
IGSHPA Technical/Research Conference and Expo 

Denver March 14-16, 2017 

 

 
Bernard Dusseault (bernard.dusseault@polymtl.ca) is a PhD student, Philippe Pasquier and Denis Marcotte are professors at Polytechnique 
Montréal. 

Assessment of the Gradient of an 
Objective Function by Analytical 

Derivation for Optimization-Based 
Design of Ground-Coupled Heat 

Pump Systems 

 

 
 

Bernard Dusseault Philippe Pasquier  Denis Marcotte   

ABSTRACT  

Optimization-based design of ground heat exchangers requires derivation of the objective function with respect to the design parameters, which is usually 

done through finite-differentiation of the cost or utility function. The approach is however prone to approximation errors and can result in convergence 

issues or long optimization time. By deriving analytically the ground heat exchanger transfer function, it is possible to obtain an exact representation of the 

objective function gradient and avoid numerical instabilities. To illustrate the advantages of using analytical expressions, a common design task is 

expressed as an optimization problem. It is shown that by using an analytical derivation of the gradient in conjunction with strong Wolfe conditions 

during a line search may reduce significantly computation time by comparison to a finite-differentiation of the gradient. 

INTRODUCTION 

Two approaches are commonly used to design a ground-coupled heat pump system. The first one relies on 

sizing equations, like the one suggested by ASHRAE (Kavanaugh and Rafferty, 2014; Philippe et al., 2010; Bernier et 

al., 2008), while the second approach consists of iteratively using a simulation method to optimize a cost or utility 

function. The optimization process can be achieved by trial and error, which can be cumbersome, or automated 

through nonlinear optimization algorithms (Retkowski and Thöming, 2014; Huang et al., 2015; Hénault et al., 2016). 

The latter however requires the computation of the derivative of the objective function with respect to the n  design 

parameters in order to find a suitable descent direction.  

The objective function gradient is usually computed by finite difference through 1n  simulations of the 

ground-coupled heat pump system. Although being easy to implement, computation of objective function gradient 

through finite differentiation often leads to inaccurate estimations of the descent direction, which may significantly 

increase solution time. The objective of this paper is to present two efficient computational approaches to derive the 

gradient of an objective function corresponding to a common design task encountered by designers.  



 

 

METHODOLOGY 

For a ground heat exchanger (GHE) composed of bn  boreholes of length H , the mean fluid temperature 

fT  circulating in the boreholes can be described by: 
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where gT  is the initial ground temperature, Q  is the total ground load exchanged by the GHE and bR  is the 

equivalent borehole resistance (Gehlin, 2002; Marcotte and Pasquier, 2008). The last term represents the temperature 

perturbation at the borehole wall and is obtained by convolving the incremental heat flux signal f given by: 
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with the response function g (Eskilson, 1987). Note that as indicated by Marcotte and Pasquier (2008) and Pasquier 

and Marcotte (2013), for 0i in Eq. 2, a zero value should be used for )( 1itQ . 

Construction of the Transfer Function g  

The GHE response function g  synthetizes the thermal behavior of the GHE and integrates the thermal 

properties of the underground, but also the coordinates and length of the boreholes composing the GHE. Although 

many methods can be used to construct g , the approach chosen in this article is based on the work of Marcotte and 

Pasquier (2014) because of its efficiency and flexibility. The approach, itself inspired by the works of Lamarche (2009), 

Cimmino et al. (2013) and Lazzarotto (2014), consists to find sequentially the heat transfer rates tq emanating from 

the boreholes of a GHE using a linear system of equations expressed, for simplicity, in a compact matrix notation. 

For a parallel arrangement of the boreholes, the system corresponding to the mean temperature at the borehole wall is 

given by: 
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where tq  is a 1bn  vector containing the heat load emitted by each borehole for the current time step, h  is a 1bn  

vector containing the historical temperature perturbations, 1  is a 1bn  vector of ones and G  is the following 

interaction matrix: 
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G                                                                                      (4) 

In this work, matrix G  is constructed using the finite line-source (FLS) model of Claesson and Javed (2011) 

with a heating load of 1  W/m at radial distances ijr  and at an evaluation time corresponding to the current time step 

value.  Thus, the ijG  are given for a borehole of length H , thermal diffusivity  and buried depth D  by 
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with                                         )2()22()2(2)(2, dierfdhierfdhierfhierfdhY                                                        (6) 

 



Before solving Eq. 3 for tq  and 
bT

~
 , the historical vector h  has to be built.  For time step m, the latter is 

obtained by solving the following convolution product at tmt  :  
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where the incremental heat load vector for borehole j is given by: 
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and where the transfer function g~ is the borehole response for the first m time steps obtained under a unit load for 

each ijr  radial distance. Since h  has to be calculated at each time step, Eq. 7 must be solved for 
bT

~
 sequentially as 

well by using all the previous values of tq and G . Finally, the transfer function corresponding to the mean 

temperature at the borehole wall used in Eq. 1 is obtained simply by: 
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A Simple Objective Function 

A common task performed by GHE designers consists to identify the total underground loop length keeping 

the fluid temperature within the heat pump operation range and to keep the GHE cost as low as possible. If the 

building is a heating dominant one, the total loop length ( Hnb ) chosen by the designer should be sufficient to 

maintain the fluid temperature just above the heating temperature limit ( minT ) of the heat pump, while minimizing, 

for a fixed bn  value, the borehole length. From an optimization perspective, such situation is easily described by an 

objective function describing the gap between the minimum fluid temperature given by Eq. 1 and minT  through: 

  2min)(min TtTF f                                                                                  (10) 

 

Since F  is a function of min,,, TnHR bb  and the borehole coordinates, minimizing F  is in fact a 

multidimensional problem. For the sake of keeping this case study simple and instructive, only the borehole 

length H is used as design parameter, thus allowing to reduce the problem to a unidimensional one with a well-defined 

global minimum. The next section will now focus on finding the gradient of this objective function according to H  

with three different approaches.  

Analytical derivation of the gradient 

The gradient of F  with respect to the design parameter is obtained by computing the derivative of F  with 

respect to H . This leads to: 
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To evaluate the derivative of
fT according to H , Eq. 1 should be derived as well. Now, dropping the min and 

notation to simplify the writing, the derivative is evaluated at the time during where the minimum in the fluid 

temperature occurs: 
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Now, the derivative of the transfer function with respect to H  is needed to solve Eq. 12 and it is necessary 

to derive Eq. 3 as well. Differentiating Eq. 3 and solving for HTb  /
~

(see Petersen and Pedersen, 2012) leads to: 
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Since all the terms in G  were obtained using the FLS model of Cleasson and Javed (2011), their formulation 

has to be derived as well according to H  and this gives: 
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with 
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Finally, Eq. 15 to 17 are solved sequentially to construct Hg  / which requires computation of  
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Finite-differentiation of the gradient 

The finite-difference method involves a simple and well known algorithm commonly used for the calculation 

of gradients. In this article, a forward finite difference scheme is used to approximate the derivative of the objective 

function F  according to H  between H  and H  : 
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Semi-analytical derivation of the gradient 

Evaluating sequentially Eq. 15 to 18 can be cumbersome and to avoid this task, an hybrid approach relying 

both on finite-difference and analytical derivation is also presented.  The semi-analytical derivation of Eq. 10 consists 

to solve Eq. 3 for 
bT

~
 with H  and H  to evaluate HTb  /

~
 (Eq. 14) by finite difference through:  
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Once the solution of Eq. 20 is obtained, Eq. 11 to 14 are solved to obtain the objective function gradient. 

Note that the terms involving bi HntQ /)( are derived analytically. We will show that with this approach, the 

implementation is simpler but still retains the precision of the analytical approach.   



A SIMPLE CASE STUDY 

To assess the precision of the gradient computed by the three methods presented earlier, Eq. 1 has been used 

to simulate over a 10 year-period the mean fluid temperature circulating in a GHE made of 25 boreholes embedded in 

a soil having a ground thermal conductivity k  of 2.5 W/mK, a thermal diffusivity α of 1.25e-6 m2/s and a ground 

temperature Tg of 10 °C.  The boreholes have an equivalent resistance Rb of 0.1 mK/W, are located on a regular grid 

with spacing of 10 and 5 m at a depth D of 2 m. The ground loads illustrated in Figure 1 were used to solve Eq. 1  

 

Figure 1 : a) Ground loads used for solution of Eq. 1 and b) evolution of fluid temperature for different borehole lengths.  

The objective function and its gradient as a function of borehole length 

Figure 2a below presents a sweeping of the possible values of F  and dHdF /  for H  values comprised 

between 30 m to 300 m. We can see that these functions vary by several orders of magnitude with a clear minimum 

around 146H  m. Figure 2b also illustrates easily the discrepancies that exists between the gradient computed by 

finite differentiation and the gradient computed with an analytical or semi-analytical approach.  

When looking at Figure 2b, one can see that smaller differences also exist between the analytical and semi-

analytical methods. The magnitude of these discrepancies is grasped easily when looking at Table 1 which illustrates 

dHdFF /,  and the associated computation time for two different H  values.  The first value was chosen to be as 

close as possible from the optimum of F(145.363) while the second H  value (250 m) corresponds to a poor design. 

As shown in Table 1, the objective function values are equal for a given H . This is due to the fact that no matter 

which method is used for the calculation of the gradient, the objective function is always obtained the same way using 

the sequential method based on Marcotte and Pasquier (2014).  However, the gradients computed by the analytically-

based methods are up to 30% higher. For all six scenarios, 100 runs were completed to get a proper evaluation of the 

calculation times of the gradients by all three methods. As shown in Table 1, the analytical derivation method is 

systematically faster than the other two by at least 2 % with our current MATLAB-based code. This is due to the 

shear fact that equivalent calculations that do not involved epsilons are compiled faster in our code.  

b) 

a) 



 

 

 

 
Figure 2: a) Objective function F for various borehole lengths and b) gradients evaluated with the methods tested in this 

work with  ε = 10-6. 

 

Table 1.   Objective Function Gradient for H = 145.363 and 250.000 m (  = 10-6) 

Method Used H (m) Objective Function  
(°C2) 

Gradient Value 
(°C2/m) 

Computation Time  
(s) 

Finite Difference 145.363 7.835 E-10 -5.94 E-6 0.386 
Semi-analytical Derivation 145.363 7.835 E-10 -4.141 E-6 0.400 

Analytical Derivation 145.363 7.835 E-10 -4.621 E-6 0.369 
Finite Difference 250.000 24.809 0.2445 0.379 

Semi-analytical Derivation 250.000 24.809 0.3149 0.399 
Analytical Derivation 250.000 24.809 0.2797 0.372 

  

OPTIMIZATION-BASED DESIGN USING A LINE SEARCH STRATEGY 

An accurate estimation of gradient is almost useless when used without an optimization algorithm able to 

minimize the objective function. Therefore, to illustrate the advantages of using analytical gradients for optimization-

based design, the various gradients were integrated within an optimization routine. Here, since the design problem 

involves only H , the problem reduces to a unidimensional line search. A line search algorithm using the strong Wolfe 

conditions on curvature, as implemented in minFunc (Schmidt, 2005), was used to identify the near-optimum H  value. 

Table 2 and Table 3 provide the results for two different initial solutions of H using a ε value of 10-6 and 10-10 

respectively. The optimization algorithm was limited to 5024 iterations to limit computation time, although it didn’t 

prove to be necessary. All presented values of H  were limited to seven digits.  

Looking at the results in both Table 2 and Table 3, three conclusions can be drawn. First, although the 

convergence rate all methods are influenced by H0, when the initial guess is too high compared to the optimal value, 

only the analytical-based derivation methods converge every time. Secondly, both the methods that implies a finite 

differentiation varies significantly in number of iterations depending on starting conditions. This is due to the fact that 

the convergence of these two methods relies heavily on the  value selected. This is especially true when the gradient 

to be evaluated is low and steady, associated with high initial values of H according to figure 2b, and when the epsilon 

a) b) 



is small. This implies that either a convergence analysis must be done or a safe low initial guess must be used in the 

optimization for the finite difference and semi-analytical methods in this particular case.  

Thirdly, both the proposed analytical and the semi-analytical derivation methods converge way quicker than 

the finite difference method and in a lower number of iterations. On average, the semi-analytical method is 1.75 times 

faster while the analytical derivation method is 2 times faster. This is due to the fact than using a more precise gradient 

of the objective function allows for a much more rapid convergence. Indeed, Figure 3 illustrates the H values used 

during the line search for the methods presented earlier and one can easily see the advantage of using gradients 

derived analytically.  

Figure 1b shows the simulated fluid temperature for H equals to 50, 145.363 and 250 m. The horizontal red 

line underneath the fluid temperature corresponds to the minimum fluid temperature of -2°C that should be reached 

by the fluid to minimize the objective function F. It is clear that for H values of 50 and 250 m, the fluid temperature is 

far from -2°C. However, for H corresponding to the optimum, the minimum occurs during the last winter and 

matches almost perfectly the red line. 

 

Figure 3 – Evolution of H during the optimization-based design; initial guess H = 50 m, ε = 10-6. 

 

Overall, both analytical-based methods proved to be much faster and effective compared to the finite 

difference. The analytical derivation is more precise and allows for the fastest convergence and lowest number of 

iterations but requires more implementation time since it needs the calculation of a derived version of the FLS model 

and associated matrix. The semi-analytical method is almost as easy to implement as the common finite difference 

while allowing for a much faster rate of convergence. However, since it still requires to perform a finite difference on 

the transfer function of the GHE, the semi-analytical approach still requires the user to select more carefully its initial 

H solution and epsilon before launching the optimization process.   

 
Table 2.  Line Search Results for Two Initial Solutions with  = 10-6. 

Method Used 
Initial solution 

0H (m) 
H (m) 

Objective Function 
(°C2) 

Iterations 
Computation 

Time (s) 

Finite Difference 50 145.3626 3.58 E-9 39 21.94 
Semi-analytical Derivation 50 145.3644 8.03 E-9 18 10.41 

Analytical Derivation 50 145.3636 4.07 E-10 18 9.93 
Finite Difference 250 145.7234 1.07 E-12 29 16.16 

Semi-analytical Derivation 250 145.3655 3.03 E-8 15 8.72 
Analytical Derivation 250 145.3633 2.95 E-11 22 12.20 

 

 

 

 



 

 

Table 3.   Line search results for two initial solutions with  = 10-10. 

Method Used 
Initial solution 

0H (m) 
H (m) 

Objective Function 
(°C2) 

Iterations 
Computation 

Time (s) 

Finite Difference 50 51.0672 4.5218 E2 36 20.82 
Semi-analytical Derivation 50 145.3637 9.69 E-10 23 14.10 

Analytical Derivation 50 145.3636 4.07 E-10 18 9.93 
Finite Difference 250 - Did not converge within 5 minutes 

Semi-analytical Derivation 250 145.3647 9.99 E-9 40 24.54 
Analytical Derivation 250 145.3633 2.95 E-11 22 12.20 

 

CONCLUSION 

In this article, we demonstrated that using a finite-difference based algorithms to evaluate the gradient of an 

objective function can lead to some approximation errors. When using such gradient in an optimization algorithm, 

even a simple unidimensional line search problem may have convergence issues or longer convergence time. By 

deriving analytically an objective function with respect to the design parameter of interest, a formulation that provides 

an accurate estimation of the gradient can be found. Using an analytical gradient in conjunction with strong Wolfe 

conditions may reduce computation time significantly. 

NOMENCLATURE 

D    : Buried depth of the boreholes (m) 

ff ,
~

: Step increment vector (W/m) 

F    : Objective function (°C²) 

gg ,~  : Analytical model response (°C·m/W) 

G    : Matrix whose element ),( ji is the temperature 

perturbation caused at borehole i  by the heat 

emitted by borehole j (°C) 

h    : Vector containing the temperature perturbations 
due to the historical part (°C) 

H    : Length of the boreholes (m) 

k    : Thermal conductivity of the ground (W/(m·°C)) 

bn    : Number of boreholes in the GHE (-) 

tq    : Vector of heat flux (W/m) 

Q   : Total ground load exchanged by the GHE (W) 

r   : Distance between boreholes i and j  (m) 

bR   : Borehole equivalent thermal resistance (m·°C/W) 

t   : Time (s) 

fT   : Mean fluid temperature (°C) 

gT   : Initial temperature of the ground (°C) 

minT : Minimum fluid temperature (°C) 

   : Thermal diffusivity (m²/s) 

bT
~

 : Transfer function corresponding to the mean 

temperature at the borehole wall (°C/W/borehole) 

   : Increment used to perform finite difference (m) 

Subscripts 

b   : Borehole 

g   : Ground 

ji ,   : Position 

tm ,  : Time step 
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