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ARTICLE

Persistent spin texture enforced by symmetry
L.L. Tao 1 & Evgeny Y. Tsymbal1

Persistent spin texture (PST) is the property of some materials to maintain a uniform spin

configuration in the momentum space. This property has been predicted to support an

extraordinarily long spin lifetime of carriers promising for spintronics applications. Here, we

predict that there exists a class of noncentrosymmetric bulk materials, where the PST is

enforced by the nonsymmorphic space group symmetry of the crystal. Around certain high

symmetry points in the Brillouin zone, the sublattice degrees of freedom impose a constraint

on the effective spin–orbit field, which orientation remains independent of the momentum

and thus maintains the PST. We illustrate this behavior using density-functional theory

calculations for a handful of promising candidates accessible experimentally. Among them is

the ferroelectric oxide BiInO3—a wide band gap semiconductor which sustains a PST around

the conduction band minimum. Our results broaden the range of materials that can be

employed in spintronics.
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In recent years, there has been increasing interest in materials
and structures, where quantum effects are responsible for
novel physical properties, revealing the important roles of

symmetry, topology, and dimensionality1. Among such quantum
materials are graphene, topological insulators, Weyl semimetals,
and superconductors. In many cases, the quantum materials
derive their properties from the interplay between the electron,
spin, lattice, and orbital degrees of freedom, resulting in complex
physical phenomena and emergent functionalities2. These new
functionalities are interesting due to their potential for a con-
tinuously evolving field of spintronics3.

Regarding the new phenomena, often a special role is played by
the spin–orbit coupling (SOC), which on its own has inspired a
vast number of predictions, discoveries, and novel concepts4. In a
system, lacking an inversion center, the SOC results in an effec-
tive momentum-dependent magnetic field acting on spin σ. This
field Ω(k) is odd in the electron’s wave vector (k), as was first
demonstrated by Dresselhaus5 and Rashba6, so that the effective
SOC Hamiltonian can be written as

HSO ¼ ΩðkÞ � σ; ð1Þ

preserving the time-reversal symmetry. The specific form of Ω(k)
depends on the space symmetry of the system. For example, in
case of the C2v point group, the Dresselhaus and Rashba SOC
fields can be written as ΩDðkÞ ¼ λDðky; kx; 0Þ and
ΩRðkÞ ¼ λRð�ky; kx; 0Þ, respectively. Such SOC leads to a chiral
spin texture of the electronic bands in the momentum space, as
shown in Fig. 1a, b. The chiral spin textures driven by the SOC
can be exploited to create nonequilibrium spin polarization7,
produce the spin Hall effect8, and design a spin field-effect
transistor (FET)9. Recently, these and other related phenomena
have received significant attention and led to the emergence of a
new field of research—spin-orbitronics4.

Although large SOC is beneficial for realizing these phenom-
ena, it plays a detrimental role for the spin life time. In a diffusive
transport regime, impurities and defects scatter electrons, chan-
ging their momentum and randomizing the spin, due to the
momentum-dependent spin–orbit field ΩðkÞ. This process is
known as the Dyakonov-Perel spin relaxation10, reduces the spin
life time and, thus limits the performance of potential spintronic
devices, e.g., the spin FET. A possible way to circumvent this
effect is to engineer a structure, where the spin–orbit field
orientation is momentum-independent11. This can be achieved,
in particular, if the magnitudes of λR and λD are equal, i.e.,
λ=2 ¼ λD ¼ ± λR, resulting in a unidirectional spin–orbit field,
ΩPST ¼ λðky; 0; 0Þ or ΩPST ¼ λð0; kx; 0Þ, and thus a momentum-
independent spin configuration, known as the persistent spin
texture (PST) (Fig. 1c)12.

Under these conditions, electron motion is accompanied by
spin precession around the unidirectional spin–orbit field,
resulting in a spatially periodic mode known as a persistent spin
helix (PSH)13. The PSH state arises due to the SU(2) spin rotation
symmetry, which is robust against spin-independent disorder and
renders an ultimately infinite spin lifetime14. The PSH has been
experimentally demonstrated in the two-dimensional electron gas
semiconductor quantum-well structures, such as GaAs/
AlGaAs15,16 and InGaAs/InAlAs17,18, where the required condi-
tion of equal Rashba (λR) and Dresselhaus (λD) parameters was
realized through tuning the quantum-well width, doping level,
and applied external electric field.

Despite these advances, a number of difficulties impede the
practical application and further experimental studies of these
semiconductor heterostructures. Satisfying the stringent condi-
tion of equal λR and λD parameters is technically nontrivial
because it requires a precise control of the quantum-well width
and the doping level. Furthermore, due to the small values of
these parameters (a few meV Å), efficient spin manipulation by
an applied electric field is questionable. Recently, based on first-
principles calculations a PST was predicted for a wurtzite ZnO
ð10�10Þ surface19 and a tensile-strained LaAlO3/SrTiO3 (001)
interface20. However, for the latter, too large tensile strain (>5%)
is required to achieve the desired property, whereas for the for-
mer, the SOC energy splitting is too small (~1 meV). It would be
desirable to find bulk materials where the PST is a robust intrinsic
bulk property. Recently, SnTe (001) thin films have been pro-
posed to realize a PSH21.

Here, we propose a conceptually different approach to achieve
the PST. We demonstrate that there exist a class of non-
centrosymmetric bulk materials where the PST is enforced by
nonsymmorphic space group symmetry of the crystal, i.e., the
space group combining point-group symmetry operations with
nonprimitive translations22. Around certain high symmetry
points in the Brillouin zone, the sublattice degrees of freedom

ky

kx kx kx

ky ky

ΩΩPST (k) = �(0,kx , 0)ΩD (k) = �D (ky ,kx , 0)ΩR (k) = �R (–ky ,kx , 0)
a b c

Fig. 1 Spin texture. a–c Spin structure resulting from spin-orbit coupling in a system lacking an inversion center: Rashba (a), Dresselhaus (b), and persistent
spin texture (c) configurations. Blue and red arrows indicate spin orientation for the two electronic subbands resulting from SOC. Expressions for the
respective SOC fields ΩðkÞ are shown. Note that ΩD is represented in the coordinate system with the x- and y-axes being perpendicular to the mirror
planes of an orthorhombic system (Mx and My in Fig. 2a)

Table 1 Classification of orthorhombic space groups with no
inversion symmetry according to translation vectors
characterized by indices (μ2v1). Nonzero spin components in
high symmetry points and band degeneracy along high
symmetry lines are shown

(μ2 ν1) X Y Band degeneracy Space group no.

ð120Þ sy – X–S 28, 29, 31, 40, 46

ð01
2Þ – sx Y–S 30, 39

ð1212Þ sy sx X–S and Y–S 32, 33, 34, 41, 45
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impose a constraint on the effective spin–orbit field, which
orientation remains independent of the momentum and thus
maintains PST. The symmetry-enforced PST survives over the
large part of the Brillouin zone including band edges, as we
demonstrate using density-functional theory (DFT) calculations
for BiInO3 and other materials with appropriate crystal group
symmetry.

Results
Symmetry analysis. We consider orthorhombic nonsymmorphic
crystals with broken space inversion symmetry (space groups
listed in Table 1)22. Figure 2a shows an orthorhombic crystal
lattice, which contains the following symmetry operations: (1) the
identity operation E; (2) glide reflection �Mx , which consists of
mirror reflection about the x= 0 plane Mx followed by the
ðμ1 ν1 η1Þ translation:

�Mx : ðx; y; zÞ ! ð�x þ μ1; y þ ν1; z þ η1Þ; ð2Þ

(3) glide reflection �My , which consists of mirror reflection
about the y= 0 plane My followed by the ðμ2 ν2 η2Þ translation:

�My : ðx; y; zÞ ! ðx þ μ2;�y þ ν2; z þ η2Þ; ð3Þ

(4) two fold screw rotation �C2z , which consists of twofold
rotation around the z-axis C2z followed by the ðμ3 ν3 η3Þ
translation:

�C2z : ðx; y; zÞ ! ð�x þ μ3;�y þ ν3; z þ η3Þ: ð4Þ

Here and below, the translation and reciprocal vectors are
given in units of lattice constants and μi; νi; ηi ¼ 0; 1

2 (i= 1, 2, 3).

The glide (screw) symmetry is reduced to mirror (rotation)
symmetry if μi ¼ νi ¼ λi ¼ 0. In addition, we assume that the
system exhibits time-reversal symmetry T.

Now, we demonstrate the formation of the PST around the X
point k ¼ ðπ; 0; 0Þ in the Brillouin zone of the crystal (Fig. 2b).
First, we consider the X–S high symmetry line k ¼ ðπ; ky; 0Þ.
Along this line, the little group of wave vector k includes the
symmetry operators �Mx and Θ � T �My , as follows from ky being
invariant under the transformations determined by these
symmetry operators. Since T2 ¼ �1 for a spin-half system, we
find Θ2 ¼ T2 �M2

y ¼ e�2iμ2π . Therefore, for the space groups with
μ2 ¼ 1

2, along the X–S line, Θ2 ¼ �1 so that all bands are double
degenerate. The doublet states ðψk; ΘψkÞ form a Kramers pair.

At the X point, �My commutes with the Hamiltonian of the
crystal, i.e., ½ �My;H� ¼ 0, and the doublet ðψX; ΘψXÞ can be labeled
using the eigenvalues of �My . Since �M2

y ¼ 1 at this point, we have
�Myψ

±
X ¼ ±ψ ±

X and �MyΘψ
±
X ¼ ±Θψ ±

X . Thus, by symmetry, there
are two conjugated doublets at the X point, ðψþ

X ; Θψ
þ
X Þ or

ðψ�
X ; Θψ

�
X Þ, which are distinguished by the �My eigenvalues. Within

each of the two doublets, matrix elements of the spin operators σx
and σz are equal to zero. This is due to the fact that in the spin

space �My anticommutes with σx and σz , i.e., �My; σx;z

n o
¼ 0, which

results in ψþ
Xh jσx;z ψþ

Xj i ¼ ψþ
Xh j �M�1

y σx;z �My ψ
þ
Xj i ¼ � ψþ

Xh jσx;z ψþ
Xj i,

and hence ψþ
Xh jσx;z ψþ

Xj i ¼ 0. The similar analysis leads to
Θψþ

Xh jσx;z Θψþ
Xj i ¼ 0 and ψþ

Xh jσx;z Θψþ
Xj i ¼ 0. The same conclu-

sion holds for the other doublet ðψ�
X ; Θψ

�
X Þ.

We see, therefore, that any state, which represents a linear
combination of the states comprising either doublet, i.e., ψ ±

k ¼
akψ

±
X þ bkΘψ

±
X (where ak and bk are some coefficients), has zero

expectation values of σx;z and zero spin components
sx;z ¼ 1

2 ψ ±
k

� ��σx;z ψ ±
k

�� � ¼ 0. The only nonzero component of the
spin is, therefore, sy . Thus, as long as the two doublets are not
mixed, the spin orientation is forced to be along the y-direction.

This explains the PST around the X point. At the X point the
SOC splits the fourfold degenerate state into two doublets with
splitting Δ and eigenvalues of �My ¼ ± 1, as shown in Fig. 2c.
When moving away from this point the perturbation breaks the X
point symmetry and further splits the doublets, each into two
singlets (unless going along the X–S symmetry line). These states
preserve the unidirectional spin texture along the y-direction
unless the perturbation is so strong that it mixes the doublets.
However, due to the perturbation being linear with respect to k
(measured from the X point), there is always a range of k vectors,
where it is small compared to the splitting between the doublets.
In practice, this range of k values may be substantial and can span
a large portion of the Brillouin zone including the band edges
responsible to transport and optical properties in semiconductor
materials.

A similar analysis applies to the Y point, where k ¼ ð0; π; 0Þ
(Fig. 2b). The bands are double degenerate along the high
symmetry Y–S line, where k ¼ ðkx; π; 0Þ, provided that ν1 ¼ 1

2.
The wave functions at the Y point are the eigenstates of the spin
component σx . A portion of the Brillouin zone around the Y
point maintains the PST with the spin pointing along the x-
direction. In Table 1 we classify space groups of the orthorhombic
crystal system according to the ðμ2 ν1Þ value and show those spin
components s ¼ ðsx; sy; szÞ which remain nonzero around the
respective high-symmetry points.

DFT analysis of bulk BiInO3. In the following, we reinforce our
symmetry-based conclusions by performing DFT calculations for
a number of bulk compounds, which belong to selected space
groups listed in Table 1. Details of the DFT calculations are

C2z

My

Mx

ky

kx

U
T

R

YΓ
X S

a

c

SOC=0

SOC≠0
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b kz
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O
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Δ

–1
–

∝ k
+

+
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Fig. 2 Crystal lattice and energy band splitting. a Orthorhombic crystal
lattice with symmetry operations indicated. C2z denotes a twofold rotation
operator, and Mx and My represent two mirror reflection operators. b The
first Brillouin zone with the high symmetry k points indicated: Γ (0, 0, 0), X
(π, 0, 0), S (π, π, 0), Y (0, π, 0), Z (0, 0, π), U (π, 0, π), R (π, π, π), and T (0,
π, π), the k point coordinates are given in units of the reciprocal lattice
constants. c Schematic splitting of the energy levels around the X point.
SOC splits the state into two doublets with eigenvalues of �My ¼ ± 1, which
are further split into singlets with sign-reversed expectation values of sy .
The energy level order labeled by �My and sy is material dependent
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described in Section Methods. First, we focus on perovskite
BiInO3 (space group No. 33), which has been synthesized
experimentally and is stable at ambient conditions23. The BiInO3

crystal structure (Fig. 3) belongs to the Pna21 orthorhombic
phase (space group No. 33). The symmetry operations of this
group involve the glide reflection �Mx (2) with
ðμ1 ¼ 1

2; ν1 ¼ 1
2 ; η1 ¼ 1

2Þ, the glide reflection �My (3) with ðμ2 ¼
1
2; ν2 ¼ 1

2 ; η2 ¼ 0Þ and the twofold screw rotation �C2z (4) with
ðμ3 ¼ 0; ν3 ¼ 0 ; η3 ¼ 1

2Þ. The BiInO3 crystal structure is derived
from the centrosymmetric GdFeO3-type perovskite structure
(Pnma group) through polar displacements, which break space
inversion symmetry. As seen from Fig. 3a, each bismuth or
indium atom in the BiInO3 structure is surrounded by a distorted
oxygen octahedron typical for the GdFeO3-type perovskite
structure. In addition, there are polar displacements seen, e.g., in
Fig. 3b from displacement of Bi3+ ions (~0.25 Å) from their
symmetric positions with respect to the mirror Pnma plane
(dotted line in Fig. 3b). The polar displacements yield a finite
polarization pointing in the [001] direction. There are two
topologically equivalent variants of the space group Pna21 with
opposite polarization (pointing in the ½001� or ½00�1� directions)
indicative to the ferroelectric nature of BiInO3. The calculated
polarization is about 33.6 μC/cm2.

Figure 4a shows the calculated band structure of BiInO3

without SOC along high-symmetry lines in the Brillouin zone
(shown in Fig. 2b). We find that the conduction bands are mostly
composed of the hybridized Bi-6p and In-5s orbitals, whereas the
valence bands are dominated by the O-2p orbitals with a small
admixture of the Bi-6s states. It is seen from Fig. 4a that BiInO3 is
an indirect band-gap semiconductor with the valence band
maximum located at the T point and the conduction band
minimum (CBM) located along the Γ–X symmetry line. The
calculated band gap is about 2.6 eV.

Including SOC (Fig. 4b) reduces the band gap to about 2.3 eV
and strongly affects the electronic structure of conduction bands
of BiInO3. Comparing the band structures calculated with SOC
(Fig. 4b) and without SOC (Fig. 4a), a sizable band spin splitting
produced by the SOC is seen at some high symmetry k points and

along certain k paths. At the X point, which is located in the
proximity of the CBM, the two lower energy states are doublets
resulting from the SOC splitting. The splitting is large, i.e., Δ ≈
0.26 eV. As expected, the bands along the X–S line are double
degenerate protected by the Θ symmetry. When moving from the
X to Γ point the doublets are split into singlets with a nearly linear
dispersion (see inset of Fig. 4b).

Lifting the degeneracy along the Γ–X line, where k ¼ ðkx; 0; 0Þ,
can be understood from the little group of wave vector k,
which has symmetry generators �My and ~Θ � T �Mx . Along
this line ~Θ2 ¼ T2 �M2

x ¼ e�iky�ikz ¼ 1 and thus the Bloch states
ψk and ~Θψk are not degenerate. In addition, each state ψk can be
labeled using the eigenvalues of �My . Since �M2

y ¼ �e�ikx , we
obtain �My ψ

±
k

�� � ¼ ± ie�i
kx
2 ψ ±

k

�� �
. Therefore, there are four non-

degenerate Bloch states, ψ ±
k and ~Θψ ±

k , evolving from the X point
when moving along the X–Γ line (inset of Fig. 4b). Interestingly,
crossing the ψþ

k and ψ�
k bands is enforced and protected by

symmetry, resulting in a hourglass-shaped band dispersion24,25

(see Supplementary Note 1).
The SOC splitting at the Y point is smaller Δ ≈ 0.09 eV.

The bands along the Y–S line are double degenerate protected by
the ~Θ symmetry, but split when moving from the Y to Γ point.
This behavior can be understood using the considerations similar
to those we used to explain band degeneracies and splittings
around the X point.

Next, we explore the spin texture around the X and Y points.
According to Table 1, the space group No. 33 for BiInO3 supports
the PST with the uniform spin orientation along the y (x) axis

z
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a b
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–
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C2z
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Fig. 3 Crystal structure of bulk BiInO3. a 3D view of the unit cell structure.
b, c View of the crystal structure in the (100) plane (b) and the (001)
plane (c). The twofold screw rotation axis (�C2z) and the glide reflection
planes ( �Mx and �My) are indicated by the dashed lines. The dotted line
indicates a Pnma symmetry mirror plane
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around the X (Y) point. This is exactly what we find from our
DFT results. Figure 5a shows the calculated spin texture around
the X point for the conduction band, which has the lowest energy.
We see a unidirectional spin configuration for positive and
negative values of kx (referred to the origin being at the X point),
which is consistent with the effective SOC field
ΩPST ¼ λð0; kx; 0Þ and the PST in Fig. 1. As expected, the spin
orientation changes abruptly at kx= 0, where the sy component of
the spin is reversed. We note that there is another band (with the
opposite �My eigenvalue if moving along the X–Γ line), which has
higher energy (except the X–S line where it has the same energy)
for which the spin has opposite orientation.

It is remarkable that the PST covers a substantial part of the
Brillouin zone. The range of kx and ky values in Fig. 5a spans 0.2
Å−1 around the X point. For comparison, the x component of the
reciprocal wave vector is π/a= 0.528 Å−1 (distance from the to X
to Γ point). In fact, the nearly uniform spin structure persists even
at larger distances and covers the CBM, which is located at about
0.19 Å−1 from the X point along the X–Γ line. Figure 5c shows
the band dispersion and the spin structure around the CBM. It is
evident that the spin maintains nearly unidirectional texture
along the y-direction, which is reminiscent to that at the X point.
Our calculations predict that in the range of kx and ky values
spanning 0.2 Å−1 around the CBM (as in Fig. 5c), the largest
deviation of the spin orientation from the y-axis is only 9.6°. This
is due the CBM-forming band being well separated from the
other two bands derived from the higher energy doublet (inset of
Fig. 4b), so that the mixing between the doublets is minor. We
note that the PST around the CBM is fully reversed when the
wave vector k is changed to –k, due to time reversal symmetry.

The spin structure around the Y point (Fig. 5b) shows the
similar trend, now with the spin being textured along the x-
direction. The effective SOC field ΩPST ¼ λðky; 0; 0Þ in this case
leads to reversal of the sx component when crossing the ky= 0
line. There is a visible deviation from the unidirectional spin
orientation when moving far away from the Y point. This stems
from the reduced SOC splitting at the Y point (Δ ≈ 0.09 eV) as
compared to that the X point (Δ ≈ 0.26 eV).

A k � p model. The spin textures around the high symmetry
points can be further understood in terms of an effective k � p
Hamiltonian, which we deduce from symmetry considerations.
Here, we focus on the X point. In order to describe the four
dispersing bands around the X point, additional sublattice degrees
of freedom need to be included in the consideration. These are

conventionally described by a set of Pauli matrices τj (j= x, y, z)
operating in the sublattice space. The Hamiltonian around the X
point is constructed by taking into account all symmetry
operations at the X point, at which the symmetry generators
are �Mx and �My , and the time-reversal symmetry, which operator
is T ¼ iσyK , where K is complex conjugation. We find that �Mx
and �My can be represented as �Mx ¼ iτzσx and �My ¼ τyσy (see
Supplementary Note 2). Collecting all the terms up to linear order
in k, which are invariant under these symmetry transformations,
we obtain the k � p Hamiltonian:

H ¼ δτyσy þ αkxτ0σy þ βkyτ0σx þ γ1kxτyσ0þ
γ2kxτxσx þ γ3kxτzσz þ γ4kyτxσy :

ð5Þ

Here, for simplicity we limit our consideration by the ðkx; kyÞ
plane; δ, α, β, γm (m= 1–4) are independent parameters, σ0 and
τ0 are the 2 × 2 identity matrices, and direct products τi � σ j (i, j
= 0, x, y, z) are implicitly assumed.

When k= 0 (i.e., at the X point), the δτyσy term in the
Hamiltonian splits the state into two doublets distinguished by
the eigenvalues of �My ¼ ± 1 and separated by Δ ¼ 2δ. When k is
not too large, the other terms in the Eq. (5) can be treated as
perturbation. In the first order, the perturbation does not mix the
doublets and the effective Hamiltonian within each of the
doublets (labeled by indices ± ) can be written as

H ± ðkxÞ ¼ ± δ þ α± kxσy ð6Þ

where α± ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα± γ1Þ2 þ ðγ2 � γ3Þ2

q
(see Supplementary Note 2).

The corresponding eigenvalues are

EþðkxÞ ¼ δ ± αþkx
E�ðkxÞ ¼ �δ ± α�kx

ð7Þ

i.e., each doublet is split into two singlet states exhibiting linear
dispersion away from the X point. This is consistent with
our DFT results (inset in Fig. 4b). Fitting the DFT energy bands
yields the following parameters: δ ¼ �0:13 eV, αþ ¼ 1:91 eV Å,
α� ¼ 1:51 eV Å. Other parameters in the Hamiltonian of Eq. (5),
can be found from the expectation values of the y-component of
the spin, sy ¼ ± 1

2ðαþ γ1Þ=αþ and sy ¼ ± 1
2ðα� γ1Þ=α�, for the

doublet (+) and doublet (–), respectively. Using the DFT
results for sy , we obtain α ¼ �0:18 eV Å, γ1 ¼ �1:42 eV Å,
γ2 ¼ 0:95 eV Å, and γ3 ¼ 0:09 eV Å.
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Fig. 5 Spin texture of BiInO3. a, b Spin configurations around the high-symmetry k points: X point a and Y point b. The spin textures are plotted in the kz= 0
plane for the lowest energy conduction bands. The wave vector k is referenced to the X point (a) and Y point (b), where it is assumed to be zero. The color
map reflects the polar angle (in degrees) with respect to the y-axis (a) and x-axis (b). c 3D diagram and 2D projection of band structure and spin texture
around the CBM. The arrows indicate the spin direction. The color map shows the energy profile. The wave vector is referenced to the X point where is it
assumed to be zero
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The effective Hamiltonian of Eq. (6) imposes the effective SOC
field pointing along the y-direction, i.e., ΩPST ¼ λð0; kx; 0Þ, where
λ ¼ α± , which produces the PST (Fig. 1c). Importantly, this form
of the PST Hamiltonian appears as the result of the crystal
symmetry rather than matching the Rashba and Dresselhaus
constants. For the lowest energy band, λ ¼ αþ and the spin is
parallel (antiparallel) to the y-direction for positive (negative) kx.
This is in agreement with the spin structure in Fig. 5a obtained
from our DFT calculations.

Including first-order perturbation corrections to the wave
function mixes states between the doublets, resulting in nonvanish-
ing components of sx and sz and thus deviation from the PST. Our
detailed analysis (see Supplementary Note 3) shows that within this
approximation the sy component of the spin remains constant
(Supplementary Eq. 21), whereas the sx component varies as sx ¼
qky=Δ (for the lowest conduction band), where q is a SOC constant
(Supplementary Eq. 22). It is evident from this result that, first,
sx ¼ 0 at ky ¼ 0, and hence the spin orientation remains collinear
to the y-axis at the CBM (kx ¼ 0:19 Å−1, ky ¼ 0) as at the X point,
and, second, when going away from the CBM along ky the sx value
changes linear with ky . Nonzero sx produces deviation from PST,
but this deviation remains small over a broad area around the CBM
due to the large splitting Δ. This is evident from Supplementary
Fig. 3, which also reveals excellent agreement between the
perturbation theory and explicit DFT calculation. This approach
also allows us to obtain the remaining SOC constants in
Hamiltonian of Eq. (5), β ¼ �0:139 eVÅ and γ4 ¼ 0:191 eVÅ,
as detailed in Supplementary Note 3.

We would like to note that for the compounds considered in
our work, any order terms in k in the Hamiltonian preserve PST
in zero-order perturbation theory. Only in the first order of
perturbation theory for the wave function a deviation from PST
occurs with the dominant contribution resulting from linear in k
terms. However, due to this contribution occurring as a
perturbation, deviation from the PST remains small over a large
area of the Brillouin zone.

Discussion
The obtained value of the SOC parameter λ= 1.91 eV Å is three
orders of magnitude larger than the values known for the semi-
conductor quantum-well structures (1–5 meV Å)15–18. It is also
larger than the values predicted for other ferroelectric oxides, e.g.,
λR ¼ 0.74 eV Å for BiAlO3 (P4mm space group)26 and λD ¼0.58
eV Å for HfO2 (Pca21 space group)27, and comparable to the
value of λR ¼3.85 eV Å observed in BiTeI28. The associated band
splittings are sufficient to support room temperature functional-
ities. For example, the lowest excited state at
k � ð0:64π; 0; 0Þcorresponding to the CBM lies about 0.29 eV
above the CBM.

Electron motion in the PST state forms persistent spin helix
(PSH)—the spatially periodic mode of spin polarization with the
wave length of lPSH ¼ π�h2

mλ
13. We estimate the effective mass m in

BiInO3 by fitting the band dispersion around the CBM, which
leads to m= 0.61m0, where m0 is the free electron mass. The
resulting wave length is about 2 nm. This value is three orders
of magnitude smaller than lPSH 	 5� 10 μm observed in semi-
conductor heterostructures16.

It is conceivable (though challenging) to form and map a PSH
state in BiInO3 in spirit of experiments by Walser et al.16. BiInO3 is
a wide band gap semiconductor, and in order to observe this
property an electron doping is required. Since Bi is isovalent to In,
In2O3 may be considered as a comparative compound. It is known
that oxygen vacancies naturally form in In2O3 producing n-type
conductivity which can be varied over a broad range of magnitudes
by changing growth conditions (mainly oxygen pressure)29. We

expect, therefore, that a similar approach could be employed to
produce electron doping in BiInO3. Due to CBM in BiInO3

maintaining PST, a PSH state will be formed if electrons are opti-
cally injected into the conduction band of BiInO3. Mapping the
formation and evolution of PSH in BiInO3 could possibly be per-
formed using near-field scanning Kerr microscopy, which showed a
possibility to resolve features down to tens-nm scale with sub-ns
time resolution30. In addition, the electron-doped BiInO3 can be
used to explore the current induced spin polarization (known as the
Edelstein effect7) and associated spin-orbit torques31, which are
expected to be large due to the large SOC.

We also envision a possibility to observe a Hall effect quali-
tatively similar to the valley Hall effect recently discovered in
transition metal dichalcogenides (TMD)32. In BiInO3 the two
states with k and -k at the CBM with opposite spin orientation are
related by time reversal symmetry transformation and thus have
opposite sign of the Berry curvature. If an imbalance in electron
population between these two states is created by polarized
optical excitation (similar to that done in TMDs), a charge Hall
current can be measured that reverses sign with polarization of
the exciting light.

Another implication is a possibility to use a PST material as a
barrier in tunnel junctions. It has been predicted that the Rashba
and Dresselhaus SOC in a tunnel barrier can produce tunneling
anomalous and spin Hall effects33,34. Using a PST material as a
tunnel barrier allows producing a perfect anisotropy in the Hall
response. For example, if the current flows in the z-direction across
a PST barrier with the SOC given by Eq. (6), the tunneling Hall
response will be zero in the y-direction and nonzero in the x-
direction. Moreover, the anomalous Hall conductivity is expected to
strongly depend on the magnetization orientation in the x–y plane
and vanish for magnetization pointing along the x-direction. The
large value of λ= 1.91 eVÅ is expected to produce sizable effects,
which can be detected experimentally. In addition, the reversible
spin texture of ferroelectric SOC oxide materials35,36 will support
the tunneling Hall effects to be reversible by an applied electric field
through switching of ferroelectric polarization27.

Apart from BiInO3, there are a number of other potential
candidates which are expected to maintain a PST. Among them
are BiInS3 (Pna21 structure, space group No. 33) and LiTeO3

(Pnn2 structure, space group No. 34). Both have a PST around
the high symmetry X and Y points (see Supplementary Note 4).
BiInS3 has a lower calculated band gap (about 1.13 eV), but a
CBM is located at the Γ point, which does not support the PST.
On the other hand, LiTeO3 (calculated band gap is about 2 eV)
has a CBM close to the X point similar to BiInO3.

Overall, we have demonstrated that the PST is imposed by
symmetry in a class of orthorhombic nonsymmorphic bulk
materials, such as BiInO3. The PST is a robust intrinsic property
of these materials, which eliminates the stringent condition of
equal Rashba and Dresselhaus SOC for realizing the persistent
spin helix. The electronic and spin properties of the PST materials
are derived from the nontrivial interplay between spin–orbit
coupling and glide reflection symmetries, and in this regard place
them among interesting quantum materials which have recently
received a lot of attention. We hope, therefore, that our theore-
tical predictions will stimulate experimental efforts in the
exploration of these materials, which functional properties may
be useful for device applications.

Methods
DFT calculations. DFT calculations are performed using a plane-wave pseudo-
potential method implemented in Quantum-ESPRESSO37. In the calculations, we
use the lattice constants and atomic positions of bulk materials, which are given in
Supplementary Note 4. The exchange-correlation functional is treated within the
generalized gradient approximation38. We use energy cutoff of 544 eV for the plane
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wave expansion and 10 × 10 × 8 k-point grid for Brillouin zone integrations. The
electric polarization is computed using the Berry phase method39. SOC is included
in the calculations using the fully relativistic ultrasoft pseudopotentials40. The
expectation values of the spin operators si ¼ 1

2 ψk

� ��σ i ψk

�� �
(i= x, y, z) are obtained

directly from the noncollinear spin DFT calculations. The atomic structures are
produced using VESTA software41.

Data availability. The data that support the findings of this study are available
from the authors upon request.

Received: 22 February 2018 Accepted: 14 June 2018

References
1. Keimer, B. & Moore, J. E. The physics of quantum materials. Nat. Phys. 13,

1045–1055 (2017).
2. Tokura, Y., Kawasaki, M. & Nagaosa, N. Emergent functions of quantum

materials. Nat. Phys. 13, 1056–1068 (2017).
3. Tsymbal, E. Y. & Žutić, I., Eds., Handbook of spin transport and magnetism

(CRC Press, Boca Raton, Florida, 2012), 808 pp.
4. Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New

perspectives for Rashba spin-orbit coupling. Nat. Mater. 14, 871 (2015).
5. Dresselhaus, G. Spin–orbit coupling effects in zinc blende structures. Phys.

Rev. 100, 580–586 (1955).
6. Rashba, E. Properties of semiconductors with an extremum loop. 1. Cyclotron

and combinational resonance in a magnetic field perpendicular to the plane of
the loop. Sov. Phys. Solid State 2, 1109–1122 (1960).

7. Edelstein, V. M. Spin polarization of conduction electrons induced by electric
current in two-dimensional asymmetric electron systems. Sol. State Commun.
73, 233–235 (1990).

8. Dyakonov, M. I. & Perel, V. I. Possibility of orienting electron spins with
current. Sov. Phys. JETP Lett. 13, 467–469 (1971).

9. Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl.
Phys. Lett. 56, 665–667 (1990).

10. Dyakonov, M. & Perel, V. Spin relaxation of conduction electrons in
noncentrosymmetric semiconductors. Sov. Phys. Solid State 13, 3023–3026
(1972).

11. Schliemann, J., Egues, J. C. & Loss, D. Nonballistic spin-field-effect transistor.
Phys. Rev. Lett. 90, 146801 (2003).

12. Schliemann, J. Colloquium: persistent spin textures in semiconductor
nanostructures. Rev. Mod. Phys. 89, 011001 (2017).

13. Bernevig, B. A., Orenstein, J. & Zhang, S. C. Exact SU(2) symmetry and
persistent spin helix in a spin–orbit coupled system. Phys. Rev. Lett. 97,
236601 (2006).

14. Kammermeier, M., Wenk, P. & Schliemann, J. Control of spin helix symmetry
in semiconductor quantum wells by crystal orientation. Phys. Rev. Lett. 117,
236801 (2016).

15. Koralek, J. D. et al. Emergence of the persistent spin helix in semiconductor
quantum wells. Nature 458, 610–613 (2009).

16. Walser, M. P., Reichl, C., Wegscheider, W. & Salis, G. Direct mapping of the
formation of a persistent spin helix. Nat. Phys. 8, 757–762 (2012).

17. Kohda, M. et al. Gate-controlled persistent spin helix state in (In,Ga)As
quantum wells. Phys. Rev. B 86, 081306 (2012). (R).

18. Sasaki, A. et al. Direct determination of spin–orbit interaction coefficients
and realization of the persistent spin helix symmetry. Nat. Nanotech. 9, 703
(2014).

19. Absor, M. A. U., Ishii, F., Kotaka, H., & Saito, M. Persistent spinhelix on a
wurtzite ZnO (10\bar10)surface: first-principles density-functional study.
Appl. Phys. Exp. 8, 073006 (2015).

20. Yamaguchi, N. & Ishii, F. Strain-induced large spin splitting and persistent
spin helix at LaAlO3/SrTiO3interface. Appl. Phys. Exp. 10, 123003 (2017).

21. Lee, H., Im, J. & Jin, H. Harnessing the giant out-of-plane Rashba effect and
the nanoscale persistent spin helix via ferroelectricity in SnTe thin films.
Preprint at http://arxiv.org/abs/1712.06112 (2018).

22. Bradley C. J. & Cracknell, A. P. The mathematical theory of symmetry in solids:
representation theory for point groups and space groups (Oxford: Clarendon
Press, 1972).

23. Belik, A. A., Stefanovich, S. Y., Lazoryak, B. I. & Takayama-Muromachi, E.
BiInO3: a polar oxide with GdFeO3-type perovskite structure. Chem. Mater.
18, 1964–1968 (2006).

24. Wang, Z., Alexandradinata, A., Cava, R. J. & Bernevig, B. A. Hourglass
fermions. Nature 532, 189–194 (2016).

25. Bzdušek, T., Wu, Q. S., Rüegg, A., Sigrist, M. & Soluyanov, A. A. Nodal-chain
metals. Nature 538, 75–78 (2016).

26. da Silveira, L. G. D., Barone, P. & Picozzi, S. Rashba-Dresselhaus spin-splitting
in the bulk ferroelectric oxide BiAlO3. Phys. Rev. B 93, 245159 (2016).

27. Tao, L. L., Paudel, T. R., Kovalev, A. A. & Tsymbal, E. Y. Reversible spin
texture in ferroelectric HfO2. Phys. Rev. B 95, 245141 (2017).

28. Ishizaka, K. et al. Giant Rashba-type spin splitting in bulk BiTeI. Nat. Mater.
10, 521–526 (2011).

29. Bierwagen, O. Indium oxide—a transparent, wide-band gap semiconductor
for (opto)electronic applications. Semicond. Sci. Technol. 30, 024001 (2015).

30. Rudge, J., Xu, H., Kolthammer, J., Hong, Y. K. & Choi, B. C. Sub-nanosecond
time-resolved near-field scanning magneto-optical microscope. Rev. Sci. Instr.
86, 023703 (2015).

31. Gambardella, P. & Miron, I. M. Current-induced spin–orbit torques. Philos.
Trans. R. Soc. A 369, 3175–3197 (2011).

32. Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in
MoS2 transistors. Science 344, 1489–1492 (2014).

33. Vedyayev, A. V., Titova, M. S., Ryzhanova, N. V., Zhuravlev, M. Y. &
Tsymbal, E. Y. Anomalous and spin Hall effects in a magnetic tunnel junction
with Rashba spin–orbit coupling. Appl. Phys. Lett. 103, 032406 (2013).

34. Matos-Abiague, A. & Fabian, J. Tunneling anomalous and spin Hall effects.
Phys. Rev. Lett. 115, 056602 (2015).

35. Di Sante, D., Barone, P., Bertacco, R. & Picozzi, S. Electric control of the giant
Rashba effect in bulk GeTe. Adv. Mater. 25, 509–513 (2013).

36. Tao, L. L. & Wang, J. Strain-tunable ferroelectricity and its control of Rashba
effect in KTaO3. J. Appl. Phys. 120, 234101 (2016).

37. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source
software project for quantum simulations of materials. J. Phys. Condens.
Matter 21, 395502 (2009).

38. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation
made simple. Phys. Rev. Lett. 77, 3865 (1996).

39. King-Smith, R. D. & Vanderbilt, D. Theory of polarization of crystalline solids.
Phys. Rev. B 47, 1651 (1993).

40. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized
eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).

41. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal,
volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

Acknowledgments
This work was supported by the National Science Foundation (NSF) through Nebraska
Materials Research Science and Engineering Center (MRSEC) (Grant No. DMR-
1420645). Computations were performed at the University of Nebraska Holland Com-
puting Center. The authors thank Jaroslav Fabian, Jairo Sinova, Silvia Picozzi, and Alexei
Kovalev for helpful discussions.

Author contributions
L.L.T. and E.Y.T conceived the project. L.L.T. carried out DFT calculations. L.L.T. and
E.Y.T. performed the symmetry analysis and theoretical modeling. Both authors dis-
cussed the results and wrote the manuscript.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
018-05137-0.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2018

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05137-0 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2763 | DOI: 10.1038/s41467-018-05137-0 |www.nature.com/naturecommunications 7

http://arxiv.org/abs/1712.06112
https://doi.org/10.1038/s41467-018-05137-0
https://doi.org/10.1038/s41467-018-05137-0
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	7-17-2018

	Persistent spin texture enforced by symmetry
	L. L. Tao
	Evgeny Y. Tsymbal

	Persistent spin texture enforced by symmetry
	Results
	Symmetry analysis
	DFT analysis of bulk BiInO3

	Discussion
	Methods
	DFT calculations
	Data availability

	References
	Acknowledgments
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS


