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Accounting for Stream–Aquifer Interactions
in the State-Space Discretization of the

Kalinin–Milyukov–Nash Cascade for Streamflow Forecasting
Jozsef Szilagyi1

Abstract: A sample-data system discretization of the continuous Kalinin–Milyukov–Nash cascade is performed in a state-space analysis
framework allowing for stream–aquifer interactions that include bank storage during flood events and groundwater discharge to the stream
under low-flow conditions. These interactions generally result in faster attenuation of propagating flood waves and in elevated streamflow
levels during drought conditions. An example is given that demonstrates how accounting for these processes ensures more reliable
streamflow forecasts. The model is based on a simplified physical description of the processes both in the stream and across the
stream–aquifer boundary.

DOI: 10.1061/~ASCE!1084-0699~2004!9:2~135!

CE Database subject headings: Base flow; Flood routing; Streamflow forecasting; Wave attenuation.

Introduction

The floods of 2002 wreaked havoc all over Central Europe, caus-
ing mass evacuations, numerous deaths and extensive damage
with costs in the billions of euros~Pearce 2002!. The floods were
triggered by precipitation of unusually high intensity and/or of
duration. For example, the Czech Republic experienced four
times its normal precipitation for August in just 36 h~Pearce
2002!. Although not yet proven, the floods may have been exac-
erbated by global warming, resulting in elevated levels of melt-
water from Alpine glaciers~Pearce 2002!. If one considers that
10% of Europe’s population lives or works on flood plains~in
Hungary, 25% of a population of 10 million! and that the Danube,
the continent’s second largest river after the Volga, had two 100-
year floods in the past 11 years~Pearce 2002!, then one realizes
the importance and value of accurate and reliable flood forecasts
in the region.

The National Hydrological Forecasting Service~NHFS! in
Hungary prepares streamflow forecasts for the Danube and its
tributaries every day with 1–3 days of leadtime. The reliability of
these estimates undoubtedly played a role in ensuring that Hun-
gary did not suffer bigger losses in property during the Danube’s
record-breaking flood of the summer of 2002. By knowing in
advance when, where, and at what level the river would crest,
flood protection works could be planned and organized. The
NHFS uses a state-space formulated discretized version of the
continuous Kalinin–Milyukov–Nash~KMN ! cascade for stream-
flow routing. However, the model, called the discrete linear cas-

cade model~DLCM!, does not explicitly account for stream–
aquifer interactions, and that lack catalyzed the present work: to
formulate a version of the state-space framework that would make
it possible to include such interactions in future versions of the
model.

Sample-Data System Description of Discrete Linear
Cascade Model for Streamflow Forecasting

The DLCM is a discretized version of a cascade of linear reser-
voirs with inputs and outputs continuous in time. Nash~1957!,
and independently of him, Kalinin and Milyukov~1957!, used
such a cascade for rainfall runoff and flow routing problems, re-
spectively. The linear cascade model is often called the Nash
cascade, but perhaps it is more correct to call it the KMN cascade
~Szöllősi-Nagy 1989! in a tribute to the other two hydrologists
who first applied it to flow routing as is explored here. Cunge
~1969! pointed out the tight relationship of the KMN cascade to
the linear kinematic wave equation, the latter being a first-order
approximation of the Saint–Venant equations that describe the
flow in open channels. The linear kinematic wave equation can be
written as

]Q~x,t !

]t
1C

]Q~x,t !

]x
50 (1)

where Q5flowrate @L3 T21#; C5kinematic wave celerity
@L T21#; andx and t5spatial and temporal coordinates, respec-
tively. Using a backward-difference scheme in the spatial deriva-
tives, Eq.~1! can be written as

]Q~xj ,t !

]t
52C

Q~xj ,t !2Q~xj 21 ,t !

Dx

5
C

Dx
Q~xj 21 ,t !2

C

Dx
Q~xj ,t ! (2)

with xj5 j Dx; and j 51,2,. . . ,n. Eq. ~2! may represent a given
stream reach with no lateral inflow, divided inton sections.
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For the state-space formulation of Eq.~2!, one can define
the state variable asQ(t)5@Q(x1,t),Q(x2,t), . . . ,Q(xn,t)#8
5@Q1(t),Q2(t), . . . ,Qn(t)#8 where the prime denotes the trans-
pose of the vector. By denoting the inflow to the reach asu(t)
5Q(x0 ,t) one can write Eq.~2! as

3
dQ1~ t !

dt

dQ2~ t !

dt

]

dQn~ t !

dt

4 53
2

C

Dx
0 ¯ 0

C

Dx
2

C

Dx
� ]

� � 0

0
C

Dx
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Dx

4 F Q1~ t !
Q2~ t !
]

Qn~ t !
G

1F C

Dx

0

]

0

G u~ t ! (3)

which in a more succinct form becomes

Q̇~ t !5F= Q~ t !1Gu~ t ! (4a)

where the dot denotes the temporal change in the state-variableQ.
Eq. (4a) is the state equation of a linear, continuous dynamic
system with time-invariant coefficient matrices. HereF= is the
system matrix andG the distribution vector~Szöllősi-Nagy
1989!. The output equation of the system can be written as

Qout~ t !5HQ~ t ! (4b)

with H in our example defined asH5@0,0,. . . ,1#, a 13n vector,
so that Eq. (4b) provides a scalar output:Qout(t)5Q(xn ,t).

For a linear reservoir, the outflow is linearly related to the
stored water,Q(t)5kS(t), wherek21 ~T! is the storage coeffi-
cient. Assuming that each subreach behaves as a linear reservoir
with C/Dx5k, Eq. ~3! transforms into

3
dS1~ t !

dt

dS2~ t !

dt

]

dSn~ t !

dt

4 5F 2k 0 ¯ 0

k 2k � ]
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S2~ t !
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Sn~ t !
G1F 1

0
]

0
G u~ t !

(5)

with H5@0,0,. . . ,k# in Qout(t)5HS(t). Eq.~5! is the state-space
representation of the continuous KMN cascade~Szöllősi-Nagy
1989!.

Due to the fact that streamflow measurements become discrete
values on the digital computer, a discretization of Eq.~5! must be
performed to have a streamflow model compatible with the dis-
crete nature of its inputs. Szo¨llősi-Nagy ~1982! performed the
discretization of Eq.~5! using a pulse-data system, while Szilagyi
~2003! did the same for a sample-data system and showed that
this latter approach is a generalization of the former, meaning that
if the discretization is done with the sample-data system then,
without changing the model structure, one can simply use it with
pulsed data as well, typically with precipitation data, most often
available in a pulsed format. A sample-data system assumes that
the input variable changes linearly between successive discrete

data values, while the pulse-data system assumes a constant value
~e.g., Chow et al. 1988!. Szilagyi ~2003! demonstrates the steps
involved with the derivation of discretizing Eq.~5! in a sample-
data system. Here we show only the result of the discretization
through which Eq.~5! transforms into

S~ t1Dt !5F= ~Dt !S~ t !1G1~Dt !u~ t1Dt !2G2~Dt !u~ t ! (6)

whereF= 5state-transition matrix; andG1 andG25input-transition
vectors. Then3n matrix of F= is made up of the following terms:

F= ~Dt !5F e2kDt 0 ¯ 0
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� ]

] ] � 0
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G
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while G1 andG2 are
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and
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respectively. The function, denoted byG within G1 andG2 , is the
incomplete~with two arguments, i.e.,G(a,j)5*0

je2tta21dt), or
complete~with one argument, i.e.,G(a)5*0

`e2tta21dt), gamma
function, respectively. All system matrices are time invariant and
only depend on the magnitude of the sampling intervalDt. Note
that time now increases with an increment ofDt. Using a recur-
sion in Eq.~6!, the output att5mDt becomes

Qout~mDt !5HS~mDt !5HF= m~Dt !S~0!1 (
i 50

m21

HF= m212 i~Dt !

3@G1~Dt !u@~ i 11!Dt#2G2~Dt !u~ iDt !# (10)

Eq. ~10! also shows how storage~S! changes in time with
discrete time increments~once the initial condition is defined at
t50) in response to discrete inputs and assuming a linear change
in the input variable between its discrete values. HereF= m(Dt)
5F= (mDt) ~Szöllősi-Nagy 1982!.

The advantage of using a state-space approach over a numeri-
cal solution of Eq.~1! is at least fourfold:~1! the numerical solu-
tion of Eq. ~1! with a givenDt will depend on four parameters:
the temporal and spatial increments used during the integration
that will influence the magnitude of the numerical diffusion
~Cunge 1969!; the error limit of convergence; and the celerity
parameter (C), which needs to be optimized for a given input–
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output discrete time series. In the state-space approach, the solu-
tion @Eq. ~10!# requires only algebraic manipulations which do
not involve any convergence of trial values, and it depends on
only two parameters,n andk, to be optimized for a given input–
output sequence;~2! in the state-space approach, once a solution
is obtained for a givenDt, any new solution with a differentDt
can be obtained from the first result by a linear transformation
without the need of redoing the original calculations~Szöllősi-
Nagy 1982!, unlike in the case of numerical solutions;~3! when
minimizing model error, an important task in operational forecast-
ing, one can use an optimal filter~Kalman 1960; Kalman and
Bucy 1961! in a straightforward manner provided the model is in
a state-space form;~4! the inverse problem in forecasting, the
so-called input detection~i.e., finding the input sequence to a
given output sequence!, which often is needed to fill gaps of
missing data in streamflow series, is again a simple algebraic
manipulation with the state-space framework~Szöllősi-Nagy
1982!.

Formulation of Simplified Stream–Aquifer
Interactions

As the floodwave travels in the stream, part of its volume is being
stored in the streambank due to a reversed hydraulic gradient
between groundwater and streamwater. This causes a flattening of
the propagating floodwave in addition to diffusional effects. The
stored water in the banks may later be released, together with
baseflow, into the stream, when the hydraulic gradient changes
back to its normal position for groundwater-fed streams. In catch-
ments where infiltration rates are high, such as the Sandhills re-
gion of Nebraska, a significant portion of the streamflow@as high
as 90%~Szilagyi et al. 2003!# may be maintained year round by
such groundwater discharge~i.e., baseflow! to the stream. How-
ever, not all the water stored in the streambank may find its way
back to the stream, because varying parts of it may be taken up by
vegetation and released to the air via transpiration.

Accounting for this dynamic interaction between stream and
aquifer, though it be simplistic, will improve streamflow fore-
casts. Here the objective is to find a description that fits into the
existing structure of the state-space model when allowing for
stream–aquifer interactions, and to do it with a minimal number
of additional parameters. Parameter parsimony is an important
requirement of operative forecasting models, especially when the
parameters must be optimized and from time to time need updat-
ing for a large number of gaging stations. For example, the state-
space forecasting model of the Danube and its tributaries in Hun-
gary contains 50 plus gaging stations. If only four parameters
need to be optimized and updated for each station in the model, it
immediately means 200 plus parameters. The problem is further
complicated by the common practice that only stream levels are
monitored, while groundwater elevations adjacent to gaging sta-
tions are not, nor is information typically available on the geom-
etry and hydraulic properties of the aquifer. This complicates the
validation of any model that describes stream–aquifer interac-
tions. The only venue to pursue, and also the most important one
for the purpose of streamflow forecasting, is to check if the em-
ployed model, however simplistic, improves forecasts or not.
These conditions must be kept in mind when judging the below
derived description of stream–aquifer interactions to be included
in the state-space model of constant coefficient matrices.

Contribution of stream-aquifer interactions to flood routing is
well established~e.g. Pinder and Sauer 1971; Zitta and Wiggert

1971; Moench et al. 1974; Hunt 1990; Hantush et al. 2001,
2002!. Here we follow the problem description of Hantush et al.
~2002! by writing out the linearized version of the Boussinesq
equation

]h~y,t !

]t
5D

]2h~y,t !

]y2 (11)

with initial and boundary conditions

h~y,0!50 (12)

q~ t !52T
]h~0,t !

]y
5PK8

H~ t !2h~0,t !

b
(13)

h~`,t !50 (14)

whereh(y,t) @L# denotes the groundwater-table elevation relative
to its initial equilibrium position when the groundwater table is
assumed to be horizontal and at the same elevation with the
streamstage. D @L2 T21#5aquifer diffusivity; D5TSy

21

5Kh0Sy
21 , where T @L2 T21#5 its average transmissivity,K

@L T21# is saturated hydraulic conductivity;h0 @L#5average
saturated thickness; andSy ~-! is the specific yield of the uncon-
fined aquifer.H(t) @L#5streamstage relative to its initial equilib-
rium position;P @L#5one half of the average wetted perimeter of
the stream;K8 @L T21#5mean saturated hydraulic conductivity
of the streambed with an average thickness ofb @L#; and q(t)
@L2 T21#5resulting flowrate between the stream and the aquifer
over a unit length. See Fig. 1 for a schematic of the situation.

The following assumptions were made in formulating the
problem ~Hantush et al. 2002!: ~1! the aquifer is homogeneous
with a horizontal bed;~2! groundwater-table fluctuations are small
compared to the average saturated thickness (h0) of the aquifer;
~3! storage in aquifer sediments below the stream is negligible;
~4! water-level fluctuations along the stream reach are small com-
pared to the average stageH(t).

Eqs.~11!–~14! can be coupled to streamflow through the fol-
lowing continuity equation for each subreach of the stream:

dSj~ t !

dt
5Q~xj 21 ,t !2Q~xj ,t !22qL~ t ! (15)

where it was considered that the stream has two banks and that
qL(t) @L3 T21#, which is q(t) integrated over the length of the
subreach, changes signs between Eqs.~13! and ~15!, because a
loss of water to the aquifer is a gain to the stream.

As can be seen from Eqs.~11! and~13!, qL(t) depends on the
combination of two parameters:D and g(5PK8b21). The ob-
jective here is not an accurate description of the elevation of the
groundwater table through time@h(y,t)#, but simply the estima-
tion of qL(t) in terms of stream storage~if possible!, so that the
state equation@Eq. ~5!# could be augmented by this term. As a
consequence, a combination of theD and g parameter values is
sought that is suitable for the estimation ofqL(t), without much

Fig. 1. Schematics of stream–aquifer system
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concern for how accurate the correspondingh(y,t) values are. In
fact, we will postulate that the diffusivity of the aquifer is con-
sidered large enough for our purposes that any water that crosses
the streambed from the stream is distributed so quickly in the
semi-infinite aquifer that the change inh(0,t) can be considered
negligible and so it becomes a constantch .

To illustrate that such a deliberate combination of theD andg
parameter values is meaningful, Eqs.~11!–~15! were numerically
solved in a coupled stream–aquifer finite-elements model with
inflow I (t) to the stream reach~having a rectangular cross section
of unit length and width, coupled to a 10 m wide aquifer! defined
as ~Hantush et al. 2002!

I ~ t !5NImaxe
2dt@12cos~vt !# 0<t<DT (16a)

I ~ t !50 t.DT (16b)

where I max52 m3 h215peak inflow rate;DT55 h5duration of
the floodwave; v52p/DT, N5edtc@12cos(vtc)#

21 with tc

51.25 h, the time when peak inflow occurs; andd
5v cot(vtc / 2). The stream reach was considered to act as a lin-
ear reservoir withk2155 h.

Fig. 2 displays the two solutions: one with the original, full
boundary condition@Eq. ~13!# and the other, with the simplified
boundary condition

q~ t !5g@H~ t !2hc# (17)

wherehc50 was chosen for clarity. In the first case scenario, the
parameter values were prescribed asg51 m h21 and D
50.5 m2 h21, while in the second case,D (5100 m2 h21) was
chosen large enough that theh(0,t)'hc constant assumption
could be met. The value of theg parameter was systematically
changed in the model to obtain an outflow from the reach close to
the original one, and it became 0.4 m h21. Note that the flux
across the stream–aquifer interface is regulated only by this

single parameter in the simplified boundary condition case. In this
latter case now, all the water is lost to the aquifer because stream-
flow does not sink below the starting zero value, while in the
complete boundary-condition case, water from the aquifer is
flowing back to the stream after some time, as expected. What
Fig. 2 was meant to illustrate for our streamflow forecasting pur-
poses, using an existing structure of a state-space approach, is that
by properly choosing the value of theg parameter, the simplified
boundary condition@Eq. ~17!# in itself can result in a stream-reach
outflow that approximates an outflow obtainable with the original
and correct boundary condition in combination with the linearized
Boussinesq equation.

Eq. ~17! can be written as

q~ t !5g@H~ t !2hc#5cg@s~ t !2s0# (18)

wherecg @T21#5constant;s(t) @L2#5water stored in the stream
per unit length, considered proportional to streamstage; ands0

5constant reference value of storage. Inserting Eq.~18! into Eq.
~15! results in

dSj~ t !

dt
5Q~xj 21 ,t !2~k1g!Sj1C0 (19)

whereg @T21# and C0 @L3 T21# are constant terms, namely,g
52cg andC05gS0 . With Eq. ~19! the state equation of the con-
tinuous KMN cascade can be obtained which now includes sim-
plified stream–aquifer interactions.

State-Space Discretization of Kalinin–Milyukov–
Nash Cascade with Stream–Aquifer Interactions

Applying Eq.~19! over a series of stream reaches, one obtains an
extended form of the KMN cascade

Fig. 2. Numerical solution of Eqs.~11!–~15! with complete and simplified boundary conditions:~a! in- and outflow from the reach;~b! flux
across stream–aquifer interface;~c! accumulated flux across stream–aquifer interface;~d! water levels in stream and in aquifer,h(0,t), adjacent
to stream. With complete boundary conditiong51 m h21, D50.5 m2 h21, andg50.4 m h21, D5100 m2 h21 with simplified boundary condition
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3
dS1~ t !

dt

dS2~ t !

dt

]

dSn~ t !

dt

4 5F 2~k1g! 0 ¯ 0
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� � 0

0 k 2~k1g!

GF S1~ t !
S2~ t !
]

Sn~ t !
G

1F u~ t !1C0

C0

]

C0

G (20)

that now accounts for flow from the stream to the aquifer when-

evergSj.C0 and the opposite direction otherwise. In both cases
the flux across the stream–aquifer boundary is directly propor-
tional to the magnitude of this difference. Note that Eq.~20! now
has a source term,C0 , which ensures that during a drought pe-
riod, the stream collects groundwater; thus, a downstream section
of the stream can have larger accumulated flow volumes over the
drought period than the upper section, reflecting what generally
happens in a groundwater-fed stream. Also, whenevergSj.C0 ,
the stream has a sink expected to result in decreased peakflow
values. The model has four parameters:k, n, g, andC0 . If the
values ofg andC0 are chosen correctly, then over a suitably long
period the stream must always gain water from the aquifer due to
recharge to the groundwater.

During discretization the new state-transition matrix becomes

F= ~Dt !5F e2(k1g)Dt 0 ¯ 0

kDte2(k1g)Dt e2(k1g)Dt
� ]

] ] � 0

~kDt !n21

~n21!!
e2(k1g)Dt
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~n22!!
e2(k1g)Dt

¯ e2(k1g)Dt
G (21)

while theG1 andG2 vectors transform into
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and
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so that the new state equation is

S~ t1Dt !5F= ~Dt !S~ t !1G1~Dt !u~ t1Dt !2G2~Dt !u~ t !1V
(24)

where thei th component of the newn31 vector term,V, is

V i5C0(
j 51

i
ki 2 j

~k1g! i 2 j 11

G~ i 2 j 11,~k1g!Dt !

G~ i 2 j 11!
(25)

See the Appendix for the steps involved with the derivation of
the new state equation. By recursion in Eq.~24!, the output of the
extended discrete cascade att5mDt can be calculated as

Qout~mDt !5HS~mDt !5HF= m~Dt !S~0!1 (
i 50

m21

HF= m212 i~Dt !

3@G1~Dt !u@~ i 11!Dt#2G2~Dt !u~ iDt !1V# (26)

where theH vector is the same as previously. Note that ifg50,
the original cascade is recaptured.

Model Demonstration and Conclusions

The effect of including simplified stream–aquifer interactions in
the state-space formulation of the DLCM of the NHFS of Hun-
gary is demonstrated in Figs. 3 and 4.

In Fig. 3 the daily instantaneous streamflow values of the
Danube, measured at 6 a.m. each day at Baja, about 200 km
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Fig. 3. Concurrent values of measured streamflow of Danube at 6 a.m. at Budapest and at Baja for April 13, 1991–May 17, 1992.1–2–3-day
forecasts of original model for Baja assumed perfect forecasts of similar lead times for Budapest. See Table 1 for model parameters and forecast
statistics

Fig. 4. Concurrent values of measured streamflow of Danube at 6 a.m. at Budapest and at Baja for April 13, 1991–May 17, 1992. The
1–2–3-day forecasts of extended model for Baja assumed perfect forecasts of similar lead times for Budapest. See Table 1 for model parameters
and forecast statistics
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downstream of Budapest~with negligible tributary inflow to the
reach!, is forecasted by the original model using values at Buda-
pest measured concurrently. For the 1 day forecast at Baja, mea-
sured values at Budapest on the previous and the forecasted day
are used, and similarly, for the 2 day forecast, measured values at
Budapest on the forecasted day plus the previous two days are
used, and so on for the 3 day forecast. This simulates a ‘‘perfect
forecast’’ scenario for Budapest which, however, is never the
case, but by doing so, any systematic errors in the forecasts for
the upstream station can be prevented from propagating to the
downstream one. This practice of using forecasts for an upstream
station to predict values at a downstream location is standard
routine at hydrological services where the objective is to utilize
every available bit of information that may improve forecasts for
a given location. Depending on the accuracy of the forecasts for
an upstream location, forecasting errors for a downstream loca-
tion generally do improve. The two parameters of the discrete
cascade,k and n, were optimized by trial and error when mini-
mizing a mean root-square error~MRSE! term between forecasts
and observations combined for all three leadtimes. This means
that an MRSE term was calculated for each lead time over the
period of observations and then their sum calculated. An optimal
value ofk andn were decided when this sum reached a minimum
from systematically chosen trial values ofk andn. An extra ad-
vantage of analytical solutions, in addition to that already men-
tioned, is that they can be recalculated very fast with different
parameters, which is of importance in operative forecasting, es-
pecially when a large number of gaging stations are involved.

The same was performed with the extended cascade’s four
parameters. See Fig. 4 for improved model performance and
Table I for the optimized values of the parameters and error sta-
tistics. As evident in Fig. 3, the original model undershoots the
streamflow during low-flow periods, since there is no source term
involved that would account for baseflow that becomes dominant
during drought periods. The extended model, however, in Fig. 4
can account for this extra source of water supplied to the stream
by the aquifer through its source termC0 . Similarly, the original
model overshoots the largest, 15 year flood of Fig. 3, while the
extended model~Fig. 4! accounts for bank storage during flood
events and so provides a more accurate peakflow forecast. Note
that the models were run without being updated each day through
the error term.

The initial value ofS(0) was calculated for each model using
the inversion described by Szo¨llősi-Nagy ~1987!. By including

simplified stream–aquifer interactions in the streamflow forecast-
ing model, an improvement of 30% was achieved~Table 1! in the
MRSE term for the chosen period of observations. The forecast
improvement is also reflected in the Nash–Sutcliffe efficiency
criterion ~NSEC! value, which increased by about a percentage
point ~Table 1!, which is significant when the NSEC value is
already close to 100%.

In summary, a discrete state-space formulation of the continu-
ous KMN cascade was introduced, currently used by the NHFS in
Hungary for operational streamflow forecasting for the Danube
and its tributaries. The discretization uses a sample-data system
framework. The model was extended to account for simplified
stream–aquifer interactions and the corresponding state equation
was derived. Model performance was demonstrated on a 200 km
reach of the Danube in Hungary with negligible tributary inflow.
The extended model resulted in improved error statistics.

In operational use, the parameters of a forecasting model may
be updated from time to time or even daily~Young 2002! to
reflect short-term, seasonal, or longer-term changes in the water-
shed. Such investigations are outside the scope of the present
study. For example, if theC0 parameter turns out to display sea-
sonal changes and if those changes are deemed significant enough
to affect forecast accuracy in operational use, its value can also be
updated, together with other parameter values, with the required
frequency. Here the emphasis was on modifying an existing state-
space structure of a hydrological model that is currently in opera-
tional use to allow for the inclusion of some simplified form of
stream–aquifer interactions in the hope that doing so will even-
tually result in improved operational forecasts.
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Appendix

Derivation of the state-transition matrixF= in Eq. ~6! can be found
in Szöllősi-Nagy~1982!. The same steps were required for deriv-
ing F= of the extended model in Eq.~24!. For the derivation of the
input-transition vectors,G1 , G2, and V, one can start from the
following equation~Szöllősi-Nagy 1982! representing a stream
reach

S~ t1Dt !5F= ~Dt !S~ t !1E
t

t1Dt

F= ~ t1Dt2t!G= I ~t!dt

5F= ~Dt !S~ t !1E
t

t1Dt

F= ~ t1Dt2t!

3G= @u~t!1C0 ,C0 , . . . ,C0#8dt (27)

where the prime denotes the transpose,G= 5n3n input-
distribution matrix, which now becomes an identity matrix due to
a vector inputI (t), and where it will now be assumed that the
upstream flow valueu(t) changes linearly between measured val-
ues att andt1Dt. Note that Szo¨llősi-Nagy~1982! gave the deri-
vation for a scalar-valued inputu(t), which is constant in the
interval @ t,t1Dt) that is closed from the left and open from the
right.

For sake of clarity, the steps will be demonstrated on thei th
element of the vectors involved. Thei th element of Eq.~27!,
provided the system is relaxed at timet @i.e., S(t)50], can be
written as

Table 1. Optimized Parameter Values and Model Performance
Statistics

Parameter Original model Extended model

nopt 2 2

kopt (day21) 0.9 0.9

gopt (day21) — 0.024

C0 (m3 s21) — 100.8

MRSE (m3 s21) 224.45 151.29

NSEC

~%!5100F 12
(~Q̂i2Qi !

2

(~Qi2Q̄!2
G

98.36 99.26

Note: Mean root-square error~MRSE!, and Nash–Sutcliffe efficiency cri-

terion ~NSEC! for original and extended discrete cascades. HereQ̄
52,255 m3 s21 is mean streamflow~sample size5400) at Baja. Hat de-
notes forecasted streamflow values.

JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / MARCH/APRIL 2004 / 141



Si~ t1Dt !5E
t

t1DtFF i ,1~ t1Dt2t!u~t!

1C0(
j 51

i

F i , j~ t1Dt2t!Gdt (28)

where the lower-triangular property ofF= was utilized.
The first term on the right-hand side~r.h.s! of Eq. ~28! can be

written as

E
t

t1Dt

F i ,1~ t1Dt2t!u~t!dt

5E
t

t1Dt

F i ,1~ t1Dt2t!Fu~ t !1
u~ t1Dt !2u~ t !

Dt
~t2t !Gdt

5E
t

t1DtFF i ,1~ t1Dt2t!u~ t !1F i ,1~ t1Dt2t!

3
u~ t1Dt !2u~ t !

Dt
t2F i ,1~ t1Dt2t!

3
u~ t1Dt !2u~ t !

Dt
t Gdt (29)

where the sample-data system framework was used to obtain the
u(t) values between two discrete measurements. Performing a
change of variables,t* 5t1Dt2t, the first term on the r.h.s. of
the integral transforms into

u~ t !
ki 21

~ i 21!! E0

Dt t*
( i 21)

ec* t* dt*

5u~ t !
ki 21

~k1g! i

1

~ i 21!!
G~ i ,~k1g!Dt !

5u~ t !
ki 21

~k1g! i

G~ i ,~k1g!Dt !

G~ i !
(30)

whereF i ,1 from Eq. ~21!, andc* 5(k1g) were used. Similarly,
the third term of Eq.~29! will yield

ki 21

~k1g! i

t@u~ t !2u~ t1Dt !#

Dt

G~ i ,~k1g!Dt !

G~ i !
(31)

whereas the second term becomes

ki 21

~ i 21!!

u~ t1Dt !2u~ t !

Dt E
0

Dt t*
( i 21)

ec* t* ~ t1Dt2t* !dt*

5
ki 21

~ i 21!!

u~ t1Dt !2u~ t !

Dt F t1Dt

~k1g! i G~ i ,~k1g!Dt !2E
0

Dt t*
i

ec* t* dt* G
5

ki 21

~ i 21!!

u~ t1Dt !2u~ t !

Dt

1

~k1g! i F ~ t1Dt !G~ i ,~k1g!Dt !2
1

k1g
G~ i 11,~k1g!Dt !G

5
ki 21

~k1g! i

u~ t1Dt !2u~ t !

Dt

1

G~ i ! F ~ t1Dt !G~ i ,~k1g!Dt !2
iG~ i ,~k1g!Dt !

k1g
1@~k1g!Dt# ie2(k1g)DtG (32)

where the algebraic identitiesG( i 11,x)5 iG( i ,x)2xie2x and
G( i )c2 i5*0

`xi 21e2cxdx were used~Abramowitz and Stegun
1965!.

After combining all three terms, one obtains

E
t

t1Dt

F i ,1~ t1Dt2t!u~t!dt

5
ki 21

~k1g! i

G~ i ,~k1g!Dt !

G~ i !

3@@11L i~Dt !#u~ t1Dt !2L i~Dt !u~ t !# (33)

with L i being

L i~Dt !5
@~k1g!Dt# i 21e2(k1g)Dt

G~ i ,~k1g!Dt !
2

i

~k1g!Dt
(34)

When j 51 in the second term of the r.h.s. of Eq.~28! one
obtains Eq.~30! with C0 replacingu(t), the latter being just a

constant, sincet is set now. By keeping track of the value ofj in
Eq. ~28! behind the summation sign, one obtains Eq.~25!. The i th
line of G1 , G1

( i ) is simply defined as

G1
( i )~Dt !5

ki 21

~k1g! i

G~ i ,~k1g!Dt !

G~ i !
@11L i~Dt !# (35)

and similarly,G2
( i ) as

G2
( i )~Dt !5

ki 21

~k1g! i

G~ i ,~k1g!Dt !

G~ i !
L i~Dt ! (36)
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namikus struktura´lis-sztochasztikus modellekkel~real-time stream-
flow forecasting using dynamically structured deterministic-stochastic
models!, Vizgazdálkodási Tudományos Kutato´ Központ, Budapest,
Hungary.

Young, P. C.~2002!. ‘‘Advances in real-time flood forecasting.’’Philos.
Trans. R. Soc. London, Ser. A,360, 1433–1450.

Zitta, V. L., and Wiggert, J. M.~1971!. ‘‘Flood routing in channels with
bank storage.’’Water Resour. Res.,7~5!, 1341–1345.

JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / MARCH/APRIL 2004 / 143


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2004

	Accounting for stream-aquifer interactions in the state-space discretization of the KMN-cascade for streamflow forecasting
	Jozsef Szilagyi

	tmp.1560272054.pdf.Xar5S

