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CHAPTER I· 

INTRODUCTION AND LITERATURE REVIEW 

Statement of the Problem 

The statistician is often faced with the data from an 

experiment in which the individual responses are of a binary 

(quantal) or categorical nature. Such data can arise in 

experiments from many fields including psychology, pharma-

cology, bacteriology, and sample survey designs. It is very 

essential to have some methods of analyzing the data from 

these experiments. 

The area of the analysis of binary or categorical data 

is still fertile and an open field for the researchers. 

This is also indicated by Light and Margolin (1971, p. 534) 

in the following statement: 

A common problem confronting researchers concerns 
devising useful methods for analyzing categorical, 
or nominal scale, data. Researchers familiar 
with analysis of variance have well-developed 
techniques for quantitative variables, but must 
switch to a completely different set of varied 
techniques when they deal with categorical data. 

The objective of this study is to develop a test pro-

cedure, hopefully analogous to the analysis of variance, for 

the analysis of binary data occurring either in one-way 

classification experiments or in balanced two-way classifica-

tion experiments with one or mdre observations per cell. 

1 



2 

The concentration will be mainly on testing various kinds of 

hypotheses of interest. Factorial arrangements of treat-

ments will be given attention. Interactions which occur in 

the classical treatment of the above designs will also be 

considered. 

An attempt will be made to keep the procedures computa-

tionally simple and, hence, the use of transformations will 

be avoided. The new techniques will be compared with some 

of their existing competitors, whenever possible. 

Literature Review for the Analysis of 

Binary and Categorical Responses 

in One-Way Classification 

Let t denote the number of experimental groups (treat-

ments) and c denote the number of response categories. Let 

n .. represent the number of responses in category i for l.J 
group j, i = l, ••. ,c and j = l, ••• ,t. The number of re-

c 
sponses, or sample size, from group j is n.j = L n ..• 

i=l l.J 
Similarly, the 

t 
n. = L n· ·• 

1.. j=l !LJ 
study is: 

numbering of responses in the ith category is 

Thus the total number of responses in the 

t 
N = L 

j=l 
n . 

• J 

c 
= I 
i=l 

n. 
1.• 

c t 
= I I 
i=l j=l 

n ..• 
l.J 

An alternative way of viewing this data is via a c x t con­

tingency table where n .. is the count in the (i,j)th cell. l.J 
Let p .. be the probability that any experimental unit l.J 



from group j will yield a response in category i, and 
c 
I P · · = 1 for all j • 

i=l l.J 

3 

A common model for the one-way classification, assum~ng 
' ' 

the responses within groups and from group to group to be 
t 

stochastically independent and following a multinomial model, 

can be written as: 

Pr{ (n 11'" .. ,ncl' ••• ,nlt, ••• ,net)} 

t 

= II 
j=l 

n . II [~ ) 
c 

. . • J . 
l.J' ••• ,nCJ i=l 

c 
where n . > 0 and I P .. = 1 for all j. 

·J i=l l.J 

(1.1)" 

The standard null hypothesis of interest for a one-way 

classification based on categorical data is that the t sam-

ples are from the same population, i.e., 

against 

P .. = pi for all i and j 
1.] 

(1. 2) 

Several techniques exist in the literature for testing 

the hypothesis given by (1.2). One group of techniques uses 

the data in their original form while the second group of 

techniques transforms the data in such a fashion that it can 

be treated by the existing methods for quantitative data. 

Pearson's chi-square test (1900), the likelihood ratio test 

due to Wilks (1935) and the CATANOVA procedure of Light and 

Margolin (1971) are some of the examples for the first group 
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of techniques while the logit transformation proposed by Cox 

(1969), Winsor (1948), Dyke and Patterson (1952), and Cart 

and Zweifel (1967) are some of the examples for the second 

group of ~echniques. 

Pearson's chi-square is most commonly used among re­

searchers. The x2 statistic is given by 

(nij n. n r c t - J. •• J 
x2 = r I . N (1. 3) 

i=l j=l n. n 
J.. • J 

N 

The asymptotic null distribution of this x2 statistic is chi-

square with (c-1) (t-1) degrees of freedom. 

This procedure will be referred here as a x2 test pro­

cedure with the understanding that it is a x2 test procedure 

for the one-way classification and not for the independence. 

The x2 test statistic in the one-way classification for 

testing the hypothesis of a common population based on sev­

eral samples of grouped data is computationally equivalent 

to that of testing the hypothesis of independence in a two-

dimensional contingency table, but due to different experi-

mental situations and sampling procedures involved, they 

give two different tests. 

Wilks (1935) has presented likelihood ratios for sev-

eral situations in contingency tables. For each case, 

-2(natural logarithm of the likelihood ratio) is approxi­

mately distributed as a x2 • Wilks showed in his paper that 
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the x2 method for testing several hypotheses in a contingency 

table has no greater theoretical validity than that of the 

likelihood ratio method. For testing the usual null hypothe­

sis given by (1.2) in the general c x t.table under the 

model in (1.1), the likelihood ratio is: 

L = (~~ 
. i=l 

n. )( t ri ·10~N c n. ~. :(U n . ·l .N II 
~. . 1 ·J . 1 J= ~= 

t n. ·~ ~J-II niJ' • 
j=l 

The statis-tic -:'2 ( ln L) ~is approxl.mately· distributed as X2 ·with 

(c-1) (t-1) degrees of freedom. 

For the one-way classification, -2 (lri L) is the same as 2I, 

the Kullback's (1962) minimum discrimination information 

statistic: 

c 
n . . ( ln n · · ) - L n . { ln n · ) ~J ~J . 1 ~. ~. 

~= 

- f .n . (ln n . >']. 
j=l ·J ·J 

, 

with the asymptotic null distribution of x2 with (c-1) (t-1) 

degrees of freedom. Here O(ln 0) is defined to be 0. 

Obviously, one can use the methods described above and 

the CATANOVA procedure of Light and Margolin (to. be discussed 

at the end of this section) for the analysis of binary re-

sponses in one~way classification just by letting c = 2. 

Below is a technique proposed by Brown and Mood {1948) which 

can be used indirectly in this situation. 

Let n1 j denote the number of l's under group (treatment) 
j and let n2 j denote the number of O's under group j for 



j = 1, •.• ,t. Note that n 2J. = n . - n , and n = N - n .J lj 2. 1. 
Then it is of the interest to test the usual hypothesis of 

the equality of treatment effects given by (1.2), i.e., 

against 

Ho: Pl = ••. = Pt (=p say) 

HA: Not H0 , 

where p, is the probability of success under treatment j. J 

6 

Under the null hypothesis, the probability distribution 

of the random variables, n11 , ••• ,nlt' is 

(1. 4) 

which is a multivariate hypergeometric point probability. 

The observed significance level for a given set of data 

can be calculated by summing the point probabilities for all 

the data sets as extreme or more so with the same row and 

column marginal frequencies.· The null hypothesis is rejected 

when this sum is smaller than the desired significance level. 

Unfortunately, with large values of n . or t, calculations 
• J 

become tedious and time consuming and as a result, this test 

is rarely carried out by this procedure. Fortunately, a 

fairly good approximation to (1.4) is available when n > 20 



and all n . > 5. The test statistic under this criterion 
• J 

is: 

(nlj-:-
n n 0 ) 

2 

112 
t \:r . J 

T = I 
nl.n2. j=l n 

• j 

or 
n n )2 2N .j 

T = 

7 

One can show that the above test statistic T turns out to be 

a special case of the x2 statistic defined by (1.3) for c = 2 

as follows: 

t 

I 
nl. j=l 

N 

( n 1 n . ) 2 
\nlj - N • J 

t 

I 
j=l 

n 
. j 

t l n2 n ·) 2 
+ _E_ r ~;....n_2 ..t..j _-__ N_·_J_ 

n 2 • j=l 

n n . 
1. . J 

N 
n 

. j 

n o 

• J 

= 
t 

.. N2 r 
n n j=l 
1. 2 0 

n1 n o) 2J - N ·J 

n 0 

• J 

= T • 

When H0 is true, the distribution of T is approximately 

chi-square with (t-1) degrees of freedom. According to Mood 

(1950), this approximation can be improved by multiplying 

the statistic T by <N;l) , obtaining 

T' = '(N;lJ T = (N;l) X2 
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For further discussion of the Brown-Mood Median Test, refer 

to Bradley (1968) 1 Gibbons (1971) 1 and Mood (1950). Gibbons 

(1950) has discussed some tests of the equality of independ­

ent samples in Chapter II. The Kruskal-Wallis one-way ANOVA 

test discussed in this chapter is not quite appropriate for 

the analysis of binary data but sometimes is used in practfue 

Gabriel (1963) has given some F tests, estimates, and 

confidence bounds for dichotomous data. 

Cox (1969), Winsor (1948), Dyke and Patterson (1952), 

Gart and Zweifel (1967) have proposed logit transformations 

which allow treating the data by standard analysis of vari­

ance techniques. 

In the book by Cox (1969), various usual situations of 

the design of experiments and regression involving binary 

data are treated by considering the models in which the 

logistic transform of the probability of success is a linear 

combination of unknown parameters. These linear logistic 

models play about the same role. as do the normal theory 

models in the analysis of continuously distributed data. 

Mainly the test statistics are based on the sufficient sta­

tistics and the maximum likelihood procedure. Some of the 

exact tests presented in this book can be laborious and 

time consuming. 

Winsor (1948) in his presentation of factorial analysis 

of a multiple dichotomy has indicated a method which, where 

applicable, provides the standard errors of the estimates, 

together with significance tests for effects which have been 



assumed non-existent. The method proposed is essentially 

that suggested by Yates (1934) • 

9 

Dyke and Patterson (1952) have provided the logit trans­

formation to transform the observations in the new scale of 

measurements which can reasonably be represented as linear 

functions of a number of parameters. Maximum likelihood 

estimates of these parameters are then found. 

Gart and Zweifel (1967) have investigated the bias of 

several logit estimators and their corresponding estimators 

in small samples. 

For the special case of dichotomous data, it is 

Cochran's (1950) su~gestion,to assign the values of 0 or 1 

to represent the responses in the two categories and then to 

use the analysis of variance technique for analyzing the 

data. 

CATANOVA.Procedure 

Light and Margolin {1971) have proposed "An Analysis of 

Variance" for categorical data, referred to as CATANOVA. 

In the case of continuous data, the coefficient of 

multiple determination provides a measure of association 

between response and predictor variables. This measure 

depends upon the ratio of two appropriate sums of squares of 

the response variable. It.can be interpreted as the propor­

tion of total variation observed in the response variable 

that is attributed to (or explained by) the predictor or 

classification variables. Various measures of association 
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for categorical data have appeared in the literature; how-

ever, none can be given the above "proportion of explained 

variation" interpretation since the concept of partitioning 

variation was never applied to categorical data. Goodman 

and Kruskal (1954, 1959, 1963, 1972) have a series of re-

search papers on measures of association. A bibliography 

on the measures of association can be found in a book by 

Lancaster (1969). 

Light and Margolin (1971) credit C. w. Gini (1912) with 

having noted that the sum of squares of deviations from the 

mean forthequantitative measurements can be expressed solely 

as a function of the squares of the pairwise differences for 

all (~) pairs. Specifically, if x 1 , ••• ,xn denote the meas­

urements, then 

where X = 

n 

.I 
J..=l 

n 

1 n n 
= - r r 2n . 1 . 1 J..= J= 

2 
(X. - X.) 

J.. J 

n n 2 
= 1 r r d , 

2n i==l j==l ij 

t x.;n and d = x. - x .• i~l J.. ij J.. J 

Reasoning by analogy, Gini later developed in his 1938 

Variabilita E Concentrazione a measure of variation a meas-

ure of variation for categorical data. Assume that each of 

the responses x 1 , ••• ,Xn names one and only one of c possible 

categories and define d (X., X.) = d .. as: J.. ] l.J 



1 if xi and X· name different categories { J d .. = 
~J 

Then, 

0 if x. 
~ 

and x. 
J 

name the same category. 

Definition: The variation for categorical responses 

1 n n 2 
-2 I I d .. 

n i=l j=l ~J 

1 n n 
= 2n L L d .. ' 

i=l j=l ~J 

where each response names one and only one of c possible 

categories and dij is defined as above. 

If n. is the number of responses naming the ith cate­~ 

gory fori= l, ... ,c, 
c. 

then L n = n and the variation of 
i=l i 

11 

Gini's measure of variation possesses the following two 

desirable properties: 

(1) The variation is minimized to zero if and only 

if all n categorical responses name the same 

category. 

(2) The variation is maximized when the responses 

are distributed among the available categories 

as evenly as possible. 
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In the spirit of Gini's measure of variation for cate-

gorical data, the total variation observed in the response 

variable, or "total sum of squares" is equal to: 

TSS 
N 

= 2 

c 
1 I 2 
2N i=l ni. ( 1. 5) 

The total within-group variation or "within group sum of 

squares" is obtained by applying Gini's definition within 

each group and then summing over the t groups to give: 

t ~n 1 
c 

n~ ·) wss = I <--=i I .. 2 -. "Trl":"" 1] j=l • J i=l 
(1.6) 

:N 1 t 1 c 2 
= I I 2- 2 n n .. 

j=l • j i=l 1] 

The between-group variation or sum of squares is equal to: 

BSS = TSS - WSS = l 
2 

t 1 c 
I n-:- I n~. 

j=l . •Ji=l 1 J 

c . .1 
2"N I 

i=l 

2 
n. 
1. 

Then Light and Margolin (1971) proposed an "analysis of 

variance" technique to test the standard null hypothesis for 

a one-way classification based on categorical data which is 

given by (1.2). They named their proposed test statistic, 

C, as the CATANOVA (categorical analysis of variation) 

statistic. 

C = (N-1) ( c-1) • BSS • 
TSS 



13 

Under this common multinomial model, given by (1.1), 

the null distribution of the CATANOVA statistic, C, is 

asymptotically chi-square-with (c-1) (t-1) degrees of freedom. 

Their simulation study indicated that even for small group 

sizes, the statistic C is approximated quite well by chi-

square with (c-1) (t-1) ~egrees of. freedom under H0 • 

They found that asymptotically with large n . , TSS and 
• J 

BSS are independent under H0 which is just the opposite of 

the situation in the standard analysis of variance. This 

fact made them depart from the standard AOV theory. 

Light and Margolin (1971) have failed to note that even 

though the x2 statistic for testing the hypothesis of inde­

pendence is computationally equivalent to the X2 statistic 

for testing the hypothesis of common population in several 

samples of grouped data, they give different tests due to 

differences in the sampling procedures. 

They have proposed a measure of association between the 

grouping and response variables which may be given a 11 pro-

portion of vari.ation explained .. interpretation. This 

measure is defined as: 

( t 1 c 2) :1 c 2 .. 

R2 = ~~~ = =-j_f_l_n_·....::J::-. _i_I_l_n_1_· J_· __ N_-_i_I_l_n_i_._ 
• 

1 c 2 
N - }: n. 

N i=l J..o 

The R2 defined above has some nice properties as one 

would expect of a measure of association. As they have 



2 n .. 
no ted, R = 0 if _2:2 = f. , i = 1, ••• , c; j = 1, ••• , t, i.e • , n . 1 

14 

'f h . ·J. . ' f f d' . 1 t ere 1s no assoc1at1oQ--no e feet o group on 1str1bu-

tion of category. 
2 

R = 1 if for each j, j = l, ••• ,t, there 

exists an_i such that n .. = n ,, i.e., if there is perfect 
1] • J 

predicta,bility. Otherwise, 0 < R2 < 1. 
2 Further, R is the proportion of total variation in 

the response variable which is accounted for by the knowledge 

of the grouping variable. Multiplying all entries in a con­

tingency table by any positive constant leaves R2 unchanged. 

In their papers (1971, 1974), Light and Margolin did 

not reach the general analytic results for the c x t tables 

which can make the compar.iE;on ()f <:;:ATANOVA and~X 2 methqc1s an 

easier task. However, they have done simulation studies on 

the computer for 3x2 tables under some selected alternative 

hypotheses. In their study of 3x2 tables, they generated 

1,000 samples for each of the ten table structures under the 

multinomial model. For both the groups, n . was fixed to be 
• J 

100. 

They observed that if one group's probabilities are 

held at (1/3, 1/3, 1/3) and for the other group,if one cate-

gory has a high response probability and the other two have 

low probabilities, then the power of CATANOVA statistic .ts 

higher than tP,at of achi...,square statistic. On the other 

hand, if one group's probabilities are held at (1/3, 1/3, 

1/3) and for the other group if one category has a low 

response probability and the oth,er two have high probabil-

ities, then tl:le pe>wer of the chi-square statistic is higher 



than that of the CATANOVA statistic. They have noted that 

under both H0 and HA, the two techniques give orderings pf 

data sets that are highly correlated. 

They also have concluded that the ~OVA (one-way 

multivariate analysis of variance) test statistic is a 

monotonically increasing function of the CATANOVA test 

statistic. 
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Light and Margolin (1974) presented some empirical evi-

dence that in small samples the distribution of C is some-

what better approximated by x2 . ' J than is the [(c-1) (t-1) 

distribution of the x2 statistic, and both are considerably 

better approximated by X\(c-l) (t-l)] than is the null distri-

bution of 2I. For further discussion concerning this sub-

ject matter, refer to the papers by Light and Margolin (1971, 

1974). 

Literature Review for the Analysis of 

Binary and Categorical Responses 

in Two-Way Classification 

Now consider an experiment conducted as a two-way clas-

sification with an equal number of binary observations that 

are sampled from each population corresponding to each cell. 

As some of the assumptions underlying the analysis of vari-

ance are violated, it may not be appropriate to use the 

ANOVA technique in this situation. Some of the rank tests 

may also not be appropriate here but are often used because 

of their simplicity or the lack of more appropriate 
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techniques. Cochran's Q test (1950) and Friedman's rank 

test (1937) are examples of this and will be discussed next. 

Cochran's Q Test 

Now consider the situation where there are b rows 

(blocks) and t columns· (treatments) with one binary obser­

vation per cell. Let x,. denote the observation in the ith l.J 
row corresponding to the jth column. Cochran (1950) sug-

gested a Q statistic to test the equality of column effects 

under such a situation. However, he assumed the row totals 

to be fixed. He showed that the asymptotic null distribu-

tion of the quantity Q, 

Q = 

t 
t (t-1) l: 

i=l 

( b )'•.\ 
t jil uj Y:.·:· - h l: u. j ~' b 2)'' 

·j=l J 

as b increases, is the chi-square with (t-1) degrees of 
th freedom, where T. is the number of l's in the i column, T l. 

is the mean of the Ti's, and uj the number of l's in the jth 

row. 

The requirement of large b enables one to assume the 

joint distribution of column totals to be multivariate nor-

mal which is necessary in the derivation of Q. 

At first, it is not clear how one should interpret or 

justify the assumption of the fixed row totals. This assum:r;r-

tion makes sense if one is willing to rank the observations 

within each row (block) and use the mid-ranks technique for 
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handling ties •. If one does this, then the way of treating 

the data becomes the same as with Friedman's rank test 

which is to be discussed briefly below. 

The Friedman's rank test (1937) considers the same 

situation as that of Cochran's Q test but instead of binary 

data, it assumes the data is measured on an ordinal scale 

within each row 'X block). So theoret.ically, .it ... assumes no 

ties in the·· ranks within each row, while that will ... no-t= be· 

the case in Cochran's Q test if the nwnber.of treatments is 

greater than two. This will make Friedman '.s rank test an 

inappropriate.one to use for the present situation with 

binary data. However, it should be pointed out that it is 

used incorrectly many times in practice. 

Friedman's test statistic to test the hypothesis of the 

equality of treatment effects is given by 

x2 = 12 t 
b bt(t+I> .r 

J=l 

where R(X .. ) is· the rank of x .. and 
~J ~J 

R . = 
• J 

b r 
i=l 

R (X .• ) • 
~J 

I 

The statistic X~ is a special case of the form of Sen's 

(1968) statistic sn which for the pres.ent situation reduces 

to 

where 1f. 
·J 

sn -
= R.j I b. 

t [- - J 2 ~ .. R . - E (R .·) 4 • J • J t=.+. .. . . .. 
I (1.7) 



Sen (1968) showed that the general statistic S has the n 
asymptotic null distribution of central chi-square with 

(t-1) degrees of freedom and hence the distribution of X~ 

is the same as that of S • n 
The following structure due .to Brown and Mood, dis-
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cussed by Cla:ypool (1975), is of·interest as it deals with 

binary data under a specified structure and has a satisfac~ 

tory theoretical base behind it. Under the Brown-Mood, 

structure, each of the b observers assigns a value of 1 for 

the k (;<t) mos.t. pref.erred treatments (out of t) and 0 to the 

remaining {t~k) l,e.ss preferred treatments. Under this situ­

ation, one will have the fixed and equal row totals. As is 

mentioned by Claypool (1975), Sen's statistic Sn can be 

used here to test the treatments. The Brown~Mood struct~re 

can be thoug~t of as a special case of Cochran's Q test. 

one can show that the Cochran's Q statistic is of the 

form S defined by (1.5), as was the Friedman's rank statis­n 

tic, xb' and hence its asymptotic null distribution is chi-

square with, (t-1) degrees of freedom. Brownlee (1965) has 

shown Cochran.' s Q statistic. to be a special case of 

Friedman's statistic; however, he credits Nancy D. Bailey 

and William H. Kruskal with demonstrating this proof to h.:i.m. 

The asymptotic hull distribution of the statistic Q 

will be derived in Chapter II using a different approach. 

In his paper, cochran (1950) presented the comparison 

of the Q test with the ordinary x2 test for one-way classi­

fication which is valid when the samples are independent. 
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These two tests coincide when the probability of success 

does not change from row to row. The appropriate x 2 statis-

tic is 

t 
)~ 

b 
I "( I '" T. - if .. u - j i=l ~ where u = j=l 2 I 

X col = - (1 u u.) b b -· t t 

Similarly, the appropriate x2 statistic to test the row 

effects is 

• 

Cochran (1950) concluded that the Q test gives more signifi­

cant results when x2 exceeds its expectation, and fewer 
row 

significant results when x2 is below expectation. row 
Cochran (1950, p. 262) mentions: 

If the data had been measured variables that 
appeared normally distributed, instead of a col­
lection of l's and O's, the F-test wou,ld be 
almost.automatically applied as the appropriate 
method. Without having looked into the matter 
I had once or twice suggested to research work~rs 
that the F-test might serve as an approximation 
even when.the table consists of l's and O's. As 
a testimony to the modern teaching of statistics, 
th~ suggestic;m was received with incredulity, the 
obJect~on be~ng made that the F-test requires 
normality, and that a mixture of l's and O's could 
not by any stretch of the imagination be regarded 
as normally distributed. The same workers raised 
no objection to a x2 test, not having realized 
that both tests require to some extent an assump­
tion of normality, and that it is notobvious 
whether F or x2 is more sensitive to the assump­
tion. Inclusion of the F-test is also worthwhile 
in view of, the widespread interest in the appli­
cation of the analysis of variance to non normal data. · 
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So later in his paper, Cochran considered the F test as· 

an alt,ernative to his Q test a11.d compared the;m. He concluda:l 

that the use 0~ the, x2 approximation for the Q statistic is 

preferable to the F· statistic ~fter correction for continui-cy 

since it is easier to calculate. Neither method is free 

from bias. Both the methods·are "close enough" for routine 

decisio'ns. 

Tate and Brown (1970) have done.an extensive study on 

the distribution G>f Q in small samples and have·given a 

rule of thumb which aids in judging when the chi-square 

approximation to Q ~s satisfactory for practical purposes •. 

The rule of t:,humb as given by them is as follows: 

Delete eacl;l r.ow containing only 1 1 s or only 0 1 s. Let r 

denote the·number of rows.remaining. If rt > 24 and r ~ 4 ..... 
then the approximation is generally satisfactory. Otherwise 

the tables given by Tate and Brown (1964) should be used or 
the exact d;ls tx;:ibution ... cons.t;c.ucrtad. · .'I'h.E'i :r.ang:e. -~o.f .ei.r.ors, 

however & SUg'gests the resul.ts P.e :inte:~p-r-etied .cautiously when 
the· chi:-square probability· turns.· out .to .. be ·near. a critical 

value.· 

Recently, .Patil (1975) proposed a relatively simple 

meth.od for computing the exact probability distribution of 
the Q stati.stic ·and extended the tables of Tate and Brown 

(1964). 

Tallis (1964) has suggested a method of analyzing the 

similar situation with o;ne or more. observations per cell. 

His development is.based on the model similar to that of the 
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standard two-way analysis of variance with usual constraints. 

Maximum likelihood estimation for the parameters in the 

model is also discussed. 

As discussed earlier, Cochran's procedure assumes row 

totals to be fixed and since it is usually not possible to 

specify row (block) totals before the data is collected, 

Cochran's Q test is not explicitly appropriate for this sit­

uation. A more general procedure which does not require the 

assumption of fixed row totals will be proposed in this dis­

sertation. A case with more than one observation per cell 

will also be considered with possible interactions and 

factorial arrangements of treatments. 

Homogeneity of Two-Way Tables 

Now consider the same situation with more than one 

binary observation (say n) per treatment x block cell. 

Then the data can be arranged in a three-way contingency 

table of size t x b x 2. This t x b x 2 table can be 

thought of as being a set of t independent two-way tables of 

size b x 2, each table corresponding to each treatment with 

fixed total. It will be of interest to test for the homoge­

neity of these. b x 2 tables which is the same as testing the 

equality of the treatment effects. Similarly, it will also 

be interesting to test the equality of block effects and 

possible interactions. 

The two-way tables are said to be homogeneous if the 

probabilities associated with corresponding cells are 
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homogeneous. So in order to test the treatments (i.e., 

-----,.~----- homogeneity of t tables of size b x 2), the null hypothesis 

can be formulated as: 

P· 'k = P J'k' ~J • 

where p. 'k is the probability of the observation under ith ~J 

treatment and jth block to fall in kth category, i = l, ••• ,t; 
2 

j = l, ••• ,b; k = 1,2; and k!~ Pijk = 1 for fixed i and j. 

As is apparent, treatment totals and block totals 

(within each treatment} are fixed for this situation. 

In the literature, not much work can be found in this 

direction. The work done.by the author in this direction 

will be presented in later chapters. One might be able to 

find a way to analyze-this situation using the exponential 

model. Some discussion regarding this will also be given in 

later chapters.·· 

Kullbadk(l959} has worked on a similar problem but he 

has assumed only the treatment totals to be fixed and not 
. ,.,,., 

the block totals under each treatment or each b x 2 table. 

Notice.that for his case, p. 'k deno·tes the probability b~ 
~J 

.th the observation ·under t,he ·th treatment to fall in block ~ J 
kth 2 b 

and category and hence r r p = 1. For this situ-
k=l j=l • jk 

ation Kullback (1959} has given a test statistic based on 

information theory to test treatmen~s, which ,is: 

A.· 

2I = 2 
2 b 
r r 

k=l j=l 
f 1 :~N·nijk J L. n. 'k n 

i=l ~J n. n . 
~.. • Jk 
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where nijk is the frequency of occurrence in the ith treat-

t ·th men , J 
th 2 b t 

block, and k category. L L L nijk = N, b t k=l j=l i=l 
L n . . k and n . k = L n . . • j=l ~J ·J i=l ~Jk 

2 
n· = L. 
~.. k=l 

The asymptotic null distribution of the statistic 2I is cen-

tral chi~square with (t-1) (bk-1) degrees of freedom. He has 

also shown that the statistic to test the independence of 
I 

treatment classification with (block, category) classifica-

tion is also of the same form, as above. 

In the literature, the majority of the tests which are 

given for the analysis of multi-dimensional contingency 

tables are·for testing the various types of interactions 

rather than directly for testing the main effects. 

Hoyt, Krishnaih and Torrance (1959) have given the 

derivation of maxi;n1um likelihood estimates of probabilities 

that are used for testing certain hypotheses regarding 

interactions in contingency tables. They also have given a 

four-dimensional illustrative contingency table and have 

demonstrated how to apply their procedure for testing vari-

ous hypotheses of independence. 

Darroch (1962) has compared interactions in contingency 

tables with interactions in the analysis of variance. He 

pointed out that the interactions in contingency tables 

possess only a few of the fortuitously simple properties 

of interactions in the analysis of variance. 

In three-way and multi-way contingency tables, Birch 

(1963) has considered interactions as certain linear 



24 

combinations of the logarithms of the expected frequencies. . . 

Maximum li.kelihood estimation is also presented in this . 

paper for multi-way tables. 

Roy and Mitra (1956) have discussed the analysis of 

p-variate responses arranged in a q-way classification. 

Lewis (1962) has presented avery general review of the 

important methods of analysis ·in multi-way contingency tables, 

along wi~ a selection of procedures which are computation­

ally the simplest available, and ·which may be adapted for 

use with different sampling schemes and/or with theoretical 

rather than e·stimated parameters. 

Ku, Varner, and Kullback (1971) ·have described the 

principle of minimum discrimination information estimation 

and have used it to generate estimates for tests ·of hypoth-

eses regarding varj,o:Us interactions and·effects in the 

analysis of multi-dimen,sion:al contingency tables. According 

to them, with this principle, when certain marginals are 

fixed, all· classical hypotheses for contingency tables can 

be generated. 



CHAPTER II 

ANALYSIS OF BINARY DATA IN ONE-WAY 

CLASSIFICATION SITUATIONS WITH 

EQUAL NUMBER OF OBSERVATIONS 

PER TREATMENT 

The BIANOVA Technique 

In this chapter and onwards, slightly different nota­
tions will be employed compared with that in the previous 

chapter. 

Consider an experiment conducted as a one-way classifi-
cation with t treatments and n binary observations per trea~ 
ment. Let X .. denote the binary response of the jth subject l.J 

under the ith treatment fori= l, ••• , t and j = l, ..• ,n. 
Let n. be the total number of l's ("successes") under the l. 

ith treatment. Then the data appear as follows: 

treatment number + l 2 ... t 

xll x21 . . . xtl 

. . . . . . . . . . . . 
xln x2n xtn 

treatment total + nl n2 . . . nt 
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All the Xij are assumed to be independent of each other. 

Then testing of the following hypothesis is of interest: 

H0 : The treatments are equally effective. 

At least one treatment is different in 
effectiveness from at least one other. 

(2.1) 

Suppose that p. is the true probability of 11 sucess 11 

~ 
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under treatment i. Then the above hypothesis may be restared 

in mathematical terms as follows: 

Ho: Pl = P2 = ••• = Pt ( = P say) 

HA: At least one p. is different from 
at least one oEher. 

The following test statistic, B, is proposed to test the 

above hypothesis: 

t 

(~i ~) 2 nt I - p 
i=l 

B = t A A 

I p, qi 
i=l ~ 

A n· A A A t A t 
where p. = ~· ,qi = 1-p., and p = I p./t = I n./nt. ~ ~ i=l ~ i=l ~ 

The following form of B is more suitable for computational 

and accuracy purposes: 

B = 

t 
nt L n. 2 

. 1 ~ 
~= 

t 
n }: n. -

. 1 ~ 
~= 

t 2 L n. 
i=l ~ 



Note that 

and 

n t {"" "") 2 r r \Pi - p 
j=l i=l 

n t 
"' A r r p. . 

qi 
j=l i=l ~ 

= 

n t 
= r r 

j=l i=l 

n t 
= r r 

j=l i=l 

= r ,I I 
i=lU=l 

("' :~Pi 

(n. ~ n-

2 
x .. 
~J 

- A 2) 
Pi 

n~) ~· 

:2 n 

Hence, the statistic B can be written as: 

n t '( A) 2 t r r Tp. - ; 
j=l i=l ~ B = 

27 
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[ I nf --1 K ·( 1. =I1ni) 2] ··""" .. 1. n nt 
B = nt ~1~-~------------~~-------

f [~X .. 2-* ( i: X·.\~ i=l j=l 1] j=l 1 j) J 
The statistic B can be expressed as follows in terms of 

the components from the standard analysis of variance table: 

B t between grouE ss = n within group ss 

= n (t-1) between group MS 
n-1 w1th1n group MS 

= n(t-1) F [ (t-1) , t(n-1)] I I I 

n-1 

As the statistic B is made up of some of the components 

from the regular analysis of variance table, it is named as 

BIANOVA statistic (binary analysis of variation statistic) 

and this technique as the BIANOVA technique. 

Notice that for fixed n and t, the usual ANOVA test 

statistic, F, is a monotonically increasing function of the 

BIANOVA test statistic, B. 

Under this situation of binary responses, it turns out 

that Gini 1 s definition of categorical variation is equiva-

lent to the "usual" definition of variation in ANOVA. This 

can be demonstrated as follows: 

Total SS in Gini 1 s sense .(repeating(l.S)) is: 

N Total SS = 2 
1 
2N 

c 

2 
i=l 



which can be written as follows in the notation used in 

chapter: 

nt 1 [ ct ni) 2 (nt t n0~] Total SS = -- + - I 2 2nt i=l 

= nt 1 [ Ct ni) 2 + 
n2t2 + pny -

= 

= 

2 2nt 

t 
I n. 

i=l J. 

t n 2 I I X·. 
i=l j=l l.] 

- 2nt 

1 (.f ni) 2 
nt J.=l 

1 
- nt ( r £ 

i=l j=l 

= "usual" Total SS in ANOVA. 

. 1 J. J.= 

(Lni)] 

X. \2 
l.]) 

Within SS in Gini's sense (repeating (1.6» is: 

Within SS = I ·~ 
t (n . 

j=l 2 
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this 

which can be written as follows in the notation used in this 
chapter: 

Within SS = 

t 
[n 1 (ni 2 + 

2 2 
- 2nni)] 

= I 2- 2n n + n. 
i=l J. 

t 
[ni- {ni2)] = I l -

i=l n 
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Within SS = I [' I 
i=l: ::j=l 

= "usual" Within SS in ANOVA. 

Hence for binary data, the CATANOVA statistic becomes: 

"usual" between group SS C = (nt-1) - -
"usual" total SS 

Distributional Derivation of the 

BIANOVA Statistic 

Now it will be shown that under H0 , the asymptotic dis­

tribution of B is central chi-square with (t-1) degrees of 

freedom (same as that of C!) and under HA, the approximate 

asymptotic distribution of B is non-central chi-square with 

(t-1) degrees of freedom and the non-centrality parameter is 

nt 

A. = 

The loss of 1 degree of 
t (A A.) fact that I P· - P . 1 ~ 

~= 

Derivation 

t 
2 I 

i=l 
p,q, 
~ ~ 

> 0 • 

freedom might be explained by the 

= 0~ 

The test statistic B can be written as B = N/D, where 

(
A. ") 2 

N = f Pi - p 

i=l pq/n 

A A 

and t Pi qi /ESI . D = \;' £ nt n 
i=l 

Notice that N can be written in a quadratic form as nY'AY/pq 
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where Y' =- (~1 , ••• ,~tJ and A= (It- ~ J!)· It denotes the 

txt identity matrix'and J~ is the txt matrix with all the 

elements equal to 1. Observe that A is a symmetric idem-

potent matrix of rank (t-1). 

It can be seen that n. is distributed as binomial with 
~ 

the parameters nand pi, i = l, ••• ,t. The mean and variance 

of ni are npi and npiqi, respectively. Asymptotically, ni 

can be said to be distributed as a normal random variable 

with mean npi and variance npiqi. This .implies that Pi is 

asymptotically normal with mean pi and variance piqi/n. 

d ,.. a.d. 
Un er H0 , p;j.. ... N(p,pq/n) , i = 1, ••. ,t. (Note that 

a.c,d. denotes ."asymptotically distributed as".) Due to the 

independence of the Xij' ya.:,d"Nt0=pJ~, 1: = (pq/n) It)· Then 

by Theorems 1 and 3 (in Appendix) 

N = nY'AY/pq a:d· x' 2 (t-l,O) under H0 • 

From Theorem 5, it is known that Pi converges in probability 

to pi. So under H0 , by Theorem 6, 
A A 

Prob •l • 

Hence by Theorem 4, test statistic B converges in distribu-
-

tion to a central chi-square with (t-1) degrees of freedom 

under Ho. 

The asymptotic distribution of B cannot be F,as N and D 

are asymptotically dependent. Now it remains to find the 

asymptotic alternative distribution of the statistic B. 
A a.d. 

Under HA' pi ... N (P·, p.q./n) ·• ~ . ~ ~ 
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Some attempts were made to find the closed form for the 

distribution of the statistic B under HA, but none were sue-
A cessful.due to the inequality of the variances of pi's. 

However, it was decided to approximate the asymptotic alter-
A 

native distribution of pi by a normal distribution with 

mean p. and variance c, where c is t ~ 

I (pi qi _ e\ 2 is minimum. Such c i=l \-.,;:-- . :; 
Notice the error = e. = I (p.q./n) 

~ ~ ~. 

and even for small n, e. < < 0.25. 
~ 

a constant such 
t 

is given by .l 
~=1 

that 
p.q. 
~ ~. 

Ii't"'" 
- cj~o with increasing n, 

In later sections, the same sort of approximation is 

used several times. In each case, this 'results in approxi-

mate asymptotic distributions~ The approximate asymptotic 

distribution will be denoted by the sYmbol 

Conside; ~j: ~si·N{Pi ·~t p1g1/nt). 

B can be written as B = N'/D' where 

N' = 
t r 

i=l 
(

A ")2 t p. - p 1 . r 
~ i=l 

and 

After an adjustment, 

a.d. ... 

Y'AY 
t 
I p.q./nt ·, 1 ~ ~ 

~= 

Ya ..... d. Nl,,, ( ~ p.q \ J ~ = (pl, ••• ,pt),E= i;l ~t~) It • 



By Theorems 1 and 3, N'a~d·x' 2 (t-l, A) where . . 

t ( ~\ 2 t A= nt ,L Pi-~ I 2 L 
~=1 i=l 

By Theorems 5 and 6, D' Prob 1 -+ . 

p.q. 
~ ~ 
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Hence by Theorem 4, the test statistic B converges approxi­

mately in distribution to X' 2 (t-l),A) under HA. 

Note 1: In the above derivation, under HA' another possible 

c, say c 1 = pq/n was also considered. This c 1 gives another 

test statistic, say B 1 , where 

B' = n r (p. - B) 2 I;~ 
i=l ~ 

By following the same reasoning as in the above derivation, 

one can easily show that the asymptotic null distribution of 

B 1 is x2 (t-l) while its approximate asymptotic alternative 

distribution is ·X 1 2 (t-1, A') where 

t . 
A. 1 = n l: {P . - pJ 2/2 pq • 

i=l ~ 

It will be shown that A>A', which means that in testing 
the hypotheses given by (2.1), B will yield uniformly higher 
power than B '·. Then the idea of using c 1 and hence B' was 

dropped. 

The following arguments show that A>A' and hence the 

power of B is uniformly higher than that of B 1 • 

t 
Obviously, . L (Pi - p) 2 ~ 0 • 

~=1 



t 
Under HA, l fpi- :p) 2 > 0, 

i=l ~ 

t 
p.2 > u p.) 2/t, i.e. l 

i=l ~ i=l ~ 

t t 
p. 2 < 

t 
i.e. l p. - l l i=l ~ i=l 

~ . 
i=l 

t 
i.e. l p.q./t < 

_ _, 
pq I 

i=l ~ ~ 

34 

p. -
~ . ( (1 Pi) 2 /~ ' 

Now observe that B and B' have the same asymptotic null 
distribution and hence their critical points are also the 
same. Now as mentioned by Johnson and Kotz (1970, p. 141), 

if a normal distribution is fitted to the non-central chi-

square distribution with d degrees of freedom and the non-
centrality parameter ~, then 

where 

F (x;d, t) ,:, ~ [ {2 X (:+:t~} b] 
<.l>(y) 

1 y 
-·-! 

/2If•oo 
2;·2 ~-u · du. 

It can be seen that F(x;d,R.) is a decreasing function of ~ 
and this will simply imply that the power of B is uniformly 
higher than the power of B'. 

Note 2: The asymptotic distribution of N' might be''better" 
approximated by the distribution of the sum of the non-

central chi-square random variablese 
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Note 3: The distributional derivation of B is based on the 

. a.d. ( ) . h d assumpt1on that ni ~ N npi' npiqi • One m1g t won er or 

question about how large n should be in order to satisfy the 

above assumption. There is no unique answer to this in the 

literature. Kempthorne and Folks (1971, p. 103) suggest 

that the normal approximation to the binomial is better for 

p near 1/2 since the binomial distribution is in that case 

symmetric. The approximation also improves as n increases. 

According to Brownle.e {1965, p. 140), the approximation is 

satisfactory if npq > 9. Thus if p = 1/2, an n of 36 is 

large enough, but if p = 1/10, n needs to be> 100. As·a 

rule of thumb, Remington and Schork (1970, p. 138) suggest 

having both np and nq greater than 5 for an adequate approx-

imation. According to Mendenhall and Reinmuth {1974, p. 148-

149), the approximation will be reasonably good if the inter­

val np + 2/npq lies within the binomial bounds, 0 and n. 

Putting c = 2 and n . = n in the CATANOVA statistic of • J 
Light and Margolin and the x2 statistic of Pearson mentioned 

earlier, one can compare the BIANOVA test with CATANOVA and 

Pearson's chi-square tests. In practice, sometimes some 

people do use ANOVA technique for this situation even though 

it is not appropriate because of the violation of some of 

the assumptions underlying analysis of variance, so it will 

be worthwhile to include the F-test for comparison also. 

This will be done in the next section. 
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Comparisons of BIANOVA Test With 

CATANOVA, Chi-Square, and 

F Tests 

For the situation described in this chapter, statistics 

C and x2 can be reduced to the following after doing appro-

priate substitutions and the necessary algebra: 

c = 

t c n L P· -
i=l l. 

~) 2 

0 0 
p q 

t (" ~\ 2 
niil Pi - PJ 

A ~ 

p q 

nt - 1 
nt 

The above form of x2 looks very familiar. It is the 

same as B' mentioned in Note 1 of the previous section which 

summarizes the null and alternative distributions of B' and 

hence x2 ! The derivation for the null distribution of ~z 
presented in the previous section through Note 1 is simple 

compared to those given in the literature. The alternative 

distribution of x2 is not widely known. 

Notice that: 

(i) 

(ii) 

B evaluated at (~1 , ••• '~t) is the same as B 

evaluated at (cr1 , .•. ,crt). 

B evaluated at (p , ... ,p) is the same as B 1 ' t 
evaluated at (any permutation of p1 ,.". ,pt). 

(iii) From (i) and (ii) above, it can be seen that 

B evaluated at (p1 , ••• ,pt) 1 (any permutation 

! ~ 



and at (any permuta­

the same. For example, 

if t = 2, then this will imply the power for the 
B test under the following foursituations will 

be the same: 

(a) 

(b) 

(c) 

(d) 

pl = PiO' 

constants 

pl = P20' 

pl = ql0' 

p 1 -· q20' 

P2 

and 

p2 

P2 

p2 

= P20• · (plO. and P20 are fixed 

their range is from 0 to 1.) 

= PlO· 

= q20• 

q1o· 
(iv) The abeve three properties hold for the C, X2 1 

(v) 

(vi) 

and F statistics, also. 
A " c < x2 < B and F < B for fixed pl, ••• ,pt. 

From the two expressions for C and x2 given above, 

it is obvious th~t the difference between the cal­
culated C and x2 statistics becomes negligible 

with the increasing value of the product n•t. 

In standard text boo~s, e.g., by Walpole and Myers 
(1972), by Snedecor and Cochran (1972), and by others, for 
t = 2, the z test is given to test H0 : p1 = p 2 • The test 
statistic z is given by 

z = 

which for the present case (n1 = p2 

= n) reduces to 

37 
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Z' = 
/ p q (2/n) 

Under H0 , the approximate distribution of Z is N{O,l). For 

Z' (in general for Z also), it can be shown that 

n 
(Pi 

~)2 2 L -
(Z')2 = i=l = B' = x2· 

~ ~ 

p q (2/n) 

Hence, the so-called z test is identical to Pearson's chi-
square test! In Note 1 of the previous section, it is 

already pointed out that the BIANOVA ~tatistic, B, gives 

higher power than B ' , and hence x 2 • 

Because of observations {iv) and (v) previously, it was 
decided to compare the BIANOVA test with the chi-square and 

F tests only. It is easy to observe that the chi-square 
test will yield higher power than C in the case of binary 

responses. For empirical comparisons, t = 2 and n = 10 were 

selected as the simplest case. Tables I through VII give the 
empirical power of BIANOVA (orB test), chi-square and F 
tests at various ~ levels and for various values of p1 and 

p2 . To arrive at these tables, 2000 data sets were gener­
ated for each selected configuration of p1 and p 2 • p1 arid 
p 2 take values from 0 to 1 with the increments of 0.1. Fig­
ures 1 through 11 give the power curves based on the infor-
mation from these Tables I through VII. Due to symmetry, 
Figures 9, 8, 7, and 6 are just the mirror images of. Figures 

1, 2, 3, and 4, respectively. 
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TABLE I 

EMPIRICAL PROBABILITY OF REJECTING Ho: pl=p2 FOR BIANOVA 
AND CHI-SQUARE TESTS AT VARIOUS SELECTED 

COMBINATIONS OF pl AND p2, FOR THE 
CASE OF t=2 AND n=lO, WITH a=0.05 

AND 0.07, RESPECTIVELY 

Pl VAlUES 
TEST E. lEVEl 0.1 0.2 0.3 0.4 0.5 0.6 0.1 o.8 

B 0.05 0.0460 0.1220 0.4690 0.6580 0.8025 0.9715 

CHI-SQ 0.07 0.0460 0.1220 0.4690 0.6580 0.8025 0.9715 

& 0.05 o. 1220 0~1075 0.1455 0.3675 0.5850 0.7245 

CHI-SQ 0.07 0.1220 0.1015 0 .1455 0.3675 0. 5850 0.7245 ,,, 

B 0.05 0.1455 0.0895 0.1135 0.3535 0.7245 

CHI-SQ 0.07 0.1455 0.0895 0.1135 0.3535 0.7245 
' 

0.3.535 0.5850 f3 0.05 0.4690 0.1135 u.0930 0.1264 

* CHI-SQ 0.07 0.4690 0.1135 o. 0930 0.1264 0.3535 0.5850 

1:! o.os 0.6580 o. 3675 0.1264 o.oaoo 0.1264 0.3675 

* * * CHI-SQ 0.07 0.6580 0.3675 o.i264 0.0800 0.1264 0.3675 

B 0.05 0.8025 0.5850 0.3535 0.1264 0.0930 0.1135 
* * * CHI-SQ 0.01 0.8025 0.5850 0.3535 0.1264 0. 0930 0.1135 

B 0.05 o. 7245 0.3535 0.1135 0.0895 0.1455 

* * CHI-SO 0.07 0.7245 0.3535 0.1135 o. 089' 0.1455 

B 0.05 o. 9715 o. 7245 0.5850 0.3675 0.145" 0.1075 

* * * CHI-SQ 0.07 0.9715 o.n45 0.5850 0.3675 0.145' 0.1075 

d 0. ()5 1.0000 0.9115 0.8025 o. 65 ac 0.469C 0.1220 
* * * * * CHI-SQ 0.07 1.0000 o. 9715 0.8025 0.658( 0.469C 0.1220 

39 

0.9 

1.0000 

1.0000 

0.9715 

o. 9715 

o. 8025 

0.8025 

0.6580 

0.6580 

0.4690 

0.4690 

0.1220 

0.1,220 

0.0460 

* 0.0460 

* indicates the values of pl and p2 under which the empirical study was carried out. The remaining cells of this table were completed using the results summarized on page 36, In the remaining tables, *should be located in the same cells indicating the same as here. 

....... 
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TABLE II 

EMPIRICAL PROBABILITY or REJECTING Ho-: pl=p2 FGR BIANOVA, 
CHI-SQUARE AND. F TESTS AT VARIOUS SELECTE:D ., . 

COMBiNATIONS OF ~1 AND 'p2; FOR THE CASE 
OF t=2 AND n=lO, WITH a=O.Ol, 0.05 

AND 0.05, RESPE~TIVELY 

Pl VALUES 
TEST f. LEVEL o. l 0.2 0.3 0.4 0.5 0.6 0.7 o.a 

8 0.01 p.0090 0.0400 0.2935 0.4700 0.6620 0.9420 
CH 1- SO 0.05 o. 0090 0.0400 0.293:; 0.4700 0.6620 0.9420 

f 0.05 0.0090 0.0400 0.2935 0.4700 0.6620 0.9420 

t! 0.01 o. 0400 o. 0305 o.ooos 0.2340 0.4590 0.6145 
CHI-SO 0.05 0.0400 0.0305 0.0605 0.2340 0 •. 4590 0.6145 

t' o.o5 0.0400 0.0305 0.0605 0.2340 0.4590 0.6145 

t! 0.01 o. 0605 0.0320 0.0630 0.2440 0.6145 
CHI-SO 0.05 0.0605 0 .0:320 0.0630 0.2440 o.6a5 

f 0.05 0.0605 0.0320 o. 0630 0.2440 0.6145 

8 0.01 io-2935 0.0630 0.0430 0.0584 0.2440 0.4590 
CHl-SIJ 0.05 p.2935 0.0630 o. 0430 o. 0584 0.2440 0.4590 

F 0.05 p.2935 0.0630 0.0430 0.0584 0.2440 0.4590 

t! 0.01 0.4700 0.2340 0.0584 0.0430 o. 0584 0.2340 
CHI-SQ 0.05 p.4700 0.2340 0.0584 0.0430 0.0584 o. 2340 

F o. 05 o. 4700 0.2340 0.0584 0.0430 0.0584 0.2340 

t3 o.o1 p. 6620 0.4590 0.2440 0.0584 0.0430 O.Oo30 
CHI-SQ 0.05 o. 6620 0.4590 0.2440 0.0584 0.0430 0.0630 

F 0.05· p.6620 0.4590 0.2440 0.05t!4 0.0430 0.0630 

B 0.01 o. 6145 0.2440 0.0630 0.0320 0.0605 
C.H 1-SQ 0.05 o. 6145 0.2440 o. 0630 0.0320 0.0605 

F 0.05 0.6145 0.2440 0.0630 0.0320 0.0605 

B 0.01 0.9420 0.6145 Oo4590 o. 2340 o.ot.o5 0.0305 
CHl-SQ 0.05 0.9420 0.6145 0.4590. 0.2340 0.0605 0.0305 

F 0.05 0.9420 0.6145 0.4590 0.2340 0.0605 0.0.305 
" 

B 0.01 0.9960 0.9420 0.6620 0.4700 0.2935 0.0400 CHI-SQ o.os 0.9960 0.9420 0.6620 0.4700 0.2935 0.0400 
F o.os lo-9960 0.9420 0.6620 0.4700 0.2935 0.0400 
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0.9 

0.9960 
0.9960 
0.9960 

0.9420 
0.9420 
0.9420 

0.6620 
0.6620 
0.6620 

0.4700 
o. 4700 
o. 4700 

0.2935 
0.2935 
0.2935 

0.0400 
o. 0400 
o.o40J 

0.0090 
0.0090 
0.0090 
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TABLE I II 

EMPIRICAL PROBABILITY OF REJECTING Ho: p l =p2 FOR BIANOVA 
AND CHI-SQUARE" TESTS- AT VARIOUS SELECTED 

COMBINATIONS OF pl AND p2, FOR THE 
GASE OF t=2 AND n=10, WITH ~=0.03 

AND 0.0512, RESPECTIVELY 

P1 VALUES 
TEST (; UVH 0.1 0.2 0.3 0.4 0.5 0.6 0.7 o.a 

8 o. 03 0.0100 0.0500 0.3705 0.5740 0.7420' 0.9545 

CHI-SQ 0.0512 0.0100 o.Q500 0.3705 0.5740 0.7420 0.9545 

i3 0.03 0.0500 0.0505 Co0990 0.2990 Q. 5060 o. 6445 

CHI-SQ 0.0512 0.0500 0.0505 o. 0990 0.2990 0.5060 o.o445 

l:l 0.03 0.0990 0.0535 0.0855 0.2745 o. 6445 

CHI-SW 0.0512 0.0990 0.0535 0.0855 0.2745 0.6445 

tl o. 03 0.3 705 0.0855 0.0590 0.0736 0.2745 0.50b0 

CHI-S(.; o. 0512 o. 3705 o.ot~55 0.0590· 0.0736 0.2745 0.5060 

rl 0.03 0.5740 0.2990 0.0736 0.0490 0.0736 0.2990 

CHI-S-.) 0.0512 0.5740 0.2990 0.0736 0.0490 0.0736 0.2990 

b 0.03 o. 7420 0.5060 0.2745 0.0736 0.0590 0.0855 

CHI-SQ 0.0512 0.7420 o. 5060 C.2745 o. 0736 o. 0590 0.0855 

lJ o. 03 0.6445 0.2745 0.0855 0.0535 0.0990 

CHI-SQ 0.0512 0.6445 0.2745 0.0855 o. 05 3' 0.0990 

B 0.03 0.9545 0.6445 0.5060 0.2990 o. 099( 0.0505 

CHI-SQ 0.0512 0.9545 0.6445 0.5060 0.2990 0.099( 0.0505 

13 0.03 1.0000 0.9545 0.7420 0.5740 0.3705 o. 050( 

CHl-SQ 0.0512 1.0000 0.9545 o. 7420 0.5740 0.3 705 0.0500 
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1.0000 

1. 0000 

0.9545 

0.9545 

0.7420 

o. 7420 

0.5740 

0.5740 

o. 3105 

0.3705 

0.0500 

0.0500 

0.0100 

0.0100 
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TABLE IV 

EMPIRICAL PROBABILITY OF REJECTING Ho: pl=p2 FOR BIANOVA, 
CHI-SQUARE AND F TESTS AT VARIOUS SELECTED 

· COMBINATIONS OF p1 AND p2; FOR THE CASE 
OF t=2 AND n=lO, .WITH a=0.005, 0.01 

AND 0.01, RESPECTIVELY 

P1 VALUES 
TbT & U:VEL 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 .a 

B o. 005 0.0010 o. 0110 0.140~ 0.2920 0.4750 0.8435 
CtH-SQ 0.01 0.0010 o. 0110 0.1405 0.2920 0.4750 0.8435 

F o.o1 0.0010 0.0110 0.1405 0.2920 0.4750 0.8435 

!l 0.005 0.0110 0.0105 0.0220 0.1305 0.2860 0.4255 
~IH-SQ o.o1 0.0110 0.010.5 0.0220 0.1305 0."2860 0.4255 

f o. 01 o. 0110 o. 0105 0.0220 0.1305 0.2860 0.4255 

jj 0.005 0.0220 0.0110 0.0225 0.1175 o. 4255 
Hl-SQ u.o1 0.0220 o.ouo 0.0225 0.1175 0.4255 

F o.o1 0.0220 0.0110 0.022.5 0.1175 0.4255 

8 0.005 o. 1405 Q.0225 0.0140 0.0224 0.1175 0.2860 
CHI-S 0 0.01 0.1405 0 . ..0225 0.0140 0.0224 0.1175 0.2860 

F o. 01 0.1405 0.0225 0.0140 0.0224 0.1175 0.2860 

jj 0.005 0.2920 0.1305 0.0224 0.0120 0.0224 0.1305 
Crll-SQ o. 01 0.292\) 0.1305 0.0224 0.0120 0.0224 0.1305 

F 0.01 0.2920 0.1305 0.0224 o. 0120 0.0224 0.1305 

t) o. 005 0.4750 0.2860 0.1175 0.0224 0.0140 0.0225 
CHI-SQ o.o1 0.4750 0.2860 0.1175 0.0224 0.0140 0.0225 

f O.J1 0.4750 0.2860 0.1175 0.0224 O. Oi40 0.0225 

B u.oos 0.4255 0.1175 0.0225 0.0110 0.0220 
CHI-SQ 0.01 0.4255 0. 1175 0.0225 O.OllO 0.0220 

F o. 01 0.4255 0.1175 0. 02 25 0.0110 0.0220 

a o.oos 0.8435 0.4255 0.2860 0.1305 0.0220 0.0105 
CHI-SQ o. 01 0.8435 0.4255 0.2860 0.1305 0.0220 0.0105 

F o.ot 0.8435 0 .'t2.55 0.2860 0.1305 0.0220 0.0105 

8 0.005 0.9400 0.8435 0.4750 0.2920 0.1405 0 .o 110 
CHl-SW 0.01 0.9400 0.8435 0.4750 0.2920 0.14 05 o.ouo 

f 0.01 0.9400 0.3435 0.4 750 0.2920 0.1405 o.ouo 
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0.9400 
0.9400 
0.9400 

0.8435 
0.8435 
0.8435 

0.4750 
0.4750 
0.4750 

0.2920 
0.2920 
0.2920 

0.1405 
0.1405 
0.1405 

o.ouo 
0.0110 
0.0110 

0.0010 
0.0010 
o. 0010 
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TABLE V 

EMPIRICAL PROBABILITY OF REJECTING Ho: pl=p2 FOR BIANOVA, 
CHI~SQUARE AND F TE:STS -AT VARlOUS SELECTED-- -

COMBINATIONS OF-~1"AND.~2,-FOR THE' CASE 
OF t=2_ AND n=lO, WITH a=0.03, 0.03 

AND 0.03, RESPECTIVELY 

P1 VALUES 
Tt ST&LEVEL a. 1 O.l J.3 0.4 0.5 O.b 0.7 0.8 

0 0.03 0.0100 0.0500 0.3105 0.5740 0.1420 o. 954.5 
CHI-SIJ 0.03 0.0090 0.0400 0.2935 0.4700 0 .&620 0.9420 

f 0.03 0.0090 0.0400 Oo2935 0.4700 0.6620 o. 9420 

rl 0.03 o. 0500 0.0505 0.0990 0.2990 0.5060 0.6445 
CHl-Sl.l 0.03 0.0400 0.0350 0.0605 0.2340 0 .·4590 0.6145 

~ 0.03 o. 0400 0.0350 0.0605 0.2340 0.4590 0.6145 

i:l 0.03 0.0990 0.0535 0.0855 0.2745 o. 6445 
CHI-SW 0.03 0.0605 0.0320 0.0630 0.2440 0.6145 

f 0.03 0.0605 0. 032 0 0.0630 0.2440 0.6145 

u 0.03 o. 3705 0.0855 o. 0590 0.0736 0.2745 0.5060 
C.HI-SW 0.03 0.2935 0.0630 0.0430 0.0584 0.2440 0.4590 

F 0.03 0.2935 0.0&30 0.0430 0.0584 0.2440 0.4590 

b 0.03 0.5740 0.2990 o. 0736 0.0490 0.0736 0.2 990 
CHI-SQ 0.03 0.4!00 0.2340 0.0584 0.0430 0.0584 0.2340 

F 0.03 o. 4/00 0.2340 0.0584 0.0430 0.0584 0.2340 

13 0.03 0.7420 o.50oo 0.2745 0.0736 0.0590 0.0855 
CHl-!)Q 0.03 o. 6620 0.4590 0.2440 0.0584 0.0430 0.0630 

F J.03 0.6620 0.4590 0.2440 0.0584 0.0430 0.0630 

8 0.03 0.6445 0~2745 0. 0855 0.0535 0.0990 
CHl-SQ 0.03 0.6145 0.2440 0.0630 0.0320 0.0605 

F 0.03 0.6145 0.2't40 0.0630 0.0320 0.0605 

tl 0.03 o. 9545 0.6445 0.5060 0.2990 0.0990 0.0505 
CHI-SQ 0.03 0.9420 0.6145 0.4590 0.2340 0.0605 0.0305 

F 0.03 0.9420 0.6145 0.4590 0.2340 O.Oo05 0.0305 

I:J 0.03 1.0000 0.9545 o. 7420 0.5740 0.3705 0.0500 
CH 1-SQ 0.03 0.9660 0.9420 0.6620 0.4700 0.2935 0.0400 

F 0.03 O.<J660 0.9420 0.6620 0.4700 0.2935 o. 0400 
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1.0000 
0.9960 
0.9960 

0.9545 
0.9420 
0.9420 

0.7420 
o.6o20 
0.6620 

0.5740 
o. 4 7 00 
0.4700 

o. 3705 
0.2935 
0.2935 

0.0500 
0.0400 
0.0400 

0.0100 
0.0090 
0.0090 
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TABLE VI 

EMPIRICAL PRQBABI.LITY OF REJECTING Ho: pl =p2 FOR BIANOVA, 
CHI-SQUARE AND F TESTS AT VARIOUS SELECTED 

COMBIN.l\TIONS OF pl AND p2, FOR THE CASE 
· OF t=2 AND ~=10, WITH a=0.005, • 

0.005 AND 0.005, RESPECTIVELY 

P1 VALUES 
lEST & LEVEL o.1 o.z 0.3 0.4 0.5 0.6 0.7 O.!l 

13 3.005 0.0010 0.0110 0.1405 0.2920 0.4750 0.8435 
CHI-SQ o. 005 o.oooo 0.0005 0.0620 0.1550 0.2860 0.6880 

F 0.005 o.oooo 0.0005 0.0740 0.2000 0.37.55 0.7775 

B 0.005 0.0110 0.0105 0.0220 0.1305 0.2860 0.4255 
CHI-Sf.l 0.005 0.0005 0.0020 0.0055 o. 05 75 0 ."!370 0.25.50 

F 0.005 0.0005 0.0030 0.0085 0.0935 0.2190 0.3385 

13 o.C05 o. 0220 o.ouo 0.0225 0.1175 0.4255 
CHI-SQ u.005 0.0055 0.0040 0.0055 0.0535 0.2550 

f 0.005 0.0085 0.00'>'> 0.0120 0.0825 0.3385 

!:l 0.005 0.1405 0.0225 0.0140 0.0224 0.1175 0.2860 
CHI-SQ o. 005 o. 0620 0.0055 0.0055 0.0040 0.0535 0.1370 

F 0.005 0.0740 0.0120 0.0100 O.OOdO 0.0825 0.2190 

[:! 0.005 0.2920 0.1305 0.0224 0.0120 0.0224 0.1305 
CHl-SiJ u.oo5 0.1550 0.0575 o. 0040 0.0030 0.0040 0.0575 

f 0.005 0.2000 0.0935 o.oo8o o.ooao o.ooao 0.0935 

l:l 0.005 0~4750 0.2860 0 .ll 75 o. 0224 0.0140 0.0225 
CHI-SQ 0.005 0.2660 0.1370 0.0535 0.0040 0.0055 0.0055 

F 0.005 0.3755 0.2190 0.0625 0.0080 o. oi oo 0.0120 

8 0.005 0.4255 0.1175 0.0225 0.0110 0.0220 
CHI-SQ 0.005 0.2550 0.0535 0.0055 0.0040 0.0055 

f 0.005 0.33d5 0.0825 0.0120 0.0055 o. 0085 

B 0.005 o. 8435 0.4255 0.2860 0.1305 0.0220 0.0105 
CHI-SQ 0.005 0.6880 0.2550 0.1370 0.0575 0.0055 o.oozo 

f 0.005 o. 7775 0.3385 0.2190 0.0935 0.0085 0.0030 

l:i 0.005 0.9400 0.8435 0.4750 0.2920 0.1405 o. 0110 
CHI-SQ u.oo:; o. 6680 0.6880 0.2860 0.1550 0.0620 o.ooos 

F 0.005 0.9400 0.7775 0.3755 o.zooo 0.0740 0.0005 
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0.9400 
0.8680 
0.9400 

0.8435 
0.6880 
0.7115 

0.4750 
0.28b0 
0.3755 

0.2920 
0.1550 
0.2000 

0.1405 
0.0620 
0.0740 

0.0110 
0.0005 
0.0005 

0.0010 
o.oooo 
o.oooo 
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TABLE VII 

EMPIRICAL PROBABILITY OF REJECTING Ho.: pl =p2 FOR BIANOVA, 
CHI-SQUARE AND F TESTS AT VARIOUS SELECTED 

COMBINATION$ OF pl AND p2,. FOR THE CASE 
OF t=2 AND n=lO, WITH ~=0.07, 0.07 

. ANO 0.07, RESPECTIVELY 

Pl VALUES 
1 EST & .LEVEL 0.1 0.2 0.3 0,.4 0.5 0.6 0.7 o.a 

8 0.07 0.0460 0 • .1220 0.4695 0.6650 0.8150 0.9825 
CHI-SQ o.u7 0.0460 0.122j 0.4690 0.6580 0.8025 0.9715 

F 0.07 0.0460 0.117!1 0.447.5 0.6140 o. 7585 0.9550 

B 0.07 0.1220 0.1080 0.1485 o. 38.75 0.6240 0.7805 
CHI-SQ 0.07 0.1220 0.1075 0.1455 0.3675 o;s850 o. 7245 

1- o. 07 0.1178 0.1010 0.1325 0.3080 0 .5110 0.6460 

B 0.07 0.1485 0.0940 0.1284 0.4095 0.7d05 
CHI-SQ 0.07 0.1455 0.0!195 0.1135 0.3535 0.7245 

F 0.07 0.1325 0.0675 0.0900 0.2750 0.6460 

f.l o. 07 0.4695 o.121l4 0.1105 0.1528 0.4095 0.6240 
CHI-SQ 0.07 0.4690 0.1135 o. 093 0.1264 0.3535 0.5850 

F 0.07 0.4415 0.0900 0.0605 0.0835 o. 2750 o. 5110 

8 o. 01 0.6650 0.3875 0.1528 0.1100 0.1528 0.3875 
CHI-SQ 0.07 0.6580 0.36'75 0.1264 0.0800 0.1264 0.3675 

F 0.07 0.6140 0.3080 0.0835 0.0490 0.0835 0.3080 

0 0.07 0.8150 0.6240 0.4095 O.l52ti o.uos 0.1284 
CHI-SQ 0.07 0.8025 0.5650 0 .3535 0.1264 0.0930 0.1135 

F 0.07 o. 7585 0.5110 J.2750 0.0835 0.0605 0.0900 

a 0.07 0.7805 0.4095 0.1284 0.0940 0.1485 
CHI-SQ 0.07 0.7245 0.3535 0.1135 0.0895 0.1455 

F 0.07 0.6460 0.2750 0.09.00 0.0675 0.1325 

a 0.07 0.9825 0.7805 0.6240 0.3875 0.1485 0.1080 
CHI-SQ 0.07 0.9715 0.7245 0.5850 0.3675 0.1455 0.1075 

F 0.07 0.9550 0.6460 0.5110 0.3080 0.4475 0.1010 

8 0.07 1.0000 0.9825 0.8150 0.6650 0.4695 0.1220 
Ctii-SQ o. 07 1.0000 0.9715 0.<1025 0.6580 0.4690 0.1220 

F 0.07 1.0000 0.9550 0.7585 0.6140 0.44 75 0.1178 
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0.9 

1.0000 
1.0000 
1.0000 

0.9825 
0.9715 
0.9550 

0.8.150 
0.8025 
o. 7585 

0.6650 
0.6580 
0.6140 

0.4695 
0.4690 
0.4475 

0.1220 
0.1220 
0.1176 

0.0460 
0.0460 
0.0460 
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TABLE VIII 

MONOTONE RELATION OF CHI-SQUARE AND BIANOVA STATISTICS FOR t=2 AND n=lO 

OBS P1 P2 CHSQ 8 RANKCHSQ RANKS 

1 .1 0.2 0.3922 0.4000 7.5 7.5 
2 .1 0.3 1.2500 1.3333 15.5 15.5 
3 .1 0.4 2.4000 2.7273 22.5 22.5 
4 .1 0.5 3.8095 4.7059 28.5 28.5 
5 .1 0.6 5.4945 7.5758 33.5 33.5 
6 .1 0.7 7.5000 12 .oooo 37.5 37.5 1 .1 o.a 9.8990 19.6000 40.5 40.5 
8 .1 0.9 12.8000 35.5556 43.0 43.0 9 .1 1.0 16.3636 90.0000 45.0 45.0 10 .2 0.3 0.2667 0.2703 5.5 5.5 

11 .2 o.tt 0.9524 1.0000 12.5 12.5 12 .2 0.5 1.9780 2.1951 19.5 19.5 13 .2 0.6 3.3333 4.0000 25.5 25.5 14 .2 0.7 5.0505 6.7568 31.5 31.5 15 .2 o.a 7.2000 11.2500 36.0 36.0 16 .2 0.9 9.8990 19.6000 40.5 40.5 17 .2 1.0 13.3333 40.0000 44.0 44.0 
18 .3 0.4 0.2198 0.2222 3.5 3.5 19 .3 0.5 0.8333 0.8696 10.5 10.5 20 .3 0.6 1.8182 2 .oooo 17.5 17.5 21 .3 0.7 3.2000 3.8095 24.0 24.0 22 .3 0.8 5. 0505 6.7568 31.5 31.5 23 .3 0.9 7.5000 12 .oooo 37.5 31.5 24 .3 1.0 10.7692 23.3333 42.0 42.0 25 .4 0.5 o. 20.20 o. 2041 1.5 1.5 26 .4 0.6 o.8ooo 0.8333 9.0 9.0 21 .4 0.7 1.8182 2.0000 17.5 17.5 28 .4 o.a 3.3333 4. 0000 25.5 25.5 29 .4 0.9 5.4-945 1.5158 33.5 33.5 30 .4 1.0 8.5714 15.0000 39.0 39.0 31 .5 0.6 0.2020 0.2041 1. 5 1. 5 32 .5 0.7 0.8333 0.8696 10~5 10.5 33 .5 o.8 1.9780 2.1951 19.5 19.5 34 .5 0.9 3.8095 4.7059 28.5 28.5 3.5 .5 1.0 6.6667 10.0000 35.0 35.0 36 .6 0.7 0.2198 0.2222 3.5 3.5 37 .6 o.8 0.9524 1.0000 12.5 12.5 38 .6 0.9 2.4000 2.7273 22.5 22.5 39 .6 1.0 5.0000 6.6667 30.0 30.0 40 .1 o.8 0.2667 0.2703 5. 5 5.5 41 .1 0.9 1.2500 1.3333 15.5 15.5 42 .1 1.0 3. 5294 4. 285 7 27.0 27.0 43 .8 0.9 0.3922 0.4-000 7.5 1.5 44 .s 1.0 2.2222 2.5000 21.0 21.0 45 .9 1.0 1.0526 1.1111 14.0 14-.0 
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Figure 1. Empirical Power Curves for BIANOVA and CHI-SQUARE 
Tests at Various a Levels Under the Situations 
wLth t = 2, n = 10, p1 = 0.1 and p 2 as a 
Variable. 



1.0 

0.9 

0 0. 8 
li: 

b"l 
s:: 
:j 0. 7 
tl 
([) 
·n 
~ 0. 6. 

4-1 
0 
:>to.s 

..J,J 
·r-1 
r-l 

:3 0. 4 
rd 
.g 
H 0. 3 

P-1 

0.2-

0.1 

0 

48 

L---~==r=~~--~~~--~--~~~--~~~~·p 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 2 

Figure 2. Empirical Power Curves for BIANOVA and CHI-SQUARE 
Tests at Various a Levels Under the Situations 
with t = 2, n = 10, p 1 = 0.2 and p 2 as a 
Variable. 
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Figure 3. Empirical Power Curves for BIANOVA and CHI-SQUARE 
Tests at Various a Levels Under the Situations 
with t = 2, n = 10, p 1 = 0.3 and p 2 as a 
Variable. 
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with t = 2, n = 10, p 1 = 0.4 and p 2 as a 
Variable. · 
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Tests at Various a Levels Under the Situations 
with t = 2, n = 10, p 1 = 0.5 and p 2 as a 
Variable. 
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Figure 6. Empirical Power Curves for BIANOVA and CHI-SQUARE 
Tests at Various a Levels Under the Situations 
with t = 2, n = 10, p 1 = 0.6 and p 2 as a 
Variable. 
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Figure 7. Empirical Power Curves for BIANOVA and CHI-SQUARE 
Tests at Various a Levels Under the Situations 
with t = 2, n = 10, p 1 = 0.7 and p 2 as a 
Variable. 
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Figure 8. Empirical Power Curves for BIANOVA and CHI-SQUARE 
Tests at Various a Levels Under the Situations 
with t = 2, n = 10, p1 = 0.8 and p2 as a 
Variable. 
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Figure 10. Empirical Power Curves for BIANOVA and CHI-SQUARE 
Tests, both at 0.07 Level, Under the Situations 
with t = 2, n = 10, p 1 = 0.2 and p 2 as a 
Variable · 
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From these figures and"tables, notice the following 

points: 

(i) The B test is uniformly more powerful than 

the chi-square and F tests. 

(ii) Power curves for the B test at levels of 0.05, 

0.03, 0.01, and O.OOScoincide with the power 

curves for the chi-square test at the levels 

0.07, 0.0512, 0.05, and 0.01, respectively. 

(iii) Power curves for the chi-square test and the 

F test coincide with each other at levels 

0.05, 0.03, and 0.01. However, they do not 

coincide at levels 0.07 and 0.005. 

(iv) From (ii) and (iii) above, it can be con­

cluded that the power curves for B test at 

0.01 level, chi-square test at 0.05 level, 

and F test at 0.05 level coincide with each 

other. Also, the power curves for B tests at 

0.005 level, chi-square test at 0.01 level, 

and F test at 0.01 level coincide with each 

other. 

(v) The chi-square test yields uniformly higher 

power than F test at the level of 0.07; how­

ever, the opposite is true at the level of 

0.005. 

(vi) Because of the small sample size, the test 

statistics.become discontinuous (discrete) and 

as a result, chi-square (and F test, also) 
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gives the same power at the different levels of 

0.03 and 0.05. For some reason, this is not 

true for the B test! 

(vii} Under H0 , for small sample sizes (such as n = 10), 

B, chi-square, and F tests do not attain the de-

(viii) 

sired fixed a levels~ 

Frequently, under H , the level reached by the B 
0 

test is somewhat higher than that reached by the 

chi~square and F tE?sts. This make.s the B test 

somewhat more liberal than the chi-square and F 

tests. 
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The incidence of coinciding pow~r curves indicates that 

all three tests are ordering the data sets in a similar 

manner. Of course, for the different values of n and t, dif-

ferent types of relationship will hold between the sets of 

fixed a levels in order to achieve the coinciding power 

curves. One can investigate this interesting relationship 

for some cases, with enough time and computing money. How-

ever, it would be difficult to arrive at general conclusions. 

Also for a given value of t, one can investigate the minimum 

value for n for which all three tests will attain the fixed 

desired a levels under H0 . 

From the above observations, it becomes difficult to 

say which test is "superior". Probably, it will depend very 

much upon an individual's taste for hypothesis testing and 

also upon the experimental situation. However, the situation 
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in Figures 10 and 11 make the B test look somewhat more 

"attractive" than chi-square and F tests. 

In Figure 10, p1 is fixed at 0.2,and p 2 varies. Here, 

the desired ex levels for both the tests are set.at 0.07. It 
can be seen that under H , both the tests attain approxi-0 
mately the same level of 0.108 (different from the desired 
0.07 level) and yet under alternative hypotheses, the B test 
is uniformly more powerful than the x2 test. With further 

study, it is possible to find different ex levels (such as 
0.07) for which both tests attain the same level (may be 

different from the desired level) under H0 and yet under 

alternative hypotheses, the B test is more powerful than the 
chi-square test. 

In Figure 11, p1 is fixed at ··o. 01 level I'· and p 2 varies. 
Here, the desired ex levels for all the three tests (B, chi-
square, and F) are set at 0.07. It can be observed that 

under H0 , all three tests attain the same level of 0.046 
(different from the desired 0.07.level) and yet under the 

alternative hypotheses, the B test gives higher power than 
both the chi-square and F tests, and the chi-square test 

gives higher power than the F test. With further study one 
can find different ex levels (such as 0.07) for which all the 
three tests attain the same level (may be different from the 
desired level) under H and yet under alternative hypotheses, 0 
the B test is more powerful than the chi-square and F tests. 



Ordering of the Collection of Data Sets 

by B, Chi-Square, and F Tests 

An empirical study for n = 10, t = 2, ,,ana t = 3, was 

done which indicated that the B, chi-square, and F tests 

order the collection of data sets in a similar fashion~ 
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Since it was previously indicated that for a fixed n arid t, 

the F statistic is a monotonically increasing function of 

the BIANOVA test statistic B, then it is sufficient to com-

pare the BIANOVA test statistic B with the chi--square test 

statistic, thereby providing a comparison of the BIANOVA 

test statistic B, the chi-square statistic, and the F 

statistic. 
A A 

For t = 2 and n = 10, various values of p 1 and p 2 , with 

the increments of 0.1 were considered and the corresponding 

values of B and x2 were found. These values are given in 

Table VIII. Also, for t = 3 and n = 10, various values of 
A A A 

p 1 , p 2 , and p 3 , with the increments of 0.1, were considered 

and the corresponding values of B and x2 were found, which 

are not included here because of the length involved. From 

Table VIII, it can be seen that statistic B is a monotoni­

cally increasing function of the x2statistic, and hence 

that all three tests (B, chi-square, and F) order (rank) the 

data sets in a similar fashion. However, in order to gener-

alize this statement for all values of n and t, some more 

work needs to be done. 

This problem of same ordering can be stated as follows: 
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are two t-dimensional functions. It is known that X2 < B at 

any fixed point in t-dimensions. Assume that there exists a 

point, say, (p1', ... ,pt') such that x2 (p1 ', ... ,pt') > x2 (p1 , 

..• ,~t)• Does this imply B(~1 ', ••• ,~t') > B(~1 , .•• ,~t)' and 

vice versa? 

It is difficult to solve this problem only with algebra. 

Some of the results achieved in trying to work this problem 

geometrically which might be of help are as follows: 

3 ~2 = [{ 
ap. 

1. 

t A 

tIP· -
j=l J 

( J ~ .) 2} f 2nt .(t~i - I ~ .)1 
J=l J l j=l J } 

~ ( n J ( t~ . - J ~ .\ 2} { t- 2 ( .f p .) ) J 1 J=l \ J J=l J} J=l J ) 

2[ (tA. tA2) ('": tA) t(A = t 2n I P· - I P· tpi -.I p, - ¥ .I tp. j=l J j=l J J=l J J=l J 

LP· t-/:p. ~ t A ) 2 ( t A 0J 
j=l J j=l J . 



-A-= 2n. I p. dB [ ( t "-
api j=l J 

Hence, 

where 

Now 

t A )2 - I P. 
j=l J 

tA2) (A t,..) - L p, tp. - L P· -j=l J ~ j=l J 
t ~A ~ l: .tp. 

j=l J 

= 

I p. - I P· ~( tA tA2,·2] 
j=l J j=l J 

+ . = C .-..• .. V (B), 
{p.} 

J 

2( t A t A 2) 2 t l p, - l p. 
----~j=_l~J--~J~·=_l __ J _____ > 0 

r P. t- r p. ( t A )2 ( t A~ 2 
j=l J j=l J 

[ + ] ~ = c.... ·~HB) ·-:;-
{pj} · lui 

- c+A o+(B) 
. {p .} u 

J 
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(Definitions 4 and 5 in the Appendix define the gradient, V, 
and the directional derivative, respectively.) 

The above result simply implies that along some path 
(and not for any two random. points) of (;1 , ••• ,;t) in t­
dimensions,an in9rease (a decrease) occurs in the x2 statis­
tic if and only ii an increase (a decrease) occ-qrs in the 
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statistic B, but that is not exactly what we want in order 

to make a gen~ral conclusion regarding the ordering of data 
sets by the B, chi-square, and F tests. This can be seen 

from the following figure: 

Value 
of 

Statistics 

p ... p' Data Sets 

Figure 12. Ordering of the Data 
Sets by B and Chi­
Square Tests 

In Figure 12, the B curve increases (and decreases) 

with the x2 curve along some path, and yet both the tests 
order the two data sets, p and p', differently. The B test ... 
declares data set p to be more significant, while the chi-
square test declares data set p' to be more significant. 

"" 
However, if one can find a continuous path from (~1 , ... ,~t) 
to (~1 ', ••• '~t~) such that the x 2 curve (or B curve) is mono­
· tonically increasing, then this problem is essentially 



solved because the monotonicity implies that D (X 2 ) > 0. u 
Thus, from the above result, it follows that D . (B) > 0. -+ 
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But to find a path from (p1 , •.• ,pt) to (~1 .',.~.,pt') is a 

difficult or tricky task. This is a problem of topology, 

or more specifically, of.Morse theory. Milnor (1963) has 

discussed Morse theory, which might be of some help in 

solving this problem. 



CHAPTER III 

TWO-WAY CLASSIFICATION WITH EQUAL NUMBER 

OF BINARY OBSERVATIONS PER CELL 

One Binary Observation Per Cell 

Consider an experiment conducted as a two-way classifi-
cation with one binary observation per cell. Cochran's Q 
test is most frequently used for the analysis under this 

situation. 

As before, assume that there are t treatments and b 
blocks. Let X .. denote the observation corresponding to the l.J 
ith treatment and jth block: n. , the ith treatment total, J.. 

and n ., the jth block total, i = l, ••• ;t and j = l, ••• ,b • • J 

Then the data appear as follows: 

Block 
+ 

1 

b. 

Trt 
Total 

1 

xlh 

nl. 

Treatment 

2 

• 

x2'b 

n2. 
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t 

xtb 

nt. 

Block 
Total 

.n .• 'b 

n 



It is assumed that all X .. are independent, and that 
~J 
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the blocks are randomly selected from the population of all 

possible blocks. Under these assumptions, it would be of 

interest to test the equality of treatment effects within 

each block. If p .. denotes the true probability of "success'' 
~J 

under treatment i and block j, then the null hypothesis may 

be restated in mathematical terms as follows: 

HO: Plj = P2j = 

from 1 to b 

= Ptj ( = P.j say) for each j 

HA: pij ~ pkj for some i ~ k, and for some j. 

The following test statistic, B1 , is proposed to test the 

above hypotheses: 

..... 
where p. 

~. 

Il:i. A 

=-b,p. 
·J 

B . = 1 
b 
}: 

j=l 

(
A ~)2 
Pi. - P 

A A 

p . q . 
• J • J 

n . ..... t 
= -.!.l and p = }: n . I tb = 

t . 1 1. 1= 

, 

b 
}: n ./tb • 

j=l ·J 

The following form of B1 is more suitable for computational 

and accuracy purposes. 

Note that 

t 
L n2 

i=l i. 

b ) t }: n . 
(j=l • J 

- t (. r ni ·) 2 
1=1 

b 
}: 

j=l 

2 n· 
. j 

y f (p. - ~) 2 = 
j=l i=l ~. 

b ( t "2 0.2) r L pi - t p 
j~l i=l • 



and 

b t " " }: l p . q . 
j=1 i=1 ° J oJ 

= 

= 

= 

b t - ~ 
j=1 

~ 
i=1 

2 t (r n.) 2 
n. . 1 J. • J.. J.= 7 - -b;;.,.2,..;-t'l'f""2 --

t n 2 
= l io -

i=1 o-

(t ni)2 
bt 

b 
t (" A 2) }: ~ p . - p . 

j=1 i=1 • J 0 J 

b t (n . n2.) l }: -ti-tf-j=1 i=1 

b n2.) t (n . ~ -f j=1 0 J 

= ~ [ I x~J. - 1 ( r X .. ) 
2] j=l i=l ~ t i=l l.J 

Hence, statistic B1 can be written as. · 

b ~ I (;. - ~) 2 
j=l"i=l l.o 

Bl = -=;:---------
b t " " t t P . q .It 

j=l i=l 0 J • J 
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The statistic B1 can be expressed as follows in terms of the 

components from the regular analysis of variance table: 

= b • treatment SS 
1 . . t Wlthln block SS 

trea.tmen t MS 
= t :within block MS 

= t • F [<t-1)' b(t-1)] I I I 

The above result makes B 1 computationally simple. One can 

just run ANOVA on binary data and then by putting the appro-

priate components together, one can get numerical value of 

the B1 statistic. 

Also, B1 = (t~l~Q, where Q is Cochran's Q statistic. 

Now it will be shown that the asymptotic. null distribu­

tion of B is a central chi-square with {t-1) degrees of 1 . . 
freedom. A distribution of B1 under HA is difficult to 

obtain. 

Derivation: 

p, 
l. 

under H0 , 

p. 
l. 

=! I 
b j=l 

X 
ij, 

a.d. 
N Ll I 1 I 

b . 1 P. J' ) b2 J= j=l 

i=l, ••• ,t. 

p ' • J 

The statistic: B1 can be written as B1 = N/D, where 

q .] 
·} ' 



t 
(~. ~)2 ~ A A 2 I - p • j q .jb 

i=l ~. j=l • J 
N = and D = 

b 2 b 
q ·/b2 I p • j q ./b .I p .j j=l • J J=l • J 

Notice that N can be expressed in a quadratic form as 

Y'AY 
N = ) I tp . q \t b'" 

j=l\ ·J .jj 
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where Y' = (~ 1 ., ••• ,pt.) and A = (It.- t J~). Note that A 

is symmetric idempotent matrix of rank (t-1) • 

It can be seen that, under H0 , 

Y a;,d· Nt [(~ jt P.j) Ji, (~2 jt P.j q.j) 1t] 

Then by Theo~ems 1 and 3 (in Appendix), Na~d·x 2 (t-l). By 

Theorems 5 and 6 I D e 1. Henc·e by Theorem 4 f B 1 = 

~ ~ X2 (t-1) under H0 • 

Note: In the above derivation, an assumption of fixed p;Lock. 

totals is not required. ( !:;...._1.) Multiplying B1 by "!; might im-

prove the.approximation and if that is the case, then one 

will get Cochran's Q statistic. By making appropriate 

changes in the statistic B1 , one can test the equality of 

block effects under each treatment. In this case, testing 

of the treatments averaged over blocks is not possible as 

the estimate for Var(Fi.) is not available •. 
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More Than One Binary Observation 

Per Cell 

Now instead of just one binary observation per cell, 

suppose that there are n binary observations per cell. Let 

Xijk denote the kth response corresponding to ith treatment 

and jth block1 i = l, .•. ,t; j = l, •.• ,b and k = l, ••• ,n. 

Then the data appears as follows: 

Treatment 
Block Block 

-t 1 2 t Total 

X111 X211 xtll 
1 n 

.1 

X X X lln 21n tln 

xlbl x2bl xtbl 

b 
n.b 

xlbn x2bn xtbn 

Trt. 
nl. n2. nt. n Totals 
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Testing the Treatments Block-Wise 

It is assumed that the responses in one cell are inde-

pendent of the responses in other cells. Under this assump-

tion, it is of interest to test the equality of treatment 

effects block-wise, i.e. 

H0 : plj = P2 j = •.• = ptj (= P.j say) for j = l, .•• ,b, 

where p .. is the true probability of success under treatment l.J 
i and block j. 

This hypothesis is equivalent to that of testing for 

treatment effects and for treatment x block interaction 

effect simultaneously in the regular analysis of variance 

structure. 

The following test statistic B2 is proposed to test the 

above hypothesis: 

b t 

(pij 
A ) 2 nbt I I - p . 

j=l i=l 0 J 
B2 = 

b t A "' I I P·. q .. 
j=l i=l l.J l.J 

Note that 

t b n 
I I I 

i=l j=l k=l 

b n ( t A 2 
I I I P· · 

j=l k=l i=l l.J 
A 2~ t p . 

0 J 

2 ( t J2 

J b [ t n.. L n .. 
= 

jil iil 
2..L - i=l l.J 

n nt 
and n (n.. n .. 2 ) t b n A "' 

t b 
I I I p .. q .. = I I . I ::.:2:1. - 2.L 

i=l j=l k=l l.J l.J i=l j=l k=l n n2 



t b 
= l l 

i=l j=l 

n .. ( 2) n .. -~· 
~J n . 

t 
= I 

i=l 

Hence, the statistic B can be written as 
2 

~ b n (A A )2 
tb l L L P· . - p . 

i=l j=l k=l ~J ·J 

n b t 
1 I I 

k=l j=l i=l 

A A 

p .. q. · In 
~J ~J 

n 2 
I x. 'k k=l ~J 

nbt 
b [ t nij 2 -' lt 0 ij) 2] 
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. I X •... ( n~ . 
k=l ~J 

n 

J.Il iil n nt 
=------~~~~------------------------ • 

¥ [ I X. . 2 - (I X .. )
2 I n] 

j=l k=l ~Jk \k=l ~J 

t 
I 

i=l 

The statistic B2 can be expressed as follows in terms 

of the components from the regular analysis of variance 

table: 

B = ntb 
2 

treatments within blocks SS 
experimental error SS 

= nb(t-1). treatments within blocks MS 
n-1 experimental error MS 

= nb (t-1) 
n-1 F [ b(t-1), tb (n-1) J 

The approximate asymptotic null distribution of B2 is a 

central chi-square with b(t-1) degrees df freedom and its 

approximate asymptotic alternative distribution is non-~al 



chi-square with b(t-1) degrees of freedom and the non­

centrality ~a±-ameter is 

, ~r· ., 

t b 
p .)2 nbt I L (p .. -

i=l j=l l.J· • J 
:\2 = 

t b 
2 I I p .. qij 

i=l j=l l.J 
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Derivation: A distributional derivation for a very general 
statistic, Bl.(g) given by (4.1), is given in Chapter IV, of 
which this becomes a particular case. A substitution of 
r = t and s = 1 in that derivation will provide the required 
distributional derivation of the statistic B2 , and hence is 
not presented here to avoid the duplication. 

Note: A substitution of b = 1 in B2 will give back the 
BIANOVA statistic, B, for the one-way classification. Hence ~~ 

the statistic B2 is a generalization of the statistic B, for 
testing the treatments block-wise. Note that a substitution 
of. n = 1 will make both B2 and B undefined. 

Another Approach 

Another test statistic to.test the same null hypothesis 
of the equality of treatment effects block-wise is developed 
and its asymptotic null distribution is found. Here n is 
assumed to be greater than 1. 

This new statistic is 

nb 

B I = 
2 

b t (" I . I· P .. -
j=l i=l l.J 

~ ~ . q . j~l .J ·J 

" J2 p . 
• J 
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Note that 

t b n A A t b n f . n .2) I I I p . q = I I I~-~ i=l j=l k=l ·] • j i=l j=l k=l ·nt n t , 

b -n./) = I (n . 
j=l • J nt 

b [Jl n 
2 = I I X· 'k 

j=l k=l 
1] 

c n 
. ) 2 

J 1. l · xijk 
i=l k=l . 

nt 

Hence, the statistic B2 
I can be written as 

t b n (A A ) 2 
b · I I. I :pi]' - P ]. 

i=l ]'=1 k=l • B I = ~--~~--------------------2 t b n 
l: I l: 

i=l j=l k=l 
p . q . I nt 

• J • J 

b Lt n .. 2 U n·Y] I ..2:2._ i=l 1 ] 

n nt j=l 
= ntb • t n xijkr] b [ t 

n (iil I 
jil.iil 

I xijk 
2 k=l 

k=l nt 

The statistic B2 1 can be expressed as follows in terms 

of the components from the regular analysis of variance 

table: 



B21 = ntb t-reatments within blocks SS 
WJ.thJ.n blocks SS 

= ntb{t-1) treatments within blocks MS 
nt-1 within blocks MS 

= nt~~~il) F [ b {t-1) , b (nt-1) ] • 
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The approximate asymptotic nu~l distribution of B2 1 is 

central chi-square with b{t-1) degrees of freedom. Its dis-

tribution under HA is difficult to obtain. The derivation 

for the asymptotic null distribution of B 1 is given below: 
2 

Derivation: 

"' a.d. ~ Under H0 , p . . ... ~ p J' , p .. q J. l.J • • J • 

Observe the inequality of the variances of p .. 1 s. To. 
l.J 

overcome this problem, without knowing how critical it is, 

" it was decided to approximate the distribution of pij by 

a normal distribution with mean P.j and variance c, where c 

is such that I (p.jq.j- J2 is minimum. 
j=l n J This implies 

b 
c = I p q lnb. 

j=l .j .j 

Now B2 1 can be expressed as B2 1 ·= NID, where 

N = 
t b (" I I :p .. 

i=T j=l · l.J 
b 

" )2 
p •· 

·] 

I P . q . I nb 
j=l .] ·J 

and 

b 
I P . q . I nb 

= j =1 • J • J D ~b~------------

I 
j=l 

P . q . I nb 
• J • J 

Now, N can be written in quadratic form as 



where Y' 

A = 

· nb ( Y'AY) 
N = ------------

b 
L P . q . 

j=l ·J ·J 

- (~ll, ••• ,~tl' ••• ,~lb' ••• ,ptb) ,. 
1 t 

It - t Jt 

<P 
• 

<P 

It 
1 -
t 

<P • 

. •· . 

Jt 
t 

• • .. 

• • • 
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) 

and 

<P ·j .. • 

• 
• . 

I ·- 1 Jt -t t t 

One can show that A is ·a symmetric idempotent matrix of rank 

b (t-1) • 

" After pooling the variances of p .. 'sunder H0 , 
l.J 

y afd' N[P.l·····P.t··· ··P .. b'"""'P.b)' ct P.jq.j I nb) lj,J. 
By Theorems 1 and 3 (in Appendix), N a~d. X2 [b(t-1)]. By 

D prob Theorems 5 and 6, ~ 1. Hence by Theorem 4, B2 ' = 
~ ~ x2 [b(t-1)], approximately, under H0 • 

Notes: When n = 1, treatments within block SS becomes 

identical to within blocks SS1 and hence B2 ' = tb, regard­

less of observations. This is the reason why n is restricted 

to being greater than 1 in this test procedure. This is the 

main .reason why the author 
b 

criterion rather than L 
j=l 

tion of the statistic sl. 

to Cochran's Q statistic. 

t " ~ 2 
used L (p, - p) as the test 
t i:::l l.. 
r~ (p .. - p . ) 2 in the construc-

i=l l.J ·J 
The above discussion also applies 
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Since~· un~er H0 , an unbiased estimator of the var (~ij) 
. ( nt ) r,p .. q ·l 1 . 1 . , b (nt-1) . h . 1s nt-1- l. ·.~ •JJ, mu t1p y1ng B 2 y ~ m1g t 1mprove 

the approximation and if that is the case, one will have a 

new statistic, B ' ' = 
2 ( nt-1) ' h . 11 d' ~ B2 , w ose asymptot1c nu 1s-

tribution is the same as that of B2 '. Notice that a substi-

tution of b = 1 in B2 ' and B2 '' will give back the Pearson's 

x2 statistic and the CATANOVA statistic of Light and Margolin 

for binary data in one-way classification, respectively. 

Hence, the statistics, B2 ' and B2 '', are the generalizations 

of the statistics, x2 and C for binary data in one-way clas-

sification, respectively, to test the treatments block-wise. 

Now it becomes a question whether to use B2 or B2 ' or 

B2 '' in order to test the equality of treatments block-wise. 

One can show that B2 > B2 ' > B2'', for a fixed set of data, 

and hence B2 will yield uniformly higher power than B2 ' and 

B I I 
2 . The behavior of B2 , B2 ', and B2'' under H0 has not 

been studied yet. For b = 1, some evidence in favor of B2 

over B2 ' is given in Chapter II through Figures 10 and 11. 

From this, it seems that through empirical search, some type 

of evidence in favor of B2 over B2 ' and B2 ••, forb> 1, can 

also be found. 

It is obvious that B2 ' > B2 '' for a fixed set of data. 

The following steps demonstrate the B2 > B2 ', for a fixed 

set of data. 

t ("' ..... ) 2 Clearly, I :p .. - p . > 0. 
i=l 1 ] • J -

Under HA' 

t (" A \2 
i!l ·Pij - P.j} > 0, for all j. 
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i.e., 
t A 2 ( t A J2 I p,. > . I P. .. I t , 

i=l ~] i=l ~] 

t A t 
"' 2 t A -{Ct pij) 2 I 0· I p .. - I p,. < I P·. 

i=l ~] i=l ~J i=l ~] 
i.e., 

t A A A "' I P·. q .. I t < p • j q . , for all j, 
i=l ~J ~J • J 

i.e., 

t b A A b A A 

i.e., L I P .. qiJ' I ntb < I · P . q. J' I nb, i=l j=l ~] j=l • J 

By making appropriate changes in the statistics, B2 , 

B2 ', and B2 ••, one can test the hypothesis of the equality 

of block effects treatment-wise. 

Testing the Treatments Average-wise 

Now consider the problem of testing for the treatment 

effects averaged over blocks, i.e., 

Ho: Pl. = P2. = • • • = Pt. < = P say) • 

This hypothesis .is equivalent to that of testing for 

treatment effects in the regular analysis of variance 

structure. 

The following test statistic~ B3 , is proposed to test 

the above hypothesis: 
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Note that 

t b n (p. "') 2 
b n ul " 2 tP2) l: l: l: - p = l: l: Pi. i=l j=l k=l ~. j=l k=l 

2 ( r r b t n. i=lni. n 
~. l: l: l: --- t = 

j=l k=l i=l n2b2 n2b2t2 

t 
t n 2 ·( l: n . ) 2 
l: i. - i=l ~. 

i=l :no- nbt 
= 

Now the statistic B can be written as 
3 

tb f I r C~i. - ~) 2 
i=l J'=l k=l 

B3 = ~--~~-----------------t b n ,.. "' 
l: l: l: p. . qij I n 

i=l j=l k=l ~J 

= 

The statistic B3 can be expressed as follows in terms 

of the compon~nts from the regular analysis of variance 

table: 

B3 
treatment SS = ntb exper~mental error SS 

= n (t-1) treatment MS 
n-1 exper~mental error MS 

= 
n (t-1) 

F [ (t-1) , tb (n-1)] n-1 
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Hence as the other BIANOVA statistics, B3 is also made up of 

the components from the regular analysis of variance table. 

Its approximate asymptotic null distribution is central chi­

square with .(t-1) degrees of freedom, while its approximate 

asymptotic alternative distribution is non-central chi-square 

with (t-1) degrees of freedom and non-centrality parameter 

is 
ntb 2 

t 
~)2 I (P· - p 

i=l ~-
1..3 = t b 

2 I I p .. q,. 
i=l j=l ~J ~J 

Derivation: A distributional derivation for a very general 

statistic, B1 • (.) given by (4.2), is given in Chapter IV, 

of which this becomes a particular case. A substitution of 

r = t and s = 1 in that derivation will provide the required 

distributional derivation of the statistic B3 , and hence is 

not presented here to avoid duplication. 

Note: A substitution of b = 1 in B3 will give back the 

BIANOVA statistic, B, for one-way classification (as was the 

case with B2). The obvious reason for this is that when 

b = 1, testing the treatments block-wise is the same as 

testing the treatments average-wise. Note that the statistic 

B3 is a generalization of the statistic B, for testing the 

treatments average-wise. 

By making appropriate changes in the statistic B3 , one 

can test the hypothesis of the equality of block effects 

average-wise (i.e., averaged over treatments). 
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Test for Block x Treatment Interaction 

Now consider the problem of testing for a block x 

treatment interaction. The hypothesis of no block x treat-

ment interaction in mathematical terms is stated as: 

p .. - p. - p . + p = 0 for all i and j. 
~J ~- ·J 

The following test statistic, Bbxt' is proposed to test the 

above hypothesis: 

t 
I b '("' A A Q.~ 2 I r pi]' - Pi. - P.J· + p 

i=l j=l 
= t 

I 
i=l 

" ~ "' I P· · q. · I nbt . 1 ~J ~J J= 

The statistic Bbxt can be expressed as follows in terms of 

the components from the regular analysis of variance table: 

Bbxt 

t b n 
(pij 

A A ~) 2 nbt I I I - P· - p • j + p 
i=l j=l k=l ~. 

= 
t b n A "' I I I P·. qij 

i=l j=l k=l ~J 

= nbt (block x treatment interaction SS) 
exper~mental error SS 

= 
(b-1) (t-1) n 

n-1 
block x treatment interaction MS 

exper~mental error MS 

= (b-1) (t-1) n F [ (b-1) (t-1) , bt (n-l)l n-1 'j 

The approximate asymptotic null distribution of Bb is cen­
xt 

tral chi-square with (b-1) (t-1) degrees of freedom and its 

approximate asymptotic alternative distribution is 



non-central chi-square with (b-1) (t-1) degrees of freedom 

and non-centrality parameter is 

t b 
nbt I I 

i=l j=l A. = 
bxt t 

2 I 
i=l 

(p .. 
~J 

b 
I 

j=l 

-~2 - p. - p , + p 
~- ·J 

p .. q .. 
~J ~J 
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Derivation: a. d. N ( Pijqij) ~ p.. • 
~J, n 

"" Notice the inequality of variance of the p,. 's. This 
~J 

fact causes problems. However, it was decided to approxima~ 
" " the asymptotic distribution of p .. by P .. a.d. Nrp. ,, c1, 

t b ~J ~J ~ [~J J 
( p· ·q·. )2 .I .I :~ ~Jn~J- c. is minimum. 

~=1 J=l 
where c is such that 

t b 
Choose c = I I 

i=l j=l 
ances are pooled in 

p .. q .. lnbt. Here, in other words, vari­~J ~J t' 

order to get a "common variance". This 

is open for criticisms provided there is a better way out. 

The statistic Bbxt can be expressed as Bbxt = NID, 

where 

t b 

(pij 
" " ~)2 t b " A 

I I - p. - p + p I I Pijq .. lnbt 
N = i=l j=l ~- • j 

i=l . 1 ~J 
~= 

t b and D =. t b 
I I P·. q .. I nbt I I P· .q. ·lnbt 

i=l j=l ~J ~J 
i=l j=l ~J ~J 

Note that N can be expressed in a quadratic form as 

N = Y'AY 
t b 
\' \' p q .. I nbt l l .. ~J i=l j=l ~J 

where Y' = (~ll'"""'~lbt•••i~tl'"""'~tb) 

, 



and 
b 

¢' J I . . . I b b b 

1 1 1 bt A = Ibt - - + J b t bt bt . 
Jb ¢ Ib. . . Ib b 

It can be shown that A is a symmetric idempotent matrix of 

rank bt - t - b + 1 = (b-1) (t-1). 

It can be seen that under H0 (or HA), 

ybtxl a;d. Nbt [~' = (Pll'"""'plb'•••tPtl'"""'Ptb)' 

b 

l: 
j=l 

p· .q. ·; J ~~ ~J I . 
n t bt 
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Now by Theorems 1 and 3 (in Appendix), N a;d. x2 Gb-1) (t-1~. 
By Theorems 5 and 6, D ~ 1. Then by Theorem 4, 

Bbxt = ~ ~ X2 [ (b-1) (t-1)] approximately, under HO. 

It remains. to find the distribution of Bbxt under HA •. 

Under HA' by Theorems 1 and 3, N a~~· X' 2 [ (b-1) (t-l),Abxt] 

where 

t b 

(Pij 
-:) 2 l: I - p, - p + p 

A i=l j=l ~- . j = 
bxt t b 

2 I l: p., q .. I nbt 
i=l j=l ~J l.J 

By Theorems 5 and 6, D ~ 1, as before. Hence by 

Theorem 4, 

Bbxt = ~ ~ X' 2. [ (b-1) (t-1), Abxt] 

approximately, under HA. 
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Problem: Assume a situation with b = 2, t = 2, and 

n = 100. Suppose p11 = 0.2, p21 = 0.8, and p12 = 0.7. What 
should be a reasonable value of p22 in order to conclude no 
block x treatment interaction? 

It seems that there does not exist a reasonable value 
of p which will help in concluding that there is no block 22 ' 
x treatment interaction, at least computationally, by follar 
ing the present definition. Practically, if p22 takes its 
maximum value of 1, then it becomes a question of opinion 
whether the block x treatment interaction is present or not. 

-,f 



CHAPTER IV 

FACTORIAL ARRANGEMENTS OF TREATMENTS 

Two Factors 

Consider an experiment having t treatments, b blocks, 

and n(>l) binary observations per each treatment x block 

cell. Suppose that the treatments are factorial. To 

start with, assume that there are two factors, A and B, at 

rands levels, respectively. Let~ij(g) be the true proba­

bility of success under the ith level of factor A and the 

jth level of factor B for block g, i = 1, ••• ,r; j = l, ••. ,s; 

g = l, .•• ,b. Let ITij (.) be the true probability of success 
th th under the i level of factor A and the j level of factor 

B, averaged over blocks. Note that 

A s A s 
rri.(g) = I rr = I nij(g)/ns j=l ij(g)/s j=l I 

A r A r 
rr • j (g) = I rrij (g)/r = I nij(g)/nr i=l i=l I 

A s b A s b 
rri.(.) = I I rrij (g)/sb = I I nij (g)/nsb j=l 'g=l j=l g=l , 

A r b A r b 
rr . j ( . ) = .I I ITij(g)/rb = 

ill I nij (g)/nrb g=l I ~=1 g=l 

86 
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" r s A r s· 
'IT •• (g) = I I '!Tij(g)/rs = I I nij(g)/nrs i=l j=l i~l j=l , 

and 

" r s b " r s b -1T= I I I '!Tij(g)/rsb = I I I nij(g)/nrsb· i=l j=l g=l i=l j=l g=l • 

The following layout of probabilities would help in 

visualizing the situation: 

Treatment Combination 

Block (1,1), ••• , (l,s) . . . (r,l), ••• , (r,s) Block 
-t Prob.J,. 

A 

" " 1 'IT 
1. (1) 

... 'IT 
r. (1) 'IT 

•• (1) A 

" " 2 '!Tl. (2) . . . 'IT 
r. (2) 'IT • • ( 2) . . . . . . . . . . . . . . . 

b A A A 

'IT 1. (b) . . . '!Tr. (b) 'IT •• (b) 

Trt. 
'ITl.(.) 1T ... r. (. ) Prob. 

It is assumed that the response in one (treatment com-

bination x block) cell is independent of the responses in 

other (treatment combination x block) cells. 

Testing the 'Levels of Factor A Block-wise 

I 
I 

Under this situation, it would be of interest to test 

the homogeneity of levels of factor A (averaged over levels 

of factor B) within each block, i.e. 



H0 : rr1 • (g) = rr2 • (g)= ••• = rrr. (g) (=rr •• (g) say) 
for all g. 
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This hypothesis is equivalent to that of testing whether 

both the main effect of factor A and the A x block inter-

action effect are zero in the regular analysis of variance 

structure. 

The following test statistic, B1 • (g), is proposed to 

test the above hypothesis: 

Note that, 

and 

Bl. (g) = 

nbrs 2 I ! ( ; . - ; ) 2 
g=l i=l ~.(g) •• (g) • 

r s b ,.. ( "' ) ~ ~ ~ 1Tij(g) 1- rrij(g) i=l j=l g=l 

(4 .1) 

r s b n 
I I I ·I 

i=l j=l g=l m=l 
(

A A . )2 
1T - 1T i.(g) •• (g) 

/ 

2 
n 
i. (g) 
ns 

. 2 J _.n •• (g) 
nrs 

r s b n A A 

L l... L l rriJ' (g) (1 - rriJ' (g)) i=l j=l g=l-m=l 

r s b n 
= l: I I I 

i=l j=l g=l m=l 
{nij (g) _ n~ ij (g) 

1

) 

\ n n2 
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r s b r s b ~ 
= I I I ni]. <g> - I I I n ij (g) • i=l j=l g=l i=l j=l g=l n 

The statistic B1 • (g) can be expressed as follows in terms of 

the regular 

B 
1. (g) 

analysis of variance table: 

r s b n 

(;i. (g) 
brs L. I I I -

i=l j=l g=l m=l = 
r s b n A 

I I I I 1T ij (g) [1 -i=l j=l g=l m=l 

= nbrsfactor A within blocks SS 
experimental error SS 

A )2 
rr •• (g) 

A 

1Tij {g)J/n 

= nb(r-1) factor A within blocks MS 
n-1 experimental error MS 

= nb (r-l) F [b (r-1), rsb (n-l)l n-1 ~ 

The approximate asymptotic null dis.tribution of B1 • (g) 
is central chi-square with b(r-1) degrees of freedom, whire 
its approximate asymptotic alternative distribution is non-

central chi-square with b(r-1) degrees of freedom, and the 
non-centrality parameter is 

.AB 
1. (g) 

Derivation: 

r s b 
2 I I I rri]' <g> (1 - rri]' <g>) i=l j=l g=l 

• 

A a.d,. [ 1 Under H0 , rri.(g) ~ N rr •• (g), nsz I 1Tij(g){1- ~ij(g}l. j=l ~ 
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A. 

Notice the inequality of the variances of ni. {g)'s. To over-

come the problem, without knowing how critical it is, it was 

decided to approximate the asymptotic distribution of rri. (g) 

by 

such that 

a.d • 
... . N [n •• (g), c], where cis 

r I [~.I i=l g=l ns j=l 

. 2 

nij(g)(l- nij(g))- c] 

is minimum. Choose 

1 
c = 

nbrs 
2 

r s b 

I I I rrij <g> (l- rrij <g>) • i=l j=l g=l 

Now Bl. (g) can be expressed as B1 • (g) = N/D, where 

N = 

and 

D = 

Notice that N 

N = 

2 b r 
(;i. (g) 

A. )2 nbrs I I - n •• (g) g=l i=l 
b r s 

nij (g)) I I I rr ij (g) (1 -
i=l j=l g=l 

r s b A A 

2 I I I rr · · ( ) (1 - nij (_g)): /nbrs i=l j=l g=l ... ~] _g . . .. 

r s b 
/Fij (g) (1 nij (g)}/nbrs .I .I I -

~=1 J=l g=l 

can be expressed in a quadratic 

nbrs 2 Y'AY 

r s b ) I ) I rrij (g) (1 - rrij (g) . 
i=l J=l g=l 

form 

2 

as 



where 

A = rbxrb 

I - !.Jr r r r 

and 

• 

Observe that.A is a symmetric idempotent matrix of rank 

b (r-1) • 
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Y a .... d. r I ( 
\ • N Lll = 'IT •• (1) , ••• ,'IT •• (1) .... ,'IT •• (b) , ••• ,'IT •• (b)J' 

r s b 
l: = l: l: l: 

i=l j=l g=l 

Now, by Theorems 1 and 3 (in 

By Theorems 5 and 6, D ~ 1. Hence by Theorem 4 1 

B = N dist x2 ~ (r-1)] approximately I under Ho. 1. (g) n ---+ L: 
Under HA 1 

a.d. [' 1 y ~ N lJ = . 

\' -{ 1 L - 2 
nbrs 

I I· I 'ITiJ'{g) (1 - 'ITiJ'(g))}rrb]. • i=l j=l g=l 

Then by Theorems 1 and 3 N a.d.X 12[b(r-1) L J , where I ,.. I .Bl ( ) • ~ e g 
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2 b r 

(7Ti. (g) 7T •• (g))2 
nbrs l I -

AB g=l i=l = 
1. (g) r s b 

2 l I I 7T .. ( ) (1 - 7T .. ( ) ) i=l j=l g=l 1] g . 1] g 

D pro~ 1, by Theorems 5 and 6. Hence by Theorem 4, 

B1 • (g) = ~ ~ x' 2 [b (r-1) ,A.B l approximately. 
1. (g)j 

Notes: Notice that substitution of s = 1 in the sta-
tistic Bl.(g) will give the statistic B2 proposed in Chapter 
III to test the equality of treatment effects block-wise in 
the usual two-way classification with n binary observations 
per cell. 

By making appropriate changes in the statistic B1 • (g) 
and in its derived approximate asymptotic distributions, one 
can obtain the statistic B. 2 (g) and its approximate asymp­
totic distributions, to test the levels of factor B, averaged 
over the levels of factor A, within each block. To obtain 
the statistic B. 2 (g), one has to change i to j, r to s, s to 

A A 

r, and 7Ti.(g) to 7T.j(g)' in the numerator of the statistic 
Bl.(g) given by (4.1). 

Testing the Levels of Factor A 

Average-wise 

Consider the problem of testing for the levels of factor 
A, averaged over blocks and the levels of factor B, i.e. 
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• • • = rr ( ) = ( 'IT say) • r. . 
The following test statistic, B1 • (.) is proposed to test the 

above hypothesis: 

B = 1. ( . ) ( 4. 2) 

r s b ( "' ~ ~ ~ ; ij (g) 1 - 7T ij (g)) i=l j=l g=l 

The statistic B1 • (.) can be expressed as follows in terms of 
the components from the regular analysis of variance table: 

r s b n 
(;i. (.) ~)2 rsb . r .r r r - 'IT 

B = 1=1 J=l g:=l m=l 
1. (.) 

r s b n 
;ij (g) (1 - ;ij (g))/n r r r r 

i=l j=l g=l m=l 

= nrsb factor A SS 
exper1mental error SS 

· · (r-T) n · ·f·a:cto·r A Ms· · · · = n-1 _e_x_p_e_r .... 1_m_e_n-:-t..;..a"'~"l_e..;..r_r_o_r--:-::M:::::-S 

F [<r-1) , rsb (n-1)] 

The approximate asymptotic null distribution of B ( 1. . ) 
is central chi-square with (r-1) degrees of freedom, while 

its approximate asymptotic alternative distribution is non-
central chi-square with (r-1) degrees of freedom and non-

centrality parameter is 



r s b 

2 I I I 1r iJ' <g> (1 - 1T iJ' <g>) i=l j=l g=l 

The derivation is given below: 

Derivation: 

var (; i. (. )) = var ( r I ; .. < , /sb) j=l g=l 1 ] g 
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• 

= 
1 

b 2 2 n s 
~ ~ :1. J' (g) (1 - : .. { )~ . L. L. II "1] g. j=l g=l 

Then under a0 , 

1Ti • ( • ) 

1 

1T = i. (.) 

b 

I 1r i. < g> /b , g=l 

b s 
I I 1r ij <g> (1 - 1r i]' <g>)J g=l j=l 

Notice the inequality of the variances of 11". ( ) 's, i = 1, 
1. • 

••• ;r. From this, it can be observed that the construction 

of a "legitimate test" is difficult or may not be possible. 

However, it was decided to approximate the asymptotic dis-

tribution of 1Ti. (.) by 

a.d. N [ c~ 
':' 1Ti.(.)' J where c is such that 

I · 2 2 
r [ 1 

i=l nb s 

is minimum. 

b s 
I I 1r iJ' (g> (1 - 1r ij <g>) g=l j=l 

- c ]
2 
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Choose 

1 r s b 
'lTij(g)(l- rrij (g)J 

c = 
nrb2s2 .r r r 

1=1 j=l g=l 
A. 

By using c, it ·can be seen that the variance of 'lT· ()'s 1. • are 

being pooled in order to get a common variance. 

Now, B1 • (.) can be written as B1 • (.) = N/D, where 

2 2 r ("' ~)2 nrs b r rr -i 0 (.) 

rr. 
N= i=l 

r s b 
rrij (g) (1 - 1Tij(g)) r r r 

i=l j=l g=l 

r s b· ( ) 22 r r r' 1Tij (g) 1- 1Tij (g) /nrs b i=l j=l g=l 

Notice that N can be expressed in a quadratic form as 

r s b 
nrs 2b 2 Y'AY I r . r L 1Tij (g) (1 - 1Tij (g)) I where i=l J=l g=l 

Observe that A is a symmetric idempotent matrix of rank (r-1). 

After pooling the variances of rr. ( ) 's under a0 , 
1. • 

Y a.d • ... 
0 

Now by Theorems 1 and 3 (in Appendix}, N a~d. x2 (r-l). By 
• 

Theorems 5 and 6, D pro~ 1. Hence, by Theorem 4, B1 • (.) = g ~ X~(r-1) approximately, under a0 • 



Then by Theorems 1 and 3, N a.d • ... • X' 2 [(r-l) ,A.B J 
1. (.) 

where 

= 

r s b 2 I r I rr •. , > (1 - rr •• , >\ i=l j=l g=l 1 ] g . 1 ] g ) 
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I 

As before, D prob 1, by Theorems 5 and 6. Hence, by Theorem 

4 ,. B = N dist X, 2. [(r-l) , A.. J 1 • ( • ) D --+ B. 
1. ( . ) , approximately. 

Notes: 

A substitution of b = 1 in this test will give a test 

for testing the levels of factor A average-wise in one-way 

classification with n binary observations per treatment, 

which in this case is equivalent to testing the levels of 

factor A block-wise. Notice that for s = 1, the statistic 

B becomes identical to the statistic B3 proposed in 1. ( . ) 

Chapter III to test the treatments average-wise. 

By making appropriate changes in the statistic B 1. ( 0) 
and in its derived approximate asymptotic distributions, one 

can obtain the statistic B. 2 (.) and its approximate asymp­

totic distributions to test the levels of factor B, averaged 

over blocks and the levels of factor A. To obtain 
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the statistic B.2(.) 1 one has to change ito j, r to s 1 s to 
A 

r 1 and ni. (.) to n.j(.)' in the numerator of the statistic 
B given by (4.2). 1. (.) 

Test for Factor A x Factor B Interaction 

Consider a problem of testing for factor A x factor B 
interaction (averaged over blocks) • The hypothesis of no 
factor A x factor B interaction can be expressed in mathe-
matical terms as follows: 

H0 : 11j_ j ( • ) - n i. ( • ) -· 'lT. j (.) + 'lT · = 0 for all i and j . 

The following test statistic, B12 (.) 1 is proposed to 
test the above hypothesis; 

s r 
(;aj (.) 

A A )2 2 l: l: nrsb - 'lT - n . j {. ) + .n i. (.) 
Bl2 (.) = j=l i=l 

r s b A 0 -;ij (g)) l: l: l: nij (g) 
i=l j=l g=;l 

( 4. 3) 

The statistic B12 (.) can be expressed as follows in 
terms of the components from the regular analysis of vari-
ance table: 

' 

- n . 
~ J (.) 

~)2 + 'lT 

r s b n r I I I ;ij (g) (1 - ;ij <g>) ;n i=l j=l g=l m=l 

= nrsb • factor A X factor B interaction SS 
exper~mental error SS 



= n(r-1) (s-1) factor Ax factor B interaction MS 
n-1 exper1mental error MS 

= n (r-1) (s--1) F [ (r-1) (s-1) , (n-1) rsb]. • · n-1 
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The approximate asymptotic null distribution of B12 (.) 
is central chi-square with (r-1) (s-1) degrees of freedom and 
its approximate. asymptotic al ternati v:e distribution is non­
central chi-square with (r-l)(s-1) degrees of freedom and 

the non-centrality parameter is 

A. -
Bl2 (.) 

2 nrsb 

2 

s r 
X X (7T··c> j=l i=l 1] .• 

r s b 
.X X X 1=1 j=l g=l 

The derivation is given below: 

Derivation: 

- 7T - 7T i.(.) .j(.) 
-)2 + 7T 

. A Notice the inequality of variances of 7T,. ( ) 's. This fact 
1] • 

causes problems. In order to avoid some problems, it was 
decided to approximate the asymptotic distribution of 

7T .. ( ) by 1] • 

" a.d. 1: J 7T ij (.) ':' . N L ij (.) , c , where c is such that 

r s [ 1 b ) X X - X 7Tij(g)(1- 7TijCg> -i=l j=l nbf g=l 
is minimum. 



Such c is given by 

1 
c = 

nrsb2 
r s b ( 

. L J L rriJ' (g) 1 - rriJ'. (g)) ~=1 J=l g=l 
• 

. ~ Here, the pooling of var~ances of rrij(.) 'sis subject to 

criticism. 
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The statistic B12 (.) can be expressed_ as Bl2 (.) = N/D, 

where 

and 

Notice 

and 

2 
nrsb 

s r 
I I (

A A A 

rr.. - rr. - 7T • 
~) 2 + 7f 

J'=l i=l 
N = ------'-------------------------------------~ 

~J(.) ~. (.) .• J{.) 

D 

r s b 
rrij (g) (1 - rr ij (g)) I I I 

i=l j=l g=l 

r s b A 

(1 -
A ) 2 I I I rrij (g) rrij (g) ./nrsb i=l j=l g=l = 

r s b 
(1 - rr ij (g)} /nrsb 2 2 2 I 7Tij (g) 

i=l j=l g=l 

that N can be written in a quadratic form as 

N= 
· · nrsb2Y'AY 

f where 

r s b 
(1 - rrij (g)) I I I 7f .ij {g) 

i=l j=l g=l 
A A 

Y' = (rrll(.) ,.., •.• ,rrls(.) , ••• ,rrrl(.) , ••• ,rrrs{.)) 

1 
s 

1 
r 

1 rs 
+- J rs rs 



100 

One can show that A is a symmetric idempotent matrix of rank 

( r-1 ) ( s -1 ) . 
A 

After pooling the variances of nij(.) 's, under H0 (or 

HA), 

Yrsxl a~d. NG' = (;ll(.)''''';ls(.)•···~l(.)''"'';rs(.))• 

E - [nr!b2 it jt Jl ~ ij (g) ~ - ~ ij (g)) 1 Irs] ' 
Now by Theorems 1 and 3, (in Appendix)' N a~d. x2 Er-1) (s-1]. 

By Theorems 5 and 6, D ~ 1. Hence by Theorem 4, B12 (.) = 
~ ~s2(r-l) (s-lB approximately, under H0 • By Theorems 1 

and 3 under HA, 

N a.:, d. x ' 2 [. (r-1) (s-1) ,A.B J , where 
• 12 (.) 

nrsb 2 (I 
j=l = r 

2 I 
i=1 

By Theorems 5 and 6, 

Bl2(.) = ~ ~ X' 2 

under HA. 

r 
I n, · ( ) - n. ( ) i=l ~J • ~. • 

s b ~ l: l: n .. < > 1-j=l g=l ~J g 

- n . ( ) • J • 
~,2 

- n) 

D ~ 1. Then by Theorem 4, 

[ (r-1) (s-l),A.B J approximately, 
12 (.) 

Note: By substituting b = 1 and then considering the levels 

of factor Bas blocks, the statistic B12 (.) reduces to the 

statistic Bbxt of Chapter III. 



101 

Three Factors 

Now consider 3 factors, A, B, and C 1 at r, s, and ~ 

levels, respectively. The notations used for 2 factors will 

be extended here for 3 factors in an obvious manner. The 

following layout of probabilities would help in understand-

ing the notations and in visualizing the situation. 

Treatment Comb~nat~ons 
Block 

+ (1,1,1), .•• 1 (l,s,~) 
Block 

(r 1 1 1 1) 1 ••• , (r,s 1 ~) Prob. 

1 

2 

b 

Trt. 
Prob. 

A 

'IT 
1 .. ( . ) ... 

A 

7f 1 •• ( 2) 

7f 
1 •• (b) ... 

A 

7rr •• (1) 
A 

7rr •• (2) 

7f 
r •• (. ) 

A ' 
7f ••• ( 1) 
A 

7f ••• { 2) 

7f ••• {b) 

A -7f 

It is assumed that the response in one (treatment com-

bination x block) cell is independent of the responses in 

other (treatment combination x block) cells. 

Testing the Levels of a Given Factor 

Block-wise 

Under the present situation, it might be of interest to 

test for the levels of a given factor (say A), averaged over 
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levels of other two factors (Band C), within each block, 

i.e. 

H0 : 1r1 •• (g) = 1r2 •• (g) = ••• =~ •• (g) (= 1r ••• (g) say) fo~ 
all g. This hypothesis is equivalent to that of testing the 

main effect of factor A and the A x block interaction effect, 

both to be zero, in the regular analysis of variance 

structure. 

The following test statistic, B1 •• (g)' is proposed to 

test this hypothesis. 

b r 
(;i •• (g) 

A· )2 nbrs 2R- 2 r r - n: •.• (g) 
B = g:=l i=l 

( 4. 4) 1 •• (g) 
r s. R, b 

;ijk (g) (1 - ; ijk (g)) r I r r 
i=l j=l k=l g=l 

The statistic B1 •• (g) can be expressed as follows in terms 

of the components from the regular analysis of variance . 

table: 

B 
1 •. (g) 

r s R. b n A A 

I r r I I 1r ijk (g) (1 - 1r ijk <g>)/n i=l j=l k=l g=l m=l· 

= nb 0 factor A within blocks SS 
rs~ . . 1 .exper~menta error SS 

= bn (r-1) factor A within blocks MS 
n-1 exper~mental error MS 

= bn (r-1) _F [b(r-1), (n-l)rsR.bJ n-1 
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The approximate asymptotic null distribution of the sta-

tistic Bl •• (g) is central chi-square with b(r-1) degrees of 

freedom, while its approximate asymptotic alternative dis-

tribution is non-central chi-square with b(r-1) degrees of 

freedom and the non-centrality parameter is 

2 2 ··b r 
{rri •• (g) nbrs .i/., I I - 1T . ) 2 

A g=l i=l ••• (g) 
= 

B 
1. • (g) r s .i/., b 

1T ijk (g) (1 - 1T ijk (g)) 
2 I I I I 
i=l j=l k=l g=l 

Derivation: 

The distributional derivation of the statistic B1 •• {g) 

can be obtained from that of the statistic B1 • (g) by its 

straight forward extension. 

Notes: A substitution of .i/., = 1 in the statistic Bl •• ~) 

will give back the statistic B1 • (g). 

By making appropriate changes in the statistic Bl •• (g) 

and in its derived asymptotic distributions, one can obtain 

the statistic B (or B .2. (g) 3 (g)) and its asymptotic dis-

tributions to test the levels of factor B (or C) , averaged 

over the levels of factors A and C (or A and B), within each 

block. In order to obtain the statistic B .2. (g) , one has to 
A A 

change i to j , r to s, s to r, and 1Ti •• (g) to 1T • j. (g) , in 

the numerator of the statistic B 1 •• (g) given by (4.4). To 

obtain the statistic B .• 3 (g), one has to change ito k, r to 
A A 

i,i tor and rri •. (g) to rr •. k>(g)' in the numerator of the 

statistic Bl •• (g) given by (4.4). 
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Testing the Levels of a Given Factor 

Average-wise 

Consider the problem of testing for the levels of a 

given factor (say A) , averaged over blocks and the levels of 

other two factors. (B and C) , i.e., 

Ho: rrl •• (.) = rr2 •• (.) = • •• = rrr •• (.) (= 'IT say)· 
The following test statistic B , is proposed to test 1 •• ( • ) 
the .above·hypothesis: 

2 2 2 r c ~r nrb s R. l ''IT· - 'IT 
B = 

i=l ' l. •• (.) 
< 4. s~> 

1 .. ( . ) 
r s R, b "' 

(1 -
"' l l l l 'ITijk (g) 'ITijk (g)) i=l j=l k=l g=l 

The statistic Bl •• (.) can be expressed as follows in 

terms of the components fr<Dm the t'egular analysis of vari-

ance table: 

B 
1 .• (.) 

'ITijk(g) 

= nrsR.b experl.mental error SS 

= n (r-1) factor A MS 
n-1 exper1.mental error MS 

= n (r-1) 
n-1 F [ (r-1, (n-1) r,sR-bJ 

The approximate asymptotic null distribution of the 

statistic B1 •• ( .·) is central chi-square with (r-1) dec;Jrees 
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of freedom while its approximate asymptotic alternative dis-

tribution is non-central chi-square with (r-1) degrees of 

freedom and non-centrality parameter is 

.2. 2. 2. r 

(rri •• (.) 
~) 2 nrb. s 9., I - Tf 

i=l 
A.B = • r s 9., b 1. . (.) 

2 I I I I Tf ijk (g) (1 -
Tf ijk (g)J i=l j=l k=l g=l 

Derivation: 

The distributional derivation of the statistic Bl •• (.) 

can be obtained from that of B ( by a straightforward 
1. . ) 

extension. 

Notes: A substitution of 9., = 1 in the statistic Bl •• (.} 

will give back the statistic B ( ) • 
1. . 

By making appropriate changes in the statistic B 
1 .. ( • ) 

and in its derived asymptotic distributions, one can obtain 

the statistic B (orB ( )) and its asymptotic dis-.2. (.) .• 3 • 
tributions to test the levels of factor B (or C) 1 averaged 

over blocks and the levels of factors A and C (or A and B) . 

In order to obtain the statistic B. 2 • (.) 1 one has to change 
A 

,.. 0 

s 1 s to r 1 and Tf. ( ) to rr . ( ) 1 1.n the 1.. • • • J • • 
L to j 1 r to 

numerator of the statistic Bl. • (.) given by ( 4. 5) • Similarly 1 

to obtain the statistic B •• 3 (.) 1 one has to change i to k 1 

A A 

r to 9., 1 9., to r 1 and Tf o ( ) 

~. . ~ 
to Tr in the numerator of •• k(.)' 

the statistic B ( ) given 
121 .1 . 

by ( 4. 5) • 
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Test for Two-Factor Interaction 

Consider testing for a two-factor interaction (averaged 

over third factor and blocks). To start with, say one wants 

to test for factor A x factor B interaction (averaged over 

factor C and blocks) • This hypothesis in mathematical terms 

can be stated as 

H 
0 

rr. . ( ) - rr - rr + rr = 0 for all i and j. ~J. • i .. (.) .j. (.) 

The following test statistic, B is proposed to test · 12 • ( o) I 

the above hypothesis: 

B = 12. ( • ) 

2 2 nrs.Q, b r s . ("' ,.. A ~J2 \ \ 7r. . ) - 'IT' ( ) - 7r + 7r L ,L. ~J. (. ~.. • J' ( ) i=l J=l • • • 

r s .Q, b 
I I I I 

i=l j=l k=l g=l 
7rijk(g) (1 - ~ijk (g0 

• 

( 4. 6) 

The statistic B12 • (.) can be expressed as follows in 

terms of the components from the regular analysis of vari-

ance table: 

~ r s .Q, b n ("' A 

B12 • (.) = rs.Q.b;=Il J.=Il k=Il I I rr. · ( )· - rr. ( ) .... g=l m=l ~J • • · ~ • • • 

-rr · ( ) +~~~!. .[: I ·J· . • ' . 1 : ~= 
I I I mn=Ll; ijk (g) (1-; ijk (g}J j=l k=l g=l ~rj 

= nrs.Q,b factor A x factor B interaction ss 
experimental error SS 
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= n(r-1) ( s-1) 
n-1 

factor A' ){. f'a·c·tor B tn·te·racti6n MS 
experimental error MS 

= n (r-1) (s-1) 
n-1 F [ (r-1) (s-1) , (n-1) rs.Q,b J 

The approximate asymptotic null distribution of the 

statistic B ( ) is central chi-square with (r-1) (s-1) 12. • 
degrees of freedom, while its approximate asymptotic alter-

native distribution is non-central chi-square with (r-1) (s-1) 

degrees of freedom and the non-centrality parameter is 

2 2 r s 
7r)'"· nrs.Q, b I I (1T - 1T - 1T + 

i=l j=l ij. (.) i •• (. ) .j. (.) 
AB = 

12. (.) 
r s .Q, b 

2 I I I I 1T i.jk (g) (1 - 1Tijk(g)) i=l j=l k=l g=l 

Derivation: 

The distributional derivation of the statistic B12 • (.) 

can be obtained from that of B12 (.) by its straight forward 

extension. 

Notes: A substitution of .Q, = 1 in the statistic 

B will give back the statistic B • 12.(.) 12(.) 
By making appropriate changes in the statistic 

B12. (.) and in its derived asymptotic distributions, one can 

obtain the statistic Bl. 3 (.) (or B. 23 (.)) and its asymptotic 

dist:r:ibutions to test factor A x factor C interaction (or 

factor B x factor C interaction) • In order to obtain the 

statistic B1 . 3 (.), one has to change j to k, s to .Q,, .Q, to 
A ~ A A 

s, rrij.(.) to rri.k(.), and 1T.j. (.) to rr •• k(.), in the 

numerator of the statistic B given by (4.6). Similarly, 12. (.) 
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to get B_ 23 (.), one has to change ito k, r to t, t tor, 
A A A A 

TI·. ( ) to 7f 'k( ) , and TI· ( ) to 7f k( ) , in the numerator ~J. • ·J • l.... • • • • 

of the statistic B given by (4.6). 12. ( • ) 

Test for Three Factor Interaction 

Now consider testing for the three factor interaction 

(averaged over blocks). In mathematical terms, this hypoth-

esis can be stated as 

Ho: TI. 'k( ) - ·1r. • ( ) - 7f· k( ) - 7f 'k( ) + TI. < ) + 7f · <) l.J • l.J. • J.. • .J • J... • .] •• 

+ 7f - rr (= L say) = 0 for all i, j, and k • •• k(.) .. 

The following test statistic; B123 (.), is proposed to test 

the above hypothesis: 
2 

B123 (.) = nrstb f I I r;i]'k(.) - ;iJ .. (.) -i=l j=l k=l \ 

A A 

TI.jk(.) + 7fi •• (.) + TI.j. (.) + 7f •• k ( • ) 
~)2. - 7f 

• 

7f -i.k(.) 

( 4. 7) 

If one is to construct an analysis of variance table 

for this situation, then B123 (.) can be expressed in terms 

of the components from analysis of variance as follows: 

Bl23(.) = 

= 

nrstb factors A x B x C interaction SS 
experimental error SS 

n(r-1) (s-1) (t-1) factors A x B x C interaction MS 
n~l experJ.mental error MS 



109 

= n(r-l)•(s-1)•(~-1) r J n-1 .' F 0r-l) (s-1) (,Q,-1), (n-1) rstb 

The approximate asymptotic null distribution of the 

statistic B ( ) is central chi-squa~e with (r-1) (s-1) (t-1) 123 • 
degrees of freedom, while its approximate asymptotic alter-

native distribution is non-central chi-square with (r-1) (s-1) 

(t-1) degrees of freedom and non-centrality parameter is 

A 
Bl23(.) 

= 

2 nrstb 
r s ,Q, 

I I I 
i=l j=l k=l 

r s ,Q, b 
2 iil jil kil gil 1T ijk (g) (l - 1T ijk (g)) 

where L is as defined in the above H0 . 

) 

Derivation: The distributional derivation of the statistic 

B123 (.) can be obtained from that of B12 (.) by its straight 

forward generalization. The following information will be 

very useful in order to do such a generalization. 

Consider Y to be a vector of the order rs,Q,xl such that 

Y' =(nlll(.) , ••• ,nlH (.) •1'121(.) , ••• ,nl2H.) , ••• ,nlsl(.)' 

• • • '7f 1 s ,Q, ( • ) ' • • • ' 1T r 11 ( • ) 1 • • • ' 'IT r 1 ,Q, ( • ) ' 7f r 21 ( • ) ' • • • ' 1T r 2 ,Q, ( • ), 

••• ,7frsl(.)' ••• ,7frst(.) )''.. • 
1 x rst 

Then 

r s 
t c A A A A 

I I kil 1Tijk(.) - 7f. , { ) - 7fi.k(.) - 1T + 1T. { ) i=l j=l ~J •• • jk {.) ~. .. ® 

A A ~)2 + 7f + 7f -• j• • ( • ) •• k ( • ) 



can be expressed in a quadratic as Y'AY where 

M = I , M 
T rs.Q, C.F 

1 
= r·s9.1 

1 
MA = st 

~c 
1 = 
r 

1 
MB = rt 

and 

I . s.Q, 

Is.Q, 

J.Q, 
.Q, 

<P - -

- ... 
J.Q, 

.Q, 

\~ 

. . . I st 

Is.Q, 

<P l 
( 
I . 

J.Q, I 
.Q, 

f -

I 
-

1 <P 

I . .Q, . 
J.Q, ~, 

rst 
J 
rst 

, 

, 

. 

. 

, 

. 

. 

M = AB 

.Q, 

IJ.Q, 

. I 
I 

'<P - t -
I 

- fJt 

t 
.Q, 

. 
1¢ 

J.Q, 
.Q, 

1 
.Q, 

<P 

"' .Q, 
J.Q, - - -

-
<P . 
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, 
.Q, 

J.Q, 
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'/ 

It . It I 
I 
I 

It . It L, __ - - - _,,- - - - stxrst 
1 I 

MAC = cp I cp 
s I 

I - - - - -1-
I I It . . . It 

' I \ 
\ I cp cp I I 

' 
I . I 

I I t t \ 

' 

'one Qan show tnat A is a symmetric idempotent matrix of rank 

(r-1) (s-1) (t-1). 

Notes: One can easily generalize the techniques prd~ 

posed in this chapter for any number of factors at any 

number of levels. 

Comments: A substitution of b = 1 in the test proced-

ures proposed in this chapter will give the corresponding 

test procedures for a balanced one-way classification with 

binary responses. In this case (b = 1), it is obvious that 

the test procedure for testing the levels of a given factor 

block-wise is equivalent to that of testing the levels of 

that factor average-wise (averaged over blocks) • 



CHAPTER V 

POSSIBLE EXTENSIONS 

In the previous chapters, some transformation-free test 

procedures for testing the various kinds of hypotheses in 

the balanced one-way and two-way classifications (including 

factorial arrangements of treatments and possible inter­

actions) with binary responses are proposed. Following are 

some possible extensions to this work which demand further 

attention: 

1. Note that in order to arrive at the approximate 

asymptotic null and alternative distributions 

of some of the test statistics, pooling of the 

unequal variances was employed with the criter­

ion of a minimum error, to get a constant vari­

ance. This may or may not give a "satisfactory" 

approximation. Hence the immediate thing which 

needs to be done is to check out the consequences 

of such pooling, at least under the null hypothe­

ses. It seems that the general analytic conclu­

sions will probably be hard to reach and one 

will have to do some simulation studies consid­

ering only particular cases. As a result, the 
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conclusions will be restricted to those par-

ticular cases only. 

2. Since the present work is limited for the 

balanced one-way and two-way classifications 

only, it needs to be generalized for the 

balanced multi-way classifications. It is 

the author's opinion that this is a very 

simple and straight forward generalization 

which does not require a great deal of work. 

3. Since all of the test procedures proposed up 

to this stage are restricted to the balanced 

cases, it certainly would be of interest to 

expand them gradually for the unbalanced 

multi-way classifications. It would be very 

nice if this were possible without the use of 

transformations. If not, then the following 

procedure might be of help. 

Assume a two-way classification with N .. 
1] 

observations per cell: i = l, ••• ,t and 

j = l, ••. ;b. Then consider, 

(p .. ~ ln 1] = p + ct, + S, + y .. I 1-p . 1 1 1] 
ij 

where 

t b t b r ct. = r s. = r· Y·. = L Yi. = 0 . 
i=l 1 j=l J i=l 1] . 1 J J= 

Then the parameter model is 
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p+cx.. +S . +y .. 
e J. J l.J 

p .. = l.J p+cx..+S .+y .. · 
l+e 1 J l.J 

' ~~. q. . = p+cx. +(3 +y J l.J ·• . . . • 
1 + e 1 J l.J 

Now, the full probability model (likelihood equa-

tion), L, can be shown to be a member of the 

exponential family in the following manner: 

L = ~ ~ P .. nij (1- P. _\Nij - nij 
i=l j=l l.J ~j) 

·> 

t 
= TI 
i=l 

t 
= TI 
i=l 

b r-· t ( r· TI . l.J , l.J 1 - pij l.J j=l '1-p . .' 
l.J 

b 
TI 

j=l 

t b 

(1 - P. yij {)1 l: (P+<>.+B .+y. ·)n· '} . 1 J. J l.J l.J J= 
l.J 

t b t b 
+ L a..n. + L S.n . +I L 
i=l J. J.. j=l J ·J i=l j=l 

with the canonical parameters p, ex.,, (3,, and 
J. J 

y .. fori= l, ••• ,t, and j = l, ••• ,b. A mini­l.J 
mal sufficient statistic for these parameters 

is n · · for all i and j • l.J 

In the absence of block x treatment inter-

action, testing cx.i = 0 for all i will imply no 

treatment effects and similarly, testing sj = 0 
for all j will imply no block effects and so on. 



4. Throughout the work presented in this disserta-

tion, responses are assumed to be of a binary 

nature and hence it would be a step ahead if 

the present work is gradually generalized for 

the balanced and finally for the unbalanced 

multi-way classifications with categorical 

data. 

5. A simulation study for the comparison of the 

BIANOVA test with chi-square and F tests, done 

in Chapter II, is not quite sufficient. This 

study can certainly be continued for different 

choices of n, t, and probability structure. 

Also, for a given probability structure and 

a value of t, one can investigate the minimum 

value of n for which all three tests, BIANOVA, 

chi-square, and F, attain the fixed desired 

a levels under H • However, from this study, 
0 

general conclusions will be hard to make. 

6. Some ideas have been sketched in Chapter II 

which might be of great help in proving that 

the orderings of a collection of data sets 

given by the B and x2 statistics are the same. 

Further study in this direction can be con-

tinued also. 

In the literature, analysis of two-way or multi-way 
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classifications with binary or categorical data is not given 

as much attention as that given to the multi-way contingency 



·ll6 

tables. The work presented in this dissertation represents 

a beginning in this direction of the analysis of unbalanced 

multi-way classifications with binary or categorical obser­

vations. It is the author's plan to observe this work more 

critically and then to work with possible extensions. 
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APPENDIX 

Theorems 

Theorem 1: If Y is distributed N(~,cr 2 I), then Y'AY/cr 2 is 

distributed as x' 2 (k,A), where A = ~·A~/2cr 2 , if 

Theorem 2: 

Theorem 3. 

Theorem 4: 

and only if A is an idempotent matrix of rank k. 

If A is idempotent of rank r, then trace (A) = r. 

If g is a continuous function and xn dist X, + 

then g(X ) dist 
g (X) • n + 

(Cramer's Theorem) 

X dist Suppose n + X and Y 
n 

pr~b c (constant), then 

(1) xn + Yn dist X + c. + 

(2) X /Y d~st X/c if c 'I o. n n 
(3) X y dist ex. n n + 

Theorem 5: (Tchebycheff's Theorem) 

Let ~l' ~ 2 , ••• , be random variables, and let 

ron and crm denote the mean and the s.d. of ~n· 

If crn + 0 as n + oo, then ~n - ron converges in 

probability to zero. 

Theorem 6: If ~n' nn, ••• ,pn are random variables converging 

in probability to the constants x,y, ••• r, respec-

tively, any rational function R(~n'nn,•••rPn> 

converges in probability to the constant R(x,~ 

••• ,r), provided that the latter is finite. It 
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follows that any power Rk ( sn, Yln, ..• , Pn) with 
k k > 0 converges in probability toR (x,y, ••. ,r). 

Note: These theorems are taken from the texts by Rao (1973), 

Graybill (1961) , and Cramer (1966) . 

Definitions 

Definition 1: Convergence in Probability 

Let ~l' ~ 2 , ••• be a sequence of random 

variables. We say that ~n converges in prob-

ability to a constant c, if for any £ > 0, 

the probability of the relation l~n-cl > £ 

tends to zero as n + oo. 

Definition 2: Convergence in Distribution 

A sequence of random variables z1 ,z 2 , ••• 

converges in distribution to the random 

variable with distribution function F when­
lim ever Fn(x) = F(x) for all points of 
n+oo 

continuity of F, where F is the distribution n 

function of z • 
n 

Definition 3: Rational Function 

A rational function f(x) is any function 

that can be expressed as the quotient of 

two polynomials, i.e. f (x) = g (x) /h (x) where 

g(x) and h(x) are polynomials, and h(x) ~ 0. 

Definition 4: If f is a differentiable real-valued function, 

Rn! R, then the function Vf(x) is defined by 



Vf(x) = ( af(x) , •.. , 
a xl 

af(x) ) 
a x · 

n 
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Definition 5: The directional derivative of f with respect 
+ to a vector u is D+(f(x)) = f(x) .u/lul, where 

u 
lui is a norm of the vector u. 
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