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CHAPTER I 

IMPLICATIONS OF A RESERVE PRICE IN AN  

AGENT-BASED COMMON- 

VALUE AUCTION 

Introduction 

Reserve prices (or minimum bids) are widely used in various auction structures and 

influence bid prices when imposed. Riley and Samuelson (1981) extend Vickrey (1961) 

to include a reserve price in an independent private values auction, and theoretically 

illustrate several possible outcomes when a seller imposes a reserve price. They show that 

reserve prices can increase buyers’ bid prices, decrease buyers’ revenues, increase 

sellers’ revenues, and decrease the probability of the item being sold. The theoretical 

predictions in these papers are the foundation for much of the literature on reserve prices 

in auctions. 

 Riley and Samuelson’s (1981) independent private values auction model has been 

used to estimate the impact of reserve prices in real estate auctions (McAfee, Quan, and 

Vincent 2002), timber auctions (Paarsch 1997), and oil lease auctions (Hendricks et al. 

1994). Today, nearly anyone with computer access can set up an eBay account and sell 

various items with a reserve price in an online auction (Bajari and Hortacsu 2003; Reiley 

2006). Using data from online auctions such as eBay has become a popular approach to 
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analyze the impacts of reserve prices. For example, Reiley (2006) sold Magic: The 

Gathering game cards on eBay without a reserve price and with various levels of reserve 

prices. As predicted, Reiley (2006) finds that increasing the reserve price decreases the 

number of buyers participating in the auction, which suggests that reserve prices can act 

as a barrier to entry for buyers. Also, buyers’ bid prices increased when a reserve price 

was imposed by the seller. Reiley (2006) follows Riley and Samuelson’s (1981) 

independent private values auction model to make these conclusions; even though Reiley 

(2006 p. 198) acknowledges that common-value auction theory could be argued as more 

appropriate. Reiley (2006) finds support for Riley and Samuelson’s (1981) hypotheses 

about the impacts of a reserve price in an auction.  

Little attention, however, has been given to the influence of a reserve price on a 

common-value auction. A general theoretical framework for a common-value auction 

with a reserve price is introduced by McAfee and Vincent (1992). They allow the number 

of buyers to be endogenous in finding the optimal reserve price, and they find the reserve 

price set by the government in oil lease auctions is less then optimal. Levin and Smith 

(1996) expand on Riley and Samuelson’s (1981) theoretical model and include a 

common-value auction as a special case. Their theoretical model shows that the optimal 

reserve price is a function of the number of buyers participating in the auction and 

approaches the sellers’ true values as the number of buyers participating in the auction 

increases. These theoretical papers give some insight into the effects of a reserve price in 

a common-value auction, but do not solve for equilibriums of the common-value auction. 

More recently, Goncalves (2009) established an online second-price sealed-bid common-

value auction, and found that the seller can increase revenue by setting a reserve price. 



 

3 

With a reserve price, the seller is able to increase the bid price, but the quantity sold 

decreases (Goncalves 2009). Conversely, setting the reserve price above the highest bid 

price offered by the buyers in the auction results in a reduction in the seller’s revenues 

(Goncalves 2009). Additionally, Goncalves (2009) finds that increasing competition by 

including an additional buyer does not increase revenues as much as letting the seller 

impose a reserve price. Reiley (2006) refers to experiments similar to his and Goncalves 

(2009) as “field experiments.” These field experiments cannot control for all the 

exogenous factors that might influence the results like in a laboratory experiment (Reiley 

2006). The results from these types of studies are recognized by Reiley (2006) and 

Goncalves (2009) as being noisy, and that reproducing them under controlled laboratory 

settings could be beneficial to further test the theory. However, human experiments in 

controlled laboratories can be expensive.  

An alternative technique that economists can use to test economic theories other 

than using human or field experiments is agent-based computational modeling (Arifovic 

1996; Bonabeua 2002; Alkemade, La Poutré, and Ammam 2006). Agent-based 

computational models are artificial markets where interactive agents trade (Tesfatsion 

2001). These models can simulate artificial economic markets when data are not 

available or are expensive to obtain and when there is not an analytical solution. 

Equilibrium prices in various auction markets have been successfully obtained with 

agent-based models (Tesfatsion 2001; Guerci, Stefano, and Cincotti. 2008; Hailu and 

Thoyer 2010). Our review of literature shows the impact of a reserve price in a first-price 

common-value auction on revenues, bid prices, and the probability of a transaction 

occurring has not been measured with a theoretical model, or with an agent-based model. 
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The analytical solution of a first-price common-value auction with a reserve price is 

perhaps infeasible (Gordy 1998), and reproducing this auction in a laboratory experiment 

is likely expensive. Thus, using an agent-based auction model is an appropriate method to 

find the equilibrium bid price and optimal reserve price in a first-price common-value 

auction. Additionally, a first-price common-value auction with a reserve price has never 

been solved using an agent-based computational model, which makes this model a unique 

contribution to the agent-based model literature.  

The base model we establish is an agent-based first-price common-value auction 

similar to Kagel and Levin’s (1986) common-value auction model. The objective is to 

evaluate the impact of a reserve price in this artificial auction and to determine buyers’ 

optimal bid prices and sellers’ optimal reserve prices. Buyers choose their expected-

revenue-maximizing bid price for the item being sold while sellers choose their expected-

revenue-maximizing reserve price. Buyers and sellers use a particle swarm optimization 

(PSO) learning algorithm developed by Eberhart and Kennedy (1995) and extended by 

Zhang and Brorsen (2009) to maximize expected revenue. The PSO algorithm uses the 

buyers’ and sellers’ previous and current best bid/reserve strategies to direct their next 

bid/reserve strategies to the expected revenue maximizing solution. The results will also 

inform us on the influence of a reserve price on market power (bid-shading) and 

overbidding (the winner’s curse) in a first-price common-value artificial auction. Kagel 

and Levin’s (1986) common-value auction theory assumes bids are uniformly distributed, 

and in the base model, we follow this assumption. The agent-based model provides an 

opportunity to extend Kagel and Levin’s (1986) theory by giving one of the buyers a 

normally distributed bid function and including an additional buyer.  
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Theory 

Common Value Auction  

Auctions are normally classified into three types: (1) common value, (2) private value, 

and (3) affiliated value (Milgrom and Weber 1982; Krishna 2002). In a common-value 

auction, the resale value of the item is equal across all buyers (Kagel and Levin 1986; 

Kagel and Levin 2002). However, uncertainty about the value of the item being sold 

results in each buyer having a different estimate of value such as in oil lease auctions 

(Kagel and Levin 1986; Kagel and Levin 2002). Private value auction bids are 

determined by a buyer’s independent private value for the item (Paarsch 1992). The value 

of the item for each buyer is unique to that buyer and each buyer knows his/her value 

with certainty, but the value of the item for other buyers is unknown. A private value 

auction typically includes non-durable items that are unique such as art (Paarsch 1992). 

The affiliated value auction is an intermediary case where the value of the item differs 

across buyers, but each buyer’s resale value for the item is similar (Pinkse and Tan 2005). 

In reality, auctions rarely strictly follow the criteria for one of these three types of 

auctions, and they are more likely to be a hybrid of all three auction types (Corrigan and 

Rousu 2011). 

We establish an agent-based, first-price common-value auction model that is 

similar to Kagel and Levin’s (1986) model. The artificial auction is a duopsony and 

oligopsony auction structure, meaning the number of buyers N (N=2 and N =3) is less 

than the number of sellers M. Buyers act as price-setters and sellers are price-takers, 

which could result in buyers imposing market power on sellers by reducing their bids 
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(bid-shading) below the market value (Varian 1992). Bid-shading is possible in various 

auction structures (Robinson 1985; McAfee and McMillan 1987; Klemperer 1999). 

McAfee and McMillan (1987) find that in infinitely repeated oligopoly auction games, a 

collusive outcome is sustainable, and Robinson (1985) finds bid-shading is sustainable 

for a first- and second-price auction.  

On the other hand, a phenomenon of common-value auction theory is the 

winner’s curse (Capen, Clapp, and Campbell 1971). This situation occurs when buyers 

estimate the value of an auctioned item to be greater than its actual value, and bid their 

estimated values for the item. This process results in the winning buyer receiving 

negative profits for the item (Capen, Clapp, and Campbell 1971). The winner’s curse is 

well documented in experimental (Kagel and Levin 2002) and actual (Capen, Clapp, and 

Campbell 1971) common-value auctions. In human experiments, the winner’s curse 

normally increases as the number of bidders increase, and when there are less than three 

buyers, the winner’s curse is close to zero (Kagel and Levin 2002). The winner’s curse 

can also decrease as buyers become more experienced (Kagel and Levin 2002). The PSO 

learning algorithm is similar to giving buyers an artificial experience since previous bid 

prices are considered in determining buyers’ optimal bid prices for the current trading 

period (or iteration). Also, few buyers are participating in the auction. For these reasons, 

we anticipate the winner’s curse will not occur.  

Kagel and Levin (1986) developed a risk-neutral bid function for a first-price 

common-value auction. Their model is derived from Wilson (1977) and Milgrom and 

Weber (1982) and has been tested and supported several times with human experiments 

(Kagel and Levin 2002). Kagel and Levin (1986) assume that in the auction, the retail 
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value of the item is X, which is randomly drawn from a set of values that are uniformly 

distributed in the interval ],[ xx . Buyer i has an information signal xi, which is distributed 

uniformly between a lower bound of max  xxi ,  and an upper bound of min 

 xxi ,  where  is a deterministic value told to buyers before the auction. The bid 

function is 

 ),()(  NYxxb ii   (1.1) 

where xi is buyer i’s information signal, and 

))]()(2/(exp[)]1/(2[   xxNNY i , where N is the number of buyers in the 

auction. Since Y has a negative exponential, it approaches zero as xi becomes greater 

than x and when δ increases. The bid function is assumed to be equal for all buyers so 

the buyer with the highest information signal always wins the item being sold. The bid 

function is substituted into the buyer’s conditional expected revenue function  

]|)),(([]|[ jixxNYxXEjixxRE jiiji

B

i    (1.2) 

where B

iR is buyer i’s expected revenue conditional on winning the bid. Kagel and Levin 

(1986) predict the expected revenue conditional on winning is 

)1/(2]|[  NjixxRE ji

B

i  . 

 

Reserve Price 

Riley and Samuelson (1981) were the first to consider the implications of a reserve price 

in an independent private values auction. Their model is clearly derived and discussed, 

which has led to it being a highly followed theory for empirical models (Reiley 2006; 
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Rosenkranz and Schmitz 2007). Levin and Smith (1996) extend Riley and Samuelson’s 

(1981) independent private values model. They provide comparative statics results to the 

effects of a reserve price for a variety of different auction structures as the number of 

buyers approaches infinity, which includes a common-value auction as a special case. 

They state a reserve price could: (1) be a barrier to entry for buyers in the auction, (2) 

result in increased revenues for the sellers, and (3) not be necessary when a certain 

number of buyers are participating in the auction. Levin and Smith (1996) show that the 

optimal reserve price in the first-price auction should converge to the seller’s true value 

as the number of buyers increases.  

When sellers choose a reserve price, buyers must bid higher than the other 

participants in the auction and bid greater than or equal to the sellers’ reserve prices for 

the transactions to occur. We modify Kagel and Levin’s (1986) common-value auction 

model by including a reserve price. Now buyer i’s conditional expected revenue is 

subject to buyer i bidding higher than buyer j and greater than or equal to the sellers’ 

reserve price r. Buyer i’s expected revenue conditional on winning is  

],|)),(([],|[ jirxxxNYxXEjirxxxRE ijiiiji

B

i   (1.3) 

where r is the reserve price set by the sellers. Buyers with the highest signal will win the 

item being auctioned as long as their signal is greater than the reserve price.  

 The sellers choose a reserve price for the item being sold from previous 

transactions. Sellers only sell their item when the highest bid price is greater than or equal 

to their reserve price; otherwise the sellers choose not to sell. The sellers’ expected 

revenue function is  
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 



N

i

ijii

S

h jirbbbbERE
1

],|[][  (1.4) 

where S

hR  is the expected revenue for seller h. Since this is a first-price auction, sellers 

accept the highest bid price that is greater than or equal to their reserve price.  

Solving a common-value auction analytically is difficult (Gordy 1998), and 

including a reserve price perhaps makes it infeasible. An agent-based artificial auction is 

an appropriate method for determining the implications of a reserve price in a first-price 

common-value auction when buyers choose their optimal bid price and sellers choose 

their optimal reserve price.  

 

Artificial Common Value Auction 

The base artificial auction for this paper is a duopsony first-price common-value auction 

without the sellers imposing a reserve price. Our base model is similar to Kagel and 

Levin’s (1986) model, but we make several slight modifications that are described in the 

next sub-section. Then we allow sellers to choose their optimal reserve price in the 

duopsony artificial auction while buyers choose their optimal bid price. Winning bid 

price for buyers and expected revenues for the seller are compared to determine the 

implications of a reserve price in the duopsony artificial auction. Furthermore, we extend 

Kagel and Levin’s (1986) assumption of symmetric buyers by giving one of the buyers a 

bid function with a normally distributed error term, and giving the other buyer a bid 

function with a uniformly distributed error term. Finally, an additional buyer is 

introduced in the artificial auction making it an oligopsony auction. Results are presented 

for the oligopsony auction when no reserve price is imposed and when a reserve price is 
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imposed. This allows us to determine the implications of a reserve price in an oligopsony 

auction and determine how much an additional buyer increases the price of the item being 

sold.  

 In the model, the buying and selling agents are autonomous entities that follow 

bounded rationality (Simon 1957). Bounded rationality is different from the full 

rationality assumption made in most analytical models and could explain differences 

between analytical solutions and agent-based solutions.  

 

Buyer and Seller Agents 

First, an artificial common-value auction model without a reserve price is established. We 

base our model on Kagel and Levin (1986), but make a few deviations from their model. 

Kagel and Levin (1986) randomly generate the true value of the item in each repeated 

auction because human buyers could learn the true value and base their bids on the true 

value instead of their signal. The true value can increase and decrease due to demand and 

supply factors, but will not influence the bid behavior around the true value; thus, they 

analyze the bid price around the random generated true value of the item each iteration. 

In an agent-based auction, generating a new random true value each iteration is 

unnecessary because buyers are forced to bid based on their signals. The first slight 

modification to Kagel and Levin (1986) is that the agent-based auction assumes a 

constant positive true value for the item being sold, which means we are evaluating bids 

around some constant true value that is greater than zero. Our approach is equivalent to 

imposing an interior solution, so we can eliminate the variable Y in the Kagel and Levin 

(1986) bid function from the buyers’ bid function since it approaches zero as the buyers’ 
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signal moves away from the bounds on the true value. Next, Kagel and Levin (1986) 

restrict the buyer’s bid range between a lower bound of max xxi ,  and an upper 

bound of min xxi , . This restriction is relaxed in the agent-based auction observing 

all possible bid prices for buyers. Without this restriction, Kagel and Levin (1986 p. 899) 

state the optimal bid price defies analytical solution. The bid function we use matches 

Andreoni and Miller’s (1995) proposed common-value bid function for an agent-based 

auction, and is specified as  

 iii xb   (1.5) 

 where bi is the bid price for buyer i, ]1,1[ ix  is the choice variable or bid strategy for 

buyer i with random variable ]1,0[~ Ui . The random variable is subtracted from the 

buyer’s choice variable to follow Kagel and Levin’s (1986) model and to match Andreoni 

and Miller’s (1995) proposed common-value bid function. Buyers are assumed to have 

homogenous preferences for the item being sold in the auction.  

For the agent-based model results, we report the unconditional expected revenue. 

The buyers expected revenues are calculated with numerical integration. Buyer i’s 

expected revenue conditional on the other buyers’ current bid prices is   

 jidbdbbXRE ij

x

x

i

b

b

B

i

i

i

i

  
1

)(][  (1.6) 

where B

iR is the expected revenue for the buyer i, },1max{ jj bxb  , and X is the retail 

value of the item being sold, which is assigned to be 0.5. Buyers are bid-shading when 

their equilibrium bid price is less than 0.5, and the winner’s curse outcome is present if 

the equilibrium bid price is greater than 0.5.  
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Sellers are assumed to be homogeneous and price-takers; therefore, this agent-

based auction model can be viewed as containing one representative seller or a set of 

sellers who share information. When the seller imposes a reserve price ]1,1[ r , the 

buyers expected revenue function changes. The seller’s reserve price is not stochastic, 

and their true value for the item is zero, so the seller is expected to accept any bid greater 

than or equal to zero. To win the item, buyers must not only bid higher than the other 

buyer, but their bid price must be greater than or equal to the seller’s reserve price. This 

restriction changes the lower bound of the expected revenue integral to the seller’s 

reserve price. Buyer i’s expected revenue when a reserve price is imposed is  

 jidbdbbXRE ij

x

x

i

b

b

B

i

i i

   )(][  (1.7) 

where },1max{ rxx i  , },max{ jbrb  , and r is the seller’s reserve price.  

  The seller’s expected revenue is  

 



N

i

iji

B

i

S jirbbbREXRE
1

]],|[[][  (1.8) 

where SR  is the expected revenue for the representative seller. Then, we modify the 

above model by letting the error terms in buyer i’s bid function be distributed ]1,0[~ Ui , 

while buyer j’s bid function is distributed )12/1,2/1(~ Nj . Chen and Wang (2011) 

encourage future research to investigate artificial auction equilibrium when agents are 

programmed with differences in their learning abilities. Not all humans or firms 

participating in auctions are equal in many respects; thus, making agents non-symmetric 

might be more realistic to actual auctions and human experiments (Chen and Wang 

2011). In addition to Chen and Wang’s (2011) suggestions, Casari, Ham, and Kagel’s 
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(2007) experiment found that intelligence, demographics, and other characteristics 

influence bid price in a common-value auction, which also suggests agents with non-

symmetric bid functions might be interesting to investigate. Allowing the buyers to have 

different distributional assumptions for their bid function is possible in an agent-based 

auction, which illustrates a major advantage of using the agent-based technique. Finally, 

we return the buyers’ information signals to be distributed ]1,0[U  and include a third 

buyer in the auction. Results are presented for the oligopsony artificial auction model 

with and without the reserve price.  

 

Numerical Integration 

To solve the expected revenue functions, numerical integration techniques are used. 

Recently, some attention has been given in the literature to developing new methods to 

numerically solve simulated auction problems (Gayle and Richard 2008; Peng and Yang 

2010; Fibich and Gavish 2011), but they are not easily adaptable to agent-based auctions. 

We combine the trapezoidal rule and Gaussian quadrature with the PSO learning 

algorithm developed by Zhang and Brorsen (2009). The trapezoidal rule is used to 

approximate the integral when both buyers have uniformly distributed
1
 error terms, and 

Gaussian quadrature points and weights are used to estimate the integral when the errors 

in the buyers’ bid function are normally distributed. Combining the trapezoidal rule and 

Gaussian quadrature with the PSO algorithm to solve an agent-based common-value 

auction is a unique contribution to the agent-based model literature. 

                                                           
1
 While more efficient integration algorithms exist in the case of all buyers having a uniform distribution 

(for example, we have verified the algorithm by solving the integral analytically in the duopsony case), we 

use the trapezoidal rule in all cases to be consistent with methods used on more complex problems. 
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When the buyer’s error term is distributed uniformly, we use the trapezoidal rule 

to approximate expected revenues. When the integral is “rough” or not twice 

differentiable, the trapezoidal rule is better for approximating integrals than Simpson’s 

rule (Cruz-Uribe and Neugebauer 2002). Expected revenue can be truncated at the 

reserve price, which makes the trapezoidal rule a more appropriate integration method 

than Simpson’s rule. This method estimates the area of trapezoids for n subintervals or 

lengths to determine the expected revenues for each buyer. The trapezoidal rule is 

expressed as  

  


 

b

a

nn yyyy
x

dxxf )2,...,2(
2

)( 110   (1.9) 

where ∆x = (b-a)/n, f(x) is the probability density function of winning the item, nyy ,...,0  

are the grid points in the integral, b is the upper bound of the integral, and a is the lower 

bound of the integral. The probability weights at each point of the integral are x except 

at the tails where the probability weight is 2x . With the uniform distribution, n is 

assigned to be 100, resulting in a ∆x of 1/100 and a distance of 1/100 between points in 

the integral. Pseudo code is provided in Table I-1 that outlines the programs used to 

approximate expected revenues.  

 Extending Kagel and Levin’s (1986) model, we allow the error term for one of the 

buyers to be normally distributed, and Gaussian quadrature is used to approximate the 

expected revenue integral. Gaussian quadrature gives a set or probability weights and 

points that can approximate a continuous distribution that matches 2k-1 moments 

(Preckel and DeVuyst 1992). Preckel and DeVuyst (1992) provide a clear explanation of 
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how to solve for the probability weights and points to approximate an integral for various 

distributions. This is generally expressed as 

 



k

j

ljj

b

a

xpdxxf
1

)()(  (1.10) 

where f(x) is the continuous probability density function, p
j
 is the ith probability weight, 

x
j
 is the jth point, k is the number of quadrature points, and 12,...,0  kl  is the number 

of equations. In the agent-based auction, we set k=9 and follow Preckel and DeVuyst’s 

(1992) steps to find the probability weights and points for )12/1,2/1(~ N . The mean 

and variance for this distribution are chosen to match the mean and variance of the 

uniform distribution. Expected revenues are approximated using a similar approach to 

that described in Table I-1. 

 

Particle Swarm Optimization 

Multiple learning algorithms such as genetic algorithms and reinforcement learning 

algorithms are frequently used in agent-based models, but we use the PSO learning 

algorithm developed by Eberhart and Kennedy (1995) and modified by Zhang and 

Brorsen (2009). This algorithm solves faster than the genetic algorithm (Zhang and 

Brorsen 2009) and was successfully implemented by Zhang and Brorsen (2010). Zhang 

and Brorsen (2009) let each agent have its own “flock of birds” or clones by constructing 

Kk ,...,1 parallel auctions for each agent. Each agent has k clones that act in the k 

parallel auctions and use the clone’s bid strategies in the k auctions to help the agent find 

its optimal strategy. The agent’s best bid strategy across all parallel auctions is referred to 
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as the best global solution, and the agent’s best bid strategy in each parallel auction is 

referred to as the best local solution.  

The ith agent has a choice variable (bid price or reserve price) tkix ,,  in parallel 

auction k during iteration Tt ,...,1 , and an adjustment velocity ]1,1[,, tkiv  that directs 

the agent’s choice variable. The velocity change for agent i is a function of the local best 

solutions,
l

tkip ,,  , where superscript l indicates the best solution in the local auction, and 

the agent’s global best solution,
g

tip ,  , where superscript g indicates the best global 

solution. In iteration t, the ith agent’s new choice variable in parallel auction k is updated 

by tkitkitki vxx ,,,,1,,  , and the velocity is modeled as  

 
)()( ,,,22,,,,11,,1,, tki

g

titki

l

tkitkitki xpuqxpuqwvv    (1.11) 

where w is the inertia weight factor, u1 and u2 are uniformly distributed random numbers, 

and q1 and q2 are learning parameters. The learning parameters are 

   TtTqq
qq

tt /11

10,2,1   , (1.12) 

where both 1

0

q and 1

1

q are constants, which are set at one in this model, T is the 

maximum number of iterations, and t is the current iteration. When selecting a parameter 

value for inertia weight, an important tradeoff occurs between exploration and 

convergence time (Chatterjee and Siarry 2006). A large inertia weight slows convergence 

time, but encourages agents to explore a larger area, and a small inertia weight increases 

convergence time, but reduces the agents’ exploration area (Zhang and Brorsen 2009). 

Zhang and Brorsen (2009) develop a compromise for this tradeoff by letting w start high 

and decrease as the optimization proceeds. Inertia weight as expressed in Zhang and 

Brorsen (2009) is  
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   TtTw ww

t /10   , (1.13) 

where both 
w

0 and
w

1 are constants. We set these constants to be 0.75.  

Since agents’ revenues depend on the other agents’ choice variables, the agent’s 

previous best strategy possibly may not perform well in the next iteration. Therefore, the 

PSO learning algorithm recalculates revenues for each buyer from the previous L best 

local solutions based on the other agents’ new choice variable in iteration t. The best local 

strategy is expressed as  

 
 tkijtkik

l

Ltkik

l

tkik

l

tki xxRpRpRp ,,,,,,1,,,, )(),(),...,(maxarg  , (1.14)  

where kR is the revenue in parallel market k. Other agents’ strategies in the current 

iteration are held constant, and the past best locals of each agent in L iterations are 

reevaluated. The bid strategy with the highest revenue is selected as the best local bid 

strategy. The best global choice variable is selected from the best local parameters and is 

expressed as  

 
 )(,),(),(maxarg ,,2,,21,,1,

l
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l

ti

g

ti pRpRpRp 
 

(1.15) 

where K is the total number of parallel markets. The PSO learning algorithm is discussed 

in further detail in Zhang and Brorsen (2009).  

Changes in the agent’s strategies become smaller as the algorithm begins to find 

the buyers’ and the seller’s optimal choice variables. The equilibrium bid prices and 

reserve price are determined when the total change in the previous 10 bid prices for the 

buyers and the previous 10 reserve prices for the seller is less than 0.0000001, and the 

total change in the standard deviations of the reserve price and bid prices are less than 

0.00000001. The PSO parameter values are in Table I-2. The model is set to have 100 
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evolutions (E=100), and each evolution has a maximum of 500 iterations (T=500). This 

configuration means the agents have up to 500 iterations in each evolution to converge to 

equilibrium, and the model repeats this process 100 times. The results presented in the 

paper are the averages and standard deviations over the 100 evolutions.  

Figure I-1 summarizes the discussion about the general process of the agent-based 

auction without a reserve price. The figure shows the connection across the agents, the 

numerical integration, and the PSO algorithm. Following the arrows in the figure, agents 

first choose a bid strategy to enter the auction. Numerical integration is used to 

approximate the probability of winning the item in the auction with their current bid 

strategy. The expected revenues, probability of winning, and winning bid price are stored. 

Finally, the agents’ bid strategies are tested to determine if the equilibrium criteria has 

been met. If it has not been met, then the PSO learning algorithm directs the agents to 

new bid strategies, and if it has been met, then the model progresses to the next evolution.  

 

Results 

Duopsony Artificial Auction  

When no reserve price is imposed and the buyer’s information signal is 

distributed ]1,0[U , the average equilibrium winning bid is -0.21, which indicates that 

buyers are bid-shading, and avoiding the winner’s curse (Table I-3). In human 

experiments, the winner’s curse approaches zero as buyers gain experience (Kagel and 

Levin 2002). Evaluation of the agents’ previous best global and local bid strategies is 

similar to increasing the buyers’ experiences in a human experiment, which explains why 

the winner’s curse is avoided in the artificial auction. The average bid price across all 
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winning and losing bid prices for buyer one is -0.37, and buyer two’s average bid price is 

-0.41 (Table I-3). The difference between the buyers’ average bid prices is due to noise 

since the buyers are identical. Buyer one has a higher bid price on average than buyer 

two, resulting in buyer one having a higher probability of winning the item and a higher 

expected revenue per item. Table I-3 presents the expected revenue per item received 

over all the buyers’ winning and losing bids. Buyer one’s expected revenue per item is 

0.37, and buyer two’s expected revenue per item is 0.33. For the duopsony auction, Kagel 

and Levin’s (1986) model predicts the conditional expected revenue for the winning 

buyer is one-third, which is different from the buyers’ conditional expected revenues in 

the agent-based model of 0.70. As discussed above, Kagel and Levin (1986) constrained 

their agents’ bids and they ended up with a corner solution. Their constraint would 

impose that buyers bid at least zero on average. The seller’s expected revenue per item is 

-0.21, but the seller’s expected revenue per item could be made positive by adding a 

constant to the value of the item or a positive random value as in Kagel and Levin (1986). 

These results do suggest that buyers have market power in this artificial auction and are 

able to shade bids below the item’s true value.  

 When a reserve price is imposed by the seller in the artificial auction, the average 

equilibrium winning bid is 0.22 (Table I-3), which is an increase of 0.43 from when no 

reserve price is imposed. This result matches the Levin and Smith (1996) theoretical 

findings, and the experimental results of Goncalves (2009) and Reiley (2006). McAfee 

and McMillan (1987) argue that setting a reserve price is an effective counter to bid-

shading, and the average equilibrium winning bid price in the artificial auction illustrates 

this same result. The seller’s optimal reserve price in the agent-based auction is zero, 
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which is the seller’s true value and matches Levin and Smith’s (1996) prediction of 

seller’s optimal reserve prices (Table I-3). The buyers’ expected revenues per item for all 

winning and losing bid prices decrease, and the seller’s expected revenue per item 

increases to 0.13 when a reserve price is present (Table I-3). Theoretical (Riley and 

Samuelson 1981; Leven and Smith 1996) and experimental (Reiley 2006; Goncalves 

2009) results have shown that a reserve price can increase the seller’s revenue. The 

probability the item is sold decreases to 61% of the possible transactions when the 

optimal reserve price is imposed (Table I-3). Goncalves (2009) and Reiley (2006) 

experiments find a reserve price reduces the probability of a transaction, which indicates 

a reserve price can be a barrier to entry for buyers.  

Relaxing Kagel and Levin’s (1986) assumption of symmetric bid distributions, 

buyer one’s bid function is changed to be distributed )12/1,2/1(N , and buyer two’s bid 

function is distributed ]1,0[U . The mean and variance of the two distributions are equal, 

but the buyers’ bid functions are non-symmetric. The seller still selects the optimal 

reserve price of zero in this artificial auction, and the average equilibrium winning bid 

price is 0.21, which is slightly less than the average equilibrium winning bid price when 

the buyers’ bid functions are symmetric (Table I-3). Buyer one has a lower probability of 

winning in spite of having a higher average bid price than buyer two (Table I-3). As a 

result, buyer two has a larger expected revenue than buyer one (Table I-3). The normally 

distributed information is not as valuable as the uniformly distributed information. The 

probability of the item being sold decreases to 56%, resulting in the seller’s expected 

revenue decreasing to 0.11 per item (Table I-3). Results for the agent-based auction with 
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non-symmetric buyers are slightly different than when buyers are symmetric, and this 

fact might be of interest to develop further in future research.  

 

Oligopsony Artificial Auction  

With three buyers and no reserve price, the average equilibrium winning bid is 0.08 

(Table I-4). An additional buyer participating in the artificial auction increases the 

average winning bid price by 0.29 from the duopsony auction with no reserve price, 

which matches results in empirical studies (Meyer 1988) and field experiments 

(Goncalves 2009). In empirical work on rice auctions, Meyer (1988) finds prices 

increased as the number of bidders increased and argues that it is evidence in favor of the 

winners curse, yet our results suggest such a finding could be due to increased 

competition. Bulow and Klemperer (1996) argue that in a private value English auction, 

an additional buyer will increase the bid price more than a reserve price with one less 

buyer. Conversely, Goncalves (2009) found that including an additional buyer in the 

second-price common-value auction does not increase the equilibrium bid price as much 

as a reserve price, which matches our agent-based model results. The buyers’ expected 

revenues per item decrease and the seller’s expected revenue per item increase from the 

artificial duopsony auction with no reserve price (Table I-4). Since the seller does not 

have the choice to not sell the item under this scenario, the probability of selling the item 

is 100% (Table I-4). 

 When a reserve price is imposed by the seller in the oligopsony artificial auction, 

the average equilibrium winning bid price is 0.27 (Table I-4), which is an increase of 0.19 

from when no reserve price is present in the oligopsony auction. This result matches both 
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the theory (Levin and Smith 1996; Rosenkranz and Schmitz 2007) and field experiments 

in the literature (Reiley 2006; Goncalves 2009) and results from the duopsony artificial 

auction when a reserve price is imposed. The winning bid price for the oligopsony 

auction increases by 0.05 compared to the duopsony auction with a reserve price. The 

increased competition from an additional buyer increases the winning bid price even 

when the seller imposes a reserve price. The seller’s optimal reserve price is 0.01 (Table 

I-4). This price is slightly higher than the seller’s true value of the item being sold, but is 

likely due to rounding or randomness in the optimization algorithm. The buyers expected 

revenues per item decrease from when no reserve price is imposed to 0.06 (Table I-4). 

The seller’s expected revenue increases to 0.20 per item, and the probability of selling the 

item is 77%. This figure is an increase of 16% from the duopsony auction with a reserve 

price, and it is due to the increase in competition from the third buyer. Similar to the 

duopsony artificial auction and Reiley (2006), the reserve price appears to be a barrier for 

some buyers to participate in the auction. The reserve price has similar effects when an 

additional buyer participates in the auction, matching the findings in the literature (Levin 

and Smith 1996; Reiley 2006; Goncalves 2009).  

 

Convergence Time for the Artificial Auctions 

Table I-5 summarizes the convergence time and the number of iterations before meeting 

the convergence criteria in the agent-based duopsony and oligopsony auctions. This 

information is dependent on several factors (such as computer, compiler, and other 

factors) but is intended to show how the modeling changes affect convergence. The 

computer used has an Intel® Core
TM

 i7-2600 processor, and the models are programmed 
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in Java using Eclipse. When no reserve price is set by the seller in the duopsony auction, 

the agents require on average 91.2 iterations before meeting the equilibrium criteria. Each 

evolution takes on average 1.67 seconds to converge, resulting in a total solving time of a 

little less than three minutes (Table I-5). When a reserve price is chosen by the seller in 

the duopsony auction, the model requires on average 101.6 iterations per evolution to 

converge with each evolution taking on average is 1.98 seconds per evolution or roughly 

three minutes (Table I-5). The seller’s choice variable of their reserve price did not 

substantially slow convergence. When the buyers’ bid functions are uniform and normal, 

the agent-based duopsony auction requires on average 102.8 iterations per evolution to 

converge, with each evolution taking an average of 0.25 seconds or a total solving time of 

roughly 30 seconds (Table I-5). Gaussian quadrature requires fewer points to 

approximate the integral than the trapezoidal rule, which causes the model to converge 

faster.  

The figures displayed show an example of an evolution for each auction structure. 

Figure I-2 shows the path to convergence for the winning bid price in the duopsony 

auction, and Figure I-3 displays the buyers’ and the seller’s revenues in the duopsony 

auction. The figures show the agents explored several alternative strategies briefly, but 

roughly the last two-thirds of the iterations cause only minor refinements in the solution. 

Figure I-4 shows the convergence paths of the winning bid price and reserve price in the 

duopsony auction. The figure shows the seller’s reserve price and the winning bid price 

move fairly closely. The expected revenue for the buyers and the seller in the duopsony 

auction is shown in Figure I-5. Similarly to when no reserve price is imposed, the buyers’ 

and the seller’s revenues change as the buyers and seller explore alternative bid and 
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reserve price strategies. Figure I-6 displays the convergence path of the winning bid price 

and the reserve price in the duopsony auction, and Figure I-7 shows the convergence path 

of the seller’s and buyers’ expected revenues in the duopsony auction. An advantage of 

Gaussian quadrature over the trapezoidal rule is it requires fewer points to approximate 

an integral. These larger jumps in the numerical integration do not appear to cause the 

agents’ to dramatically change their bid strategies.  

For the oligopsony auction when no reserve price is imposed, the agents require 

98.6 iterations on average before meeting the equilibrium criteria (Table I-5). Each 

evolution takes roughly 10 minutes to converge for a total solving time of approximately 

16 hours (Table 5). When a reserve price is imposed in the oligopsony auction, the model 

requires on average 101.8 iterations per evolution to converge with each evolution taking 

on average a little over 10 minutes for a total solving time of roughly 17 hours (Table I-

5). Similar to the duopsony auction structure, the time to converge for the model is 

slightly slower when seller imposes a reserve price. The oligopsony auction structure 

takes on average much more time to converge than the duopsony auction structure.  

 

Conclusions 

The objective of this paper is to determine the implications of a reserve price in a first-

price common-value auction. Considerable theoretical and empirical work has focused on 

the influence of reserve prices in an independent private values auction, but little 

attention has been given to a first-price common-value auction. Duopsony and 

oligopsony agent-based auctions are established to find the optimal reserve price and the 
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equilibrium winning bid price and the implications of a reserve price on the auction 

equilibrium. An agent-based auction is used to solve this problem.  

 Finding the analytical solution to common-value auctions is difficult, and when a 

reserve price is included in this auction, is perhaps infeasible. Reproducing this auction in 

a laboratory experiment would be expensive. Thus, using an agent-based auction model is 

an appropriate method to determine the implications of a reserve price in a first-price 

common-value auction. In addition, an agent-based first-price common-value auction 

with a reserve price has never been solved in the literature, making this model a unique 

contribution to the agent-based literature. Furthermore, we extend the agent-based model 

literature by introducing a combination of numerical integration techniques with the 

particle swarm algorithm. Finally, we address Chen and Wang’s (2011) suggestion of 

considering non-symmetric agents by allowing the buyers’ signals to have different 

distributions.  

In the two buyer auction, buyers shade bids when a reserve price is not imposed 

by the seller. The equilibrium winning bid price increases when a reserve price is 

imposed, resulting in the seller’s expected revenue increasing, and the buyers’ expected 

revenues decreasing. Furthermore, differences in expected revenues are found in the 

duopsony auction when the buyers are non-symmetric, but the winning bid price remains 

similar to when buyers are symmetric. This finding might be interesting to explore further 

in future research. When a third buyer is introduced in the auction with no reserve price, 

the equilibrium winning bid price increases relative to the duopsony artificial auction 

with no reserve price. The increase in competition from an additional buyer is effective at 

increasing the winning bid price, but not as effective as a reserve price in a duopsony 
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auction. When a reserve price is imposed by the seller in the oligopsony artificial auction, 

the equilibrium bid price increases relative to when no reserve price is present. A reserve 

price in the duopsony and oligopsony auctions is effective in increasing the average 

winning bid price.  
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Table I-1. Pseudo Code for the Duopsony with Symmetric Buyers 
    
1 Begin outside loop where error term ε1 is equal to zero and 

increases by 1/100 until ε1 equals 1 

2  If ε1 equals 0 or 1 then the probability weight W1 is 1/200 

3  Else the probability weight W1 is 1/100 

4  Set buyer 1’s random bid price equal to buyer 1’s choice 

variable x1 minus the value for ε1 

5  Set buyer 2’s random bid price equal to buyer 2’s choice 

variable x2 minus the value for ε1 

6  Set probability buyer 1 wins P1 equal to zero. 

7  Set probability buyer 2 wins P2 equal to zero. 

8    

9  Begin inside loop where error term ε2 is equal to zero and 

increases by 1/100 until ε2 equals 1 

10   If ε2 equals 0 or 1 then probability weight W2 is 

1/200 

11   Else the probability W2 is 1/100 

12   Set buyer 1’s temporary random bid price equal to 

buyer 1’s choice variable x1 minus the value for ε2 

13   Set buyer 2’s temporary random bid price equal to 

buyer 2’s choice variable x2 minus the value for ε2 

14   If random bid price for buyer 1 is greater than 

temporary random bid price for buyer 2 then 

probability of winning for buyer 1 P1 increases by W2 

15   If random bid price for buyer 2 is greater than 

temporary random bid price for buyer 1 then 

probability of winning for buyer 2 P2 increases by W2 

16  End of the inside loop 

17    

18  Buyer 1’s revenue is calculated by multiplying W1 by the 

buyer 1’s probability of winning P1 times the difference 

between the retail price and the chosen random bid price, 

and summed over all random bid prices 

19  Buyer 2’s revenue is calculated by multiplying W1 by buyer 

2’s probability of winning P2 times the difference between 

the retail price and the chosen random bid price, and 

summed over all random bid prices 

20  Seller revenue is calculated by multiplying W1 by summing 

buyer 1’s random bid price multiplied by probability of 

buyer 1 winning P1 plus buyer 2’s random bid price 

multiplied by probability of buyer 2 winning P2, and summed 

over all random bid prices 

21   

22 End of outside loop 

23    

24 Winning bid price is calculated by dividing the sellers profits by 

sum of the buyer 1 and buyer 2’s probabilities of winning  
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Table I-2. Parameter Values for the Particle Swarm Optimization Algorithm 

Parameter Symbol Value 

Intercept of inertia weight w

0  0.75 

Slope of inertia weight w

1  0.75 

Learning parameters intercept q

0  0.75 

Learning parameter slope q

1  0.75 

Parallel markets k 10 

Maximum iterations T 500 

Evolutions E 100 

Memory  L 3 
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Table I-3. Equilibrium Values for the Agent-Based Duopsony Auctions 

  Scenario 

Category
a
 

No Reserve 

Price
b
 Reserve Price

b
 

Normal and 

Uniform 

Distributions and 

Reserve Price
c
 

Average winning bid price 
-0.21 

(0.13) 

0.22 

(0.07) 

0.21 

(0.09) 

Reserve price - 
0.00 

(0.11) 

0.00 

(0.12) 

Buyer 1     

 Average bid price 
-0.37 

(0.13) 

-0.12 

(0.13) 

-0.02 

(0.02) 

 Transaction probability  
53.0% 

(12.0%) 

31.0% 

(12.0%) 

22.0% 

(17.0%) 

 Expected revenue 
0.37 

(0.10) 

0.09 

(0.04) 

0.07 

(0.06) 

Buyer 2    

 Average bid price 
-0.41 

(0.13) 

-0.12 

(0.13) 

-0.12 

(0.14) 

 Transaction probability  
47.0% 

(12.0%) 

30.0% 

(11.0%) 

34.0% 

(14.0%) 

 Expected revenue 
0.33 

(0.11) 

0.08 

(0.04) 

0.10 

(0.04) 

Seller    

 Transaction probability 
100.0% 

(0.0%) 

61.0% 

(18.0%) 

56.0% 

(23.0%) 

 Expected revenue 
-0.21 

(0.11) 

0.13 

(0.06) 

0.11 

(0.06) 
Note: Standard deviations are presented in parentheses. 
a
 All results, except average winning bid price, are unconditional on winning.  

b
 Both errors are distributed U[0,1]. 

c
 Buyer 1 has normally distributed errors, and buyer 2 has uniformly distributed errors. 
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Table I-4. Equilibrium Values for the Agent-Based Oligopsony Auctions 

  Scenario 

Category
a
 No Reserve Price Reserve Price 

Average winning bid price 
0.08 

(0.09) 

0.27 

(0.07) 

Reserve price - 
0.01 

(0.13) 

Buyer 1    

 Average bid price 
-0.16 

(0.12) 

-0.07 

(0.12) 

 Transaction probability  
36.0% 

(11.0%) 

26.0% 

(9.0%) 

 Expected revenue 
0.15 

(0.06) 

0.06 

(0.03) 

Buyer 2   

 Average bid price 
-0.17 

(0.13) 

-0.09 

(0.12) 

 Transaction probability  
35.0% 

(11.0%) 

25.0% 

(9.0%) 

 Expected revenue 
0.14 

(0.05) 

0.06 

(0.03) 

Buyer 3   

 Average bid price 
-0.22 

(0.14) 

-0.08 

(0.13) 

 Transaction probability 
29.0% 

(0.10%) 

26.0% 

(0.10%) 

 Expected revenue 
0.12 

(0.05) 

0.06 

(0.03) 

Seller   

 Transaction probability 
100.0% 

(0.0%) 

77.0% 

(19.0%) 

 Expected revenue 
0.08 

(0.09) 

0.20 

(0.06) 
Note: Standard deviations are presented in parentheses, and buyers’ errors are distributed U[0,1]. 
a
 All results, except average winning bid price, are unconditional on winning.  
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Table I-5. Time and Number of Iterations to Converge per Evolution for the 

Duopsony and Oligopsony Auctions 

Scenarios 

Time in 

Seconds 

Number of 

Iterations 

Duopsony    

 
No reserve price 1.67 

(0.17) 

91.20 

(10.82) 

 
Reserve price 1.98 

(0.27) 

101.60 

(16.44) 

 
Normal and uniform distributions and reserve 

price 

0.25 

(0.04) 

102.80 

(16.84) 

    

Oligopsony   

 No reserve price 
588.17 

(54.65) 

98.60 

(11.11) 

 Reserve price 
616.96 

(69.98) 

101.80 

(14.19) 
Note: Standard deviations are presented in parentheses. 
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Figure I-1. Outline of the Duopsony Agent-Based Auction Model without a 

Reserve Price 
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Figure I-2. Example Evolution for the Winning Bid Price with no Reserve Price 

in the Agent-Based Duopsony Auction  
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Figure I-3. Example Evolution for Revenues in the Agent-Based Duopsony 

Auction with no Reserve Price  
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Figure I-4. Example Evolution for the Winning Bid Price and Reserve Price in 

the Agent-Based Duopsony Auction 
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Figure I-5. Example Evolution for the Revenues in the Agent-Based Duopsony 

Auction with a Reserve Price 
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Figure I-6. Example Evolution for the Winning Bid Price and Reserve Price with 

Non-Symmetric Buyers in the Agent-Based Duopsony Auction  
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Figure I-7. Example Evolution for the Revenues in the Agent-Based Duopsony 

Auction with a Reserve Price and Non-Symmetric Buyers  
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II.  
 

 

 
 

 

CHAPTER II 
 

 

CHANGES IN MARKET POWER FROM THE LIVESTOCK  

MANDATORY PRICE REPORTING ACT: AN  

AGENT-BASED AUCTION APPROACH 

Introduction 

In 1999, the U.S. Congress passed the Livestock Mandatory Price Reporting Act (MPR) 

to improve transparency in livestock markets by publicly reporting transaction data that 

includes average prices paid between meat packers and producers. This legislation was 

passed in response to concerns that the heavy concentration of meat packing firms gives 

packers market power (Koontz and Ward 2011). The act requires meat packers that 

annually slaughter 125,000 cattle, 100,000 swine, or 75,000 lambs to report daily 

transactions to the U.S. Department of Agriculture’s Agricultural Marketing Service 

(USDA-AMS). The USDA-AMS reports summaries for the entire industry and for five 

regional U.S. markets. Prior to this legislation, meat packers voluntarily reported 

transactions to the USDA-AMS, and the agency produced publicly available reports 

summarizing the voluntary data. By requiring meat packers to report transactions, more 

information is available to producers and meat packers. A sunset provision was written 

into the MPR legislation with an expiration date of September 2005, and the act was 

renewed through 2010. Recently, this legislation was renewed again through 2015; 
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creating new debate and interest about the effects of MPR (see USDOJ-USDA 2010). 

With the legislation having another sunset provision and many questions remaining 

unanswered, more research is needed into the effects of MPR in cattle markets (Koontz 

and Ward 2011).  

 In an early article about MPR, Wachenheim and DeVuyst (2001) express 

concerns that packers could use information in USDA-AMS reports created from MPR to 

act strategically and exercise market power at the expense of producers. Their concerns 

are not based on a formal model but on empirical observation from industries that use 

posted prices such as the railroad industry (Fuller, Ruppel, and Bessler 1990) and long 

distance telephone service (MacAvoy 1995). . Azzam (2003) provides the first theoretical 

model to study the implications of MPR. His model follows a Cournot framework and 

finds the USDA-AMS reports may be of little value to producers, but might increase 

competition among packers. Overall, Azzam (2003) concludes MPR should increase 

competition among meat packers, which would cause the prices paid by packers to 

increase and the variance of reported prices to decrease. Njoroge (2003) modifies 

Azzam’s (2003) model by assuming meat packers have asymmetric prior distributions of 

livestock prices, and finds that MPR can promote collusion among meat packers. Koontz 

and Ward (2011) argue that for cattle markets, the assumption of asymmetric prior 

distributions is less realistic than Azzam’s (2003) assumption of symmetric priors. 

Koontz and Ward (2011) explain that large meat packers buy and process cattle in many 

different regional markets, which provide them with mostly symmetric information about 

prices. Njoroge et al. (2007) extend Njoroge (2003) by measuring welfare effects before 

and after MPR with a Cournot model. Depending on the value of the social benefits and 



 

45 

costs, they find that MPR might benefit society, even though MPR can increase packers’ 

market power. Furthermore, Azzam and Salvador (2004) use a theoretical model with 

risk-averse Cournot firms to measure the change in packers’ market power after MPR 

was passed, and they find that in all five regions MPR would not increase packers’ 

market power. In summary, the results from previous theoretical models do not agree, 

and questions exist about the appropriateness of the Cournot assumption for livestock 

markets.  

The theoretical models in the MPR literature that measure market power in cattle 

markets use a Cournot framework, which assumes packers make production decisions 

based on quantity (Azzam 2003; Azzam and Salvador 2004; Njoroge 2003; Njoroge et al. 

2007). However, cattle are purchased by packers in the U.S. where packers mostly 

choose a price for cattle, which is a Bertrand framework. Theory shows in aggregate 

models that the Cournot solution can find market power, while the Bertrand solution is 

the competitive solution (Varian 1992). Zhang and Brorsen (2010) conclude that the 

Cournot model predicts more market power than is observed in actual cattle markets 

(Crespi, Xia, and Jones 2010; Ward 2002) and argue that an alternative approach is 

needed. In our review of the literature, an auction model has never been used to 

determine the changes in packers’ market power due to MPR, and this approach is closer 

to the way cattle are actually purchased than the Cournot models.  

Theoretical auction models (Milgrom and Weber 1982) and experimental human 

auctions (Corrigan and Rousu 2011; Kagel and Levin 1986) have found that revealing 

information to buyers can increase the equilibrium price, but do not consider how 

providing information to sellers affects the equilibrium price. Anderson et al. (1998) use 
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experimental data from the Packer-Feeder game, and find that an increase in public 

information to packers increases the market price and decreases price variability. The 

Anderson et al. (1998) paper is informative in understanding the effects of MPR in fed 

cattle auctions, but does not exactly match an auction situation and is empirical rather 

than theoretical. The human experiments suggest that MPR can reduce market power and 

increase prices paid by packers in auctions, which conflicts with the theoretical Cournot 

models of Njoroge (2003) and Njoroge et al. (2007). Recent econometric work with 

actual cattle transaction data by Cai, Stiegert, and Koontz (2011) finds that packers’ 

market power increased after the introduction of MPR; however, factors other than MPR 

could be the cause of increasing market power. These inconsistencies in the theoretical 

models, human experiments, and econometric work warrant Koontz and Ward’s (2011) 

call for further investigation into the changes in beef packers’ market power after MPR.  

 Experimental auctions can be useful to study the changes in market power before 

and after MPR (Anderson et al. 1998; Carlberg, Hogan, and Ward 2009), but controlled 

human experiments can be expensive, and they usually provide little understanding of the 

agents’ motivations. Furthermore, theoretical auction models with sufficient detail to 

closely match cattle markets are perhaps intractable to solve analytically. Agent-based 

computational modeling is becoming a complementary technique to human experiments 

and theoretical models (Alkemade, La Poutré, and Amman 2006; Arifovic 1996; 

Bonabeua 2002), and has successfully been used to model auctions (Guerci, Stefano, and 

Cincotti 2008; Hailu and Thoyer 2010; Tesfatsion 2001). In these models, artificial 

markets are created that allow buying and selling agents to trade until an equilibrium 

criterion is reached (Tesfatsion 2001). In agricultural economics, agent-based models 
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have mostly been used to study land use (Balmann 1997; Berger 2001), but were used by 

Zhang and Brorsen (2010) with a Cournot model of the cattle procurement industry, and 

by Graubner, Balmann, and Sexton (2011) to address spatial price discrimination by 

processors of agricultural commodities.  

 We develop an agent-based, first-price common-value auction model to determine 

the effects of reducing the uncertainty of buyers and sellers. The objective is to provide a 

different theoretical approach to understanding the change in packers’ market power 

before and after implementing MPR. In the auction model, buyers choose a bid price, and 

sellers choose a reserve price, which is a more realistic model of actual cattle 

procurement than the Cournot models. Common-value auction solutions are difficult to 

obtain analytically (Gordy 1998) and including a reserve price might make it infeasible to 

solve, which makes an agent-based model appropriate. Simulated buyers and sellers use 

Zhang and Brorsen’s (2009) particle swarm optimization (PSO) learning algorithm 

combined with numerical integration to find their optimal bid and reserve price strategies. 

In our model both buyers and sellers are uncertain about cattle value. The effects of MPR 

are modeled by reducing this uncertainty. This research is a contribution to the MPR 

theoretical literature, and determining the effects of a noisy reserve price signal on 

equilibrium is also a contribution to the auction literature.  

   

Auction Theory 

Even though fed cattle are mostly purchased by private treaty rather than a formal 

auction, auction models are commonly used to model cattle sales. Auctions are normally 

classified as common value, private value, or affiliated value (Krishna 2002; Milgrom 
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and Weber 1982). If the value of the item being sold is equal for all buyers or the resale 

value of the item is the same for all buyers, then the auction is considered a common 

value auction (Kagel and Levin 2002). In a private value auction, a buyer’s bid price for 

the item is determined by the buyer’s unique private value for the item such as an art 

auction (Paarsch 1992). The affiliated value auction is a more universal case where the 

resale value of the item is similar for all buyers, but value differs across buyers (Pinkse 

and Tan 2005). In reality, auctions rarely exactly match one of these three types of 

auctions, and are more likely a hybrid of these auction types (Corrigan and Rousu 2011). 

Cattle sales do not exactly match any type of auction. Crespi and Sexton (2004) 

state cattle sales are an example of a hybrid auction type, but argue that cattle probably 

have affiliated values among buyers. Chung and Tostão (2009) and Tostão, Chung, and 

Brorsen (2011) use an independent private values auction model to estimate the 

equilibrium bid price for an experimental fed cattle auction. They admit the private 

values assumption is too restrictive for cattle, but follow it because common value and 

affiliated value auctions have econometric identification problems. However, wholesale 

beef prices received by packers are similar enough across packers to assume common 

value auction theory is appropriate to model cattle auctions.  

We establish an agent-based first-price common value auction model similar to 

Kagel and Levin’s (1986) analytical model, but allow sellers to impose a reserve price (or 

minimum bid price). We choose the first-price auction with a reserve price because it 

most closely resembles actual fed cattle sales (Crespi and Sexton 2004; 2005). Beef 

packing is highly concentrated with a few large packers (Ward 2002; 2010), which is 

why we choose to model the auction with two buyers. This auction structure allows 
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buyers to exercise market power on sellers by shading bids below the market value 

(Klemperer 1999; Robinson 1985), and also lets us determine if market power decreases 

by reducing the buyers’ or sellers’ uncertainty of the item’s value. In the last decade, 

packers have increased their use of alternative marketing agreements to purchase cattle, 

and have relied less on cash markets (Ward 2009a; 2009b; 2010). Cash market purchases 

of cattle by packers, however, remain a considerable portion of packers’ cattle 

procurement (Crespi and Sexton 2004; Ward 2009a; 2009b), and formula prices are often 

based on cash prices.  

 In the agent-based auction, buyers with homogeneous preferences submit bids on 

an item based on their noisy information signal. The bid function used follows Kagel and 

Levin (1986) and matches Andreoni and Miller’s (1995) proposed common value bid 

function for an agent-based auction, and is   

 iii xb   (2.1) 

 where bi is the bid price for buyer i=1, 2, ]1,1[ ix  is the choice variable for buyer i, 

]1,0[~ Ui  jiji  0),cov(  is the noisy signal buyer i receives about the value of 

the item.  

Sellers are assumed to be homogeneous, price-takers, and non-competitive so one 

representative seller is included in the model. The seller imposes a reserve price 

 mr , where ]1,1[ m is the seller’s choice variable and ]1,0[~ U  is the seller’s 

noisy signal, which is independent of buyers’ signals. This model provides a unique 

contribution to the auction literature since the effect of a noisy reserve price on the 

equilibrium bid price in an auction has not received much attention (Reiley 2006). Buyers 
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must bid higher than the other buyers and greater than the seller’s reserve price to win the 

bid. In this model, expected revenue for buyer one is 

 121
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where BR1 is the expected revenue for buyer one, X is the buyers’ retail value of the item 

being sold, r is the reserve price chosen by the seller, }1,max{ 2  xrb , and 

}1,max{ 1  xbx . The buyers’ retail value in the agent-based auction is X=0.5. Agent-

based buyers do not retain the true value of the item so it is not necessary to randomly 

generate a new true value for the item in each repeated auction as in Kagel and Levin 

(1986). Buyers are bid-shading when the average winning bid price is less than 0.5, and 

the winner’s curse outcome is present if the average winning bid price is greater than 0.5.  

  When all bid prices are less than the seller’s reserve price then the seller does not 

sell the item. The seller’s expected revenue is the sum of each buyer’s expected winning 

bid price multiplied by the probability of the buyer winning and can be specified as  

 
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where SR is the expected revenue for the representative seller and Pi is the probability 

buyer i wins the item.  

The model is also set up with asymmetric buyers following Njoroge’s (2003) 

assumption. In the asymmetric model, buyer one’s noisy signal is changed to be 

distributed ]2/1,0[U , which reduces buyer one’s uncertainty to be less than that of the 

seller and buyer two. The change in mean of the uniform distribution does not matter 
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since we report average of the bid price (bi) rather than the average of the choice variable 

(xi).  

For the agent-based auction after MPR, price information provided by MPR is 

assumed to reduce the noisy signal for buyers and the seller. Therefore, the agent-based 

common value auction model is modified to represent a cattle auction after MPR by 

reducing the uncertainty to be ]2/1,0[U . Results are presented for several market 

scenarios. We reduce the seller’s noisy signal while the buyers’ noisy signal remains 

distributed ]1,0[U , which represents MPR reducing only the seller’s uncertainty. 

Conversely, we reduce the buyers’ noisy signal while the seller’s noisy signal is not 

reduced, which represents MPR reducing only buyers’ uncertainty. Finally, we reduce 

both the seller’s and the buyers’ noisy signal, which represents MPR reducing both buyer 

and seller uncertainty in cattle auctions. The winning equilibrium bid price, expected 

revenues, and the probability the item is sold are presented for each scenario. 

This paper extends the auction literature by showing the effects of providing 

sellers with information or reducing their uncertainty. Milgrom and Weber (1982) show 

theoretically that revealing public information to buyers in an auction increases 

competition between buyers, and can likely increase the equilibrium bid price. Also, 

Kagel and Levin (1986) found releasing public information to the buyers in a common 

value auction increases the sellers’ revenue in a human experiment. Our model differs 

from the models in these papers because we allow the seller to impose a reserve price, 

and the seller receives a noisy signal about the value of the item. Our results show how 

providing the seller with information changes the equilibrium, which Milgrom and Weber 

(1982) and Kagel and Levin (1986) do not show.    
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Method 

Figure II-1 summarizes the general process of the agent-based auction with a reserve 

price. First, the buyers and the seller randomly choose a bid and reserve price strategy. 

The choice variables are x1, x2, and m. Numerical integration is used to calculate the 

agents’ expected revenues, average bid prices, average reserve price, winning bid price, 

and the probability of winning for each buying and selling agent. At the end of each 

iteration, the convergence criterion for equilibrium is tested. If the convergence criterion 

is not met, then the particle swarm optimization (PSO) learning algorithm directs the 

agents to improved strategies for the next iteration. If the convergence criterion is met, 

then the model progresses to the next run. We combine numerical integration with the 

PSO learning algorithm to solve an agent-based auction when the agents have a noisy 

signal. Combining numerical integration with the PSO learning algorithm is an extension 

of the agent-based model literature. 

 

Numerical Integration 

Numerical integration is used to approximate the buying and selling agents’ expected 

revenues. Recently, new methods have been developed to numerically solve simulated 

auction problems (Fibich and Gavish 2011; Gayle and Richard 2008; Peng and Yang 

2010), but they are not easily adaptable to agent-based auctions. The trapezoidal rule is 

used to approximate the expected revenue integrals. Other integration algorithms such as 

Gaussian quadrature (Preckel and DeVuyst 1992) could be used to approximate these 

integrals, but we choose the trapezoidal rule because it is straightforward to program and 

efficient enough for the problem being considered.  
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The trapezoidal rule uses the area of trapezoids for n subintervals or lengths to 

approximate the integral. The trapezoidal rule is mathematically defined as  

  
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where ∆x = (b-a)/n, f(x) is the probability density function of winning the item, nyy ,...,0  

are the grid points in the integral, b is the upper bound of the integral and a is the lower 

bound of the integral. The probability weights at each point of the integral are x except 

at the tails where the probability weight is 2x . With the uniform distribution, n is 

assigned to be 100, resulting in a 100/1x , and a probability weight of 1/100 except at 

the tails where the probability weight is 1/200. A large number of points are used here to 

reduce discreteness that can reduce accuracy in a winner-take-all problem such as an 

auction. 

 

Particle Swarm Optimization 

The buyers and the seller in the agent-based auction use a PSO learning algorithm 

developed by Eberhart and Kennedy (1995) and modified by Zhang and Brorsen (2009) 

to choose their bid and reserve price strategies. PSO is a stochastic global optimization 

method that tends to converge faster than genetic algorithms. Zhang and Brorsen’s (2009) 

PSO algorithm has Kk ,...,1 parallel markets, and in each of the k parallel markets, the 

buying and selling agents have a clone participating in each one of the k markets. This 

idea of parallel markets came from watching the way flocks of birds share information to 

find food and avoid predators. The PSO algorithm gives each buyer and seller their own 

“flock of birds” to share information, but does not share information with the flocks of 
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other buyers and sellers. Similarly, we have k parallel auctions with each buying and 

selling agent having a clone in each of the k parallel auctions. Therefore, the kth clone of 

an agent chooses a bid or reserve price strategy in the kth auction. The agents use the 

parallel auctions to learn what are good and bad strategies by evaluating revenues for 

each of their clone’s strategies.  

The way the PSO works is the ith agent has a bid or reserve price strategy where 

they have a choice variable tkix ,,  in parallel auction k during iteration Tt ,...1 , and an 

adjustment velocity ]1,1[,, tkiv  that directs the agent to a new value for the choice 

variable. Each velocity change is a function of the local best solution
l

tkip ,, , where 

superscript l indicates the best solution in the local auction and the agent’s global best 

solution
g

tip , , where superscript g indicates the best global solution. The ith agent’s new 

choice variable in parallel auction k is updated by tkitkitki vxx ,,,,1,,  , and the velocity is  

 )()( ,,,22,,,,11,,1,, tki

g

titki

l

tkitkitki xpuqxpuqwvv   
 (2.5) 

where w is the inertia weight factor, u1 and u2 are random variables distributed U[0,1], 

and q1 and q2 are learning parameters. The learning parameters are 

  TtTqq
qq

tt /11

10,2,1    where both 1

0

q and 1

1

q are constants set at one and 

500T is the maximum number of iterations. When selecting an inertia weight w there 

is an important tradeoff between exploration and convergence time to consider 

(Chatterjee and Siarry 2006). A large inertia weight slows convergence, but encourages 

agents to have a larger exploration area, while a small inertia weight increases 

convergence time, but reduces the agents’ exploration area (Zhang and Brorsen 2009). 

Zhang and Brorsen (2009) manage this tradeoff by letting w start high and decrease as the 
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model proceeds through the iterations, similar to the learning parameters. Inertia weight 

expressed in Zhang and Brorsen (2009) as   TtTw ww

t /10   where both 

w

0 and
w

1 are constants set at 0.75.  

The strategy with the highest revenue for the agent in the kth auction is selected as 

the best local strategy. The agents’ best strategy depends on the other agents’ choice 

variables; therefore, the agent’s previous best strategy may not perform well in the next 

iteration. The other agents’ strategies in the current period are held constant and the past 

L best locals of each agent are reevaluated in auction k. The best local solution is 

expressed as  

  tkijtkik

l

Ltkik

l

tkik

l

tki xxRpRpRp ,,,,,,1,,,, )(),(),...,(maxarg   (2.6) 

where kR is the revenue in parallel market k. The best global solution is selected from the 

best local parameters and is  

  .)(,),(),(maxarg ,,2,,21,,1,

l

tKiK
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ti

l

ti

g

ti pRpRpRp   (2.7) 

Table II-1 shows the values used for the PSO parameters. 

 

Convergence Criterion 

A convergence criterion is established to determine when the buyers and the seller cannot 

find bid and reserve price strategies that are an improvement from their previous 

strategies. The model converges when the total change in the previous 10 strategies for 

each of the agents is less than 0.0000001, and the total change in the standard deviations 

of the strategies are less than 0.00000001. The model has 100 runs (E=100), and each run 

has a maximum of 500 iterations (T=500). That is, the agents have 500 iterations (or 
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trades) to meet the convergence criterion, and this process is repeated 100 times. The 

results presented are the averages and standard deviations for all 100 runs. If the 

convergence criterion is met by all buying and selling agents, then the next run begins. 

But if the convergence criterion is not met by all buying and selling agents, then the next 

iteration begins, and the PSO learning algorithm guides the agents to improved strategies 

in the next iteration.  

 

Results 

Full Noise  

The agent-based auction model is initially set up with the noisy signals received by 

buyers and the seller to be distributed ]1,0[U , which represents an auction prior to MPR 

with symmetric buyers. The average winning bid price is 0.02, and the seller’s average 

reserve price is -0.31 (table II-2). The average winning bid price is below the buyers’ 

retail value of 0.5, which indicates that buyers shade bids. The average bid price for 

buyer one across all winning and losing bids is -0.24, and buyer one won, on average, 

36% of the items offered (table II-2). Buyer two’s average bid price is -0.26, and won, on 

average, 34% of the items offered (table II-2). Expected revenue per item for all items 

offered is 0.17 and 0.16 for buyer one and buyer two; respectively. Since buyer one and 

buyer two are identical, the difference in their average bid prices is due to randomness in 

the simulations. Seventy percent of the items are sold, and the seller’s expected revenue 

per item for all items sold or unsold is 0.01 (table II-2). Past research finds a reserve price 

can reduce the market power in an auction, and without a reserve price imposed by the 

seller, the seller’s expected revenue would be lower
1
 (Leven and Smith 1996; Reiley 
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2006; Riley and Samuelson 1981). But this past research has not given sellers a noisy 

reserve price.  

Njoroge (2003) proposes buyers are asymmetric in cattle markets, so we set up an 

agent-based auction model with asymmetric buyers. Buyer one receives a noisy signal 

distributed ]2/1,0[U while buyer two and the seller receive a noisy signal distributed 

]1,0[U . This scenario corresponds to an auction prior to MPR when buyer one has better 

information about prices paid for cattle than the seller and buyer two. The average 

winning bid price is 0.01, and the average reserve price is -0.38 (table II-2). Expected 

revenue per item and the probability of winning the item for buyer one increases, and 

buyer two’s expected revenue per item decreases slightly when buyer one has better 

information about prices than buyer two (table II-2). The seller’s expected revenue per 

item does not change from the scenario with symmetric buyers prior to MPR (table II-2). 

Compared to the symmetric buyers’ results, buyer one benefits from having better 

information than buyer two, which is anticipated, and the seller’s expected revenue per 

item does not change. 

 

Reduced Noise 

Results for the agent-based auction are presented in table II-2 when the noisy signal the 

seller receives is reduced to be distributed ]2/1,0[U , and the buyers’ noisy signal is 

distributed ]1,0[U . This scenario represents an auction after MPR, where additional 

public information reduces the seller’s uncertainty about the value of the item, but it does 

not reduce the buyers’ uncertainty. Compared to the results from the scenarios with full 

noise, the average winning bid price increases to 0.11, and the seller’s average reserve 
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price increases to -0.08 (table II-2). The probability of winning the item decreases for the 

buyers, and their expected revenues per item decrease (table II-2). The seller’s expected 

revenue per item increases to 0.06, and the probably of a transaction occurring decreases 

(table II-2). When the seller’s noisy signal about the value of the item is reduced, the 

buyers’ market power decreases and the seller expected revenue per item increases. This 

finding shows that the seller benefit from reduced uncertainty, which extends the auction 

literature.  

Table II-2 also presents results with both buyers’ noisy signals reduced to 

]2/1,0[U and the seller’s noisy signal remains ]1,0[U . This scenario symbolizes an 

auction after MPR, where additional public information reduces buyers’ uncertainty 

about the value of the item, but the seller’s uncertainty is not reduced. The average 

winning bid price is 0.05, and the seller’s average reserve price is -0.46 (table II-2). The 

buyers’ market power or bid-shading is reduced when the buyers’ noisy signal decreases. 

Relative to the full noise results, the probability of winning the item for the buyers 

increases as well as their expected revenues per item (table II-2), and the seller’s 

probability of selling the item increases and the seller’s expected revenue per item 

increases 0.05 (table II-2). Similar to results when the seller’s noise is reduced, these 

results reveal that sellers benefit when only the buyers’ noisy signal decreases due to 

additional public information. This finding matches Milgrom and Weber’s (1982) 

theoretical model and Kagel and Levin’s (1986) human experiment; however, neither 

allows sellers to impose a reserve price. The information made available from the MPR 

legislation should level the playing field for buyers by making them symmetric, and 



 

59 

results show that the seller still benefits even if only one buyer gains information. This is 

counter to what Njoroge (2003) and Njoroge et al. (2007) conclude. 

When the noisy signals that the seller and the buyers receive are all reduced by 

half, the average winning bid price increases to 0.10 (table II-2). The reduction of noise 

in the seller’s reserve price and the buyers’ bid price increases competition between 

buyers enough to increase the average winning bid price (table II-2). Relative to the full 

noise scenarios, the seller’s average reserve price and their expected revenue per item 

increases (table II-2). Results from this scenario are similar to the results from the other 

scenarios when the uncertainty in the auction market is reduced, the seller benefits.  

The agent-based auction is not an actual cattle auction and actual markets differ 

from the model in numerous ways; however, the model provides a theoretical argument 

that reducing uncertainty through the USDA-AMS reports created by MPR decreases 

meat packers’ market power, increases competition between meat packers, and increases 

the seller’s expected revenue. This conclusion matches what Azzam (2003) finds 

theoretically and what Koontz and Ward (2011) believe is likely the result of MPR. 

Furthermore, if buyers with different levels of information are participating in an auction, 

then MPR would still benefit sellers. Even though inconsistent theoretical conclusions 

about MPR are still evident, the agent-based auction provides unique theoretical evidence 

that supports MPR as beneficial to producers.  

  

Conclusions 

We establish an agent-based, first-price common-value auction that allows the seller to 

impose a reserve price. This model is created to simulate fed cattle markets to determine 
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how packers’ market power changes with the implementation of MPR. Past theoretical 

models have disagreed about whether or not producers benefit from MPR, and recent 

empirical work has even shown packers’ market packer in cattle markets increased after 

MPR (Cai, Stiegert, and Koontz 2011). Koontz and Ward (2011) express concern that 

there are several questions about MPR that remain unanswered.  

The theoretical models in the MPR literature follow a Cournot framework. We 

use an agent-based common value auction model to determine the changes in market 

power after MPR. An auction model approach is closer to actual cattle procurement than 

the Cournot models, and is a unique theoretical contribution to the MPR literature. The 

common value auction with a reserve price is intractable to solve analytically so we 

develop an agent-based auction model, which makes the agent-based auction model an 

appropriate method to apply to this problem. Additionally, by giving the seller a noisy 

reserve price signal, we are able to determine how reducing the seller’s uncertainty 

affects the buyers’ market power, which is a contribution to the auction literature.  

The agent-based common value auction models show that the average winning 

bid price increases and the buyers’ market power decreases when the buyers’ and/or the 

seller’s noisy signal is reduced, and the seller’s expected revenue increases. These 

conclusions match results from human experiments (Kagel and Levin 1986), and auction 

theory (Milgrom and Weber 1982). The agent-based auction indicates that if the MPR 

policy reduces either the buyers or sellers uncertainty, then sellers benefit from MPR.  
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Table II-1. Parameter Values for the Particle Swarm Optimization Algorithm 

Parameter Symbol Value 

Intercept of inertia weight w

0  0.75 

Slope of inertia weight w

1  0.75 

Learning parameters intercept q

0  0.75 

Learning parameter slope q

1  0.75 

Parallel markets k 10 

Maximum iterations T 500 

Evolutions E 100 

Memory  L 3 
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Table II-2. Equilibrium Values for the Agent-Based Duopsony Auctions 

 Full Noise   Reduced Noise 

Category
a
 

Symmetric 

Buyers
b
 

Asymmetric 

Buyers
c
 

 Seller Reduced 

Noise
d
 

Buyer Reduced 

Noise
e
 Reduced Noise

f
 

Average winning bid price 
0.02 

(0.12) 

0.01 

(0.12) 

 0.11 

(0.12) 

0.05 

(0.12) 

0.10 

(0.12) 

Reserve price 
-0.31 

(0.26) 

-0.38 

(0.23) 

 -0.08 

(0.19) 

-0.46 

(0.24) 
-0.16 

(0.20) 

Buyer 1        

 Average bid price 
-0.24 

(0.17) 

-0.11 

(0.14) 

 -0.25 

(0.19) 

-0.06 

(0.15) 

-0.05 

(0.16) 

 Transaction probability  
36.0% 

(17.0%) 

48.0% 

(18.0%) 

 27.0% 

(18.0%) 

45.0% 

(22.0%) 

38.0% 

(24.0%) 

 Expected revenue 
0.17 

(0.09) 

0.25 

(0.11) 

 0.10 

(0.08) 

0.19 

(0.12) 

0.15 

(0.11) 

Buyer 2       

 Average bid price 
-0.26 

(0.16) 

-0.24 

(0.18) 

 -0.23 

(0.17) 

-0.06 

(0.16) 

-0.04 

(0.16) 

 Transaction probability  
34.0% 

(16.0%) 

32.0% 

(16.0%) 

 27.0% 

(15.0%) 

45.0% 

(21.0%) 

40.0% 

(23.0%) 

 Expected revenue 
0.16 

(0.08) 

0.13 

(0.07) 

 0.10 

(0.06) 

0.19 

(0.10) 

0.16 

(0.10) 

Seller       

 Transaction probability 
70.0% 

(22.0%) 

80.0% 

(0.17%) 

 54.0% 

(24.0%) 

90.0% 

(13.0%) 

79.0% 

(24.0%) 

 Expected revenue 
0.01 

(0.08) 

0.01 

(0.09) 

 0.06 

(0.07) 

0.05 

(0.10) 

0.08 

(0.10) 
Note: Standard deviations are presented in parentheses. The competitive solution with no noise is a winning bid price of 0.5 with buyers having zero revenue. 
a All results, except average winning bid price, are unconditional on winning.  
b Errors for both the buyers and the seller are distributed U[0,1]. 
c Errors for buyer one is U[0,0.5] and for buyer two and the seller are U[0,1]. 
d Errors for the seller is distributed U[0,0.5] and the errors for the buyers are distributed U[0,1]. 
e Errors for the buyer is distributed U[0,0.5] and the errors for the seller are distributed U[0,1]. 
f Errors for both the buyers and the seller are distributed U[0,0.5]. 
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Figure II-1. Overview of the Duopsony Agent-Based Auction Model  
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CHAPTER III 
 

 

COMMON-VALUE AUCTION VERSUS POSTED-PRICE  

SELLING: AN AGENT-BASED MODEL APPROACH 

Introduction 

With the recent development and easy access to online selling methods, sellers can 

choose to sell an item using either a posted-price market (e.g., Craigslist) or an auction 

(e.g., eBay). When the market-clearing price for the item is uncertain such as art, cattle, 

and government bonds, sellers are normally thought to prefer an auction over a posted-

price market (Milgrom 1989). An auction allows sellers to discover the market-clearing 

price for the item through competition among buyers, which can be more profitable for 

sellers than a posted price. However, the theoretical literature reveals that auctioning an 

item does not always produce larger revenue for sellers than a posted-price market 

(Campbell and Levin 2006; Kultti 1999), and experimental data shows sellers commonly 

choose to sell an item with a posted price instead of using an auction (Hammond 2010).  

 Auctions are normally classified into three types: (1) private value, (2) affiliated 

value, and (3) common value (Krishna 2002; Milgrom and Weber 1982). Wang (1993) 

compares a seller’s revenue from selling an item with a posted price to selling the same 

item using an auction with a reserve price when the buyers have independent private 

values for the item. Buyers with independent private values means buyers have their own 
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unique value of the item (Paarsch 1992). Wang (1993) uses a theoretical model with the 

buyers having a noisy price signal and the seller having perfect information about the 

value of the item. Wang (1993) finds the auction is always optimal for sellers when the 

cost of auctioning the item is zero, but when there is an auctioning cost for the seller, the 

optimal selling method depends on the steepness of the seller’s marginal revenue curve. 

Campbell and Levin (2006) compare sellers’ revenue from selling an item with a posted 

price to auctioning it when the buyers’ values for the item are affiliated, which means 

buyers’ values might depend on a common unknown signal and buyers’ individual values 

(Pinkse and Tan 2005). They use a theoretical model to demonstrate that an auction is not 

always optimal for a seller when buyers’ values for the item are interdependent. 

Furthermore, Wang (1998) uses a similar theoretical model to Wang (1993) to show that 

auctioning an item is more profitable for the seller when buyers’ private values are 

correlated, and Julien et al. (2002) use backwards induction to show that sellers are 

always better off selling the item in an auction with and without a reserve price than with 

a posted price. 

Kultti (1999) adapts Lu and McAfee’s (1996) model of an auction and a 

bargaining market to compare sellers’ utility from selling an item with a posted-price 

market to selling via an auction when the value of the item being sold is common among 

buyers. When buyers have a common value for the item, the resale value of the item is 

equal across all buyers, but uncertainty about the value of the item results in each buyer 

potentially having a different estimate of the value (Kagel and Levin 2002). A classic 

example of a common-value auction in the literature is oil lease auctions (Capen et al. 

1971; Kagel and Levin 2002). Kultti develops a model that compares the expected utility 
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for buyers and sellers in a posted-price market and auction by evaluating the probability 

of buyers and sellers meeting in each market. Using evolutionary game dynamics, Kultti 

finds that the seller’s expected utility in the posted-price market and the auction are 

always equivalent because the probability of buyers and sellers meeting in each market 

are equivalent. More recently, Hammond (2010) presents unique results from a field 

experiment of selling compact discs in an online ascending-bid second-price auction with 

a reserve price and an online posted-price market. Hammond (2010) cannot reject 

revenue equivalence for the sellers in the posted-price and auction markets, and also finds 

that the posted-price markets had a higher selling price and lower probability of selling 

the item than the auctions.  

 While Kultti (1999) does compare these selling methods when buyers have a 

common value, his model uses a different framework from Wang’s (1993) private value 

model and Campbell and Levin’s (2006) affiliated value model, which compare seller’s 

revenue when sellers choose a reserve price and buyers choose a bid price while 

receiving a noisy price signal. Kultti (1999) compares the probability of buyers and 

sellers meeting in each market and does not consider bid shading due to buyer 

uncertainty. A model with buyers and sellers receiving a noisy price signal that allowed 

comparing a seller’s revenue from auctioning an item with and without a reserve price to 

selling the item with a posted price when the item has a common value among buyers 

would be a unique contribution to the posted price and auction literature. 

 Solving a common-value auction analytically is difficult and allowing the seller to 

impose a reserve price (minimum bid) perhaps makes it intractable (Gordy 1998), and 

reproducing a common-value auction and a posted-price market in a laboratory or field 
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experiment would likely require many rounds and a large sample, which would be 

expensive to obtain. Agent-based computational modeling is an alternative approach that 

can be used to compare these two selling methods. Economists use agent-based models to 

test economic theories when the problem is intractable and obtaining data is expensive 

(Alkemade et al. 2006; Arifovic 1996; Bonabeua 2002). These models are artificial 

markets where interactive agents simulate economic markets following trading and 

equilibrium rules (Tesfatsion 2001). Recently, Noe et al. (2011) successfully developed 

an agent-based common-value auction to examine how bid prices change under retail 

price uncertainty. We develop an agent-based common-value auction with a reserve price 

and an agent-based posted-price market to compare the seller’s expected revenue. Our 

common-value auction model extends Noe et al.’s (2011) model by allowing the seller to 

impose a reserve price, and by giving buyers and the seller a noisy price signal. 

Additionally, using agent-based models allows us to relax the assumption of symmetric 

buyers found in previous theoretical work (Campbell and Levin 2006; Wang 1993), and 

we can evaluate these selling methods with asymmetric buyers.  

 We compare the seller’s expected revenue from selling an item in a first-price 

common-value auction with a reserve price and in a posted-price market to determine the 

selling method that provides the seller with the larger expected revenue. We develop an 

agent-based posted-price market with two buyers and one seller, and an agent-based first-

price common-value auction with a reserve price that includes two buyers and one seller. 

In the posted-price model, the seller chooses a posted price for the item being sold, and 

buyers choose their willingness-to-pay. Buyers purchase the item at the posted price 

when their willingness-to-pay is greater than or equal to the seller’s posted price. In the 
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auction model, the seller chooses a reserve price and buyers choose their bid price. 

Buyers purchase the item at their bid price when their bid price is greater than or equal to 

the seller’s reserve price and greater than the other buyer’s bid. In both markets, buyers 

and the seller use a particle swarm optimization (PSO) learning algorithm developed by 

Zhang and Brorsen (2009) combined with numerical integration to find their best strategy 

(bid price, reserve price, willingness-to-pay, and posted price).  

 

Theory of Agent-Based Models 

We make similar assumptions in our agent-based models about the buyers and sellers 

cost structures to Wang’s (1993) model. The cost to store the item when it is not sold is 

the buyers’ retail value of the item, which is the same
2
 for the seller in the auction and 

posted-price market. Also, we assume buyers’ search cost is equal in the posted-price 

market and in the auction. This means buyers in the auction would have the same cost of 

searching for the same item in other auctions as buyers in the posted-price market 

searching for the same item in other posted-price markets. Finally, the cost of setting up 

and organizing an auction is equal to the cost of setting up and organizing a posted-price 

market. 

 

Common Value Auction 

The winner’s curse phenomenon is well documented in human and field experiments 

(Kagel and Levin 2002) as well as in actual (Capen et al. 1971) common-value auctions. 

This occurs when buyers estimate the value of an item to be greater than the item’s true 

                                                           
2
 Storage costs are assumed to be 0.5 and since the value of the item is 0.5, an equivalent assumption would 

be to assume that the item is perishable.  
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value, and bid their estimated values for the item, which results in the winning buyer 

receiving a negative profit for the item. If the winner’s curse is present in the common-

value auction model, then an auction might produce larger expected revenue for the seller 

than a posted price. Conversely, bid-shading by buyers is sustainable in common-value 

auctions (Klemperer 1999) and in repeated game auctions (McAfee and McMillan 1987). 

If bid-shading occurs, the seller might be worse off auctioning the item. The winner’s 

curse is not expected to occur in our model due to the learning algorithm, and bid-shading 

by buyers is expected, which is what Noe et al. (2011) found.  

Our agent-based first-price common-value auction model is based on the model 

used in Kagel and Levin’s (1986) human experiment. A slight modification we make to 

Kagel and Levin (1986) is the agent-based auction assumes a constant true value that is 

greater than zero instead of randomly generating a new true value in each repeated 

auction. They randomly generated a new true value for the item being auctioned in each 

repeated auction because otherwise buyers might base their bid on the previous true value 

of the item instead of their signal. Buyers in the agent-based auction cannot learn the true 

value of the item; thus, it is not necessary to randomly generate a new true value for the 

item in each repeated auction and bids are evaluated around some constant true value that 

is greater than zero. In the agent-based auction, bid prices are submitted by buyers with 

homogeneous preferences for an item based on their noisy information signal. The bid 

function follows previous bid functions in common-value auctions (Andreoni and Miller 

1995; Kagel and Levin 1986), and is   

 iii xb   (3.1) 
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where bi is the bid price for buyer i=1, 2, ]1,1[ ix  is the choice variable in the auction 

for buyer i, and ]1,0[~ Ui  jiji  0),cov(  is the noisy signal buyer i receives 

about the value of the item.  

Another modification we make to Kagel and Levin (1986) is we allow the seller 

to impose a reserve price. The seller’s reserve price is  mr where ]1,1[ m  is the 

seller’s choice variable, and ]1,0[~ U  is the noisy signal and is independent of buyers’ 

signals. By giving the seller a noisy signal about the value of the item, we can test 

Milgrom’s (1989) theory that an uncertain value for an item usually results in the auction 

being preferred by sellers over a posted price. According to Milgrom (1989), the seller’s 

noisy signal about the value of the item should cause the seller to prefer the agent-based 

auction over the agent-based posted-price market. Results are also included when the 

seller has perfect information about the reserve price. When the seller’s reserve price is 

not stochastic, the reserve price should converge to the seller’s true value of zero (Levin 

and Smith 1996). Furthermore, we present results for an agent-based common-value 

auction without a reserve price. Buyers must bid greater than the other buyer and greater 

than or equal to the seller’s reserve price to win the item. In this model, expected revenue 

for buyer one is 

 ]][][)[(][ 12111 rbIbbIbXERE B   (3.2) 

where BR1 is the expected revenue for buyer one, ][ 21 bbI   is an indicator function for 

when buyers one’s bid price is greater than buyer two’s bid price, ][ 1 rbI   is an indicator 

function for when buyer one’s bid price is greater than the reserve price, and X is the 

buyers’ retail value of the item being sold. The buyers’ retail value is X=0.5. Buyers are 
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bid-shading when the average winning bid price is less than 0.5, and the winner’s curse 

outcome is present if the average winning bid price is greater than 0.5.  

  The seller’s expected revenue is the sum of buyer one’s bid price multiplied by 

the probability of buyer one winning the item and buyer two’s bid price multiplied by the 

probability of buyer two winning the item. The seller’s expected revenue is expressed as  
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where SR is the expected revenue for the representative seller, and Pi is the probability 

buyer i wins the item.  

 

Posted Price Market 

Classical economic models derive the seller’s optimal posted price by equating marginal 

revenue with marginal cost. Search models were developed by Stigler (1961) and McCall 

(1965) that consider the buyers’ cost of searching for the lowest posted price available, 

and are commonly used in the posted-price market literature. In search models, the 

seller’s optimal posted price is a balance of the probability of selling the item, buyers’ 

search cost, and the price the seller is willing-to-accept for the item (Arnold and Lippman 

2001). Previous theoretical work reveals a posted-price market can produce larger 

expected revenue than an auction for the seller in an affiliated-value auction (Campbell 

and Levin 2006). However, a posted-price market has not been compared to a common-

value auction.  

Similar to the agent-based auctions, the buyers in the agent-based posted-price market do 

not learn the retail value of the item; thus, it is not necessary to randomly generate a new 
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true value for the item in each repeated auction and bids are evaluated around some 

constant true value that is greater than zero. Buyers with homogeneous preferences 

submit their willingness-to-pay for the item based on their noisy information signal. 

Buyers i’s willingness-to-pay function is  

 iii yw   (3.4) 

where wi is the willingness-to-pay for buyer i=1, 2, ]1,1[ iy  is the choice variable in 

the posted-price market for buyer i, ]1,0[~ Ui  jiji  0),cov(  is the noisy signal 

buyer i receives about the value of the item.  

The seller sets a posted price  zp where ]1,1[ z  is the seller’s choice 

variable in the posted-price market, and ]1,0[~ U  is the noisy signal and is independent 

of buyers’ signals. We also present results when the seller has perfect information. 

Buyers must be willing to pay a value greater than or equal to the seller’s posted price to 

purchase the item. In this model, expected revenue for buyer one is   

 ]][)5.0)([(][ 1

][

1
2 pwIpXERE

pwIB 


 (3.5) 

where BR1 is the expected revenue for buyer one, X is the buyers’ retail value of the item 

being sold, ][ 2 pwI   is an indicator function for when buyers two’s willingness-to-pay 

is greater than or equal to the posted price, and ][ 1 pwI   is an indicator function for 

when buyer one’s willingness-to-pay is greater than the posted price. In the agent-based 

posted-price model, agents arrive in the market at the same time; therefore, when both 

buyers have willingness-to-pay greater than or equal to the posted price, the buyers 

equally split the item being sold. As in the auction, the buyers’ retail value in the posted-

price market is X=0.5. 
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  When the willingness-to-pay is less than the seller’s posted price then the seller 

does not sell the item and the seller’s revenue is zero. The seller’s expected revenue is 

similar to the seller’s expected revenue in an auction, but the seller only receives the 

posted price for the item. The seller’s expected revenue is  
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where SR is the expected revenue for the representative seller, and Pi is the probability 

buyer i purchases the item.  

 

Method  

Figure III-1 summarizes the general process of the agent-based auction with a reserve 

price. Buyers choose a bid price strategy and the seller chooses a reserve price strategy. 

Numerical integration is used to estimate the agents’ expected revenues, the average 

winning bid price, average reserve price, average bid prices, and probability of each 

buyer winning. Finally, the agents’ strategies are tested to determine if the convergence 

criterion for equilibrium is satisfied. If the convergence criterion for equilibrium is not 

satisfied, then the particle swarm optimization (PSO) learning algorithm directs the 

agents to improved strategies in the next iteration, and if the convergence criterion is met, 

then the model advances to the next run.  

 Figure III-2 outlines a similar process of the agent-based posted-price market. The 

seller chooses a posted price strategy for the item, and buyers choose their willingness-to-

pay for the item. Numerical integration is used to estimate the agents’ expected revenues, 

the average selling posted price, average reserve price, average willingness-to-pay, and 
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probability of each buyer winning. The same convergence criterion is used in the posted-

price model as the auction model. The posted-price model and auction model are run 

separately with two buyers and one seller in each market.  

We run the posted-price market and auction under several different scenarios. 

First, we give the seller perfect information (or no noisy signal), but buyers do have a 

noisy signal. Then, we run the models with the seller receiving a noisy signal. This allows 

determining how a seller’s uncertainty affects the seller’s decision to sell an item with an 

auction or with a posted price. We also run the auction and posted-price models with 

asymmetric buyers to determine if unbalanced information across buyers influences the 

seller’s selling decision. Lastly, the results are included for the common-value auction 

without a reserve price to compare to a posted-price market. 

 

Numerical Integration 

We extend Zhang and Brorsen (2009) by combining numerical integration with the PSO 

learning algorithm to solve agent-based models when the agents have a noisy signal. 

Buying and selling agents each choose their strategy in the separate markets and the 

trapezoidal rule is used to approximate the buying and selling agents’ expected revenues. 

Other integration algorithms such as Gaussian quadrature (Miller and Rice 1983) could 

be used to approximate these integrals, but the trapezoidal rule is chosen because it is 

efficient enough for the problem being considered and is straightforward to program.  

The trapezoidal rule uses the area of trapezoids for n subintervals or lengths to 

approximate the integral. The trapezoidal rule is mathematically defined as  
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where ∆x = (b-a)/n, f(x) is the probability density function of winning the item, nyy ,...,0  

are the grid points in the integral, b is the upper bound of the integral and a is the lower 

bound of the integral. The probability weights at each point of the integral are x except 

at the tails where the probability weight is 2x . With the uniform distribution, n is 

assigned to be 100, resulting in a 100/1x , a distance of 1/100 between the points in 

the integral, and a probability weight of 1/100 accepts at the tails where the probability 

weight is 1/200. A large number of points are used here to reduce discreteness that can 

reduce accuracy in a winner-take-all auction.  

 

Particle Swarm Optimization 

The buyers and the seller in the agent-based models use a PSO learning algorithm 

developed by Eberhart and Kennedy (1995) and modified by Zhang and Brorsen (2009) 

to choose their strategies. PSO is a stochastic global optimization method that tends to 

converge faster than genetic algorithms (Zhang and Brorsen 2009). In Zhang and 

Brorsen’s (2009) PSO algorithm, there are Kk ,...,1 parallel markets, and each buying 

and selling agent has k clones. The idea of parallel markets with clones came from 

watching the way flocks of birds share information to find food and avoid predators. The 

PSO algorithm gives each buyer and seller their own “flock of birds” or clones to share 

information, but the clones do not share information with the clones of the other buyer or 

those of the seller. The agents use their clones’ strategies in the parallel markets to 

determine the strategy that produces the largest revenue. The same number of parallel 

markets is used for the posted-price market and the auction.  
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In the PSO, the ith agent has a choice variable tkix ,,  in parallel market k during 

iteration Tt ,...,1 , and an adjustment velocity ]1,1[,, tkiv  that directs the agent to a 

new value for the choice variable. Each velocity change is a function of the local best 

solution
l

tkip ,,  where superscript l indicates the best solution in the local market and the 

agent’s global best solution
g

tip ,  where superscript g indicates the best global solution. The 

ith agent’s new choice variable in parallel market k is updated by tkitkitki vxx ,,,,1,,    

and the velocity is  

 )()( ,,,22,,,,11,,1,, tki

g

titki

l

tkitkitki xpuqxpuqwvv   
  (3.8) 

where w is the inertia weight factor, u1 and u2 are random variables distributed U[0,1], 

and q1 and q2 are learning parameters. The learning parameters are 

  TtTqq
qq

tt /11

10,2,1    where both 1

0

q and 1

1

q are constants set at one and 

500T is the maximum number of iterations. When selecting an inertia weight w there 

is an important tradeoff between exploration and convergence time to consider 

(Chatterjee and Siarry 2006). A large inertia weight slows convergence, but allows agents 

to have a larger exploration area, while a small inertia weight increases convergence 

time, but reduces the agents’ exploration area (Zhang and Brorsen 2009). Zhang and 

Brorsen (2009) manage this tradeoff by letting w start high and decrease as the model 

proceeds through the iterations, similar to the learning parameters. Inertia weight 

expressed in Zhang and Brorsen (2009) as   TtTw ww

t /10   where both 

w

0 and
w

1 are constants set at 0.75.  



 

82 

At each iteration, the strategy with the largest revenue for the agent in the kth 

market is chosen as the best local strategy. The agents’ best strategy depends on the other 

agents’ choice variables; therefore, the agent’s previous best strategy may not perform 

well in the next iteration. The other agents’ strategies in the current period are held 

constant and the past L best locals of each agent are reevaluated in market k. The best 

local solution is expressed as  

 
 

 tkijtkik

l

Ltkik

l

tkik

l

tki xxRpRpRp ,,,,,,1,,,, )(),(),...,(maxarg   (3.9) 

where kR is the revenue in parallel market k. The best global solution is selected from the 

best local parameters and is  

  .)(,),(),(maxarg ,,2,,21,,1,

l

tKiK

l

ti

l

ti

g

ti pRpRpRp   (3.10)  

Table III-1 shows the values for the PSO parameters used for the agent-based markets. 

 

Convergence Criterion 

A convergence criterion is established to determine when the buyers and the seller cannot 

find bid and reserve price strategies that improve upon their previous strategies. The 

model converges when the total change in the previous 10 strategies for each of the 

agents is less than 0.0000001 and the total change in the standard deviations of the 

strategies are less than 0.00000001. The model has 200 runs (E=200), and in each run 

there is a maximum of 500 iterations (T=500). That is, the agents have 500 iterations (or 

trades) to meet the convergence criterion, and this is repeated 200 times. The results 

presented are the agents’ averages and standard deviations for all 200 runs. If the 

convergence criterion is met by all buying and selling agents, then the next run begins, 

but if the convergence criterion is not met by all buying and selling agents, then the next 
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iteration begins and the PSO learning algorithm guides the agents to improved strategies 

in the next iteration.  

 

Results 

Common Value Auction  

Results for the agent-based first-price common-value auction without a reserve price are 

displayed in the first column of Table III-2. The average winning bid price for the item is 

-0.17, which is interpreted as the average winning bid price is 0.17 below the constant 

positive true value (table III-2). Buyer one has a slightly higher average bid price, 

probability of winning the item, and expected revenue than buyer two. Buyers are 

programmed to be identical so randomness in the PSO algorithm explains the minor 

differences. The seller’s expected revenue per item is -0.17, and since the seller has no 

reserve price, every item is sold (table III-2). The winner’s curse does not occur in the 

agent-based common-value auction without a reserve price, and buyers’ shade bids below 

their retail value. 

The second column of Table III-2 shows the results for the agent-based common-

value auction with a reserve price, which is an extension of Noe et al.’s (2011) model. 

When the seller has perfect information, the average winning bid price is 0.21, and the 

average reserve price is -0.01. The buyers’ expected revenues per item for all winning 

and losing bids are 0.09 (table III-2). The item is sold 60% of the time it is offered, and 

the seller’s expected revenue per item is 0.13 (table III-2). Allowing the seller to choose a 

reserve price in the agent-based common-value auction increases the average winning bid 

price, but buyers’ still shade bids below the retail value of the item.  
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 In the third column of Table III-2, results are presented for the agent-based 

common-value auction when the seller sets a reserve price based on a noisy signal. The 

average winning bid price in the common-value auction is 0.04 and the average reserve 

price is -0.31(table III-2). Compared to the auction results when the seller has perfect 

information, the average winning bid price and reserve price decreases, the buyers’ 

expected revenues per item increase, and the seller’s expected revenue per item decreases 

(table III-2). Buyers are able to increase their bid-shading in the agent-based common-

value auction when the seller receives a noisy reserve price signal, explaining why 

buyers’ expected revenues per item increases and the seller’s expected revenue per item 

decreases.  

 Next, we reduce buyers’ noisy signal to be distributed U[0,1/2], and the seller’s 

noisy signal remains distributed U[0,1]. That is, the buyers have more information about 

the value of the item than the seller. Results are displayed in the fourth column of Table 

III-2. The average winning bid price is 0.06, and the average reserve price is -0.44 (table 

III-2). The average winning bid price increases when the buyers receive more 

information, which matches Milgrom and Weber’s (1982) theoretical results. Reducing 

both buyers’ noisy signals in the agent-based common-value auction causes buyers’ and 

the seller’s expected revenue to increase (table III-2).  

 Finally, we present results for an agent-based common-value auction when the 

buyers are asymmetric (table III-2). An advantage of agent-based models is the 

assumption of symmetric buyers found in previous work can be relaxed, which provides 

an additional theoretical contribution to the auction and posted-price market literature. 

Buyer one has a noisy signal that is distributed ]2/1,0[U while buyer two and the seller 
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receives a noisy signal distributed ]1,0[U , representing buyer one having more 

information about the value of the item than the seller and buyer two. The average 

winning bid price is 0.03 and the average reserve price is -0.41 (table III-2). Since buyer 

one has less uncertainty than buyer two, buyer one has a higher average bid price, 

probability of winning, and expected revenue per item than buyer two. The seller’s 

expected revenue per item did not change from when symmetric buyers are participating 

in the auction (table III-2). Overall, asymmetric buyers in a first-price common-value 

auction with a reserve price do not affect the seller’s expected revenue, and appears to 

only benefit the buyer with less uncertainty. 

 

Posted Price Market 

Table III-3 displays the results for the agent-based posted-price market when the buyers 

have a common value for the item. When the seller has perfect information, the average 

selling posted price is 0.25 (table III-3). Buyer one and buyer two have expected revenues 

per item of 0.06, and the seller’s expected revenue per item is 0.13 (table III-3). 

Compared to the common-value auction results when the seller does not impose a reserve 

price, the seller’s expected revenue is higher in the posted-price market. However, when 

the seller imposes a reserve price in the auction and has perfect information, the seller is 

indifferent between these selling methods. Note that in all scenarios, a transaction is more 

likely to occur in the auction market than in the posted price market. 

 The seller is also given a noisy posted price signal and results are presented in the 

second column of Table III-3. The average selling posted price for the item is 0.10, each 

buyer has an expected revenue per item of 0.08, and the seller’s expected revenue per 
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item is 0.03 (table III-3). With the addition of price uncertainty by the seller in the 

posted-price market, average selling price decreases, expected revenues per item increase 

for the buyers, and the seller’s expected revenue per item decreases. The agent-based 

models results reveal that when the buyers have a common value for the item being sold 

the seller’s expected revenue per item in a posted-price market is equivalent to the 

seller’s expected revenue in an auction with a reserve price.  

 In the third column of Table III-3, results are shown when the buyers noisy signal 

is reduced to be distributed U[0,1/2] and the seller’s noisy signal is distributed U[0,1]. 

This represents a posted-price market when buyers have more information about the 

value of the item than the seller. Buyers increase their willingness-to-pay for the item, but 

the seller chooses to decrease their average selling posted price to 0.06 (table III-3). Both 

buyers have expected revenue per item of 0.12, and the seller’s expected revenue per item 

is 0.02, which is a slight decrease from when they have equal uncertainty (table III-3). 

Compared to the auction when buyers have less uncertainty than the seller, the seller 

receives slightly smaller expected revenue in a posted-price market. This result indicates 

that when buyers’ uncertainty is reduced by half the seller is slightly better off auctioning 

the item when buyers have a common value for the item. Seller uncertainty hurts the 

seller more in the posted price market than it does in the auction. This result is consistent 

with Milgorm and Weber’s (1982) conclusion that a posted price does not work well 

when the seller does not know what posted price to choose.  

 Finally, results are presented in the fourth column of Table III-3 when asymmetric 

buyers participate in the posted-price market. This scenario matches the asymmetric 

buyers in the agent-based auction with buyer one having less uncertainty (or more 
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information) than buyer two and the seller. The average selling posted price is 0.09, 

which is a slight decrease from when symmetric buyers are participating in the posted-

price market (table III-3). The seller’s expected revenue per item does not change from 

when symmetric buyers are participating in the posted-price market, and is equivalent to 

the seller’s expected revenue per item in the auction with symmetric and asymmetric 

buyers. We can conclude that asymmetric buyers do not affect the seller’s choice of 

selling an item in an auction or posted-price market when the value of the item is 

common between buyers. Results appear to suggest when only one buyer’s noisy signal is 

reduced by half then the seller is indifferent between the selling methods. 

 

Conclusions 

We compare the seller’s expected revenue from selling an item in an auction with a 

reserve price and a posted-price market when the item being sold has a common value 

between the buyers. An agent-based first-price common-value auction with a reserve 

price and an agent-based posted-price market are developed to determine the method that 

is optimal for the seller. Our approach to comparing these selling methods is 

straightforward and similar to Wang’s (1993) private value models and Campbell and 

Levin (2006) affiliated value models. The results from the agent-based model provide a 

unique theoretical contribution to the literature.   

  Solving for the equilibrium of a common-value auction with a noisy reserve price 

is perhaps intractable and obtaining data through human and field experiments is 

expensive and cannot control for participates motivation. An agent-based model approach 

is an appropriate and unique way to address the objective. An agent-based common-value 
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auction was recently presented by Noe et al. (2011), but we extend this model by 

allowing the seller to impose a reserve price, and give the buyers and the seller a noisy 

price signal. The agent-based auction model extends the agent-based modeling literature 

by giving the seller a reserve price.  

 The results from the agent-based models show that the seller receives larger 

expected revenue from selling the item in a posted-price market than an auction without a 

reserve price. When the seller imposes a reserve price, the seller is indifferent between 

the first-price auction and the posted-price market when (1) the seller has perfect 

information and the buyers have a noisy price signal, and (2) when the buyers and the 

seller have equal noisy signals. These results from the agent-based model match what 

Kultti (1999) found with his theoretical model. We also show when the buyers are 

asymmetric in the models, the seller’s expected revenue is equivalent in the posted-price 

market and auction with a reserve price. However, when both buyers’ noisy signals are 

reduced by half, the seller is slightly better off auctioning the item with a reserve price. In 

the agent-based model, buyers’ bid prices increase when their uncertainty decreases, 

which matches Milgrom and Weber’s (1982) theory, resulting in the seller’s expected 

revenue to being greater than in the posted-price market.  
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Table III-1. Parameter Values for the Particle Swarm Optimization Algorithm 

Parameter Symbol Value 

Intercept of inertia weight w

0  0.75 

Slope of inertia weight w

1  0.75 

Learning parameters intercept q

0  0.75 

Learning parameter slope q

1  0.75 

Parallel markets k 10 

Maximum iterations T 500 

Evolutions E 200 

Memory  L 3 
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Table III-2. Equilibrium Values for the Agent-Based Common-Value Auctions 

  Scenario 

Category
a
 No Reserve price 

Seller Has Perfect 

Information
b
 

Noisy Reserve 

Price
c
 

Reduced Buyers’ 

Noise
d
 

Asymmetric Buyers and 

Noisy Reserve Price
e
 

Average winning bid price 
-0.17 

(0.12) 

0.21 

(0.08) 

0.04 

(0.11) 

0.06 

(0.11) 

0.03 

(0.10) 

Reserve price - 
-0.01 

(0.11) 

-0.31 

(0.26) 

-0.44 

(0.22) 

-0.41 

(0.23) 

Buyer 1       

 Average bid price 
-0.33 

(0.13) 

-0.15 

(0.16) 

-0.21 

(0.14) 

-0.04 

(0.14) 

-0.09 

(0.11) 

 Transaction probability  
53.0% 

(12.0%) 

29.0% 

(13.0%) 

37.0% 

(15.0%) 

47.0% 

(20.0%) 

47.0% 

(16.0%) 

 Expected revenue 
0.35 

(0.11) 

0.09 

(0.04) 

0.17 

(0.08) 

0.20 

(0.10) 

0.25 

(0.09) 

Buyer 2      

 Average bid price 
-0.36 

(0.15) 

-0.13 

(0.15) 

-0.23 

(0.15) 

-0.05 

(0.13) 

-0.20 

(0.15) 

 Transaction probability  
47.0% 

(12.0%) 

31.0% 

(14.0%) 

34.0% 

(15.0%) 

43.0% 

(20.0%) 

35.0% 

(15.0%) 

 Expected revenue 
0.32 

(0.09) 

0.09 

(0.04) 

0.16 

(0.07) 

0.19 

(0.10) 

0.14 

(0.06) 

Seller      

 Transaction probability 
100.0% 

(0.0%) 

60.0% 

(20.0%) 

72.0% 

(22.0%) 

90.0% 

(15.0%) 

83.0% 

(17.0%) 

 Expected revenue 
-0.17 

(0.12) 

0.13 

(0.06) 

0.03 

(0.08) 

0.06 

(0.09) 

0.03 

(0.08) 
Note: Standard deviations are presented in parentheses. 
a
 All results, except average winning bid price, are not conditional on winning.  

b
 The seller’s reserve price is not a function of a noisy signal but buyers noisy signal is distributed U[0,1]. 

c
 Seller and buyers noisy signals are independently distributed U [0,1]. 

d
 Errors for the buyers are distributed U [0,0.5] and the errors for the seller is distributed U [0,1]. 

e
 Noisy signal for buyer one is distributed U [0,0.5] and the noisy signal for buyer two’s and the seller are distributed U [0,1]. 
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Table III-3. Equilibrium Values for the Agent-Based Posted-Price Market with a Common Value 

  Scenario 

Category
a
 

Seller Has Perfect 

Information
b
 Noisy Posted Price

c
 

Reduced Buyers’ 

Noise
d
 

Asymmetric Buyers and 

Noisy Posted Price
e
 

Average selling posted price  
0.25 

(0.14) 

0.10 

(0.20) 

0.06 

(0.19) 

0.09 

(0.18) 

Buyer 1      

 Average willingness-to-pay 
0.03 

(0.31) 

0.01 

(0.30) 

0.18 

(0.23) 

0.20 

(0.23) 

 Transaction probability  
26.0% 

(19.0%) 

21.0% 

(17.0%) 

27.0% 

(17.0%) 

30.0% 

(20.0%) 

 Expected revenue 
0.06 

(0.06) 

0.08 

(0.09) 

0.12 

(0.10) 

0.12 

(0.06) 

Buyer 2     

 Average willingness-to-pay 
0.03 

(0.27) 

0.02 

(0.29) 

0.18 

(0.27) 

-0.03 

(0.28) 

 Transaction probability  
25.0% 

(18.0%) 

22.0% 

(17.0%) 

27.0% 

(17.0%) 

17.0% 

(15.0%) 

 Expected revenue 
0.06 

(0.06) 

0.08 

(0.08) 

0.12 

(0.10) 

0.07 

(0.07) 

Seller     

 Transaction probability 
51.0% 

(22.0%) 

42.0% 

(24.0%) 

54.0% 

(21.0%) 

47.0% 

(24.0%) 

 Expected revenue 
0.13 

(0.09) 

0.03 

(0.12) 

0.02 

(0.14) 

0.03 

(0.13) 
Note: Standard deviations are presented in parentheses. 
a
 All results, except average selling posted price, are not conditional on winning.  

b
 The seller’s posted price is not a function of a noisy signal but buyers noisy signal is distributed U [0,1]. 

c
 Seller and buyers noisy signals are independently distributed U [0,1]. 

d
 Errors for the buyers are distributed U [0,0.5] and the errors for the seller is distributed U [0,1]. 

e
 Noisy signal for buyer one is distributed U [0,0.5] and the noisy signal for buyer two’s and the seller are distributed U [0,1]. 



 

95 

 

Figure III-1. Overview of the Agent-Based Auction Model  
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Figure III-2. Overview of the Agent-Based Posted-Price Model  
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APPENDIX A--Program Loops for Calculating Probabilities 

Layers of three loops are programmed to approximate the expected revenues in the agent-

based model: (1) an outside loop, (2) a middle loop, and (3) an inside loop. The seller’s 

noisy reserve price is  mr where  the noisy signal is in the outside loop and m is 

the seller’s choice variable or strategy. The outside loop starts with 0  and 

 increases by 100/1x  until 1 . The probability weight for the outside loop is w . 

Within the outside loop, the middle loop begins, where buyers are given a noisy signal. 

For buyer one, its noisy bid price is  11 xb  where  is the noisy signal for the buyers 

and x1 is buyer one’s choice variable or strategy. The middle loop starts with 0  and 

 increases by x  until 1 . The probability weight for this loop is w . Within the 

middle loop, the inside loop starts and calculates the probability of winning for the 

buyers. Following the example for buyer one, in the inside loop buyer two’s noisy bid 

price is  22 xb  where is the noisy signal in the inside loop and x2 is buyer two’s 

choice variable or strategy. The inside loop starts with 0  and  increases by x  

until 1 , and a probability weight of w . Buyer one’s probability of winning the item is    

  







 



)100/(),100/()100/(|)( 121

100

0

1 



 rxxxwwbF  (A.1) 

where )( 1bF is the probability of buyer one winning the item being offered. The same 

process is followed to solve for buyer two’s probability of winning and is expressed as  

 







 







 rxxxwwbF )100/(),100/()100/(|)( 212

100

0

2  (A.2) 
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where )( 2bF is the probability of buyer one winning the item being offered. When this 

loop is complete, expected revenue for the buyers and the seller are approximated in the 

middle loop. Buyer one’s expected revenue is  

 



 wbFxRE B 


))()(5.0(][ 11

100

0

1 , (A.3) 

buyer two’s expected revenue is  

 



 wbFxRE B 


))()(5.0(][ 22

100

0

2 , (A.4) 

and the seller’s expected revenue is  

 omm

S wbFxbFxRE
m

 


1

0

2211 ))]()(())()[((][


 . (A.5) 

The average winning bid price for the item is ))]()(/([ 21 bFbFRWB S  . 
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APPENDIX B--Mandatory Price Reporting Program 

package PSOmpr; 

/* Program Name: Mandatory Price Reporting Act   

* Author: Chris Boyer  

* Date:   9/10/11 

*/ 

 

/* ******************Program Files 

description:************************************************* 

 * 1. Buyer: models the buyers' behavior; all buyers have the same behavioral rule but have different 

initialized starting values; 

 * 2. PSO: models the PSO algorithm, have two functions: 

 *        a). retest and selected best locals for each parallel market;  

 *        b). select the best global for all markets;  *      

 * 3. ModelPSO:  Main program; 

 * 4. PSOEquilibrium: program to determine the equilibrium; 

 * 5. RetailMarket: retail price is perfect elastic, and is $100 all the times; 

 * 4. Criterion: stores the parameter set of fixed and changing categories; 

 * 5. Seller: Seller behavior 

 * 6. Spot Market: Buyers quantity competitive in the spot market; 

  * */ 

 

import java.io.FileNotFoundException;import java.io.FileOutputStream;import java.io.PrintStream;import 

java.text.DecimalFormat; 

import java.util.*;import tools.P; 

 

/* ******************Model Class*************************************/ 

public class ModelPSO { 

 static int parameterNo=1; 

 static boolean FixedRetailPrice=true;  

 static double Retailstd=0; 

 static int TotalbuyerNumber=1; 

 static int TotalsellerNumber=1; 

 static double Constraint=1;  

 static int EquilibriumNo=100;// run 100 times for each setup and calculate the mean and std for 

the results of all runs; 

 static int Evolution=500;//400 iterations of each run. with iterations, agents repeat the game and 

learn to use the optimal strategies under each setup; 

 static int ParallelMarket=10; 

 static int PSOTestNumber=3; 

 static int WeekPerCycle=1; 

 double variationloop=100; 

 static Random r=new Random(System.currentTimeMillis()*5986587); // identify random variable 

 

public static void main(String args[]) throws FileNotFoundException{ 

 double testprint=1; 

 FileOutputStream out,eout,aout,Pout, a2out, P2out, Sout; 

 PrintStream printOut,eprintOut,aprintOut,PprintOut, a2printOut,P2printOut, SprintOut; 

 

 // titles the output files 

//Acutal Output ; 
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String 

name="PSO"+TotalsellerNumber+"Seller"+BuyerCPCostParameter1+"CapacityCost.txt";out=new 

FileOutputStream(name);printOut=new PrintStream(out); 

         //Parameters 

        String Sname="PSO Parameter Sellers.txt"; Sout=new FileOutputStream(Sname); 

SprintOut=new PrintStream(Sout); 

  //4 buyer Actual Output 

   String aname="PSO for Buyer1.txt";aout=new FileOutputStream(aname); aprintOut=new 

PrintStream(aout); 

 //4 buyer Auction Parameters 

  String Pname="PSO parameters Buyer1.txt"; Pout=new FileOutputStream(Pname); 

PprintOut=new PrintStream(Pout); 

  String a2name="PSO for Buyer2.txt";a2out=new FileOutputStream(a2name); a2printOut=new 

PrintStream(a2out); 

  //4 buyer Auction Parameters 

  String P2name="PSO parameters Buyer2.txt"; P2out=new FileOutputStream(P2name); 

P2printOut=new PrintStream(P2out); 

 

/*******Initialization*********/     

  int    i,j,k,pi,fj;double tmpDouble;   

  // identify other classes except buyers and seller 

  ModelPSO m=new ModelPSO(); 

  RetailMarket bbm=new RetailMarket(m); 

  SpotMarket     dm=new SpotMarket(m); 

  PSOEquilibrium em=new PSOEquilibrium(m); 

  PSO PSO=new PSO(m); 

  Criterion cn=new Criterion(m); 

  // end of class identification 

  //set up template for one of the print outs 

  aprintOut.print("ChoiceV\tMarketP\tProbSold"); 

  a2printOut.print("ChoiceV\tMarketP\tProbSold"); 

  printOut.print("ResP\tMarketP\tProbSold"); 

  SprintOut.print("w\tc1\tc2\tReserveP\t"); 

  PprintOut.print("w\tc1\tc2\tMarketP\t"); 

  P2printOut.print("w\tc1\tc2\tMarketP\t"); 

  for(i=0;i<m.TotalbuyerNumber;i++){aprintOut.print("\t"+" 

Bid"+i+"\t\t"+"Profit"+i+"\t"); PprintOut.print(i+" BR\t");} 

  for(i=0;i<m.TotalbuyerNumber;i++){a2printOut.print("\t"+" 

Bid"+i+"\t\t"+"Profit"+i+"\t");P2printOut.print(i+" BR\t");} 

  for(i=0;i<m.TotalsellerNumber;i++){printOut.print("\tChoiceV"+i+"\t"+"Profit"+i+ "\t");

 SprintOut.print(i+" RR\t");} 

 

 PprintOut.print("time\tEquilibrium");P2printOut.print("time\tEquilibrium");SprintOut.print("time\

tEquilibrium"); 

   

  //set up java output that is printed in the console 

  for(i=0;i<TotalbuyerNumber;i++){ 

   if(i==0) 

    P.t("\t==========buyer "+i+"============="); else 

P.t("\t============buyer "+i+"================"); 

   } 

  P.ln(); 

  for(i=0;i<TotalbuyerNumber;i++){ 

   if(i==0){P.t("\t  CR");P.t("Cbg\tClg "+"\tCgp-pr"+"\tClp-pr"+"\t Q"+"\t 

Cost"+"\tprofit");}  

   else {P.t("\t\t  CR");      
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   P.t(" Cbg\tClg "+"\tCp-pr"+"\t Cl-pr"+"\t Q"+"\t Cost"+"\tprofit");} 

  }// end of print commands  

  //CriterionNo is 4, this is looping the PSO criteria through four times.  

  // this makes the criteria the same for all buyers and sellers 

  for(int CN=0;CN<cn.CriterionNo;CN++){ 

   // this is identifying which parameter estimates to use for the model 

   // gets info from PSO class.  

   PSO.PSOParameterSetting(m,cn, 

CN,cn.MarketStructureFixed,cn.AlgorithmParameterFixed); 

  // loop that runs model 100 evolutions 

 for(int ec=0;ec<EquilibriumNo;ec++){ 

  if(ec==EquilibriumNo-1)P.t("\n Setting No. "+(CN+1)+" : Finish "+EquilibriumNo+" 

runs");     

  //class variables  

  bbm=new RetailMarket(m); 

  dm=new SpotMarket(m); 

  em=new PSOEquilibrium(m); 

  //establishes an array with number of buyers and sellers 

  AuctionBuyer1[] ab1 = new AuctionBuyer1[TotalbuyerNumber];AuctionBuyer2[] ab2 = 

new AuctionBuyer2[TotalbuyerNumber]; 

  Seller[] s=new Seller[TotalsellerNumber]; 

  // constructs a list with number of parallelMarkets 

  LinkedList[] sellerList=new LinkedList[m.ParallelMarket]; 

  LinkedList[] buyer1List=new LinkedList[m.ParallelMarket]; 

  LinkedList[] seller2List=new LinkedList[m.ParallelMarket]; 

  // constructs a list of parallel markets 

  Iterator[] sellerit=new Iterator[m.ParallelMarket]; 

  Iterator[] buyerit=new Iterator[m.ParallelMarket]; 

  Iterator[] seller2=new Iterator[m.ParallelMarket]; 

  Seller seller;AuctionBuyer1 buyer1;AuctionBuyer2 buyer2; 

  // loops that fill the list of buyers and sellers 

  for(i=0;i<TotalbuyerNumber;i++)ab1[i]=new AuctionBuyer1(m,i);  

  for(i=0;i<TotalbuyerNumber;i++)ab2[i]=new AuctionBuyer2(m,i); 

  for(i=0;i<TotalsellerNumber;i++)s[i]=new Seller(m, dm, i); 

 

   /******************Begin Evolution ****************************/ 

                 /****************Begin Main Program*****************************/ 

  /**************Initialization *********************************/ 

  //start measuring solving time 

       long time; 

   em.EquilibriumInitial(); time=System.currentTimeMillis();  

   r=new Random(System.currentTimeMillis()*528789+ec*534757); 

  // starts the iterations or evolutions of trades 

  for(int e=-m.PSOTestNumber;e<m.Evolution;e++){  

  //updates parms for each evolution 

   PSO.UpdatePSOParameter(m, e, cn.AlgorithmParameterFixed); 

   

         /******For every parallel market, buyers and their clones trade simultaneously ************/ 

   // loop for each parallel markets are looped - during each evolution  

  for(int pm=0;pm<ParallelMarket;pm++){ 

  //creates a blank list of available buyers 

     LinkedList AvailableBuyerList=new LinkedList();  AvailableBuyerList.clear(); 

   

      //sets all the buyers to the initial values - calls from buyer 

  for(i=0;i<TotalbuyerNumber;i++){ 
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   ab1[i].EvolutionInitialization(m, bbm, em,PSO, e, 

pm);ab2[i].EvolutionInitialization(m, bbm, em,PSO, e, pm);//initialize} 

     

  for(i=0;i<TotalsellerNumber;i++){s[i].EvolutionInitialization(m, bbm, em,PSO, e, pm);} 

  //loop for week which is 1.  

  //Change weekpercycle to simulate multiple trades 

  for(int week=0;week<WeekPerCycle;week++){ 

  for(i=0;i<TotalbuyerNumber;i++){ 

  ab1[i].WeekInitialization(m,bbm,em,dm, e,pm);ab2[i].WeekInitialization(m,bbm,em,dm, 

e,pm); 

   //sets week values - called from buyer class  } 

  for(i=0;i<TotalsellerNumber;i++){ s[i].WeekInitialization(m,bbm,em,dm, e,pm); 

    //sets week values - called from buyer class } 

    

   // Auction Deal in Spot market 

  dm.AuctionDeal(ab1, ab2, s, m, week, pm); 

  dm.PreviousAverageBidPrice[pm]=dm.AverageBidPrice[pm]; //store market price; 

  dm.PreviousWinBidPrice[pm]=dm.WinBidPrice[pm]; 

  dm.PreviousAverageReservePrice[pm]=dm.AvgRandomRevserve[pm]; 

  for(i=0;i<ab1.length;i++)ab1[i].WeeklyProfit(m, dm, bbm, week, pm); // buyers' profit; 

  for(i=0;i<ab2.length;i++) ab2[i].WeeklyProfit(m, dm, bbm, week, pm); 

  for(i=0;i<s.length;i++) s[i].WeeklyProfit(m, dm, bbm, week, pm);}//end weeks; 

     

for(i=0;i<ab1.length;i++){ ab1[i].StorageParameter(m,pm);ab1[i].StoragePrevious(m, pm);//auction} 

for(i=0;i<ab2.length;i++){ ab2[i].StorageParameter(m,pm);ab2[i].StoragePrevious(m, pm);//auction} 

for(i=0;i<s.length;i++){s[i].StorageParameter(m,pm);s[i].StoragePrevious(m, pm);//auction} 

 }//end parallel market 

  

 //For buyers in auction 

 for(i=0;i<ab1.length;i++){ 

  //for the first 3 iterations, bests global are generated with uniform distribution;  

 

 if(e<0){ab1[i].BestGlobalParameter[1]=0.4+0.6*Math.random();ab1[i].BestGlobalParameter[2]=0

.2+0.8*Math.random();} 

  //for the rest iterations, use PSO to select from best locals; 

  else PSO.ChooseLearningParameterbuyer1(ab1[i], ab1, ab2, s, m, dm, bbm,em, PSO, e);

 } 

  

 for(i=0;i<ab2.length;i++){ 

  //for the first 3 iterations, bests global are generated with uniform distribution;  

 

 if(e<0){ab2[i].BestGlobalParameter[1]=0.4+0.6*Math.random();ab2[i].BestGlobalParameter[2]=0

.2+0.8*Math.random();} 

  //for the rest iterations, use PSO to select from best locals; 

  else PSO.ChooseLearningParameterbuyer2(ab1, ab2[i], ab2, s, m, dm, bbm,em, PSO, e);

 } 

 

 //For buyers in auction 

 for(i=0;i<s.length;i++){ 

  //for the first 3 iterations, bests global are generated with uniform distribution;  

 

 if(e<0){s[i].BestGlobalParameter[1]=0.4+0.6*Math.random();s[i].BestGlobalParameter[2]=0.2+0.

8*Math.random();} 

  //for the rest iterations, use PSO to select from best locals; 

  else PSO.ChooseLearningParameterseller(ab1, ab2, s[i], s, m, dm, bbm,em, PSO, e);} 
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 /******print results 0f every iteration******/ 

if(e>=0){ 

aprintOut.println();aprintOut.print(tools.P.df1.format(dm.AverageBidPrice1[00]));aprintOut.print("\t");  

aprintOut.print(tools.P.df1.format(dm.WinBidPrice[00]));aprintOut.print("\t"); 

aprintOut.print(tools.P.df1.format(dm.P1[00])); 

for(i=0;i<m.TotalbuyerNumber;i++) {   

aprintOut.print("\t\t"+tools.P.df1.format(ab1[i].Bid[00])+"\t"); 

aprintOut.print("\t"+tools.P.df1.format(ab1[i].WeeklyProfit[00][0])+"\t");}  

a2printOut.println();a2printOut.print(tools.P.df1.format(dm.AverageBidPrice2[0]));a2printOut.print("\t"); 

a2printOut.print(tools.P.df1.format(dm.WinBidPrice[0]));a2printOut.print("\t"); 

a2printOut.print(tools.P.df1.format(dm.P2[00])); 

 for(i=0;i<m.TotalbuyerNumber;i++) {   

 a2printOut.print("\t\t"+tools.P.df1.format(ab2[i].Bid[00])+"\t");a2printOut.print("\t"+tools.P.df1.f

ormat(ab2[i].WeeklyProfit[00][0])+"\t");} 

  

printOut.println();printOut.print(tools.P.df1.format(dm.AvgRandomRevserve[0]));printOut.print("\t"); 

printOut.print(tools.P.df1.format(dm.WinBidPrice[0]));printOut.print("\t"); 

printOut.print(tools.P.df1.format(dm.TotalSold[0])); 

 for(i=0;i<m.TotalsellerNumber;i++) {   

printOut.print("\t\t"+tools.P.df1.format(s[i].r[0])+"\t"); 

printOut.print("\t"+tools.P.df1.format(s[i].WeeklyProfit[0][0])+"\t");} 

 }//end print 

 

 /******determine the market equilibrium******/  

em.EquilibriumStorageParameter(ab1, ab2,s, m, dm,e, parameterNo);  

if(e%20==0&&e>20)em.TestEquilibrium(ab1, ab2,s, m,dm, e, parameterNo);//last one: parameter Number 

if(em.JudgeEquilibrium==true||e>=m.Evolution-1){em.StorageBuyer1(ab1, e);em.StorageBuyer2(ab2, 

e);em.StorageSellers(s, e); 

 if(e<m.Evolution-1)em.EquilibriumEnd=e-em.CriterionPerSet+1; 

 else em.EquilibriumEnd=m.Evolution; break;} 

 else continue;  

 }//end evolution; 

   

 /******calculate the running time of each round********/ 

cn.EquilibriumIteration[ec]=em.EquilibriumEnd; 

cn.EquilibriumTime[ec]=System.currentTimeMillis()-time; 

  cn.EquilibriumMarketBid1[ec]=em.MarketBid1[0]; 

for(i=0;i<m.TotalbuyerNumber;i++)cn.EquilibriumBidRatio1[i][ec]=em.CommonValueBid1[i][0]; 

 cn.EquilibriumMarketBid2[ec]=em.MarketBid2[0]; 

for(i=0;i<m.TotalbuyerNumber;i++)cn.EquilibriumBidRatio2[i][ec]=em.CommonValueBid2[i][0]; 

 cn.EquilibriumReserve[ec]=em.rTemp[0]; 

 

 for(i=0;i<m.TotalsellerNumber;i++)cn.EquilibriumReserveRatio[i][ec]=em.ReserveTemp[i][0]; 

 }//end equilibrium; ec reached maximum 

   

 em.MeanDeviation(cn.EquilibriumIteration, cn.Iteration, 100, -

1);em.MeanDeviation(cn.EquilibriumTime, cn.Time, 100, -1); 

 em.MeanDeviation(cn.EquilibriumMarketBid1, cn.MarketBid1, 100, -1); 

 for(i=0;i<m.TotalbuyerNumber;i++)em.MeanDeviation(cn.EquilibriumBidRatio1[i], 

cn.CommonValueBid1[i], 200, -1); 

 em.MeanDeviation(cn.EquilibriumMarketBid2, cn.MarketBid2, 100, -1); 

 

 for(i=0;i<m.TotalbuyerNumber;i++)em.MeanDeviation(cn.EquilibriumBidRatio2[i],cn.Common

ValueBid2[i],200,-1); 

 em.MeanDeviation(cn.EquilibriumReserve, cn.ReservePrice, 100, -1); 
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 for(i=0;i<m.TotalsellerNumber;i++)em.MeanDeviation(cn.EquilibriumReserveRatio[i],cn.Reserv

eTemp[i],200,-1); 

   

/******print the results when market reaches equilibrium******/  

  PprintOut.println("");P2printOut.println(""); SprintOut.println(""); 

  if(cn.MarketStructureFixed==false){ 

  

 PprintOut.print(tools.P.df1.format(m.ParallelMarket)+"\t");PprintOut.print(tools.P.df1.format(m.P

SOTestNumber)+"\t"); 

   PprintOut.print("\t"); } 

  else 

if(cn.AlgorithmParameterFixed==true){PprintOut.print(tools.P.df1.format(PSO.w)+"\t");PprintOut.print(to

ols.P.df1.format(PSO.c1)+"\t"); 

  PprintOut.print(tools.P.df1.format(PSO.c2)+"\t");} 

 

 else{PprintOut.print(tools.P.df1.format(PSO.wup)+"\t");PprintOut.print(tools.P.df1.format(PSO.c

up)+"\t"); 

  PprintOut.print(tools.P.df1.format(PSO.cup)+"\t");} 

  if(cn.MarketStructureFixed==false){ 

  P2printOut.print(tools.P.df1.format(m.ParallelMarket)+"\t"); 

P2printOut.print(tools.P.df1.format(m.PSOTestNumber)+"\t"); 

   P2printOut.print("\t");} 

  else if(cn.AlgorithmParameterFixed==true){ 

 

 P2printOut.print(tools.P.df1.format(PSO.w)+"\t");P2printOut.print(tools.P.df1.format(PSO.c1)+"\t

"); 

  P2printOut.print(tools.P.df1.format(PSO.c2)+"\t");} 

  else{ 

  P2printOut.print(tools.P.df1.format(PSO.wup)+"\t");     

P2printOut.print(tools.P.df1.format(PSO.cup)+"\t"); 

  P2printOut.print(tools.P.df1.format(PSO.cup)+"\t"); } 

   

  if(cn.MarketStructureFixed==false){ 

  

 SprintOut.print(tools.P.df1.format(m.ParallelMarket)+"\t");SprintOut.print(tools.P.df1.format(m.P

SOTestNumber)+"\t");    SprintOut.print("\t");} 

  else if(cn.AlgorithmParameterFixed==true){ 

 

 SprintOut.print(tools.P.df1.format(PSO.w)+"\t");SprintOut.print(tools.P.df1.format(PSO.c1)+"\t"); 

  SprintOut.print(tools.P.df1.format(PSO.c2)+"\t");} 

  else{ 

 

 SprintOut.print(tools.P.df1.format(PSO.wup)+"\t");SprintOut.print(tools.P.df1.format(PSO.cup)+"

\t"); 

  SprintOut.print(tools.P.df1.format(PSO.cup)+"\t");} 

   

  //*print out mean of market price, buyers' strategies, run time and iterations the program 

used reaching equilibrium ;  

 

 PprintOut.print(tools.P.df1.format(cn.MarketBid1[0])+"\t");P2printOut.print(tools.P.df1.format(cn

.MarketBid2[0])+"\t"); 

  SprintOut.print(tools.P.df1.format(cn.ReservePrice[0])+"\t"); 

for(i=0;i<m.TotalbuyerNumber;i++){PprintOut.print(tools.P.df0.format(cn.CommonValueBid1[i]

[0])+"\t");}  
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 for(i=0;i<m.TotalbuyerNumber;i++){P2printOut.print(tools.P.df0.format(cn.CommonValueBid2[i

][0])+"\t");} 

 

 for(i=0;i<m.TotalsellerNumber;i++){SprintOut.print(tools.P.df0.format(cn.ReserveTemp[i][0])+"\

t");} 

 PprintOut.print(tools.P.df0.format(cn.Time[0])+"\t");

 P2printOut.print(tools.P.df0.format(cn.Time[0])+"\t"); 

 SprintOut.print(tools.P.df0.format(cn.Time[0])+"\t"); 

if(cn.Iteration[0]>=m.Evolution-1) PprintOut.print("N/A\t");else 

PprintOut.print(tools.P.df0.format(cn.Iteration[0])+"\t"); 

if(cn.Iteration[0]>=m.Evolution-1) P2printOut.print("N/A\t");else 

P2printOut.print(tools.P.df0.format(cn.Iteration[0])+"\t"); 

if(cn.Iteration[0]>=m.Evolution-1) SprintOut.print("N/A\t");else 

SprintOut.print(tools.P.df0.format(cn.Iteration[0])+"\t"); 

 //print out standard deviation;  

 PprintOut.println("");PprintOut.print("\t\t\t");P2printOut.println("");P2printOut.print("\t\t\t"); 

 SprintOut.println("");SprintOut.print("\t\t\t"); 

 

 PprintOut.print(tools.P.df1.format(cn.MarketBid1[1])+"\t");P2printOut.print(tools.P.df1.format(cn

.MarketBid2[1])+"\t"); 

  SprintOut.print(tools.P.df1.format(cn.ReservePrice[1])+"\t"); 

 

 for(i=0;i<m.TotalbuyerNumber;i++){PprintOut.print(tools.P.df0.format(cn.CommonValueBid1[i]

[1])+"\t");}  

 

 for(i=0;i<m.TotalbuyerNumber;i++){P2printOut.print(tools.P.df0.format(cn.CommonValueBid2[i

][1])+"\t");}  

 

 for(i=0;i<m.TotalsellerNumber;i++){SprintOut.print(tools.P.df0.format(cn.ReserveTemp[i][1])+"\

t");}  

 PprintOut.print(tools.P.df0.format(cn.Time[1])+"\t");

 P2printOut.print(tools.P.df0.format(cn.Time[1])+"\t"); 

 SprintOut.print(tools.P.df0.format(cn.Time[1])+"\t"); 

if(cn.Iteration[0]>=m.Evolution-1) PprintOut.print("");else 

PprintOut.print(tools.P.df0.format(cn.Iteration[1])+"\t"); 

if(cn.Iteration[0]>=m.Evolution-1) P2printOut.print("");else 

P2printOut.print(tools.P.df0.format(cn.Iteration[1])+"\t"); 

if(cn.Iteration[0]>=m.Evolution-1) SprintOut.print("");else 

SprintOut.print(tools.P.df0.format(cn.Iteration[1])+"\t"); 

 }//end criterion   

 P.t("\n\n End of the simulation"); PprintOut.close(); P2printOut.close();SprintOut.close(); 

} 

 

 

/* ******************Buyer 1 Class**************************************************/ 

 

package PSOmpr;import java.util.*;import tools.*;import java.lang.*; 

public class AuctionBuyer1 { 

 Random r= new Random();Random s= new Random();Random rp = new Random(); 

    

 AuctionBuyer1(ModelPSO m,int id){ 

  ID=id;   

 cost0=m.BuyerCostParameter0;cost1=m.BuyerCostParameter1;cost2=m.BuyerCostParameter2; 

  PreviousBidRatio=new double[m.ParallelMarket]; 

  Bid =new double[m.ParallelMarket]; 
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  PreviousBid1=new double[m.ParallelMarket]; 

  CommonValueBid=new double[m.ParallelMarket]; 

  Quantity=new double[m.ParallelMarket]; 

  PreviousQuantity=new double[m.ParallelMarket]; 

  vector=new double[m.ParallelMarket][2];BestLocalParameter=new 

double[m.ParallelMarket][3];BestGlobalParameter=new double[3]; 

LocalParameter=new double[m.PSOTestNumber+1][m.ParallelMarket][3]; 

  Cost=new double[m.ParallelMarket];PreviousCost=new double[m.ParallelMarket]; 

  Profit=new double[m.ParallelMarket]; 

  WeeklyProfit=new double[m.ParallelMarket][m.WeekPerCycle]; 

  PreviousProfit=new double[m.ParallelMarket]; 

  CommonValue=new double[m.ParallelMarket]; 

  PercentQuantity=new double[m.ParallelMarket];} 

    

  int ID;double[] Cost; double[] PreviousCost;double cost0, cost1, cost2; 

  double [][]BestLocalParameter;double[] BestGlobalParameter; double[][][] 

LocalParameter;double[][] vector; 

  double[] PreviousBidRatio; 

  double[] Bid; 

  double[] Quantity; 

  double[] PreviousQuantity; 

  double[][] WeeklyProfit; double[] Profit;double[] PreviousProfit; 

  double[] PercentQuantity; 

  boolean[] PutBid; 

      

  void EvolutionInitialization(ModelPSO m, RetailMarket bbm, PSOEquilibrium em, PSO 

PSO, int e, int pm) { 

  for(int i=0;i<m.WeekPerCycle;i++) WeeklyProfit[pm][i]=0; 

  CommonValueBid(m, PSO, e, pm); } 

       

  void WeekInitialization(ModelPSO m, RetailMarket bbm, PSOEquilibrium em, 

SpotMarket dm,int e, int pm){ 

  Bid(m, em, dm, e, pm); Quantity[pm]=0; Profit[pm]=0;  

} // end of weekinitialization 

   

  void CommonValueBid(ModelPSO m, PSO PSO, int e, int pm){    

  // this is for the first 20 trades when values are initialized  

  if(e<0){ CommonValueBid[pm]=0.2+0.3*Math.random();  

   

 LocalParameter[e+m.PSOTestNumber][pm][2]=0.2+0.3*Math.random(); 

    BestGlobalParameter[2]=0.2+0.3*Math.random(); 

   

 BestLocalParameter[pm][2]=LocalParameter[e+m.PSOTestNumber][pm][2]; 

    return; }// after that e > 0 

  // velocity 

vector[pm][1]=PSO.w*vector[pm][1]+PSO.c1*m.r.nextDouble()*(BestLocalParameter[pm][2]-

PreviousBidRatio[pm])+PSO.c2*m.r.nextDouble()*(BestGlobalParameter[2]-PreviousBidRatio[pm]);  

  // bid stragety 

  CommonValueBid[pm]=vector[pm][1]+PreviousBidRatio[pm]; 

   if(CommonValueBid[pm]> 1){   CommonValueBid[pm]=1;     } 

   else if(CommonValueBid[pm]<-1){   CommonValueBid[pm]=-1;   } 

   vector[pm][1]=CommonValueBid[pm]-PreviousBidRatio[pm]; 

  } // end of BidStrategy 

 

  void Bid(ModelPSO m, PSOEquilibrium em, SpotMarket dm, int e, int pm){ 

   Bid[pm]=CommonValueBid[pm]; 



 

108 

  } // end of Bid 

     

  void WeeklyProfit(ModelPSO m, SpotMarket dm, RetailMarket bbm, int week, int pm){ 

   WeeklyProfit[pm][week]=dm.Eprofit1[pm];     

  } // end of Profit 

   

  void StorageParameter(ModelPSO m, int pm){ 

   double profitC=0;int week;double count=0; 

      if(m.WeekPerCycle>1)week=1;else week=0; 

   for(int i=week;i<m.WeekPerCycle;i++){ 

   profitC+=WeeklyProfit[pm][i];count++;} 

   profitC=profitC/count;Profit[pm]=WeeklyProfit[pm][week];    

  } // end of Storage Parameter 

   

  void StoragePrevious(ModelPSO m, int pm){ 

    PreviousBidRatio[pm]= CommonValueBid[pm]; PreviousBid1[pm]=Bid[pm]; 

PreviousQuantity[pm]= Quantity[pm]; 

        PreviousProfit[pm]=Profit[pm]; PreviousCost[pm]= Cost[pm];  

  

  } // end of StoragePrevious  

  

} // end of BuyerAuction1 

 

 

/* ******************Buyer 2 Class**************************************************/ 

package PSOmpr;import java.util.*;import tools.*;import java.lang.*; 

public class AuctionBuyer2 { 

 Random r= new Random();Random s= new Random();Random rp = new Random(); 

   

 AuctionBuyer2(ModelPSO m,int id){ 

ID=id;cost0=m.BuyerCostParameter0;cost1=m.BuyerCostParameter1; 

  PreviousBidRatio=new double[m.ParallelMarket]; 

  Bid =new double[m.ParallelMarket];PreviousBid=new double[m.ParallelMarket]; 

  TempBid= new double[m.ParallelMarket]; 

  CommonValueBid=new double[m.ParallelMarket]; 

  Quantity=new double[m.ParallelMarket]; 

  PreviousQuantity=new double[m.ParallelMarket]; 

  vector=new double[m.ParallelMarket][2]; 

  BestLocalParameter=new double[m.ParallelMarket][3];BestGlobalParameter=new 

double[3]; 

  LocalParameter=new double[m.PSOTestNumber+1][m.ParallelMarket][3]; 

  Cost=new double[m.ParallelMarket];PreviousCost=new double[m.ParallelMarket]; 

  Profit=new double[m.ParallelMarket];WeeklyProfit=new 

double[m.ParallelMarket][m.WeekPerCycle]; 

  PreviousProfit=new double[m.ParallelMarket]; 

  PercentQuantity=new double[m.ParallelMarket]; 

 } 

  int ID;double[] Cost; double[] PreviousCost;double cost0, cost1, cost2;double 

[][]BestLocalParameter; 

  double[] BestGlobalParameter;double[][][] LocalParameter; double[][] vector; 

  double[] PreviousBidRatio; 

  double[] Bid;double[] PreviousBid; 

  double[] Quantity;double[] PreviousQuantity; 

  double[][] WeeklyProfit; double[] Profit;double[] PreviousProfit; 

  double[] PercentQuantity; 

  boolean[] PutBid; 



 

109 

 void EvolutionInitialization(ModelPSO m, RetailMarket bbm, PSOEquilibrium em, PSO PSO, int 

e, int pm) { 

   for(int i=0;i<m.WeekPerCycle;i++)  WeeklyProfit[pm][i]=0; 

   CommonValueBid(m, PSO, e, pm); 

 } 

       

 void WeekInitialization(ModelPSO m, RetailMarket bbm, PSOEquilibrium em, SpotMarket 

dm,int e, int pm){ 

   Bid(m, em, dm, e, pm); Quantity[pm]=0; Profit[pm]=0;   

 } // end of weekinitialization 

   

 void CommonValueBid(ModelPSO m, PSO PSO, int e, int pm){ 

  // this is for the first 20 trades when values are initialized  

   if(e<0){ CommonValueBid[pm]=0.2+0.3*Math.random();  

   

 LocalParameter[e+m.PSOTestNumber][pm][2]=0.2+0.3*Math.random(); 

    BestGlobalParameter[2]=0.2+0.3*Math.random(); 

   

 BestLocalParameter[pm][2]=LocalParameter[e+m.PSOTestNumber][pm][2]; 

    return; }// after that e > 0 

  // velocity 

vector[pm][1]=PSO.w*vector[pm][1]+PSO.c1*m.r.nextDouble()*(BestLocalParameter[pm][2]-

PreviousBidRatio[pm])+PSO.c2*m.r.nextDouble()*(BestGlobalParameter[2]-PreviousBidRatio[pm]);  

  // bid stragety 

    CommonValueBid[pm]=vector[pm][1]+PreviousBidRatio[pm]; 

     if(CommonValueBid[pm]>1){   CommonValueBid[pm]=1;   } 

    else if(CommonValueBid[pm]<-1){  CommonValueBid[pm]=-1;   } 

    vector[pm][1]=CommonValueBid[pm]-PreviousBidRatio[pm];    

 } // end of BidStrategy 

 

 void Bid(ModelPSO m, PSOEquilibrium em, SpotMarket dm, int e, int pm){ 

   Bid[pm]=CommonValueBid[pm];//Math.max(CommonValueBid[pm], 

dm.information);   

 } // end of Bid 

     

 void WeeklyProfit(ModelPSO m, SpotMarket dm, RetailMarket bbm, int week, int pm){ 

   WeeklyProfit[pm][week]=dm.Eprofit2[pm];    

 } // end of Profit 

   

 void StorageParameter(ModelPSO m, int pm){ 

   double profitC=0;int week;double count=0; 

      if(m.WeekPerCycle>1)week=1;else week=0; 

   for(int i=week;i<m.WeekPerCycle;i++){ 

   profitC+=WeeklyProfit[pm][i];count++;} 

   profitC=profitC/count;Profit[pm]=WeeklyProfit[pm][week];    

 } // end of Storage Parameter 

   

 void StoragePrevious(ModelPSO m, int pm){ 

    PreviousBidRatio[pm]= CommonValueBid[pm]; PreviousBid[pm]=Bid[pm]; 

PreviousQuantity[pm]= Quantity[pm]; 

        PreviousProfit[pm]=Profit[pm]; PreviousCost[pm]= Cost[pm];  

  

 } // end of StoragePrevious 

   

} // end of BuyerAuction2 

 



 

110 

 

/* ******************Seller Class**************************************************/ 

package PSOmpr;import java.util.*;import tools.P; 

public class Seller { 

 Random s= new Random(); 

 Seller(ModelPSO m,SpotMarket dm,int id){   

  ID=id; 

  PreviousBidRatio=new double[m.ParallelMarket]; 

  r =new double[m.ParallelMarket]; PreviousBid=new double[m.ParallelMarket]; 

  ReservePrice=new double[m.ParallelMarket]; 

  Quantity=new double[m.ParallelMarket]; 

  PreviousQuantity=new double[m.ParallelMarket]; 

  vector=new double[m.ParallelMarket][2]; 

  BestLocalParameter=new double[m.ParallelMarket][3];BestGlobalParameter=new 

double[3]; 

  LocalParameter=new double[m.PSOTestNumber+1][m.ParallelMarket][3]; 

  Cost=new double[m.ParallelMarket];PreviousCost=new double[m.ParallelMarket]; 

  Profit=new double[m.ParallelMarket];WeeklyProfit=new 

double[m.ParallelMarket][m.WeekPerCycle]; 

  PreviousProfit=new double[m.ParallelMarket]; 

 } 

    

  int ID;double[] Cost; double[] PreviousCost;double cost0, cost1, cost2; 

  double [][]BestLocalParameter;double[] BestGlobalParameter;double[][][] 

LocalParameter;double[][] vector; 

  double[] PreviousBidRatio; 

  double[] r;double[] PreviousBid; 

  double[] ReservePrice; 

  double[] Quantity;double[] PreviousQuantity; 

  double[][] WeeklyProfit; double[] Profit;double[] PreviousProfit; 

  double[] PercentQuantity; 

  boolean[] PutBid; 

   

  void EvolutionInitialization(ModelPSO m, RetailMarket bbm, PSOEquilibrium em, PSO 

PSO, int e, int pm) { 

   for(int i=0;i<m.WeekPerCycle;i++) WeeklyProfit[pm][i]=0;    

   ReservePrice(m, PSO, e, pm); 

  } 

       

  void WeekInitialization(ModelPSO m, RetailMarket bbm, PSOEquilibrium em, 

SpotMarket dm,int e, int pm){ 

   R(m, em, dm, e, pm);Quantity[pm]=0;Profit[pm]=0;    

  

  } // end of weekinitialization 

   

  void ReservePrice(ModelPSO m, PSO PSO, int e, int pm){ 

   // this is for the first 20 trades when values are initialized  

   if(e<0){ReservePrice[pm]=0.2+0.3*Math.random();  

   

 LocalParameter[e+m.PSOTestNumber][pm][2]=0.2+0.3*Math.random(); 

    BestGlobalParameter[2]=0.2+0.3*Math.random(); 

   

 BestLocalParameter[pm][2]=LocalParameter[e+m.PSOTestNumber][pm][2]; 

    return;}// after that e > 0 

  // velocity 
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vector[pm][1]=PSO.w*vector[pm][1]+PSO.c1*m.r.nextDouble()*(BestLocalParameter[pm][2]-

PreviousBidRatio[pm])+PSO.c2*m.r.nextDouble()*(BestGlobalParameter[2]-PreviousBidRatio[pm]);  

  // bid stragety 

  ReservePrice[pm]=vector[pm][1]+PreviousBidRatio[pm]; 

     if(ReservePrice[pm]>1){   ReservePrice[pm]=1;  } 

    else if(ReservePrice[pm]<-1){  ReservePrice[pm]=-1;   } 

   vector[pm][1]=ReservePrice[pm]-PreviousBidRatio[pm];    

  } // end of BidStrategy 

 

  void R(ModelPSO m, PSOEquilibrium em, SpotMarket dm, int e, int pm){ 

     r[pm]=ReservePrice[pm]; 

} // end of Bid 

     

  void WeeklyProfit(ModelPSO m, SpotMarket dm, RetailMarket bbm, int week, int pm){ 

   WeeklyProfit[pm][week]=dm.SellerEprofit[pm];    

  } // end of Profit 

   

  void StorageParameter(ModelPSO m, int pm){ 

   double profitC=0;int week;double count=0; 

      if(m.WeekPerCycle>1)week=1;else week=0; 

   for(int i=week;i<m.WeekPerCycle;i++){ 

   profitC+=WeeklyProfit[pm][i];count++;} 

   profitC=profitC/count; Profit[pm]=profitC;    

  } // end of Storage Parameter   

   

  void StoragePrevious(ModelPSO m, int pm){ 

   PreviousBidRatio[pm]= ReservePrice[pm];  PreviousBid[pm]=r[pm];  

PreviousQuantity[pm]= Quantity[pm]; 

       PreviousProfit[pm]=Profit[pm]; PreviousCost[pm]= Cost[pm]; 

 } // end of StoragePrevious 

} // end of Seller 

 

 

/* ******************Auction Market 

Class**************************************************/ 

package PSOmpr;import java.util.*;import tools.*; 

 

public class AuctionMarket { 

 double Distribution;  

 double PreviousAveragePrice[]; 

 double AveragePrice[]; 

 double Prob[];double Prob1[];double Prob2[]; double P1[];double P2[]; 

 double Eprofit1[];double Eprofit2[]; 

 double TempEprofit1[];double TempEprofit2[]; 

 double AverageBidPrice[];double AverageBidPrice1[];double AverageBidPrice2[]; 

 double PreviousWinBidPrice[]; 

 double TotalAverageBidPrice[];double TempAverageBidPrice[]; 

 double PreviousAverageBidPrice[]; 

 double PreviousAverageReservePrice[]; 

 double TempBid1[];double TempBid2[]; 

 double RandomBid1[];double RandomBid2[]; 

 double TempRandomBid1[];double TempRandomBid2[]; 

 double SumRandomBid1[];double SumRandomBid2[];double SumRandomReserve[]; 

 double TotalProfit[];double AverageProfit[]; 

 double TotalReserve[];double AverageReserve[];double RandomAverageReserve[]; 

 double TempRandomAverageReserve[]; 
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 double SellerEprofit[];double SellerEprofit1[];double SellerEprofit2[]; 

 double TotalBid1[];double TotalBid2[]; 

 double AvgRandomRevserve[]; 

 double TotalSold[];double TempTotalSold[]; 

 double Factor1[];double Factor2[]; 

 double WinBidPrice[]; 

   

 SpotMarket(ModelPSO m){ 

  AveragePrice=new double[m.ParallelMarket] ; 

  WinBidPrice=new double[m.ParallelMarket]; 

  PreviousAveragePrice=new double[m.ParallelMarket]; 

  TotalQuantity1=new double[m.ParallelMarket];TotalQuantity2=new 

double[m.ParallelMarket]; 

  Prob=new double[m.ParallelMarket];Prob1=new double[m.ParallelMarket];Prob2=new 

double[m.ParallelMarket]; 

  Eprofit1=new double[m.ParallelMarket];Eprofit2=new double[m.ParallelMarket]; 

  TempEprofit1=new double[m.ParallelMarket];TempEprofit2=new 

double[m.ParallelMarket]; 

  AverageBidPrice=new double[m.ParallelMarket]; 

  AverageBidPrice1=new double[m.ParallelMarket];AverageBidPrice2=new 

double[m.ParallelMarket]; 

  SumRandomReserve=new double[m.ParallelMarket]; 

  PreviousWinBidPrice=new double[m.ParallelMarket]; 

  PreviousAverageBidPrice=new double[m.ParallelMarket]; 

  PreviousAverageReservePrice=new double[m.ParallelMarket]; 

  TempBid1=new double[m.ParallelMarket]; TempBid2=new double[m.ParallelMarket]; 

  RandomBid1=new double[m.ParallelMarket];RandomBid2=new 

double[m.ParallelMarket]; 

  TempRandomBid1=new double[m.ParallelMarket]; TempRandomBid2=new 

double[m.ParallelMarket]; 

  SumRandomBid1=new double[m.ParallelMarket];SumRandomBid2=new 

double[m.ParallelMarket]; 

  TotalProfit=new double[m.ParallelMarket]; 

  AverageProfit=new double[m.ParallelMarket]; 

  TotalReserve=new double[m.ParallelMarket];AverageReserve=new 

double[m.ParallelMarket]; 

  RandomAverageReserve=new double[m.ParallelMarket]; 

  SellerEprofit= new double [m.ParallelMarket];SellerEprofit1= new double 

[m.ParallelMarket];SellerEprofit2= new double [m.ParallelMarket]; 

  TempRandomAverageReserve=new double[m.ParallelMarket]; 

  TempSellerEprofit=new double[m.ParallelMarket]; 

  TempAverageBidPrice=new double[m.ParallelMarket];TotalAverageBidPrice=new 

double[m.ParallelMarket]; 

  TotalBid1=new double[m.ParallelMarket]; TotalBid2=new double[m.ParallelMarket]; 

  AvgRandomRevserve=new double[m.ParallelMarket]; 

  TotalSold=new double[m.ParallelMarket]; TempTotalSold=new 

double[m.ParallelMarket]; 

  Factor1=new double[m.ParallelMarket]; Factor2=new double[m.ParallelMarket]; 

  P1=new double[m.ParallelMarket]; P2=new double[m.ParallelMarket]; 

 } 

  

 void DirectMarketInitialzation(ModelPSO m,AuctionBuyer1[] p, Seller[] f){ 

  Arrays.fill(AveragePrice,0);Arrays.fill(PreviousAveragePrice, 0); 

 } 
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public void AuctionDeal(AuctionBuyer1[] ab1, AuctionBuyer2[] ab2, Seller[] s, ModelPSO m, int week, 

int pm){ 

 TotalReserve[pm]=0;TotalBid1[pm]=0;TotalBid2[pm]=0; 

 for(int t=0;t<ab1.length;t++){TotalBid1[pm]=ab1[0].Bid[pm];// choice variable} 

 for(int t=0;t<ab2.length;t++){TotalBid2[pm]=ab2[0].Bid[pm];//choice variable [0,1]} 

 for(int t=0;t<s.length;t++){TotalReserve[pm]=s[0].r[pm];} 

 AverageReserve[pm]=TotalReserve[pm]/m.TotalsellerNumber; 

 

Distribution = 100; 

AverageBidPrice[pm]=0;WinBidPrice[pm]=0;TempEprofit1[pm]=0;TempEprofit2[pm]=0;SellerEprofit[p

m]=0;;TotalSold[pm]=0;SumRandomReserve[pm]=0;RandomAverageReserve[pm]=0;Eprofit1[pm]=0;Epr

ofit2[pm]=0;SellerEprofit[pm]=0;P1[pm]=0;P2[pm]=0;SumRandomBid1[pm]=0;SumRandomBid2[pm]=0

;  

 

//Loop with the Stochastic Reserve Price  

for(double c3=0; c3<=Distribution;c3++){ 

if(c3!=0 && c3!=Distribution)Factor1[pm]=1/Distribution; 

else Factor1[pm]=(1/Distribution)/2; 

RandomAverageReserve[pm]=AverageReserve[pm]-c3/m.variationloop; 

 for(double c1=0;c1<=m.variationloop;c1++){ 

  if(c1!=0 && c1!=m.variationloop)Factor2[pm]=1/m.variationloop; 

  else Factor2[pm]=.5/m.variationloop;   

  Prob2[pm]=0;Prob1[pm]=0; 

  TempRandomBid1[pm]=0;TempRandomBid2[pm]=0; 

  RandomBid1[pm]=TotalBid1[pm]-c1/m.variationloop ; 

  RandomBid2[pm]=TotalBid2[pm]-c1/m.variationloop ; 

   

  // Inside loop bidder 2 

  for(double c2=0;c2<=m.variationloop;c2++){ 

   if(c2!=0 && c2!=m.variationloop)Prob[pm]=1/m.variationloop; 

   else Prob[pm]=(1/m.variationloop)/2; 

   

  TempRandomBid2[pm]=TotalBid2[pm]-c2/m.variationloop;  

  if(RandomBid1[pm]>TempRandomBid2[pm] && 

RandomBid1[pm]>=RandomAverageReserve[pm])Prob1[pm]=Prob1[pm]+(Prob[pm])*Factor2[pm]; 

  else if(RandomBid1[pm]==TempRandomBid2[pm] && 

RandomBid1[pm]>=RandomAverageReserve[pm])Prob1[pm]=Prob1[pm]+(Prob[pm]/2)*Factor2[pm]; 

   

  TempRandomBid1[pm]=TotalBid1[pm]-c2/m.variationloop;  

  if(RandomBid2[pm]>TempRandomBid1[pm] && 

RandomBid2[pm]>=RandomAverageReserve[pm])Prob2[pm]=Prob2[pm]+(Prob[pm])*Factor2[pm]; 

  else if(RandomBid2[pm]==TempRandomBid1[pm] && 

RandomBid2[pm]>=RandomAverageReserve[pm])Prob2[pm]=Prob2[pm]+(Prob[pm]/2)*Factor2[pm];  

  } 

 P1[pm]+=Prob1[pm]*Factor1[pm]; 

 P2[pm]+=Prob2[pm]*Factor1[pm]; 

 SumRandomBid1[pm]+=RandomBid1[pm]*Factor1[pm]; 

 SumRandomBid2[pm]+=RandomBid2[pm]*Factor1[pm]; 

 TotalSold[pm]=TotalSold[pm]+(Prob1[pm]+Prob2[pm])*Factor1[pm]; 

 Eprofit1[pm]=Eprofit1[pm]+((0.5-RandomBid1[pm])*Prob1[pm])*Factor1[pm]; 

 Eprofit2[pm]=Eprofit2[pm]+((0.5-RandomBid2[pm])*Prob2[pm])*Factor1[pm]; 

 SellerEprofit[pm]=SellerEprofit[pm]+(RandomBid1[pm]*Prob1[pm]+RandomBid2[pm]*Prob2[p

m])*Factor1[pm]; 

 } 

 SumRandomReserve[pm]+=RandomAverageReserve[pm];  

}//end of third loop*/ 
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AvgRandomRevserve[pm]=SumRandomReserve[pm]/Distribution;  

AverageBidPrice1[pm]=(SumRandomBid1[pm]/m.variationloop); 

AverageBidPrice2[pm]=(SumRandomBid2[pm]/m.variationloop); 

AverageBidPrice[pm]=(AverageBidPrice1[pm]+AverageBidPrice2[pm])/2; 

WinBidPrice[pm]=(SellerEprofit[pm]/TotalSold[pm]); 

PreviousAverageBidPrice[pm]=AverageBidPrice[pm]; 

PreviousWinBidPrice[pm]=WinBidPrice[pm]; 

PreviousAverageReservePrice[pm]=AvgRandomRevserve[pm];//AverageReserve[pm]; 

}//end of AuctionDeal 

}// end of auction market 

 

 

/* ******************PSO algorithm **************************************************/ 

package PSOmpr;import java.util.*; 

public class PSO { 

 double w=.4,c1=1,c2=1;//w=0.98,c1=2,c2=2;double wup,cup;int Converge=0; 

  

    PSO(ModelPSO m){Converge=m.Evolution;} 

  

 void UpdatePSOParameter(ModelPSO m, int e,boolean Fixed){ 

  if(Fixed==true)return; 

  else{ 

  if(e<0)e+=m.PSOTestNumber;   

  w=wup*(double)Math.max(0,(this.Converge-e))/(double)this.Converge; 

  c1=cup*(double)Math.max(0,(this.Converge-e))/(double)this.Converge; //local 

  c2=c1;//global} 

 } 

  

void PSOParameterSetting(ModelPSO m,Criterion cn,int CN,boolean 

MarketStructureFixed,boolean AlgorithmParameterFixed){ 

  if(MarketStructureFixed==false){ 

   m.ParallelMarket=cn.pm[CN];m.PSOTestNumber=cn.localTest[CN];  

   if(AlgorithmParameterFixed==true){ 

    w=.4;c1=1;c2=1; } 

    else{wup=.5; cup=1;Converge=400;}   

  } 

  else if(AlgorithmParameterFixed==true){w=cn.w[CN];   c1=cn.c1[CN];   

c2=cn.c2[CN];} 

  else{wup=cn.wup[CN];cup=cn.cup[CN];Converge=cn.Converge[CN];}   

 } 

  

 //Choose PSO learning parameter: best local & best global; 

 //Choose PSO learning parameter: best local & best global for Auction ; 

void ChooseLearningParameterbuyer1(AuctionBuyer1 buyer1, AuctionBuyer1[] ab1,  

AuctionBuyer2[] ab2,Seller[] s,ModelPSO m,SpotMarket dm,RetailMarket bbm,PSOEquilibrium em,PSO 

PSO,int e){ 

   int count=0; 

   double LocalListAuction[][][]=new 

double[m.PSOTestNumber+1][m.ParallelMarket][3];//[0:parameter][1:capacity parameter] 

   //initial     

   for(int pm=0;pm<m.ParallelMarket;pm++){      

    buyer1.BestLocalParameter[pm][0]=-2000000000;   

   

    for(count=0;count<m.PSOTestNumber+1;count++){  

LocalListAuction[count][pm][1]=-

1;LocalListAuction[count][pm][2]=-1;} 
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    }  

     

    for(int pm=0;pm<m.ParallelMarket;pm++){ 

     count=0; 

     for(int ev=0;ev<m.PSOTestNumber;ev++){ 

     boolean same=false;  

     for(int kk=0;kk<count;kk++){ 

     

 if(buyer1.LocalParameter[ev][pm][2]==LocalListAuction[kk][pm][2]){same=true;break;} 

     } 

     if (same==false)

 {LocalListAuction[count][pm][2]=buyer1.LocalParameter[ev][pm][2]; count++;} 

     }  

    

 LocalListAuction[count][pm][2]=buyer1.PreviousBidRatio[pm];count++; 

    }  

     

    for(int pm=0;pm<m.ParallelMarket;pm++){ 

       LinkedList AvailablebuyersList=new LinkedList(); 

AvailablebuyersList.clear();count=0; 

         

    while(LocalListAuction[count][pm][2]>=-1) {  

      LocalListAuction[count][pm][0]=0; 

     

 buyer1.CommonValueBid[pm]=LocalListAuction[count][pm][2];buyer1.Bid(m, em,dm, e,pm); 

      for(int i=0;i<ab1.length;i++){   

     

       

 if(ab1[i].ID!=buyer1.ID)ab1[i].CommonValueBid[pm]=ab1[i].PreviousBidRatio[pm]; } 

      for(int week=0;week<m.WeekPerCycle;week++){  

       for(int 

i=0;i<ab1.length;i++){ab1[i].WeekInitialization(m,bbm,em,dm, e,pm);} 

       dm.AuctionDeal(ab1, ab2, s, m, week, pm); 

       buyer1.WeeklyProfit(m, dm, bbm, week, 

pm); 

     }//end weeks; 

    

 buyer1.StorageParameter(m,pm);LocalListAuction[count][pm][0]+=buyer1.Profit[pm]; 

     if((LocalListAuction[count][pm][0]-

buyer1.BestLocalParameter[pm][0])>=-1){ 

     

 buyer1.BestLocalParameter[pm][2]=buyer1.CommonValueBid[pm]; 

     

 buyer1.BestLocalParameter[pm][0]=LocalListAuction[count][pm][0]; } 

      count++; 

      if(count>=m.PSOTestNumber)break; 

      } 

     for(int 

i=0;i<m.PSOTestNumber;i++){buyer1.LocalParameter[i][pm][2]=buyer1.LocalParameter[i+1][pm][2];}  

    

 buyer1.LocalParameter[m.PSOTestNumber][pm][2]=buyer1.BestLocalParameter[pm][2]; 

    }//end pm; 

    TestGlobalParameterTradeAuction1(buyer1, ab1,  

ab2,s,m,dm,bbm,PSO,e); 

   } 
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 //Choose PSO learning parameter: best local & best global; 

 //Choose PSO learning parameter: best local & best global for Auction ; 

void ChooseLearningParameterbuyer2( AuctionBuyer1[] ab1, AuctionBuyer2 buyer2, 

AuctionBuyer2[] ab2,Seller[] s,ModelPSO m,SpotMarket dm,RetailMarket bbm,PSOEquilibrium em,PSO 

PSO,int e){ 

   int count=0; 

   double LocalListAuction2[][][]=new 

double[m.PSOTestNumber+1][m.ParallelMarket][3];//[0:parameter][1:capacity parameter] 

    //initial 

   for(int pm=0;pm<m.ParallelMarket;pm++){ 

     buyer2.BestLocalParameter[pm][0]=-2000000000; 

     for(count=0;count<m.PSOTestNumber+1;count++){ 

LocalListAuction2[count][pm][1]=-

1;LocalListAuction2[count][pm][2]=-1;}    

    }  

     

    for(int pm=0;pm<m.ParallelMarket;pm++){ 

     count=0; 

     for(int ev=0;ev<m.PSOTestNumber;ev++){ 

     boolean same=false;  

     for(int kk=0;kk<count;kk++){ 

     

 if(buyer2.LocalParameter[ev][pm][2]==LocalListAuction2[kk][pm][2]){same=true;break;} 

     } 

     if (same==false){

 LocalListAuction2[count][pm][2]=buyer2.LocalParameter[ev][pm][2]; 

      count++;} 

     }  

    

 LocalListAuction2[count][pm][2]=buyer2.PreviousBidRatio[pm];count++;}  

     

    for(int pm=0;pm<m.ParallelMarket;pm++){ 

        LinkedList AvailablebuyersList=new LinkedList();   

AvailablebuyersList.clear();count=0; 

     while(LocalListAuction2[count][pm][2]>=-1) {  

      LocalListAuction2[count][pm][0]=0; 

     

 buyer2.CommonValueBid[pm]=LocalListAuction2[count][pm][2]; 

      buyer2.Bid(m, em,dm, e,pm); 

      for(int i=0;i<ab2.length;i++){   

            

 if(ab2[i].ID!=buyer2.ID)ab2[i].CommonValueBid[pm]=ab2[i].PreviousBidRatio[pm]; } 

 

     for(int week=0;week<m.WeekPerCycle;week++){  

     for(int 

i=0;i<ab2.length;i++)ab2[i].WeekInitialization(m,bbm,em,dm, e,pm); 

       dm.AuctionDeal(ab1, ab2, s, m, week, pm); 

       buyer2.WeeklyProfit(m, dm, bbm, week, 

pm); 

      }//end weeks; 

      buyer2.StorageParameter(m,pm); 

     

 LocalListAuction2[count][pm][0]+=buyer2.Profit[pm]; 

     if((LocalListAuction2[count][pm][0]-

buyer2.BestLocalParameter[pm][0])>=-1){ 
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 buyer2.BestLocalParameter[pm][2]=buyer2.CommonValueBid[pm]; 

      

 buyer2.BestLocalParameter[pm][0]=LocalListAuction2[count][pm][0]; } 

      count++;if(count>=m.PSOTestNumber)break;} 

      

     for(int 

i=0;i<m.PSOTestNumber;i++){buyer2.LocalParameter[i][pm][2]=buyer2.LocalParameter[i+1][pm][2];}  

    

 buyer2.LocalParameter[m.PSOTestNumber][pm][2]=buyer2.BestLocalParameter[pm][2]; 

    }//end pm; 

   TestGlobalParameterTradeAuction2(ab1, buyer2, ab2,s,m,dm,bbm,PSO,e); 

   

   } 

  

void ChooseLearningParameterseller(AuctionBuyer1[] ab1, AuctionBuyer2[] ab2,Seller seller,  

Seller[] s,ModelPSO m,SpotMarket dm,RetailMarket bbm,PSOEquilibrium em,PSO PSO,int e){ 

  int count=0;double LocalListSeller[][][]=new 

double[m.PSOTestNumber+1][m.ParallelMarket][3]; 

  //initial 

  for(int pm=0;pm<m.ParallelMarket;pm++){ 

   seller.BestLocalParameter[pm][0]=-2000000000; 

  

 for(count=0;count<m.PSOTestNumber+1;count++){LocalListSeller[count][pm][1]=-1;      

LocalListSeller[count][pm][2]=-1; }  

  }  

   

  for(int pm=0;pm<m.ParallelMarket;pm++){    

   count=0; 

   for(int ev=0;ev<m.PSOTestNumber;ev++){ 

   boolean same=false;     

   for(int kk=0;kk<count;kk++){ 

   

 if(seller.LocalParameter[ev][pm][2]==LocalListSeller[kk][pm][2]){same=true;break;}} 

   if (same==false){

 LocalListSeller[count][pm][2]=seller.LocalParameter[ev][pm][2];count++;}}  

   LocalListSeller[count][pm][2]=seller.PreviousBidRatio[pm]; count++;} 

  

   

  for(int pm=0;pm<m.ParallelMarket;pm++){ 

      LinkedList AvailablesellerList=new LinkedList();  AvailablesellerList.clear();

 count=0; 

   while(LocalListSeller[count][pm][2]>=-1) {  

   

 LocalListSeller[count][pm][0]=0;seller.ReservePrice[pm]=LocalListSeller[count][pm][2];seller.R(

m, em,dm, e,pm);      for(int 

i=0;i<s.length;i++){if(s[i].ID!=seller.ID)s[i].ReservePrice[pm]=s[i].PreviousBidRatio[pm]; } 

 

    for(int week=0;week<m.WeekPerCycle;week++){  

     for(int 

i=0;i<s.length;i++)s[i].WeekInitialization(m,bbm,em,dm, e,pm);   

     dm.AuctionDeal(ab1, ab2, s, m, week, pm);

 seller.WeeklyProfit(m, dm, bbm, week, pm); 

    }//end weeks; 

   

 seller.StorageParameter(m,pm);LocalListSeller[count][pm][0]+=seller.Profit[pm]; 
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    if((LocalListSeller[count][pm][0]-

seller.BestLocalParameter[pm][0])>=-1){ 

     seller.BestLocalParameter[pm][2]=seller.ReservePrice[pm]; 

seller.BestLocalParameter[pm][0]=LocalListSeller[count][pm]

[0];} 

    count++; 

    if(count>=m.PSOTestNumber)break; 

    } 

   for(int 

i=0;i<m.PSOTestNumber;i++){seller.LocalParameter[i][pm][2]=seller.LocalParameter[i+1][pm][2];

 }  

  

 seller.LocalParameter[m.PSOTestNumber][pm][2]=seller.BestLocalParameter[pm][2]; 

   }//end pm;   

  TestGlobalParameterTradeSeller(ab1, ab2, seller, s,m,dm,bbm,PSO,e); 

} 

 

//Choose PSO learning parameter: best local & best global; 

void TestGlobalParameterTradeAuction1(AuctionBuyer1 buyer1, AuctionBuyer1[] ab1, AuctionBuyer2[] 

ab2,Seller[] s,ModelPSO m, SpotMarket dm,RetailMarket bbm,PSO PSO,int e){ 

 //use the best instead of average of local as global 

 buyer1.BestGlobalParameter[0]=-2000000;  

    for(int pm=0;pm<m.ParallelMarket;pm++){ 

     if(buyer1.BestLocalParameter[pm][0]>buyer1.BestGlobalParameter[0]){ 

      buyer1.BestGlobalParameter[0]=buyer1.BestLocalParameter[pm][0]; 

      buyer1.BestGlobalParameter[2]=buyer1.BestLocalParameter[pm][2];    } 

    }  

} 

 

void TestGlobalParameterTradeAuction2(AuctionBuyer1[] ab1, AuctionBuyer2 buyer2, AuctionBuyer2[] 

ab2,Seller[] s,ModelPSO m, SpotMarket dm,RetailMarket bbm,PSO PSO,int e){ 

 //use the best instead of average of local as global 

  buyer2.BestGlobalParameter[0]=-2000000; 

 for(int pm=0;pm<m.ParallelMarket;pm++){ 

     if(buyer2.BestLocalParameter[pm][0]>buyer2.BestGlobalParameter[0]){ 

      buyer2.BestGlobalParameter[0]=buyer2.BestLocalParameter[pm][0]; 

      buyer2.BestGlobalParameter[2]=buyer2.BestLocalParameter[pm][2];    } 

        }  

} 

 

void TestGlobalParameterTradeSeller(AuctionBuyer1[] ab1, AuctionBuyer2[] ab2,Seller seller, Seller[] 

s,ModelPSO m, SpotMarket dm,RetailMarket bbm,PSO PSO,int e){ 

 //use the best instead of average of local as global 

 seller.BestGlobalParameter[0]=-2000000; 

  

    for(int pm=0;pm<m.ParallelMarket;pm++){ 

     if(seller.BestLocalParameter[pm][0]>seller.BestGlobalParameter[0]){ 

      seller.BestGlobalParameter[0]=seller.BestLocalParameter[pm][0]; 

      seller.BestGlobalParameter[2]=seller.BestLocalParameter[pm][2];   } 

    }  

} 

 

}// end of PSO algorithm  
 

 



 

119 

/* ******************Equilibrium 

Criterion**************************************************/ 

package PSOmpr;import java.util.*;import tools.P; 

public class PSOEquilibrium { 

 int   CriterionPerSet=5; 

 double JudgeDevCR[]={0.0000001,0.000000001}; 

 int EquilibriumEnd=0; 

 boolean  JudgeEquilibrium; 

 double[]    rTemp; 

 double[]    MarketBidTemp1;double[] MarketBid1; 

 double[]    MarketBidTemp2;double[] MarketBid2; 

 double[] ReserveRandom; 

 double[][]  CapacityRatio; 

 double[][]  CommonValueBidTemp1;double[][] CommonValueBidTemp2; 

 double[][] ReserveTemp;double[][] Reserve; 

 double[][] BidPriceTemp; 

 double     convergeTime; 

 double[][] CommonValueBid1;double[][] CommonValueBid2; 

  

 PSOEquilibrium(ModelPSO m){ 

  rTemp=new double[CriterionPerSet]; 

  MarketBidTemp1=new double[CriterionPerSet]; 

  MarketBid1=new double[CriterionPerSet]; 

  MarketBid2=new double[CriterionPerSet]; 

  ReserveRandom=new double[CriterionPerSet]; 

  MarketBidTemp2=new double[CriterionPerSet]; 

  CapacityRatio=new double[m.TotalbuyerNumber][2]; 

  CommonValueBid1=new double [m.TotalbuyerNumber][2]; 

  CommonValueBid2=new double [m.TotalbuyerNumber][2]; 

  CommonValueBidTemp1=new double[m.TotalbuyerNumber][CriterionPerSet]; 

  CommonValueBidTemp2=new double[m.TotalbuyerNumber][CriterionPerSet]; 

  ReserveTemp=new double[m.TotalsellerNumber][CriterionPerSet]; 

  Reserve=new double[m.TotalsellerNumber][CriterionPerSet]; 

  //use mean value to determine the criteria                                            

 } 

  

 void EquilibriumInitial(){ convergeTime=0;JudgeEquilibrium=false;} 

//Buyer 1 

void EquilibriumStorageParameter(AuctionBuyer1[] ab1,AuctionBuyer2[] ab2, Seller[] s, ModelPSO 

m,SpotMarket dm,int e,int parameterNo){ 

  if(e<CriterionPerSet&&e>0){ 

  

 MarketBidTemp1[e]=dm.PreviousWinBidPrice[0];MarketBidTemp2[e]=dm.PreviousWinBidPric

e[0]; 

   rTemp[e]=dm.PreviousAverageReservePrice[0]; 

   for(int 

i=0;i<ab1.length;i++)CommonValueBidTemp1[i][e]=ab1[i].PreviousBidRatio[0]; 

   for(int 

i=0;i<ab2.length;i++)CommonValueBidTemp2[i][e]=ab2[i].PreviousBidRatio[0]; 

   for(int i=0;i<s.length;i++)ReserveTemp[i][e]=s[i].PreviousBidRatio[0]; 

   }//;if evolutionary iteration No. is less than CriterionNo, only store the market 

price and buyers' strategies of one selected market; 

   

  else{ 

  for(int k=0;k<CriterionPerSet-1;k++){ 
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  MarketBidTemp1[k]=MarketBidTemp1[k+1];MarketBidTemp1[CriterionPerSet-

1]=dm.WinBidPrice[0]; 

  MarketBidTemp2[k]=MarketBidTemp2[k+1];MarketBidTemp2[CriterionPerSet-

1]=dm.WinBidPrice[0]; 

  rTemp[k]=rTemp[k+1];rTemp[CriterionPerSet-1]=dm.AvgRandomRevserve[0]; } 

  for(int i=0;i<ab1.length;i++){ 

  for(int k=0;k<CriterionPerSet-

1;k++)CommonValueBidTemp1[i][k]=CommonValueBidTemp1[i][k+1]; 

   CommonValueBidTemp1[i][CriterionPerSet-1]=ab1[i].PreviousBidRatio[0]; 

  }//;storage buyersacution' strategy parameters of selected market;*/; 

   

  for(int i=0;i<ab2.length;i++){ 

  for(int k=0;k<CriterionPerSet-

1;k++)CommonValueBidTemp2[i][k]=CommonValueBidTemp2[i][k+1]; 

   CommonValueBidTemp2[i][CriterionPerSet-1]=ab2[i].PreviousBidRatio[0];} 

   for(int i=0;i<s.length;i++){ 

   for(int k=0;k<CriterionPerSet-1;k++)ReserveTemp[i][k]=ReserveTemp[i][k+1]; 

   ReserveTemp[i][CriterionPerSet-1]=s[i].PreviousBidRatio[0]; } 

  }//;else continuously update the temporal storage set; 

 } 

  

 void TestEquilibrium(AuctionBuyer1[] ab1, AuctionBuyer2[] ab2, Seller[] s, ModelPSO 

m,SpotMarket dm,int e,int parameterNo){ 

  if(JudgeEquilibrium==true)return;   

  double mean[]=new double[2];double std[]=new double[2]; 

  double cr[]=new double[CriterionPerSet];double mp[]=new double[CriterionPerSet]; 

  double h[]=new double[2]; 

  boolean EorNot=false; 

  /*1st, test if market price reach equilibrium for one selected market*/ 

  System.arraycopy(MarketBidTemp1, 0, mp, 0, mp.length);MeanDeviation(mp,h,e,-1); 

  if(h[1]>JudgeDevCR[0])return; 

  System.arraycopy(MarketBidTemp2, 0, mp, 0, mp.length);MeanDeviation(mp,h,e,-1); 

  if(h[1]>JudgeDevCR[0])return; 

  System.arraycopy(rTemp, 0, mp, 0, mp.length);MeanDeviation(mp,h,e,-1); 

  if(h[1]>JudgeDevCR[0])return;   

   

  /*2nd, test if buyers' strategy parameters reach equilibrium for one selected market;*/ 

  for(int i=0;i<ab1.length;i++){ 

   System.arraycopy(CommonValueBidTemp1[i], 0,cr, 0, cr.length);   

   MeanDeviation(cr,h,e,-1); 

   if(h[1]>JudgeDevCR[0])return;} 

  for(int i=0;i<ab2.length;i++){ 

   System.arraycopy(CommonValueBidTemp2[i], 0,cr, 0, cr.length);   

   MeanDeviation(cr,h,e,-1); 

   if(h[1]>JudgeDevCR[0])return;} 

  for(int i=0;i<s.length;i++){ 

   System.arraycopy(ReserveTemp[i], 0,cr, 0, cr.length);   

   MeanDeviation(cr,h,e,-1); 

   if(h[1]>JudgeDevCR[0])return;} 

  /*If the above two tests return true value, test if each buyer has same strategy parameters 

in every parallel market;*/  

  for(int i=0;i<ab1.length;i++){ 

   for(int 

k=0;k<m.ParallelMarket;k++)CommonValueBidTemp1[i][k]=ab1[i].PreviousBidRatio[k]; 

   System.arraycopy(CommonValueBidTemp1[i], 0,cr, 0, cr.length);   

   MeanDeviation(cr,h,e,-1); 
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   if(h[1]<=JudgeDevCR[0])continue; 

   else return;} 

  for(int i=0;i<ab2.length;i++){ 

   for(int 

k=0;k<m.ParallelMarket;k++)CommonValueBidTemp2[i][k]=ab2[i].PreviousBidRatio[k]; 

   System.arraycopy(CommonValueBidTemp2[i], 0,cr, 0, cr.length);   

   MeanDeviation(cr,h,e,-1); 

   if(h[1]<=JudgeDevCR[0])continue; 

   else return;} 

  for(int i=0;i<s.length;i++){    

   for(int 

k=0;k<m.ParallelMarket;k++)ReserveTemp[i][k]=s[i].PreviousBidRatio[k]; 

   System.arraycopy(ReserveTemp[i], 0,cr, 0, cr.length);   

   MeanDeviation(cr,h,e,-1); 

   if(h[1]<=JudgeDevCR[0])continue; 

   else return;}     

  JudgeEquilibrium=true; 

 } 

  

 void StorageBuyer1(AuctionBuyer1[] ab1, int e){ 

  int l=CriterionPerSet; 

  MeanDeviation(MarketBidTemp1,MarketBid1 , e,l); 

  for(int i=0;i<ab1.length;i++) 

MeanDeviation(CommonValueBidTemp1[i],CommonValueBid1[i],e,l);} 

 void StorageBuyer2(AuctionBuyer2[] ab2, int e){ 

  int l=CriterionPerSet; 

  MeanDeviation(MarketBidTemp2,MarketBid2 , e,l); 

  for(int i=0;i<ab2.length;i++) 

MeanDeviation(CommonValueBidTemp2[i],CommonValueBid2[i],e,l);} 

 void StorageSellers(Seller[] s, int e){ 

  int l=CriterionPerSet; 

  MeanDeviation(rTemp,ReserveRandom , e,l); 

  for(int i=0;i<s.length;i++) MeanDeviation(ReserveTemp[i],Reserve[i],e,l);//} 

  

 void MeanDeviation(double[] d,double[] h,int e,int l){ 

  if(e<d.length)return; 

  double temp=0,temp1=0; 

  int begin=0; 

  if(l<0){l=d.length;begin=0;} 

  else begin=d.length-l; 

  for(int k=begin;k<d.length;k++){ 

  temp+=d[k];} 

  temp=temp/(double)l; 

  h[0]=temp;//storage parameter mean 

  for(int k=begin;k<d.length;k++)temp1+=(temp-d[k])*(temp-d[k]);   

  h[1]=Math.abs(Math.sqrt(temp1/(l-1)));//storage parameter deviation; 

std=Math.sqrt(temp1/(d.length-1));  

 } 

}// End of Equilibrium Criterion 

 

/* ******************Parameters **************************************************/ 

package PSOmpr; 

import java.util.Arrays; 

public class Criterion { 

 static int CriterionNo=1; 

 static boolean AlgorithmParameterFixed=false;//true; 
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 static boolean MarketStructureFixed=true; 

 //Fixed parameter  

 double[] w    ={.4,  .4,  .4,  .1 };//inertia weight 

 double[] c1   ={1.5,  1,  .5,   1};//self  confidence factor 

 double[] c2   ={1.5,  1,  .5,   1};//swarm confidence factor 

static double[] wup  ={ .75, .75,   .98,    .98   }; 

 static double[] cup ={ .75,   .5,   .4,    1.5,  }; 

 static int[] Converge ={ 400, 400,   400,    400  }; 

 static int[] pm ={ 5, 10,  3}; 

 static int[] localTest={ 3,  3,  3}; 

 double[]   MarketPrice; 

 double[] MarketBid1;double[] MarketBid2; 

 double[][] CommonValueBid1;double[][] CommonValueBid2; 

 double[]   Time; 

 double[]   Iteration; 

 double[]   EquilibriumIteration;double[]   EquilibriumTime; 

 double[]   EquilibriumMarketBid1;double[][] EquilibriumBidRatio1;double[][] 

EquilibriumBidRatio2; 

 double[] EquilibriumMarketBid2; 

 double[][] EquilibriumReserveRatio; 

 double[] EquilibriumReserve; 

 double[] ReservePrice; 

 double[][] ReserveTemp; 

  

 Criterion(ModelPSO m){ 

  Iteration=new double[2]; 

  Time=new double[2]; 

  MarketPrice=new double[2];MarketBid1= new double[2];MarketBid2= new double[2]; 

  CommonValueBid1=new double[m.TotalbuyerNumber][2];CommonValueBid2=new 

double[m.TotalbuyerNumber][2]; 

  EquilibriumIteration=new double[m.EquilibriumNo];  

  EquilibriumTime=new double[m.EquilibriumNo];    

  EquilibriumMarketBid1=new double[m.EquilibriumNo];   EquilibriumBidRatio1=new 

double[m.TotalbuyerNumber][m.EquilibriumNo];  

  EquilibriumBidRatio2=new double[m.TotalbuyerNumber][m.EquilibriumNo]; 

EquilibriumMarketBid2=new double[m.EquilibriumNo]; 

  EquilibriumReserve=new double[m.EquilibriumNo]; 

  EquilibriumReserveRatio =new double[m.TotalsellerNumber][m.EquilibriumNo]; 

  ReservePrice=new double[2]; 

  ReserveTemp=new double[m.TotalsellerNumber][2]; } 

}// End of Parameters 
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