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Abstract 
Research has found that elementary students face five main challenges 
in learning area measurement: (1) conserving area as a quantity, (2) un-
derstanding area units, (3) structuring rectangular space into compos-
ite units, (4) understanding area formulas, and (5) distinguishing area 
and perimeter. How well do elementary mathematics curricula address 
these challenges? A detailed analysis of three U.S. elementary textbook 
series revealed systematic deficits. Each presented area measurement in 
strongly procedural terms using a shared sequence of procedures across 
grades. Key conceptual principles were infrequently expressed and of-
ten well after related procedures were introduced. Particularly weak 
support was given for understanding how the multiplication of lengths 
produces area measures. The results suggest that the content of written 
curricula contributes to students’ weak learning of area measurement. 
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Introduction 

Measurement is a fundamentally important domain of school mathe-
matics. Because it provides tools for the quantification and control of 
physical quantities, measurement has been essential to the develop-
ment and practice of science and the design of technologies (Crosby, 
1997). Instruction in measurement begins early around the globe, typ-
ically in the first year of schooling, and continues into the middle 
grades. The initial focus on spatial measurement (length, area, and 
volume) involves the coordination of two dimensions of students’ 
experience—continuous space and discrete number. Measurement 
is highly practical mathematics, and the need to measure is intuitive 
to children. But research has indicated that students’ understand-
ing of measurement is weaker than for other mathematical domains 
in numerous countries (Smith, Males, Dietiker, Lee, & Mosier, 2013; 
Thompson & Preston, 2004). 

This article focuses on area measurement—specifically, how it is 
presented in elementary mathematics curricula commonly used in 
classrooms in the United States. In contrast to length, measuring area 
involves a shift from the use of physical tools (rulers) to numerical 
computations (formulas) (Bonotto, 2003; Hino, 2002; Kordaki & Po-
tari, 2002; Lehrer, 2003; Zacharos, 2006). The focus on computation 
via formulas continues for volume and other quantities that students 
explore in later mathematics and science work (e.g., torque = weight 
× distance). So area measurement represents an important transition 
in the teaching and learning of measurement more generally. Area 
measure also frequently arises in everyday activity and plays a foun-
dational role in more advanced mathematics, from fractions to calcu-
lus. For these reasons, understanding area measurement is an impor-
tant goal in elementary mathematics. 

Area is the quantity of two-dimensional (2D) space enclosed in 
shapes with closed boundaries, whether they lie on a plane or non-
planar surface. Using an area unit (a smaller segment of 2D space), 
continuous space can be partitioned into equal parts; area measures 
are the number of area units that fill the space. Although the amount 
of space enclosed remains constant, the numerical magnitude of area 
measures varies in proportion to the size of the unit. Larger area units 
produce smaller area measures because larger units fill more space 
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than smaller units. Area is conserved under many transformations 
and partitioning operations. Identical replicas of area units can be 
used to tile (cover) the space enclosed. A single area unit can be iter-
ated through the space to generate a virtual tiling. Many shapes can 
serve as units of area, but squares have special status. They tessel-
late the plane and fill the same space uniformly on both dimensions, 
thereby supporting the multiplication of lengths to produce area mea-
sures. Both individual and composite units can be iterated; rows and 
columns of square units are important composite units. “Spatial struc-
turing,” the ability to visualize and locate composite units in rectan-
gular spaces (Battista, Clements, Arnoff, Battista, & Borrow, 1998), 
facilitates counting by composites and motivates the multiplicative 
relationships in area formulas. But the composition of one length 
unit with another to generate one square unit differs from the multi-
plicative relationships that are typically emphasized in the elemen-
tary grades—the replication of equal groups and scalar multiplica-
tion (Greer, 1992; Lehrer & Slovin, 2014; Nesher, 1988). 

Many elementary students—in the United States and other coun-
tries (Smith et al., 2013; Zacharos, 2006)—do not learn measurement 
well, and area measurement presents particular challenges. US grade 
8 students’ performance in measurement is weaker than any other 
content area on the National Assessment of Educational Progress 
[NAEP] and the Third International Mathematics and Science Study 
[TIMSS] (Thompson & Preston, 2004). Where US students are reason-
ably successful solving simple routine problems, their performance 
drops sharply on tasks that are nonroutine or require explanation. 
For example, about half of grade 4 and 75% of grade 8 students found 
the area of a polygon drawn on a grid by counting square centime-
ters (Blume, Galindo, & Walcott, 2007). But only about 25% of grade 
8 students successfully determined the surface area of a rectangu-
lar solid; less than 20% produced the correct number of squares that 
covered a given region; and fewer than 10% found the area of figure 
depicted on a geoboard and then constructed another with the same 
area (Blume et al., 2007). 

Although weak learning has been reported in numerous coun-
tries, the factors responsible remain unclear, making it difficult to 
know where to focus intervention efforts. In this article, we examine 
the evidence that the content of curricular materials contributes to 
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the problem of weak and shallow learning. We analyzed how three 
U.S elementary textbook series present area measurement, with spe-
cific attention to how they address the key learning challenges doc-
umented in the research literature. Textbooks exercise a strong in-
fluence on the mathematics lessons taught to students, in the United 
States and other countries (Brown & Edelson, 2003; Hino, 2002; Remi-
llard, Harris, & Agodini, 2014). But it is also true that textbook les-
sons are read, interpreted, and enacted differently by teachers in 
classrooms with students whose backgrounds, engagement, and par-
ticipation also differ. Since written texts do not determine how teach-
ers teach area measurement (much less how students experience it), 
limitations in their content, no matter how significant, cannot be the 
single cause of weak student learning. 

From our results, we will argue that curricular content likely con-
tributes to students’ struggles to learn area measurement, and in two 
ways: Directly via limitations in their opportunity to learn and indi-
rectly via messages to teachers about the procedural nature of area 
measurement. But the evidence of curricular contributions to stu-
dents’ challenges remains correlational and therefore circumstantial, 
pending more direct tests of curricular impact. We return to this cen-
tral issue in the Discussion. In addition, our focus on curricular con-
tent and its limitations should be taken to indicate that curriculum re-
vision is the most efficacious approach to addressing the documented 
challenges that students face with area measurement. The depth of 
teachers’ knowledge and understanding of the content and students’ 
learning of that content will remain an important factor as well. 

Our analysis complements a prior study of the presentation of 
length measurement in the same curricular materials (Smith et al., 
2013). In that study we found that students’ access to key conceptual 
principles such as unit iteration was limited in its frequency and tim-
ing relative to closely related procedures. The materials focused pri-
marily on how length is measured with little attention to why those 
procedures work and what to do in nonstandard situations (e.g., mea-
suring lengths with “broken” rulers). But 2D space and area measure-
ment introduce new challenges for students, such as units of differ-
ent shape and size, 2D shapes with multiple spatial attributes (e.g., 
perimeter and area), and numerical methods for finding area mea-
sures. Given these differences, a careful analysis of how curriculum 
materials present area measurement was warranted. 
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Research on students’ learning challenges 

Researchers have reported some challenges that students face in un-
derstanding area measurement that parallel results for length (e.g., 
conservation of quantity and the nature of units), where other chal-
lenges are particular to area—the spatial structuring of rectangular 
space, understanding multiplicative composition, and distinguishing 
area and perimeter. Research has also shown that elementary teach-
ers struggle with the same challenges (Baturo & Nason, 1996; Simon 
& Blume, 1994), but for reasons of space, we focus on research on stu-
dents’ learning. 

Conservation of the area quantity 

The understanding that the amount of enclosed 2D space does not 
change when shapes are moved or partitioned develops gradually 
over time. Piaget’s early studies assessed the area conservation in 
two different ways (Piaget, Inhelder, & Szeminska, 1960). Children 
were presented with two equal-sized rectangular “meadows” with 
“houses” spread around in different ways and asked whether the 
amount of remaining green space was the same.1 Not all young chil-
dren saw equal areas, even after confirming that the number of houses 
was the same. For most nonconservers, the spread-out houses took 
up more space. Some who asserted equivalence for a few houses (≤ 
5) changed their minds when the number increased (≥ 10). In a sec-
ond approach, children were presented with identical 2 × 3 rectangles, 
marked in square units. After they affirmed the areas were equal, one 
square was cut from one rectangle and re-attached to form a “stair-
case” of six square units. When asked if the resulting shapes had the 
same area, some children denied equivalence, even after counting 
six squares in each shape. Recent work with grade 1 to 3 students 
using a related task has produced similar results (Lehrer, Jenkins, & 
Osana, 1998). However, with a meaningful sequence of tasks and in-
formed teacher questions, grade 2 students have also moved beyond 
visual appearance to use decomposition and recomposition to see that 

1 The underlying issue concerns whether subtracting two equal areas from two larger equal 
areas leaves two equal areas remaining. 
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different sized rectangular shapes can have the same area (Lehrer et 
al., 1998). Overall, children’s reasoning about area invariance is of-
ten influenced by visual appearance—a challenge that can continue 
even into the high school years (Kospentaris, Spyrou, & Lappas, 2011). 

Understanding and using units 

Area measurement moves beyond qualitative comparison when area 
units are used to determine how much more space is enclosed in one 
shape than another. Research has shown that students’ understanding 
of area units also develops gradually, as they work to coordinate dif-
ferent conceptual properties. Some elementary students try to adapt 
length units and/or tools to measure area (e.g., measuring rectangu-
lar area by sequential placements of a ruler) (Lehrer et al., 1998). Ka-
mii and Kysh (2006) found that middle school students often counted 
geoboard pegs rather the square spaces between them to find the area 
of shapes. Elementary students can choose to mix different “units” to 
cover shapes, even when a sufficient supply of identical units is avail-
able (Clements & Sarama, 2009; Lehrer et al., 1998). When collections 
of different shapes are available, students often select units that re-
semble the target space (e.g., triangular units for triangular shapes) 
(Heraud, 1987; Lehrer et al., 1998). In covering 2D spaces, elementary 
students tend to avoid overlapping the boundary, even at the cost of 
not filling the space enclosed. Achieving the complete coverage of 2D 
space with identical units can be challenging as students must choose 
between covering the space and overlapping a boundary. 

Spatial structuring of rectangles 

Placing and counting individual area units becomes cumbersome for 
larger shapes. To find the area of rectangular spaces without count-
ing each square unit, students must mentally organize the array of 
squares into composite units, typically rows or columns. This organiza-
tion speeds counting and helps to motivate the standard area formula 
for rectangles (“length × width = area”). But research has shown that 
the ability to visualize arrays and isolate composite units develops 
gradually (Battista et al., 1998; Lehrer, 2003; Outhred & Mitchelmore, 
2000; Owens & Outhred, 1998). Simply showing students correctly 
drawn arrays and/or boundaries partitioned into equal length units 
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does not immediately allow them to produce such arrays. Primary 
grade children often struggle to fill rectangular space with identical 
units; the square “units” they draw may quickly lose regularity. Older 
students who successfully draw square units along the boundary can 
fail to fill the interior space uniformly. With support from boundar-
ies demarcated in length units, spatial structuring is easier for smaller 
rectangles (e.g., 2 × 3) than larger (e.g., 7 × 9), and success with small 
dimensions does not always “scale up” to larger dimensions. 

Multiplicative composition 

Even if students can structure rectangular space into composite units, 
they face the additional challenge of relating such arrays to the mul-
tiplication of length and width (Stephan & Clements, 2003). Under-
standing area measurement requires a new meaning for multiplica-
tion, multiplicative composition (Confrey, 2012; Lehrer, 2003; Watson, 
2010). Substantial evidence indicates that many students learn the 
area formula for rectangles without understanding how or why it 
works (e.g., Baturo & Nason, 1996). Given the choice of covering rect-
angles with physical units and counting them and measuring and 
multiplying lengths, many students choose the former (Kordaki & Po-
tari, 2002; Nunes, Light, & Mason, 1993). Students may overgeneral-
ize “length times width” as the meaning of area (Schifter & Szymas-
zek, 2003); produce area measures by additively combining lengths, 
widths, or heights (Lehrer et al., 1998; Zacharos, 2006); or simply an-
swer questions about areas with numbers without units (Clements 
& Sarama, 2009). Some researchers have suggested that an early fo-
cus on numerical computation makes understanding area formulas 
more difficult (Zacharos, 2006). 

“Confusing” area and perimeter 

Research has also shown that elementary and middle school students 
often fail to distinguish area from perimeter as different attributes 
of 2D shapes. Woodward and Byrd (1983) asked grade 8 students 
which of five different-sized rectangular “gardens” with the same pe-
rimeter had the “largest possible garden area.” Only about a quarter 
selected the rectangle with the greatest area; about 60% responded 
that the gardens were “all the same size.” Some have suggested this 
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error results from a more general intuitive rule, “same A (perimeter), 
same B (area)” (Stavy & Tirosh, 2000). When Chappell and Thomp-
son (1999) asked middle school students to draw a figure whose pe-
rimeter was 24 units, many drew figures whose areas were 24-square 
units. Very few could illustrate or explain how different figures could 
have the same area and different perimeters. Even college mathemat-
ics majors can make judgments about area based on the side length 
of shapes (Kospentaris et al., 2011). 

Framing the analysis 

This study analyzed the presentation of area measurement in elemen-
tary mathematics textbook materials to assess the evidence that cur-
ricular content may contribute to weak learning. In other words, we 
assessed students’ opportunity to learn (OTL) and understand area 
measurement. Theoretically, our approach to OTL was grounded in 
the “knowledge-in-pieces” perspective on knowing mathematics and 
science (diSessa, 1993) and informed by the insight that the “curric-
ulum” experienced by students results from a series of transforma-
tions from broad standards to “real” lessons. Analytically, three basic 
issues framed our analysis: content/knowledge (what area measure-
ment knowledge is presented?), expression (how is that content pre-
sented on the textbook page?), and timing and sequence (when and 
in what order is that content presented?). Although careful, content-
specific studies may operationalize these three dimensions in the dif-
ferent ways, each is fundamental to curricular OTL. 

Curriculum and its transformations 

The term “curriculum” has been defined differently in analyses of 
mathematics learning and teaching. Some researchers have used the 
term synonymously with “instructional materials”; others have pro-
posed meanings that are considerably broader to include students’ ex-
perience of mathematics in classrooms (Remillard & Heck, 2014). But 
there is broad agreement that curriculum undergoes a series of trans-
formations in form and content from policy documents that specify 
the nature and sequence of what should be taught, to the “written” 
forms given to teachers for classroom instruction, to the “intended” 
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and “enacted” forms where teachers are directly involved as inter-
preters (Ball & Cohen, 1996; Remillard & Heck, 2014; Stein, Remi-
llard, & Smith, 2007). The intended curriculum consists of teachers’ 
plans for using different resources (e.g., tasks and activities) provided 
by textbooks and other sources to structure their lessons; the enacted 
curriculum is the lessons that actually occur when plans become the 
joint activity of teachers and their students. This study focused on the 
“written” curriculum—the instructional materials that teachers use 
to construct and teach measurement lessons. Although teachers seek 
out and use other instructional materials, textbooks continue to play 
a strong role in shaping teachers’ intended and enacted mathematics 
curricula, in the United States and other countries (Grouws, Smith, & 
Sztajn, 2004; Hino, 2002; Kaur, 2014; Polikoff, 2015; Remillard et al., 
2014; Stein et al., 2007). The analysis of textbook content, as teachers’ 
primary curricular resource, has practical merit. Although textbooks 
do not strictly determine teachers’ actual lessons, the intended and 
enacted curriculum are difficult to study because of the sheer number 
and challenge of sampling among teachers and classrooms. The con-
tent of widely used mathematics textbooks not only shapes intended 
and actual lessons in many classrooms, it also communicates what is 
important mathematically (and what is not) to teachers, beyond the 
specific content of lessons (Stein & Kim, 2009). This communicative 
role is important for area measurement, given the evidence that ele-
mentary teachers’ understandings are often conceptually weak and 
procedurally focused (Baturo & Nason, 1996; Berenson et al., 1997; 
Simon & Blume, 1994). 

Conceptualizing curriculum as undergoing a series of transforma-
tions helps to identify other factors than written curricular content 
that contribute to shaping students’ mathematical experience. These 
factors serve as reminders that written curricula shape, but do not 
determine students’ OTL. National curriculum and assessment stan-
dards influence how teachers allot time to particular topics (e.g., area 
measurement). Their judgments of what will appear on high-stakes 
assessments can shape their choices about instructional time and at-
tention. The placement of specific topics in textbooks may also in-
fluence how much attention is paid to that content. U.S. elementary 
textbooks that contain more content than can be taught in a year typ-
ically place measurement lessons toward the back of their materi-
als (Smith et al., 2013), decreasing the likelihood they will be taught. 
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Other factors concern teachers’ instructional practices. The focus of 
measurement lessons is often procedural (Lehrer, 2003; Stephan & 
Clements, 2003). Once area formulas are introduced, much more at-
tention is given to numbers and calculation than to 2D space (Ba-
turo & Nason, 1996; Murphy, 2012; Thompson, Philipp, Thompson, & 
Boyd, 1994). Descriptive terms for describing attributes of 2D spaces 
can create challenges for clear and productive discourse. Compara-
tive terms, (e.g., “bigger” and “larger”) are often used without clear 
reference to specific spatial attributes. References to the “base” and 
“height” of rectangles can refer to either distances or algebraic expres-
sions (e.g., “B” or “H”) (Herbel-Eisenmann & Otten, 2011). And as 
noted, teachers’ knowledge of area measurement is often limited (Ba-
turo & Nason, 1996; Simon & Blume, 1994; Woodward & Byrd, 1983), 
restricting their ability to pose productive questions, explain concep-
tual principles, and respond effectively to students’ ideas. 

Knowledge-in-pieces 

In contrast to perspectives that frame students’ developing knowl-
edge in mathematics and science as theory-like (Vamvakoussi & 
Vosniadou, 2010; Vosniadou, Vamvakoussi, & Skopeliti, 2008), the 
knowledge-in-pieces perspective views students’ knowledge as 
loosely structured collections of many different elements (diSessa, 
1993, 1996; diSessa & Wagner, 2005). On this view, repeated contact 
with mathematical or scientific phenomena leads learners to construct 
diverse and often fragmented knowledge that is closely tied to spe-
cific contexts, either physical or numerical. The resulting knowledge 
system is a web of elements that are loosely related. The system as a 
whole may not be internally consistent, and individual elements may 
or may not be “true” from a disciplinary perspective. 

Oriented by this perspective, we used the research literature, math-
ematical discussions of area and its measure, and textbook materials 
to develop an exhaustive list of all “atoms” of knowledge that could 
contribute to students’ understanding of area. Our approach differed 
from many prior analyses of OTL that have targeted broad topics and 
problem types (Floden, 2002). For example, TIMSS analyzed measure-
ment OTL in terms of two broad topics: (a) attributes and units and 
(b) tools, techniques, and formulas (Schmidt, McKnight, & Raizen, 
1997). From the knowledge-in-pieces perspective, judgments about 
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OTL should not attempt to identify and track only “core” knowledge 
elements, because learners’ inferences may compensate for individual 
deficits in the system. Rather, assessments of OTL should be based on 
broader patterns of presence or absence of many different elements. 

Analytic frame 

Content/knowledge 

In identifying knowledge elements for area measurement, we began 
with the traditional distinction between mathematics concepts and 
procedures. Procedures designate sequences of steps that are sufficient 
to solve particular types of problems. By contrast, concepts (and con-
ceptual knowledge) have often been vaguely defined (e.g., Hiebert 
& Lefvre’s [1986, p. 3] characterization of conceptual knowledge as 
“knowledge that is rich in relationships.”). We defined concepts as the 
basic principles that underlie and justify measurement procedures, 
systems, and tools. This definition emphasizes the important role that 
conceptual knowledge plays in constraining procedural knowledge. 
The analysis of conceptual knowledge in studies of OTL should be 
informed by research on particular conceptual issues that students 
find difficult to learn, as curricula should acknowledge and address 
these challenges. But these two knowledge types were not sufficient. 
All mathematical content areas have conventions governing how 
mathematics is represented and expressed. Conventions (e.g., mea-
surement systems and abbreviations) are human choices about how 
to write and communicate mathematics; they are not strictly speak-
ing conceptual. 

Expression 

Any body of mathematics content can be expressed and communi-
cated differently in textbooks. Most fundamentally, mathematics can 
be expressed either directly to students on the printed page or indi-
rectly to them via their teachers. Text of the former type contains di-
rect OTL where the latter is indirect OTL. Content expressed to teach-
ers only becomes available for students to learn when and if teachers 
choose to express it. This distinction proved important to our analy-
sis because communication to students via teachers was prominent 
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in the primary grades (K–2). With respect to the form of expression, 
mathematics textbooks, as in all subjects, state elements of content—
whether concept, procedure, or convention. Central concerns are the 
completeness and correctness of these mathematical statements. Sim-
ilarly, all mathematics textbooks present tasks of different types to 
students and teachers. These can differ widely in terms of cognitive 
demands (Stein, Grover, & Henningsen, 1996); many are routine ex-
ercises and relatively few “real” problems (Schoenfeld, 1992). Because 
it is insufficient simply to state procedures, mathematics textbooks 
typically include worked examples that illustrate how the general 
sequence of steps applies to a specific problem. Research has shown 
that worked examples can effectively support students’ learning of 
procedures (Sweller & Cooper, 1985). For young children especially, 
the illustration of mathematical procedures often takes the form of 
teachers’ demonstrations. 

Timing and sequence 

The presentation of significant mathematics content areas in curricu-
lum typically spans multiple years of schooling and within years, often 
multiple units or collections of lessons. Textbook authors must decide 
where to start and how to segment and sequence content over time. 
As recent research on learning trajectories has shown in careful de-
tail, the order in which mathematical content is presented to students 
matters (Maloney, Confrey, & Nguyen, 2014). Decisions about starting 
points and sequential development are made centrally in many coun-
tries, but until recently, different states in the United States have ex-
pressed their decisions in individual state curriculum standards. Ana-
lysts of OTL studying specific mathematical content areas must decide 
where to begin and end their analyses and determine what content 
to include (and what to leave out). Textbooks may introduce and de-
velop mathematical ideas informally before they are named and de-
fined (e.g., “size” of objects before “area”), and connections are often 
drawn between specific content areas and those closely related (e.g., 
using rectangular arrays to develop area measurement and numeri-
cal multiplication). One particular issue of sequence concerns the or-
der and proximity of procedures and related concepts, as research has 
emphasized the importance of clear linkages between them (Baroody, 
Feil, & Johnson, 2007; National Research Council, 2001). 
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Study focus 

Our study addressed two broad questions: (1) How do current math-
ematics curricula present area measurement in the elementary grades, 
and (2) How well do these presentations address the learning chal-
lenges documented in research? Characterizing the presentation of 
area measurement content involves issues of timing, sequence, and 
most of all content/knowledge. Embedded in the second question is 
the assumption is that mathematics curricula can and should address 
the specific learning challenges identified in the research literature. 
More specifically, we asked: 

(1) How much curricular attention is given to area 
measurement in the elementary grades? 

(2) How do the curricula distribute attention to area concepts, 
procedures, and conventions, and how do they express 
that content in text? 

(3) In what order do the curricula present major procedures 
and related concepts for measuring area, and do their 
sequences differ significantly? 

(4) How well do the curricula address the learning challenges 
that research has shown that students face in learning 
area measurement? 

Answers to the first three questions provide the basis for answering 
the last and we think, crucial question for students’ OTL. 

Method 

We analyzed all area measurement content in the grades K–4 materi-
als of three U.S. elementary mathematics textbook series. In this sec-
tion, we justify our choice of textbooks and grades and describe how 
we identified area content in those materials. We also describe our 
framework for coding that content and how we applied it to the text-
book pages that contained area content. Figure 1 presents the main 
steps in this analytic process. 
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The choice of curricula and grades 

Because many elementary mathematics textbooks are used in U.S. 
classrooms (Stein et al., 2007) and our analysis was quite detailed, 
we were forced to choose some series over others. We chose Everyday 
Mathematics, 3rd edition (The University of Chicago School Mathe-
matics Project, 2007) (henceforth, EM), which was written in response 
to the National Council of Teachers of Mathematics’ (1989) Curricu-
lum and Evaluation Standards for School Mathematics. We also selected 
Scott-Foresman/Addison-Wesley’s Mathematics (Charles, Warren, & 
Fennell, 2008) (SFAW) as an example of a publisher- developed curric-
ulum. When we began our analysis, EM and SFAW both commanded 
large shares of the elementary mathematics textbook market in the 
United States (Reys & Reys, 2006). Our third series, Saxon Math (Lar-
son, 2004) (Saxon), was used less widely, but its teacher-directed ap-
proach and structure differed from the other two (see also, Remillard 
et al., 2014). All three series began their presentation of area measure-
ment informally in grades K and 1. Area received substantial attention 
in grades 2 and 3; and by grade 4 all curricula had introduced area 
formulas for basic geometric shapes. Where attention to area measure-
ment continues into middle school in the United States, the analysis 
of its presentation in grades K– 4 seemed sufficient to assess the ade-
quacy of students’ access to the foundations of area and its measure. 

Locating the area measurement content 

We first located all textbook pages in the grade K–4 materials of the 
three series that contained area measurement content. The primary 
sources of these pages were the teacher’s edition and the student’s 
workbook for each grade. The teacher’s editions contained snap-
shots of the student workbook pages proposed for use in each les-
son.2 Two coders examined every page for content that called for rea-
soning about area. All pages with at least one instance of such content 
were included. Disagreements between coders about that criterion 
were resolved in discussions among the entire research team. This 

2 EM also included a Student Reference Book and a collection exercises, Minute Math, for 
grades 1 through 4. We coded the all pages of these materials that contained area content. 
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process yielded many more textbook pages than would be the case 
if we had focused on area measurement lessons alone. For example, 
all three series distributed area-related tasks throughout their mate-
rials, and we included and coded all pages that contained at least one 
such task. We established procedures for deciding when instructional 
objects and representations made reasoning about area and its mea-
sure likely. As a result, we analyzed content that many mathemat-
ics educators might not see as “area,” including partitioning shapes 
into equal-sized parts (fractions), reading and interpreting spinners 
(probability), and constructing and interpreting circle graphs (statis-
tics). In these cases, we judged whether the content would lead stu-
dents to reason about the relative size of parts and thus to judgments 
about area. This process produced a collection of pages that, as best 
we could determine, contained every instance of OTL for area mea-
surement in each series. 

Figure 1. Major steps in the analysis.
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Coding the identified pages 

To code this content objectively, we developed a coding scheme that 
identified knowledge elements for area and its measure and textual 
forms for expressing that knowledge on the textbook page. 

Knowledge elements 

Following our analytic frame, we identified and expressed many ele-
ments of Conceptual, Procedural, and Conventional knowledge; the 
complete list is given in the Appendix. We distinguished three sub-
types of Conceptual knowledge: (1) general properties of quantities 
and their measures (including area), (2) principles specific to area 
measurement, and (3) principles of area measurement for specific 
shapes (e.g., rectangles and triangles). Principles of the first subtype 
(e.g., Unit-Measure Compensation—smaller units produce greater nu-
merical area measures) constitute what Lehrer has called “the child’s 
theory of measure,” (Lehrer, Jaslow, & Curtis, 2003). We also distin-
guished three subtypes of Procedural knowledge. Premeasurement 
includes qualitative processes for judging the relative size of 2D ob-
jects and shapes; these procedures involve no numerical reasoning. 
Numerical measurement groups procedures for generating area mea-
sures of single 2D shapes. Reasoning with area measures includes 
procedures for generating areas of more complex shapes or reasoning 
with two or more area measures (e.g., finding the area of a complex 
shape by decomposition). As their number indicates (n = 50), Proce-
dures included more than formulas for computing the area of spe-
cific shapes. Conventional knowledge elements included definitions 
of standard units (e.g., the actual size of a square centimeter), abbre-
viations for units, and numerical conversion rates (e.g., 1 square me-
ter = 10,000 square centimeters).3 In all, this framework identified 93 
different knowledge elements (35 Conceptual, 50 Procedural, and 8 
Conventional). 

3 That each square meter contains 10,000 square centimeters is not arbitrary once a meter 
has been defined in terms of centimeters, but the chosen length of the standard meter is 
mathematically arbitrary. 
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Types of textual expression 

How mathematical knowledge is expressed and engaged by teachers 
and students also influences students’ OTL (Remillard et al., 2014). In-
formed by our framework, we identified five textual forms that each 
textbook series used to express area content: (1) Statements, (2) Ques-
tions, (3) Demonstrations, (4) Worked Examples, and (5) Problems. To 
separate direct from indirect OTL we also coded all content for its lo-
cation in either teacher or student materials. Statements express ele-
ments of Conceptual, Procedural, or Conventional knowledge of area 
measurement. We distinguished Full Statements of knowledge ele-
ments from Partial Statements that omitted major content relative to 
ours. This distinction proved particularly important in coding Con-
ceptual knowledge. Worked Examples present some area-related task 
and its solution. Demonstrations are the “enacted” analogs of Worked 
Examples; they are the spoken or drawn presentations of area reason-
ing, typically procedures for solving tasks, from teachers or teacher-
designated students. By definition, Demonstrations appeared only in 
teacher materials and Worked Examples in student materials, where 
Statements, Questions, and Problems appeared in both. Questions 
and Problems both pose area-related tasks. Questions require little 
reasoning, may be answered by one student, or are under teacher di-
rection, where Problems require more reasoning and/or activity, and 
most, if not all students are expected to respond and work indepen-
dently of teacher direction. 

Coding tasks and queries as either Questions or Problems re-
quired considerable discussion and in some cases, recoding. Our 
distinction was based on three equally weighted criteria: (1) Does 
the task or query ask more than simple recall or observation, (2) how 
many students are expected to respond, and (3) does the curricular 
context suggest that students will work relatively autonomously or 
under teacher’s direct guidance? Queries and tasks were coded as 
Questions if (1) only simple recall or observation was required, (2) 
one student could answer, and (3) teacher direction was indicated. 
They were coded as Problems if (1) cognitive demand exceeded sim-
ple recall or observation, (2) responses from most, if not all students 
were expected, and (3) relatively autonomous student work was in-
dicated. When the three criteria did not align, outcomes on two of 
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three decided the coding. This definition of Problem admittedly set 
a low threshold for cognitive demand; it included what Schoenfeld 
(1985) has called “exercises” that are fundamentally different from 
“problems”—tasks that are genuinely “problematic” for students. 
As a result, many tasks we coded as Problems were quite routine. 
The challenge of reliably coding the cognitive demand of mathemat-
ical tasks in curricular analysis has been cited by other researchers 
(Charalambous, Delany, Hsu, & Mesa, 2010).We return to this im-
portant issue in the Discussion. 

Applying the coding scheme to the data 

Coding the textbook pages involved assigning a knowledge element 
and textual form to each instance of area measurement content, typ-
ically expressed in a single sentence, clause, or problem. The result 
was a list of ordered triads (knowledge element, textual element, fre-
quency) for each textbook page, where frequency was the number of 
times a particular knowledge-textual element pair appeared on that 
page. Two members of the research team coded each page. Each pair 
did so independently and then compared their results and resolved 
any differences in discussion. When coding disagreements could not 
be resolved within the pair, they were presented, discussed, and re-
solved in meetings with the full research team. To minimize bias, 
coding pairs were systematically varied across grades, and the text-
book pages were distributed evenly so that all pairs coded content 
from all curricula. The research team included the project director (a 
faculty member), ten mathematics education graduate students, and 
two undergraduate pre-service teachers. Each held at least a bache-
lor’s degree in mathematics; most had experience teaching K–12 or 
collegiate mathematics.4 We entered all final codes into a two-way 
spreadsheet table (knowledge elements by textual forms) and aggre-
gated the frequencies of each knowledge element and textual form 
for each series and grade. 

4 One graduate student had experience tutoring in a community college math lab; a second 
had no mathematics teaching experience.
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The lesson-level analysis 

We separately identified the lessons that directly concerned area mea-
surement in grades 2 through 4 to roughly measure overall attention 
area in each series—an issue obscured in the more detailed analysis 
described previously. All curricula presented area measurement in-
formally in grades K and 1 before explicitly defining area in grade 2, 
so we limited this analysis to lessons in grades 2, 3, and 4. The first 
author carried out the analysis; lessons with 50% or more area mea-
surement content were counted as “area lessons.” 

Results 

We first examine the amount of curricular attention given to area mea-
surement in each series (question 1). Next, we examine how the text-
books distributed area-related content across the knowledge types 
and textual forms identified in our framework (question 2). Third, we 
present a sequence of four groupings of procedures and related con-
cepts that was common to all three series, noting differences when 
they are relevant (question 3). Finally, to assess how the textbooks ad-
dressed the learning challenges identified in research, we report the 
frequency and placement of Conceptual knowledge elements that ad-
dressed those challenges (question 4). With the exception of question 
1, we report our results in terms of absolute and relative frequencies 
of knowledge and textual elements, as they have direct implications 
for students’ OTL. Very low frequencies for particular knowledge el-
ements and groups of elements would suggest that students would 
have limited access to those ideas. 

Area measurement lessons 

Table 1 presents two measures of curricular attention to area mea-
surement in grades 2 through 4. The first row for each series pres-
ents the percentage and frequency of all “area-related” lessons, using 
our more inclusive criterion for coding textbook content. “Area-re-
lated” lessons included those whose central content required reason-
ing about area measures (e.g., partitioning of 2D shapes) but were not 
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framed as “area lessons.” The middle row presents the same informa-
tion for lessons that explicitly concerned “area.” The bottom presents 
the total number of lessons in each series at each grade. 

Area measurement received modest attention in all grades and se-
ries; few lessons explicitly addressed the topic. The greater number 
of “area-related” lessons in all series and grades was primarily due 
to the focus on equi-partitioning in support of learning fractions. This 
analysis also revealed where area measurement lessons were placed in 
the yearly sequence of lessons. Most area lessons appeared in the sec-
ond half of the year. This was always true for SFAW’s lessons. Most 
of EM’s grade 2 and 4 area lessons also appeared in the second half 
of the year. In grade 3, however, this relation was reversed; three of 
four lessons appeared in the first half of the year. Saxon placed one 
area lesson early in its grade 2 and 3 materials, but the most appeared 
in the second half of their texts. In all three series, most lessons in the 
first half of the year focused on base-10 number and operations. 

The presentation of area by knowledge type and textual expression 

Our main analysis was designed to reveal which specific concepts, 
procedures, and conventions appeared in each curricular presentation 
of area measurement and how they were presented. For the broad-
est overview, we report how the curricula presented area content by 
knowledge type, textual expression, and placement in teacher or stu-
dent materials. 

Table 1. Two measures of curricular attention to area measurement. 

Curriculum 	 Lesson Type 	 Grade 2 	 Grade 3 	 Grade 4 

EM 	 Area-related 	 8% (10) 	 9% (11) 	 9% (11) 
	 Area 	 3% (4) 	 3% (4) 	 5% (6) 
	 Total 	 123 	 121 	 119 
SFAW 	 Area-related 	 6% (10) 	 8% (13) 	 7% (12) 
	 Area 	 1% (1) 	 1% (2) 	 1% (2) 
	 Total 	 159 	 162 	 161 
Saxon 	 Area-related 	 12% (19) 	 8% (12) 	 7% (10) 
	 Area 	 4% (7) 	 1% (2) 	 2% (3) 
	 Total 	 160 	 160 	 135 
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Knowledge type 

Table 2 presents the total number of coded instances of area mea-
surement for each series and grade and their percentage by knowl-
edge type. 

The total number of instances of area content increased in each 
grade and textbook series, except for SFAW grades 1 to 2.5 All three se-
ries gave very strong attention to area measurement procedures. Pro-
cedural content never fell below 85%, and for the most part was more 
than 90%. This procedural focus was appreciably higher for area than 
it was for length (Smith et al., 2013). Conceptual content appeared in 
all series in grades 1 through 4 but generally accounted for less than 
10% of all area content. EM devoted modest attention to Conceptual 
knowledge in Grades 2 through 4; SFAW’s attention was greatest in 
grade 3 but very modest in other grades; Saxon gave very little atten-
tion to conceptual content in any grade. Conventional knowledge 
generally appeared less frequently than Conceptual knowledge. Its 

5 SFAW’s large grade 1 total (n = 492) was due to the large number of instances (n = 208) 
where students were asked to compare the size of two or more shapes or objects.

Table 2. Conceptual, procedural, and conventional knowledge for area measurement. 

		  Conceptual 	 Procedural 	 Conventional 	 Total 

EM	 K	 0	 100	 0	 20
	 1	 2.8	 97.2	 0	 144
	 2	 6.5	 87.6	 5.9	 185
	 3	 6.0	 91.8	 2.2	 730
	 4	 8.1	 89.2	 2.7	 732
SFAW	 K	 2.1	 97.9	 0	 292
	 1	 0.2	 99.8	 0	 492
	 2	 3.4	 96.6	 0	 298
	 3	 10.3	 88.1	 1.7	 477
	 4	 4.6	 94.1	 1.3	 1039
Saxon	 K	 0	 100	 0	 233
	 1	 1.3	 98.7	 0	 240
	 2	 1.2	 91.8	 7.0	 497
	 3	 2.5	 93.6	 3.9	 514
	 4	 1.7	 89.8	 8.6	 888
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greater frequency in EM, grade 2 was due to the frequent definition of 
standard area units; Saxon’s increased frequency in grades 2 through 
4 was due to its focus on naming arrays. 

Textual expression 

Each series used all five textual forms to express area content, and 
generally did so at each grade. All three used Problems and Ques-
tions most frequently; taken together, they accounted for more than 
80% of all area content in all grades. Problems were the more dom-
inant form—usually accounting for more than 50% of all instances 
in all grades. However, Saxon consistently used Questions more fre-
quently (see Table 3 below). Statements never accounted for more 
than 11% of area content in any grade or series. EM used Statements 
more frequently than the others (between 4% and 11% in grades 1 
through 4); only once did SFAW’s or Saxon’s use of Statements reach 
5% (SFAW, grade 3). Demonstrations and Worked Examples were 
used infrequently, generally accounting for less than 10% of total 
content when combined. However, Saxon used Demonstrations and 
SFAW used Worked Examples more frequently at each grade. These 
results closely parallel our findings for length (Smith et al., 2013). 

Knowledge type by textual expression 

The interaction between knowledge type and textual expression may 
also affect students’ OTL. Some pairings of knowledge type and tex-
tual expression were more common than others. Table 3 presents the 
distribution of area content across knowledge type and textual ex-
pression. Cells with zero frequency have been left blank. 

Not surprisingly, Procedural knowledge was most frequently ex-
pressed in Problems. As indicated above, Saxon used Procedural 
Questions more frequently than the other curricula. Overall, Concep-
tual knowledge was expressed in Statements, Questions, and Prob-
lems; EM used more Statements frequently to express conceptual con-
tent, and SFAW used more Problems in grades 3 and 4. EM and SFAW 
used Statements most frequently to express Conventional knowledge, 
where Saxon used Problems, Questions, and Demonstrations. 
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Placement in teacher and student materials 

Given the strong procedural focus in all three series, the question of 
where conceptual content was presented becomes central, given its 
relatively infrequent appearance. To address this question, we first 
consider the distribution of area content across teacher and student 
materials. Figure 2 presents that distribution for the combined per-
centage of Problems, Questions, and Statements.6 

Generally, each series shifted from expressing area content in 
teacher materials in the early grades, especially grade K, to student 
materials in later grades. This trend was clearest for EM. Saxon fol-
lowed the same general trend except at grade 1, but then with rough 
parity (teacher vs. student materials) in grades 3 and 4. SFAW pre-
sented more area content in its teacher materials at grade K, but only 
at that grade. The proportion of area content in its student materials 
shifted abruptly in grade 1. Overall, these results indicate a shift from 
teacher presentation in the primary grades to more direct presenta-
tion to students in later grades. 

6 Worked Examples, by definition, appeared only in student materials, where Demonstra-
tions (by the teacher or teacher-designated student) appeared only in teacher materials. 

Table 3. Distribution of area content by knowledge type, textual type, curriculum, and grade. 

	                                             Conceptual	                              	Procedural	                            	Conventional	

		  P	 Q	 S	 D	 W	 P	 Q	 S	 D	 W	 P	 Q	 S	 D	 W

EM	 K						      90	 10	
	 1	 1		  2			   78	 15	 2	 1	 1	
	 2	 2		  6			   78	 1	 3	 2	 2		  1	 5	 1	
	 3	 2	 1	 4			   55	 25	 3	 5	 3			   2	
	 4	 5		  4		  1	 70	 1	 5	 2	 7			   2	
SFAW	 K		  1				    56	 32		  7	 3	
	 1						      74	 19	 1	 3	 3	
	 2	 1	 1	 3			   78	 6	 2	 3	 7	
	 3	 7	 1	 3	 1		  40	 35	 1	 2	 8			   2	
	 4	 3	 1	 3			   78	 2	 1	 2	 9		  1	 1	
Saxon	 K						      38	 54		  8	
	 1		  1				    69	 15	 1	 11	 2	
	 2			   1			   50	 28	 3	 11			   5		  2	
	 3	 1		  1			   39	 39	 1	 14			   3			   1
	 4		  1	 1			   53	 18	 2	 17		  3	 1	 1	 4	
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To return to the issue of the expression of Conceptual knowledge, 
most Conceptual Problems appeared in student materials, and most 
Conceptual Questions and Statements appeared in teacher materi-
als.7 But significantly, Statements appeared more frequently in teacher 
materials in most curriculum-by-grade cases, and this was particu-
larly true for Conceptual Statements. In 6 of the 11 textbook-grades 
that included Conceptual Statements, all such Statements appeared 
in teacher materials. Overall, Conceptual Statements appeared twice 
as frequently in teacher materials. Placing so much conceptual con-
tent in teacher materials means that students’ access to that content 
depends on their teachers’ expression of those ideas. Should teach-
ers choose not to (and we have seen reasons why some may not ap-
preciate the importance of conceptual content), their students would 
likely have no access to it—at least in their classrooms. This danger 
is exacerbated by the large number of Conceptual elements (n = 35) 
and their generally sparse appearance overall (Table 2). 

That the curricular materials typically did not provide students 
with direct access to statements of conceptual principles is not to sug-
gest that simply stating those principles would be sufficient support 

7 This result reflects, at least in part, how we defined and coded Problems and Questions. 

Figure 2. Area measurement Problems, Questions, and Statements (combined) in 
teacher and student materials by curricula and grade. 
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for students to learn them. From a curricular perspective, their place-
ment primarily in teacher materials seems relevant for students’ op-
portunity to learn—hence our report of this result. From a broader 
learning perspective, we recognize that how teachers see and draw 
students’ attention to conceptual principles that are implicit in their 
reasoning about area also can have a significant, if not greater impact 
on students’ learning. 

The sequence of area measurement procedures and related concepts 

We now examine the specific procedures and concepts emphasized 
in each series’ presentation of area. This analysis highlights specific 
problems in how conceptual content related to key procedures was 
introduced. Generally, we found a sequence of four conceptually re-
lated groups of procedures in all curricula, with modest differences 
in timing and focus. The first group consisted of procedures involv-
ing only the qualitative judgment of relative size among objects and 
shapes (“pre-measurement” in our knowledge framework). The sec-
ond involved procedures for physically (or mentally) placing and 
enumerating units to generate area measures. The third group con-
cerned the construction, interpretation, and enumeration of rectangu-
lar arrays—that provide conceptual grounding for area formulas, and 
the fourth included formulas for basic geometric shapes (e.g., rectan-
gles, squares, parallelograms, and triangles) that generate area mea-
sures from length measures. 

Table 4 presents the relative frequency of each procedural group in 
each series and grade. The Other column lists the percentage of pro-
cedural content not included in the four groups. As before, cells with 
zero values have been left blank. 

The four groups described collectively accounted for more than 
70% of the procedural content at all grades and curricula, except for 
EM grade 4.8 In 10 of the 15 textbook grades, they accounted for more 
than 80% of all procedural content. So not only did these series focus 

8 In grades K through 2, the most frequent “other” procedure was Partition in Half with Sup-
port; it accounted for more than half of all “other” procedural codes for those grades in 
all curricula. In grades 3 and 4, the most common “other” procedures involved reading 
and making circle graphs and spinners (in probability lessons), solving problems involv-
ing sums and differences of area, along with Partition In Half with Support. 
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heavily on procedures, there was a strong shared structure among 
the specific procedures they presented. We now describe those pro-
cedures in more detail, explain how they are conceptually related, 
and discuss the conceptual content that was intimately related to 
each group. 

Qualitative judgment 

As we also found for length (Smith et al., 2013), all curricula began 
their presentation of area by asking students to make judgments of 
the relative size of 2D shapes. From early work to order shapes and 
objects by size, qualitative judgment extended in later grades to par-
titioning shapes into equal sized parts. As Table 4 shows, Qualita-
tive Judgment procedures appeared in the grades in all series; they 
were significant content in Saxon at every grade and in SFAW for all 
but grade 4. Visual comparative judgment, the procedure for judging 
relative size of objects or shapes, accounted for more than 50% of all 
procedural content in grades K and 1 in all three series and in grade 
2, for significant content in SFAW (55%) and Saxon (27%). All series 

Table 4. The distribution of four groups of area procedures by curriculum and grade. 

                                                                               Procedural Group 

Curr 	 Gr	  Qual. Judgment 	 Units 	 Arrays 	 Formulas 	 Other 

EM	 K	 100	
	 1	 52.9	 21.4			   25.7
	 2	 21.0	 63.6	 0.6		  14.8
	 3	 18.8	 31.6	 29.4	 2.7	 17.5
	 4	 9.5	 21.9	 13.0	 16.5	 39.1
SFAW	 K	 61.5	 28.0			   10.5
	 1	 85.7	 7.9			   6.3
	 2	 82.3	 13.2			   4.5
	 3	 32.3	 31.0	 5.2	 3.8	 27.9
	 4	 7.4	 11.2	 34.7	 24.3	 22.5
Saxon	 K	 63.1	 36.9	
	 1	 76.3	 13.9			   9.7
	 2	 52.9	 20.2	 15.6	 2.4	 9.0
	 3	 40.1	 23.7	 10.4	 5.1	 20.6
	 4	 45.9	 5.5	 21.3	 12.4	 14.8
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frequently asked students to partition shapes into two equal parts 
(Partition in half),9 but gave only modest attention to partitioning into 
three and six parts in later grades. SFAW and Saxon introduced Par-
tition in half in grade K; all three series addressed it in grade 1; and 
SFAW and Saxon continued to do so in grades 2 and 3. All series pre-
sented Visual comparative judgment and Partition in half primarily 
in Problems and Questions. 

The ability to make qualitative judgments of relative size (order 
and equality) depends on understanding that the area of shapes and 
objects does not change when they are moved or divided into parts. 
If, for example, students think that changing the orientation of shapes 
(e.g., rotating a rectangle from a horizontal to a vertical position) can 
change their 2D size relative to other shapes, those students’ ability 
to order those shapes from least to greatest area becomes unstable. 
We coded for Conservation under motion and Conservation under 
partitioning and found these conceptual principles were rarely men-
tioned. Saxon addressed only the latter and did so once (in grade 4); 
SFAW mentioned both (four total instances); EM mentioned both but 
focused on Conservation under partitioning (16 of its 18 instances). 
Strikingly, all of EM’s 18 instances appeared in grades 3 and 4, well 
after students were asked to make judgments of relative size. As we 
have indicated earlier, noting the number and placement of state-
ments of these principles is not a suggestion that more frequent, 
timely, and direct statements would be sufficient to support students’ 
learning, only that their frequency and placement in the examined 
materials did not seem optimal.  

Placing and enumerating area units 

Procedures for placing and/or enumerating physical units, nonstan-
dard and standard, were numerous and diverse. This group included 
procedures for covering regions with space-filling units, without 
counting them (covering only) and procedures for covering regions 

9 The curricula often provided visual support for partitioning in half via folding actions and 
dotted partition lines, especially in the early grades. We separated instances where sup-
port was provided from those where it was not and only counted the latter in this proce-
dural group, as only those instances required qualitative judgments of area. 
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with replicas of the same unit and counting them.10 Due to the concep-
tual importance of unit iteration in measurement, we distinguished 
instances where a sufficient supply of units was provided from those 
where the supply was insufficient, as only the latter requires iteration. 
This group also included procedures for drawing regions of a given 
area by placing units on paper and tracing a boundary around them 
and procedures for counting the number of square units enclosed in 
regions presented on square grids. Finally, the group included pro-
cedures for estimating the area of shapes, since research has shown 
that estimation often involves selecting and mentally iterating units 
(Joram, Subrahmanyam, & Gelman, 1998). 

Given their number and diversity, it is not surprising that Units 
procedures appeared in every textbook series and grade (except for 
EM, grade K). SFAW and Saxon presented Unit procedures in grade 
K, primarily covering procedures. By grade 1, all three series did so, 
sometimes with different objects, sometimes with the same but with 
frequency (< 10% of all procedures). But only EM (in grade 2) ad-
dressed covering regions with insufficient units. Measuring area by 
covering and counting appeared in grades 1 and 2, with modest fre-
quency. Drawing regions of some given area was infrequent in all 
series and grades (< 2% of all procedures). Counting units enclosed 
in regions drawn on grids was more common, especially at grades 2 
and 3.11 All three series worked on estimation in either grade 2 or 3 (> 
10% of all procedures). Not surprisingly, Units procedures were pri-
marily presented in Problems in all curricula. 

In our framework, two different types of Conceptual knowledge 
underlie and justify Units procedures. Three were definitional in na-
ture—Definition of area, Meaning of area measure, and Area is not 
perimeter; five others expressed properties of area units—No ruler 
for area, Area measure requires area units, Standard and non-stan-
dard units, Unit iteration, and Unit-measure compensation. Our ini-
tial definition of area was, “Area quantifies the space enclosed in a 
region.” But this definition, which presents area as a continuous quan-
tity, did not fit well with some definitions in the textbooks that pre-
sented area as discrete quantity (e.g., area is the number of square 

10 We distinguished procedures for covering with different units (e.g., all pattern blocks) 
from procedures for covering with the same unit. 

11 This work expanded to include regions with fractional units, primarily in grade 4. 
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units that fill the space). Given this mismatch, we added a separate 
knowledge element, Meaning of area measure, to capture this dis-
crete conception—area measures as counts of square units enclosed. 
We considered Area is not perimeter as definitional because it distin-
guished two attributes of simple closed curves—the space enclosed 
and the length of the boundary—that many students struggle to hold 
separate. Table 5 shows the frequency of these knowledge elements 
by series and grade. 

All three series defined area in grade 2; EM and SFAW contin-
ued to do so in grades 3 and 4. They primarily addressed the Mean-
ing of area measure in grades 3 and 4, after defining area in continu-
ous terms. The continuous nature of our definition fit well with EM’s 
and Saxon’s presentations. SFAW’s definitions often mixed continu-
ous and discrete elements (e.g., “the area of the shape is the number 
of square units inside the shape”). Table 5 shows two important pat-
terns in how these curriculum materials defined area: All began with 
a continuous definition, and most definitional content appeared after 
students began to cover and count area units. EM and SFAW explicitly 
distinguished perimeter and area; Saxon never addressed the issue. 

In contrast, the presentation of the conceptual properties of area 
units was quite sparse in all three series. Table 6 presents the fre-
quencies of these five elements; only SFAW presented this content in 
grade K. 

Although research has shown that some students think that rul-
ers can be used to measure area (Lehrer et al., 1998), no textbook 
explicitly stated that no ruler-like tool exists for measuring area. 
Of the other four elements, Saxon addressed only two (Unit itera-
tion and Unit-measure compensation) but not at grade 2 when area 
was defined. EM and SFAW addressed each of the four but infre-
quently and for SFAW, generally not in grade 2. SFAW addressed 

Table 5. Distribution of definitional knowledge elements by curriculum and grade. 

Knowledge Element                               EM                              Saxon                            SFAW 

	 1	 2	 3	 4	 1	 2	 3	 4	 1	 2	 3	 4

Definition of Area 		  5	 9	 8		  2				    5	 6	 2
Meaning of Area Measure 	 1		  2	 2			   3	 1			   5	 7
Area is not Perimeter 		  4	 1	 1					     1	 2	 6	 2

Note. No instances of any element appeared in grade K in any curriculum. 
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Unit iteration in grades K and 1, before area was defined. Overall, 11 
of the 13 instances of Unit iteration were Statements, five of which 
were Partial Statements that reminded students to avoid gaps or 
overlaps between units. SFAW mentioned Unit-measure compen-
sation four times in five grades, when it did so 73 times in its pre-
sentation of length in grades K–3 (Smith et al., 2013). EM’s atten-
tion to these ideas was most frequent and distributed across grades; 
it addressed three of four elements in grade 2 when area was de-
fined. Consistent with the general pattern reported, Statements of 
area properties appeared far more often in teacher materials (n = 19) 
than student materials (n = 6). 

These results show limited attention to the conceptual properties 
of area units in all three textbook series. The attention that was given 
was not located in grade 2 when area was defined; it appeared either 
earlier or later. So consideration of the meaning of area was separated 
from consideration of the properties of area units. Generally speak-
ing, students’ access to statements of the properties of area units was 
indirect; it depended largely on teachers’ voicing those properties. 
Given their importance, attention to Unit iteration and Unit-measure 
compensation was very limited. 

Arrays 

Attention to the geometric properties of rectangular arrays can sup-
port students’ understanding of area formulas, as well as the op-
eration of multiplication. We identified four procedures, one each 
for making, interpreting, and enumerating arrays and one for 

Table 6. Distribution of conceptual elements for area units by curriculum and grade. 

Knowledge Element                                                EM                           Saxon                          SFAW 

	 1	 2	 3	 4	 1	 2	 3	 4	 K	 1	 2	 3	 4

No Ruler for Area 
Area Measure Requires Area Units		  3	 2	 3							       3	 1	 2
Standard vs. Nonstandard Units	 1	 2										          1	 1
Unit Iteration	  1	 2	 2	 3			   2		  2	 1	
Unit-Measure Compensation	 1		  1	 2	 3				    1			   3	
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determining the area of rectangles from the row and column struc-
ture.12 All three series included procedures for dealing with arrays, 
but with different timing. Saxon introduced them early, in grade 2; 
EM devoted almost 30% of its grade 3 procedural content to arrays; 
SFAW did not address the topic seriously until grade 4. Each made, 
interpreted, and enumerated arrays of contiguous elements (typically 
squares) in support of area measurement, as well as noncontiguous el-
ements (e.g., dots) that related more directly to whole number mul-
tiplication, with roughly equal attention to each type. EM gave the 
greatest attention to using the row and column structure of rectan-
gles, but still infrequently (≤ 3% of all procedures at any grade); Saxon 
never did. All three series worked with arrays, primarily in grades 
3 and 4, but gave very little attention to the composite unit structure 
of those arrays. 

Three Conceptual elements are directly related to array procedures, 
Definition of arrays, Arrays and computation, and Spatial structur-
ing of rectangles. The first defined arrays as patterns of objects orga-
nized in rows and columns. The second concerned how the row and 
column structure supports enumeration by skip-counting or multi-
plication. Informed by Battista and colleagues’ (1998) analysis, Spatial 
structuring stated that rectangles can be filled with iterated compos-
ite units, where the number of squares in rows and columns match 
the number of length units of the respective sides, thus explicitly link-
ing length units and area units. All three curricula defined arrays, but 
only EM located its four definitions in grade 3 when arrays were in-
troduced. Saxon and SFAW placed 20 of their 21 definitions in grade 
4 after work on arrays began. Arrays and computation received little 
attention. EM and SFAW addressed it in the grade that emphasized 
work on arrays; Saxon never did. 

Spatial structuring of rectangles appeared only three times across 
textbook series and grades, twice in EM (once each in grades 3 and 4) 
and once in SFAW (grade 4). Both EM instances were Statements (one 
Full and one Partial) accompanied by illustrations of rectangles that 
were partially filled with square units. One diagram showed a single 
square unit falling into place in a partially filled row in a rectangular 

12 We placed this procedure in the arrays group because it involved reading the geomet-
ric structure of rectangular arrays and eventually counting of squares, not multiplying 
lengths. 
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array (Figure 3). The text directed teachers to explain that finding the 
area of the floor involved deciding how many rows of squares were 
needed. This Statement, with the accompanying diagram, combined 
the filling of rectangular space with single units, rows as composite 
units, area as the measure of that filled space, and implicitly at least, 
how rows and columns of squares related to side lengths. The sin-
gularity of this example indicates the challenge that curriculum de-
velopers face in attempting to represent the motion of area units in 
print materials. The one SFAW instance in grade 4, a Teacher State-
ment, drew students’ attention to the correspondence between the 
number of squares in a rectangle’s rows and columns and the length 
of its sides, but was silent on the iteration of composite units to fill 
the space. 

Overall, conceptual support for understanding arrays and linking 
them to area measurement was limited. Two series defined arrays 
after students were asked to draw and interpret them—continuing 
the pattern of late appearance of conceptual content relative to pro-
cedures. Attention to the linkage between array structure and com-
putation was limited and late, and support for visualizing the struc-
ture of rectangular space in composite units was virtually nonexistent. 

Area formulas 

Procedures for computing area measures from measures of length 
first appeared in grade 3 in all three series and became significant in 

Figure 3. An example of spatial structuring of rectangles, EM, grade 3, Teacher 
Lesson Guide, p. 213). 
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grade 4, when all three devoted more than 10% of their procedural 
content to work with formulas. The exception was Saxon’s brief in-
troduction of the formula for rectangles in grade 2. All curricula gave 
the greatest attention to the Formula for rectangles; it accounted for 
80% (412 of 514) of all formula procedures. The Formula for squares 
received very modest attention in all curricula in grades 3 and 4. Only 
EM developed formulas for other shapes (parallelograms, right trian-
gles, and general triangles) and began work on the area of circles by 
approximation in grade 4. Across textbooks and grades, the Formula 
for rectangles was frequently stated but was even more frequently ex-
pressed in Problems and Questions. By grade 4, numerous Problems 
were multistep, where the computation of rectangular area served 
some other mathematical purpose. 

Given the extensive evidence that students struggle to understand 
how the multiplication of lengths produces area measures (e.g., Cle-
ments & Sarama, 2009; Hino, 2002; Zacharos, 2006), we separately 
examined each grade 3 and 4 lesson that introduced the area for-
mula for rectangles. All of those lessons moved quickly from count-
ing squares, in individual or composite units, to multiplying lengths—
with the objectives of establishing that multiplying lengths produces 
the same result as counting squares and the former is more effi-
cient. No lesson provided a rationale for why the multiplication of 
length and width produces a count of square units. In particular, 
none pointed to the one-to-one correspondence between the num-
ber of length units that made up the rectangle’s length and the num-
ber of squares in each row. 

None of the three textbook series seriously addressed the concep-
tual issues that underlie how the multiplication of lengths produces 
area measures. The Spatial structuring of rectangles was scarcely 
mentioned. No series explicitly addressed the fact that the multipli-
cation of two lengths produces a new quantity (an area), not another 
length. We also extended this search to Multiplicative composition 
involving area—that the multiplicative composition of an area and 
any other quantity produces a new quantity (e.g., volume) that is 
not an area. Again, we found no instances. Overall, conceptual sup-
port for understanding why the formulas for area “work” was virtu-
ally nonexistent. 
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Curricular attention to learning challenges 

Our last research question asked how the curricula addressed the 
five main challenges that research has shown students face in learn-
ing to measure area: (a) conservation of area as a stable quantity, (b) 
understanding area units, (c) spatially structuring rectangular arrays, 
(d) understanding the multiplicative composition of area measures 
from lengths, and (e) distinguishing area from perimeter. Here we re-
view our results concerning the frequency and placement of Concep-
tual knowledge elements that explicitly address these issues. Where 
work with related procedures (e.g., covering regions) could provide 
relevant experience for students in grapple with those challenges, the 
impact of such experiences is difficult to assess. Existing research evi-
dence discussed earlier suggests that students can learn to apply pro-
cedures without knowing why they work. 

For the first challenge, all curricula asked students in the primary 
grades to reason about the relative “size” of shapes and objects, but 
did not define “size.” Area was explicitly defined as a continuous 
quantity in grade 2 in all three series, but the stability of that quan-
tity under transformations was not addressed frequently or when area 
was defined. The two series (EM and SFAW) that addressed conser-
vation under motion and partitioning did so in grades 3 and 4, well 
after area was defined and area units were deployed. 

For the second challenge, two Conceptual elements, Unit iteration 
and Unit-measure compensation, express most of the key properties 
of area units. Unit iteration combined three key properties: (a) Units 
must be identical, (b) their placement must exhaust the space to be 
measured, and (c) they cannot overlap the boundary or leave gaps. 
Given its importance, Unit iteration appeared infrequently—less of-
ten for area than for length (Smith et al., 2013), and as with length, of-
ten with the single focus of avoiding gaps and overlaps. Unit-measure 
compensation appeared far less often for area than it did for length 
(n = 11 vs. n = 104 total instances in all series) and often well after stu-
dents were asked to cover and count with units. Overall, the concep-
tual content that addressed the nature of area units was sparse and 
located after students began to cover and count physical units. 

Third, where the ability to impose the regular row-by-column 
structure of square units onto rectangular space is central to under-
standing area measurement (Battista et al., 1998), we found weak 
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attention to this challenge. Two-dimensional arrays were defined in 
all three series, but with little attention to either the iteration of com-
posite units (rows or columns) or the relationship between the side 
lengths and the number of squares in a row (or column). So little 
support was provided to develop the imagery of filling rectangular 
space with rows (or columns) of squares. At the end of our analysis, 
we also searched for situations that asked students to complete par-
tially filled-arrays, since these could also support the development 
of students’ abilities to visualize completed arrays. But we found no 
instances. Overall, these curriculum materials provided little sup-
port for developing students’ cognitive ability to structure rectangu-
lar space. Fourth, there was no curricular attention to Multiplicative 
composition in producing area measures from lengths. That principle 
was never mentioned, and activities that could draw students’ atten-
tion to the relationship between length and area units were not part 
of lessons introducing the area formula of rectangles. 

With the last challenge, EM and SFAW gave some attention to dis-
tinguishing area from perimeter in two-dimensional shapes. Both ad-
dressed the issue with Statements or Problems in grade 2 close to 
where they defined area and again in grades 3 and 4. Saxon did not 
address the issue at any grade. Whether the few statements that dis-
tinguished these quantities and the tasks that called on that distinc-
tion constitute sufficient support for students is unclear. But in con-
trast to other challenges discussed, EM and SFAW authors did make 
explicit efforts to address this challenge. 

Finally and more generally, we found it striking that the three se-
ries never drew teachers’ or students’ attention to the strong set of 
shared conceptual principles that underlie both length and area mea-
surement. When key conceptual principles (e.g., Unit iteration and 
Unit-measure compensation) were discussed, they appeared de novo, 
with no reference to their identical role in structuring length measure-
ment. Put somewhat differently, area measurement was presented as 
if it had no relation to length measurement (or the measure of any 
other quantity). 

In sum, explicit and timely support for addressing key challenges 
for learning area measurement was evident on for one issue (distin-
guishing area from perimeter) and there only in two series. In some 
cases, those challenges did not seem to have drawn authors’ atten-
tion; in others, the attention was given but late relative to related work 
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with procedures. Key Conceptual elements that directly addressed 
these issues appeared infrequently and without connection to their 
role in length measurement. 

Discussion 

These results show that all three textbook series devoted quite modest 
attention to area measurement through grade 4, as generally, fewer 
than 5% of each year’s lessons directly addressed the topic. All three 
focused very strongly on procedures, even more so than for length 
(Smith et al., 2013). They presented a similar sequence of procedures 
and related concepts that began with qualitative comparison, fol-
lowed by covering shapes with area units and counting them, ex-
ploring 2D arrays, and finally introducing formulas for different geo-
metric shapes, beginning with rectangles. In general, these materials 
did not sufficiently articulate the conceptual knowledge that would 
support students’ efforts to work through known learning challenges. 
There was weak attention to the conservation of area, the properties of 
area units, and to distinguishing perimeter and area, and essentially 
no support for developing students’ ability to structure rectangular 
space or understand area formulas. When conceptual principles rel-
evant to these issues were expressed, they typically appeared well af-
ter students were expected to use the procedures they justify. State-
ments of conceptual principles were often left to teachers to express 
rather than made directly to students. No series explicitly linked to 
and built on prior work on length measurement to explore and de-
velop area measurement. 

These limitations correlate well with the research showing that 
U.S. students’ understanding of area is limited to routine tasks and 
conceptually shallow (Blume et al., 2007). Although curricular defi-
cits are not the single cause of weak learning, the observed patterns of 
sparse and late attention to conceptual principles and their alignment 
to known learning challenges suggests that curricular content likely 
contributes to the problem of weak learning of area measurement—
directly via limited student OTL and indirectly by failing to educate 
and direct teachers. This stance toward the contribution of curricu-
lar content to student learning aligns with the positions expressed by 
other researchers who have carried out similar analyses on different 
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mathematical topics (Charalambous et al., 2010; Ding & Li, 2010; Li, 
Deng, Capraro, & Capraro, 2008). However, the evidence presented in 
this study remains correlational—if quite consistently so—and there-
fore circumstantial. More compelling evidence testing for curricu-
lar effects on student learning is needed. Such evidence could come 
from studies comparing the character of students’ knowledge and 
understanding after experience with quite different curricular pre-
sentations of area and its measure. Unfortunately, it seems unlikely 
that such studies will be possible in the United States, due to the cur-
rent absence of fundamentally different presentations of this content. 

Is this problem limited to the United States? 

Given the evidence indicating that the content of one country’s ele-
mentary mathematics textbooks contributes to its students’ difficulties 
learning area measurement, one important question concerns the gen-
erality of the linkage. Is this linkage specific to the U.S. context, per-
haps because of particularities of its curriculum materials, or is there 
reason to think that curriculum materials may contribute to students’ 
difficulties with area measurement in other countries as well? At pres-
ent, we have only a partial answer to this question. We know that text-
book content shapes the mathematics lessons that teachers present to 
their students in many countries other than the United States, whether 
they follow their textbooks to the letter or design and use parallel re-
placement materials (Hino, 2002; Kaur, 2014). We also know that re-
searchers in numerous countries have identified weaknesses in their 
students’ understanding of area, especially with respect to computa-
tional formulas (Nunes et al., 1993; Owens & Outhred, 1998; Zacha-
ros, 2006). But we know little about the nature of curricular presen-
tation of area measurement in different countries and how they align 
with their students’ learning successes and struggles. 

Where there is evidence that area is introduced at different ages/
grades in different countries (e.g., in grade 4 in Japan [Hino, 2002]), 
the central question of how area measurement is presented, partic-
ularly with respect to common learning challenges, remains open. 
Given the wide recognition that area is an important topic in ele-
mentary mathematics, some cross-national curricular analysis is war-
ranted. Since research has shown that many interrelated ideas are in-
volved in understanding area measurement, we suggest that such 
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studies be conducted in a relatively fine-grained manner and hope 
our knowledge and textual frameworks may be useful resources for 
such work. As other have argued (Li et al., 2008), these curricular pre-
sentations could be compared to national profiles of student perfor-
mance in those countries to assess the evidence that curricular con-
tent aligns with those profiles (or not). 

Implications for curriculum design 

These results have implications for the design of elementary mathe-
matics curricula that could more effectively support the teaching and 
learning of area measurement. First, although the optimal level of cur-
ricular attention to conceptual principles is difficult to establish, the 
level of attention in the materials we analyzed is inadequate, in two 
important respects. Important concepts (e.g., Unit iteration, Spatial 
structuring, and Multiplicative composition) were presented so infre-
quently that they may be effectively invisible in teachers’ enacted les-
sons and students’ experiences. Their infrequent expression would 
be exacerbated in the classrooms of teachers who do not understand 
area measurement well themselves, as they would not appreciate the 
role that conceptual knowledge plays in justifying and constraining 
procedures. They would certainly not be in a position to state and ex-
plain their importance to students. 

In addition, when conceptual principles (e.g., Conservation under 
partitioning) are addressed well after the procedures justified by those 
principles are introduced and used, connections between conceptual 
and procedural knowledge are more difficult to grasp, by students 
and teachers. This pattern of “curricular distance” seems contrary to 
the position that clear linkages between procedural and conceptual 
knowledge are important in teaching and learning mathematics (Ba-
roody et al., 2007; National Research Council, 2001). For example, in-
stead of introducing the procedure for covering regions with nonstan-
dard units first and Unit iteration later, the task of placing area units 
to cover 2D shapes should be seen as the best context for considering 
how identical units, exhausting space, and respect for boundaries in-
form “correct” placement. Addressing relevant conceptual principles 
when procedures are first introduced could support the productive 
disposition toward mathematics generally that procedures can and 
should be justified. 
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Second, the conceptual separation of area measurement from 
length measurement in curricular materials should be reconsidered, 
because it is mathematically problematic and educationally harmful. 
The absence of explicit connections between the two suggests that 
they are mathematically unrelated. Failing to highlight the shared 
conceptual core also means that teachers lose the opportunity to aug-
ment their own understandings and are also much less likely to build 
on students’ prior understandings of length measure in their area 
lessons. Positive transfer from length to area measure is much more 
likely if curricular materials draw explicit attention to the tight con-
ceptual connections between them. In this way, students are more 
likely to learn something about measurement per se, over and above 
learning how to measure a particular spatial quantity. 

Third, more attention should be given to supporting the develop-
ment of students’ visualization skills. Examining the motion of units, 
individual and composite, and of line segments sweeping through 
2D space may help students to spatially structure rectangular space 
and understand how the multiplication of lengths produces area mea-
sures. When we looked separately for explicit representations of mo-
tion in the textbooks, we found only a few isolated attempts. Here 
digital materials have promise as motion can be represented directly. 
But even within the confines of the paper medium, greater curricu-
lar attention can and should be given to support students’ 2D visu-
alization of space and space filling. Students could be asked to iter-
ate rows or columns as composite units and complete partially filled 
rectangular arrays (see, e.g., Battista, 2012; Outhred & Mitchelmore, 
2000). More attention could also be given to relating square area units 
to length units. As one example, EM depicted a paint roller “sweeping 
out” rectangular space in its Teacher Reference Manual for grades 3 to 5 
but never included this representation in their teacher lesson guides 
or student materials. Since there is some evidence that sweeping line 
segments through 2D space can support students’ understanding of 
how multiplication generates area measures (Kobiela, Lehrer, & Pfaff, 
2010), more curricular attention to this relationship is warranted. 

Limitations 

One clear limitation of this study is its sample of three textbook series 
used in one country. In the United States, where so many different 
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textbooks are used (Stein et al., 2007), nontrivial differences are pres-
ent among at least some of them (Stein & Kim, 2009). Where the anal-
ysis could have included other texts, from the United States or other 
English-speaking countries, our analysis was quite costly in time and 
human effort. To address this limitation to some degree, we analyzed 
some other US elementary textbooks in a more cursory manner and 
found many more similarities than differences in content and struc-
ture. That said, these additional efforts do not remove the need to ex-
amine the curriculum/learning relationship in an international frame-
work; they reinforce it. 

Second, this analysis and the analytic frame that produced it sheds 
little light on the crucial issue of the cognitive demand of tasks re-
lated to area measurement. Where we collectively found that most of 
our coded Problems appeared most often to be exercises, not prob-
lems, for students at that grade level, we could not find principled 
ground for declaring that any given task was (or was not) “prob-
lematic” for students who were asked to solve it. What our analytic 
method revealed was simply whether an appropriate solution pro-
cedure had been introduced prior to the posing of the task and how 
much prior. We acknowledge that the problem of assessing the cog-
nitive demand of mathematical tasks across students is challenging, 
given that “problems” are relationships between tasks and students’ 
orientations and capabilities, and we see evidence of that challenge 
in other curricular analyses. For example, Stein and Kim (2009) have 
reported differences in cognitive demand in mathematical tasks in 
two U.S. elementary mathematics curricula, one of which was EM, 
but they did not describe their coding methods in any detail. 

Third, it is worth restating that curricular analyses cannot replace 
studies of how area lessons are actually enacted by teachers, as the 
“enacted curriculum” more directly shapes students’ experience and 
learning. For that reason, careful studies of how elementary teachers 
present and develop the topic of area measurement are needed (with 
complementary attention to how they understand it). One important 
focus for studies of instructional practice is how teachers present (ex-
press, delete, and/or supplement) the conceptual content present in 
their written lessons, including what they attend to in their curricu-
lum materials, how they interpret what they notice, and how they 
make subsequent instructional decisions (Brown & Edelson, 2003; 
Choppin, 2011). 
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From the perspective of the enacted curriculum, a challenge that 
could be brought against this analysis is that teachers may address 
deficits in their assigned textbooks when they teach their area lessons. 
If true, the importance of improving curricular content becomes less 
compelling. But this scenario seems unlikely on a wide scale. Some 
teachers with strong understanding the content and their students’ 
learning may be in a position to search our and use high-quality sup-
plementary materials. But many elementary teachers, in the United 
States as well as other countries, lack both the knowledge and the time 
to carry out such repairs, even if high-quality supplementary mate-
rials were available. Most materials available on the Internet and ac-
cessed by U.S. teachers provide only practice on routine tasks. Ad-
dressing the problem of teaching and learning area measurement 
effectively will likely require both enriched curriculum materials and 
support for elementary teachers to understand and use those mate-
rials well. 
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Appendix: Area measurement knowledge elements 

Conceptual Knowledge (35 elements) 

General properties of quantities & their measures 

Positive values. Area takes on only positive values (> 0). 
Single values. Given an area unit, all regions have a single (positive) area measure. 
Greater measure means larger. The greater the area measure, the larger the region. 
Order/equality: If one region is contained within another or can be transformed by 

partitioning and/or moving to be contained within another, the area of the first 
region is smaller than the area of the second. If the two regions exactly coincide, 
their areas are equal. 

Conservation under partitioning. The area of a region is invariant under partitioning 
into subset regions. Area is invariant under different choices of area units. 

Conservation under motion. Area is invariant under changes in location and 
orientation of the region. 

Transitivity. The comparison of areas is transitive. For example, if area A is greater 
than area B, and area B is greater than area C, then area A is greater than area 
C. (also true for = , <, ≥, ≤.) 

Trichotomy. Given any two areas, the first is greater than the second, the second is 
greater than the first, or they are equal. 

Unit conversion. One unit of area is equivalent to some number of any other different 
units of area. 

Unit-measure compensation. Larger units of area produce smaller measures of area; 
smaller units of area produce larger measures. 

Unit iteration. Measures of area are produced by iterating an area unit (repeatedly 
adjoining) to exhaust the region and then enumerating the number of iterations 
(e.g., by counting). Iterated units may not overlap or leave gaps. 

Additive composition. Two areas combined additively make another area (e.g., the 
sum of two areas is a larger area and the difference of two areas is a smaller 
area). 

Numerical sums/differences. The sum (or difference) of two area measures can be 
completed numerically if and only if the addend areas (areas to be subtracted) 
have the same unit of measure or the unit of measure of one area is converted 
to the other. 

Multiplicative composition. An area combined multiplicatively with any other 
quantity (including another area) makes a quantity that is not an area. An area 
multiplicatively combined with a length makes a volume. 

Expressing one area in terms of another. Any area can be expressed as a number of 
units of another area. 

Multiplicative comparison. An area compared multiplicatively with another area 
makes a ratio, which is a scalar (a pure number, not a measure). 
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Scalar product. The product of a scalar and an area measure is another area measure. 
Conservation of order relations under positive scalar multiplication. The order of two or 

more areas is invariant under multiplication by any positive scalar. 
Equal area does not imply congruence. Two regions that have equal areas are not 

necessarily congruent. 
Numerical quotients. The numerical quotient of two area measures is a scalar or 

“pure” number. 
Measurement involves error. All measures of area produced by humans, either directly 

or via computation from lengths, include some error. 

Measurement of area specifically 

Meaning/definition of area. Area quantifies the space enclosed in a region. 
Varieties of regions. All regions have area, whether they are simple closed curves, 

closed curves with “cut-outs,” or closed curves with intersections. 
Meaning of area measure. A measure of area is the number of area units that additively 

compose that area. 
Area measure requires units of area. Only units of area, standard or non-standard, 

produce measures of area. 
Standard and nonstandard units of area. Area can be measured in either standard 

or nonstandard units. Where non-standard units differ across objects and 
cultures, standard units are fixed and accepted across cultures and situations. 
Specifically, a standard area unit has two defining characteristics: (1) it is a 
square, whose (2) side length is a standard unit of length. 

No ruler for area. There is no tool, analogous to a ruler, which directly measures area. 
Tools for measuring area. There are tools that support the evaluation of area though 

the area value cannot be “read off” the tool in a manner analogous to rulers. 
Transparent grids can be superimposed on regions and the number of whole 
and fractional units that cover the region can be counted and summed. 

Dynamic representations. Area can be represented dynamically by creating two line 
segments with a common endpoint and independently varying the locations 
of the other endpoints. Measurement of area of specific shapes 

Spatial structure of rectangles. The space enclosed in any rectangle is composed of a 
grid of iterated units that can be seen either as a series of rows equal in length 
to one side of the rectangle or a series of columns equal in length to the adjacent 
side. 

Definition of (rectangular) arrays. An array is a set of objects or units arranged in a 
rectangular pattern, that is, into horizontal rows with equal numbers in each 
row. The elements in an array may be contiguous or not. 

Arrays and computation. The rectangular structure of arrays supports the 
enumeration of the array in ways that avoid counting all elements one at a 
time, including skip-counting by the number of elements in a row or column 
and multiplying the number of rows by the number of elements in each row. 
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Triangles of equal area. All triangles with the same base length and height have the 
same area. The height of a triangle is the perpendicular distance from the base 
(any side) to the opposite vertex. 

The composition of regular polygons. Regular polygons can be decomposed into N 
isosceles triangles whose vertices are the two endpoints of a side and the center 
of the polygon. 

Area and probability with spinners. Given a circular spinner composed of two or more 
sectors, the relative frequency/likelihood of an outcome is dependent on the 
areas of those sectors. The greater the area, the greater the relative frequency/
likelihood. 

Procedural Knowledge (50 elements) 

Pre-measurement of area 

Cover region with different shapes. Use different shapes to cover a region without 
leaving gaps or overlapping the boundary of the region. The collection must 
include two or more different shapes. Options: The region has no internal 
partitioning lines (no support) or partitioning lines inside the region match at 
least some of the shapes (support provided). 

Cover region with same shape. Use a collection of the same shapes to cover a region 
without leaving gaps or overlapping the boundary of the region. Same options 
as just above. 

Make visual comparative judgment. Given two or more regions, make a visual 
comparative judgment (judgment by sight) about which regions are congruent 
or which region has the greatest, least, equal, or approximately equal area. 

Comparison by superposition. To compare the areas of two regions, make a physical 
copy of one region (e.g., on paper), superimpose it on another, and make a 
judgment about which is greater, lesser, or equal based on the visible excess. 

Indirect comparison. To compare the areas of two regions, find a third region whose 
area is smaller than (or equal to) the first (by either direct or visual comparison) 
and compare it to the second (by direct or visual comparison). If the area of the 
third region is larger than (or equal to) the area of the second, the first region 
has greater (or equal) area than the second. 

Draw a region whose area is larger or smaller than another. Given one region, draw 
another that completely contains (or is contained by) the first or that is larger 
or smaller by visual judgment. Numerical measurement of area 

Measure area by covering with sufficient non-standard units. Select a physical object 
whose area is less than the region’s area and can “cover.” Cover the region with 
those objects. Count the number of objects; the area is the number of objects. 

Measure area by covering without sufficient non-standard units. Select a physical object 
whose area is less than the region’s area and can “cover.” Cover part of the 
region with a series of those objects (until they are used up) and count them. 
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Mark the part of the region covered and number of objects used. Repeat in the 
uncovered part of the region until the entire region has been covered. Count 
the total number of objects that cover all parts of the region. 

Make or draw a region of × nonstandard units. Place × nonstandard units of area 
adjacent to each other without leaving gaps or overlapping the objects. If 
drawing is required, draw a boundary around the objects that totally encloses 
them with no additional space. 

Read an array. Given an array, determine how many rows in the array and how 
many elements in each row. Options: The elements in the array are square or 
rectangular and aligned uniformly without gaps or overlaps (contiguous), or 
are either not square or rectangular, not aligned uniformly, or are presented 
with gaps between them (noncontiguous). 

Make an array. From sufficient information on the number of rows and columns (or 
the number of elements in each row and column), construct an array with that 
structure. Same options as just above. 

Enumerate an array. Given an array, determine the total number of objects or units in 
it, either by counting all the objects, skip-counting, or multiplying. Options: The 
elements in the array are square or rectangular and aligned uniformly without 
gaps or overlaps (contiguous), or are either not square or rectangular, not 
aligned uniformly, or are presented with gaps between them (non-contiguous). 

Measure area; general. Use this knowledge element only when students are asked to 
measure the area of a region, but the text gives no detail about how. Options: 
The space occupied by the region is not structured (no support), or the space is 
structured (e.g., by a grid or pattern of equally-spaced dots [support]). 

Measure area by covering with sufficient standard units. Select an object that is a 
standard unit of area, cover the region with those objects, and count the number 
used. 

Measure area on a grid by counting whole units. To determine the area of regions drawn 
on square grids, count the number of grid units that cover the region. 

Measure area on a grid by counting whole & fractional units. To determine the area of 
regions drawn on square grids, count the number of whole grid units in the 
interior of the region, count the number or half- or partial units, and combine 
the half- or partial units into a number of whole grid units. The area is the sum 
of these units, either in whole grid units or in whole + partial grid units. 

Measure the area of a rectangle on a grid by counting rows or columns. To determine the 
area of a rectangle or square drawn on a grid, count the number of squares in a 
horizontal row and the number of rows (or the number of squares in a vertical 
column and the number of columns) and multiply the two numbers. 

Measure a length in the service of finding the area of a polygon. Measure a side of or 
height in a polygon to use that length to find its area. Options: When space has 
not been structured, measure with a ruler (ruler), on a grid, count the number 
of length intervals between endpoints (grid), or on dot paper, count the number 
of length intervals between endpoints (dots). 
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Measure a length in the service of finding the area of a circle. Measure the radius or 
diameter of a circle in order to use that length measure to find the area of the 
circle. Same options as just above. 

Compute the area of a rectangle. If the length of the longer side of the rectangle is × 
units and the length of the shorter side is Y units, multiply the two numbers. 
If the length and width are measured in the same length unit, the area unit is 
that unit2. 

Compute the area of a square. If the length of the side is × units, multiply × by itself. 
The area is × * × unit2. 

Compute the area of a right triangle. Multiply the lengths of two perpendicular sides 
of the triangle and divide that product by two (L1 × L2 ÷ 2). If the sides are 
measured in the same length unit, the area is measured in that unit2. 

Compute the area of any triangle (by the standard formula). Multiply the length of any 
side by the height/altitude to that side and divide by two (S × H ÷ 2). That area 
is measured in units of [side unit × height unit]. If the side and the height are 
measured in the same unit, the area is measured in that unit2. 

Compute the area of any triangle (by Heron’s formula). Compute the semi-perimeter (S) 
of the triangle (S = 1/2 of A + B + C, where A, B, and C are the lengths of the sides 
of the triangle, all measured in the same length unit). The area of the triangle is 
the square root of the product of S, S— A, S—B, and S—C, measured in unit2. 

Compute the area of a parallelogram. Multiply the length of either side by the height/
altitude to that side (B × H). If the side and the height are measured in the same 
unit, the area is measured in that unit2. 

Compute the area of a trapezoid. Add the lengths of the parallel sides, multiply by the 
height, and divide that product by two ([B1 + B2] × H ÷ 2). If the bases and the 
height are measured in the same unit, the area is measured in that unit2. 

Compute the area of a regular polygon of N sides (N > 4). Multiply the area of the 
triangle whose vertices are the two endpoints of a side and the center of the 
polygon by N. If the bases and the apothem are measured in the same unit, the 
area is measured in that unit2. 

Compute the area of a circle. Multiply the square of the radius by π. The area of the 
circle is that numerical product, measured in square units of the radius length. 

Draw a region of × standard units. Draw a region whose area is × standard area units 
without measuring any lengths. Options: Place units on blank paper, or draw 
a boundary connecting dots or along grid lines. 

Draw a region of × whole and Y fractional standard units. Draw a region whose area is 
× whole and Y fractional standard area units without measuring any lengths. 
Same options as just above. 

Draw a region of × whole or × whole and Y fractional units, given a fractional unit. Given a 
fractional part of a unit of area, draw the regions whose area is equal to a given 
number of whole units or a number of whole and fractional units. Options: 
The fractional unit is drawn (only) but cannot be iterated (no support), or the 
fractional unit can be iterated and/or the space is structured (e.g., as a grid) to 
support the solution (support). 
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Visual estimation of area of a single region. Use a unit of area to estimate the area of a 
given region by mentally placing/iterating and counting the number of units 
required. 

Partition region by halving. To partition a region into two halves of equal area, 
divide it in the middle. Options: The region is drawn on blank background (no 
support), or on blank background but folding is encouraged (support, folding), 
or is located on dot or grid paper or geoboard (other support). 

Partition region into an odd number of parts. To partition a region into three, five, or 
any larger odd/prime number of parts, divide it into two unequal regions and 
partition those parts as needed. Same options as just above. 

Partition region into odd × even number of parts. To partition a region into a number of 
parts that is the product of an even and odd number (e.g., 6, 10, 12, etc.), either 
first divide the region in half and then partition each half into the required odd 
number of parts or first partition into an odd number of parts (N ÷ 2) and then 
partition each part in half. Same options as just above. 

Partition region, general. Use this knowledge element only when students are asked 
to partition a region, but the text gives no detail about how many parts. 

Unit conversion: To convert an area measure from one unit to another, multiply the 
given area by a ratio of the two area units. The “new” unit of area must be the 
numerator of the ratio. Reasoning with area measures 

Compute the area of a sector of a circle. Given the arc length of the sector, find the ratio 
of the arc length to the circumference of the circle. Multiply that ratio by the 
area of the circle. Alternatively, given the central angle of the sector, find the 
ratio of the central angle to 360 degrees and multiply that ratio by the area of 
the circle. 

Measure an area by partitioning, moving, recomposing, and computing. To find the area 
of an irregular region, divide, move, and recompose it as a more convenient 
shape (e.g., a rectangle) and apply the computational procedure appropriate 
for that shape. 

Measure an area by decomposing and computing. To find the area of a complex region, 
partition it into a series of more convenient shapes, compute the area of each 
using the procedure appropriate for that shape, and add the resulting areas. 

Measure an area by enclosure, computing, and subtraction. To find the area of a complex 
region, construct a region that entirely encloses the initial region and compute 
its area. Then compute the area of the enclosing region that is not part of the 
initial region, and subtract that area from the area of the enclosing region. 

Find the sum or difference of areas. To find the total area of a collection of non-
intersecting regions, add the areas of each region. To find the difference 
between (or to compare) the areas of two non-intersecting regions, subtract the 
smaller area from the larger. To find the area of a cut-out region, subtract the 
area of the inside region from the area of the outside region. Options: Relevant 
text is given in words only (words), in numbers only (numbers), in words and 
area is represented with area units (units), or in words and area is represented 
via pictures of regions (pictures). 
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Find the scalar multiple or quotient of an area. To find a scalar multiple of a given area, 
multiply the area by the scalar. To find the scalar quotient of a given area (i.e., 
to divide the area of a given region into a specified number of parts of equal 
area), divided the area by the scalar. Same options as just above. 

Find the multiplicative comparison of two areas. Given two areas given in the same area 
units, divide one area number by the other to produce the appropriate scalar. 

Visual estimation of area of one region via comparison with another. Given two regions—
one contained in the other, one overlapping the other, or one beside another—
when the area of one region is known or easily computable, use the area of the 
known region to estimate the smaller or larger area of the other region. 

Estimate the area of a complex region. If a complex region (one with a geometrically 
inconvenient shape) cannot be decomposed into subregions with convenient 
shapes, decompose the region approximately into convenient sub-regions, 
estimate the areas of each, and add the resulting areas. 

Read/interpret a spinner. Given a circular spinner that is divided into sectors where 
the issue concerns the frequency or likelihood of the spinner landing in one 
sector or a set of sectors (combined) after one or many spins, quantify the area 
of the relevant sector (or sectors). Options: When non-numerical judgments 
only are requested (greater/greatest or less/least), make a visual comparative 
judgment (qualitative); when numerical quantification of target frequency of an 
outcome to total frequency is requested, visually match the sector to the fraction 
it represents (part/ whole); when numerical quantification of the frequency of 
one outcome to another is requested, visually match the sectors to the fractions 
they represent (part/part). 

Construct a spinner to given specifications. Given information specifying the relative 
frequency of outcomes (qualitative or quantitative), partition the circle into 
sectors so that the areas of the sectors satisfy those specifications. Options: No 
sector lines or divisions of the circle are provided (no support), or the circle 
has been partitioned into sectors or divisions of the circle are provided on the 
circle itself (support). 

Read a circle graph. Given a circle divided into sectors, quantify the area of the 
relevant sector (or sectors). Options: When a non-numerical judgment is 
requested, make a visual comparative judgment (qualitative); when a numerical 
judgment of part to whole is requested, visually match the sector to the fraction 
it represents (part/whole); when a numerical judgment of part to part is 
requested, visually match the sectors to the fractions they represent (part/part). 

Construct a circle graph to given specifications. Given information specifying the 
relative frequency of outcomes (qualitative or quantitative), partition the circle 
into sectors so that the areas of the sectors satisfy those specifications. Options: 
No sector lines or divisions of the circle are provided (no support), or the circle 
is partitioned into sectors or divisions on the circle itself are provided (support). 
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Conventional Knowledge (8 elements) 

Systems of standardized area measure. There are two widely used systems of area 
measure: The customary or English system and the metric system. The 
commonly used area units in the customary or English system are square 
inch, square foot, square yard, acre, and square mile, and in the metric system 
square millimeter, square centimeter, square decimeter, square meter, and 
square kilometer. 

Definitions of standard area units. Standard units of area can be defined by actual size 
drawings (e.g., “This [square] is an square inch”), scale drawings, or verbal 
statements. 

Definitions of nonstandard area units. Nonstandard units of area can be defined by 
actual size drawings, scale drawings, or verbal statements. 

Conventions for abbreviating area units. There are standard ways of indicating area 
units that do not require writing the full name of the unit (e.g., square inch = 
sq in; in2 and square centimeter = sq cm; cm2). 

Conventions for abbreviating for area-related terms. There are standard ways of 
indicating measures related to the area with single letters (e.g., A/a for area 
and B/b for base). 

Label an array. Given an array, write the number of rows to the left or right of the 
array and the number of columns above or below the array. Options: Elements 
in the array are square or rectangular and aligned uniformly without gaps 
or overlaps (contiguous), or elements in the array are either not square or 
rectangular, not aligned uniformly, or are presented with gaps between them 
(non-contiguous). 

Conventions for naming rectangles by side lengths. Rectangles are often identified by 
the lengths of their nonequal sides in one of two ways: “A × B” or “A by B. 

Numerical conversion ratios for area units. The conversion ratios for units of area are 
derivative of their corresponding conversion ratios for length. Given that one 
unit of length measure equals some number of units of another length measure, 
one square unit of area measure equals the square of that number of units of 
the second length measure (e.g., 1 square foot = 144 square inches (12 × 12) and 
1 square meter = 10,000 square centimeters (100 × 100)). 
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