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Abstract
The interpretation of optical canopy sensor readings for determining optimal rates 
of late-season site-specific nitrogen application to corn (Zea mays L.) can be com-
plicated by spatially variable water sufficiency, which can also affect canopy size 
and/or pigmentation. In 2017 and 2018, corn following corn and corn following 
soybeans were subjected to irrigation×nitrogen fertilizer treatments in west cen-
tral Nebraska, USA, to induce variable water sufficiency and variable nitrogen suf-
ficiency. The vegetation index-sensor combinations investigated were the normal-
ized difference vegetation index (NDVI), the normalized difference red edge index 
(NDRE), and the reflectance ratio of near infrared minus red edge over near infra-
red minus red (DATT) using ACS-430 active optical sensors; NDVI using SRSNDVI 
passive optical sensors; and red brightness and a proprietary index using commer-
cial aerial visible imagery. Among these combinations, NDRE and DATT were found 
to be the most suitable for assessing nitrogen sufficiency within irrigation levels. 
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While DATT was the least sensitive to variable water sufficiency, DATT still tended 
to decrease with decreasing water sufficiency in high nitrogen treatments, whereas 
the effect of water sufficiency on DATT was inconsistent in low nitrogen treatments. 
A new method of quantifying nitrogen sufficiency while accounting for water suf-
ficiency was proposed and generally provided more consistent improvement over 
the mere averaging of water effects as compared with the canopy chlorophyll con-
tent index method. Further elucidation and better handling of water-nitrogen in-
teractions and confounding are expected to become increasingly important as the 
complexity, automation, and adoption of sensor-based irrigation and nitrogen man-
agement increase. 

1. Introduction 

Adverse market conditions, nitrate contamination of drinking water and 
aquatic ecosystems, and concerns about fossil fuel depletion and green-
house gas emissions continue to motivate efforts to reduce nitrogen (N) fer-
tilizer losses in corn (Zea mays L.) production. One practice that can contrib-
ute to these efforts is late-season N fertilizer application (i.e., during the late 
vegetative and early reproductive growth stages). This practice can enable 
growers to adapt to spatiotemporal variability in spring mineralization of or-
ganic N and to shorten the time between fertilizer application and late-sea-
son plant uptake. A valuable tool for late-season N management is optical 
canopy sensing. By the late vegetative and early reproductive growth stages 
of corn, variable N sufficiency generally manifests as deviations in canopy 
size and/or pigmentation. Optical canopy sensors usually detect these de-
viations by measuring reflectance at visible and near infrared wavelengths. 
To infer about N sufficiency, the measurements from the area of interest are 
typically compared with those from a N sufficient reference area, and a suf-
ficiency index (SI) value is calculated (Blackmer and Schepers, 1995). The ad-
vantages of optical canopy sensing include consideration of in-season feed-
back (unlike simulation models) and efficient sampling of many plants across 
a large area (unlike chemical analyses of soil or plant tissue). 

Yet, N sufficiency may not be the sole factor influencing canopy size and/
or pigmentation at a particular growth stage. One of many potential extrane-
ous factors is water sufficiency. At the corn leaf scale, Schepers et al. (1996) 
and Schlemmer et al. (2005) found that water stress increased reflectance at 
visible and near infrared wavelengths. At the corn canopy scale, Clay et al. 
(2006) found that water stress decreased the value of the normalized differ-
ence vegetation index (NDVI) during the silking (R1) and blister (R2) growth 
stages. Shiratsuchi et al. (2011) and Ward (2015) later found that water stress 
generally decreased the values of multiple reflectance indices that increase 
with N sufficiency, but this sensitivity to water sufficiency was greater for 
NDVI than for the Datt (1999) vegetation index. Across a field with significant 
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soil spatial variability, water sufficiency might be as nonuniform as N suffi-
ciency. There may be spatial differences in hydrological fluxes such as infil-
tration, deep percolation, and subsurface lateral flow. There may also be spa-
tial differences in the relationship between soil water depletion and water 
stress severity. If water sufficiency is spatially variable, then its consequent 
canopy effects can also be spatially variable. 

Correctly interpreting optical canopy sensor readings in the presence of 
variable water sufficiency becomes complicated because deviations in can-
opy size and/or pigmentation can no longer be simplistically attributed to 
variable N sufficiency. Comparing an area of interest against a N sufficient 
reference that was more water sufficient could lead to underestimation of SI 
and to application of N fertilizer to plants that are water stressed but N suf-
ficient. Conversely, comparing the area of interest against a N sufficient ref-
erence that was less water sufficient could lead to overestimation of SI and 
to withholding of N fertilizer to plants that are N stressed but water suffi-
cient. Because the first type of error can increase N losses while the second 
type of error can decrease yield, acknowledging the possibility of such er-
ror, understanding such error, and developing robust methods to minimize 
such error are important for the use of optical canopy sensors for late-sea-
son site-specific N management. 

To narrow this knowledge gap, this research pursued two objectives. The 
first was to characterize water effects on the values of different combina-
tions of optical sensors and vegetation indices and on their effectiveness in 
indicating N sufficiency. The second was to evaluate methods for mitigat-
ing water effects on N sufficiency determinations. 

2. Materials and methods 

2.1. Experiment description 

The research site was located at the University of Nebraska–Lincoln West 
Central Research and Extension Center, North Platte, NE, USA. Since 2014, 
the research site has been under annual summer corn or soybean production 
without any tillage and any stover removal. All corn was planted at a depth 
of 0.05m in 0.76m rows parallel to the center pivot wheel tracks and received 
47 L ha−1

 of ammonium polyphosphate (10–34–0; 6.5 kg ha−1
 N) dribbled 

onto the seed furrow. Irrigation was supplied by groundwater containing 1.5 
ppm N (Ward Laboratories, Kearney, NE; 0.4 kg ha−1

 N per 25.4mm of irriga-
tion water) through a center pivot with sprayhead sprinklers positioned ev-
ery other interrow at a height of 0.6m above ground. A GrowSmart Precision 
Variable Rate Irrigation system (Lindsay Corporation, Omaha, NE) customized 
the application depth for each plot by changing the end tower speed and 
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by pulsing a solenoid valve at each outlet. For simplicity, the small amount 
of N addition (< 10 kg ha−1

 N total) by ammonium polyphosphate and ir-
rigation well water was deemed to be negligible in this study. The N fertil-
izer source for all preplant, sidedress, and fertigation was urea ammonium 
nitrate (32–0–0). Preplant and sidedress were applied by a double coulter 
applicator dribbling at a depth of 0.03m and at a distance of 0.19m from 
the center of the crop row on both sides. Application rate changes between 
plots were accomplished by a LiquiShift variable rate fertilizer pump (Sure-
Fire Ag Systems, Atwood, KS). Fertigation was performed by altering irri-
gation application depths for each plot as aforementioned while injecting 
fertilizer at a rate proportional to the irrigation system flow rate. The vari-
able rate injection was governed by a Reflex variable rate fertigation con-
trol panel (Agri-Inject, Yuma, CO) that was connected to a McPropeller flow 
meter (McCrometer, Hemet, CA) and programmed to maintain a constant 
concentration of 441 ppm N in the irrigation system (corresponding to 112 
kg ha−1

 N applied per 25.4mm of fertigation water). 
In 2017 and 2018, two irrigation×N fertilizer factorial studies were con-

ducted. One study was corn following corn (hereafter CC), and each CC plot 
remained in the same location and received the same treatment during both 
years. The other study was corn following soybean (hereafter CS), and each 
year all CS plots were relocated to a different area that was managed uni-
formly for irrigated soybean the previous year. 

The CC study imposed three irrigation levels×four N fertilizer levels. The 
experimental design was strip plot with four replicate blocks. Each experi-
mental unit (i.e., plot) was 11 rows (8.4 m) wide and 36m long. The CC irri-
gation levels were (1) no irrigation, (2) critical irrigation (i.e., full irrigation 
only between V14 and R2 and no irrigation otherwise), and (3) full irriga-
tion. The CC N levels were (1) 0 kg ha−1, (2) 67 kg ha−1, (3) 202 kg ha−1, and 
(4) 269 kg ha−1, with each seasonal N fertilizer rate applied half as preplant 
and half as sidedress. Hybrid seed corn blend DeKalb 61-54SSRIB (relative 
maturity rating of 111; Monsanto Company, St. Louis, MO) was planted at 
81,500 seeds ha−1. The preplant, emergence, sidedress, silking, and matu-
rity dates were 5 May, 17 May, 12 June, 26 July, and 10 October in 2017 and 
19 April, 11 May, 31 May, 14 July, and 14 September in 2018, respectively. 

The CS study was two adjacent sub-studies, each imposing a different 
irrigation level (full versus limited) with four N fertilizer levels while follow-
ing a randomized complete block design with four replicate blocks. Each 
plot was 15 rows (11.4 m) wide and 29m long. The N levels of the CS full ir-
rigation sub-study were (1) 0 kg ha−1

 (i.e., no preplant and no fertigation), 
(2) limited N (i.e., 34 kg ha−1

 of preplant and then 34 kg ha−1
 of weekly ferti-

gation whenever SI for N fell below 0.85 between V8 and R2), (3) full N (i.e., 
78 kg ha−1

 of preplant and then 34 kg ha−1
 of weekly fertigation whenever SI 

fell below 0.95 between V8 and R2), and (4) excessive N (i.e., preplant with 
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supplemental fertigation). The N levels of the CS limited irrigation sub-study 
were (1) 0 kg ha−1

 (i.e., no preplant and no fertigation), (2) limited N (i.e., 56 
kg ha−1

 in 2017 or 34 kg ha−1
 in 2018 of base fertigation around V4 and then 

34 kg ha−1
 of weekly fertigation whenever SI fell below 0.85 between V8 and 

R2), (3) full N (i.e., 56 kg ha−1
 in 2017 or 34 kg ha−1

 in 2018 of base fertiga-
tion around V4 and then 34 kg ha−1

 of weekly fertigation whenever SI fell 
below 0.95 between V8 and R2), and (4) excessive N (i.e., fertigation spread 
between V4 and R2). In 2017, weekly fertigation for the limited N and full N 
levels was decided for all four plots of a treatment depending on the aver-
age SI across those four plots. In 2018, however, weekly fertigation for the 
limited N and full N levels was decided for each plot individually depend-
ing on its SI. Hybrid seed corn blend Fontanelle 6A327RBC (relative matu-
rity rating of 107; Monsanto Company, St. Louis, MO) was planted at 84,000 
seeds ha−1

 for both CS sub-studies. The preplant, emergence, base fertiga-
tion, silking, and maturity dates were 4 May, 16 May, 8 June, 18 July, and 30 
September in 2017 and 16 May, 18 May, 1 June, 13 July, and 13 September 
in 2018, respectively. 

2.2. Data collection and processing 

The three optical canopy sensors investigated in this research were (1) the 
Crop Circle ACS-430 (Holland Scientific, Lincoln, NE; Holland Scientific, 2018), 
a point-based active sensor that emits its own modulated light and measures 
reflectance at 670 nm (hereafter red), 730 nm (hereafter red edge), and 780 
nm (hereafter near infrared); (2) the Spectral Reflectance Sensor (SRS; ME-
TER Group, Pullman, WA; METER Group, 2018), a point-based passive sensor 
that relies on sunlight and measures reflectance at 650 nm (hereafter red) 
and 810 nm (hereafter near-infrared); and (3) the EOS 5D Mark III (Canon, 
Tokyo, Japan), a digital camera that assigns a 0–255 brightness value of red, 
green, and blue to each image pixel. The ACS-430 and the SRS sensors were 
attached to a tractor-mounted boom (i.e., the sensor platform) at a height of 
2.9m above ground. Sensor data was generally collected one or two hours 
after solar noon on each sensing date. The sensing platform was driven at a 
speed of 0.6ms−1

 in 2017 and 1.3ms−1
 in 2018 up and down alleys along the 

lengthwise edges of the plots so that both the sensors on the left side of the 
boom and the sensors on the right side of the boom traveled along an in-
ter-row (Shaver et al., 2017) near the middle of each plot exactly once. One 
ACS-430 on the left side generated ten readings per second in 2017, and 
two ACS-430 on each of the left and right sides generated five readings per 
second in 2018. One SRS measuring upwelling radiance on each of the left 
and right sides and one SRS measuring downwelling irradiance in the mid-
dle generated one reading every three seconds in 2017, and no SRS were 
deployed in 2018. The digital camera was attached to an airplane flying at a 
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height of 1500m above ground, and one aerial image of the entire field was 
acquired generally around noon on each sensing date (AirScout, Monee, IL). 

Sensor readings from locations where as-applied rates of irrigation and/
or N fertilizer were transitioning between different treatment-prescribed 
rates were filtered and removed. For each plot, readings were excluded if 
they were outside the middle 4.6m of the plot width or if they were less 
than 9.1m from each lengthwise end. In 2017, the location of each ACS-430 
and SRS reading was determined jointly by a Geo 7X handheld global posi-
tioning system (GPS) receiver (Trimble, Sunnyvale, CA) attached to the trac-
tor and by the built-in GPS receiver in the GeoScout X data logger (Holland 
Scientific, Lincoln, NE) storing the ACS-430 readings. In 2018, the location 
of each ACS-430 reading was determined by an external differential GPS 
(DGPS) receiver (Holland Scientific, Lincoln, NE) connected to the GeoScout 
X data logger. The aerial images had been georeferenced to the World Geo-
detic System 1984 geographic coordinate system by AirScout, and each pixel 
generally corresponded to 0.2m×0.2m on the field. For the purpose of this 
research, the aerial images underwent the adjust transformation in ArcGIS 
10.2 (ESRI, Redlands, CA) based on five ground control points surrounding 
the study areas to further enhance spatial accuracy. The transformed im-
ages were then projected to the North American Datum of 1983 Universal 
Transverse Mercator Zone 14 North projected coordinated system and fi-
nally snapped and resampled to the same grid and resolution (0.6 m) as the 
2016 National Agricultural Imagery Program image for the county to which 
this field belonged. This spatial filtering preserved approximately 300 ACS-
430 readings and 21 SRS readings per CC plot in 2017, 280 ACS-430 read-
ings per CC plot in 2018, 190 ACS-430 readings and 14 SRS readings per CS 
plot in 2017, and 175 ACS-430 readings per CS plot in 2018. With the aerial 
images, this spatial filtering preserved 242 pixels per CC plot and 142 pixels 
per CS plot in 2017 and 2018. 

The readings that passed through the aforementioned filtering were sum-
marized for analysis. For each plot, the median values of red reflectance (ρR), 
red edge reflectance (ρRE), near infrared reflectance (ρNIR), normalized differ-
ence vegetation index (NDVI; Eq. (1)), red edge normalized difference veg-
etation index (NDRE; Eq. (2)), and the Datt (1999) reflectance index (DATT; 
Eq. (3)) from each ACS-430 sensor were calculated, and these median values 
were averaged across the four ACS-430 sensors in 2018. NDVI and NDRE 
were default outputs from ACS-430, whereas DATT was identified by past 
studies to be relatively resistant to water effects (Shiratsuchi et al., 2011; 
Ward, 2015; Bronson et al., 2017). Likewise, for each plot, the median values 
of ρR, ρNIR, and NDVI from each downlooking SRS sensor were calculated 
(Bai et al., 2016), and these median values were averaged across the two up-
welling SRS sensors in 2017. With the aerial images, the median values of 
red brightness (R), green brightness (G), blue brightness (B), and Air- Scout 
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Difference Vegetation Index (ADVI)—a proprietary index computed from R, 
G, and B and provided by AirScout—were calculated for each plot. Blackmer 
and Schepers (1996) found that R decreased with increasing N sufficiency, 
so R was transformed into R* (Eq. (4)). Likewise, because ADVI was reported 
as an integer between 0 and 10,000 by AirScout and seemed to decrease 
with increasing canopy size and/or greenness, ADVI was transformed into 
ADVI* (Eq. (5)). 

NDVI =  ρNIR − ρR 
                ρNIR + ρR                                          (1) 

NDRE  =
  ρNIR − ρRE 

                 ρNIR +  ρRE                                        (2) 

DATT  =  ρNIR − ρRE

              ρNIR −  ρR                                         (3) 

R*  =  1 −  R
               255                                                (4) 

ADVI* =  1 − ADVI 
                 10000                                            (5) 

All datasets used in this research are listed in Table 1. Because SRS read-
ings are sensitive to changes in light conditions, SRS datasets that were af-
fected by erratic cloud cover as determined by an SQ-110 hemispherical 
quantum sensor (Apogee Instruments, Logan, UT) were excluded from all 
analyses. Aerial images taken during an irrigation or fertigation applica-
tion were also excluded from all analyses. Additionally, not all datasets were 
suitable for investigating potential confounding between water sufficiency 
and N sufficiency in the interpretation of optical canopy sensor readings. 
An ACS-430 dataset was deemed to be suffering from water effects if NDVI 
from ACS-430 sensors was numerically lower for the lowest irrigation×the 
highest N fertilizer treatment than for the highest irrigation×highest N fer-
tilizer treatment in all four blocks. In 2017, this criterion was met on six sens-
ing dates between V14 and R4 for the CC study and on six dates between 
V18 and R4 for the CS study. Rainfall was low from late May to late July in 
2017, and later rains could not completely undo the effect of earlier water 
stress on canopy development. In 2018, the criterion was met by just three 
dates between V15 and R4 for the CC study and by none of the dates for 
the CS study. Rainfall was abundant throughout the vegetative and early 
reproductive growth stages in 2018 except during early July and early Au-
gust, and the CS limited irrigation level was apparently not severe enough to 
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induce noticeable canopy differences before the end of the early reproduc-
tive growth stages. The ranges of ACS-430 sensing dates that were deemed 
to be suffering from water effects were used to select SRS and aerial imag-
ery datasets that were also deemed to be suffering from water effects. 

2.3. Data analysis 

The six sensor-index combinations were first assessed in terms of reliability 
to indicate N sufficiency given the same irrigation level. For each irrigation 
level inside each block, a Kendall’s τ rank correlation coefficient (Kendall, 
1938) was calculated between the four N fertilizer rates and the correspond-
ing values of a given sensor-index combination. All the correlation coeffi-
cients for that sensor-index combination across blocks and irrigation levels 
were averaged on each day to summarize the strength of that sensor-in-
dex combination for indicating N sufficiency when irrigation level was held 
constant. 

Sufficiency index (SI) was calculated by dividing the VI of the plot by the 
corresponding N sufficient reference value—here taken to be average VI of 
the treatment with same irrigation level but excessive N (Eq. (6)). The range 
in SI can differ by sensor-index combination (Holland and Schepers, 2010). 
Some studies have neglected this possibility and have used the range in SI 
to conclude about the sensitivity of indices. However, just like changing the 
display units of a weighing scale does not necessarily increase its precision 
or accuracy, a larger range in SI does not necessarily imply greater precision 

Table 1. Optical canopy sensor datasets used in this study; unmarked datasets were included 
in all analyses, but datasets marked by an asterisk (*) were included only in analyses within 
irrigation levels because water effects were lacking. 

ACS-430  SRS  Aerial Imagery 

2017 
17 Jul (CS)  24 Jul (CC & CS)  19 Jul (CC & CS) 
19 Jul (CC)  31 Jul (CC)  27 Jul (CC & CS) 
24 Jul (CC & CS)  11 Aug (CC & CS)  4 Aug (CC & CS) 
31 Jul (CC & CS)  18 Aug (CC & CS)  11 Aug (CC & CS) 
11 Aug (CC & CS)  23 Aug (CC)  19 Aug (CC & CS) 
18 Aug (CC & CS) 
23 Aug (CC & CS) 

2018 
11 Jul (CC & CS*)   11 Jul (CC & CS*) 
19 Jul (CC* & CS*)   9 Aug (CC & CS*) 
25 Jul (CC* & CS*)   15 Aug (CC & CS*) 
2 Aug (CC & CS*) 
11 Aug (CC & CS*) 
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or accuracy of N status assessment. Rather, SI values computed using indi-
ces with small SI ranges cannot be directly compared to SI values computed 
using indices with large SI ranges. On the other hand, the range in SI for 
a given sensor-index combination may be used to compare study-years in 
terms of fertilizer responsiveness. SI values were normalized by the range in 
SI (Eq. (7)) for fairly assessing sensor-index combinations, an integral task of 
this research. Normalized SI values are compatible with linear relationships 
between SI values using different indices (Solari et al., 2008) and with qua-
dratic models of SI response to N fertilizer (Holland and Schepers, 2010). 
Impact of neglecting variable water sufficiency was simulated by substitut-
ing the N sufficient reference and the nonfertilized check of the same irri-
gation level with the full irrigation×excessive N and the full irrigation×0 kg 
ha−1

 N treatments, respectively (Eqs. (8)–(9)). 

SI  =  VI 
VI i ref ,I                                                             (6) 

SIi* =  SIi – SI0,i  =  VI – VI0,i  

           1  – SI0,i      VIref,i – VI0,i                                   (7) 

SIws  =
  VI 

          VIref,ws                                                                                                  (8) 

SIws* = SIws – SI0,ws  = VI – VI0,ws     
               1 – SI0,ws       VIref,ws  – VI0,ws                             (9) 

where 

SIi = sufficiency index with perfect knowledge of irrigation level 
VI = vegetation index for the plot of interest 
VIref,i = average vegetation index for the excessive N level given the 

same irrigation level as the plot of interest 
SIi* = normalized sufficiency index with perfect knowledge of irrigation 

level 
SI0,i = sufficiency index for the nonfertilized level given the same irriga-

tion level as the plot of interest 
VI0,i = average vegetation index for the nonfertilized level given the 

same irrigation level as the plot of interest 
SIws = sufficiency index with water sufficient assumption 
VIref,ws = average vegetation index for the full irrigation×excessive N 

treatment 
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SIws* = normalized sufficiency index with water sufficient assumption 
SI0,ws = sufficiency index for the full irrigation×nonfertilized treatment 
VI0,ws = average vegetation index for the full irrigation×nonfertilized 

treatment 

Moran et al. (1994) introduced a two-dimensional method of calculating 
crop water stress index (Idso et al., 1981; Jackson et al., 1981) that aims to 
account for partial canopy cover by introducing the soil adjusted vegeta-
tion index (Huete, 1988) as an indicator of canopy cover. Likewise, two-di-
mensional methods of calculating normalized SI aim to account for a non-N 
factor by introducing a second variable as an indicator of that non-N fac-
tor. Attempting to obtain normalized SI values that solely represent N suf-
ficiency without the confounding of season-to-date water sufficiency, this 
research proposed a new two-dimensional method (Fig. 1) of calculating 
normalized SI based on the trapezoid concept of Moran et al. (1994). The 
second variable for this new method is normalized canopy temperature (Tc*; 
Eq. (10)), measured at a time when spatial variability in canopy temperature 
is large and reveals the typical pattern of season-to-date water sufficiency 
across the field. In this research, canopy temperature was measured in the 
midafternoon of 24 July 2017 for CC 2017 and CS 2017 and in the midafter-
noon of 11 August 2018 for CC 2018 by SI-1H1 infrared thermometers (Apo-
gee Instruments, Logan, UT) attached to the same tractor-mounted boom 
as the optical canopy sensors. Assuming season-to-date water sufficiency 
is unknown a priori, the new method first determined the linear regression 
relationship between DATT and Tc* for excessively N fertilized plots and for 
nonfertilized plots, respectively. The two regression relationships were then 
used to interpolate the DATT values of the N sufficient reference and the 
nonfertilized check that correspond to Tc* of any area of interest. Finally, nor-
malized SI for the area of interest is calculated using the interpolated DATT 
values of the N sufficient reference and the nonfertilized check (Eq. (11)). 

Tc* =  Tc − Tc,min  
                   Tc,max − Tc,min                                                   (10)  

SIt* =  DATT –  (a0Tc* + b0) 
         (a1Tc* + b1) – (a0Tc + b0)                                (11) 

where 

Tc* = normalized canopy temperature for the plot of interest 
Tc = canopy temperature for the plot of interest measured at a time 

when spatial variability in canopy temperature is large and 
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reveals the typical pattern of season-to-date water sufficiency 
across the field 

Tc,min = canopy temperature of the coldest plot in the field, measured at 
(nearly) the same time as Tc 

Tc,max = canopy temperature of the hottest plot in the field, measured at 
(nearly) the same time as Tc 

SIt* = normalized sufficiency index whose N sufficient reference and 
nonfertilized check are interpolated using regression between 
DATT and Tc* based on excessively fertilized and nonfertilized 
areas with a wide range in season-to-date water sufficiency 

DATT = value of the Datt (1999) index for the plot of interest 
a0 = slope of the DATT versus Tc* line based on nonfertilized areas with 

a wide range in season-to-date water sufficiency 
b0 = intercept of the DATT versus Tc* line based on nonfertilized areas 

with a wide range in season-to-date water sufficiency 
a1 = slope of the DATT versus Tc* line based on excessively fertilized ar-

eas with a wide range in season-to-date water sufficiency 
b1 = intercept of the DATT versus Tc* line based on excessively fertilized 

areas with a wide range in season-to-date water sufficiency 

Another two-dimensional method of calculating normalized SI is the 
canopy chlorophyll content index (CCCI), which was originally proposed by 

Fig. 1. Theoretical illustration of the new method of calculating normalized suffi-
ciency index while accounting for water effects.  
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Barnes et al. (2000) to account for partial canopy cover. Past studies had used 
CCCI to assess N sufficiency in wheat and cotton under variable water suffi-
ciency (Fitzgerald et al., 2006; Tiling et al., 2007; El-Shikha et al., 2008). Again 
assuming water sufficiency is unknown a priori, CCCI first determined the 
linear regression relationship between NDRE and NDVI for excessively fer-
tilized areas and for nonfertilized areas, respectively. The intercepts of both 
lines were held at zero. These regression relationships were then used to in-
terpolate the NDRE values of the N sufficient reference and the nonfertilized 
check that correspond to the NDVI value of any area of interest (Eq. (12)). 

 CCCI =  NDRE – (c0NDVI)
              (c1NDVI) – (c0NDVI)                                  (12) 

where 

CCCI = canopy chlorophyll content index for the plot of interest 
NDRE = normalized difference red edge index for the plot of interest 
NDVI = normalized difference vegetation index for the plot of interest 
c0 = slope of the NDRE versus NDVI line based on nonfertilized areas 

with a wide range in water sufficiency 
c1 = slope of the NDRE versus NDVI line based on excessively fertilized 

areas with a wide range in water sufficiency 

3. Results and discussion 

3.1. Comparisons within irrigation levels 

Sensor-index combinations differed in their effectiveness in indicating N 
sufficiency under the same irrigation level for late-season N management. 
With the ACS-430 sensor, NDRE and DATT were consistently more effective 
than NDVI. NDRE and DATT exhibited relatively high average τ, signifying 
strong correlation with N fertilizer rate at the same irrigation level within 
each block (Fig. 2a). These two indices also exhibited relatively low average 
standard deviation (SD) in normalized SI (SIi*; Eq. (7)), signifying small vari-
ability in SIi* among replicates of each irrigation×N fertilizer treatment (Fig. 
2c). Therefore, in agreement with Shiratsuchi et al. (2011) and Shaver et al. 
(2017), NDRE and DATT would be recommended over NDVI for use with 
ACS-430 sensors for assessing N sufficiency under the same irrigation level 
for late-season N management. 

With aerial visual imagery, R* was similar in effectiveness to ADVI* in all 
study-years, and both indices tended to exhibit average τ values compara-
ble with ACS-430 NDRE and DATT (Fig. 2a). This result is positive because 
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aerial visual imagery is generally easier to obtain than ACS-430 measure-
ments. However, average SD of SIi* tended to be larger for R* and ADVI* than 
for ACS-430 NDRE and DATT, which suggests that N sufficiency assessment 
would be noisier using R* and ADVI* than using ACS-430 NDRE and DATT 
(Fig. 2c). Average SD of SIi* for R* and ADVI* reached almost 1 in CS 2017, 
meaning that the within-treatment variability in VI was often of similar mag-
nitude to the range in VI between the excessive N and nonfertilized levels 
at the same irrigation level. Scharf and Lory (2002) found at mid vegetative 
growth stages that N sufficiency assessment from imagery became less noisy 
when solely examining pure leaf pixels after filtering out mixed pixels. Al-
though canopy cover is typically full during the late vegetative and early re-
productive growth stages, pixels that are at least partially composed of soil, 
tassels, and shadows would not be the best indicators of N sufficiency. Per-
haps even late-season N sufficiency assessment using aerial visible imagery 

Fig. 2. Study-year averages of (a) Kendall’s τ rank correlation coefficient between 
nitrogen fertilizer rate and sensor-index combination at the same irrigation level 
within each block, (b) sufficiency index (SI) range expressed as 1 – average SI of the 
nonfertilized check (SI0,i) at each irrigation level, and (c) standard deviation (SD) of 
normalized SI (SIi*) among replicates of each irrigation×nitrogen fertilizer treatment; 
error bars denote standard deviation among sensing dates.  
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would benefit from choosing an extremely high image resolution and fil-
tering out such mixed pixels. The original image resolution (0.2 m) was not 
high enough to enable these pixels to be filtered out, so the R* and ADVI* 
results presented in this research were not artifacts of subsequent resam-
pling to a coarser resolution. 

Overall, SRS NDVI was the least effective sensor-index combination 
among the six investigated in this research. In general, the SRS NDVI exhib-
ited low average τ (Fig. 2a) and large average SD of SIi* (Fig. 2c). SRS NDVI 
might have been encountering the saturation issue that is commonly ob-
served in passive sensor data. The red and near infrared reflectance values 
reported by SRS both tended to be lower than those reported by ACS-430, 
and the resultant NDVI values tended to be higher from SRS than from ACS-
430. Also, the measurement speed of the SRS sensor relative to the travel 
speed of the tractor platform was perhaps problematic. The longer mea-
surement time (0.6 s versus 0.1 s) and larger field of view (36° versus 30° × 
15°) of SRS sensors (METER Group, 2018) versus ACS-430 sensors (Holland 
Scientific, 2018) may have reduced the sensitivity of SRS sensors to canopy 
size and/or pigmentation in on-the-go sensing. 

As mentioned earlier, the range in SI can vary substantially among sen-
sor-index combinations, with ACS-430 NDRE consistently exhibiting the larg-
est range in all study-years. For example, 1 – average SI of the nonfertil-
ized check (SI0,i) was about six times larger for ACS-430 NDRE than for SRS 
NDVI in CC 2017 and for ACS-430 NDVI in CS 2018 (Fig. 2b). While a large 1 
– average SI0,i alone does not imply that ACS- 430 NDRE is effective at dis-
tinguishing between N levels, this observation reiterates the inappropriate-
ness of direct comparisons between SI values calculated from different sen-
sor-index combinations. Prior normalization (Eq. (7)) or custom calibrations 
(Solari et al., 2008) would be generally necessary. 

Fig. 2 illustrated differences not only among sensor-index combinations 
but also among study-years. Ranked in ascending order of fertilizer respon-
siveness as indicated by 1 – average SI0,i, the study-years were CS 2017, CC 
2017, CS 2018, and CC 2018 (Fig. 2b). The difference in responsiveness be-
tween cropping systems is expected at least partly because N mineraliza-
tion tends to be higher following soybean than corn, which is often called 
the soybean N credit (Shapiro et al., 2008). Weather differences between 
the two years also resulted in higher N mineralization in 2017 than 2018. 
Spring 2017 was relatively warm, and in general, only the nonfertilized check 
was visually distinguishable from the other N levels. Spring 2018 was rela-
tively cool, and crop appearance of the various N levels diverged remark-
ably and as early as the mid vegetative growth stages. In short, the larger 
indigenous N supply in CS than in CC and in 2017 than in 2018 caused a nar-
rower spread in N sufficiency among N levels. For CS 2017, the spread was 
so small that even nonfertilized checks tended to have SIi of at least 0.9 for 
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all sensor-index combinations investigated, which is close to the common 
SI threshold of 0.95 for in-season N application (Blackmer and Schepers, 
1995). In contrast, treatment induced differences in residual N from the 
previous year may have further widened the spread in N sufficiency among 
N levels for CC 2018. Higher N responsiveness of a study-year was associ-
ated with higher average τ (Fig. 2a) and with smaller average SD of SIi* (Fig. 
2c) across sensor-index combinations. The increasing dominance of N fer-
tilizer rate as a determining factor of canopy size and/or pigmentation di-
minished the relative influence of spatial variability in indigenous N supply 
and in non-N factors. 

3.2. Comparisons across irrigation levels 

Water effects were different on the N sufficient reference versus the nonfer-
tilized check for all sensor-index combinations investigated. The VI value of 
the N sufficient reference generally increased with increasing irrigation level 
(Fig. 3). Where N was abundant, the crop took advantage of greater water 
sufficiency to improve the growth and maintenance of its canopy. In contrast, 
the VI value of the nonfertilized check was usually highest at the critical irri-
gation level in CC 2017 and CC 2018 (Fig. 3). Where N was limiting, crop wa-
ter use may be reduced (Rudnick and Irmak, 2014). Thus, the full irrigation 

Fig. 3. Treatment average vegetation index values of the nitrogen sufficient reference 
and the nonfertilized check for various irrigation levels during three study-years.  
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level may be supplying excessive water and ultimately decreasing crop yield 
(Rudnick et al., 2016), whereas the critical irrigation level was more appro-
priate for the low N condition. Yet, unlike the critical irrigation level in CC 
2017, the limited irrigation level in CS 2017 witnessed much lower VI values 

Fig. 3. (continued)  
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in both its N sufficient reference and its nonfertilized check as compared with 
the full irrigation level (Fig. 3). Consequently, the VI separation between the 
two irrigation levels of CS 2017 was large for the N sufficient reference, and 
the VI value of the nonfertilized check in CS 2017 was generally highest for 
full irrigation rather than limited irrigation. Because the timing and seasonal 
amount (102mm versus 122 mm) of irrigation were similar between critical 
irrigation in CC 2017 and limited irrigation in CS 2017, the disparity in water 
effects was unexpected. Whether this disparity in water effects was caused 
by differences in genetics and/or previous crop is unclear. On the other hand, 
the no irrigation level was fairly consistent in displaying the lowest VI values 
among irrigation levels in CC 2017 and CC 2018 for both the N sufficient ref-
erence and the nonfertilized check (Fig. 3), which was expected. 

Intraseasonal trends in VI separation between irrigation levels were also 
different among study-years. With aerial imagery, the separation tended to 
be at its minimum during pollination in both CC 2017 and CS 2017 (Fig. 3). 
Visual inspection of this aerial image revealed that the study area as a whole 
appeared lighter and yellower on 27 July 2017 than on the immediately pre-
vious and following image dates. The influence of corn tassels on aerial and 
satellite images is widely known, and the interrow positioning of the trac-
tor-mounted ACS-430 and SRS sensors most likely explained why these two 
sensors were not affected in a similar manner. In contrast, the separation 
among irrigation levels in CC 2017 was sharply reduced for ACS-430 NDVI, 
ACS-430 NDRE, and SRS NDVI between 24 and 31 July (Fig. 3). The critical 
irrigation and no irrigation levels of CC 2017 increased in VI rapidly in re-
sponse to a large rainfall between 28 and 29 July at the end of a long dry 
period. Yet in CS 2017, the narrowing of the separation between irrigation 
levels after this rain event may have occurred to a small extent for ACS-430 
NDVI but was not observed for ACS-430 NDRE and SRS NDVI (Fig. 3). This 
disparity between the limited irrigation level of CS 2017 and the critical ir-
rigation and no irrigation levels of CC 2017 may have been caused by dif-
ferences in genetics and/or development (CC 2017 was approximately one 
week behind CS 2017 at this time). At the cessation of water stress, the crit-
ical irrigation and no irrigation levels of CC 2017 may have been somehow 
more capable of undergoing beneficial changes in leaf physiology (e.g., pig-
ment production, chloroplast movement) and morphology (e.g., unrolling) 
and/or of compensatory canopy expansion enabled by possible delayed en-
try into the reproductive growth stages. Afterwards, the magnitude of sep-
aration among irrigation levels in CC 2017 and CS 2017 each persisted for 
the rest of the sensing period (Fig. 3), when temperatures were relatively 
cool and rain was generally plentiful. On the other hand, the CC 2018 sens-
ing period corresponded to a drying trend, and the consequent increasing 
severity of water stress caused increasing separation among irrigation lev-
els for all sensor-index combinations investigated (Fig. 3). 
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Because water effects impacted all sensor-index combinations investi-
gated, errors would occur from incorrectly assuming all plots to be water 
sufficient and thus always using the N sufficient reference and the nonfer-
tilized check of the full irrigation level in the calculation of normalized suffi-
ciency index (SI*; i.e., applying Eq. (9) instead of Eq. (7)). With ACS-430 NDVI 
and NDRE, the mean bias in SI* tended to be increasingly negative with in-
creasing water stress in all study-years (Fig. 4), owing to wider VI separation 
between irrigation levels (Fig. 3). This phenomenon explains not only intrase-
asonal trends but also the differences between the critical irrigation and no 
irrigation subfigures and between the CC 2017 and CC 2018 subfigures (Fig. 
4). In contrast, the mean bias in SI* for SRS NDVI was quite unpredictable. For 
example, both extremely positive and extremely negative mean biases in SI* 

Fig. 4. Mean bias in normalized sufficiency index (SI*) at different irrigation levels 
for various sensor-index combinations if all plots were assumed to be sufficient in 
water; ADVI* data was not shown because it was nearly identical to R* data.  
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were observed for SRS NDVI at the limited irrigation level of CS 2017 (Fig. 4). 
Such extremes occurred on the first two SRS NDVI sensing dates in CS 2017, 
when SRS NDVI was actually slightly higher in the nonfertilized check than in 
the N sufficient reference for the limited irrigation level (Fig. 3). These nar-
row and inverted VI ranges, which caused extreme instability in SI* calcula-
tions, were the products of applying a poor indicator of N sufficiency during 
a study-year with small N response (Fig. 2). R* and ADVI* were also higher in 
the nonfertilized check than in the N sufficient reference for the limited ir-
rigation level during the first aerial image date in CS 2017 (Fig. 3), which re-
sulted in a large negative mean bias (Fig. 4). While N response was small in 
CS 2017, water response and mean bias in SI* were large. With all sensor-in-
dex combinations investigated, the N sufficient reference for limited irriga-
tion was lower in VI than the nonfertilized check for full irrigation on at least 
one sensing date in CS 2017 (Fig. 3). In these instances, the SI of the N suf-
ficient reference for limited irrigation should be 1, but became a negative 
value with the water sufficient assumption (Fig. 4), which would be a large 
error. On the other hand, smaller errors would result when the VI range be-
tween the N sufficient reference and the nonfertilized check for full irriga-
tion were mostly overlapping the corresponding range for lower irrigation 
levels. Readers should note that mean bias in SI* does not present a full pic-
ture of SI* errors with the water sufficient assumption. In instances when the 
VI range between the N sufficient reference and the nonfertilized check for 
a lower irrigation level fell entirely within the corresponding range for full 
irrigation (or vice versa), both positive biases and negative biases would re-
sult. In fact, this situation was common for the critical irrigation level in both 
CC 2017 and CC 2018 (Fig. 3). Practitioners should be aware of the poten-
tial co-occurrence of the positive and negative biases with the water suffi-
cient assumption because site-specific optical canopy sensing for late-sea-
son N management aims to achieve accuracy at the subfield scale and not 
merely zero mean bias at the field scale. 

Among the sensor-index combinations investigated, ACS-430 DATT was 
generally the least sensitive to water effects. In CC 2017, the N sufficient ref-
erence and the nonfertilized check for no irrigation were surprisingly similar 
in ACS-430 DATT to those for full irrigation (Fig. 3), which resulted in rela-
tively small mean bias in SI* (Fig. 4). The advantages of ACS-430 DATT were 
also observed on some sensing dates for other irrigation levels and in other 
study-years (Fig. 4). While ACS- 430 DATT was once again found to be more 
resistant to water effects than were other common VIs (Shiratsuchi et al., 
2011; Ward, 2015; Bronson et al., 2017), ACS-430 DATT is certainly not im-
mune to water effects. The mean bias in SI* with ACS-430 DATT was worse 
than −0.5 on multiple sensing dates across multiple study-years (Fig. 4), so 
it is desirable to improve the distinction of water stress and N stress in op-
tical canopy sensing beyond merely using ACS-430 DATT. 
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So far in this research, the VIs of plots were compared against the treat-
ment average VI of the no N fertilizer level and the excessive N fertilizer 
level at a particular irrigation level. One might wonder whether water ef-
fects would be removed if a virtual reference was used instead. This statisti-
cal approach relies on the VI at a chosen percentile of the data as the N suf-
ficient reference instead of imposing and sensing an excessively fertilized 
area (Holland and Schepers, 2013). Holland and Schepers (2013) noted that 
the VI value at a chosen percentile was generally higher whenever the can-
opy condition was better. This same trend was observed in the data of this 
research, with the VI value at a chosen percentile inside a plot being sys-
tematically altered by both variable water sufficiency and variable N suffi-
ciency. Holland and Schepers (2013) recommended practitioners to avoid 
starting sensing in the most N deficient parts of the field and also to ex-
pand continually the dataset from which the VI value at a chosen percentile 
would be calculated. However, because this original protocol ignores spa-
tial variability of all non-N properties including water, it would not be ideal 
for fields where the spatial distribution of water sufficiency was unknown. 
Where to keep or recalculate the virtual reference would be unclear even 
though water sufficiency can change the N sufficient (and the nonfertilized) 
values of all sensor-index combinations investigated (Fig. 3). The virtual ref-
erence approach may be applied within known areas of similar water suffi-
ciency, but the data of this research would suggest that following the orig-
inal protocol of this approach would not automatically account for variable 
water sufficiency. 

3.3. Two-dimensional methods 

Previous researchers have proposed the inclusion of soil moisture and/or 
canopy temperature data to help isolate variable N sufficiency from opti-
cal canopy sensing data in the presence of variable water sufficiency. The-
oretically, the most accurate approach of quantifying variable season-to-
date water sufficiency may be to calculate for every part of the field either 
cumulative actual ET (ETa) or cumulative daily ratio of ETa over water suffi-
cient ET. Infrequent soil moisture and/or canopy temperature measurements 
would be unsuitable for this approach unless the soil and plant characteris-
tics throughout the field were understood adequately for using mathemat-
ical models to simulate the conditions between each measurement date. 
Instead, spatiotemporally dense soil moisture and/or canopy temperature 
measurements would be needed starting no later than the mid vegetative 
growth stages because any water stress occurring up to the time of opti-
cal canopy sensing can affect canopy size and/or pigmentation. The cur-
rent cost of acquiring such data, however, would be prohibitive especially 
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for commercial crop production. Making soil moisture and/ or canopy tem-
perature measurement simultaneously with optical canopy sensing and then 
inferring season-to-date water sufficiency from this one-time dataset might 
seem to be an attractive alternative. Nevertheless, whether a unique rela-
tionship exists between current water sufficiency and season-to-date water 
sufficiency would depend on the time of measurement and the season-to-
date weather conditions. Trying to schedule optical canopy sensing around 
the existence of this unique relationship may not be ideal. 

An approach that is likely to be both reliable and feasible would be the 
delineation of water sufficiency zones. Although season-to-date water suf-
ficiency is constantly changing, its spatial pattern is often temporally sta-
ble (Vachaud et al., 1985; Barker et al., 2017). Spatial data on crop (e.g., yield 
maps, thermal imagery) and soil (e.g., apparent electrical conductivity sur-
veys, digital elevation models) continues to become increasingly available. 
Practitioners can use their understanding of a field to select the data layer(s) 
that would best describe the spatial pattern of season-to-date water suf-
ficiency. Making soil moisture and/or canopy temperature measurements 
continuously or simultaneously with optical canopy sensing is unnecessary 
for the zonal approach because it does not rely on actually knowing instan-
taneous or season-to-date water sufficiency. For the zonal approach, the 
best thermal images would be those with maximum contrast—acquired in 
hot, sunny, dry, and windy midafternoons during periods when water stress 
of varying severity is prevalent throughout much of the field. Once season-
to-date water sufficiency zones have been successfully delineated, zone-
specific N sufficient references and nonfertilized checks can be established 
for assessing N sufficiency within each zone— just like SIi* (Eq. (7)) in this 
research. In the short term, the zonal approach may be the most promis-
ing method of accounting for water effects in optical canopy sensing and 
should be ready to be evaluated on fields with real (i.e., not experimentally 
imposed) spatial variability. 

While the zonal approach is elegant, there may be fields where the spa-
tial pattern of season-to-date water sufficiency cannot be delineated neatly 
into zones. If season-to-date water sufficiency relative to the rest of the field 
can be represented by a proxy variable, practitioners could establish N suf-
ficient references and nonfertilized checks across a wide range in the proxy 
variable. Then, the N sufficient and nonfertilized VI values for each area of 
interest could be estimated based on the value of the proxy variable in that 
area of interest. A method that uses this particular approach to calculate nor-
malized SI is hereafter referred to as a two-dimensional method because it 
involves both an optical canopy sensor VI and a proxy variable indicating 
season-to-date water sufficiency relative to the rest of the field. 

Three practical methods for handling water effects were compared in 
terms of how closely the resultant normalized SI values matched those 
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calculated from DATT with perfect knowledge of irrigation level (i.e., SIi*). The 
first method was not a two-dimensional method. It used DATT and merely 
averaged water effects by pooling all excessively fertilized plots (regardless 
of irrigation level) as the N sufficient reference and all nonfertilized plots (re-
gardless of irrigation level) as the nonfertilized check. The second method 
was a newly proposed two-dimensional method (Figs. 1 & 5), which used 
DATT as the VI and normalized canopy temperature (Tc*) as the proxy vari-
able (Eqs. (10)–(11)). The third method is the two-dimensional method of 
canopy chlorophyll content index (Barnes et al., 2000), which used NDRE as 
the VI and NDVI as the proxy variable (Eq. (12)). 

The first method was inherently unable to remove water effects, but the 
method did center at zero the differences between its normalized SI values 
(SIavg*). Thus, the mean difference of SIavg* from SIi* was quite consistently 
the smallest among the three methods. The root mean square difference 
(RMSD) of SIavg* from SIi*, however, were large on exactly the same dates 
when the water sufficient assumption caused large mean biases in SI* based 
on DATT (Fig. 4; Table 2). The second method was generally most capable 

Fig. 5. The Datt (1999) vegetation index (DATT) on 31 July plotted against normal-
ized canopy temperature (Tc*) in the hot, sunny, dry, and windy midafternoon of 24 
July for CC 2017—serving as a realistic counterpart to Fig. 1 for depicting the new 
method of calculating normalized sufficiency index while accounting for water ef-
fects; the nitrogen sufficient reference was represented by large solid diamonds and 
the solid line, the nonfertilized check was represented by large hollow diamonds 
and the dashed line, and all other plots were represented by small grey diamonds.   
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of removing water effects. The RMSD of its normalized SI values (SIt*) from 
SIi* was smaller than that of SIavg* on five out of six dates in CC 2017, four out 
of six dates in CS 2017, and two out of three dates in CC 2018 (table 2). The 
second method performed reasonably even when the relationship between 
DATT and Tc was weak among N sufficient and/or nonfertilized plots. In these 
cases, the second method essentially averaged the DATT value among N 
sufficient and/or nonfertilized plots just as the first method would. The sec-
ond method, however, performed poorly on 24 July in CS 2017 (Table 2). 
On this date, a substantial proportion of N sufficient plots and nonfertilized 
plots were indistinguishable from each other in terms of both DATT and Tc*. 
The two resultant DATT vs Tc* regression lines representing the N sufficient 
reference and the nonfertilized check, respectively, intersected at a Tc* value 
between 0 and 1, causing some plots to be compared against small and in-
verted SI ranges and thus to be assigned extremely erroneous SIt* values. 
The same problem was identified earlier in the research as a frequent cause 
of large mean biases in SI* with the water sufficient assumption (Fig. 4). Fu-
ture research on and application of the second method should include pro-
cedures and mechanisms to check for and deal with problematic scenarios. 
As for the third method, the RMSD of its normalized sufficiency index (CCCI) 
from SIi* was smaller than that of SIavg* on zero dates in CC 2017, five dates 
in CS 2017, and two dates in CC 2018. 

Admittedly, the overall improvement achieved by the second method 
was small in this research. Nonetheless, this initial proof-of-concept demon-
strated that water effects on optical canopy sensing are not an insurmount-
able problem and could be intentionally reduced using practical, science-
based methods. Colleagues are invited to advance the second method and 
to test it under diverse circumstances. Given the non-monotonic response 
of VIs to increasing water sufficiency in the nonfertilized check under some 
circumstances (Fig. 3), nonlinear regression relationships between DATT and 

Table 2. Root mean square difference between normalized sufficiency index values calculated us-
ing three methods of handling water effects in optical canopy sensing, as compared with normal-
ized sufficiency index values calculated from DATT with perfect knowledge of irrigation level. 

CC 2017     CS 2017     CC 2018 

Date  SIavg*  SIt*  CCCI  Date  SIavg*  SIt*  CCCI  Date  SIavg*  SIt*  CCCI 

19 Jul  0.13  0.13  0.41  17 Jul  0.29  0.28  0.23  11 Jul  0.06  0.06  0.08 
24 Jul  0.25  0.24  0.47  24 Jul  0.76  8.37  0.59  2 Aug  0.08  0.07  0.08 
31 Jul  0.40  0.28  0.41  31 Jul  0.75  0.50  0.64  11 Aug  0.14  0.12  0.13 
11 Aug  0.21  0.17  0.21  11 Aug  0.47  0.33  0.38 
18 Aug  0.16  0.15  0.19  18 Aug  0.47  0.31  0.42 
23 Aug  0.11  0.11  0.15  23 Aug  0.23  0.32  0.27 
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Tc* for the nonfertilized check could be explored. Also, future studies could 
experiment with the use of proxy variables other than Tc*. 

Interestingly, a negative association between canopy temperature and N 
fertilizer rates appeared to be larger and stronger at higher irrigation levels 
in CC 2018. This trend was also observed by Tiling et al. (2007) and Mon et 
al. (2016), and it was unlikely to be coincidental that CC 2018 was the study-
year with the largest N response. Canopy temperature can be elevated by 
N stress via reductions in canopy size and in stomatal conductance (Radin 
and Ackerson, 1981; Zhao et al., 2005; Ding et al., 2005). While investigating 
this phenomenon would be outside the scope of the present research, the 
observation suggests that water-N interactions and confounding are top-
ics pertinent not only for N management but also irrigation management. 
Just as water effects can cause misinterpretation of N sufficiency from op-
tical canopy sensing, N effects can cause misinterpretation of water suffi-
ciency from canopy temperature sensing. Additionally, while the use of the 
soil adjusted vegetation index (Huete, 1988) to estimate ET crop coefficients 
is a well-established practice (Bausch, 1993; Choudhury et al., 1994; Cam-
pos et al., 2017; Barker et al., 2018), N stress might alter the relationship be-
tween these two variables. As highlighted by Rudnick and Irmak (2014), fu-
ture studies could develop methods of accounting for N effects on crop 
ET—perhaps involving optical canopy sensing. 

4. Conclusion 

This research highlighted the complexity of water effects on optical canopy 
sensing for late-season N management of corn. Water effects were found 
not to be always negligible on the Datt (1999) index and not to be always 
monotonic with water sufficiency. Water effects were also found to be in-
fluenced by genetics and/or previous crop and by interannual and intrasea-
sonal weather differences. Unless in-season precipitation is negligible, water 
excess and water stress are likely to be temporary states which crops enter 
and exit for parts of the growing season, and the timing and severity of each 
round of water excess and water stress are likely to differ. Therefore, gen-
otype, environment, and management jointly determine the canopy dam-
age during water excess/ stress and the canopy recovery after water excess/
stress, ultimately affecting the magnitude and direction of water effects on 
optical canopy sensor data. 

In light of this complexity, considerations of water-N interactions and 
confounding should be increasingly incorporated into precision agriculture. 
This research may be the first to develop an explicit method of accounting 
for water effects in optical canopy sensing for late-season N management 
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of corn. This new method has the potential to benefit four audiences: (1) 
rainfed growers who have minimal ability to alter water sufficiency, (2) irri-
gated growers who achieve low irrigation uniformity, (3) irrigated growers 
who do not use variable rate irrigation to compensate for natural hetero-
geneity in water sufficiency, and (4) irrigated growers who intentionally in-
duce water stress on parts of the field because the irrigation water supply is 
inadequate for fully irrigating the entire field. More integrated thinking and 
more purposeful research will continue to be necessary for tackling all the 
challenges that water-N interactions and confounding can introduce to the 
management of both irrigation and N fertilizer. 
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