the 
n = 6 instances appeared in grade 3). All n = 6 instances of Zero/Scale 
on Rulers appeared in grade 3. Few situations were provided to measure 
objects not located at the zero point. The infrequent attention to these 
conceptual and procedural issues and the early introduction of rulers in 
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grades K and 1 may indicate that the curriculum authors did not see ma-
jor challenges for students in understanding the structure of rulers. 

Measuring Complex Paths 

Research has also shown that children can face difficulty in discrimi-
nating between the lengths of simple and bent paths when their end-
points align and in reasoning about the length of complex paths that 
combine multiple line segments, especially those drawn on grids. Some 
count squares, including those on the outside corners of complex paths, 
rather than the sides of squares that compose the linear path. Our coding 
scheme distinguished perimeter measurement for nonpolygonal shapes 
(Measure Perimeter With Flexible Tools) from perimeter measurement of 
polygons and coded the measurement of nonclosed paths (Measure Com-
plex or Curved Paths). Neither procedure appeared frequently, especially 
compared to the very extensive work on simple paths and the perimeter 
of polygons. SFAW (Grade K) and EM (Grade 1) began work with perim-
eter with tools like string before shifting attention to polygons. Complex 
nonclosed paths rarely appeared. EM and SFAW presented these situ-
ations only six times across all grades; Saxon never did. Students cer-
tainly had many occasions to reason about the length of nonsimple paths 
in computing the perimeter of polygons and often those polygons were 
presented on grids. Where those situations could help students sort out 
how to handle the corners of bent paths (closed and open), the geomet-
ric properties of squares and rectangle also provide some support for 
avoiding or correcting the corner error. These supports are not available 
for complex open paths. 

Discussion 

We have analyzed students’ opportunity to learn length measurement 
from written curricula, targeting knowledge and its expression in a fine-
grained way. We have characterized the sequence/ flow of that content 
from Kindergarten through grade 3 and have specifically examined how 
the curricula addressed known challenges for students in learning length 
measurement. Because of the length and detail of our results, we first 
summarize them. Then we return to the central focus that framed the 
study: What lessons has the analysis produced for understanding the 
roots of the well-documented problem of weak learning of measurement? 
We close with suggestions for curriculum development (especially the 



Smith et  al .  in  Co gnit ion  and  Instruction  3 1  (2013)        47

revision of current materials) and consider both the study’s limitations 
and future steps for research. 

In all curricula we examined, thoroughly and more cursorily, we found 
the broad topic of length measurement received modest attention, espe-
cially in grades K through 2 when the most fundamental concepts and 
procedures are presented. We also found no change in attention to the 
topic in the two more recent editions of U.S. curricula relative to previ-
ous editions. Attention to length measurement was overshadowed in all 
curricula by work on base-10 number and operations, both in the number 
of lessons and placement in the text. Length content was generally placed 
in the second half of elementary curricula after extensive number and 
operations content in the first half. This basic result may or may not be 
problematic for student learning, but it raises at least one major cause for 
concern. Given the importance of learning fractions—for their own im-
portance and for subsequent mathematics and science—the emphasis on 
work with discrete quantities (counting sets of objects, base-10 numera-
tion, place value and arithmetic operations) may not serve as sufficient 
foundation for learning fractions and rational numbers. Rather, the par-
tition of continuous quantities, like length and other spatial quantities, 
seems a more productive foundation for understanding fractions and op-
erations on fractions (Freudenthal, 1983; Thompson & Saldanha, 2003). 
If understanding fractions is as important as mathematics educators have 
argued, then some rethinking of the curricular attention and location of 
spatial measurement content (beginning with length) may be in order. 

With respect to length measurement content presented in the four 
grades, we found strong commonalities among the curricula. All four 
curricula examined in detail showed a strong procedural focus. This 
characterization of written curricula matches those made by numerous 
researchers of typical classroom instruction (Bragg & Outhred, 2001; 
Hiebert, 1984; Lehrer, 2003; Schifter & Szymaszek, 2003; Stephan & Cle-
ments, 2003; Van de Walle, 1994). Procedural knowledge dominated all 
curricula in all grades (at least 75% of all length content); attention to 
Conceptual knowledge was modest—especially when the frequencies of 
two concepts (Greater Means Longer and Unit-Measure Compensation) 
were set aside; Conceptual knowledge very often appeared after work 
on related procedures began; and Conventional knowledge was similarly 
modest before grade 3 with work on unit conversion. Conceptual knowl-
edge, especially in the early grades, more frequently appeared in the cur-
ricula’s Teacher materials, thus limiting students’ direct access to that 
content. In sum, students’ access to the conceptual principles of length 
measurement was limited in three main ways—in the low frequency of 
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many central elements, in their location in the text relative to associated 
procedures, and in the need for the teacher to voice that content to stu-
dents. The pattern of placing Conceptual knowledge after repeated ref-
erences to related Procedural knowledge suggests that curriculum au-
thors may believe that conceptual knowledge is of limited importance or 
that students can usefully carry out measurement procedures before they 
learn the principles that underlie them. These results for the frequency 
and placement of conceptual and procedural knowledge in written cur-
ricula raise the issue of what level of attention to each may be most pro-
ductive for student learning. We address this difficult issue below. 

Our fine-grained analysis also supported a detailed description of the 
sequence that written curricula followed in presenting length measure-
ment content across the grades. Here we also found substantial common-
alities and some significant differences in the order of specific proce-
dures and concepts. All curricula began with the qualitative comparison 
of lengths before introducing units of length. All began metric measure-
ment with nonstandard units (e.g., paper clips, linking cubes, centimeter 
cubes) before standard units, but quickly introduced rulers (only SFAW 
waited until grade 1). All gave extensive attention to measuring sim-
ple paths, primarily with rulers, and later to the perimeter of polygons, 
where comparatively little attention was given to complex and curved 
paths. In measuring simple paths, all curricula but EM gave greater at-
tention to procedures for tiling of units than iterating units. All curricula 
asked students to estimate the length of objects by visually applying stan-
dard or nonstandard units. By grade 2, all curricula frequently included 
word problems involving lengths, although it was not clear whether these 
were designed as opportunities to reason about length or to practice 
base-10 arithmetic. All curricula began to explore multiplicative rela-
tionships involving lengths by grade 3, principally through conversions 
between units. 

These commonalities in curricular sequence reflect some aspects of 
the epistemological sequence, initially proposed by Piaget and explored 
by others (Lehrer, 2003; NCTM, 2000; National Research Council, 2001; 
Piaget et al., 1960; Van deWalle, 1994). The observed sequence reflects 
the initial presumption that qualitative comparison should precede met-
ric measurement (using any units). While Piaget drew no distinction be-
tween standard and nonstandard units, all curricula have followed cur-
rent mathematics education policy documents (e.g., NCTM, 2000, 2006) 
and guidelines for teachers (Van de Walle, 1994) in introducing nonstan-
dard units before standard units of length. One major departure from 
the Piagetian sequence is the near absence of Indirect Comparison in the 
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curricula as an intermediate step between qualitative comparison and 
the use of units to determine “how much longer?” Similarly, Sarama and 
colleagues (2011) have reported that their elementary students did not 
use indirect comparison across a range of length measurement tasks. The 
curricular sequence has also included metric elements (visual estimation, 
sums and differences, and multiplicative relationships) that were not ad-
dressed in early developmental research. 

Attention to conceptual principles was also sparse in all curricula. 
Most notably, references to Unit Iteration were few, and those that did 
appear primarily focused on one constraint (avoiding gaps and overlaps 
between units) without addressing the need for identical units and fill-
ing the space to be measured (exhaustion). Two conceptual elements, 
Greater Means Longer and Unit-Measure Compensation accounted for 
more than half (54%) of all conceptual content. Many other elements, 
including Conservation Under Motion, Conservation Under Partitioning, 
Transitivity, Additive Composition, Rulers Represent Iterated Units, Zero/
Scale on Rulers, were scarcely mentioned. All curricula attempted to de-
fine length, although these statements raise issues about clarity, and they 
generally appeared after qualitative comparison and measurement with 
nonstandard units and rulers had already begun. It was notable and sur-
prising that references to the Definition of Perimeter were three times 
more common than references to the Definition of Length—the more fun-
damental quantity. 

None of the four specific learning challenges identified in prior empir-
ical work were strongly addressed in the U.S. curricula. With respect to 
understanding length as a stable and measurable attribute, we found is-
sues of concern in how the curricula defined length explicitly—concerns 
that, in fairness, we have found in other sources. Few definitions were 
mathematically well formed. Basic properties of length (prior to the in-
troduction of units) were rarely expressed. With respect to understanding 
the properties of units, we found much greater attention to the inverse 
relationship between the size of units and the resulting length measure 
and almost no attention to the requirements that length units be identi-
cal in size, exhaust the whole, and be placed along a path parallel to the 
measured object. Little attention was given to unpacking the structure 
of rulers, beyond their conventional features (e.g., the placement of inch 
and centimeter scales), and the scant attention to seeing ruler marks as 
the endpoints of length intervals appeared well after these tools were 
used. Very few occasions asked students to use rulers to measure objects 
that were not aligned with the zero mark, despite the wide reporting of 
students’ struggle with this situation (e.g., Kamii, 2006; Lehrer et al., 
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1998; Nunes & Bryant, 1996). Few opportunities were provided for mea-
suring complex or curved paths. Given this pattern, it is not clear that 
curriculum authors are preparing their materials with full understand-
ing of the documented challenges that students face in learning length 
measurement. 

Despite these strong commonalities in overall content and sequence 
of particular procedures and concepts, we also found some nontrivial 
differences between curricula. Overall, Saxon focused even more atten-
tion on procedures and less on concepts than the other curricula (Table 
2); addressed a narrower range of conceptual content and revisited that 
content less often; posed more Questions, especially from Teachers; and 
included more Demonstrations. SFAW’s treatment of conceptual content 
focused repeatedly on a few elements (e.g., Greater Means Longer and 
Unit- Measure Compensation) and scarcely mentioned many other prin-
ciples. SFAW was the most consistent curriculum of the three in present-
ing conceptual principles after students began work with related pro-
cedures. By contrast, EM addressed a much wider range of conceptual 
content (see also Lee & Smith, 2011) and gave the greatest attention to 
moving/reusing units, both conceptually and procedurally. 

Implications of the Procedural Focus of Written Curriculum 

Given the strong procedural focus in written curricula, the assertions 
that typical classroom instruction is also procedurally focused, and the 
evidence that some of students’ struggles with length measurement 
align with the character of written curricula, it is tempting to “con-
nect the dots” and directly link the character of written curricula to 
students’ learning problems. Our results may suggest that linkage and 
generally support the conjecture that the content of written curricula 
is one cause of those problems, but our data are insufficient to assert 
that causal claim directly. As we have argued from the outset, the con-
tent of written curricula is only one factor shaping students’ learning of 
any topic, including length measurement (Figure 2). All curricula must 
be enacted, one day and lesson at a time. The planned and actual enact-
ment of written lessons includes teachers’ choices to selectively include 
and delete written lesson elements and to supplement those lessons 
with additional content. They also include the myriad ways in which 
teachers frame and shape tasks and activities, manage classroom dis-
cussion, and assess student progress. Careful analyses of written cur-
ricula, no matter how revealing, can orient and inform research on the 
actual lessons that students experience, but they cannot replace such 
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research. On the other hand, it is also true that written curricula ex-
ert a substantial influence on teachers’ enacted lessons (Grouws et al., 
2004); that teachers read and learn from curriculum materials (e.g., 
Choppin, 2008; Remillard, 2000); and that curricula are written to 
align with high-stakes assessments that increasingly influence what 
teachers teach. Those considerations are reasons not to expect strong 
and widespread separation between the written and enacted elemen-
tary mathematics curricula. 

In this context, how has this analysis deepened our understanding 
of the sources of the problem of learning measurement that framed the 
study? How do the observed patterns in procedural and conceptual con-
tent relate to this problem? First, given the complex and uncertain rela-
tionship between conceptual and procedural knowledge in mathematics 
(Baroody, Feil, & Johnson, 2007; Star, 2005, 2007), we do not see the ba-
sis for claiming that the observed procedural focus is itself problematic 
for students’ learning. Measurement involves doing—acting on the phys-
ical world—as much if not more than for other mathematical domains. 
Instead, we see one important implication to concern the impact of lim-
ited access to conceptual knowledge. Even the present range of 10–15% 
of all length measurement content in each grade could well be deployed 
to greater effect. Only a few key conceptual elements received repeated 
attention across grades; many others scarcely received any attention, 
making important principles effectively invisible for students. 

Second, even when key conceptual ideas appeared in the curriculum, 
they were frequently not fully articulated. The Partial Statements of Unit 
Iteration were one of the clearest examples, but there were others. So, 
clarity and completeness in the expression of conceptual content is a sec-
ond concern. Third, much conceptual content was only explicit in Teacher 
materials, especially in the early grades, so students did not have direct 
access. Even by grade 1 we believe it is possible to express key concep-
tual principles in appropriate ways for and directly to children. Fourth, 
addressing conceptual content well after calls for students to apply pro-
cedures that depend on those principles seems problematic. There is 
broad agreement that we seek to raise students who expect to under-
stand mathematical procedures and can explain why those procedures 
are appropriate (National Research Council, 2001). If so, then addressing 
conceptual principles in closer proximity and more explicit relationship 
to relevant procedures seems the most promising approach (Baroody et 
al., 2007; Lehrer, 2003). Delay runs the risk of suggesting that mathe-
matics is not to be understood—a message that too many students learn 
in school (Schoenfeld, 1988; Skemp, 1978). 
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One potential response is that teachers may repair the conceptual lim-
itations of written curricula by supplementing with content from other 
sources. While we do not question the fact of curriculum supplementation 
or that some exemplary teachers are capable of supplementing in concep-
tually significant ways, it seems unlikely that such repairs will effectively 
address the conceptual limitations we have reported on a wide scale—for 
two reasons. First, it is not clear that print-based or Web-based materials 
that would address the concerns we have reported are widely available. 
Second and more important, the research literature on teachers’ knowl-
edge of length measurement, as well as our own experience in profes-
sional development in measurement, indicates that elementary teachers 
are often unsure about the conceptual foundations of measurement and/
or how to engage measurement concepts in their teaching. Some struggle 
with the same challenges that their students face (e.g., Baturo & Nason, 
1996; Simon & Blume, 1994; Woodward & Byrd, 1983). Teachers whose 
orientation to measurement is procedural may not see conceptual limi-
tations in their curriculum’s treatment of the topic. 

Implications for Curriculum Development and Revision 

Some simple suggestions for curriculum development and revision flow 
from this argument. First, authors should consider how students could 
get more direct and early access to conceptual principles in student ma-
terials and how to link those principles to key procedures. Second, they 
should explore ways of representing the iterative movement of units 
more dynamically and explicitly. New forms of digital curriculum ma-
terials provide new opportunities for overcoming the reliance on static 
representations on paper textbook pages. Third, greater attention should 
be given to establishing the connections between physical units, such as 
tiles and paperclips, and the marks on rulers in order to support students’ 
attention to intervals of space. When physical units are standard (e.g., 
inch tiles and centimeter cubes), tiling a length and measuring the same 
length with a ruler can be seen as equivalent. To assess students’ under-
standing of rulers, more measurement tasks should involve objects that 
are nonaligned with the zero mark or use broken ruler tasks. And more 
attention should be given to measuring complex paths, including those 
with corners, as these also reveal more about students’ understanding of 
length than do simple paths. 

But enriching the conceptual content of written curricula may have 
little effect if teachers do not appreciate the role played by conceptual 
knowledge in explaining and justifying measurement procedures. In 
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addition to arguing for more attention to measurement in preservice 
education, we also advocate enriching the educative qualities of written 
curricula to support teacher learning (Ball & Cohen, 1996; Davis & Kra-
jcik, 2005; Males, 2011). This means speaking directly to teachers (e.g., 
in “professional development notes”) about the logic of students’ mis-
conceptions, how conceptual principles shape and constrain measure-
ment procedures, and how they apply generally to measurement of many 
quantities. 

Limitations and Next Research Steps 

Given the diversity of elementary mathematics curriculum materials in 
use in the United States and the evidence that they differ in nontrivial 
ways (Dossey et al., 2008; Stein et al., 2007), the most obvious limita-
tion of this study concerns the curriculum sample. How well do the three 
U.S. curricula represent the national population of curricula that shape 
the enacted curriculum around the country? Although we selected our 
small sample carefully, we cannot completely answer this challenge, as 
an empirically grounded answer would involve applying our method to 
all such curricula. But we make three claims about the relevance of our 
work for addressing the problem of weak student learning: (a) we have 
analyzed elementary curricula that have shaped the measurement lessons 
experienced by many U.S. students, (b) we have found no evidence that 
two of the three curricula have significantly changed their treatment of 
length measurement in more recent editions, and (c) the overall proce-
dural focus observed in the U.S. curricula held for the Singapore curric-
ulum as well. In addition, our more cursory examinations of other cur-
ricula have produced more similarity than difference to what we have 
reported. While we cannot claim these curricular patterns are completely 
uniform, even in the United States, we have also found no evidence that 
we are overstating our case. 

Second, since we have not studied the planned or enacted measure-
ment lessons from these curricula (beyond a few cases of informal obser-
vation), we do not know what typical enactments look like or what the 
range of variation may be. Our careful analysis of the written curricula 
is, however, strong preparation for such work, and we hope to address 
this limitation in the future. But framing studies of the enacted curricula 
also poses substantial challenges—principally, the problem of diversity. 
For each lesson in written curricula, there may be thousands of differ-
ent enactments, and uncertainty about the structure of the population of 
enactments makes it difficult to design appropriate samples. That said, 
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sampling classrooms in a variety of communities with teachers of dif-
ferent levels of experience and mathematical background makes sense, 
as does coupling observation with interviews to begin to assess the rea-
sons why teachers select, omit, and supplement elements of written les-
sons. Such studies may well reveal more about the effect of other factors 
depicted in Figure 2. 

Finally, our analysis has convinced us of the importance of fine-grained 
curriculum analysis, but it has also generated challenges and problems. 
One challenge that we have addressed well has been to demarcate the 
boundaries of the target content domain on mathematical, rather than 
curricular grounds. Rather than simply analyzing length measurement 
lessons, we have analyzed all content that sensibly called for length rea-
soning. This step led us to include content (e.g., bar graphs, partitioning, 
and plotting points) that others may not have. Assessing content that calls 
for length reasoning certainly involves subjective interpretation, but we 
believe that our more inclusive approach is superior to solely analyzing 
designated length lessons. We have also allowed higher-level distinctions 
in measurement knowledge to emerge in the early phases of our anal-
ysis. Conventional knowledge emerged as a knowledge type to comple-
ment Conceptual and Procedural knowledge in length measurement, and 
it may apply to all domains of elementary mathematics as well. But we 
have struggled with other issues. We have found the distinction between 
Question and Problem difficult to operationalize in a manner that gener-
ates reliable results. We have also struggled to identify the optimum level 
of detail for particular knowledge elements, sometimes crafting some el-
ements to include too much content (e.g., Unit Iteration) and other times 
perhaps framing elements too narrowly (e.g., Meaning of Length Measure 
and Length Measure Requires Length Units). It is not clear that there is 
a principled way to resolve these questions. 

Conclusion 

Current treatments of length measurement in elementary written curri-
cula may be enriched and improved in a number of related ways. Mak-
ing these changes could strengthen students’ (and teachers) learning of 
length measurement and thereby provide a stronger foundation for un-
derstanding measurement more generally (especially, area and volume) 
and other core elementary mathematics content (e.g., fractions). Cur-
ricula may profitably identify and clearly present more central concep-
tual principles; locate that content more closely to work with related 
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measurement procedures; present concepts, especially definitions, di-
rectly in student materials; include tasks and activities that specifically 
address known challenges for students; and communicate conceptual 
principles and students’ learning challenges directly to the teachers who 
will use those materials. 
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