
PACKET COMMUNICATION WITHIN

DATA FLOW COMPUTERS

By

JOHN ROBERT KERNS
v

Bachelor of Arts

Southwest State University

Marshall, Minnesota

1978

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fullfillrnent of

the requirements for
the Degree of

MASTER OF SCIENCE
July, 1982

PACKET COMMUNICATION WITHIN

DATA FLOW COMPUTERS

Thesis Approved:

Dean of the Graduate College

ii

11:31321 J

PREFACE

This study examines the operation and organization of

three data flow computer systems, the systems from MIT,

the University of Manchester, and Texas Instruments Inc.

Each of the three systems is described in an idealized

configuration; then the idealized systems are analyzed.

Expected packet throughput within different modules of

each system, and of the systems themselves, is derived.

The maximum throughput expected of the idealized systems

are compared with present day systems, in order to check

the validity of the throughput analysis. In addition, the

advantages and disadvantages of each of the three data

flow systems are discussed.

I would like to express

adviser, Dr. Sharilyn A.

my gratitude to my major

Thoreson, for her valuable

guidance and advice throughout my thesis research. I also

acknowledge my other committee members, Dr. George E.

Hedrick and Dr. Donald D. Fisher, for their many helpful

suggestions. In addition, I would like to express my

appreciation to the other professors and graduate students

I have worked with, for their many discussions on computer

science, encouragement, and friendship throughout my

graduate studies.

iii

This document was prepared and edited using SCRIPT

Version 3.6, a text formatting system from the University

of Waterloo. An IBM 6670 laser printer was used during

the development of the document and was used for the final

printing of the thesis.

I would like to thank both the Department of

Computing and Information Sciences and the Center for

Applications of Remote Sensing for their financial support

during my graduate studies.

Finally, I would like to express my appreciation for

the support and understanding of my aunt, Matilda Wulf,

and my mother, Lois Kerns.

iv

Chapter

I.

I I.

I I I.

IV.

v.

TABLE OF CONTENTS

INTRODUCTION

Project Motivation
Data Flow Computation Theory

DATA FLOW COMPUTER SYSTEMS

Page

1

4
5

11

MIT Data Flow Computer 11
Manchester Data Flow Computer 14
Texas Instruments Data Flow Computer 19

IDEALIZED DATA FLOW COMPUTER SYSTEMS . . . 26

Components
Processing Elements 28
Memory . . 30
Control Uni ts 35
Arbitration and

Distribution Units 37
Idealized System Configurations

MIT Idealized System . . . 40
Manchester Idealized System 46
Texas Instruments Idealized System 53

ANALYSIS OF IDEALIZED DATA FLOW SYSTEMS

Packet Rates Through
Interconnection Network Modules

60

MIT Idealized System Rates . 62
Manchester Idealized System Rates 64
Texas Instruments

Idealized System Rates .
Analysis of Packet Rates
Advantages and Disadvantages

of Selected Data Flow Systems
Real Machine Comparison

SUMMARY, CONCLUSIONS,
AND SUGGESTED FUTURE RESEARCH

Summary and Conclusions .
Suggested Future Research

65
68

73
74

77

77
80

SELECTED BIBLIOGRAPHY 81

v

Chapter Page

APPENDIX A - PMS DESCRIPTIONS OF THREE IDEALIZED
DATA FLOW COMPUTER SYSTEMS 86

APPENDIX B - TIMING FOR SINGLE PACKETS TO PASS
THROUGH INTERCONNECTION MODULES 92

APPENDIX C - LIST OF SYMBOLS 96

APPENDIX D - LIST OF EQUATIONS 99

APPENDIX E - GLOSSARY 103

vi

LIST OF TABLES

Table

I. Ratio of Memory Access Time to
Addition Time in Actual Machine Cycles

II. Memory Access Cycles for Serial Access
and Interleaved Memory Access

III. MIT Idealized Module Timing and Rate Figures

IV. Manchester Idealized Module
Timing and Rate Figures .

V. Texas Instruments Idealized Module
Timing and Rate Figures

VI. MIT Idealized System
Module and Component Timing

VII. Manchester Idealized System
Module and Component Timing

VIII. Texas Instruments Idealized System
Module and Component Timing .

vii

Page

32

33

67

67

68

93

94

95

LIST OF FIGURES

Figure Page

1. Sample Program on a yon-Neuman Computer 7

2. Sample Program in
Data Flow Graph Representation 8

3 . MIT Basic Data Flow Processor 12

4. Manchester Data Flow Processor 16

5. Matching Store Cycle 17

6. Instruction Store Cycle 18

7. Texas Instruments Data Flow Processor 21

8. Single Processing Element Network 22

9. Single Operation Unit Connected to Ring 23

10. Idealized System Components 27

11. Arbitration and Distribution Units 39

12. MIT Idealized System 41

13. MIT Packet Formats . 42

14. MIT Interleaved Memory 44

15. Individual Cell in Cell Memory 44

16. Manchester Idealized System 47

18. Manchester Packet Formats 49

18. Manchester Interleaved Memory 49

19. Texas Instruments Idealized System 54

20. Texas Instruments Packet Formats . 56

21. Texas Instruments Interleaved Memory 56

viii

Figure

22.

23.

24.

25.

MIT Idealized Data Flow System

Manchester Idealized Data Flow System

Texas Instruments Idealized
Data Flow System

Texas Instruments Single Operational Unit

ix

Page

88

89

90

91

CHAPTER I

INTRODUCTION

Ever since the first computers were built in the late

1940's and ealy 1950's, there has been a constant push to

build computer systems with more computing power and

greater throughput. In the early years of computer

science, the continued advance of new technology gave rise

to larger and faster computer systems. Vaccum tubes were

replaced by single transistors, which were incorporated

into integrated circuits. Of course, these new

technologies greatly improved processor and memory speed

and greatly increased throughput over earlier systems.

However, users never are satisfied completely as

newer and more complex applications are developed for

computer systems, and larger and faster computers will be

needed to run those applications. Some limits exist in

the development of new hardware technology and are already

being approached in the laboratory. Because of technology

limitations, advances in circuit technology must be aided

by advances in computer architecture and software in the

evolution of new computer systems.

1

2

Problems such as weather forcasting, nuclear reactor

simulation, and

continue to tax

built to date.

problems spawned

three dimensional fluid flow analysis,

the largest and most powerful systems

The characteristics of these and similiar

new architectures for several new

systems. Programs using large vectors and arrays can take

advantage of parallel processors such as the ILLIAC IV [9]

and vector processors like the CDC Star 100 [29] and the

Cray l [44].

help achieve

Two techniques used in supercomputers to

high throughput are: the use of parallel

processors and pipelining.

Parallel processing is a technique which utilizes a

set of processors that operate in parallel; programs using

large vectors can take advantage of parallel processors by

letting each processor operate on a different element of

the vector.

In a pipelined processor, the processor functions are

distributed over several modules; the total work rate is

increased by overlapping execution of the modules. The

Cray 1 uses piplined operation units to help achieve its

throughput rate of 125 - 250 million instructions per

second (MIPS); this makes it one of the fastest and most

powerful computers built.

Unfortunately, only a small class of real world

applications can take advantage of processors such as

these. Vector and parallel processors need applications

using large vectors or arrays to fully utilize the

3

processing power available. Programs that are highly

sequential or dominated by input and output cannot utilize

vector and parallel processors effectively.

One approach to building larger and faster systems is

to connect many processors together and let each processor

work on a share of the work load. Computer systems using

several tightly-coupled processors can usually increase

system throughput by adding more processors to the system.

A tightly-coupled computer system has many computers,

where each computer depends on the others for continued

operation. Distributed computer architectures are usually

one of two classes: a single instruction multiple data

stream system (SIMD), or a multiple instruction multiple

data stream system (MIMD). The ILLIAC IV is an example of

a SIMD architecture. A data flow computer is an example

of a MIMD architecture.

In a data flow processing element, typically more

than one processing element is connected in a multiple

processor system, where instructions can execute on any of

the available processors. The processors are arranged so

each processing element can operate concurrently.

Programs run on a data flow computer have a machine

representation which takes advantage of processors that

execute in parallel.

Processors require an interconnection network for

communication of instructions and data between different

modules of the system. Interconnection networks should

4

not be confused with local networks like ETHERNET where

external devices are connected by a network, or with

external networks like ARPANET where separate computer

systems have communication links with other computers in

the network. Interconnection networks consist of the

components of the system (processors, memories, control

units, and switches) and the communication lines among

them.

Some multiple processor systems use a method of

information transfer called packet communication. A set

of information is placed together in a packet and

exchanged among processors. Contents of a packet include

instructions, data, and control information. Packet sizes

vary among different systems, from several bytes up to

several thousand bytes. In multiple processor systems

using packet communication, the processors do not need to

monitor the activity in the other processors.

packets can be received, the information in

As long as

the packet

processed, and results sent to appropriate destinations,

each processor can operate independently.

Project Motivation

Until recently, all computers used very basic

architectural principles proposed by John von Neumann in

1945 [47]. Two main principles of such systems are stored

programs and sequential order of program execution.

Programs and data are stored in main memory, and a

5

sequential control is used to govern the operation of the

machine. Data flow architecture deviates from the von

Neumann principles. Data flow computers operate

asynchronously without sequential control and use a

distributed memory instead of a single updatable memory.

Research in the area of data flow computers is still

very new, and only a few operational data flow computers

have been built. At this time, it is not obvious which of

the new data flow architectures will be successful, or how

they will compare.

systems can be

The relative performance of different

analyzed without actually building

prototype systems. This is an analysis of the relative

performance of three data flow systems, achieved by

computing and comparing the maximum throughput rate and

minimum execution time.

Data Flow Computation Theory

Programs run on a data flow computer are a partially

ordered set of operations or instructions. The machine

representation of a data flow program is a directed graph;

where nodes represent instructions and arcs between nodes

represent data dependencies between instructions. An

instruction is ready to execute only when, and as soon as,

all operands have been received.

There are two types of data flow architectures, data

driven and demand driven (48]. Data driven architectures

are studied here. In data driven computers, the

6

availability of all operands for an instruction triggers

execution of that instruction. In demand driven

computers, the requirement for a result triggers the

instruction that will generate that result.

The data flow graph of a program deals only with data

values and not with data addresses in contrast with most

high level languages. As a result, there is no need for a

single updatable memory; instructions produce results,

which are in turn used by other instructions. Also, there

is no need for a single controller to control instruction

execution.

Following are two expressions to be computed on both

a von Neumann computer and on a data driven data flow

computer. The following expressions come from the

quadratic formula:

I ~
Xl = - B +~B - 4*A*C

2*A

X2 = - B - ~B
~

- 4*A*C

2*A

Breaking the expressions into simple instructions, the

program in Figure 1 will execute on a von Neumann machine

in 12 operations. Figure 2 shows the same program

represented as a data flow graph. Operations that can be

done in parallel are placed at the same level in the

graph. Because the longest path in the graph includes

Input A, B, C

A2 = A * 2

A4 = A * 4

NEGB = B

BSQ = B * B

A4C = A4 * C

BSQMA4C

TMPSQRT

TMPXl

TMPX2

Xl =

= BSQ A4C

= Sqrt (BSQMA4C}

= NEGB + TMPSQRT

= NEGB TMPSQRT

TMPXl I A2

X2 = TMPX2 / A2

Figure 1. Sample Program on a von Neumann Computer

7

Input A

4 2

* *

+

I

Xl

Figure 2.

Input B

Neg *

Square Root

I

X2

Sample Program in Data Flow
Graph Representation

8

Input C

*

9

seven instructions, the program can execute in the time

required to perform seven instructions, if enough

processors (4) are available. The amount of speedup

gained by parallel processors is limited by the amount of

parallelism in the data flow graph. Minimum execution

time of a program is determined by the longest path from

the beginning to the end of the data flow graph.

There are several modules needed in a data flow

computer. Processors are arranged to operate in parallel.

A memory is needed to hold instructions ready to execute,

and a memory is needed to hold instructions waiting for

operands. Routing units are needed to direct the flow of

packets, and control units are needed in memory modules.

Communication lines between modules are also required.

Where possible, parallelism within a module is exploited

as much as possible.

The architectures of several data flow computers were

described in recent literature [48]. Two architectures

have been developed at the University of Utah (14, 15,

33}. A research group in Europe called CERN has built a

prototype data flow computer as described in (42). And a

data flow system was being designed at the University of

California at Irvine [4, 5, 8]. Three other architectures

are described in this thesis.

Chapter II contains a description of the

architectures and interconnection networks of three data

flow computer systems. All three systems use the data

10

driven approach. The three systems were chosen because of

their unique data flow architectures. In the Texas

Instruments design, each processor has a separate memory

unit. In the MIT design, all processors have access to a

parallel memory. In the Manchester design, several

memories are used in the matching of operands before

instruction execution.

Chapter III gives a description of the components

used in the idealized system configurations for

comparison. Each component is described, and its timing

equations are given. Using component timing, the timing

for each idealized module is derived for each system.

In Chapter IV, maximum rates of packet throughput are

derived for modules of the three idealized systems. The

rates are used for an analysis of the minimum and maximum

rate of the different systems. Advantages and

disadvantages of the three systems are discussed also.

The maximum rate figures are also compared with a present

day supercomputer, the CRAY 1.

Chapter V states the summary and conclusions of this

research. Suggestions for future research are also given.

CHAPTER II

DATA FLOW COMPUTER SYSTEMS

MIT Data Flow Computer

The data flow system developed at MIT by Jack Dennis

has been developed in stages [22, 23]. The stage

presented here is one of the earlier designs called the

"Basic Data Flow Processor" [23], (Figure 3) . This stage

was chosen because it has features similar to the other

two systems being described in this thesis. Later stages

of the Dennis design include features not found on the

other two systems, making the later revisions

inappropriate for this comparision.

There are four major modules arranged on one ring:

processing elements, a memory for instructions called a

cell memory, an arbitration unit, and a distribution unit.

The distribution unit and arbitration unit act as routing

directors for the packets in the ring.

Instructions waiting for operands are held in the

cell memory. Each instruction is released or enabled for

execution when all of its operands have been received.

Computation of results is done in the processing elements

as they receive instructions.

11

...-~~~~~~·~~---4 ... - ~

..
• •

• •

Di o trlLu t i 1J11

· Network

Processing

Elements

Cell Me111ory

I ~·~~~~~~

Arbitrdtion

Network

Figure 3. MIT Basic Data Flow Processor

I-'
tv

13

Having one or more input lines and one or more output

lines, a routing unit accepts a packet and routes it to

the correct module .. An arbitration unit is a routing unit

with more input lines than output lines. A distribution

unit is a routing unit with more output lines than input

lines or with the same number of input and output lines.

The architecture of the MIT design allows each module

of the system to operate independently of the other

modules.

The cell memory is divided into a number of cells,

each cell large enough to hold many instructions. Each

cell in the cell memory contains a separate control unit

attached to a memory. The cell memory is multiported to

allow access to each cell separately. This allows

concurrent operation of the cells in the cell memory.

There are several different instruction formats for

different types of instructions, Dennis [19] has a

complete description.

instruction are received,

When all operands for an

an instruction packet is formed,

enabled, and sent into the arbitration unit. Packets

released from the cell memory contain the operation code,

two destination addresses for the storage of the result to

be generated, two operands, and any other needed control

information.

When a processing element becomes idle, the

arbitration network sends an instruction packet to that

processor, and the instruction is executed. Instructions

14

produce results which are placed into result packets;

result packets released from the processing elements

contain a result operand and the destination of that

operand. As results from the processing elements are

generated, they are routed into the distribution unit.

The distribution network then routes the packet to the

correct cell in the cell memory.

The following actions are typical of packets

travelling around

result packets

the interconnection

leave a processor,

network. After

enter the they

distribution network where the destination address is used

to direct the result packet to a specific cell in the cell

memory. The operand is stored directly in the instruction

packet, the destination address is then discarded. When

the control unit associated with each cell detects that

all operands have been received, the instruction is

enabled and an instruction packet is sent into the

arbitration unit to the next available processor.

Manchester Data Flow Computer

A detailed description of the Manchester data flow

computer can be found in [28, 49, 50]. In the Manchester

design there are five major modules arranged around a ring

as shown in Figure 4. Two features of this architecture,

which are unique from the other two architectures, are the

matching store and instruction store. The matching store

holds an instruction's operands until all of them have

15

arrived. The instruction store holds operation codes and

destinations for instructions ready to execute when the

operands arrive.

The matching store is controlled by the matching

store cycle,

accepted from

as shown in Figure 5.

the result queue, the

Result packets are

matching store is

checked for a matching operand, and matched operands are

sent on to the instruction memory. The matching store

acts as an associative memory by hashing the address,

using a name composed of four parts (activation name,

iteration level, index number, and instruction number) to

find the correct instruction.

The instruction store is controlled by the operation

of the instruction store cycle shown in Figure 6.

Instruction packets are f orrned from the operands and the

instruction in the instruction store. Instruction packets

are sent to processing elements as they become available.

The processing elements must accept and unpack

instruction packets, execute the instruction, and form

result packets. As result packets are generated, they are

forwarded to the I/O switch and then to the result queue.

The result queue is a buffer to hold result packets

until the matching store can process them. Because of the

arrangement of processors, the result queue must be able

to handle bursts of result packets. Packets are placed at

the end of a queue. When the packet advances to the front

of the queue, it can be released to the matching store.

16

-

- Processing

Elements

.

Instruction Store

-'7

I/O

Switch

I
~

Matching Store

...

. Result

. Queue
~ ..

Figure 4. Manchester Data Flow Processor

1

Send operand pair

to Instruction Store

Figure 5.

Obtain result packet from

head of Result Queue

Delete
entry

Matching Store Cycle

17

no

Figure 6.

Obtain operand pair from

Matching Store unit and

form instruction packet

yes

Send enabled instruction

to available PE

Instruction Store Cycle

18

19

A typical circuit of the Manchester interconnection

network proceeds as follows. As a result packet leaves a

processor and the PE (processing element) arbitration

unit, the packet passes through the I/O switch and is

stored at the end of the result queue. When the packet

arrives at the front of the queue, it is forwarded to the

matching store unit. In the matching store, a search is

made for an operand with the same destination address. If

no operand is found for a binary instruction, the operand

will be stored until the matching operand arrives. Once

operands are matched, the operand pair is forwarded to the

instruction store; results for unary instructions bypass

the matching store and pass directly to the instruction

store. The operand pair is held in an internal buffer in

the instruction store control unit while the instruction

is retrieved from the instruction store memory. The

instruction and operands are then combined into an enabled

instruction packet and sent to the first available

processing element.

Texas Instruments Data Flow Computer

Information about the Texas Instruments (TI) data

flow design is less complete than others because it comes

from an industrial laboratory. The TI Distributed Data

Processor (DDP) was one of the first data flow computers

built [31, 45]. Tl's data flow computer was built as a

laboratory demonstrator to show the validity of data flow

computation principles.

its source language.

20

It is unique in using FORTRAN as

The TI data flow computer is composed of four

operational units connected to a circular interconnection

network, as shown in Figure 7. Each operational unit acts

as a separate data flow processor with a processing

element, a local memory, and a separate interconnection

network as in Figure 8. As expected, each operational

unit operates independently, and each PE operates in

parallel with the others.

In attaching the operational unit to the ring, an

instruction/result port is added to the ring interface,

and buffers are added to the processing element and memory

unit to store incoming packets until they can be used, see

Figure 9. As a packet goes through the instruction port,

the PE number is checked, and the operand count is checked

to determine if the packet goes to the processing element

or instruction memory. In a similar manner, as packets

leave the processing element, the PE number is checked;

result packets are sent either onto the main ring or into

a buffer.

The purpose of buffers is to hold packets until they

can be processed by the PE or the instruction memory.

Incoming packets are placed at the end of a queue; when

the packet arrives at the front of the queue it is

released when the PE or memory becomes idle. The buffers

can both accept incoming packets and process outgoing

packets at the same time.

Front end

interface

Additional

operational units

(if desired)

Figure 7.

21

Operational unit

Operational unit

Operational unit

Operational unit

Texas Instruments Data Flow Processor

Processing element

Update controller

Instruction memory

Pending instruction
list

Word wide

execution bus

Figure 8. Single Processing Element Network

22

23

I
!

'

I
Buffer

I
i

I

ir Processing element

Instruction port

"

I
'

~·

Result port
I~

Buffer

! i
.

Instruction memory

I
Figure 9. Single Operational Unit Connected to Ring

24

In the instruction memory, an operand is placed in

the instruction, and the instruction is enabled if all

operands are in the instruction. The instruction memory

needs a control unit along with memory units. When an

instruction is enabled, an instruction packet is formed

and forwarded.

A typical circuit of a packet around the operational

unit would proceed as follows. As result packets leave

the processing element, a distribution unit checks if the

packet should stay in the same operational unit or be sent

onto the main ring to go to another operational unit.

Result packets are sent to the memory buffer unit where

they are placed at the end of a queue. When the packet

arrives at the front of the buffer, it must wait for the

memory unit to be idle before it can proceed. Once a

result packet is sent to the instruction memory, the

instruction is read into the control unit from memory. The

number of operands needed for the instruction is

decremented and tested. If zero, the instruction is

enabled, and an instruction packet is formed and sent on.

Otherwise, the instruction is stored back into memory.

Depending on the destinations in the instruction

packet, the packet could be sent out of the operational

unit or back to the PE buffer. The buffer in front of the

processing element acts as a queue, like the buffer in

front of the instruction memory. When the packet works to

the front of the queue, it is passed on to an available

processing element.

25

One difference in the TI design is that the data flow

graph of the program must be partitioned in subgraphs to

fit into the different operational units. Because of

expected localized activity in the operational units,

there is not expected to be a lot of traffic on the main

ring. However, a PE number is a part of all destination

addresses to aid in the correct routing of packets.

The interconnection network is a packet wide ring, 16

words long, passing by the four processings elements and

the front end interface. Instruction and result packets

are placed on the ring, logically expanding or collapsing

the size of the ring as required. The instruction/result

port removes packets and places new ones on the ring as

required. This allows a variable number of packets to

circulate around the interconnection network.

From the descriptions given in this chapter, it can

be seen that each data flow system uses similar

components. These components are processors, memories,

routing units, and control units. However, the

arrangement and use of the different components between

the three systems shows many differences. The differences

in the systems will be examined after the similar

components are analyzed.

CHAPTER III

IDEALIZED DATA FLOW COMPUTER SYSTEMS

In order to compare the interconnection networks of

the three data flow computers, the specific computers

analyzed should have configurations with similar

capacities. The major modules of each system are examined

separately to determine the configurations.

Each system is composed of several modules connected

to an interconnection network. A module is a major unit

in the system and is composed of one or more components.

A component is a single device or a set of similar

devices. Four components used to describe the actions of

each module are: memory, processing elements, control

units, and arbitration and distribution units. Each data

flow system is described using these components; each

system configuration is defined so each system has similar

capacities. Each idealized system has four processing

elements, and 512K bytes of memory; each instruction

packet has space for two

addresses. The components

symbols in Figure 10.

operands

will be

26

and two destination

represented by the

27

Processing Ele~ent

Memory ·unit

0 Control Unit

Arbitration Gnit

<J Distribution Unit

Figure 10. Idealized System Components

28

In order to avoid technology - dependent timings,

timing is expressed in number of gate delays through a

particular module. A gate delay is the time for a unit of

information to pass through a simple electronic device or

gate. Equations to describe the rates for each module

together with specific values for the idealized system

being analyzed are given later in this chapter . The form

used is:

T.x = General timing equation for x (Eq#)

= Value for specific idealized system.

All timing equations are listed together in Appendix D.

Specific timing for each module

component timing. Timing for a single

is dependent

packet to

on

pass

through a module assumes both that no other packets are

active and that the module is idle.

Components

Processing Elements

The processing elements used in the data flow systems

described here support arithmetic and boolean operations.

A processing element also can support operations like

SINE, COSINE, LOG,

for one addition

and EXP.

as the

This analysis uses the time

processing element timing.

Instruction packets that are sent to the PE contain one or

two operands, an operation code, and destination addresses

29

for the results. The processors used in a data flow

computer must unpack the instruction packet, decode the

operation code, process the instruction, and form result

packets. There is no need for the processing element to

fetch operands from memory or to store results in memory.

Operands are all 32-bit words with possible data

types of integer, real, or boolean. Because the

processing elements are designed to execute only single

instructions, there is no need to direct results or

incoming instructions. Result/destination pairs are sent

out immediately, and a new instruction is forwarded to the

PE as soon as it can be made available.

The time for an instruction to pass through a PE is

defined as the number of gate delays in doing an addition

on two full words. An analysis of gate delays in

arithmetic expressions is given in (34], where the time to

perform an addition is given as:

T.add ~ 1/2 * (5 + log_t) * log~t + 4.
+

In this equation, f is the fan-out of the gates,

(3 . 1)

and t is

the size of a full word in bits. Using a fan-out of 8 on

32-bit words, the number of gate delays to do an addition

is computed as:

T.add ~ 1/2 * (5 + loga32) * log~32 + 4

~ 21.

30

Since timings are approximate, 20 is used as the minimum

time for an instruction to pass through a processing

element. This timing does not include time to unpack the

instruction packet, decode the operation code, or to form

result packets. Each result packet sent out from the

processing elements contains a single result and a single

destination address. If two destination addresses are in

the instruction packet, two result packets will be sent

out from the PE.

Memory

Because a memory device does not operate using

combinatorial logic, the number of gate delays in a memory

is difficult to estimate. Actual instruction timing can

be used to approximate the time through a memory in terms

of gate delays 1 • By using the number of machine cycles

required to do an addition and the number of machine

cycles to do a memory access, a ratio of memory access

machine cycles to addition machine cycles can be used to

approximate the number of gate delays through a memory.

Using the number of gate delays required for an addition,

the number of gate delays required for a memory access can

be calculated using the Memory - Addition Ratio. Table I

shows the ratio of memory access time to addition time in

machine cycles for several micro-computers. In

l Personal communication with Dr. Louis Johnson, Dept.
of Electrical Engineering, Oklahoma State University,
(1982).

calculating the ratios,

31

register to register addition was

used for the addition time, and register to memory time

was used for a memory access time [41]. The memory -

addition ratio for each machine is given as:

Memory - Addition ratio

((number of cycles to read+ number of cycles to write)/2)

/ (number of cycles to add)

The average ratio for the memory access to an addition is

calculated to be 1.95; however 2.0 is used for convenience

since this is an approximation.

access will then be defined as

T.mu = T.pe * 2

= 40.

The time for a memory

(3.2)

The use of packets in an interconnection network

requires that the bandwidth of the network communication

lines and the size of the packet be the same. The

bandwidth is the number of bits of information that can be

sent over communication lines. When storing or retrieving

a packet from memory, the organization of the memory

greatly affects the total time of packet transfer. If the

memory unit is only capable of accessing one byte or one

word at a time, then accessing a packet of information in

memory would require more than a single read or write

operation. This method of memory access would be

inadequate for large packets because of the reduction in

memory access speed.

TABLE I

RATIO OF MEMORY ACCESS TIME TO ADDITION TIME
IN ACTUAL MACHINE CYCLES

Microprocessor Add Store Load Ratio

Fairchild E'S 1.0 2.5 4.0 3.25
Intel 8080A/8085 4 7 7 1.75
Intel 8048 1 2 2 2.00
IM 6100 1.0 1. 7 1. 7 1. 70
Gen. Inst. CP1600 8 11 10 1. 31
Micro nova 5 6 6 1.20
Motorola MC 6800 2 6 5 2.75
Motorola MCS 6500 2 6 6 3.00
Nat. Semi. PACE 4 4 4 1. 00
Nat. Semi. SC/MP 7 18 18 2.57
RCA CDP 1802 2 2 2 1.00
Signetics 2650 2 3 3 1. 50
SMS 300 1 1 1 1.00
TI TMS 9900 14 60 52 4.00
Z80A 7 9 9 1.29

Average ratio of Memory access to Addition = 1.95.

32

To avoid this reduction in memory access speed, a

packet of information should be read or written during a

single operation. To do this, the memory can be separated

into several banks of storage operating in parallel. This

method of memory organization is called interleaving and

commonly is used to achieve a high bandwidth during memory

access. If a packet size is four words long, the memory can

be divided into four separate banks of storage; a read or

write can then be done in one memory access time by

simultaneously accessing each memory bank. Table II shows

33

the difference in time between using serial memory access

and interleaved memory access. In the descriptions of the

idealized systems, interleaved memory structures are used.

TABLE II

MEMORY ACCESS CYCLES FOR SERIAL ACCESS
AND INTERLEAVED MEMORY ACCESS

Processor Packet Serial Access Interleaved Access
Type (gate delays) (gate delays)

MIT
Result 80 40 2-way
Instruction 160 40 4-way

Manchester
Result 120 40 3-way
Instruction 80 40 2-way

Texas Instruments
Result 80 40 2-way
Instruction 160 40 2-way

Many memory units are said to have nondestructive

readout, that is, a read operation does not destroy the

contents of the memory location. This usually involves the

use of an intermediate buffer in the memory where the

contents of the location just read are placed. This buffer

is then written back into the same location to insure that

the contents are not destroyed. It is desirable to have

memory with destructive readout capabilities in a queue.

capabilities in a queue.

34

Destructive readout causes the

contents of a specified memory location to be destroyed on

a read operation. It is assumed without loss of

generality that zeroes replace the previous contents of

that location after a read operation.

Some memory units have an additional feature that can

be used in data flow computers. A memory normally has a

single port for both input and output, but a multiported

memory allows more than one operation in a memory unit at

the same time. A single-ported memory only has a single

access path to read/write data from memory. A multi­

ported memory has several access paths for read and/or

write operations. This can be used effectively for a

queue, where a packet can be stored at the end of the

queue at the same time a packet is being read from the

front of the queue. This type of operation should be used

carefully since unpredictable results can occur when a

multiported memory is both reading and writing the same

memory location simultaneously.

For ease in both analysis and memory configuration,

it is assumed that each memory chip will contain 1024

32-bit words. All memories are interleaved to achieve the

bandwidth needed to allow a packet to be read or written

in a single access. When a multiported memory can help

the operation of the idealized systems, its effect will be

considered.

35

Control Units

In the data flow systems described in this paper, a

control unit refers to the logic which supervises and

operates the memory units. The main functions of a

control unit is to issue read or write commands to memory

and to maintain status information about that memory. In

an interleaved memory, the amount of logic in the control

unit increases linearly with the number of memory banks,

but because the logic works in parallel, the time through

a control unit remains constant2 . On multiported

memories, separate control logic within the same control

unit is used for each port. Typically one port is used

for reading, while another port is used for writing.

Memory units being used as buffers are treated as

queues. One implementation of a queue uses pointers to

the first and last items in the queue; the control unit

must increment or decrement these pointers as packets are

stored and retrieved from the queue. A packet counter for

the number of items in the queue insures that null records

are not read from the queue. This can be implemented in

such a way that there is no interaction between the

control logic that reads from memory and the control logic

that writes to memory.

2 Personal communication with Dr. Louis Johnson, Dept.
of Electrical Engineering, Oklahoma State University,
(1982).

36

If all buffers use destructive readout, the control

unit actions are simplified. The active packets in the

buffer are the only non-zero locations in memory since

memory is cleared as packets are read. When reading a

packet to be forwarded to the next unit, it is checked for

zeroes in all bits. If the packet does contain all

zeroes, the buffer is empty and the packet is not

forwarded. When a packet is stored, the pointer to the

last item in the queue is incremented after the write has

been initiated.

to the next item

When a packet is retrieved,

in the queue is decremented

the pointer

after the

read operation has been initiated.

the pointer to the next item in

If the packet is null,

the

incremented since the front of the queue

queue must be

did not change.

In this implementation, there is no interaction between

different sets of control logic; consequently, reading and

writing to memory can be done concurrently.

In the idealized systems, the buffers are large

enough to prevent buffer overflow, so control units will

not check for this condition. The purpose of buffers is

to hold incoming packets until a resource is available to

accept the next packet, so buffer control units both

accept packets and send packets at the same time. Packets

are stored as they are sent to the queue. When a resource

beco~es free, a packet is read from the buffer and sent to

the resource. Parallel logic within the control unit

allows concurrent activity.

37

The timing in the control unit varies according to

the amount of logic in the unit. Because the presence of

an address is sufficient to initiate read or write

operations, a gate delay of one is used for timing in the

initiation of a read or write operation. Testing specific

bit fields can be done with a single gate delay. Whole

fields of words also can be tested within a single gate

delay when the testing is done in parallel. Specific

control unit logic for the idealized systems is given

later in this chapter.

Arbitration and Distribution Networks

The arbitration and distribution units are used in

data flow computers to help to route packets to the

correct modules within the interconnection network and to

the proper components within the modules. In the simplest

case, a distribution unit has one input line and two

output lines; the simplest arbitration unit will have two

input lines and one output line. If the number of input

lines or fan-in is fi, and the number of output lines or

fan-out in a routing unit is fo, fi > fo means the unit is

an arbitration unit, and fi < fo means the unit is a

distribution unit. It should be understood that the

bandwidth of each communication line matches the size of

the particular type of packet traversing the arbitration

or distribution unit. Certain fields within the packet

are checked to determine the routing within the unit.

38

Examples of the arbitration and distribution units used in

the three idealized systems are shown in Figure 11. If

there are more than two input lines or two output lines,

several layers of simple switches are used in the unit;

this allows several packets to reside in the unit at any

one time. Multiple layer switches have a timing of

T.ad = log2..(fi) + log.z..(fo) (3.3)

Single packets entering an arbitration unit pass

directly through the unit, but if several packets arrive

at the same time, they pass one at a time through the

layers of switches, in a non-deterministic manner. Using

components with two input and two output lines, an

arbitration or distribution unit can be built using only

N.ad.layers
r \ \.1
I I ir. / 1 1 = . ,(lq, :l #inputs #outputs\: 1
' J '- · I l

(3.4)

layers of switches [30]. The use of parallel layers of

switches allows maximum concurrency within the unit.

Idealized System Configurations

Each system can be described using the four

components just presented. The description of each

idealized system shows the arrangement of processing

elements, memory units, control units, and arbitration and

distribution units. The packet size and format for each

system is given for both result and instruction packets.

The size of destination fields and operation code fields

Arbitration

Distribution

Figure 1 1

-t>-

-<1...._

fan in 2

fan out 1

fan in 4

fan out 1

fan in 16

fan out 4

fan in 1

fan out 2

fan in 1

fan out 4

fan in 4

fan out 16

Arbi~ration and ~is~ribution ~ni~s

39

40

in the packet comes for the original designs from each

system. Packet size dictates the bandwidth of lines

between different modules of the system. The interleaved

arrangement of memory will be shown along with memory unit

sizes; the control logic for memory units and associated

components is described also.

All of the figures used in describing the idealized

systems use the symbols from Figure 10. In 1971, a

notation was introduced by Bell and Newell for general

descriptions of computer system configurations [10]. The

notation, called PMS, provides a systematic way of

describing component features; four of the primitive PMS

components correspond to the components used here.

Appendix A contains PMS descriptions for each of the three

idealized systems.

MIT Idealized System

The idealized MIT configuration is shown in Figure

12. Each processing element is connected both to the

arbitration unit and to the distribution unit; each cell

in the cell memory is also connected to both units.

Packet formats are given in Figure 13 for both result and

instruction packets.

A result packet contains a 32-bit operand and a

destination address. A destination address of 18-bits can

address over 250,000 instructions. An additional 14-bits

are available for control information. Using full word

Distribution

Network

Processing

Elements

Cell Memory

Cell 0

Cell l

Cell 2

Cell 14

Cell 15

Arbitration

~etwork

Figure 12. MIT Idealized System

41

42

(32-bit) memory access, a 64-bit packet can be accessed

from memory using two-way interleaving. Figure 14 shows

the structure of interleaved memory in the MIT system.

Result Packet Destination Control
Operand

Op Code I Control
Instruction Packet

Destination l I Destination 2

Ope.rand l

On ra.nd 2

Figure 13. MIT Packet Formats

An instruction packet contains a 12-bit operation

code, two 18-bit destination addresses, and two 32-bit

operands. Up to 16-bits are available for other control

information. The size of the operation code field,

12-bits, comes from the MIT packets described in [19]. To

read a 128-bit instruction packet from memory in one

memory access requires four-way interleaving.

The cell memory is divided into 16 sub-units called

cells with both a read port and a write port for each

cell. Each cell has the configuration shown in Figure 15

using eight 32-bit x lK memory chips, divided into four

separate banks for interleaving. This results in 2,048

instructions per cell,

entire cell memory.

43

or 32,768 instructions in the

Each cell in the cell memory contains a control unit.

The control unit receives the incoming result packet and

stores the operand. The control information in the

instruction contains bit fields which indicate when an

operand is received. After an operand is received, an

appropriate bit is set to indicate that the operand has

been received. If no more operands are needed, the

instruction packet can be sent on to the arbitration unit.

If a multiported memory is used and the control unit can

read in one memory bank while writing to another bank,

then the operand store can be overlapped with the checking

process for the number of operands needed. This is only

useful for instructions which are not enabled.

The enabling cycle time is defined as the time for an

instruction to be enabled plus the time for a packet to

pass through the arbitration and distribution units plus

the time for a packet to pass through the PE buff er and

the processing element, and the time to go through the

memory buffer. Using different logic in the control unit

can decrease the time required to enable an instruction.

This is the logic that will be used here. After a result

operand arrives at the control unit, the control unit

reads the instruction first, then decrements the number of

needed operands. If the

zero, the instruction can

number of needed operands is

then be forwarded immediately;

Single Cell

Cell Memory

128 Bit

Bandwidth

8K

8K

8K

8K

Figure 14. MIT Interleaved Memory

Control

Unit

..
Memory

4 32bit x: SK

Figure 15. Individual Cell in Cell Memory

44

45

otherwise, the instruction is re-stored in the memory

unit. Instructions receiving the first of two operands

must wait for the second operand, so re-storing the

instruction does

instructions.

not effect the speed of enabling

Two timings are given for packets in the cell memory:

one for instructions being enabled, and one for

instructions which must wait for another operand. When an

instruction receives all of its operands, it is enabled.

The control logic for enabled instructions includes

issuing a read command, testing the number of operands

needed, and sending the packet to the arbitration unit.

Logic for non-enabled instructions includes a read

command, testing the number of operands, and a store

command. Non-enabled instructions require an extra memory

access for storing the instruction back into memory. The

timing equa~ions for the cell memory is

T.enabled = T.mu + 4

44

T.nonenabled = 2 * T.mu + 4

= 84.

(3. 5)

(3. 6)

Enabled instructions are held in the arbitration unit

until a processing element becomes available.

The arbitration unit which is between the processing

elements and cell memory has sixteen input lines and four

output lines. Using equation 3.3,

arbitration unit is

T.ad log (16) + log (4)

= 6.

46

the timing for the

The distribution unit has four input lines and sixteen

output lines. Its timing is the same as the timing for

the arbitration unit. The timing for the processing

elements is defined in equation 3.2, (20 gate delays).

The enabling cycle time is defined as the time to

enable an instruction in the cell memory plus the time for

a packet to move through

units plus the time to

equation for this is

the arbitration and distribution

execute the instruction. The

T.enable.cycle = T.enabled+ 2*T.ad + T.pe (3 . 7)

Specif~c enabled cycle timing will be given later for each

idealized system.

Manchester Idealized System

The modules of the Manchester idealized system are

shown in Figure 16. The idealized system described here

has four processing elements and 512K of memory.

Packet formats for the Manchester design are shown in

Figure 17 for both result and instruction packets. Result

packets contain an 18-bit destination address, a 32-bit

operand, and a 36-bit label field, and 10 bits are

.Processing

Elements

Instruction Store

2 32bit x 28K

Control Unit 2

Control Unit l

Matching Store

3 32bit x 12K

Result

Queue

3 32bit x l2K

Unit

I/O

Switch

Figu:::e l6. Mancheste::: Idealized System

a.­- I

48

available for operand type and control information. Using

full word memory access, the 96-bit result packet can be

interleaved three-way in both the result queue and the

matching store unit as seen in Figure 18.

Instructions held in the instruction store are

partial instruction packets which contain a 12-bit

operation code, two 18-bit destination addresses, and 16

control bits. Instruction packets also contain two 32-bit

operands. The idealized Manchester system contains 36

32-bit x lK memory chips in the result queue, 36 32-bit x

lK chips in the matching store, and 56 32-bit x lK chips

in the instruction store unit.

In this configuration there is space for 12,888

result packets in the result queue, 12,288 result packets

in the matching store, and 28,672 (partial) instruction

packets in the instruction store.

There are different types of control units in the

result queue, matching store, and instruction store. The

control unit in the result queue must accept incoming

packets and place them at the end of the queue. When the

matching store is ready to accept packets, the result

queue control unit forwards the first packet available in

the queue.

Using a multiported memory, the result queue control

unit will operate as follows. As packets enter from the

I/O switch, packets are stored at the end of the queue.

As packets are stored, the pointer must be incremented to

Operand
Result Packet Label Field

Lbl. r Destination I Control

Instruction Packet

Figure 17.

Result Queue,
Matching Store

96 Bit
Bandwidth

Instruction Store

64 Bit
Bandwidth

E'igure 18.

On r"..i"' I n<>c::r;riation 1

Destination 2 I Control

One rand 1

Ooerand 2

Manchester Packet Formats

12K

12K

12K

28K

28K

Manchester Interleaved Memory

49

50

the next location. The time to increment this pointer is

ignored since it can be overlapped with the store

operation and takes less time than the store operation.

At the same time as packets are being stored, packets can

be read from the front of the queue and forwarded to the

matching store. A pointer must also be maintained to mark

the next packet location and can be decremented while the

read operation takes place.

A destructive readout memory can be used to insure

that memory not being used contains zeroes. When a packet

is read, it is tested to check whether it is all zeroes.

If so, the packet is discarded since it is not valid.

Valid packets are forwarded to the matching store.

The equation for timing in the result queue includes

two memory accesses: one for storing the packet and one

for reading the packet. When the packet is stored, the

control logic issues a read command; when a packet is

read, the control logic tests for a null packet, and

forwards the packet, if possible. The control unit is

given a timing of four in the result queue.

for the result queue timing is

T.rq = 2 * T.mu + 4

= 84.

The equation

(3.8)

The matching store contains two control units: one

for reading from the memory and one for writing to the

memory. The use of a multiported memory is indicated in

51

(28). Packets first entering the matching store encounter

a distribution unit; unary operands bypass the matching

store while others are passed to the first control unit.

The control unit uses the destination address and label to

read from the memory. If a destructive readout memory is

used, and if all zeroes are read, then no matching operand

is available, so this operand must wait for the matching

operand. The zero packet is discarded, and the result

packet is sent to the second control unit where it is

written into the memory.

There are two timing figures for the matching store:

one for enabled instructions and one for nonenabled

instructions. The first control unit issues a read

command to the memory, then forwards the packet to the

next component. If there is a zero packet in the operand

pair after the read, the distribution unit forwards the

packet to the second control unit. The second control unit

only needs to issue a write command to the memory. The

timing for the first control unit is 2 gate delays; the

timing for the second control unit is only 1 gate delay.

Including arbitration and distribution units, the timing

equation for an enabled instruction through the matching

store is

T.enabled = T.mu + 5 (3.9)

= 45.

52

The timing for an operand that must be stored into the

memory is

T.nonenabled = 2 * T.mu + 5 (3.10)

= 85.

After operands are matched, they are forwarded to the

instruction store unit. The operands are held in a small

control unit buffer while the instruction is being read.

Once the instruction is available, it is sent together

with its operands to the next available processing

element. The control unit in the instruction store issues

a read command, then forwards the packet to the first

available processing element. The timing for the

instruction store control unit is 2 gate delays. The

timing for the instruction store is

T.is = T.rnu + 2 (3.11)

= 42.

The timing for the processing elements is 20 gate

delays, as in the other two systems. The timing for the

arbitration and distribution units that are in front and

in back of the PE's have a timing of 2 gate delays because

the distribution unit has a fan-in of one and a fan-out of

four, and the arbitration unit has a fan-in of four and a

fan-out of one.

The time for the enabling cycle is defined as the

time for an instruction to be enabled in the matching

53

store, plus the time to go through the instruction store,

PE arbitration and distribution units, processing element,

I/O switch, and the result queue. The enabling cycle

timing is

T.enable.cycle = T.enabled + T.is + 2*T.ad.pe

+ T.pe + T.io + T.rq (3.12)

= 197.

Texas Instruments Idealized System

The Texas Instruments design utilizes several

operational units, each unit containing both a processing

element and a local memory. Several operational units are

connected around a main ring. One operational unit in the

idealized configuration is shown in Figure 19.

Result packets contain a 16-bit destination address

and a 32-bit operand; 16 additional bits are available for

control information. Using full word memory access, the

64-bit result packet can be read or written in a two-way

interleaved memory.

Instruction packets contain a 16-bit operation code

and a field of 4-bits for indication of the number of

operands. Also, there are two 16-bit destinations and two

32-bit operands, leaving 12 bits for control information.

The 128-bit packet can be accessed in a single read or

write operation with a four-way interleaved memory.

Result and instruction packet formats are shown in Figure

20.

lfain

Ring

Control

Unit

Control

Unit

Control

Unit

r

Processing

Element

Buffer

4 32bit x lK

Processing

Element

Memory Buffer

2 32bit x 2K

Instruction

Memory

4 32bit x 6K

Figure 19. Texas Instruments Idealized System

54

55

Interleaved memory structures for the TI system are

shown in Figure 21. In the idealized configuration there

are 24 32-bit x lK memory chips in the memory unit and

four 32-bit x lK memory chips in both buffers. Because

the PE buff er is interleaved four-way and the memory

buffer is only interleaved two-way, the memory buffer can

hold twice as many packets as the PE buffer. This is

consistent with the fact that one instruction can generate

two result packets.

Using the packet and memory size, it can be seen that

in each operational unit there is space for 6,144 possible

instruction packets in the instruction memory, 1,024

result packets in the PE buffer, and 2,048 result packets

in the memory buffer. For four operational units, this

gives a maximum of 28,672 instruction packets,

result packets.

and 8,192

The are several possible strategies of operation in

the instruction memory. In the interest of faster

instruction enabling, the instruction packet for the

operand is first read into the control unit when a result

operand is received. The number of operands needed is

decremented and tested. If this number is zero, then the

instruction packet is enabled and forwarded from the

instruction memory. If the number of needed operands is

not zero, then the instruction packet is stored back into

the instruction memory. Depending on the result

destinations in the packet, the packet is either sent out

of the operational unit or sent back to the PE buffer.

Result Packet
Sestinat-fon I Control

Opegnd

Op Code I ft Operands ! Control

Instr~ction Packet Destination 1 pestination 2

PE Buffer

128 Bit
Bandwidth

~:::::: ~
Figure 20. TI Packet Formats

Memory Buffer fi

Instruction ~emory

128 Bit
Bandwidth

64 Bit
Bandwidth

\

6IZ

6~

6K

6K

Figure 21. TI Interleaved Memory

2K

56

J

57

In the Texas Instruments idealized system, there are

two different types of control units. One control unit is

used with the memory unit and controls the matching of

instruction operands. Both buffer units can use the same

type of control unit for control of packets that are held

within the buffer. The actions of buffers used in the TI

DDP are not described in the literature available from the

company, so a queue is used in this analysis. The buffer

control units operate similarly to the control unit

associated with the Manchester result queue. As described

earlier, a buffer of this nature require a pointer to the

first and last items in the queue; reading and writing

packets requires the control unit to maintain these

pointers.

Both buffers in the system operate the same way.

When packets arrive in the buffer control unit, they are

placed at the back of the queue; the control unit can

update the pointer to the next store location when the

packet is being stored. As stated before, the time

required to update the pointer can be ignored since a

memory access in the idealized system is slower than the

time required to update the pointer. While packets are

being stored at the end of the queue, packets can be sent

out from the front of the queue. Once a packet is read

from memory, it is checked to see whether it is zero. A

zero packet occurs whenever the buffer is empty and is

discarded. Valid packets are sent to the next unit in the

interconnection network.

The only difference between the

buffer is the interleaving control;

58

PE buff er and memory

the PE buffer unit is

four-way interleaved,

interleaved.

and the memory buffer is two-way

The time for a packet to pass through the two buffer

control units include a read and write operation as

packets are stored and read from the buffer. The control

logic issues a store command as the packets are received.

When packets are read out, the

command, tests for a null packet,

logic issues a read

and sends the packet to

the next module. Control unit timing is four gate delays,

and the buffer timing is

T.bu = 2 * T.mu + 4 (3.13)

= 84.

The instruction memory can be analyzed both with a

timing for enabling instructions, and with a timing for

the storing of operands. The logic needed to enable an

instruction includes issuing a read command, logic to

decrement the number of operands yet required, and logic

to forward the packet from the instruction memory if the

operand count is zero. The enabled instruction timing is

T.enabled = T.rnu + 4 (3.14)

= 44.

The timing for storing operands back into memory

includes the time required for an extra memory access, and

59

the time required for the control logic to issue a store

command in lieu of forwarding the packet.

a non-enabling instruction is

The timing for

T.nonenabled = 2 * T.mu + 4 (3.15)

= 84.

Timing for the processing elements is the same as the

other processing elements: 20 gate delays as stated in

equation 3.2.

Because of the arrangement of modules on the TI

system, the enabling cycle includes only one processor.

The logic to effect the enabling cycle is contained

entirely within the same operational unit; its timing

formula is:

T.enable.cycle = T.enabled + 4*T.ad

+ 2*T.bu + T.pe (3.16)

Enabled cycle timing for the idealized systems is given in

the next chapter. The timing for every module in each of

the three idealized systems are in Appendix C.

CHAPTER IV

ANALYSIS OF IDEALIZED DATA FLOW SYSTEMS

In analyzing the different idealized data flow

systems, two measures are used: the time required to move

an enabled instruction completely around the

interconnection network, and the rate in units of packets

per million gate delays at which packets move through the

processing elements. If there are no bottlenecks in the

system, the maximum system throughput is the rate of

operation of the processing elements when they are

operating at their maximum rate. Any modules operating at

a rate less than the processing elements is a bottleneck

in the system.

Equations to describe the rates for each module are

given in this chapter.

system being analyzed

for rate equations is:

Specific values for the idealized

are given as well. The form used

R.x = Rate equation for module x

= Value for idealized system.

(Eq#)

All timing and rate equations are listed together in

Appendix D.

60

Packet Rates Through Interconnection

Network Modules

61

As stated before, it is desirable to achieve a linear

increase in computing power as processors are added into

the system. The packet rate is based on the ratio of the

number of parallel components (modules) to the component

(module) timing. The packet rate for component (module) x

is defined as

R.x = (N.x / T.x)

in units of packets per million gate delays (PMG). In

rate equations, N.x is the number of modules, components,

or operations that can execute in parallel, and T.x is the

timing for x as calculated in Chapter III.

In deriving the packet rates for arbitration and

distribution units, it was found that regardless of the

fan-in or fan-out of the unit, the packet rate is one

packet per gate delay when the unit operates at its

maximum rate. This result is a consequence of building

the arbitration and distribution units in parallel stages

from simple one gate switches and a consequence of packets

residing in each stage in the unit during packet

transfer. Because the number of stages always equals the

number of gate delays, all arbitration and distribution

units will have a rate of

R.ad = N.ad.stages IT.ad)

1,000,000 packets per million

gate delays

= 1,000,000 PMG.

62

(4. 1)

Using a

the idealized

processing element time

systems will have the

of 20 gate delays,

following rate for

four processors

R.pe = (N.pe / T.pe)

= 200,000 PMG.

(4.2)

The processing element rate is not necessarily the same as

the system rate,

bottleneck.

because some other module may be a

An enabling rate is given for each

enabling cycle timing from Chapter III.

system using the

Programs that are

strictly serial execute only one instruction per enabling

cycle. Because of this, the enabling rate is defined as

R.enable = (1 / T.enabled.cycle) (4. 3)

The enabling rate is the minimum rate at which

instructions can execute.

MIT Idealized System Rates

The rates for the processing elements, the

arbitration unit, and the distribution unit have been

given previously. The rate of the arbitration and

distribution units was defined

63

as 1,000,000 PMG in

equation 4.1, this applies to both the MIT arbitration and

distribution units. In equation 4.2, the rate of four

processing elements is given as 200,000 PMG.

In modules where enabling takes place, the rate of

the module is derived from a non-weighted average of the

enabling instruction timing and the nonenabling

instruction timing. The ratio of nonenabling operands to

enabling operands is program dependent; an average is used

in comparing all systems. If all instructions are binary

instructions, the average used in the enabling timing is

exact. An average of the enabling and nonenabling times

from equations 3.5 and 3.6 is used in the cell memory

rate; these times are 44 gate delays and 84 gate delays,

respectively. The cell memory in the MIT design has

sixteen cells in the cell memory that can operate in

parallel, giving a cell memory rate of

R.cm = N.cells /

((T.enabled + T.nonenabled)/2)

= 250,000 PMG.

(4. 4)

Using the enabling cycle timing of 76 gate delays

from equation 3.7, the MIT enabling rate is

R.enable 1 / T.enabled.cycle

= 13,157 PMG.

(4.5)

64

Manchester Idealized System Rates

The rates for the processing elements are stated in

equation 4.2. The rate of the four processing elements on

the Manchester system is 200,000 PMG. Since the I/O

switch is composed solely of arbitration and distribution

units, it uses the arbitration and distribution rates from

equation 4.1 or 1,000,000 PMG.

The Manchester result queue was designed to allow

reading and writing to be done concurrently. The two

parallel units are used in the rate calculation. Using

the result queue timing of 84 gate delays from equation

3.8, the result queue rate is

R.rq =

The ratio

N.rq / T.rq)

= 23,809 PMG.

of unary

(4.6)

instructions to binary

instructions is program dependent; to be comparable with

other memories where enabling takes place, the average of

enabling and nonenabling instructions is used for the

timing in the matching store. The control units in the

matching store operate in parallel. By using the enabling

and nonenabling timing from equations 3.9 and 3.10 (45

gate delays and 85 gate delays), the matching store rate

is computed to be

R.ms = N.ms / ((T.enabl+T.nonenabl)/2)

= 30,769 PMG.

(4.7)

65

The instruction store operates as a serial memory

using one control unit attached to the memory. Using the

timing of 42 gate delays from equation 3.11, the

instruction store rate is

R.is = (N.is / T.is)

= 23,809 PMG.

(4.8)

The arbitration and distribution units around the PE

have a rate of 1,000,000 PMG, (equation 4.1).

Using the enabling cycle timing of 197 gate delays

from equation 3.12, the Manchester enabling rate is

R.enable = 1 / T.enabled.cycle (4.9)

= 5,076 PMG.

Texas Instruments Idealized System Rates

The rate used for the processing elements in the

Texas Instruments design is not the same as the other PE

rates, because a single PE is used in each operational

unit. All other rates for the TI system are for a single

operational unit also. Therefore, the PE rate for the

Texas Instruments idealized system is calculated as 50,000

PMG from equation 4.2.

rate is 200,000 for four

The overall TI processing element

processors. The timing for all

arbitration and distribution units will have a rate of

1,000,000 PMG as computed from equation 4.1.

66

The buffers in the TI system were designed so that

reading and writing could be done in parallel.

Consequently, two units are used in the rate calculation.

Using the buff er timing of 84 gate delays computed from

equation 3.13, the buffer rate is

R.bu = (N.bu / T.bu)

= 23,809 PMG.

(4.10)

Each TI instruction memory is a serial memory. The

memory units act in parallel without interference from one

another. Because the instruction memory is accepting

enabled and non-enabled instructions, a non-weighted

average of enabled and non-enabled instruction timing is

used for the timing in the instruction memory. Using the

enabling and nonenabling timing of 44 gate delays and 84

gate delays from equations 3.14 and 3.15, the instruction

memory has a rate of

R.im = (N.im / ((T.enabl+T.nonenabl)/2

= 16,000 PMG.

(4.11)

All arbitration and distribution units each have a

rate of 1,000,000 PMG as defined in equation 4.1.

Using the enabling cycle timing of 236 gate delays

from equation 3.16, the Texas Instruments enabling rate is

R.enable = 1 / T.enabled.cycle (4.12)

= 4,237 PMG.

All rates are shown in Tables III-V.

TABLE III

MIT IDEALIZED MODULE TIMING AND RATE FIGURES

Module

Cell Memory
enabled
nonenabled

Arbitration Unit
Distribution Unit
Processing Elements

Enabling Cycle Rate

Timing
(Gate delays)

T.cm
T.enabled

T.nonenabled
T.ad
T.ad

(4) T. pe

44
84

6
6

20

T.enable.cycle

TABLE IV

Packet Rate
(PMG)

250,000

1,000,000
1,000,000

200,000

13,157

MANCHESTER IDEALIZED MODULE TIMING A.ND RATE FIGURES

Module

I/O Switch
Result Queue
Matching Store

enabled
none nab led

Instruction Store
PE Arbitration and

Distribution Unit
Processing Elements

Enabling Cycle Rate

T.ios
T.rq
T.ms

Timing
(Gate delays)

2
84

T.enabled 45
T.nonenabled 85

T.is 42
T.ad

2
(4) T.pe 20

T.enable.cycle

Packet Rate
(PMG)

1,000,000
23,809
30,769

23,809

1,000,000
200,000

5,076

67

TABLE V

TEXAS INSTRUMENTS IDEALIZED MODULE
TIMING AND RATE FIGURES

Module

T.ad

T.bu

Timing
(Gate delays)

1
84

T. im
T.enabled

Arbitration and
Distribution Units

Buffer Units
Instruction Memory

enabled
nonenabled

Processing Element
T.nonenabled

(1) T. pe

44
84
20

Enabling Cycle Rate T.enabled.cycle

Analysis Of Packet Rates

Packet Rate
(PMG)

1,000,000
23,809
15,625

50,000

4,237

68

Maximizing throughput of the processing elements is

desired in the analysis of packet rates. Any modules of the

system with a rate lower than the processing element rate

are considered a potential bottleneck in the system. If

bottlenecks are present in any of the idealized systems,

possible improvements are explored in an attempt to remove

the bottleneck.

In the idealized MIT system, the arbitration and

distribution units operate at a rate higher than the PE's.

This is true in the other two designs as well. More

importantly, the cell memory rate exceeds the processing

element rate which results in the maximum possible

throughput rate through the PE's.

69

If the number of

processors were to be raised, the number of cells in the

memory also would have to increase in order to match the

needed PE rate. The design of the MIT system allows for

both a variable number of PE's and a variable number of

cells in the cell memory.

If the packet rate from the processors were to exceed

one million packets per million gates, the arbitration and

distribution units would then become a bottleneck. A data

flow system of twenty or more processing elements could

have this problem. Larger arbitration and distribution

units would be needed if a larger system were to be built.

The use of several parallel arbitration or distribution

units instead of a single arbitration and distribution

could eliminate this bottleneck as well.

It

operate

appears

at the

that the MIT idealized system could

maximum throughput rate through the

processing elements; larger systems could also be built to

fully utilize the processing element throughput rate.

In the idealized Manchester system, several modules

appear to be bottlenecks. The rates of the result queue,

the matching store, and the instruction store, are all

less than the rate required by the processors. If these

rates were used in a data flow system, the processing

elements would be idle a large percentage of the time.

In order to determine the increase in rate needed of

the modules which are bottlenecks, a ratio of the

70

processing element rate to the rate of the module which is

a bottleneck can be used. The speed-up rate can be

calculated by dividing the rate of the processing

elements, by the rate of the module which is a bottleneck.

R.x.su (R.pe / R.x) (4.13)

The instruction store would need to operate 9 times faster

to keep the processing elements fully utilized. The

matching store would have to operate 7 times faster to

match the PE rate. And the result queue would need to

operate 9 times faster to match the PE rate.

One possible solution to the bottlenecks would be the

use of a higher speed memory; the rates of all units using

a memory would then be increased. This is only a

temporary solution and depends on the number of processors

in the system. A data flow system with a large number of

processors would require an extremely fast memory if all

modules are to match the PE rate; this might not be

practical for a large system. There is no way for a

memory operating serially to match the rate of a set of

parallel processors, especially if there are a large

number of processing elements. In a specific

configuration where the number of processors is constant,

it might be possible to find

specific technology that can

a memory

support

which

the

is of a

elements. A serial memory preceeding a set

processing

of parallel

processors restricts the number of processors it can

service effectively.

71

The Texas Instruments design is unique in two ways.

First, while the processors do operate in parallel, each

processing element has separate sets of memory logic and

control logic. The problem of a memory servicing a set of

parallel processors is not present here because each

processing element has a local memory. A serial memory

can service a single processing element adequately; this

is evident in von Neumann computers. In the idealized

system, the buffer units and instruction memory rates are

not great enough to keep the processing elements busy at

all times. A memory operating 3 times faster than the

idealized memory would increase the rate of the buffer

units and instruction memory enough to match the PE rate.

The number of processors do not effect the required memory

speed, so finding a particular memory technology to match

the PE rate is sufficient regardless of the size of the

system.

Both partitioning of the data flow graph into

subgraphs and the number of operational units on the main

ring affect packet throughput. The literature available

on the TI DDP suggests that the main ring traffic would be

light; because of this, the analysis here ignores activity

on the main ring. As the number of subgraphs of the

program increases,

subgraph partitions

the number of packets passed among

should increase. The time a packet

spends traversing the main ring is directly proportional

to the number of processors on the ring. If the number of

72

processing elements is large, then the problems of data

flow graph partitioning and operational unit communication

will degrade total system performance. A large number of

processors on the ring also increases ring contention and

slows down main ring traffic even further. For a small

number of processors, the TI design appears to be

competitive with the other data flow architectures.

Another measure used in the idealized systems is the

enabling cycle time to complete a circuit in the

interconnection network. In highly serial programs where

only one instruction can only execute at a time, the

time for program execution would be closer to the enabling

rate than the maximum rate through the processing

elements. In the MIT design, the enabling rate is greater

because there are no buffers or queues which lengthen the

enabling cycle. The Manchester design contains one queue

which degrade the performance of t he enabling cycle. The

Texas Instruments design contains two buffers which

degrades the enabling cycle. Serial programs execute in a

time proportional to the enabling cycle. If a program

contains little parallelism, the advantage of a high

parallel processing rate cannot be utilized.

Advantages and Disadvantages of

Selected Data Flow

Architectures

73

The organization and speed of memory causes most of

the bottlenecks in the idealized systems. If a serial

memory operates in front of a set of parallel processors~

then only a limited number of processors will be to

utilized fully. The use of a memory operating in parallel

appears to be well suited to a data flow system with

parallel processors.

The length of the enabling cycle can be a detriment

for serial programs. The enabling cycle greatly reduced

the possible maximum throughput rate of the data flow

system for serial programs in both the Manchester and

Texas Instruments designs.

The use of serial packet routing also can cause a

reduction in packet rate, as it does in the TI main ring.

If the rate of packet transfer on the main ring is slower

than the rate of modules in the operational units, then

the processing elements are idle a larger percentage of

time when they are waiting for packets from other

operational units.

In the attempt to arrive at comparable data flow

systems, some features

architectures were deleted.

of the MIT and Manchester

One of the most recent of the

MIT data flow systems includes a secondary memory system;

74

no other data flow designs have suggested using anything

but a main memory. The secondary memory is not designed

to be used for file storage, but rather it is designed to

be used for instructions that are not currently being

referenced. It also may be used as a part of a virtual

memory system in a multiprogrammed system.

memory is similiar to a cache in such a system.

The cell

Possible

motivations include improved memory speed or the desire to

build a smaller cell memory on large systems.

In the extended Manchester design, many layers of

operational units are connected together. A single layer,

or operational unit, is similiar to the system described

here; an exchange switch replaces the I/O switch for

layer-to-layer communication. The Manchester design might

appear to be similiar to the TI design with several

operational units, but it has an improved communication

routing system. The exchange switch can be built using

arbitration and distribution units in stages and would

process packets in logarithmic time.

Real Machine Comparison

Using the rates derived above, the timing in terms of

gate delays can be compared to the timing of a real

machine in terms of million instructions per second. The

timing from the Cray 1 computer was chosen for the basis

of comparison, because the Cray 1 has one of the highest

instruction throughput rates. The Cray 1 was designed

75

using small scale integrated circuitry; all chips are

bipolar with gates having a fan-in/fan-out of four or

five. Register chips operate with a 6 nano-second cycle

time, and memory chips operate with a 50 nano-second cycle

time. Because the idealized memory is twice as slow as

the processing element timing, assume the Cray 1 processor

timing (add time) is 25 nano-seconds for the purposes of

this analysis. Using the ratio of gate delays per nano­

second, the timing used in the idealized system can be

converted to million instructions per second (MIPS).

The timing used in the processing elements is 20 gate

delays, which corresponds to the 25 nano-second time on

the Cray 1 computer; therefore 1 gate delay equals 1.25

nano-seconds. The rate of the processing elements is

200,000 instructions per million gate delays, or

This gives

1

instruction per 6.25 nano-seconds. an

approximate rate of 160 MIPS using four processors. In

contrast, the Cray 1 can operate between 125 - 250 million

floating point operations per second (MFLOPS), and is able

to sustain a rate of 138 MFLOPS [44]. Also, the Cray 1

does operations on 64-bit words, while the idealized

systems used 32-bit words. Because of the difference in

units, MIPS to MFLOPS, the difference in word sizes, and

the assumtion of a 25 nano-second CRAY 1 add time, this

cannot be

idealized

computation

a precise comparison.

rate of 160 MIPS does

rate is within range

But the resulting

indicate that the

of a present day

supercomputer. A

elements, or with

data flow system with

faster technology,

76

more processing

could achieve a

processing rate far above any systems built today.

CHAPTER V

SUMMARY, CONCLUSIONS, AND

SUGGESTED FUTURE

RESEARCH

Summary and Conclusions

A timing analysis of the architecture of three data

flow computers and their interconnection networks were

presented. The main thrust of analysis was directed

toward the systems from MIT, Texas Instruments, and the

University of Manchester. The different modules which are

present in the three data flow systems were examined, and

the timings for single packets to pass through the

different modules were derived. Packet structure, packet

contents, and memory configuration were described for all

three systems. The three data flow systems were then

configured in ideal systems so they could be compared.

No particular technology was used in analyzing the

different systems. Four basic components were used to

construct the different modules of the system. The

components used include: processing elements, memory

units, arbitration and distribution units, and control

77

78

units. The timing of each component was expressed in

terms of the gate delays it requires for a packet to pass

through the component; this was done to aid in a

technology independent analysis. Once the timings for the

modules were derived, the maximum packet rates through the

modules followed logically. Then packet rates were used

in analyzing the performance of the interconnection

networks.

In analyzing the idealized systems, two measures were

used: the maximum packet rate and the minimum packet rate

through the different systems. The goal for the

processing element rate was to obtain the maximum packet

rate possible. The enabling cycle was used as the minimum

rate; this occurs when highly serial programs are

executed.

With parallel processors, the processing rate

increases linearly with the number of processors executing

in parallel. In the various idealized system rates, the

module with the lowest rate represents the maximum

processing rate because the module with the lowest rate is

the worst bottleneck of the system. Any modules with a

rate less than that of the processing elements was

considered to be a bottleneck in the system. Both

arbitration and distribution units operated at a rate

higher than the processing elements and thus did not

effect processor utilization. Memory

serially were definite bottlenecks,

units that operate

especially when

79

servicing parallel processing elements. Memory units

operating in parallel can achieve rates that are greater

than or equal to the processing element rate.

The minimum processing rate is the enabling rate,

which occurs during execution of sequential programs. The

enabling rate was found to be lower in systems with

multiple memory units. This was caused by the reading and

writing of packets into the different memory units. The

more memory modules in which a single packet is stored,

the longer the enabling cycle, thus reducing the enabling

rate for serial programs. When executing sequential

programs on a data flow system, a high percentage of the

available processors may not be used at any given instant.

In all three idealized systems, the enabling rate was less

than 10 percent of the maximum processing element rate.

Because the enabling rate does not depend on the number of

processors, the enabling rate is constant for a given

system.

The rates derived in Chapter IV demonstrate that the

architectures from the University of Manchester and Texas

Instruments cannot operate at the maximum processing rate.

Both designs use a memory operating serially, and this

appears to be the major bottleneck. The MIT design uses a

memory with parallel access, and thus the memory can be

configured so the memory rate matches the processing rate.

Overall, it appears that the MIT architecture is the

best of the three data flow designs. The processing

80

element rate was matched by all other modules in the

system and had no

The MIT system

specifically iden tifiable bottlenecks.

also has an architecture that could be

expanded into a larger system with no module bottlenecks.

Suggested Future Research

In evaluating the packet rates for the idealized

systems, program behavior was ignored. Future research

analyzing data flow processor rates could analyze program

characteristics to determine enabling rates more

carefully. Simulation could also be used to determine the

processor utilization for different types of programs.

Additional research comparing data flow systems can

analyze the extended architecture designs. This would

include the use of a secondary memory as either an

instruction store or a virtual memory. The effects of

communication between operational units could be examined.

This thesis examined three specific data flow

systems, future research could compare other data flow

systems as well.

driven systems,

All three systems examined were data

future work might compare data driven

systems with demand driven systems.

The increased use of complex computer systems and

large complex applications undoubtedly will continue.

Advances in computer architecture, hardware, and software,

will be required to meet the rising demand for computing

power.

SELECTED BIBLIOGRAPHY

[l] Ackerman, William B., "Data Flow Languages."
Proceedings of the 8th Annual Symposium on
Computer Architecture (May, 1981), 1-28.

[2] Ackerman, William B., and Dennis, Jack B., "VAL - A
Value Oriented Algorithmic Language, Preliminary
Reference Manual." M.I.T. Laboratory for
Computer Science TR-218, Cambridge, Mass. (June,
1979).

3] Agerwala, Tilak, and Arvind, K., "Data Flow Systems."
Computer (February, 1982), 10-13.

[4] Arvind, Kathail V., "A Multiple Processor Data Flow
Machine That Supports Generalized Procedures."
Proceedings of the 8th Annual Symposium on
Computer Architecture (May 12, 1981), 291-302.

[S] Arvind, K., and Gostelow, Kim P., "A Computer Capable
of Exchanging Processing Elements for Time."

·Technical Report 77, University of California,
Irvine, Ca. (January, 1976), 1-57.

[6] Arvind, K., Gostelow, Kim P., and Plouffe,
Asynchronous Programming Language and
Machine." Department of Computer
University of California, Irvine, Ca.
8, 1978), 1.1-2.16.

Wil, "An
Computing

Science,
(December

[7] Arvind, K., and
Department
California,
1-12.

Pingali, K. , "The U- Interpreter."
of Computer Science, University of
Irvine, Ca. (February 26, 1981),

[8] Arvind, K., and Pignali, K., "A Data Flow Architecture
with Tagged Tokens." Tutorial Notes, 8th Annual
Symposium on Computer Architecture, Minneapolis,
Minn. (May 12, 1981) .

[9) Barnes, G. H., Brown, R. M., Kato, M., Kuck, D. J.,
Slotnick, D. L., and Stokes, R. A., "The ILLIAC
IV Computer." IEEE Transactions on Computers,
Vol. C-17, No. 8 (August, 1968), 746-757.

81

82

[10] Bell, C. Gordon, and Newell, Allen, Computer
Structures: Readings and Examples. Mc Graw Hill,
New York, N.Y. (1971), 15-22, 615-628.

[11] Bryant, Randal E., "Simulation of Packet Communication

[12]

Architecture Computer Systems." M.I.T.
Laboratory for Computer Science TR-188,
Canbridge, Mass. (November, 1977), 9-17.

Burkowski, F. I., "A Multi-User
Architecture." Proceedings of the
Symposium on Computer Architecture
1981), 327-340.

Data Flow
8th Annual

(May 13,

[13] Cornish, Merrill, The TI Data Flow Architecture: The
Power of Concurrency for Avionics. Texas
Instruments Inc., Austin, Texas (1979).

[14] Davis, A. L., "The Architecture and System Model of
DDMl: A Recursively Structured Data Driven
Machine." 5th Annual Symposium on Computer
Architecture (1978), 210-215.

[15] Davis, A. L., "A Data Flow Evaluation System Based on
Concepts of Recursive Locality." AFIPS
Conference Proceedings (1979), 1079-1086.

[16] Dennis, Jack B., "Segmentation and the Design of
Multiprogrammed Computer Systems." Journal of
the ACM, Vol. 12, No. 4 (October, 1965), 589-602:"°

[17] Dennis, Jack B., "First Version of a Data Flow
Procedure Language." CSG Memo 93, M.I.T. Project
MAC, Cambdidge, Mass. (August, 1974), 1-21.

[18) Dennis, Jack B., "Packet Communication Architecture."
CSG Memo 130, M.I.T. Project MAC, Cambridge,
Mass. (August, 1975), 1-6.

[19) Dennis, Jack B., "Proposed Research on Architectural
Principles for Large Memory Systems." CSG Memo
132, M.I.T. Project MAC, Cambridge, Mass.
(October, 1975), 1-17.

[20) Dennis, Jack B., "The Varieties of Data Flow
Computers." Procedings of the 1st International
Conference on Distributed Computing (October,
1975), 430-439.

[21) Dennis, Jack B., "Data Flow Supercomputers." Computer
(November 1980), 48-56.

83

[22] Dennis, Jack B., Andrew, G., and Leung,
"Building Blocks for a Data Flow
Prototype." Laboratory for Computer
M.I.T., Cambridge, Mass. (1980), 1-8.

c. K. I

Computer
Science,

[23] Dennis, Jack B., and Misunas, David P., "A Preliminary
Architecture For a Basic Data Flow Processor."
CSG Memo 102, M.I.T. Project MAC (August, 1974),
1-27.

[24] Dennis, Jack B., and Misunas, David P., "A Computer
Architecture for Highly Parallel Signal
Processing." Proceedings of the 1974 ACM
National Conference, New York, NY. (November,
1974), 402-409.

[25) Dennis, Jack B., Misunas, David P., and Leung, C. K.,
"A Highly Parallel Processor Using a Data Flow
Machine Language." CSG Memo 134, M.I.T. Project
MAC, Cambridge, Mass. (January, 1977), 16-49.

[26) Ellis, David J., "Formal Specifications for Packet
Communication Systems." M.I.T Laboratory for
Computer Science TR-184, Cambridge, Mass.
(November, 1977), 9-17.

[27] Gostelow, Kirn P., and Thomas, Robert E., "Performance
of a Simulated Data Flow Computer." IEEE
Transactions on Computers, Vol. C-29, No. 10
(October, 1980), 905-919.

(28] Gurd, John, Watson, Ian, and Glauert, John, "A
Multilayered Data Flow Computer Architecture."
Department of Computer Science, University of
Manchester, Manchester, England (March, 1980),
1-56.

(29] Hintz, R. G., and Tate, D. P., "control Data STAR-100
Processor Design." Cornpcon 72, IEEE Computer
Society Conference Proceedings (September, 1972),
1-4.

(30] Jacobson, Robert G., and Misunas,
of Structures for Packet
Memo 151, M.I.T. Project
(August, 1975), 1-6.

David P., "Analysis
Communication." CSG

MAC, Cambridge, Mass.

(31] Jensen, John C., "Basic Program Representation in the
Texas Instruments Data Flow Test Bed Compiler."
Preliminary Report, Texas Instruments Inc.,
Austin, Tex. (January 29, 1980), 1-20.

84

[32] Karp, R. M., and Miller, R. E., "Properties of a Model
for Parallel Computation: Determinacy,
Termination, and Queuing." SIAM Journal of
Applied Mathematics, Vol. 14, No. 6 (November,
1966), 1390-1411.

[33] Keller, Robert M., Lindstrom,
"An Architecture for a
Processor." University
(October, 1978).

Gary, and Patil, Suhas,
Loosely-Coupled Parallel
of Utah, UUCS-78-105

[34] Kuck, David J., The Structure of Computers
New York,

and
NY. Computation. Wiley and Sons,

(1978), 483-488.

[35] Leung, Clement Kin Cho, "Fault Tolerance in Packet
Communication Computer Architecture." M.I.T.
Laboratory for Computer Science TR-250,
Cambridge, Mass. (September, 1980), 131-154.

[36] Maekawa, M., "Optimal Processor Interconnection
Topologies." Proceedings of the 8th Annual
Symposium on Computer Architecture (May 14,
1981), 171-186.

(37] Misunas, David P., "Deadlock Avoidance in a Data Flow
Architecture." CSG Memo 116, M.I.T. Project MAC,
Cambridge, Mass. (February, 1975), 1-7.

[38] Oldehoeft, Aurthur E., Thoreson, S., Retnadhas C., and
Zingg, R., "The Design of a Software Simulator
for a Data Flow Computer." Department of
Computer Science, Iowa State University, Ames,
Ia. (1977), 1-23.

[39] Oldehoeft, Aurthur E., Zingg, R., and Retnadhas, C.,
"Measurement of Parallelism in Computer Programs
Through Analysis of Program Graphs." Department
of Computer Science, Iowa State University, Ames,
Ia. (1979), 1-15.

[40] Organick, Elliot I., "New Directions in
Systems Architecture." Department of
Science, University of Utah (1978), 1-4.

Comuter
Computer

[41] Osborne, Adam, Jacobson, S., and
Introduction to Microcomputers,
Real Products. Osborne and
Berkeley Ca. (1977).

Kane, J.,
Volume II:

Associates

An
Some

Inc.,

85

[42] Plas, A., et. al., "LAU-System Architecture: ~A
Parallel Data Driven Processor Based on Single
Assignment." Proceedings of the International
Conference on Parallel Processing (1976),
293-302.

(43] Rumbaugh, James E., "A Data Flow Multiprocessor."
IEEE Transactions on Computers, Vol. C-26, No. 2
(February, 1977), 138-146.

[44] Russell, Richard M., "The CRAY-1 Computer System."
Communications of the ACM, Vol. 21, No. 1
(January, 1978), 63-72.

[45] Sauber, William B. ed., A Data Flow Architecture
Implementation. Texas Instruments Inc., Austin,
Tex. (1980), 1-20.

[46] Srini, V. P., "An Architecture for Extended Abstract
Data Flow." Proceedings of the 8th Annual
Symposium on Computer Architecture (May 13,
1981), 303-326.

[47] Traub, A. H.,
Volume 5.
1-79.

Collected Works of John von Neumann: ---MacMillan Co., New York, N.Y. (1963),

[48] Treleaven, P. C., Brownbridge, D., and Hopkins, R.
"Data Driven and Demand Driven Data Flow
Computers." Computing Surveys, Vol. 14, No. 1
(March, 1982), 94-144.

[49] Watson, Ian, and Gurd, John, "A Prototype Data Flow
Computer with Token Labeling." Proceedings of
the 1979 National Computer Conference (1979),
623-628.

[SO] Watson, Ian, and Gurd, John, "A Practical Data Flow
Computer." Computer (February, 1982), 51-57.

APPENDIX A

PMS DESCRIPTIONS OF THE THREE

IDEALIZED DATA FLOW SYSTEMS

86

87

PMS Descriptions

PMS is a notation used to describe the overall

structure of computer systems. Components and modules of

a system are represented by several basic symbols, and the

different control and data paths are shown as the links

between the components and modules. The five symbols used

here are: P - processor, M - memory, S - switch, C -

computer, K - control unit. Subscripted identifiers are

used to identify specific components and modules;

abbreviations that are used conform to the terms used in

the idealized systems. Subscripts within square brackets

indicate a set of identical components or modules.

Superscripts are used for matching the symbols with the

legend.

For some components and modules, there is a more

detailed description in the legend giving several

attributes and specific values for those attributes. For

example: X(al:vl,a2:v2, ,aN:vN) gives the values

vl,v2, ,vN, to the attributes al,a2, ,aN for

component or module X.

notation see [10).

For a complete description of PMS

I s du

2
Mcm[O]

Mcm(1 I

l. P (cycle time:20 gate del.ays,data path:32 bits)

s _J
au

2. M (size:32K 32 bit ~ords,cycle time:40 gate delays,
cm data tTansfer:l28 bits)

Figure 22. MIT Idealized Data Flow System

88

5du

s
au

s
du

K M2 msl ___ ms _j

l
P[O]

p[l]

p(2]

p(3]

K
rq

s
au

l. P (cycle time:20 gate delays,data path:32 bits)

l

2. M (size:36K 32 bit words, cycle time:40 gate delays,
rq,ms data transfer: 96 bits)

3. M15 (size:56K 32 bit words,cycle time:40 gate delays,
data transfer:64 bits)

Figure ~..;. Manches~er :dea:~zed ~ata F:ow System

89

1. C - Operational unit: see Figure 25

~ s
du

I- s
du

,_ s
du

Figure 24. Texas Instruments Idealized
Data Flow System

90

5du

s au

'1,u
~2

DU

~-s
pl

du

s
au

Sau

~u ~u

Kim ----M~

s
u

l. P (cycle ti~e:20 gate delays,data path:32 bits)

2. ~u (size:4K 32 bit words,cycle time:40 gate delays,
data transfer:l28 bits)

3. M.
llD

(size:24K 32 bit words,cycle time:40 gate delays,
data transfer:l28 bits)

Figure 25. Texas Instruments Single
Operational Unit

APPENDIX B

TIMING FOR SINGLE PACKETS TO PASS THROUGH

IDEALIZED INTERCONNECTION MODULES

92

TABLE VI

MIT IDEALIZED SYSTEM COMPONENT
AND MODULE TIMING

Module/Component

Cell Memory
Control unit

Memory
-or-

Arbitration and
Distribution Units

Processing Element

Actions

initiate read operation
decrement # of operands
test if # operands = 0
forward instruction packet
initiate store operation
read/store operation

enabled instr.
nonenabled instr.

route packets

process instruction

93

Timing

l
1
1
1

40

44
84

6

20

TABLE VII

MANCHESTER IDEALIZED SYSTEM COMPONENT
AND MODULE TIMING

94

Module/Component Actions Timing

I/O Switch
Arbitration and distribution unit

route packets

Request Queue
Control unit initiate read operation

increment pointer
initiate read operation
decrement pointer
test if null packet
forward packet

Memory unit
-or- increment pointer

read/store operation

Matching Store
Distribution unit
Control unit 1

route packet (2)
initiate read operation
forward packet
read/store operation

route packet
Memory unit
Arbitration unit
Control unit 2 initiate store operation **

Instruction Store
Control unit

Memory unit

PE Arbitration and
Distribution Unit

Processing element

enabled instr.
nonenabled instr.

initiate read operation
forward packet
read operation

route packets

**

* Timing is zero since operation is overlapped
with memory access.

2

1

*
1

*
1
1

80

84

2
1
1

40
1
1

45
86

1
1

40

42

2

20

95

TABLE VIII

TEXAS INSTRUMENTS IDEALIZED SYSTEM
COMPONENT AND MODULE TIMING

Module/Component Actions Timing

Ring Switch
Arbitration and distribution units

route packets 2

Buffer Unit
Control unit

Memory unit

Instruction Memory
Control unit

Memory unit

Processing Element

-or-

-or-

initiate write operation
increment pointer
initiate read operation
decrement pointer
test if null packet
forward packet
incrememt pointer
read/store operation

1

*
1

*
1
1

80

84

initiate read operation 1
decrement # of operands needed 1
test if it equals zero 1
if yes forward packet 1
store operand and # operands
read/store operation 40

enabled instr.
nonenabled instr.

process instruction

44
84

20

* Timing is zero since operation is overlapped
with memory access.

APPENDIX C

LIST OF SYMBOLS

96

97

Symbols Used in Idealized Data Flow System Analysis

Symbol

f i

f o

ad

cu

mu

pe

cm

rg

ms

is

enabled

nonenabled

T.add

T.pe

T.ad

T.mu

T.cu

T. cm

T.rq

T.ms

T. is

Description

Fan in

Fan out

Arbitration and distribution networks

Control unit

Memory unit

Processing element

Cell memory (MIT)

Result Queue (Manchester)

Matching store (Manchester}

Instruction store (Manchester}

Enabled instruction

Non enabled instruction

Time to perform addition

Average time through processing
element

Time through arbitration/distribution
network

Time through memory unit

Time through control unit

Time through MIT cell memory

Time through Manchester request queue

Time through Manchester matching store

Time through Manchester instruction
store

T.pe.ad

T.bu

T.enabled

T.nonenabled

N.pe

N.ad

N. cm

N. rq

N.ms

N. is

N.bu

N.mu

R.pe

R.ad

R.mu

R.cm

R.rq

R.ms

R.is

R.enable

98

Time through Manchester processing
element arbitration and distribution
networks

Time through TI buffer unit

Time for instruction to be enabled

Time for nonenabled instuction to be
stored

Number of processing elements

Number of parallel stages in
arbitration and distribution units

Number of cells in cell memory (MIT)

Number of parallel control units on
result queue (Manchester)

Number of parallel control units on
matching store (Manchester)

Number of parallel control units on
instruction store (Manchester)

Number of parallel control units on
buffer unit (Texas Instruments)

Number of parallel memories in
memory unit (Texas Instruments)

Packet rate through processing elements

Packet rate through arbitration and
distribution networks

Packet rate through memory unit

Packet rate through M.I.T. cell memory

Packet rate through Manchester result
queue

Packet rate through Manchester matching
store

Packet rate through Manchester
instruction store

Packet rate for enabled instructions

APPENDIX D

LIST OF EQUATIONS

99

100

Equations Used in Packet Rate Analysis

Equation # Equation

Timing Equations

3.1 T.add ~ 1/2 * (5 + log~t) * log.t + 4 .,. ,;'.._

3.2 T.mu = 2 * T.pe

3.3 T.ad = log (fi) + log.z.(fo)
i! ...

3.4 N.ad.layers
\ I \-, = j l~::.Jl#inputs / #outputsl \

MIT Idealized System Timing Equations

3.5 T.enabled = T.mu + 4

3.6 T.nonenabled = 2 * T.mu + 4

3.7 T.enable.cycle = T.enabled + 2*T.ad

+ T.pe

Manchester Idealized System Timing Equations

3.8 T.rq = 2 * T.mu + 4

3.9 T.enabled = T.mu + 5

3.10 T.nonenabled = 2 * T.mu + 5

Equation #

3.11

3 .12

Equation

T.is = T.rnu + 2

T.enable.cycle = T.enabled + T.is

+ 2*T.ad.pe + T.pe

+ 2*T.ad + T.rq

Texas Instruments Idealized System Timing Equations

3.13

3.14

3.15

3.16

T.bu = 2 * T.mu + 4

T.enabled = T.mu + 4

T.nonenabled = 2 * T.rnu + 4

T.enable.cycle = T.enabled + 4*T.ad

+ 2*T.bu + T.pe

Rate Equations

4.1 R.ad = (N.ad.stages / T.ad)

4.2 R.pe = (N.pe / T.pe)

4.3 R.enable = (1 / T.enable.cycle)

101

102

Equation # Equation

MIT Idealized System Rate Equations

4.4 R.cm = (N.cells /

((T.enabled+T.nonenabled)/2))

4.5 R.enable = (1 / T.enable.cycle)

Manchester Idealized System Rate Equations

4.6 R.rq = (N.rq / T.rq)

4.7 R.ms = (N.ms /

((T.enabled+T.nonenabled)/2))

4.8 R.is = (N.is / T.is)

4.9 R.enable = (1 / T.enable.cycle)

Texas Instruments Idealized System Rate Equations

4.10 R.bu = (N.bu / T.bu)

4.11 R.im = (N.im /

((T.enabled+T.nonenabled)/2))

4.12 R.enable = (1 / T.enable.cycle)

APPENDIX E

TERM GLOSSARY

103

104

Term Glossary

Term Description

Arbitration unit

A routing unit with more input lines than output
lines.

ARPANET

A loosly-coupled network in
the country communicate
communication lines.

Bandwidth

which computers across
over long distance

The number of bits of information that can be
transferred over communication lines, typically the
bandwidth is the same as the size of the packets
traversing the lines.

Data flow computer

A data flow computer system has many processors in a
tightly-coupled configuration. The machine
representation of programs run on data flow systems
allow instructions to operate in parallel on
different processors, exploiting program parallelism.

Data driven

In data driven computers, the availability of all
operands for an instruction triggers execution of
that instruction.

Data path width

The number of bits of data in an operand.

Demand driven

In demand driven computers, the requirement for a
result triggers the instruction that will generate
that result.

105

Distribution unit

A routing unit with the same or more output lines than
input lines.

Enabling cycle time

The enabling cycle time is defined as the time for an
instruction to be enabled, plus the time to pass
through the different arbitration and distribution
units, plus the time through the processing element,
plus the time for an operand to return to the memory
unit in which enabling takes place.

ETHERNET

A computer network where many external devices within a
close proximity to the main processor are connected in
a local network.

Gate delay

The time for a unit of information to pass through an
simple electronic device or gate.

Instruction firing (releasing, enabling)

When all operands and control information are present
in an instruction, the instruction is enabled and may
be released (or fired) for execution.

Interconnection network

The communication lines between the different modules
and components of a computer system.

Loosly-coupled network

A multiple CPU computer
operate independantly
loosly-coupled.

Multiple ported memory

system
of the

where each CPU
other CPU's

can
is

A memory with multiple access paths for reading and/or
writing to memory.

Multiple ring architecture

An architecture with several single rings for
instruction execution.

106

Packet

A packet is a collection
specified format.

of information in a

Parallel program

A computer program where instructions can execute at
the same time.

Routing unit

A unit with one or more input lines and one or more
output lines that accepts packets and routes them to
their destination.

Serial program

A computer program where only one instruction can
only execute at a time.

Single ported memory

A memory with a single access path for reading and
writing data.

Single ring architecture

An architecture with one
instruction and data.

Tightly-coupled network

A multiple CPU computer system
dependant on each other
tightly-coupled.

circular path for

where the CPU's are
for operation is

VITA

John Robert Kerns

Candidate for the Degree of

Master of Science

Thesis: PACKET COMMUNICATION WITHIN
DATA FLOW COMPUTERS

Major Field: Computing and Information Sciences

Biographical:

Personal Data: Born in Des Moines, Iowa, March 3,
1956, the son of Lois M. Kerns.

Education: Graduated from Des Moines Technical High
School, Des Moines, Iowa, on June 7, 1974;
received Bachelor of Arts degree in Mathematics
from Southwest State University, Marshall,
Minnesota, on May 27, 1978; completed
requirements for the Master of Science degree at
Oklahoma State University, Stillwater, Oklahoma,
in July, 1982.

Professional Experience: Programmer/analyst at
Argonne National Laboratory; Argonne, Illinois,
Summer 1977, and June, 1978 to July, 1979.
Graduate teaching assistant, Department of
Computing and Information Sciences; Oklahoma
State University, Stillwater, Oklahoma, August,
1979 to July, 1981. Consultant at Met-Con
Construction Co.; Faribault, Minnesota, January,
1980 to May, 1981. Graphics application
programmer at the Center for Applications of
Remote Sensing; Oklahoma State University,
August, 1981 to July, 1982. Member of ACM since
1978.

