
A WEB INFORMATION ORGANIZATION AND

MANAGEMENT SYSTEM

By

TYNAN D. GRAYSON

Bachelor ofScience

Langston University

Langston., Oklahoma

1996

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1999

A WEB INFORMAnON ORGANIZATION AND

MANAGEMENT SYSTEM

Thesis Approved:

v .

._LcJ_~ 1) . P<J\.0€ Q .Q
Dean of the Graduate College

II

ACKNOWLEDGEMENTS

I want to thank my husband Ralph A. Grayson for his love, patience, and

profound friendship. He inspires me daily with his wisdom, strength and will to succeed.

His patience and encouraging words gave me the detennination to see the writing of this

thesis through.

I also want express my sincere gratitude to Dr. K. M. George, my principal

adviser, for giving me invaluable advice throughout my graduate study. His guidance

and generous aid helped make this work possible.

I am grateful to Dr. G. E. Hedrick and Dr. Jacques Lafrance who gave me

support and advice to guide me through the thesis writing process. They helped me shape

and organize my work.

My brother, Milton L. Anderson, Jr., and his wife Lynn, deserve my deep

gratitude for being a constant source of support in my life. I am truly indebted to my

parents, Milton L. Anderson, Sr., and Carolyn, for cheering me on in pursuit of my

dreams.

Last, but certainly not least, I want to thank God for giving his only begotten Son,

Jesus Christ, to die for my sin, so that I may have abundant life. With God I have nothing

to lose and everything to gain.

iii

Chapter

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

II. REVIEW OF THE LITERATURE 4

III. DEVELOPMENT TOOLS 13

3.1 HyperTextMarkup Language (HTML) 13
3.2 JavaScript 14

IV. DESIGN AND IMPLEMENTATION 17

4.1 Current Functionality 17
4.2 Improved and Customized Functionality 19
4.3 Event Driven Programming in the Client/Server Environment 20
4.4 Implementation 25

4.4.1 Window Heirarchy 25
4.4.2 Driver Frame 26
4.4.3 Viewer Frame 27
4.4.4 Navigation 27
4.4.5 Document Description 27
4.4.6 User Assigned Priority/Category 28
4.4.7 Storing Entries 29
4.4.8 Viewing Lists .31
4.4.9 Save, Retrieve, and Delete List 32
4.4.10 Keyword Search 34
4.4.11 WWW Search 35
4.4.12 Help Menu 36
4.4.13 History 38

V. SUMMARY, CONCLUSION AND FUTURE WORK 40

5.1 Summary 40
5.2 Contributions and Conclusions 40
5.3 Future Work 42

BIBLIOGRAPHY 43

iv

APPENDIXES 46

APPENDIX I-IMPLEMENTATION SOURCE CODE .46

APPENDIX II--GLOSSARY 69

APPENDIX III--LIST OF ACRONYMS '" '" .70

v

LIST OF TABLES

Table Page

1. WIOMS VS. Similar Tools 42

VI

LIST OF FIGURES

Fi~e Page

1. WWW Resource Discovery System's architecture " 7

2. NaviGuidor functionality 10

3. PowerBookmarks architecture '" 12

4. The current history view '" '" , .. 18

5. The WlOMS model based on event-driven programming 22

6. Event Loop '" '" .. , , 23

7. JavaScript Object Event Handlers '" 24

8. The WIOMS interface '" '" '" '" '" .. 25

9. WIOMS interface with New Window in background , 26

10. Example ofdocument description 27

II. Expanded view of 'Store Entry' select object 30

12. Store Entry and Keyword Search prompts 31

13. Results of selecting 'Show List' option '" 32

14. Save, retrieve, and delete list prompts 34

15. WWW search interface '" , '" 35

16. Result ofWWW search using AltaVista for 'car' 36

17. WIOMS help menu 37

18. WIOMS help menu with 'ShowlModify Entry selected .38

19. Result of clicking 'Show History' 39

VII

20. JavaScript permission request alert '" '" '" 19

viii

CHAPTER I

INTRODUCTION

Just over a decade ago the World Wide Web (WWW) was a distributed internal

network of computers sharing information via a text-based browser [8897]. It has grown

to become a massive loosely configured web of several networks of computers located at

sites all around the world including, but not limited to, schools, organizations,

corporations, and individual homes [Cap98}. The browser is a software application used

to display HyperText Markup Language and other formatted documents. Previously the

browser interface was text based, but it has developed into a tool with a Graphical User

Interface (GUI) that enables users to explore the Web and view multimedia documents

that not only contain text, but also pictures, video clips and sound, on widely varied

topics. In addition to accomplishing these tasks, the browser maintains ease of

movement between sites via hypertext technology.

There are several browsers and Netscape Navigator is one of the most popular.

The Netscape browser includes many convenient features including a history feature that

maintains a list with the Uniform Resource Locator CURL), which is the unique address

of a web page or file, of each site the user visits [Cap98]. The URLs are added to the list

without regard to any criteria even though the user may judge the sites with varying

degrees of personal interest, importance, or relevance. Therefore the history file

potentially could grow to contain a list of documents that is completely meaningless to

-

the user. In this case the user would face the time-consuming task of searching through

the list to find the site where he/she wants to return.

The history feature also lists the title of the document associated with a particular

URL. HyperText Markup Language (HrML) is the language tbat web pages are often

written in and the title is an HTML feature intended to provide a brief description of the

document to help the user locate the site in order to revisit it. The title is botb optional

and completely under the control of the writer of the document. If the title is omitted or,

in the opinion ofthe viewer, ill suited to the document it will be hard lfnot impossible for

the user to relocate it in the list.

Among the additional features of the Netseape browser is a bookmarking feature

which allows users to save the URL in a folder they name. The problem with this feature

is that the user must determine when a bookmark is no longer valid and delete it

manually. Also the user cannot add adequate descriptions to each entry.

Studies have revealed problems associated with navigating the WWW [BEA99]

which make it clear that it is beneficial to the user to have the capability of filtering to

retain only the relevant URLs and to add what he/she feels are more appropriate

descriptions when necessary. Users need to be able to locate and return to previously

visited URLs. They need the ability to organize collected infonnation. To achieve this I

propose the design of a Web Information Organization and Management System

(WIOMS) to eliminate the possibility of having a useless history list or a list without

accurate document descriptions and to improve user ability to organize URLs and add

content descriptions. WIOMS wiIl allow assignment of priority to a site based on user

defined criteria at the time of the visit and it will allow the user to decide whether or not a

.......

-

site should be added to the history list at all. In addition the WIOMS will allow the user

to include a description for documents that exclude or have unclear or inaccurate titles.

These features will increase overall user control of history while ensuring that the list it

maintains is personalized and contains only those documents of importance or relevance

to the user.

3

CHAPTER II

REVIEW OF THE LITERATURE

The rapid expansion of the World Wide Web has fueled growth in the number of

applications created to improve its efficiency, security and usefulness [IP96][FGR96].

Although browser technology has grown to include more features there remain three

predominant challenges in producing applications for the web. First, the needs and

practical expectations of the user must be detennined. Second, any software solution

must sufficiently address these needs and be easy to use [IP96]. Third, to facilitate ease

of use, the user interface of any applications should be well designed and neither

confusing nor inefficient [GaI97].

Vast resources have been devoted to understanding and developing technologies

for the World Wide Web while relatively little research has been devoted to the needs of

the user [KP96]. To develop effective tools we must find the answers to many questions.

What do people actually do with their browser? What would they like to be able to do?

Since it can be difficult for users to find the information they want in the first place, what

kinds of methods are available for users to relocate that information at a later time

[KP96]? How likely are people to use features ofthe application? Can this likelihood be

improved?

Hypertext technology has driven growth in the number of resources available on

the World Wide Web [Wit96]. The largest problem facing users with this growth is

4

accessing and managing this information [Wit96]. Once access is gained another

problem is that a lot of the infonnation a user finds when searching for a particular topic

may not be relevant to his interest [LEA95]. Also, to fully evaluate the relevance of the

information, the user would have to read through the actual document, which is time

consuming [LEA95]. Even if the user were able to take the time to read through the

information they may not be able to digest all of the information presented [LEA95]. In

this case an efficient method for relocating the information would be useful.

According to Instone and Pemberton [IP96], the number of users on the World

Wide Web doubles annually. Thus, it is useful for any web tool to analyze user trends to

build a design that has value for users. Kehoe and Pitkow [KP96], state that these trends

are discovered by analyzing user response to "widely distributed, heterogeneous, ...

WWW-based" surveys. These analyses made dear the fact that most people, 78.4%, who

navigate the web do so using a browser, and do so almost daily [KP96J. More than a

quarter ofrespondents reported that not being able to organize the information they found

as a problem and it was revealed that 23.7% of users reported that not being able to

relocate a page once visited was also a problem [KP96]. Some users even reported that

web browsers were "either poorly designed or did not work well" [KP96].

Several authors have addressed the problem of resource discovery. Lam et al.

developed a method of keeping track of new infonnation as it became available despite

the large number of servers and pages on the web. The most popular method of

alleviating the 'resource discovery problem' involves allowing the user to do a keyword

search to locate URLs [LEA95]. This provides the user with information that mayor

may not be relevant [LEA95]. This strategy does not effectively keep track of the ever-

changing information available. The best tool would not only be able to track 'non­

coordinated changes', but also "detect any inconsistencies caused by independent

modifications, and organize information into a structured index which enables efficient

search" [LEA95]. Lam et a1., presents a resource discovery tool that uses a web indexer

robot to build a database for keyword searching. This is good given the dynamic Web

environment [LEA95]. According to [BEA99] 27.8% of users responding to a survey of

11,700 people report organizing collected information among their problems and 12.16

report finding pages already visited as a problem. This problem is significant since

according to [BEA99] a study on user revisitation patterns to WWW pages found that

88% of individuals pages are revisits.

The tool developed by Lam et at. also addresses the fact that the potentially

germane 'hits' returned by the search might not be relevant to the user. They alleviate

this concern by providing a "relevance feedback mechanism which is supported by the

user interface" [LEA95]. The mechanism refines a search until a desired set of

docwnents is obtained [LEA95]. To judge this relevance the user interface presents a

hierarchical map of the links within 'hits' and the links within neighboring pages

[LEA95]. The tool also facilitates sharing of information between users by allowing the

user to save his query so that someone else can re-use it at a later time [LEA95]. This is

all clearly illustrated in figure 1. The implementation also makes clear the importance of

the user interface. The developers found that users should not be made to set too many

parameters and the process to use a tool should already be somewhat familiar to the user

[LEA95].

6

-

user
client

user
interface

saved
quenes

query
result

search
engme

index
database

indexer
robot

Figure 1. WWW Resource DiJc;overy System's architecture
adonteel from ILEA951.

Accessing and managing all the information available on the web is a problem

analyzed by Kent Wittenburg [Wit96]. There is a lack of research beyond html-based

tables of contents. The problems extend to commercial Intranets, which can grow in

complexity at a rate similar to that of the World Wide Web [Wit96]. He suggests that the

amount of infonnation available is greater than the user's ability to absorb it, and that

there is a need for arranging and filtering search results interactively [Wit96].

Wittenburg recommends that this problem be addressed by new human-computer

interfaces that enable users to :filter in conj unction with search and navigation instead of

using these things in isolation.

Resulting from the fast expansion of the web are two major problems: slow access

and "failure to find infonnation that is known to be available [pir98]". Peter Pirolli states

that designers of browsers for such a rapidly growing medium should be concerned with

alleviating both of these problems [Pir98]. According to Peter Pirolli [pir98], designers

7

-

should go through several 'what if scenarios such 8S~ What if the user is faced with a

repository rich with relevant infonnation versus a poor one? What if the user has

unlimited time as opposed to a hard deadline? What if system algorithms are made faster

rather than more accurate? Finally, what if presentations are made more infonnative but

slower to read? In the technique suggested by Pirolli, the states of interaction, including

the changes that can be made from state to state as a result of user actions should be

delineated. Basically, the analyst should represent the different states abstractly such as

the browser display [pi.r98]. He/she should also represent the different changes that can

be made between states including the changes that result as a result of user actions

[pir98]. "This defines an abstract state space representing the possible paths that human­

computer interactions may take" [pir98]. Values are specified for the expected number

of relevant documents that will be found and costs are associated with the time it takes

the user to find them [Pir98]. PiroUi then evaluated the different browser interfaces using

dynamic programming Dynamic programming was used to search through all possible

paths of human-computer interaction, evaluating their costs and values, and determining

the best paths [pir98].

Norm Archer, Milena Head and Yufei Yuan developed a tool called the Memory

Extender Mechanism for Online Searching (MEMOS) for Netscape. This tool allows the

user to store the navigational history in a model that more closely resembles the user's

own mental picture than traditional history storage methods including pushdown stacks

[AHY99). The stack is not an accurate trace of the user's movements since it may pop

several pages from the stack or add duplicate information to the stack. MEMOS also

allows the user to access the history in the form of a frequency list that ranks the sites in

8

•

order of the number of visits and to save history of navigation sessions for future use.

Empirical studies conducted by the developers found that it is important not only to aid

users in finding new information but also in recovering old information [AHY99]. [t was

also found that "tools that create smaller, more manageable information subsets, can

reduce the negative consequences associated with information overload" [AHY99]. This

reduction effects faster and more precise information gathering [AHY99].

Yossi Matias and Gadi Wolfman developed a tool called naviGuidor that is

intended to add value to the Web navigation experience of users through the addition of

features that improve referencing, filtering, and various annotations. Although methods

for directing the navigation of users have been explored before, Matias and Wolfinan

believe that these features should address the individuality of users and the diversity of

their skill levels. NaviGuidor controls and modifies the pages accessed by a user based

upon their needs. The tool gives the user the opportunity to specify these needs in

advance [MW99].

The ultimate goal of naviGuidor is to utilize the power of the web and create the

ideal navigation situation by offering convenient references to relevant resources while

adding annotations of terms and more guidelines to each resource. NaviGuidor acts as a

go-between for the browser and the web itself. The user can create specifications for the

navigation-guiding features they want to use. These specifications "are written as

catalogs in XML syntax, and are encapsulated in specific HTML pages" [MW99]. The

user created catalogs can be maintained and easily shared because they can be imported

into naviGuidor [MW99]. Using the specifications naviGuidor dynamically adds

annotations to terms in I-ITML pages.

9

-

Figure 2, shows clearly the way the tool modifies the pages accessed by the user

with explanations of what happens when a page is accessed.

Browser
Request I naviGuidor 2 Request Web

Server

Response

}a~~7
Response

'6/(5 4 3

/' ""\

Modified
Page

~
L:J

Reading an HTML page. HTIP messages between the browser and the Web are transmitted
through the naviGuidor: (1) An HITP request from the browser is accepted and parsed by the
naviGuidor. (2) The naviGuidor decides, depending on the ctment catalog, ifthe HlTP request
is to be transmitted as is, modified or blocked. (3) A Web server accepting a forwarded request
is responding with an HTIP message. (4) HTTP response is accepted and parsed by the
naviGuidor. (5) The naviGuidor decides, depending on the CUITent catalog, if the HTTP request
is to be transmitted as is, modified or blocked. (6) The HTTP response is accepted at the browser.

Figure 2. NaviGuido, fuoc:tiooality adopted (rom [MW99J.

Currently Ralph Grayson is developing a new tool called Persistent History Tool

(PHT) that helps users have better navigation sessions by giving them access to past and

present history lists. Grayson states that the user will benefit from the ability to use

previous sessions as a starting point for the current session [Gra99]. The history list is a

vital feature that allows users to go back to previous sites and retrieve resources that they

have already gone through the trouble of finding. Sometimes users seek information

about very specific topics and the entire session can be tedious. If the user has other

sessions looking for other kinds of infonnation the prior lists they have compiled could

10

-

either be lost if the history limit is too small or it can be hard to distinguish which sites

match which topic [Gra99].

Persistence of the history list allows users to establish lists that are topic specific

and it makes it easier to relocate and take advantage of resources they have found

[Gra99]. The history lists stored in cookies easily can be manipulated via the user

interface. Access to prior history lists is facilitated by the interface that allows the user

enter the name or creation date of the list [Gra99]. The list is then loaded and the back

and forward buttons of the interface allow the user to navigate to resources quickly

[Gra99].

PowerBookmarks was developed to address resource relocation and organization

problems. Designed by Corey Bufi, et aI, PowerBookmarks utilizes query, modeling and

navigation capabilities provided by WebDB, which is a hypermedia database system built

on top of an Object-Oriented Database Management System [BEA99J. Additionally,

PowerBookmarks sUpJX>TtS infonnation sharing with access control, automated bookmark

classification based on document contents through an external classifier, and gives users

the benefit of automated dead link and inactive link removal. Also, it monitors their

behavior to provide automatic bookmarking for frequently accessed URLs. The

architecture of PowerBookmarks is shown in figure 3.

II

PenollllJ
Information

PowerBooJrmarla

Application Level

WebDB

Logical Database Level

Physical Database Level

Pro:-:y
Server

CIaS3ifier

JTOPIC
Full Texl

Search Engine

Wordnet

Figure 3. PowerBookmarks architecture adopted from [BEA99].

12

-

CHAPTER III

DEVELOPMENT TOOLS

3.1 HyperText Markup Language (HTML)

The browser is a client-side software application that allows the user to navigate

the World Wide Web. The browser interprets HTML commands to fonnat docwnents for

the viewer. It gives users the ability to follow links in and see hypertext infonnation.

The browser interacting with the server accomplishes this. The user initiates a request for

infonnation or action and the server interprets the request and takes some action. Among

the most popular graphical browsers is Netscape Navigator.

There are several tools that can be used to create browser enhancements that make

the users navigation session more useful including Hypertext Markup Language (lfIML)

and JavaScript. HTML code uses a set of tags that tell the browser how to format, load

and align text and graphics. Tags are commands that define the overall form of the

HTML docwnent and give basic structure to the way a page appears. Tags are not visible

on the browser, but their effects are. A tag might note that a line should be a title or a

heading, for example.

Each tag is enclosed in angled brackets. Paired tags are different in that the last

tag has a forward slash just before the command. Commands are not case sensitive, but

are usua]]y written in uppercase to promote clarity by making comman.ds easier to spot

13

r
when reading an HTML file. Hypertext links are special tags that link one page to

another page or resource. When a mouse is placed over a link and clicked, the browser

jumps to the link's destination.

3.2 JavaScript

JavaScript is a new technology that was developed initially by Netseape under the

narne LiveScript. It is intended to extend the capabilities of basic HTML. JavaScript

usually resides between the <SCRIPT>... </SCRIPT> tags in ordinary HTML documents.

It gives developers the ability to write scripts that interact with objects within a web page,

such as fonns, frames, and background color. In its current state it is more closely linked

to Java which is why the name was eventually changed. It is designed to aHow logic to

exist on the client side to perionn tasks such as data validation.

JavaScript is different from Java in that it is not as strict or sophisticated as Java.

Java is an object-oriented programming language and JavaScript is object-based. Java

has "strong typing (all variable data types must be declared), static binding (object

references must exist at compile time), and is compiled into bytecode. The bytecode is

then interpreted. In contrast, JavaScript has loose-typing and dynamic binding [FS98].

JavaScript is strictly interpreted not compiled even though the term "JavaScript

compiler" is commonly used to refer to the built-in browser mechanism that reads the

code and executes it or produces an error message. Both JavaScript and Java can be used

to make web pages more sophisticated and exciting by executing the 'local code'

[Way97]. The biggest difference is that JavaScript will only run on a browser. It is

14

•

tightly integrated into HTML whereas lava is simply connected to an HTML document

through the <APPLET> tag and is stored in another file.

Two of the bU22Words associated with JavaScript are object-oriented and

interpreted. The use of the term object-oriented can be misleading. The more accurate

term ofobject-based should be used instead because although the single large hierarchy is

just the basic data about the browser, its window, the document displayed, the forms, and

the links within the document [Way97]. There is no greater class structure and no

provision for inheritance.

JavaScript is interpreted [Way97]. Variables and functions can be defined on the

fly and used several lines later. There is no compiler or preprocessor [Way97]. The

disadvantage of being interpreted is that it takes longer for the code to execute because

the browser compiles the instructions at runtime just before executing them [WEA97].

The advantage is that it is easier to update the source code. When you change the script

in the source HTIviL file the new code is executed the next time the user accesses the

document (Way97].

Other characteristics ofJavaScript include its being event-driven [WEA97]. Most

JavaScript code is written to respond to events generated by the user or the system.

lITML objects, such as buttons, or text fields are enhanced to support event handlers

[WEA97].

Finally JavaScript is a good multipurpose tool that allows developers to

accomplish many goals. For example, it helps enhance static HTML pages, through

special effects, animation, and banners WEA97]. It permits validation of data without

passing everything to the server and is a building block for client/server Web

15

f

applications. JavaScript serves as a bond between HTML objects, Java applets, and

Netscape Plug-ins while providing connectivity without using a Common Gateway

Interface [WEA97].

16

-

CHAPTER IV

DESIGN AND IMPLEMENTATION

4.1 Current Functionality

As a user surfs the web, the sites that he/she visits are logged in the history file.

The history file includes the URL, the title of the web document, the date of the first and

most recent visits, the expiration date, and the nwnber of visits as shown in Figure 4. The

user can view this file and double click on the URL of the site they wish to revisit. This

infonnation is compiled without consideration of the personal preferences of the user.

Efforts have been made to increase history and bookmarking functionality, and

more features have been included from one version of the browser to the next.

Current userlhistory interaction is limited. A user cannot control which

documents are stored in the list. The user can search the titles of the documents in the

list, but he/she can only delete the sites the search turns up. He/she can took through the

list manually and delete individual entries. Also the entire contents of history can be

deleted at once either by the user or by the browser after a date which the user specifies.

While these functions do serve a purpose, history should be more personalized to increase

its overall usefulness.

Another browser feature is bookmarking, which aHows document URLs to be

stored in files that the user can name. One problem with this feature is that the user

17

-

cannot add document descriptions and the files have to be deleted manually. Another

problem is that the process ofcreating files can be tedious.

55 ~etcent~_ http://hame.netacape.co... 1 days ago Less than on..
j] HotBot r~s: nets... http://ll'MW.hotboleoml... 8how ago 8 how ago
]I HotBot rede: nets... http://www.hotboleoml... 8 Ileus ego 8 hotn ago
~ Math Teached.i1k ... hltp:l/mtLmath.l&Ic.eduI... 8 hoI.n ago 8 hours ago 61111999 1:3...

;"1-----.,.,lNet-:--IC~..----.......'.......,-.\--........--------~ ::;1 :',

Figure 4 The curreat history view

Security features of the most recent versions of browser software make it difficult

to access and manipulate the history file. The developers of Netscape found it necessary

to enforce more strict limits on access to history information due to concerns about

invasion of privacy [WEA97], and also because of malicious programmers who use the

information for bad reasons [WEA97]. The WIOMS issues a request for the user to

enable the Netscape Permission: Universal Browser Access, via a prompt initiated by the

first userlWIOMS interaction. As shown in figure 20, this prompt alerts the user that a

JavaScript is requesting permission to read or modify browser data. Although the user

may choose to deny this pennission, he/she should click the button labeled 'GRANT' to

allow the WIOMS to access this private information.

18

pa

-
.. /f\. .-.scq,..u. ~,11
--oMIioool IlIl..-.......

.r---",
I

1 : "DoIiJ .

Figure 20. JavaScript permission request alert.

To modify or enhance the power of history and bookmark function, one needs to

modify the browser, which is labor intensive and very time consuming. The alternative is

to develop tools on top of the browser that incorporate both features and extend user

control while ensuring that the retained infonnation is relevant to them.

4.2 Improved and Customized Functionality

The WIOMS focuses on the improvement of the functionality of the navigation,

bookmark organization, and document management while increasing the level of user

control. It utilizes storage. event driven programming, Netscape security, Object-based

IavaScript programming and lITML document generation. The user maintains the

current history and bookmarking functionality provided by the browser while increasing

the level ofcontrol and personal usefulness. In addition to the uses mentioned earlier, the

WlOMS allows the user to make snap judgments about the worthiness of documents as it

19

-

pertains to inclusion in the list. He/she is able to assign a priority number or category

name based on any criterion be/she chooses to those docwnents that are to be included.

Not only can he/she do a keyword search on the history list, but he/she can also do a

search that automatically deletes the entries that do not contain the search string in a

single step. The user can view the entire list by priority/category or simply delete it with

a single click of a button. The user does not have to surf to a site to include it in the list.

This is useful, since some sites take a long time to load and the user may already be

familiar with the contents and want to store the entry as part of a category the resource

pertains to. WIOMS also incorporates WWW search capability and allows the user to

view history with a single button click.

4.3 Event Driven Programming in the Client/Server Environment

Software development is addressed by several computing models among them is

the client/server model. Event-driven programming, currently emphasized in the

marketplace according to Dann and Woodworth, makes effective use of this model.

Event-driven programming supports the development of a more sophisticated user

interface in the client/server computing model [Eas91]. The WIOMS is developed using

event-driven programming in a client server environment. In event-driven programming

developers are concerned with assigning responses to events rather than execution

sequences as in traditional application programming, where execution begins at the top of

the program, then flows through function calls and control flow statements in a fairly

predictable manner; the program is in control.

20

-

The WIOMS is an event-driven program in which the user controls and decides

which portion of the program gets executed. Clicking the mouse generates a mouse even

pressing a key generates a keystroke event. The user clicks the buttons or uses the

keyboard to select menu options, tab through controls and so on. Each mouse click and

key press generates an event to which the program must respond. For example, the

WIOMS contains the code for the 'Clicked' event of the 'View Description' button, but

only when the user actually clicks on the button will this code be executed.

The Web Information Organization and Management System (WIOMS) is

constructed using the development tools discussed in chapter 3. The key elements of the

WIOMSare:

• GUI components

• Layout

• Listening state

• Event processing

The GUI components, such as text fields and buttons, are the screen elements that are

manipulated by the user with the mouse and keyboard. The layout governs how the

components appear on the screen. The listening state is one in which the program waits

for events to be triggered by the user. Events signal important user actions like a mouse

click.

The WIOMS responds to events, generated by GUI components that indicate that

specific actions have occurred. The program waits in the listening state for these events.

The entire program consists of the code that presents the GUI to the user and the specific

code that is executed when events occur. Upon loading, the program immediately enters

21

-

the listening state. When an event occurs, the program enters the active state in which

events are handled. After the event is handled the WIOMS modifies the QUI, if

necessary, and returns to the listening state (See figures 5 and 6).

Listening S1ate

Event

Start GUl Load
Event Effects

Active S1ate

Figure!S. The WIOMS model based on event-driven prOirammine.

22

-

Start (PHNT)

Event = NULL
WHILE (Event != QUIT)

WHILE (Event == NULL)
{

II listen for event
t
IF (Event != QUIT)
{

II handle event
IF (Effect_GUI TRUE)

II modify GUI
}

Event NULL

Figure 6. Event Loop

Events involving GUI components such as buttons, textboxes and select objects

are recognized and interpreted by JavaScript event handlers (See figure 7). These

handlers automatically respond when an event occurs and transfer control to custom

methods, which are executed. Components can have multiple event handlers for

example: the Select object has onChange, onFocus, and onBlur event handlers.

23

-

Object oaClick onSubmit onChuge ooFocus onBlur onSelect

button •
text • • • •
textarea • • • •
select • • •

Figure 7. JavaScript Object Event BandJen. Adapted from (WEA97).

Figure 8 shows the WIOMS interface that consists of windows, frames, buttons,

textboxes, and prompts, tables and labels. The figure also illustrates the point and click

nature of the design. The frames organize the WIOMS into two sections, a top (driver)

frame and a bottom (viewer) frame, that reside within a parent frame. The viewer frame

is where the results of all user actions are displayed with the exception of viewing

multimedia documents. This takes place in a separate window, which is below the main

window in the hierarchy (See figure 9). The driver frame houses the JavaScript that runs

the WIOMS and provides interconnection for the set of functions that the user has access

to. The buttons, which are located in the driver frame, provide the user with some actions

whether it be searching, viewing, or deleting the entire history list, navigating to another

document, assigning a priority or category name document, or deleting the part of history

which do not meet the search criteria.

24

loc.lOioc:!

31<S1-lAI)

D~·I
OlU.(,"~eu):rl--------------,:J

~

3

--
Filure 8. The WIOMS iaterface.

4.4 Implementation

1n order to effect this implementation the WIOMS, written using H1ML and

JavaScript, maintains each new list temporarily in an array when the WIOMS is in use

and, for a length of time specified by the user, in a cookie otherwise. The WIOMS

resides entirely on the client side and uses a frame oriented interface to enhance ease of

use and user communication with the lists as shown in figure 8. This facilitates the point

and click nature of the tool.

4.4.1 Window Hierarchy

When the WIOMS is loaded the main window contains two frames one above the other

on the display. The top frame is called the Driver Frame and contains the code for the

Gill and the code that is executed in response to user generated events. The lower frame

is called the Viewer Frame and is used to show documents generated by the program in

25

the Driver Frame. An extra window is generated upon loading the WIOMS, referred to

simply as New Window. This is where the hypertext documents to which the user surfs

are displayed. Initially this window is blurred which means it does not gain focus and is

placed on the desktop behind the main window. To focus the window the user can click

in the New Window. The New Window has all the functionality of a nonnal browser

window and the user can load any Web document or program that the browser can

interpret (see figure 9).

Viewer Frame

New Window

Driver Frame

J
...J

31CS-lJl1l

De.c:npllOD I
URL(AddreU):rl---------------::1

flo 1" y...~~

J' J .11 :;'. .I.,: .~- ---­fOe_ J; 1lo.~~~/tWi~Dwi!ol$~....;"-:'-==:""--------~~1
':' _ -,- OSU~Ci 31--......

Figure 9. WIOMS interface wiab New Window in background.

fIol":I,Ioooio~~

. ~. v oj :,a .:2'- ~:).--- ~bi f·'CE·, gjtii; tl f. elf. ; . $, ijil5,i4,'i!'Sllf·iS "

4:4.2 Driver Frame

The most prominent part of the GUI is the Driver Frame. This frame allows the

user to control the application. The buttons, textboxes, and select objects aJlow the user

26

-

to initiate events such as viewing the URL and description of the document loaded in the

New Window. Figure 9 clearly shows the driver frame in its initial state.

4.4.3 Viewer Frame

The bottom portion of the main window is dedicated to the viewer frame. In this

frame lITML documents generated in response to user initiated events are displayed.

InitiaIly this frame displays an HTML document with a welcome message. The code for

this initial document is located in a file named WIOMS viewer.html and must be stored

in the same directory as the code for the driver frame and the main window.

4.4.4 Navigation

Upon loading in the main window, the WIOMS generates a new browser window

behind the main window. The main window remains in focus. As the user navigates the

WWW the documents are displayed here. There are several methods by which the user

can navigate. He/she can enter a URL in the textbox labeled 'Location' in the Driver

Frame and press ENTER or click the button labeled 'GO' immediately following the

textbox. He/she can also navigate by using the location bar of the New Window,

following a link embedded in the current document or clicking the 'GO' button following

an entry in the Viewer Frame as part of a document generated by the WIOMS.

4.4.5 Document Description

The title and URL of the current document can be displayed by clicking the

'Show Description' button in the Driver Frame. As shown in figure 10, the title, if one

27

exists, is displayed in the textarea labeled 'Description' and, the document URL IS

displayed in the textarea labeled 'URL (Address}:'.

The user can choose to save the entry as is, with the current infonnation, or

change it prior to saving. If the user chooses a new description it should be entered in the

textarea. No limit is placed on the length.

D__

w.a- te Cbe W. W....... 0,. ' :MR_, ..S,.a- (WIOMS)

Figure 10, Eumple of document description.

S-EnI)' lI(S1cn Enty) 31e-LJIl)
~ QO"t'U ...c.e. Good 0.101:1 OJ

De.O"lPtCD·~n .eo't'T· Tum. e:01\.t.lM't.lI.J

UllL (Addrec,): f.btt.P I IIc..pG. go. r:::uaI 3

4.4,6 User Assigned Priority/Category

The implementation allows the user to assign each entry to one of five lists. The

lists can be used to divide entries by up to five categories or priority level.

Prioritization

A user can assign these in the manner he/she feels best suits hislher personal need.

For example, a user who is shopping online for Star Wars memorabilia can store "must-

28

have" items in the list assigned a priority of 1, while storing items that he/she will buy

only if the others are not available in a list assigned a priority of5.

Categorization

The user could decide to just use category names of Must Have and Might Buy

One Day to be more clear. Another user might want to use this capability to aid in

dividing research findings among up to five different sub-categories. For example a user

researching Algorithms might want to use the sub-categories of (1) Graph Algorithms,

(2) Search Algorithms, (3) Sorting Algorithms, and (4) Amortized Analysis. Notice that

the user is not required to use all five categories.

4.4.7 Storing Entries

Once the user determines that an entry is satisfactory he/she can store it in one of

the five category/priority lists. Initially the lists are named (1) Store CategorylPriority 1,

(2) Store CategorylPriority 2, (3) Store CategorylPriority 3, (4) Store Category/Priority 3,

and (5) Store CategorylPriority 5. Clicking the small triangle to the right of the Select

object labeled 'Store Entry' can access each list. The selection options appear as shown

in figure 11.

29

s-fiftlt , (SIon &fIJI • IlSI-l.ioI) ::J 1El.P I

I CII~_y.l
J

CIIIflllJIPrioriIy·2 .J
CIIIflllJII'liariIy·3

I e.-J_y·4 ::JCII.~~·S
URL (Ad<he.) .

-- .:I

Figure II. Expanded view or 'Store Entry' select object

Upon choosing a category/priority list the user is prompted to choose a new name

for the category if it is the first time during the current session that the list has been

accessed. See figure 12a. The default name will become the pennanent name unless the

user enters a new name here. After choosing the list name, the entry--consisting of the

description and URL of the hypertext document--is added to the list.

30

~.~-

-

L. .. I:I:l~1

b.

..~
If •• r

~"'Lit.._

Figure 12. Store EnUy and Keyword Searda prompts.
a. CategorylPriority list name prompt.
b. Keyword searcb ltriBg prompt
Co Keyword searcb li't prompt

4.4.8 Showing Lists

To print a list in the Viewer Frame, the user should choose the name of the list

from the select object labeled 'Show List'. Upon clicking the down arrow to the right of

the selection object the list names are shown. The list names will match those given in

the 'Store Entry' select object options. When the user selects the name of the list to be

viewed. The contents of the list are displayed in the viewer frame. The result of the

"show list" operation is shown in figure 13.

31

r

l.oaIioD: f"W._....
-e..r,' IIr.::(Sl=::...:-:=e.c:::",.,-')-~3' "1\Sll':...--:-:-Uel).,,------.

De JIi1lN~ .lea. Good: p1Ct;UI:"e8. OJ
f'tr4)ttotl 'r--t Ift.OrY Oft JrcDyJ

URI. (1._.): F'"p:II_.......- 3

3

.:J

Viewing CategorylPriority (2): naskt!t hull

URI.:hlIp,_a1:~cOD' ~
D~.... art. '1'- ..so. Good oaI:ul: "'_-..bi.a. Tw•• ""'a"" .. 10.-1. Wichod Jor.... ao.

mI.: 1Illp:l1.1pIl....cOD'~
D.cnp.... ESPN "'_ Good pinn. a.-1tCIJI ""Koby~.

r3 0-
.:J

Figure 13. Result of selecting 'Show List' option.

Each entry is displayed in the following fonnat:

Clicking the ·GO' button following the URL results in the desired document, described in

the entry, being loaded in the New Window.

4.4.9 Save, Retrieve, and Delete List

Figure 14 shows the prompts generated by the methods used to save, retrieve and delete

lists. The WIOMS allows the user to save lists between browser sessions in persistent

client slate HTTP cookies which allow infonnation to be stored on the client browser's

computer for retrieval at a later date. Cookies are currently the most powerful technique

available for maintaining a state between sessions. Clicking the button labeled 'Save List'

triggers an onClick event which is handled by the getSetCookieValues method. First, the

32

user is prompted for the name they want to give the list. Second, he/she is prompted for

the nwnber of the list to be saved. Finally, they are prompted to choose the length of

time the list is to be stored. The options are: I day, 3 days, 1 week, and 2 weeks. After

the specified length oftime, the list expires and can no longer be retrieved.

To remove a list before the designated expiration date, the user can initiate the

clearCookie method by clicking the TIelete List' button on the interface. At the prompt

he/she must enter a valid name of a saved list. The expiration date of the list is set to

three days prior to the current date, which effectively deletes the cookie.

The onClick event corresponding to the 'Retrieve List' button is handled by the

getRetrieveCookieValues method, which prompts the user for the name of the saved list.

Next, the user is prompted for the category/priority number they want to use for the list

during the current browser session. The getRetrieveCookieValues method invokes the

getCookie method, which retrieves the list. If the category/priority number the user

selects is already associated with a list in the current session not empty, then the retrieved

list is added after the current list contents.

3J

jJrt..tHLct*5
f __ ~Ult..-"

~~IlO"_

•
~"'_1lO

.1

"fflS1ttPtT4
f_~.._ .._,

xl

Figure 14. Save. retrieve and delete lilt prompts.

4.4. 10 Keyword Search

Searching the history takes place via a JavaScript embedded in the Driver Frame

and the JavaScript frame object prompt (message, response) is used. When the user

clicks the search button and a dialog box with a text entry field is displayed prompting

the user to enter keywords for the search as shown in figure 12b. The user response in

the text entry field is returned as a string and the search is not case sensitive. Next, the

user will be prompted for the number of the list they want to search. This number

corresponds to the list position in the select object of the Driver Frame as shown in

Figure l2c. The descriptions of the documents in the list are searched for matches to the

keyword string.

An HTML document is then generated by the script, which displays the results of

the search. If no entries were found which contained the keywords, then a message is

34

displayed that informs the user that the search was unsuccessful. The user will be

instructed as to how to run the search again using different keywords in case they are

unsatisfied with the results. Otherwise a table is generated that includes the description

ofthe page, the URL and a link to the document.

4.4.11 WWW Search

A search engIne is software that lets a user specify search terms and finds

documents that include those terms on the WWW. The WIOMS includes a WWW

search feature, which allows the user to conduct a search using one of two search

engines, AltaVista and Yahoo. This is accomplished via a second JavaScript program

within the Driver Frame. Clicking the button labeled 'WWW Search' calls the webSearch

method which opens a document in the Viewer Frame as shown in figure 15.

..t .po'n.. .-tu . Good n. i.OD
De,CJ"ll>bCn. r ••t.(Ity. run. COftt~ ••

URL(,Addreu): rt.t.p:IIUPD,goocoa'

..I

J

.:

World Wide Web Search

S.wth .11il' W.bv..,. 31

Figure 15. WWW search interface.

35

.,.{ .. .,j-:'

The document includes a select object, a text object and a button. The selection

box options are the names of the search engines available to the user via the WlOMS.

Upon selecting a search engine the user should type the search tenns in the text box and

press ENTER or click the button labeled 'GO'. The chosen search engine is accessed

with the search tenns and the results are displayed in the Viewer Frame. Figure 16

shows the result of conducting a search using AltaVista with the search tenn 'car'.

.:J

.10I1l!

'lUa!
'lIlU.lia".
.,"",-

Web Re.ults
t!IIR
lIlIIlLIa.,.........

.~

.,,-8",,'.
·0IUlIU0

I, ii@fiR,j"'1fI1 enll :

- '. L VDLVOSBO--

...._ c:~:------------_.Il>. _

-1...-3-- .-.-
-1IUUI<1 .~

.~ .-

Figure 16. Result of WWW seardJ using AluVista (or 'car'.

4.4.12 Help Menu

The help menu is accessed by clicking the button labeled 'HELP' on the Driver

Frame. This action causes the IITML file containing the help menu to open. It is

displayed in a new window and is designed to help the user understand how to use the

features of the WIOMS (refer to figure 17). Each help category is assigned a button as

36

part of the help menu interface. Placing the mouse over any of these buttons triggers an

onMouseOver event which highlights the button and displays the help information

indicated by the button label. Figure 18 shows the interface with the 'ShowlModify

Entry' button selected.

Wek:ome to WIOMS Help

'Iace your cursor over ttMt buttons on the
left corresponding to the topic you need

help with.

Figure 17. WIOMS help menu.

37

lo_'M_'dDc_I_-..'dnVoIl.........
dOClIpr.... _UIll:

OIc:t 1MWtOMS bullon"'_~....£~

To........,"'_:
_a_deocl!C>_nb_b""_"~·

Figure 18. WIOMS belp meau witb 'ShowlModify Entry selected.

4.4. 13 History

The history Jist of the current browser session can be accessed by initiating the

onClick event of the 'Show History' button in the Driver Frame. The showHistory

method handles the event and produces an alert box containing the Uniform Resource

Locator of each document in the history list. An example of the alert box produced by

the showHistory method is shown in figure 19.

38

l' 1ft.:,,, ;leW' e, ¥

s.-&Ity 1('(Sk;"ffl1bAM±jjM ,

~ 8pOrto .,..- . f ~:
DncnptloD: r---~ ftOry. , :.Jj, ..,.......,.....

UlU. (Add....); F<.'rr...... lIO'."" ~

WC-c. tlMW... blf......O" 5 1~S,.....(WIOMS)

Figure 19. Result of clicking 'Sbow Hi.tory'.

39

CHAPTER V

SUMMARY, CONCLUSION, AND FUTURE WORK

5.1 Summary

The World Wide Web is growing at a rapid pace. Trends in web navigation

patterns have been studied by several authors, and recent surveys reveal that among the

primary needs of the expanding user base are resource relocation, document relevance

detennination, and organization of fOWld information. The history and bookmarking

features of the Netscape Navigator browser address some of these needs. However, these

features are inadequate. As a more complete answer tl1is thesis proposes a Web

Infonnation Organization and Management System (WIOMS). The proposed WIOMS

incorporates both current browser features, and additional capabilities in order to address

user needs more completely.

5.2 Contributions and Conclusions

The major contribution of this thesis is a Web Information Organization and

Management System (WIOMS). The WIOMS uses event-driven programming in a

client/server environment. It is a tool that works on top of existing browser software. It

gives the user the ability to view document descriptions and Uniform Resource Locators

(URL) with a single button click, modify the descriptions to suit their need, add entries

40

(consisting of the description and URL) to lists based on user determined

category/priority criteria. In addition, WIOMS includes functions that allow users to

navigate the web, view category/priority lists, save lists in persistent c/ient- tate HTTP

cookies, retrieve lists for use in future browser sessions, or delete a list all together. The

WIOMS also incorporates the ability to perfonn a keyword search on any of the user-

compiled lists as well as to search the World Wide Web per the AltaVista or Yahoo

search engines. There is a button that, when clicked., displays a history consisting of all

URLs visited during the current browser session, a help menu to aid user concerning

WIOMS utilization, and all WIOMS features may be accessed via a user-friendly

interface created using the principles of Graphical User Interface design.

Table 1 provides a comparison of WIOMS with similar tools. It shows that

WIOMS is most complete and provides users with more combined features. WIOMS

answers user concerns while ensuring ease of use through an interface design that

incorporate familiar elements.

41

•
~'.

Fealllre WIOMS Navi- MEMOS Pol' - WWW PHT
Guidor {AHY99] Bookmarks RJ:souroe [Ora991

£MW99] (BEA99) DilCOvery
Tool

fLEA951
WWW Navij!atiOll X X X X
Bookmarking X X

.History X X X
Model History after User Logic X X
Modify Docll.lDellt Description X
Priority/Category Assisnrnent X
Relevance Determination X

(User)
Relevance Determination X X

(Automatic)
RellOlJ]"ce Relocation X
Document Data Extraction X X
Familiar GUI Features X X X X
Keyword Search X X X
WWWSearch X X
InfOllll$on Sharing X X X X

Table 1. WIOMS VI. Similar Tools.

5.3 Future Work

Future work may include adding an automatic bookrnarking feature to monitor

user navigation patterns and add entries to the category/priority lists based on visit

frequency. This thesis implements the WIOMS on top of the Netscape Navigator

browser~ another implementation could extend WIOMS capabilities to others.

42

REFERENCES

[AEA96] Andrews, Kei~ et aI, Visualizing the Internet: Putting the User in the
Driver's Seat, in: CHI '96 Conference Proceedings on Human Factors in
Computing Systems, ACM, 1996, pp. 163.

[AHY99] Archer, Norm, Milena Head, Yufei Yuan. World Wide Web Infonnation
Support Through User Histories, in: Toronto '99 8th International World Wide
Web Conference Poster Proceedings, Foretec Seminars, Inc., 1999, pp. 58-59.

[BEA99]

[Br098J

[Cap98]

[CLV99J

Bufi, Corey, et aI, PowerBookmarks: A System for Personalizable Web
Information Organization, Sharing, and Management, in: Proceedings of the
International Conference on Management of Data, ACM SIGMOD, 1999, pp.
565-567.

Broadhead, Glenn J., Using HTML frames for Institutional Websites, in:
Proceedings on the Sixteenth Annual International Conference on Computer
Documentation, ACM, 1998, pp. 278-285.

Capron, H. L., Computers: Tools for an Information Age, 5th ed., Addison­
Wesley Longman Publishing Company, Inc., 1998.

Chang, Edward, Li, Wen-Syan and Quoc Vu, On Constructing Personalized
Navigation Trees for Web Documents, in: Toronto '99 8th International World
Wide Web Conference Poster Proceedings, Foretec Seminars, Inc., 1999, pp.
94-95.

[DEA92] De Baar, Dennis J. M. J., Coupling Application Design and User Interface
Design, in: CHI '92 Conference Proceedings on Human Factors in Computing
Systems, ACM, 1992, pp.657-660.

[DOL90] Don, Abbe, Oren, Tim and Brenda Laurel, Issues in Multimedia Interface
Design: Media Integration and Interface Agents, in: CHI '90 Conference
Proceedings on Human Factors in Computing Systems, ACM, 1990, pp. 133­
139.

[Eas91] Eastwood, David S., Programming for Events, in: Proceedings of the
International Conference on APL '91, ACM, 1991, pp. 141-149.

43

[FF93] Frank, Martin R. and James D. Foley, Model-Based User Interface Design by
Example and by Answering Questions. in: CHI '93 Conference Proceedings
on Human Factors in Computing Systems. ACM, 1993, pp. 161.

[FGR96] Forsythe. Chris, Grose, Eric M and Julie Ratner. Characterization and
Assessment of HTML Style Guides, in: cm '96 Conference Proceedings on
Human Computer Factors in Computing Systems: Common Ground, ACM,
]996, pp. 115.

[FS98] Frentzen, Jeff and Henry Sobotka, JavaScript Annotated Archives,
OsbomelMcGraw-Hill, 1998.

[Ga197] Galitz, Wilbert 0., Essential Guide to User Interface Design, John Wiley and
Sons, 1997.

[G1'98] Giller, Verena and Manfred Tscheligi, Java Based User Interface Design and
Development, in: cm '98 Proceedings on Human Factors in Computing
Systems, ACM, 1998, pp. 115-1l6.

[Go098] Goodman, Danny, JavaScriptBible, roo Books Worldwide, Inc., 1998.

[Gra99]

[GW99]

[HR96]

[IP96]

[KP96]

[KP92]

Grayson, Ralph, The Design and Implementation of a World Wide Web
Navigation History Tool, 1999.

Govindarajan, Jayesh and Matthew Ward, GeoViser: GeoSpatial Clustering
and Visualization of Search Engine Results, in: Toronto '99 glb International
World Wide Web Conference Poster Proceedings, 1999, pp. 79-83.

Hankin, Chris and Hanne RiisNielson, ACM Computing Surveys, volume 28,
number 2, 1996, pp. 293-294.

Instone, Keith and Steve Pemberton, HCI Issues of the World Wide Web, in:
CHI '96 Proceedings on Human Factors in Computing Systems, ACM, 1996,
pp.423.

Kehoe, Colleen M. and James E. Pitkow, Emerging Trends in the WWW User
Population, Communications of the ACM, June 1996, Volume 39 Number 6,
pp.]06-108.

Kitajima, Muneo, Peter G. Polson, A Computational Model of Skilled Use of
a Graphical User Interface, in: CHI '92 Conference Proceedings on Human
Factors in Computing Systems, ACM,]992, pp.24 I-249.

[LEA95] Lam, Savio L. Y., et aI., A World Wide Web Resource Discovery System,
1995.

44

[MW99] Matias, Yossi, Gadi Wolfman, NaviGuiding Through the Many Faces of the
Web, in: Toronto '99 8th International World Wide Web Conference Poster
Proceedings, Foretec Seminars, Inc., 1999, pp.64-65.

(Nat98] Nation, David A., WebTOC: a Tool to Visualize and Quantify Web Sites
Using a Hierarchical Table of Contents Browser, in: CHI '98 Conference
Proceedings on Human Factors in Computing Systems, ACM, 1998, pp. 185­
186.

[pir98] Pirolli, Peter, Exploring Browser Design Trade-Offs Using a Dynamical
Model of Optimal Infonnation Foraging, in: CHI '98 Conference Proceedings
on Human Factors in Computing Systems, ACM, 1998, pp. 33-40.

(SS97] Sachs, David and Henry Stair, The 7 Keys to Effective Web Sites, Prentice
Hall, 1997.

(WEA97] Wagoner, Richard, et aI., JavaScript Unleashed, 2nd ed., Sams.net, 1997.

[Way97] Wayner, Peter. Java and JavaScript Programming, Academic Press, Inc.,
1997.

[Wit96] Wittenburg, Kent, The WWW Information Glut: Implications for Next­
Generation HCI Technologies, ACM Workshop on Strategic Direction in
Computing Research, 1996.

45

APPENDIX I

IMPLEMENTATION SOURCE CODE

Frame Set

<H1ML>
<HEAD>
<TITLE>Web Infonnation Organization and Management System (WIOMS)<rrITLE>
</HEAD>
<FRAMESET ROWS="50%,50%">

<FRAME NAME="frame I" SRC="WIOMS Driver.htrnI">
<FRAME NAME="frarne2" SRC="WIOMS Viewer.htrnl">

<lFRAMESET>
<IHTML>

Driver Frame

<H1ML>
<HEAD>
<TITLE>PHNT - Driver Frame<rrITLE>
<SCRIPT LANGUAGE="JavaScript">

var Description_array1 = new ArrayO
var Category_array I = new ArrayO
var URL_arrayl = Dew. ArrayO

var DescriptiOD_array2 = new ArrayO
var Category_array2 = new ArrayO
var URL_array2 = Dew ArrayO

var Description_array3 = new ArrayO
var Category_array3 = new ArrayO
vaT URL_array3 = new ArrayO

var DescriptioD_array4 = new ArrayO

46

)

...
J

var Category_array4 = new ArrayO
var URL_array4 =new Array{)

var Description_arrayS = new ArrayO
var Category_arrayS = new ArrayO
var URL_arrayS = new ArrayO

var index1 =-1
var index2 = -I
var index3 = -1
var index4 = -I
var index5 = -I

var Category_names = new ArrayO
var beenCalled = new ArrayO

for(var j = I;j <=5;j++) {
beenCalled[j] = -1

} II end for

var cookieName
var retrieveCookieNarne
var category
var retrieveCookieCategory
var expiration

var URL_value = new String()
var Description_value = new StringO
var Category_value =new StringO
var Cookie_value = new String()

var newWindow
newWindow = window.open("", ItnewWin lt

)

newWindow.blur()

function fillBottomFrameO {
netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserAccess lt

)

top.frames[1].document.open()
var newURL = entry.value
if(newURL != null && newURL != 1111) {

top. frames[1].location.href = newURL
}

} II end function fillBottomFrarne

function fiUNewWindowO {

47

J.,...

netscape.security.PrivilegeManager.enablePrivilege("UniversaLBrowserAccess")
var newURL = documentforms[O].getURL.value
var temp = newURL.substring(0,7)

if (temp != "http://") {
newURL = ''http://'' + documentforms[0].getURL.value

} II end if

newWindow.Iocation.href=newURL
} II end function fiUNewWindow

function showDescriptionO {
netscape. security.PrivilegeManager.enablePrivilege("UniversaJBrowserAccess")

docwnent.fonns[O].currDescription.va.lue = newWindow.document.title
document. forms[O].currURL. value = newWindow.location.href

} II end function showTitle

function storeEntryO {
netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserAccess")

var newDescription = document.fonns[O].currDescription.value
var newCategory = document.forms[O].store.selectedIndex
var newURL = docwnent.forms[O}.currURL.value
var newOptionName
var newPrintOptionName

document.forms[O].store[O].selected = "I"

if(beenCalled[newCategory] = -1) {
if (newCategory = I) {

Category_names[newCategory] = prompt("Choose a CategorylPriority name. It,

"CategorylPriority - 1If)
if(Category_names[newCategory] !=null) {

newOptionName = new Option(Category_names[newCategory] + " - I", 1)
newPrintOptionName=newOption(Category_names[newCategory] +" -1",1)
document.forms[O].store.options[I] = newOptionName
docurnent.forms[O].print.options[l] = newPrintOptionName
beenCalled[newCategory] += 1

} II end if
} II end if
if (newCategory = 2) {

Category_names[newCategory] = prompt("Choose a Category/Priority name.",
"CategorylPriority - 2")

if(Category_narnes[newCategory] != null) {
newOptionName = new Option(Category_names[newCategory] + "- 2", 2)
newPrintOptionName = new Option(Category_names[newCategory] + "- 2", 2)
document.forrns[O].store.options[2] = newOptionName

48

)

)
't

•r

document. fonns[O].print.options[2] = newPrintOptionName
beenCalled[newCategory] += 1

} II end if
} II end if
if (newCategory = 3) {

Category_names[newCategory} =prompt("Choose a CategorylPriority name.",
"CategorylPriority - 3")

if(Category_names[newCategory] != null) {
newOptionName =new Option(Category_names[newCategory] + "- 3", 3)
newPrintOptionName = new Option(Category_names[newCategory] + "_ 3", 3)
document.fonns[O].store.options[3] = newOptionName
documentfonns[O].printoptions[3] = newPrintOptionName
beenCalled[newCategory] += 1

} II end if
} II end if
if(newCategory = 4) {

Category_names[newCategory] = prompt("Choose a CategorylPriority name. ",
"CategorylPriority - 4")

if(Category_names[newCategory] != null) {
newOptionName = new Option(Category_names[newCategory] + "- 4", 4)
newPrintOptionName = new Option(Category_names[newCategory] + "- 4", 4)
document.forms[O].store.options[4] = newOptionName
document.forms[O]. print.options[4] = newPrintOptionName
beenCalled[newCategoryJ += 1

} II end if
} II end if
if (newCategory = 5) {

Category_names[newCategoryJ = prompt("Choose a CategorylPriority name. ",
"CategorylPriority - 5")

if(Category_names[newCategory] != Dull) {
newOptionName = new Option(Category_names[newCategory] + "- 5", 5)
newPrintOptionName =new Option(Category_names[newCategory] + " - 5", 5)
document.fonns[0].store.options[5] = newOptionName
document. forms[O}. print.options[5] = newPrintOptionName
beenCalled[newCategory] += 1

} II end if
} II end if

} II end ifbeenCalled

if (newCategory = 1) {
++indexl
Description_array1[index1] = newDescription
Category_arrayI[index1] = newCategory
URL_array1[index1] = newURL

}
if (newCategory = 2) {

49

)

i..,

++index2
Description_array2[index2] = newDescription
Category_array2[index2] = newCategory
URL_array2[index2] = newURL

}
if (newCategory = 3) {

++index3
Description_array3[index3] = newDescription
Category_array3[index3] =newCategory
URL_array3[index3] = newURL

}
if (newCategory = 4) {

++index4
Description_array4[index4] = newDescription
Category_array4[index4] = newCategory
URL_array4[index4J=newURL

}
ifCnewCategory = 5) {

++index5
Description_array5[index5] = newDescription
Category_array5[index5] = newCategory
URL_array5[index5] = newURL

}
} fiend function storeEntry

function printCategoryO {
netscape.security.PrivilegeManager.enabJePrivilege("UniversalBrowserAccess")

var newIndex = document.forms[O].print.selectedlndex
document. forms[0].print[O].selected = "1"

top. frame2.document.clear()
top. frame2 .document.write("<HTML><HEAD><TITLE>List Contents<fTITLE>")
top. frame2. document.write("<IHEAD><BODY><FORM>")

if(Category_names[newIndex] != nuU)
top.frame2.document.write("<CENfER><HI>Viewing Category/Priority <FONT

COLOR = #FFOOOO>(" + newIndex +") : "+ Category_narnes[newIndex] +
"<IHI ></CENTER>
")

else
top.frame2.document.writeC'<CENTER><Hl>Viewing CategorylPriority <FONT

COLOR = #OOOOFF>C" + newIndex + ") : " + "List Name Undefined" +
"<IHl></CENfER>
")

50

.,
)

·•,
•..

if{newlndex = 1) {
for (var i = 0; i < URL_arrayl.1ength; i++) { II max number elements = 25

top.frame2.documentwrite("URL: "+ URL_arrayl[i] +" ")
top.frame2.document.write(" <INPUf TYPE=\"button\" VALUE=\"GO\"

onCLick=\"top.framel.fillNewWindow2(" + i + "," + newlndex + ")\">")
top.frame2.document.write("
Description: "+ Description_array] [i] + II ")

top.frame2.document.write("

It)
} /I end for

} Ilend if
if(newlndex = 2) {

for (var i = 0; i < URL_array2.1ength; i++) { II max number elements = 25
top.ftame2.docwnent.write("URL: "+ URL_array2[i] + II ")

top.frame2.document.write(" <INPUT TYPE=\"button\" VALUE=\"GO\"
onClick=\"top.framel.fiJINewWindow2(" + i + "," + newIndex + ")\">")

top.frame2.document.write("
Description: "+ Description_array2[i] +" ")
top.frame2.document. write("

")

} II end for
} Ilend if
if (newIndex = 3) {

for (var i = 0; i < URL_array3.length; i++) { II max number elements = 25
top.frame2.document.write("URL: "+ URL_array3(i] + II ")

top.frame2.document. write(" <INPUT TYPE=\"button\" VALUE=\"GO\"
onClick=\"top.framel.fillNewWindow2(" + i + "," + newlndex + ")\">")

top.frame2.docwnent. write("
Description: II + Description_array3[i] +" ")
top.frarne2.document.write("

")

} /I end for
} Ilend if
if (newIndex = 4) {

for (var i = 0; i < URL_array4.length; i++) { II max number elements = 25
top.ftame2.documentwrite("URL: "+ URL_array4[i] + II ")

top.frame2.document. write(" <INPUT TYPE=\"button\" VALUE=\"GO\"
onClick=\"top.frarnel.fillNewWindow2(" + i + "," + newIndex + ")\">")

top. frame2.document. write("
Description: "+ Description_array4[i] +" ")
top.frame2.document. write("

")

} II end for
} Ilend if
if (newIndex = 5) {

for (var i = 0; i <= URL_array5.1ength; i++) { II max number elements = 25
top.frarne2.document.write("URL: "+ URL_array5[i] + II ")

top.frame2.document.write(" <INPUT TYPE=\"button\" VALUE=\"GO\"
onClick=\"top.framel.fiIlNewWindow2(" + i + "," + newIndex + ")\">")

top.frame2.document.write("
Description: "+ Description_array5(i] +" ")
top.frame2.document.write("

")

} II end for
} Ilend if

51

,f

'f

I;.,

I.~

'.J
"

top.frame2.documentwrite("<lFORM></BODY><!HTMl.>")
top.frame2.document.close()

} II end function printArray

function setCookieValues() {
var newCategory = category
var newCookieName =cookieName
var newExpiration = expiration

var oneDay =expiration • 24 ... 60 ... 60 ... lOOO

var expDate = new Date();

expDate.setTime (expDate.getTime() + oneDay)

var pathl = "/pOOl"
var path2 = "/phnt/tool ll

var path3 = III"

if (newCategory = 1) {
URL_value = URL_array1.joinO
Description_value = Description_array1.joinO
Category_value = Category_arrayl.joinO

} II end if
if (newCategory = 2) {

URL_value = URL_array2.joinO
Description_value = Description_array2.joinO
Category_value =Category_array2.joinO

} II end if
if (newCategory = 3) {

URL_value = URL_array3,joinO
Description_value =Description_array3.joinO
Category_value = Category_array3.joinO

} fIend if
if (newCategory = 4) {

URL_value = URL_array4.joinO
Description_value = Description_array4,joinO
Category_value = Category_array4.joinO

} If end if
if(newCategory = 5) {

URL_value = URL_array5.joinO
Description_value = Description_array5.joinO

52

;..

Category_value = Category_arrayS.joinO
} II end if

Cookie_value = URL_value + "Ill + Description_value + "'" + Category_value
setCookie(newCookieName, Cookie_value, expDate, null, null, false)

} II end function setCookieValues

function setCookie (name, value, expires, path, domain, secure) {
var expString = «expires = null) ? ,,,. : C\ expires=" + expires.toGMTStringO»
var pathString = «path = null) ? "" : ("; path=" + path»
var domainString = «domain = null)? "" : ("; domain=" + domain»
var secureString = «secure = true) ? "; secure" : "")
document.cookie = name + "=" + escape (value) + expString + pathString +

domainString + secureString
} /1 end function setCookie

function getSetCookieValues() {
cookieName = prompt("Enter List Name")
if (cookieName != null) {

category = prompt("Enter Category/Priority Number of List to be Saved")
if(category != null) {

expiration = prompt("Choose List Expiration Time: II + "\r" +
"(1) = 1 day (2) = 3 days (3) = 1 week (4) = 2 weeks")

if (expiration != null) {
setCookieValuesO

} II end if3
} II end if2

} II end if 1
} II end functiongetSetCookieValues

function getRetrieveCookieValues() { II need the name and new category
retrieveCookieName = prompt("Enter Name of List to Retrieve. ")
if «retrieveCookieName != null) && (retrieveCookieName != "undefined"» {

retrieveCookieCategory = prompt("Enter Category/Priority Number for Retrieved
List")

if(retrieveCookieCategory != null) {
Cookie_value = getCookie()

if (Cookie_value != null) {
vartempl
vartemp2
temp 1 = Cookie_value.indexott""')
URL_value = Cookie_value.substring(O, tempI-I)

tempI += 1

53

•..
•.,

,.
,.

"
I,
1

-

temp2 =Cookie_value. rastIndexOf{""')
Description_value = Cookie_value.substring(templ, temp2)

temp2 += I
temp1 = Cookie_value.1ength
Category_value = Cookie_value.substring(temp2, tempI)

} II end if
else {

alert("There is No List Named: II + retrieveCookieName.toUpperCaseO)
} II end else

} II end if2
} II end if3
else {

alert("You Must Enter Name ofList to Retrieve. ")
} II end else

II Next the retrieved cookies must be split back into arrays
II corresponding to the category number the user has specified
if (retrieveCookieCategory = l) {

URL_arrayl = URL_value.split(",")
Description_array1 = Description_value.split(",")
Category_arrayl = Category_value.split(",")
indexl = URL_arrayl.length - 1

} II end if
if (retrieveCookieCategory = 2) (

URL_array2 = URL_value.split(",")
Description_array2 = Description_value.split(",It)
Category_array2 =Category_value.spht(" ,It)
index2 = URL_array2.length - 1

} II end if
if (retrieveCookieCategory = 3) (

URL_array3 = URL_value.split(", It)
Description_array3 = Description_value.split(",")
Category_array3 = Category_value.split(",")
index3 = URL_array3.1ength - I

} II end if
if (retrieveCookieCategory = 4) {

URL_array4 = URL_value.split(",")
Description_array4 = Description_value.split(",")
Category_array4 = Category_value.split(", ")
index4 = URL array4.length - I II allows new entries to ba added after cookie is

retri.eved
} II end if
if (retrieveCookieCategory = 5) {

URL_array5 = URL_value.split(",")
Description_array5 = DescriptioD_value.split(",")

54

..

I..
..

..

Category_arrayS = Category_value.split(fI,")
index4 = URL_arrayS.length - 1

} II end if
} II end function getRetrieveCookieValues

function getCookie 0 {
var result = null
var myCookie =" It + document.cookie + ";"
var searchName = " " + retrieveCookieName + "="
var startOfCookie = myCookie.indexOf(searchName)
var endOfCookie
if(startOfCookie != -I) {

startOfCookie += searchName.length
endOfCookie =myCookie.indexOf{";", startOfCookie)
result = unescape(myCookie. substring(startOfCookie, endOfCookie»

} II end if
return result

} II end function getCookie

function clearCookieO {

var clearCookieName = prompt("Enter the name ofthe cookie to delete> ")

var threeDays = 3 * 24 * 60 * 60 • 1000
var expDate = new DateO
expDate.setTime(expDate.getTime() - threeDays)
docurnent.cookie =clearCookieNarne + "=ImOutOtHere; expires=" +

expDate.toGMTString()

} II end function clearCookie

function fiIlNewWindow2(index., array_num) {
II this function allows the new window to be filled with the URL returned by a function

such as search
if (array_nurn = I) {

newWindow.location.href= URL_array1[index]
} II end if
if (array_num = 2) {

newWindow.location.href = URL_array2[index]
} II end if
if (array_num = 3) {

newWindow.location.href= URL_array3[index]
} II end if
if(array_mnn = 4) {

newWindow.location.href = URL_array4[indexJ
} II end if

55

if (array_num = 5) {
newWindow.locationhref = URL_array5[index]

} II end if
} II end fill NewWindow2

function searchCategory 0 {
var searchKeyword = prompt("Enter Keyword to Find. ")
var searchNumber = prompt("Enter CategorylPriority Number of List to Search.")

if «searchKeyword = null) II (searchKeyword = "undefined"»
alert("You Must Enter 1 or More Keywords. ")

else if«searchNumber = null) II (searchNumber = "undefined")
alert("You Must Enter Category/Priority Number. ")

else {
var newArray = new ArrayO
vaT newlndex = 0
var tempI = searchKeyword.toUpperCase() II toUpperCase
vartemp2

if (searchNumber = I) {
for (var i = 0; i < Description_arrayl.length; i++) {

temp2 = Description_array I [i].toUpperCaseO

if(temp2.indexOf(templ) != -1) { II if the keyword is found
newArray[newIndex] = i II find the position in the origingal arrays
newlndex += 1

} II end if
} II end for
if (newlndex = 0) {

var phrase = "Keyword: II + searchKeyword + " NOT FOUND"
alert(phrase)

} else {
top. frame2.document.clear()
top.frame2.docwnent.write("<HTML><HEAD><TITLE>Search

Results</TITLE>")
top. frame2.document. write("<lHEAD><BODY><FORM>")
top.frame2.document.write("<CENTER><Hl>Search Results: "+

searchKeyword + "<IH J><JCENTER>")
for (vaT j = 0; j < newArray.length; j++) {

var tempIndex = newArray[il

top.frame2.document.write("URL: "+ URL_arrayl[templndex])
top.frame2.document.write(" <INPUT rYPE=\"button\" VALUE=\"GO\"

onClick=\"top.frame1.fil1NewWindow2(" + tempIndex + "," + seaTchNumber
+ ")\">")

56

).

'.

top.frame2.document.Mite(u
Description : II +
Description_array1[tempIndex] + u
U)

} II end for
} II end if-else

top.frame2.document. Mite("</FORM><IBODY><IHTML>")
top.frame2.document.close()

} II end if

if (searchNumber = 2) {
for (var i = 0; i < Description_array2.length; i++) {

temp2 = Description_array2[i]. toUpperCase

if(temp2.indexOf{templ) != -1) { II if the keyword is found
newArray[newIndex] = i II find the position in the origingal arrays
newIndex += 1

} II end if
} II end for
if (newlndex = 0) {

var phrase = "Keyword: " + searchKeyword + " NOT FOUND"
alert(phrase)

} else {
top.frame2.document.c1ear()
top. frame2.document. write("<HTML><HEAD><TITLE>Search

Results<ITITLE>")
top. frame2.document. write("</HEAD><BODY><FORM>")
top.frame2.document.write("<CENTER><Hl>Search Results: "+

searchKeyword + "</Hl></CENTER>")
for (var j =0; j < newArray.length; j++) {

var tempIndex = newArrayU]

top.frame2.document.write(fl URL: "+ URL_array2[templndex])
top.frame2.document.write(fI <INPUT TYPE=\"button\" VALUE=\"GO\"

onClick=\'ttop.framel.fillNewWindow2(" + templndex + "," + searchNumber
+ ")\">")

top.frame2.document.write("
Description: " +
Description_array2[tempIndex] + "
")

} /1 end for
} II end if-else

top. frame2 .document.write("</FORM></BODY></lITMl>")
top.frame2.document.closeO

} II end if searchNumber

57

,".•
•

-

if (searchNumber= 3) {
for (var i = O~ i < Description_array3.1ength~ i++) {

temp2 = Description_anay3[i].toUpperCase

if(temp2.indexOt{templ) != -1) { II if the keyword is found
newArray[newIndex] = i /1 find the position in the origingal arrays
newIndex += 1

} II end if
} II end for
if(newIndex = 0) {

var phrase = "Keyword: " + searchKeyword + " NOT FOUND"
alert(phrase)

} else {
top.irame2.document.clear()
top. frame2.document. write("<H1ML><HEAD><TITLE>Search

Results<!fITLE>"}
top. frame2.docwnent. write("</HEAD><BODY><FORM>")
top. frame2.docwnent. write("<CENTER><Hl >Search Results: " +

searchKeyword + "</Hl><1CENTER>")
for (var j = 0; j < newArray.length; j++) {

var tempIndex = newArray[j]

top.frame2.docwnentwrite("URL: "+ URL_array3[templndexJ)
top.frame2.document.write(" <INPUT TYPE=\"button\" VALUE=\"GO\"

onClick=\"top.framel.fiIiNewWindow2(" + tempIndex + "," + searchNumber
+ ")\11>")

top.frame2.document.write(II
Description: " +
Description_array3[templndex] + "
")

} II end for
} II end if-else

top.frame2.document.write("<IFORM><IBODY><IHTML>"}
top. frame2. document.closeO

} II end ifsearchNumber

if (searchNumber= 4) {
for (var i = 0; i < Description_array4.1ength; i++) {

temp2 = Description_array4[i). toUpperCaseO

if(temp2.indexOf{templ) 1= -1) { II if the keyword is found
newArray[newIndex] = i II find the position in the origingal arrays
newIndex += 1

} II end if
} II end for

58

...
"

-

if (newIndex = 0) {
var phrase = "Keyword: II + searchKeyword + " NOT FOUND"
alert(phrase)

} else {
top. frame2.document.clear()
top.frame2.document.write("<HfML><HEAD><TITLE>Search

Results<fI1TLE>")
top.frame2.document.write("<lHEAD><BODY><FORM>")
top.frame2.docwnent.write("<CENTER><Hl>Search Results: "+

searchKeyword + "<lHl></CENTER>")
for (Val j =0; j < newArray.length; j++) {

var tempIndex = newArrayfj]

top.frame2.document.write("URL: "+ URL_array4[tempIndex])
top.frame2.docwnent.write(" <lNPlIT TYPE=\"button\" VALUE=\"GO\"

onClick=\"top.framel.fiIlNewWindow2(" + templndex + "," + searchNumber
+ ")\">")

top.frame2.document. write("
Description : II +
Description_arrBy4[templndex] + "
")

} II end for
} II end if-else

top. frame2.docwnent. write("<lFORM></BODY><IHTML>")
top.frame2.document.closeO

} 1/ end if searchNwnber

if (searchNwnber = 5) {
for (var i = 0; i < Description_arrayS.length; i++) {

temp2 = Description_array5[i]. toUpperCaseO

if(temp2.indexOf{templ) != -1) {/I if the keyword is found
newArray[newIndex) = ill fmd the position in the origingal arrays
newlndex += 1

} /1 end if
} 1/ end for
if (newIndex = 0) (

var phrase = "Keyword: " + searchKeyword + " NOT FOUND"
alert(phrase)

} else {
top.frame2.document.clear()
top.frame2.document.write("<HTML><HEAD><TITLE>Search

Results<!TITLE>")
top. frame2. document.write("<lHEAD><BODY><FORM>")

59

-

top.frame2.document.write("<CENTER><Hl>Search Results: " +
searchKeyword + "</HI><ICEN1ER>If)

for (var j = 0; j < newArrayJength; j++) {
var tempIndex = newArray[j]

top.frame2.document.wri1e(IfURL: "+ URL_array5[tempIndexJ)
top.frame2.document.write(1f <INPUf TVPE=\"button\1f VALUE=\IfGO\"

onClick=\lftop.framel.fillNewWindow2(1f + tempIndex + If," + searchNumber
+ ")\If>")

top.frame2.document.write("
Description : " +
Description_anay5[tempIndex] + "
If)

} II end for
} II end if-else

top.frame2.document.write(If<IFORM></BODY></HTML>")
top.frame2.document.closeO

} II end if searchNumber

} II end if searchKeyword != null
} II end function searchCookie

function helpMenuO {
var helpWindow
helpWindow = window.open(IfHelp.html lf . "helpWinlf , Iftoolbar=O, width=700.

height=400, resizable=O")
} II end function help

function webSearchO {
netscape.security.PrivilegeManager.enablePrivilege(IfUniversalBrowserAccess")

top. frames[1].document.openO
var newURL = "WebSearch.html"
if(newURL 1= null && newURL != Iflf) {

top. frames[1] .location.href= newURL
}

} II end function fillBottomFrame

function showHistoryO {
netscape. security.PrivilegeManager.enablePrivilege("UniversaIBrowserAccesslf)

var histInfo = ""

for(var histCount=O; histCount < newWindow.history.Iength; histCount++) {
histInfo += newWindow.history[histCount] + If\r"

}
if(newWindow.history.length != 0)

alert(histlnfo)

60

".

.... ,..

..

-

else
alert("History is empty. tI)

} // end function showHistory

</SCRlPT>
</HEAD>
<BODY bgcolor="#FFFFFF">

<FORM method="POST">

<TABLE BORDER=O>

<TR>
<TO ALIGN=RIGHT>Location:<ITD>
<TO>

<INPUT TYPE="text" NAME="getURL" SIZE=60 MAXLENGTH=60
onChange="filINewWindow()">

<INPUT TYPE="button" VALUE="GO" onClick="fiIlNewWindow()">
<rrD>

</TR>

<TR>
<td></td>
<td>

<INPUT TYPE="button" NAME="viewDescription" VALUE="Show Entry"
onClick="showDescriptionO">

<SELECT NAME="store" SIZE=l onChange="storeEntryO">
<OPTION>(Store Entry)
<OPTION VALUE=l>CategoryfPriority. I</OPTION>
<OPTION VALUE=2>Category/Priority - 2</OPTION>
<OPTION VALUE=3>CategoryfPriority - 3<10PTION>
<OPTION VALUE=4>Category!Priority - 4<10PTION>
<OPTION VALUE=5>Category!Priority - 5<10PTION>

</SELECT>
<SELECT NAME="print" SIZE=l onChange="printCategoryO">

<OPTION> (Show List)
<OPTION VALUE=l>Print Category!Priority - l</OPTION>
<OPTION VALUE=2>Print Category!Priority - 2</OPTION>
<OPTION VALUE=3>Print CategorylPriority - 3</OPTION>
<OPTION VALUE=4>Print Category!Priority - 4</OPTION>
<OPTION VALUE=5>Print CategorylPriority - 5</OPTION>

</SELECT>
<fIT»

<ITR>

61

-

<TR>
<TO ALIGN=RIGHT>Description :<fI1»
<rD><TEXTAREA NA.ME="currDescription" ROWS=2 COLS=36

WRAP="soft"><!TEXTAREA><ffD>
<!fR>

<TR>
<TO ALIGN=RIGHT>URL (Address) :<!fD>
<TO><TEXTAREA NAME="currURL" ROWS=1 COLS=59

WRAP="soft"><ffEXTAREA><!fD>
<ffR>

</table>
<hr>
<table border=O>

<TR>
<TD><!TD>
<TO>

<INPUT TYPE="button" NAME="setCookie" value="Save List"
onClick="getSetCookieValuesO">

<INPUT TYPE="button" NA.ME="retrieveCookie" value="Retrieve List"
onClick="getRetrieveCookieValuesO">

<INPUT TYPE="button" NAME="deleteCategory" VALUE="Delete List"
onClick="clearCookieO">

<INPUT TYPE="button" NAME="HELP" VALUE=" HELP"
onCLick="helpMenuO">

<INPUT TYPE="button" NAME="search" VALUE="Keyword Search"
onClick="searchCategoryO">

<input type = "button" value="WWW Search" onClick="webSearchO">
<input type = "button" value="Show History" onClick="showHistoryO">

<ltd>
<rrR>

<!fABLE>
</FORM>

</BODY>
<IHTML>

Viewer Frame

<HTML>
<HEAD>

62

<TITLE>WIOMS • Viewer<ffITLE>
</HEAD>

<BODY BGCOLOR="#FFFFFF">
<P>

<CENTER><H3>Welcome to the Web Infonnation Organization and Management
System (WIOMS)<1H3></CENTER>

</P>

<P align=center>

Creator: Tynan
Grayson<lA>

</P>
</BODY>
<IHTML>

Web Search

<H1ML>
<HEAD>
<TITLE>Web Search<fTITLE>
<!HEAD>
<BODY>

<SCRIPT>
vaT MAX_ENGINES = 30;
vaT searchString_STRING = "hunting+the+searchString";

function makeArray(n) {
for (var i = 1; i <= n; i++) {

this[i] = 0;
}
this.maxlen = n;
this.len = 0;
return this;

} II end function makeArray

var searchEngines = new makeArray(MAX_ENGINES);

function fmdSubstring(stringToFind, searcbLocation) {
var i, stringToFindn = stringToFind.length, searchLocationLen =

searchLocation.length;
for (i=O; i<=searchLocationLen-stringToFindn; i++) {

if (stringToFind = searchLocation.substring(i,i+stringToFindn»

63

~I.....

return i~

}
return false;

} II end function findSubstring

function engine(name, opts, home, search) (
var searchString == findSubstring(searchStrinILSTRING, search);
this.name = name;
this.opts = opts~

this. home = home~

this.pre_searchString = search. substring(O,searchString)~
this.post_searchString= search.substring(searchString+searchString_STRING.length.,

search. length);
} II end function engine

function add(name, opts, home, search) {
searchEngines.len++;
if (searchEngines.len <= searchEngines.maxlen) {

searchEngines[searchEngines.len] = new engine(name, opts, home, search)
}
else {

alert("Better increase MAX_ENGINES: "+ searchEngines.len + ">" +
searchEngines.maxIen)

}
} II end function add

II add search engines
add("the Web: AltaVista", "SELECTED", ''http://altavista.digital.coml",''http:!/

altavista.digital.com/cgibinlquery?pg=q&what=web&fmt=d&q=hunting+the+
searchString");

add("the Web: Yahoo!", II ","http://www. yahoo.cornl" ,''http://search.yahoo.com/binl
search?p=hunting+the+searchString");

function handleFonn(fonn) {
form.submitO~ II allows the use of <enter> to initiate the first search
var i, oldq=fonn.query.value, newq=""~
for (i=O~ i<oldq.lengtb~ i++) {

var thischar = oldq.charAt(i);
if (thischar !== ' ')

newq +== thischar;
else if (lastchar != ' ')

newq += '+'~

lastchar == thischar;
} II end for
var searchEngine = searchEngines[l+fonn.service.selectedIndex];
location.href= newq ? searchEngine.pre_searchString + newq +

64

~I.....

searchEngine.post_searchString : searchEngine.home~
} II end function handleFonn

function displayFormO {
document.writeln('<bJ><Center>World Wide Web Searcb</center><lh1>
');
document. writeln('<TABLE border=O><TR><TD>')~

document. writeln('<FORM OnSubmit="handleForm(this)~return false">')'
document.writeln('Search : <SELECT name=nservice">');
for (i=l~ i <= searchEngines.len~ i++) {O document.writeln(n<OPTION n+

searchEngines[i].opts + n> " + searchEngines[i].name)~

} II end for
document.writeln('</SELECT>');
document. writeln(' <INPUT value="" size=45 name="queryn>,);
document.write1n('<input type=submit value=" GO">');
document. writeln('<lFORM>')~
document.writeln('</td><fTR><!fABLE>');

}

displayFormO;
</SCRlPT>
<P>
</BODY>
<!HTML>

Help Menu

<HTML>
<HEAD>
<TITLE>WIOMS - Help<!TITLE>
<SCRIPT LANGUAGE="JavaScript">
Irrhis script changes the graphic on mouse over and a graphic in
Ilanother part ofthe screen
{

altO = new Image()~

altO.src = "help_intr02.gif'~

altl = new !magee);
alt1.src = "heJp_navigate.gif';
al12 = new ImageO;
al12.src = "help_show_mod.gif';
al13 = new ImageO~

al13.src = "help_stor_ent.gif';
alt4 = new ImageO;
a1t4.src = "help_showJis.gif';
alt5 = new ImageO;

65

alt5.src = "help_save_lis.gif';
alt6 = new Image();
alt6.src = "helpJetrv_lis.gif';
alt7 = new lmageO;
alt7.src = "help_deJ_lis.gif';
alt8 = new Image();
alt8.src = "help_key_sear.gif';
alt9 = new Image();
alt9.src = "help_www_sear.gif';

graphic1= new ImageO;
grapbic1.src = "help_button_ofIgif';
graphic 1on = new ImageO;
graphic lon.src = "help_button_on.gif';

}

function imageChange(imageID,imageName,imageID2,imageName2) {
{
document.images[imageID].src = eval(imageName + ".sre");
doeurnent.images[imageID2].src = eval(imageName2 + ".src");
}

}
</SCRIPT>

<CENTER>
<TABLE border="O" width=" 100%" height=" 100%">

<TR>
<TD al ign=left valign=top height="] 00%">

<A HREF="Help.html"
ONMOUSEOVER="imageChange('global','altl ','one','graphie Ion')"
ONMOUSEOUT="imageChange('global','altO','one','graphie 1')">

<IMG SRC="help_button_ofIgif' align="abseenter" BORDER="O"
NAME="one"><IA>Navigate

<A HREF="Help.html"
ONMOUSEOVER="imageChange('global ','alt2','two','graphie Ion')"
ONMOUSEOUT="imageChange(lglobal',laltO','two','graphie t')">

<IMG SRC="help_button_offgif' align="abseenter" BORDER="O"
NAME="two">ShowlModify Entry

<A HREF="Help,html"
ONMOUSEOVER="imageChange('global','alt3','three','graphielon')"
ONMOUSEOUT="imageChangeCglobal','altO','three','graphic]')">

<IMG SRC="help_button_otT.gif' align="abscenter" BORDER="O"
NAME="three">Store Entry

66

'-'.l~'."..
",

<A HREF="Help.html"
ONMODSEOVER="imageChange('global','a1t4','four','graphiclon')"
ONMODSEOUT="imageChange('global','altO','four', 'graphic I')">

<IMG SRC="help_button_offgif' align="abscenter" BORDER="O"
NAME= IIfour">Show List

<A HREF="Help.html"
ONMOUSEOVER="imageChange('global','alt5','five', 'graphic I on')"
ONMODSEOUT="imageChange('global','altO','five','graphicl ')">

<IMG SRC="help_button_offgif' align="abscenter" BORDER="O"
NAME="five"><IA>Save List

<A HREF="Help.html"
ONMOUSEOVER="imageChange('global','alt6','six','graphic Ion')"
ONMODSEOUT="imageChange('global','altO','six','graphic1')">

<IMG SRC="help_button_offgif' align="abscenter" BORDER="O"
NAME="six">Retrieve List

<A HREF="Help.html"
ONMOUSEOVER="imageChange('global','alt7','seven','graphic1on')"
ONMOUSEOUT="imageChange('global','altO','seven','graphicI')">

<IMG SRC="help_button_offgif' aIign="abscenter" BORDER="O"
NAME="seven">Delete List

<A HREF="Help.html"
ONMOUSEOVER="imageChange('globaI','alt8','eight','graphiclon')"
ONMOUSEOUT="imageChange('global','altO','eight','graphic1')">

<IMG SRC="help_button_offgif' align="abscenter" BORDER="0"
NAME="eight">Keyword Search

<A HREF="Help.html"
ONMOUSEOVER="imageChange('global','alt9','nine','graphic Ion')"
ONMOUSEOUT="imageChange('globaI','altO','nine','graphicl ')">

<IMG SRC="help_button_ofIgif' align="abscenter" BORDER="O"
NAME="nine"><IA>WWW Search

<rrD>

<1D align=center valign=center>

<!TD>
<ffR>

</TABLE>
</CENTER>

<!HEAD>

67

<BODY BGCOLOR=#FFFFFF>
</BODY>
</IITML>

68

Application Program

Current Document

Event

HTML

Internet

Cookies

URL

Web Indexer Robot

APPENDIX II

GLOSSARY

Computer programs that perform useful work not related to the
computer itself

Refers to the document currently loaded in the New Window
created by WIOMS.

A result ofuser/GUI interaction.

A set of codes that can be inserted into text files to indicate
special typefaces, inserted images, and links to other hypertext
documents.

A cooperative message-forward system, linking computer
networks allover the world.

Persistent Client State IfITP Cookies are a general mechanism
which server side connections (such as CGI scripts) can use to
both store and retrieve information on the client side of the
connection.

A way of specifying the location of publicly available
information on the Internet.

An autonomous World Wide Web browser that communicates
with World Wide Web servers using Hypertext Transfer
Protocol. It visits a given Web site, traverses hyperlinks in a
breadth first manner, retrieves Web pages, extracts keywords
and hyperlink data from the pages, and inserts the keywords
and hyperlink data into an index [LEA95].

69

APPENDIX III

LIST OF ACRONYMS

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

MEMOS Memory Extender Mechanism for Online Searching

WIOMS Web Information Organization and Retrieval System

URL Unifonn Resource Locator

WWW World Wide Web

70

VITA

Tynan D Grayson

Candidate for the Degree of

Master of Science

Thesis: A WEB INFORMATION ORGANIZATION AND MANAGEMENT
SYSTEM

Major Field: Computer Science

Biographical:

Personal Data: Born in Oklahoma City, Oklahoma, on July 22, 1973, the daughter
ofMilton L., Sr. and Carolyn Anderson.

Education: Graduated from Capitol Hill High School, Oklahoma City, Oklahoma in
May, 1991; received Bachelor of Science degree in Computer Science from
Langston University, Langston, Oklahoma in May,]996. Completed the
requirements for the Master of Science degree with a major in Computer
Science at Oklahoma State University in December, 1999.

Experience: Employed by Oklahoma State University, Department of Computer
Science as both a graduate research assistant and a graduate teaching assistant;
Employed by Oklahoma State University, Graduate College, as an instructor of
World Wide Web development and ethics during the summers of 1998 and
1999; Oklahoma State University, Department of Computer Science, 1996 to
present.

Professional Memberships: Association of Computing Machinery.

",...

