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PREFACE 

This study examines the operation and organization of 

three data flow computer systems, the systems from MIT, 

the University of Manchester, and Texas Instruments Inc. 

Each of the three systems is described in an idealized 

configuration; then the idealized systems are analyzed. 

Expected packet throughput within different modules of 

each system, and of the systems themselves, is derived. 

The maximum throughput expected of the idealized systems 

are compared with present day systems, in order to check 

the validity of the throughput analysis. In addition, the 

advantages and disadvantages of each of the three data 

flow systems are discussed. 
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CHAPTER I 

INTRODUCTION 

Ever since the first computers were built in the late 

1940's and ealy 1950's, there has been a constant push to 

build computer systems with more computing power and 

greater throughput. In the early years of computer 

science, the continued advance of new technology gave rise 

to larger and faster computer systems. Vaccum tubes were 

replaced by single transistors, which were incorporated 

into integrated circuits. Of course, these new 

technologies greatly improved processor and memory speed 

and greatly increased throughput over earlier systems. 

However, users never are satisfied completely as 

newer and more complex applications are developed for 

computer systems, and larger and faster computers will be 

needed to run those applications. Some limits exist in 

the development of new hardware technology and are already 

being approached in the laboratory. Because of technology 

limitations, advances in circuit technology must be aided 

by advances in computer architecture and software in the 

evolution of new computer systems. 

1 
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Problems such as weather forcasting, nuclear reactor 

simulation, and 

continue to tax 

built to date. 

problems spawned 

three dimensional fluid flow analysis, 

the largest and most powerful systems 

The characteristics of these and similiar 

new architectures for several new 

systems. Programs using large vectors and arrays can take 

advantage of parallel processors such as the ILLIAC IV [9] 

and vector processors like the CDC Star 100 [29] and the 

Cray l [44]. 

help achieve 

Two techniques used in supercomputers to 

high throughput are: the use of parallel 

processors and pipelining. 

Parallel processing is a technique which utilizes a 

set of processors that operate in parallel; programs using 

large vectors can take advantage of parallel processors by 

letting each processor operate on a different element of 

the vector. 

In a pipelined processor, the processor functions are 

distributed over several modules; the total work rate is 

increased by overlapping execution of the modules. The 

Cray 1 uses piplined operation units to help achieve its 

throughput rate of 125 - 250 million instructions per 

second (MIPS); this makes it one of the fastest and most 

powerful computers built. 

Unfortunately, only a small class of real world 

applications can take advantage of processors such as 

these. Vector and parallel processors need applications 

using large vectors or arrays to fully utilize the 
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processing power available. Programs that are highly 

sequential or dominated by input and output cannot utilize 

vector and parallel processors effectively. 

One approach to building larger and faster systems is 

to connect many processors together and let each processor 

work on a share of the work load. Computer systems using 

several tightly-coupled processors can usually increase 

system throughput by adding more processors to the system. 

A tightly-coupled computer system has many computers, 

where each computer depends on the others for continued 

operation. Distributed computer architectures are usually 

one of two classes: a single instruction multiple data 

stream system (SIMD), or a multiple instruction multiple 

data stream system (MIMD). The ILLIAC IV is an example of 

a SIMD architecture. A data flow computer is an example 

of a MIMD architecture. 

In a data flow processing element, typically more 

than one processing element is connected in a multiple 

processor system, where instructions can execute on any of 

the available processors. The processors are arranged so 

each processing element can operate concurrently. 

Programs run on a data flow computer have a machine 

representation which takes advantage of processors that 

execute in parallel. 

Processors require an interconnection network for 

communication of instructions and data between different 

modules of the system. Interconnection networks should 
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not be confused with local networks like ETHERNET where 

external devices are connected by a network, or with 

external networks like ARPANET where separate computer 

systems have communication links with other computers in 

the network. Interconnection networks consist of the 

components of the system (processors, memories, control 

units, and switches) and the communication lines among 

them. 

Some multiple processor systems use a method of 

information transfer called packet communication. A set 

of information is placed together in a packet and 

exchanged among processors. Contents of a packet include 

instructions, data, and control information. Packet sizes 

vary among different systems, from several bytes up to 

several thousand bytes. In multiple processor systems 

using packet communication, the processors do not need to 

monitor the activity in the other processors. 

packets can be received, the information in 

As long as 

the packet 

processed, and results sent to appropriate destinations, 

each processor can operate independently. 

Project Motivation 

Until recently, all computers used very basic 

architectural principles proposed by John von Neumann in 

1945 [47]. Two main principles of such systems are stored 

programs and sequential order of program execution. 

Programs and data are stored in main memory, and a 
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sequential control is used to govern the operation of the 

machine. Data flow architecture deviates from the von 

Neumann principles. Data flow computers operate 

asynchronously without sequential control and use a 

distributed memory instead of a single updatable memory. 

Research in the area of data flow computers is still 

very new, and only a few operational data flow computers 

have been built. At this time, it is not obvious which of 

the new data flow architectures will be successful, or how 

they will compare. 

systems can be 

The relative performance of different 

analyzed without actually building 

prototype systems. This is an analysis of the relative 

performance of three data flow systems, achieved by 

computing and comparing the maximum throughput rate and 

minimum execution time. 

Data Flow Computation Theory 

Programs run on a data flow computer are a partially 

ordered set of operations or instructions. The machine 

representation of a data flow program is a directed graph; 

where nodes represent instructions and arcs between nodes 

represent data dependencies between instructions. An 

instruction is ready to execute only when, and as soon as, 

all operands have been received. 

There are two types of data flow architectures, data 

driven and demand driven (48]. Data driven architectures 

are studied here. In data driven computers, the 
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availability of all operands for an instruction triggers 

execution of that instruction. In demand driven 

computers, the requirement for a result triggers the 

instruction that will generate that result. 

The data flow graph of a program deals only with data 

values and not with data addresses in contrast with most 

high level languages. As a result, there is no need for a 

single updatable memory; instructions produce results, 

which are in turn used by other instructions. Also, there 

is no need for a single controller to control instruction 

execution. 

Following are two expressions to be computed on both 

a von Neumann computer and on a data driven data flow 

computer. The following expressions come from the 

quadratic formula: 

I ~ 
Xl = - B +~B - 4*A*C 

2*A 

X2 = - B - ~B 
~ 

- 4*A*C 

2*A 

Breaking the expressions into simple instructions, the 

program in Figure 1 will execute on a von Neumann machine 

in 12 operations. Figure 2 shows the same program 

represented as a data flow graph. Operations that can be 

done in parallel are placed at the same level in the 

graph. Because the longest path in the graph includes 



Input A, B, C 

A2 = A * 2 

A4 = A * 4 

NEGB = B 

BSQ = B * B 

A4C = A4 * C 

BSQMA4C 

TMPSQRT 

TMPXl 

TMPX2 

Xl = 

= BSQ A4C 

= Sqrt (BSQMA4C} 

= NEGB + TMPSQRT 

= NEGB TMPSQRT 

TMPXl I A2 

X2 = TMPX2 / A2 

Figure 1. Sample Program on a von Neumann Computer 
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seven instructions, the program can execute in the time 

required to perform seven instructions, if enough 

processors (4) are available. The amount of speedup 

gained by parallel processors is limited by the amount of 

parallelism in the data flow graph. Minimum execution 

time of a program is determined by the longest path from 

the beginning to the end of the data flow graph. 

There are several modules needed in a data flow 

computer. Processors are arranged to operate in parallel. 

A memory is needed to hold instructions ready to execute, 

and a memory is needed to hold instructions waiting for 

operands. Routing units are needed to direct the flow of 

packets, and control units are needed in memory modules. 

Communication lines between modules are also required. 

Where possible, parallelism within a module is exploited 

as much as possible. 

The architectures of several data flow computers were 

described in recent literature [48]. Two architectures 

have been developed at the University of Utah (14, 15, 

33}. A research group in Europe called CERN has built a 

prototype data flow computer as described in (42). And a 

data flow system was being designed at the University of 

California at Irvine [4, 5, 8]. Three other architectures 

are described in this thesis. 

Chapter II contains a description of the 

architectures and interconnection networks of three data 

flow computer systems. All three systems use the data 
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driven approach. The three systems were chosen because of 

their unique data flow architectures. In the Texas 

Instruments design, each processor has a separate memory 

unit. In the MIT design, all processors have access to a 

parallel memory. In the Manchester design, several 

memories are used in the matching of operands before 

instruction execution. 

Chapter III gives a description of the components 

used in the idealized system configurations for 

comparison. Each component is described, and its timing 

equations are given. Using component timing, the timing 

for each idealized module is derived for each system. 

In Chapter IV, maximum rates of packet throughput are 

derived for modules of the three idealized systems. The 

rates are used for an analysis of the minimum and maximum 

rate of the different systems. Advantages and 

disadvantages of the three systems are discussed also. 

The maximum rate figures are also compared with a present 

day supercomputer, the CRAY 1. 

Chapter V states the summary and conclusions of this 

research. Suggestions for future research are also given. 



CHAPTER II 

DATA FLOW COMPUTER SYSTEMS 

MIT Data Flow Computer 

The data flow system developed at MIT by Jack Dennis 

has been developed in stages [22, 23]. The stage 

presented here is one of the earlier designs called the 

"Basic Data Flow Processor" [ 23], (Figure 3) . This stage 

was chosen because it has features similar to the other 

two systems being described in this thesis. Later stages 

of the Dennis design include features not found on the 

other two systems, making the later revisions 

inappropriate for this comparision. 

There are four major modules arranged on one ring: 

processing elements, a memory for instructions called a 

cell memory, an arbitration unit, and a distribution unit. 

The distribution unit and arbitration unit act as routing 

directors for the packets in the ring. 

Instructions waiting for operands are held in the 

cell memory. Each instruction is released or enabled for 

execution when all of its operands have been received. 

Computation of results is done in the processing elements 

as they receive instructions. 

11 
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Having one or more input lines and one or more output 

lines, a routing unit accepts a packet and routes it to 

the correct module .. An arbitration unit is a routing unit 

with more input lines than output lines. A distribution 

unit is a routing unit with more output lines than input 

lines or with the same number of input and output lines. 

The architecture of the MIT design allows each module 

of the system to operate independently of the other 

modules. 

The cell memory is divided into a number of cells, 

each cell large enough to hold many instructions. Each 

cell in the cell memory contains a separate control unit 

attached to a memory. The cell memory is multiported to 

allow access to each cell separately. This allows 

concurrent operation of the cells in the cell memory. 

There are several different instruction formats for 

different types of instructions, Dennis [19] has a 

complete description. 

instruction are received, 

When all operands for an 

an instruction packet is formed, 

enabled, and sent into the arbitration unit. Packets 

released from the cell memory contain the operation code, 

two destination addresses for the storage of the result to 

be generated, two operands, and any other needed control 

information. 

When a processing element becomes idle, the 

arbitration network sends an instruction packet to that 

processor, and the instruction is executed. Instructions 



14 

produce results which are placed into result packets; 

result packets released from the processing elements 

contain a result operand and the destination of that 

operand. As results from the processing elements are 

generated, they are routed into the distribution unit. 

The distribution network then routes the packet to the 

correct cell in the cell memory. 

The following actions are typical of packets 

travelling around 

result packets 

the interconnection 

leave a processor, 

network. After 

enter the they 

distribution network where the destination address is used 

to direct the result packet to a specific cell in the cell 

memory. The operand is stored directly in the instruction 

packet, the destination address is then discarded. When 

the control unit associated with each cell detects that 

all operands have been received, the instruction is 

enabled and an instruction packet is sent into the 

arbitration unit to the next available processor. 

Manchester Data Flow Computer 

A detailed description of the Manchester data flow 

computer can be found in [28, 49, 50]. In the Manchester 

design there are five major modules arranged around a ring 

as shown in Figure 4. Two features of this architecture, 

which are unique from the other two architectures, are the 

matching store and instruction store. The matching store 

holds an instruction's operands until all of them have 
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arrived. The instruction store holds operation codes and 

destinations for instructions ready to execute when the 

operands arrive. 

The matching store is controlled by the matching 

store cycle, 

accepted from 

as shown in Figure 5. 

the result queue, the 

Result packets are 

matching store is 

checked for a matching operand, and matched operands are 

sent on to the instruction memory. The matching store 

acts as an associative memory by hashing the address, 

using a name composed of four parts (activation name, 

iteration level, index number, and instruction number) to 

find the correct instruction. 

The instruction store is controlled by the operation 

of the instruction store cycle shown in Figure 6. 

Instruction packets are f orrned from the operands and the 

instruction in the instruction store. Instruction packets 

are sent to processing elements as they become available. 

The processing elements must accept and unpack 

instruction packets, execute the instruction, and form 

result packets. As result packets are generated, they are 

forwarded to the I/O switch and then to the result queue. 

The result queue is a buffer to hold result packets 

until the matching store can process them. Because of the 

arrangement of processors, the result queue must be able 

to handle bursts of result packets. Packets are placed at 

the end of a queue. When the packet advances to the front 

of the queue, it can be released to the matching store. 
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A typical circuit of the Manchester interconnection 

network proceeds as follows. As a result packet leaves a 

processor and the PE (processing element) arbitration 

unit, the packet passes through the I/O switch and is 

stored at the end of the result queue. When the packet 

arrives at the front of the queue, it is forwarded to the 

matching store unit. In the matching store, a search is 

made for an operand with the same destination address. If 

no operand is found for a binary instruction, the operand 

will be stored until the matching operand arrives. Once 

operands are matched, the operand pair is forwarded to the 

instruction store; results for unary instructions bypass 

the matching store and pass directly to the instruction 

store. The operand pair is held in an internal buffer in 

the instruction store control unit while the instruction 

is retrieved from the instruction store memory. The 

instruction and operands are then combined into an enabled 

instruction packet and sent to the first available 

processing element. 

Texas Instruments Data Flow Computer 

Information about the Texas Instruments (TI) data 

flow design is less complete than others because it comes 

from an industrial laboratory. The TI Distributed Data 

Processor (DDP) was one of the first data flow computers 

built [31, 45]. Tl's data flow computer was built as a 

laboratory demonstrator to show the validity of data flow 
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its source language. 
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It is unique in using FORTRAN as 

The TI data flow computer is composed of four 

operational units connected to a circular interconnection 

network, as shown in Figure 7. Each operational unit acts 

as a separate data flow processor with a processing 

element, a local memory, and a separate interconnection 

network as in Figure 8. As expected, each operational 

unit operates independently, and each PE operates in 

parallel with the others. 

In attaching the operational unit to the ring, an 

instruction/result port is added to the ring interface, 

and buffers are added to the processing element and memory 

unit to store incoming packets until they can be used, see 

Figure 9. As a packet goes through the instruction port, 

the PE number is checked, and the operand count is checked 

to determine if the packet goes to the processing element 

or instruction memory. In a similar manner, as packets 

leave the processing element, the PE number is checked; 

result packets are sent either onto the main ring or into 

a buffer. 

The purpose of buffers is to hold packets until they 

can be processed by the PE or the instruction memory. 

Incoming packets are placed at the end of a queue; when 

the packet arrives at the front of the queue it is 

released when the PE or memory becomes idle. The buffers 

can both accept incoming packets and process outgoing 

packets at the same time. 



Front end 

interface 

Additional 
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Figure 7. 
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In the instruction memory, an operand is placed in 

the instruction, and the instruction is enabled if all 

operands are in the instruction. The instruction memory 

needs a control unit along with memory units. When an 

instruction is enabled, an instruction packet is formed 

and forwarded. 

A typical circuit of a packet around the operational 

unit would proceed as follows. As result packets leave 

the processing element, a distribution unit checks if the 

packet should stay in the same operational unit or be sent 

onto the main ring to go to another operational unit. 

Result packets are sent to the memory buffer unit where 

they are placed at the end of a queue. When the packet 

arrives at the front of the buffer, it must wait for the 

memory unit to be idle before it can proceed. Once a 

result packet is sent to the instruction memory, the 

instruction is read into the control unit from memory. The 

number of operands needed for the instruction is 

decremented and tested. If zero, the instruction is 

enabled, and an instruction packet is formed and sent on. 

Otherwise, the instruction is stored back into memory. 

Depending on the destinations in the instruction 

packet, the packet could be sent out of the operational 

unit or back to the PE buffer. The buffer in front of the 

processing element acts as a queue, like the buffer in 

front of the instruction memory. When the packet works to 

the front of the queue, it is passed on to an available 

processing element. 
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One difference in the TI design is that the data flow 

graph of the program must be partitioned in subgraphs to 

fit into the different operational units. Because of 

expected localized activity in the operational units, 

there is not expected to be a lot of traffic on the main 

ring. However, a PE number is a part of all destination 

addresses to aid in the correct routing of packets. 

The interconnection network is a packet wide ring, 16 

words long, passing by the four processings elements and 

the front end interface. Instruction and result packets 

are placed on the ring, logically expanding or collapsing 

the size of the ring as required. The instruction/result 

port removes packets and places new ones on the ring as 

required. This allows a variable number of packets to 

circulate around the interconnection network. 

From the descriptions given in this chapter, it can 

be seen that each data flow system uses similar 

components. These components are processors, memories, 

routing units, and control units. However, the 

arrangement and use of the different components between 

the three systems shows many differences. The differences 

in the systems will be examined after the similar 

components are analyzed. 



CHAPTER III 

IDEALIZED DATA FLOW COMPUTER SYSTEMS 

In order to compare the interconnection networks of 

the three data flow computers, the specific computers 

analyzed should have configurations with similar 

capacities. The major modules of each system are examined 

separately to determine the configurations. 

Each system is composed of several modules connected 

to an interconnection network. A module is a major unit 

in the system and is composed of one or more components. 

A component is a single device or a set of similar 

devices. Four components used to describe the actions of 

each module are: memory, processing elements, control 

units, and arbitration and distribution units. Each data 

flow system is described using these components; each 

system configuration is defined so each system has similar 

capacities. Each idealized system has four processing 

elements, and 512K bytes of memory; each instruction 

packet has space for two 

addresses. The components 

symbols in Figure 10. 

operands 

will be 

26 

and two destination 

represented by the 
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Figure 10. Idealized System Components 
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In order to avoid technology - dependent timings, 

timing is expressed in number of gate delays through a 

particular module. A gate delay is the time for a unit of 

information to pass through a simple electronic device or 

gate. Equations to describe the rates for each module 

together with specific values for the idealized system 

being analyzed are given later in this chapter . The form 

used is: 

T.x = General timing equation for x (Eq#) 

= Value for specific idealized system. 

All timing equations are listed together in Appendix D. 

Specific timing for each module 

component timing. Timing for a single 

is dependent 

packet to 

on 

pass 

through a module assumes both that no other packets are 

active and that the module is idle. 

Components 

Processing Elements 

The processing elements used in the data flow systems 

described here support arithmetic and boolean operations. 

A processing element also can support operations like 

SINE, COSINE, LOG, 

for one addition 

and EXP. 

as the 

This analysis uses the time 

processing element timing. 

Instruction packets that are sent to the PE contain one or 

two operands, an operation code, and destination addresses 
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for the results. The processors used in a data flow 

computer must unpack the instruction packet, decode the 

operation code, process the instruction, and form result 

packets. There is no need for the processing element to 

fetch operands from memory or to store results in memory. 

Operands are all 32-bit words with possible data 

types of integer, real, or boolean. Because the 

processing elements are designed to execute only single 

instructions, there is no need to direct results or 

incoming instructions. Result/destination pairs are sent 

out immediately, and a new instruction is forwarded to the 

PE as soon as it can be made available. 

The time for an instruction to pass through a PE is 

defined as the number of gate delays in doing an addition 

on two full words. An analysis of gate delays in 

arithmetic expressions is given in (34], where the time to 

perform an addition is given as: 

T.add ~ 1/2 * (5 + log_t) * log~t + 4. 
+ 

In this equation, f is the fan-out of the gates, 

( 3 . 1 ) 

and t is 

the size of a full word in bits. Using a fan-out of 8 on 

32-bit words, the number of gate delays to do an addition 

is computed as: 

T.add ~ 1/2 * (5 + loga32) * log~32 + 4 

~ 21. 



30 

Since timings are approximate, 20 is used as the minimum 

time for an instruction to pass through a processing 

element. This timing does not include time to unpack the 

instruction packet, decode the operation code, or to form 

result packets. Each result packet sent out from the 

processing elements contains a single result and a single 

destination address. If two destination addresses are in 

the instruction packet, two result packets will be sent 

out from the PE. 

Memory 

Because a memory device does not operate using 

combinatorial logic, the number of gate delays in a memory 

is difficult to estimate. Actual instruction timing can 

be used to approximate the time through a memory in terms 

of gate delays 1 • By using the number of machine cycles 

required to do an addition and the number of machine 

cycles to do a memory access, a ratio of memory access 

machine cycles to addition machine cycles can be used to 

approximate the number of gate delays through a memory. 

Using the number of gate delays required for an addition, 

the number of gate delays required for a memory access can 

be calculated using the Memory - Addition Ratio. Table I 

shows the ratio of memory access time to addition time in 

machine cycles for several micro-computers. In 

l Personal communication with Dr. Louis Johnson, Dept. 
of Electrical Engineering, Oklahoma State University, 
(1982). 



calculating the ratios, 

31 

register to register addition was 

used for the addition time, and register to memory time 

was used for a memory access time [41]. The memory -

addition ratio for each machine is given as: 

Memory - Addition ratio 

((number of cycles to read+ number of cycles to write)/2) 

/ (number of cycles to add) 

The average ratio for the memory access to an addition is 

calculated to be 1.95; however 2.0 is used for convenience 

since this is an approximation. 

access will then be defined as 

T.mu = T.pe * 2 

= 40. 

The time for a memory 

(3.2) 

The use of packets in an interconnection network 

requires that the bandwidth of the network communication 

lines and the size of the packet be the same. The 

bandwidth is the number of bits of information that can be 

sent over communication lines. When storing or retrieving 

a packet from memory, the organization of the memory 

greatly affects the total time of packet transfer. If the 

memory unit is only capable of accessing one byte or one 

word at a time, then accessing a packet of information in 

memory would require more than a single read or write 

operation. This method of memory access would be 

inadequate for large packets because of the reduction in 

memory access speed. 



TABLE I 

RATIO OF MEMORY ACCESS TIME TO ADDITION TIME 
IN ACTUAL MACHINE CYCLES 

Microprocessor Add Store Load Ratio 

Fairchild E'S 1.0 2.5 4.0 3.25 
Intel 8080A/8085 4 7 7 1.75 
Intel 8048 1 2 2 2.00 
IM 6100 1.0 1. 7 1. 7 1. 70 
Gen. Inst. CP1600 8 11 10 1. 31 
Micro nova 5 6 6 1.20 
Motorola MC 6800 2 6 5 2.75 
Motorola MCS 6500 2 6 6 3.00 
Nat. Semi. PACE 4 4 4 1. 00 
Nat. Semi. SC/MP 7 18 18 2.57 
RCA CDP 1802 2 2 2 1.00 
Signetics 2650 2 3 3 1. 50 
SMS 300 1 1 1 1.00 
TI TMS 9900 14 60 52 4.00 
Z80A 7 9 9 1.29 

Average ratio of Memory access to Addition = 1.95. 
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To avoid this reduction in memory access speed, a 

packet of information should be read or written during a 

single operation. To do this, the memory can be separated 

into several banks of storage operating in parallel. This 

method of memory organization is called interleaving and 

commonly is used to achieve a high bandwidth during memory 

access. If a packet size is four words long, the memory can 

be divided into four separate banks of storage; a read or 

write can then be done in one memory access time by 

simultaneously accessing each memory bank. Table II shows 
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the difference in time between using serial memory access 

and interleaved memory access. In the descriptions of the 

idealized systems, interleaved memory structures are used. 

TABLE II 

MEMORY ACCESS CYCLES FOR SERIAL ACCESS 
AND INTERLEAVED MEMORY ACCESS 

Processor Packet Serial Access Interleaved Access 
Type (gate delays) (gate delays) 

MIT 
Result 80 40 2-way 
Instruction 160 40 4-way 

Manchester 
Result 120 40 3-way 
Instruction 80 40 2-way 

Texas Instruments 
Result 80 40 2-way 
Instruction 160 40 2-way 

Many memory units are said to have nondestructive 

readout, that is, a read operation does not destroy the 

contents of the memory location. This usually involves the 

use of an intermediate buffer in the memory where the 

contents of the location just read are placed. This buffer 

is then written back into the same location to insure that 

the contents are not destroyed. It is desirable to have 

memory with destructive readout capabilities in a queue. 
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Destructive readout causes the 

contents of a specified memory location to be destroyed on 

a read operation. It is assumed without loss of 

generality that zeroes replace the previous contents of 

that location after a read operation. 

Some memory units have an additional feature that can 

be used in data flow computers. A memory normally has a 

single port for both input and output, but a multiported 

memory allows more than one operation in a memory unit at 

the same time. A single-ported memory only has a single 

access path to read/write data from memory. A multi­

ported memory has several access paths for read and/or 

write operations. This can be used effectively for a 

queue, where a packet can be stored at the end of the 

queue at the same time a packet is being read from the 

front of the queue. This type of operation should be used 

carefully since unpredictable results can occur when a 

multiported memory is both reading and writing the same 

memory location simultaneously. 

For ease in both analysis and memory configuration, 

it is assumed that each memory chip will contain 1024 

32-bit words. All memories are interleaved to achieve the 

bandwidth needed to allow a packet to be read or written 

in a single access. When a multiported memory can help 

the operation of the idealized systems, its effect will be 

considered. 
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Control Units 

In the data flow systems described in this paper, a 

control unit refers to the logic which supervises and 

operates the memory units. The main functions of a 

control unit is to issue read or write commands to memory 

and to maintain status information about that memory. In 

an interleaved memory, the amount of logic in the control 

unit increases linearly with the number of memory banks, 

but because the logic works in parallel, the time through 

a control unit remains constant2 . On multiported 

memories, separate control logic within the same control 

unit is used for each port. Typically one port is used 

for reading, while another port is used for writing. 

Memory units being used as buffers are treated as 

queues. One implementation of a queue uses pointers to 

the first and last items in the queue; the control unit 

must increment or decrement these pointers as packets are 

stored and retrieved from the queue. A packet counter for 

the number of items in the queue insures that null records 

are not read from the queue. This can be implemented in 

such a way that there is no interaction between the 

control logic that reads from memory and the control logic 

that writes to memory. 

2 Personal communication with Dr. Louis Johnson, Dept. 
of Electrical Engineering, Oklahoma State University, 
(1982). 
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If all buffers use destructive readout, the control 

unit actions are simplified. The active packets in the 

buffer are the only non-zero locations in memory since 

memory is cleared as packets are read. When reading a 

packet to be forwarded to the next unit, it is checked for 

zeroes in all bits. If the packet does contain all 

zeroes, the buffer is empty and the packet is not 

forwarded. When a packet is stored, the pointer to the 

last item in the queue is incremented after the write has 

been initiated. 

to the next item 

When a packet is retrieved, 

in the queue is decremented 

the pointer 

after the 

read operation has been initiated. 

the pointer to the next item in 

If the packet is null, 

the 

incremented since the front of the queue 

queue must be 

did not change. 

In this implementation, there is no interaction between 

different sets of control logic; consequently, reading and 

writing to memory can be done concurrently. 

In the idealized systems, the buffers are large 

enough to prevent buffer overflow, so control units will 

not check for this condition. The purpose of buffers is 

to hold incoming packets until a resource is available to 

accept the next packet, so buffer control units both 

accept packets and send packets at the same time. Packets 

are stored as they are sent to the queue. When a resource 

beco~es free, a packet is read from the buffer and sent to 

the resource. Parallel logic within the control unit 

allows concurrent activity. 
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The timing in the control unit varies according to 

the amount of logic in the unit. Because the presence of 

an address is sufficient to initiate read or write 

operations, a gate delay of one is used for timing in the 

initiation of a read or write operation. Testing specific 

bit fields can be done with a single gate delay. Whole 

fields of words also can be tested within a single gate 

delay when the testing is done in parallel. Specific 

control unit logic for the idealized systems is given 

later in this chapter. 

Arbitration and Distribution Networks 

The arbitration and distribution units are used in 

data flow computers to help to route packets to the 

correct modules within the interconnection network and to 

the proper components within the modules. In the simplest 

case, a distribution unit has one input line and two 

output lines; the simplest arbitration unit will have two 

input lines and one output line. If the number of input 

lines or fan-in is fi, and the number of output lines or 

fan-out in a routing unit is fo, fi > fo means the unit is 

an arbitration unit, and fi < fo means the unit is a 

distribution unit. It should be understood that the 

bandwidth of each communication line matches the size of 

the particular type of packet traversing the arbitration 

or distribution unit. Certain fields within the packet 

are checked to determine the routing within the unit. 
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Examples of the arbitration and distribution units used in 

the three idealized systems are shown in Figure 11. If 

there are more than two input lines or two output lines, 

several layers of simple switches are used in the unit; 

this allows several packets to reside in the unit at any 

one time. Multiple layer switches have a timing of 

T.ad = log2..(fi) + log.z..(fo) (3.3) 

Single packets entering an arbitration unit pass 

directly through the unit, but if several packets arrive 

at the same time, they pass one at a time through the 

layers of switches, in a non-deterministic manner. Using 

components with two input and two output lines, an 

arbitration or distribution unit can be built using only 

N.ad.layers 
r \ \.1 
I I ir. / 1 1 = . ,(lq, :l #inputs #outputs\: 1 
' J '- · I l 

(3.4) 

layers of switches [30]. The use of parallel layers of 

switches allows maximum concurrency within the unit. 

Idealized System Configurations 

Each system can be described using the four 

components just presented. The description of each 

idealized system shows the arrangement of processing 

elements, memory units, control units, and arbitration and 

distribution units. The packet size and format for each 

system is given for both result and instruction packets. 

The size of destination fields and operation code fields 
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in the packet comes for the original designs from each 

system. Packet size dictates the bandwidth of lines 

between different modules of the system. The interleaved 

arrangement of memory will be shown along with memory unit 

sizes; the control logic for memory units and associated 

components is described also. 

All of the figures used in describing the idealized 

systems use the symbols from Figure 10. In 1971, a 

notation was introduced by Bell and Newell for general 

descriptions of computer system configurations [10]. The 

notation, called PMS, provides a systematic way of 

describing component features; four of the primitive PMS 

components correspond to the components used here. 

Appendix A contains PMS descriptions for each of the three 

idealized systems. 

MIT Idealized System 

The idealized MIT configuration is shown in Figure 

12. Each processing element is connected both to the 

arbitration unit and to the distribution unit; each cell 

in the cell memory is also connected to both units. 

Packet formats are given in Figure 13 for both result and 

instruction packets. 

A result packet contains a 32-bit operand and a 

destination address. A destination address of 18-bits can 

address over 250,000 instructions. An additional 14-bits 

are available for control information. Using full word 
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(32-bit) memory access, a 64-bit packet can be accessed 

from memory using two-way interleaving. Figure 14 shows 

the structure of interleaved memory in the MIT system. 

Result Packet Destination Control 
Operand 

Op Code I Control 
Instruction Packet 

Destination l I Destination 2 

Ope.rand l 

On .... ra.nd 2 

Figure 13. MIT Packet Formats 

An instruction packet contains a 12-bit operation 

code, two 18-bit destination addresses, and two 32-bit 

operands. Up to 16-bits are available for other control 

information. The size of the operation code field, 

12-bits, comes from the MIT packets described in [19]. To 

read a 128-bit instruction packet from memory in one 

memory access requires four-way interleaving. 

The cell memory is divided into 16 sub-units called 

cells with both a read port and a write port for each 

cell. Each cell has the configuration shown in Figure 15 

using eight 32-bit x lK memory chips, divided into four 

separate banks for interleaving. This results in 2,048 



instructions per cell, 

entire cell memory. 
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or 32,768 instructions in the 

Each cell in the cell memory contains a control unit. 

The control unit receives the incoming result packet and 

stores the operand. The control information in the 

instruction contains bit fields which indicate when an 

operand is received. After an operand is received, an 

appropriate bit is set to indicate that the operand has 

been received. If no more operands are needed, the 

instruction packet can be sent on to the arbitration unit. 

If a multiported memory is used and the control unit can 

read in one memory bank while writing to another bank, 

then the operand store can be overlapped with the checking 

process for the number of operands needed. This is only 

useful for instructions which are not enabled. 

The enabling cycle time is defined as the time for an 

instruction to be enabled plus the time for a packet to 

pass through the arbitration and distribution units plus 

the time for a packet to pass through the PE buff er and 

the processing element, and the time to go through the 

memory buffer. Using different logic in the control unit 

can decrease the time required to enable an instruction. 

This is the logic that will be used here. After a result 

operand arrives at the control unit, the control unit 

reads the instruction first, then decrements the number of 

needed operands. If the 

zero, the instruction can 

number of needed operands is 

then be forwarded immediately; 
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otherwise, the instruction is re-stored in the memory 

unit. Instructions receiving the first of two operands 

must wait for the second operand, so re-storing the 

instruction does 

instructions. 

not effect the speed of enabling 

Two timings are given for packets in the cell memory: 

one for instructions being enabled, and one for 

instructions which must wait for another operand. When an 

instruction receives all of its operands, it is enabled. 

The control logic for enabled instructions includes 

issuing a read command, testing the number of operands 

needed, and sending the packet to the arbitration unit. 

Logic for non-enabled instructions includes a read 

command, testing the number of operands, and a store 

command. Non-enabled instructions require an extra memory 

access for storing the instruction back into memory. The 

timing equa~ions for the cell memory is 

T.enabled = T.mu + 4 
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T.nonenabled = 2 * T.mu + 4 

= 84. 

( 3. 5) 

( 3. 6) 

Enabled instructions are held in the arbitration unit 

until a processing element becomes available. 

The arbitration unit which is between the processing 

elements and cell memory has sixteen input lines and four 



output lines. Using equation 3.3, 

arbitration unit is 

T.ad log (16) + log (4) 

= 6. 
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the timing for the 

The distribution unit has four input lines and sixteen 

output lines. Its timing is the same as the timing for 

the arbitration unit. The timing for the processing 

elements is defined in equation 3.2, (20 gate delays). 

The enabling cycle time is defined as the time to 

enable an instruction in the cell memory plus the time for 

a packet to move through 

units plus the time to 

equation for this is 

the arbitration and distribution 

execute the instruction. The 

T.enable.cycle = T.enabled+ 2*T.ad + T.pe ( 3 . 7 ) 

Specif~c enabled cycle timing will be given later for each 

idealized system. 

Manchester Idealized System 

The modules of the Manchester idealized system are 

shown in Figure 16. The idealized system described here 

has four processing elements and 512K of memory. 

Packet formats for the Manchester design are shown in 

Figure 17 for both result and instruction packets. Result 

packets contain an 18-bit destination address, a 32-bit 

operand, and a 36-bit label field, and 10 bits are 
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available for operand type and control information. Using 

full word memory access, the 96-bit result packet can be 

interleaved three-way in both the result queue and the 

matching store unit as seen in Figure 18. 

Instructions held in the instruction store are 

partial instruction packets which contain a 12-bit 

operation code, two 18-bit destination addresses, and 16 

control bits. Instruction packets also contain two 32-bit 

operands. The idealized Manchester system contains 36 

32-bit x lK memory chips in the result queue, 36 32-bit x 

lK chips in the matching store, and 56 32-bit x lK chips 

in the instruction store unit. 

In this configuration there is space for 12,888 

result packets in the result queue, 12,288 result packets 

in the matching store, and 28,672 (partial) instruction 

packets in the instruction store. 

There are different types of control units in the 

result queue, matching store, and instruction store. The 

control unit in the result queue must accept incoming 

packets and place them at the end of the queue. When the 

matching store is ready to accept packets, the result 

queue control unit forwards the first packet available in 

the queue. 

Using a multiported memory, the result queue control 

unit will operate as follows. As packets enter from the 

I/O switch, packets are stored at the end of the queue. 

As packets are stored, the pointer must be incremented to 
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the next location. The time to increment this pointer is 

ignored since it can be overlapped with the store 

operation and takes less time than the store operation. 

At the same time as packets are being stored, packets can 

be read from the front of the queue and forwarded to the 

matching store. A pointer must also be maintained to mark 

the next packet location and can be decremented while the 

read operation takes place. 

A destructive readout memory can be used to insure 

that memory not being used contains zeroes. When a packet 

is read, it is tested to check whether it is all zeroes. 

If so, the packet is discarded since it is not valid. 

Valid packets are forwarded to the matching store. 

The equation for timing in the result queue includes 

two memory accesses: one for storing the packet and one 

for reading the packet. When the packet is stored, the 

control logic issues a read command; when a packet is 

read, the control logic tests for a null packet, and 

forwards the packet, if possible. The control unit is 

given a timing of four in the result queue. 

for the result queue timing is 

T.rq = 2 * T.mu + 4 

= 84. 

The equation 

(3.8) 

The matching store contains two control units: one 

for reading from the memory and one for writing to the 

memory. The use of a multiported memory is indicated in 
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(28). Packets first entering the matching store encounter 

a distribution unit; unary operands bypass the matching 

store while others are passed to the first control unit. 

The control unit uses the destination address and label to 

read from the memory. If a destructive readout memory is 

used, and if all zeroes are read, then no matching operand 

is available, so this operand must wait for the matching 

operand. The zero packet is discarded, and the result 

packet is sent to the second control unit where it is 

written into the memory. 

There are two timing figures for the matching store: 

one for enabled instructions and one for nonenabled 

instructions. The first control unit issues a read 

command to the memory, then forwards the packet to the 

next component. If there is a zero packet in the operand 

pair after the read, the distribution unit forwards the 

packet to the second control unit. The second control unit 

only needs to issue a write command to the memory. The 

timing for the first control unit is 2 gate delays; the 

timing for the second control unit is only 1 gate delay. 

Including arbitration and distribution units, the timing 

equation for an enabled instruction through the matching 

store is 

T.enabled = T.mu + 5 (3.9) 

= 45. 
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The timing for an operand that must be stored into the 

memory is 

T.nonenabled = 2 * T.mu + 5 (3.10) 

= 85. 

After operands are matched, they are forwarded to the 

instruction store unit. The operands are held in a small 

control unit buffer while the instruction is being read. 

Once the instruction is available, it is sent together 

with its operands to the next available processing 

element. The control unit in the instruction store issues 

a read command, then forwards the packet to the first 

available processing element. The timing for the 

instruction store control unit is 2 gate delays. The 

timing for the instruction store is 

T.is = T.rnu + 2 (3.11) 

= 42. 

The timing for the processing elements is 20 gate 

delays, as in the other two systems. The timing for the 

arbitration and distribution units that are in front and 

in back of the PE's have a timing of 2 gate delays because 

the distribution unit has a fan-in of one and a fan-out of 

four, and the arbitration unit has a fan-in of four and a 

fan-out of one. 

The time for the enabling cycle is defined as the 

time for an instruction to be enabled in the matching 
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store, plus the time to go through the instruction store, 

PE arbitration and distribution units, processing element, 

I/O switch, and the result queue. The enabling cycle 

timing is 

T.enable.cycle = T.enabled + T.is + 2*T.ad.pe 

+ T.pe + T.io + T.rq (3.12) 

= 197. 

Texas Instruments Idealized System 

The Texas Instruments design utilizes several 

operational units, each unit containing both a processing 

element and a local memory. Several operational units are 

connected around a main ring. One operational unit in the 

idealized configuration is shown in Figure 19. 

Result packets contain a 16-bit destination address 

and a 32-bit operand; 16 additional bits are available for 

control information. Using full word memory access, the 

64-bit result packet can be read or written in a two-way 

interleaved memory. 

Instruction packets contain a 16-bit operation code 

and a field of 4-bits for indication of the number of 

operands. Also, there are two 16-bit destinations and two 

32-bit operands, leaving 12 bits for control information. 

The 128-bit packet can be accessed in a single read or 

write operation with a four-way interleaved memory. 

Result and instruction packet formats are shown in Figure 

20. 
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Interleaved memory structures for the TI system are 

shown in Figure 21. In the idealized configuration there 

are 24 32-bit x lK memory chips in the memory unit and 

four 32-bit x lK memory chips in both buffers. Because 

the PE buff er is interleaved four-way and the memory 

buffer is only interleaved two-way, the memory buffer can 

hold twice as many packets as the PE buffer. This is 

consistent with the fact that one instruction can generate 

two result packets. 

Using the packet and memory size, it can be seen that 

in each operational unit there is space for 6,144 possible 

instruction packets in the instruction memory, 1,024 

result packets in the PE buffer, and 2,048 result packets 

in the memory buffer. For four operational units, this 

gives a maximum of 28,672 instruction packets, 

result packets. 

and 8,192 

The are several possible strategies of operation in 

the instruction memory. In the interest of faster 

instruction enabling, the instruction packet for the 

operand is first read into the control unit when a result 

operand is received. The number of operands needed is 

decremented and tested. If this number is zero, then the 

instruction packet is enabled and forwarded from the 

instruction memory. If the number of needed operands is 

not zero, then the instruction packet is stored back into 

the instruction memory. Depending on the result 

destinations in the packet, the packet is either sent out 

of the operational unit or sent back to the PE buffer. 
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In the Texas Instruments idealized system, there are 

two different types of control units. One control unit is 

used with the memory unit and controls the matching of 

instruction operands. Both buffer units can use the same 

type of control unit for control of packets that are held 

within the buffer. The actions of buffers used in the TI 

DDP are not described in the literature available from the 

company, so a queue is used in this analysis. The buffer 

control units operate similarly to the control unit 

associated with the Manchester result queue. As described 

earlier, a buffer of this nature require a pointer to the 

first and last items in the queue; reading and writing 

packets requires the control unit to maintain these 

pointers. 

Both buffers in the system operate the same way. 

When packets arrive in the buffer control unit, they are 

placed at the back of the queue; the control unit can 

update the pointer to the next store location when the 

packet is being stored. As stated before, the time 

required to update the pointer can be ignored since a 

memory access in the idealized system is slower than the 

time required to update the pointer. While packets are 

being stored at the end of the queue, packets can be sent 

out from the front of the queue. Once a packet is read 

from memory, it is checked to see whether it is zero. A 

zero packet occurs whenever the buffer is empty and is 

discarded. Valid packets are sent to the next unit in the 

interconnection network. 
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buffer is the interleaving control; 
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PE buff er and memory 

the PE buffer unit is 

four-way interleaved, 

interleaved. 

and the memory buffer is two-way 

The time for a packet to pass through the two buffer 

control units include a read and write operation as 

packets are stored and read from the buffer. The control 

logic issues a store command as the packets are received. 

When packets are read out, the 

command, tests for a null packet, 

logic issues a read 

and sends the packet to 

the next module. Control unit timing is four gate delays, 

and the buffer timing is 

T.bu = 2 * T.mu + 4 (3.13) 

= 84. 

The instruction memory can be analyzed both with a 

timing for enabling instructions, and with a timing for 

the storing of operands. The logic needed to enable an 

instruction includes issuing a read command, logic to 

decrement the number of operands yet required, and logic 

to forward the packet from the instruction memory if the 

operand count is zero. The enabled instruction timing is 

T.enabled = T.rnu + 4 (3.14) 

= 44. 

The timing for storing operands back into memory 

includes the time required for an extra memory access, and 
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the time required for the control logic to issue a store 

command in lieu of forwarding the packet. 

a non-enabling instruction is 

The timing for 

T.nonenabled = 2 * T.mu + 4 (3.15) 

= 84. 

Timing for the processing elements is the same as the 

other processing elements: 20 gate delays as stated in 

equation 3.2. 

Because of the arrangement of modules on the TI 

system, the enabling cycle includes only one processor. 

The logic to effect the enabling cycle is contained 

entirely within the same operational unit; its timing 

formula is: 

T.enable.cycle = T.enabled + 4*T.ad 

+ 2*T.bu + T.pe (3.16) 

Enabled cycle timing for the idealized systems is given in 

the next chapter. The timing for every module in each of 

the three idealized systems are in Appendix C. 



CHAPTER IV 

ANALYSIS OF IDEALIZED DATA FLOW SYSTEMS 

In analyzing the different idealized data flow 

systems, two measures are used: the time required to move 

an enabled instruction completely around the 

interconnection network, and the rate in units of packets 

per million gate delays at which packets move through the 

processing elements. If there are no bottlenecks in the 

system, the maximum system throughput is the rate of 

operation of the processing elements when they are 

operating at their maximum rate. Any modules operating at 

a rate less than the processing elements is a bottleneck 

in the system. 

Equations to describe the rates for each module are 

given in this chapter. 

system being analyzed 

for rate equations is: 

Specific values for the idealized 

are given as well. The form used 

R.x = Rate equation for module x 

= Value for idealized system. 

(Eq#) 

All timing and rate equations are listed together in 

Appendix D. 
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As stated before, it is desirable to achieve a linear 

increase in computing power as processors are added into 

the system. The packet rate is based on the ratio of the 

number of parallel components (modules) to the component 

(module) timing. The packet rate for component (module) x 

is defined as 

R.x = ( N.x / T.x ) 

in units of packets per million gate delays (PMG). In 

rate equations, N.x is the number of modules, components, 

or operations that can execute in parallel, and T.x is the 

timing for x as calculated in Chapter III. 

In deriving the packet rates for arbitration and 

distribution units, it was found that regardless of the 

fan-in or fan-out of the unit, the packet rate is one 

packet per gate delay when the unit operates at its 

maximum rate. This result is a consequence of building 

the arbitration and distribution units in parallel stages 

from simple one gate switches and a consequence of packets 

residing in each stage in the unit during packet 

transfer. Because the number of stages always equals the 

number of gate delays, all arbitration and distribution 

units will have a rate of 



R.ad = N.ad.stages IT.ad ) 

1,000,000 packets per million 

gate delays 

= 1,000,000 PMG. 
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( 4. 1) 

Using a 

the idealized 

processing element time 

systems will have the 

of 20 gate delays, 

following rate for 

four processors 

R.pe = ( N.pe / T.pe ) 

= 200,000 PMG. 

(4.2) 

The processing element rate is not necessarily the same as 

the system rate, 

bottleneck. 

because some other module may be a 

An enabling rate is given for each 

enabling cycle timing from Chapter III. 

system using the 

Programs that are 

strictly serial execute only one instruction per enabling 

cycle. Because of this, the enabling rate is defined as 

R.enable = ( 1 / T.enabled.cycle) ( 4. 3) 

The enabling rate is the minimum rate at which 

instructions can execute. 

MIT Idealized System Rates 

The rates for the processing elements, the 

arbitration unit, and the distribution unit have been 

given previously. The rate of the arbitration and 



distribution units was defined 
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as 1,000,000 PMG in 

equation 4.1, this applies to both the MIT arbitration and 

distribution units. In equation 4.2, the rate of four 

processing elements is given as 200,000 PMG. 

In modules where enabling takes place, the rate of 

the module is derived from a non-weighted average of the 

enabling instruction timing and the nonenabling 

instruction timing. The ratio of nonenabling operands to 

enabling operands is program dependent; an average is used 

in comparing all systems. If all instructions are binary 

instructions, the average used in the enabling timing is 

exact. An average of the enabling and nonenabling times 

from equations 3.5 and 3.6 is used in the cell memory 

rate; these times are 44 gate delays and 84 gate delays, 

respectively. The cell memory in the MIT design has 

sixteen cells in the cell memory that can operate in 

parallel, giving a cell memory rate of 

R.cm = N.cells / 

((T.enabled + T.nonenabled)/2 ) 

= 250,000 PMG. 

( 4. 4) 

Using the enabling cycle timing of 76 gate delays 

from equation 3.7, the MIT enabling rate is 

R.enable 1 / T.enabled.cycle 

= 13,157 PMG. 

(4.5) 
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Manchester Idealized System Rates 

The rates for the processing elements are stated in 

equation 4.2. The rate of the four processing elements on 

the Manchester system is 200,000 PMG. Since the I/O 

switch is composed solely of arbitration and distribution 

units, it uses the arbitration and distribution rates from 

equation 4.1 or 1,000,000 PMG. 

The Manchester result queue was designed to allow 

reading and writing to be done concurrently. The two 

parallel units are used in the rate calculation. Using 

the result queue timing of 84 gate delays from equation 

3.8, the result queue rate is 

R.rq = 

The ratio 

N.rq / T.rq ) 

= 23,809 PMG. 

of unary 

(4.6) 

instructions to binary 

instructions is program dependent; to be comparable with 

other memories where enabling takes place, the average of 

enabling and nonenabling instructions is used for the 

timing in the matching store. The control units in the 

matching store operate in parallel. By using the enabling 

and nonenabling timing from equations 3.9 and 3.10 (45 

gate delays and 85 gate delays), the matching store rate 

is computed to be 

R.ms = N.ms / ((T.enabl+T.nonenabl)/2) 

= 30,769 PMG. 

(4.7) 
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The instruction store operates as a serial memory 

using one control unit attached to the memory. Using the 

timing of 42 gate delays from equation 3.11, the 

instruction store rate is 

R.is = ( N.is / T.is ) 

= 23,809 PMG. 

(4.8) 

The arbitration and distribution units around the PE 

have a rate of 1,000,000 PMG, (equation 4.1). 

Using the enabling cycle timing of 197 gate delays 

from equation 3.12, the Manchester enabling rate is 

R.enable = 1 / T.enabled.cycle (4.9) 

= 5,076 PMG. 

Texas Instruments Idealized System Rates 

The rate used for the processing elements in the 

Texas Instruments design is not the same as the other PE 

rates, because a single PE is used in each operational 

unit. All other rates for the TI system are for a single 

operational unit also. Therefore, the PE rate for the 

Texas Instruments idealized system is calculated as 50,000 

PMG from equation 4.2. 

rate is 200,000 for four 

The overall TI processing element 

processors. The timing for all 

arbitration and distribution units will have a rate of 

1,000,000 PMG as computed from equation 4.1. 
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The buffers in the TI system were designed so that 

reading and writing could be done in parallel. 

Consequently, two units are used in the rate calculation. 

Using the buff er timing of 84 gate delays computed from 

equation 3.13, the buffer rate is 

R.bu = ( N.bu / T.bu ) 

= 23,809 PMG. 

(4.10) 

Each TI instruction memory is a serial memory. The 

memory units act in parallel without interference from one 

another. Because the instruction memory is accepting 

enabled and non-enabled instructions, a non-weighted 

average of enabled and non-enabled instruction timing is 

used for the timing in the instruction memory. Using the 

enabling and nonenabling timing of 44 gate delays and 84 

gate delays from equations 3.14 and 3.15, the instruction 

memory has a rate of 

R.im = ( N.im / ((T.enabl+T.nonenabl)/2 

= 16,000 PMG. 

(4.11) 

All arbitration and distribution units each have a 

rate of 1,000,000 PMG as defined in equation 4.1. 

Using the enabling cycle timing of 236 gate delays 

from equation 3.16, the Texas Instruments enabling rate is 

R.enable = 1 / T.enabled.cycle (4.12) 

= 4,237 PMG. 



All rates are shown in Tables III-V. 

TABLE III 

MIT IDEALIZED MODULE TIMING AND RATE FIGURES 

Module 

Cell Memory 
enabled 
nonenabled 

Arbitration Unit 
Distribution Unit 
Processing Elements 

Enabling Cycle Rate 

Timing 
(Gate delays) 

T.cm 
T.enabled 

T.nonenabled 
T.ad 
T.ad 

( 4) T. pe 

44 
84 

6 
6 

20 

T.enable.cycle 

TABLE IV 

Packet Rate 
(PMG) 

250,000 

1,000,000 
1,000,000 

200,000 

13,157 

MANCHESTER IDEALIZED MODULE TIMING A.ND RATE FIGURES 

Module 

I/O Switch 
Result Queue 
Matching Store 

enabled 
none nab led 

Instruction Store 
PE Arbitration and 

Distribution Unit 
Processing Elements 

Enabling Cycle Rate 

T.ios 
T.rq 
T.ms 

Timing 
(Gate delays) 

2 
84 

T.enabled 45 
T.nonenabled 85 

T.is 42 
T.ad 

2 
(4) T.pe 20 

T.enable.cycle 

Packet Rate 
(PMG) 

1,000,000 
23,809 
30,769 

23,809 

1,000,000 
200,000 

5,076 
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TABLE V 

TEXAS INSTRUMENTS IDEALIZED MODULE 
TIMING AND RATE FIGURES 

Module 

T.ad 

T.bu 

Timing 
(Gate delays) 

1 
84 

T. im 
T.enabled 

Arbitration and 
Distribution Units 

Buffer Units 
Instruction Memory 

enabled 
nonenabled 

Processing Element 
T.nonenabled 

( 1) T. pe 

44 
84 
20 

Enabling Cycle Rate T.enabled.cycle 

Analysis Of Packet Rates 

Packet Rate 
(PMG) 

1,000,000 
23,809 
15,625 

50,000 

4,237 
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Maximizing throughput of the processing elements is 

desired in the analysis of packet rates. Any modules of the 

system with a rate lower than the processing element rate 

are considered a potential bottleneck in the system. If 

bottlenecks are present in any of the idealized systems, 

possible improvements are explored in an attempt to remove 

the bottleneck. 

In the idealized MIT system, the arbitration and 

distribution units operate at a rate higher than the PE's. 

This is true in the other two designs as well. More 

importantly, the cell memory rate exceeds the processing 

element rate which results in the maximum possible 



throughput rate through the PE's. 
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If the number of 

processors were to be raised, the number of cells in the 

memory also would have to increase in order to match the 

needed PE rate. The design of the MIT system allows for 

both a variable number of PE's and a variable number of 

cells in the cell memory. 

If the packet rate from the processors were to exceed 

one million packets per million gates, the arbitration and 

distribution units would then become a bottleneck. A data 

flow system of twenty or more processing elements could 

have this problem. Larger arbitration and distribution 

units would be needed if a larger system were to be built. 

The use of several parallel arbitration or distribution 

units instead of a single arbitration and distribution 

could eliminate this bottleneck as well. 

It 

operate 

appears 

at the 

that the MIT idealized system could 

maximum throughput rate through the 

processing elements; larger systems could also be built to 

fully utilize the processing element throughput rate. 

In the idealized Manchester system, several modules 

appear to be bottlenecks. The rates of the result queue, 

the matching store, and the instruction store, are all 

less than the rate required by the processors. If these 

rates were used in a data flow system, the processing 

elements would be idle a large percentage of the time. 

In order to determine the increase in rate needed of 

the modules which are bottlenecks, a ratio of the 
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processing element rate to the rate of the module which is 

a bottleneck can be used. The speed-up rate can be 

calculated by dividing the rate of the processing 

elements, by the rate of the module which is a bottleneck. 

R.x.su (R.pe / R.x) (4.13) 

The instruction store would need to operate 9 times faster 

to keep the processing elements fully utilized. The 

matching store would have to operate 7 times faster to 

match the PE rate. And the result queue would need to 

operate 9 times faster to match the PE rate. 

One possible solution to the bottlenecks would be the 

use of a higher speed memory; the rates of all units using 

a memory would then be increased. This is only a 

temporary solution and depends on the number of processors 

in the system. A data flow system with a large number of 

processors would require an extremely fast memory if all 

modules are to match the PE rate; this might not be 

practical for a large system. There is no way for a 

memory operating serially to match the rate of a set of 

parallel processors, especially if there are a large 

number of processing elements. In a specific 

configuration where the number of processors is constant, 

it might be possible to find 

specific technology that can 

a memory 

support 

which 

the 

is of a 

elements. A serial memory preceeding a set 

processing 

of parallel 

processors restricts the number of processors it can 

service effectively. 
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The Texas Instruments design is unique in two ways. 

First, while the processors do operate in parallel, each 

processing element has separate sets of memory logic and 

control logic. The problem of a memory servicing a set of 

parallel processors is not present here because each 

processing element has a local memory. A serial memory 

can service a single processing element adequately; this 

is evident in von Neumann computers. In the idealized 

system, the buffer units and instruction memory rates are 

not great enough to keep the processing elements busy at 

all times. A memory operating 3 times faster than the 

idealized memory would increase the rate of the buffer 

units and instruction memory enough to match the PE rate. 

The number of processors do not effect the required memory 

speed, so finding a particular memory technology to match 

the PE rate is sufficient regardless of the size of the 

system. 

Both partitioning of the data flow graph into 

subgraphs and the number of operational units on the main 

ring affect packet throughput. The literature available 

on the TI DDP suggests that the main ring traffic would be 

light; because of this, the analysis here ignores activity 

on the main ring. As the number of subgraphs of the 

program increases, 

subgraph partitions 

the number of packets passed among 

should increase. The time a packet 

spends traversing the main ring is directly proportional 

to the number of processors on the ring. If the number of 
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processing elements is large, then the problems of data 

flow graph partitioning and operational unit communication 

will degrade total system performance. A large number of 

processors on the ring also increases ring contention and 

slows down main ring traffic even further. For a small 

number of processors, the TI design appears to be 

competitive with the other data flow architectures. 

Another measure used in the idealized systems is the 

enabling cycle time to complete a circuit in the 

interconnection network. In highly serial programs where 

only one instruction can only execute at a time, the 

time for program execution would be closer to the enabling 

rate than the maximum rate through the processing 

elements. In the MIT design, the enabling rate is greater 

because there are no buffers or queues which lengthen the 

enabling cycle. The Manchester design contains one queue 

which degrade the performance of t he enabling cycle. The 

Texas Instruments design contains two buffers which 

degrades the enabling cycle. Serial programs execute in a 

time proportional to the enabling cycle. If a program 

contains little parallelism, the advantage of a high 

parallel processing rate cannot be utilized. 
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Selected Data Flow 

Architectures 
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The organization and speed of memory causes most of 

the bottlenecks in the idealized systems. If a serial 

memory operates in front of a set of parallel processors~ 

then only a limited number of processors will be to 

utilized fully. The use of a memory operating in parallel 

appears to be well suited to a data flow system with 

parallel processors. 

The length of the enabling cycle can be a detriment 

for serial programs. The enabling cycle greatly reduced 

the possible maximum throughput rate of the data flow 

system for serial programs in both the Manchester and 

Texas Instruments designs. 

The use of serial packet routing also can cause a 

reduction in packet rate, as it does in the TI main ring. 

If the rate of packet transfer on the main ring is slower 

than the rate of modules in the operational units, then 

the processing elements are idle a larger percentage of 

time when they are waiting for packets from other 

operational units. 

In the attempt to arrive at comparable data flow 

systems, some features 

architectures were deleted. 

of the MIT and Manchester 

One of the most recent of the 

MIT data flow systems includes a secondary memory system; 



74 

no other data flow designs have suggested using anything 

but a main memory. The secondary memory is not designed 

to be used for file storage, but rather it is designed to 

be used for instructions that are not currently being 

referenced. It also may be used as a part of a virtual 

memory system in a multiprogrammed system. 

memory is similiar to a cache in such a system. 

The cell 

Possible 

motivations include improved memory speed or the desire to 

build a smaller cell memory on large systems. 

In the extended Manchester design, many layers of 

operational units are connected together. A single layer, 

or operational unit, is similiar to the system described 

here; an exchange switch replaces the I/O switch for 

layer-to-layer communication. The Manchester design might 

appear to be similiar to the TI design with several 

operational units, but it has an improved communication 

routing system. The exchange switch can be built using 

arbitration and distribution units in stages and would 

process packets in logarithmic time. 

Real Machine Comparison 

Using the rates derived above, the timing in terms of 

gate delays can be compared to the timing of a real 

machine in terms of million instructions per second. The 

timing from the Cray 1 computer was chosen for the basis 

of comparison, because the Cray 1 has one of the highest 

instruction throughput rates. The Cray 1 was designed 
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using small scale integrated circuitry; all chips are 

bipolar with gates having a fan-in/fan-out of four or 

five. Register chips operate with a 6 nano-second cycle 

time, and memory chips operate with a 50 nano-second cycle 

time. Because the idealized memory is twice as slow as 

the processing element timing, assume the Cray 1 processor 

timing (add time) is 25 nano-seconds for the purposes of 

this analysis. Using the ratio of gate delays per nano­

second, the timing used in the idealized system can be 

converted to million instructions per second (MIPS). 

The timing used in the processing elements is 20 gate 

delays, which corresponds to the 25 nano-second time on 

the Cray 1 computer; therefore 1 gate delay equals 1.25 

nano-seconds. The rate of the processing elements is 

200,000 instructions per million gate delays, or 

This gives 

1 

instruction per 6.25 nano-seconds. an 

approximate rate of 160 MIPS using four processors. In 

contrast, the Cray 1 can operate between 125 - 250 million 

floating point operations per second (MFLOPS), and is able 

to sustain a rate of 138 MFLOPS [44]. Also, the Cray 1 

does operations on 64-bit words, while the idealized 

systems used 32-bit words. Because of the difference in 

units, MIPS to MFLOPS, the difference in word sizes, and 

the assumtion of a 25 nano-second CRAY 1 add time, this 

cannot be 

idealized 

computation 

a precise comparison. 

rate of 160 MIPS does 

rate is within range 

But the resulting 

indicate that the 

of a present day 



supercomputer. A 

elements, or with 

data flow system with 

faster technology, 
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more processing 

could achieve a 

processing rate far above any systems built today. 



CHAPTER V 

SUMMARY, CONCLUSIONS, AND 

SUGGESTED FUTURE 

RESEARCH 

Summary and Conclusions 

A timing analysis of the architecture of three data 

flow computers and their interconnection networks were 

presented. The main thrust of analysis was directed 

toward the systems from MIT, Texas Instruments, and the 

University of Manchester. The different modules which are 

present in the three data flow systems were examined, and 

the timings for single packets to pass through the 

different modules were derived. Packet structure, packet 

contents, and memory configuration were described for all 

three systems. The three data flow systems were then 

configured in ideal systems so they could be compared. 

No particular technology was used in analyzing the 

different systems. Four basic components were used to 

construct the different modules of the system. The 

components used include: processing elements, memory 

units, arbitration and distribution units, and control 
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units. The timing of each component was expressed in 

terms of the gate delays it requires for a packet to pass 

through the component; this was done to aid in a 

technology independent analysis. Once the timings for the 

modules were derived, the maximum packet rates through the 

modules followed logically. Then packet rates were used 

in analyzing the performance of the interconnection 

networks. 

In analyzing the idealized systems, two measures were 

used: the maximum packet rate and the minimum packet rate 

through the different systems. The goal for the 

processing element rate was to obtain the maximum packet 

rate possible. The enabling cycle was used as the minimum 

rate; this occurs when highly serial programs are 

executed. 

With parallel processors, the processing rate 

increases linearly with the number of processors executing 

in parallel. In the various idealized system rates, the 

module with the lowest rate represents the maximum 

processing rate because the module with the lowest rate is 

the worst bottleneck of the system. Any modules with a 

rate less than that of the processing elements was 

considered to be a bottleneck in the system. Both 

arbitration and distribution units operated at a rate 

higher than the processing elements and thus did not 

effect processor utilization. Memory 

serially were definite bottlenecks, 

units that operate 

especially when 



79 

servicing parallel processing elements. Memory units 

operating in parallel can achieve rates that are greater 

than or equal to the processing element rate. 

The minimum processing rate is the enabling rate, 

which occurs during execution of sequential programs. The 

enabling rate was found to be lower in systems with 

multiple memory units. This was caused by the reading and 

writing of packets into the different memory units. The 

more memory modules in which a single packet is stored, 

the longer the enabling cycle, thus reducing the enabling 

rate for serial programs. When executing sequential 

programs on a data flow system, a high percentage of the 

available processors may not be used at any given instant. 

In all three idealized systems, the enabling rate was less 

than 10 percent of the maximum processing element rate. 

Because the enabling rate does not depend on the number of 

processors, the enabling rate is constant for a given 

system. 

The rates derived in Chapter IV demonstrate that the 

architectures from the University of Manchester and Texas 

Instruments cannot operate at the maximum processing rate. 

Both designs use a memory operating serially, and this 

appears to be the major bottleneck. The MIT design uses a 

memory with parallel access, and thus the memory can be 

configured so the memory rate matches the processing rate. 

Overall, it appears that the MIT architecture is the 

best of the three data flow designs. The processing 
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element rate was matched by all other modules in the 

system and had no 

The MIT system 

specifically iden tifiable bottlenecks. 

also has an architecture that could be 

expanded into a larger system with no module bottlenecks. 

Suggested Future Research 

In evaluating the packet rates for the idealized 

systems, program behavior was ignored. Future research 

analyzing data flow processor rates could analyze program 

characteristics to determine enabling rates more 

carefully. Simulation could also be used to determine the 

processor utilization for different types of programs. 

Additional research comparing data flow systems can 

analyze the extended architecture designs. This would 

include the use of a secondary memory as either an 

instruction store or a virtual memory. The effects of 

communication between operational units could be examined. 

This thesis examined three specific data flow 

systems, future research could compare other data flow 

systems as well. 

driven systems, 

All three systems examined were data 

future work might compare data driven 

systems with demand driven systems. 

The increased use of complex computer systems and 

large complex applications undoubtedly will continue. 

Advances in computer architecture, hardware, and software, 

will be required to meet the rising demand for computing 

power. 
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PMS Descriptions 

PMS is a notation used to describe the overall 

structure of computer systems. Components and modules of 

a system are represented by several basic symbols, and the 

different control and data paths are shown as the links 

between the components and modules. The five symbols used 

here are: P - processor, M - memory, S - switch, C -

computer, K - control unit. Subscripted identifiers are 

used to identify specific components and modules; 

abbreviations that are used conform to the terms used in 

the idealized systems. Subscripts within square brackets 

indicate a set of identical components or modules. 

Superscripts are used for matching the symbols with the 

legend. 

For some components and modules, there is a more 

detailed description in the legend giving several 

attributes and specific values for those attributes. For 

example: X(al:vl,a2:v2, ,aN:vN) gives the values 

vl,v2, ,vN, to the attributes al,a2, ,aN for 

component or module X. 

notation see [10). 

For a complete description of PMS 
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2. M (size:32K 32 bit ~ords,cycle time:40 gate delays, 
cm data tTansfer:l28 bits) 

Figure 22. MIT Idealized Data Flow System 
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Figure ~..;. Manches~er :dea:~zed ~ata F:ow System 

89 



1. C - Operational unit: see Figure 25 
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Figure 24. Texas Instruments Idealized 
Data Flow System 
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TABLE VI 

MIT IDEALIZED SYSTEM COMPONENT 
AND MODULE TIMING 

Module/Component 

Cell Memory 
Control unit 

Memory 
-or-

Arbitration and 
Distribution Units 

Processing Element 

Actions 

initiate read operation 
decrement # of operands 
test if # operands = 0 
forward instruction packet 
initiate store operation 
read/store operation 

enabled instr. 
nonenabled instr. 

route packets 

process instruction 

93 

Timing 

l 
1 
1 
1 

40 

44 
84 

6 

20 



TABLE VII 

MANCHESTER IDEALIZED SYSTEM COMPONENT 
AND MODULE TIMING 

94 

Module/Component Actions Timing 

I/O Switch 
Arbitration and distribution unit 

route packets 

Request Queue 
Control unit initiate read operation 

increment pointer 
initiate read operation 
decrement pointer 
test if null packet 
forward packet 

Memory unit 
-or- increment pointer 

read/store operation 

Matching Store 
Distribution unit 
Control unit 1 

route packet (2) 
initiate read operation 
forward packet 
read/store operation 

route packet 
Memory unit 
Arbitration unit 
Control unit 2 initiate store operation ** 

Instruction Store 
Control unit 

Memory unit 

PE Arbitration and 
Distribution Unit 

Processing element 

enabled instr. 
nonenabled instr. 

initiate read operation 
forward packet 
read operation 

route packets 

** 

* Timing is zero since operation is overlapped 
with memory access. 

2 

1 

* 
1 

* 
1 
1 

80 

84 

2 
1 
1 

40 
1 
1 

45 
86 

1 
1 

40 

42 

2 

20 
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TABLE VIII 

TEXAS INSTRUMENTS IDEALIZED SYSTEM 
COMPONENT AND MODULE TIMING 

Module/Component Actions Timing 

Ring Switch 
Arbitration and distribution units 

route packets 2 

Buffer Unit 
Control unit 

Memory unit 

Instruction Memory 
Control unit 

Memory unit 

Processing Element 

-or-

-or-

initiate write operation 
increment pointer 
initiate read operation 
decrement pointer 
test if null packet 
forward packet 
incrememt pointer 
read/store operation 

1 

* 
1 

* 
1 
1 

80 

84 

initiate read operation 1 
decrement # of operands needed 1 
test if it equals zero 1 
if yes forward packet 1 
store operand and # operands 
read/store operation 40 

enabled instr. 
nonenabled instr. 

process instruction 

44 
84 

20 

* Timing is zero since operation is overlapped 
with memory access. 
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Symbols Used in Idealized Data Flow System Analysis 

Symbol 

f i 

f o 

ad 

cu 

mu 

pe 

cm 

rg 

ms 

is 

enabled 

nonenabled 

T.add 

T.pe 

T.ad 

T.mu 

T.cu 

T. cm 

T.rq 

T.ms 

T. is 

Description 

Fan in 

Fan out 

Arbitration and distribution networks 

Control unit 

Memory unit 

Processing element 

Cell memory (MIT) 

Result Queue (Manchester) 

Matching store (Manchester} 

Instruction store (Manchester} 

Enabled instruction 

Non enabled instruction 

Time to perform addition 

Average time through processing 
element 

Time through arbitration/distribution 
network 

Time through memory unit 

Time through control unit 

Time through MIT cell memory 

Time through Manchester request queue 

Time through Manchester matching store 

Time through Manchester instruction 
store 



T.pe.ad 

T.bu 

T.enabled 

T.nonenabled 

N.pe 

N.ad 

N. cm 

N. rq 

N.ms 

N. is 

N.bu 

N.mu 

R.pe 

R.ad 

R.mu 

R.cm 

R.rq 

R.ms 

R.is 

R.enable 
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Time through Manchester processing 
element arbitration and distribution 
networks 

Time through TI buffer unit 

Time for instruction to be enabled 

Time for nonenabled instuction to be 
stored 

Number of processing elements 

Number of parallel stages in 
arbitration and distribution units 

Number of cells in cell memory (MIT) 

Number of parallel control units on 
result queue (Manchester) 

Number of parallel control units on 
matching store (Manchester) 

Number of parallel control units on 
instruction store (Manchester) 

Number of parallel control units on 
buffer unit (Texas Instruments) 

Number of parallel memories in 
memory unit (Texas Instruments) 

Packet rate through processing elements 

Packet rate through arbitration and 
distribution networks 

Packet rate through memory unit 

Packet rate through M.I.T. cell memory 

Packet rate through Manchester result 
queue 

Packet rate through Manchester matching 
store 

Packet rate through Manchester 
instruction store 

Packet rate for enabled instructions 
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Equations Used in Packet Rate Analysis 

Equation # Equation 

Timing Equations 

3.1 T.add ~ 1/2 * (5 + log~t) * log.t + 4 .,. ,;'.._ 

3.2 T.mu = 2 * T.pe 

3.3 T.ad = log ( fi) + log.z.(fo) 
i! ... 

3.4 N.ad.layers 
\ I \-, = j l~::.Jl#inputs / #outputsl \ 

MIT Idealized System Timing Equations 

3.5 T.enabled = T.mu + 4 

3.6 T.nonenabled = 2 * T.mu + 4 

3.7 T.enable.cycle = T.enabled + 2*T.ad 

+ T.pe 

Manchester Idealized System Timing Equations 

3.8 T.rq = 2 * T.mu + 4 

3.9 T.enabled = T.mu + 5 

3.10 T.nonenabled = 2 * T.mu + 5 



Equation # 

3.11 

3 .12 

Equation 

T.is = T.rnu + 2 

T.enable.cycle = T.enabled + T.is 

+ 2*T.ad.pe + T.pe 

+ 2*T.ad + T.rq 

Texas Instruments Idealized System Timing Equations 

3.13 

3.14 

3.15 

3.16 

T.bu = 2 * T.mu + 4 

T.enabled = T.mu + 4 

T.nonenabled = 2 * T.rnu + 4 

T.enable.cycle = T.enabled + 4*T.ad 

+ 2*T.bu + T.pe 

Rate Equations 

4.1 R.ad = (N.ad.stages / T.ad) 

4.2 R.pe = (N.pe / T.pe) 

4.3 R.enable = (1 / T.enable.cycle) 
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Equation # Equation 

MIT Idealized System Rate Equations 

4.4 R.cm = (N.cells / 

((T.enabled+T.nonenabled)/2)) 

4.5 R.enable = (1 / T.enable.cycle) 

Manchester Idealized System Rate Equations 

4.6 R.rq = (N.rq / T.rq) 

4.7 R.ms = (N.ms / 

((T.enabled+T.nonenabled)/2)) 

4.8 R.is = (N.is / T.is) 

4.9 R.enable = (1 / T.enable.cycle) 

Texas Instruments Idealized System Rate Equations 

4.10 R.bu = (N.bu / T.bu) 

4.11 R.im = (N.im / 

((T.enabled+T.nonenabled)/2)) 

4.12 R.enable = (1 / T.enable.cycle) 
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Term Glossary 

Term Description 

Arbitration unit 

A routing unit with more input lines than output 
lines. 

ARPANET 

A loosly-coupled network in 
the country communicate 
communication lines. 

Bandwidth 

which computers across 
over long distance 

The number of bits of information that can be 
transferred over communication lines, typically the 
bandwidth is the same as the size of the packets 
traversing the lines. 

Data flow computer 

A data flow computer system has many processors in a 
tightly-coupled configuration. The machine 
representation of programs run on data flow systems 
allow instructions to operate in parallel on 
different processors, exploiting program parallelism. 

Data driven 

In data driven computers, the availability of all 
operands for an instruction triggers execution of 
that instruction. 

Data path width 

The number of bits of data in an operand. 

Demand driven 

In demand driven computers, the requirement for a 
result triggers the instruction that will generate 
that result. 
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Distribution unit 

A routing unit with the same or more output lines than 
input lines. 

Enabling cycle time 

The enabling cycle time is defined as the time for an 
instruction to be enabled, plus the time to pass 
through the different arbitration and distribution 
units, plus the time through the processing element, 
plus the time for an operand to return to the memory 
unit in which enabling takes place. 

ETHERNET 

A computer network where many external devices within a 
close proximity to the main processor are connected in 
a local network. 

Gate delay 

The time for a unit of information to pass through an 
simple electronic device or gate. 

Instruction firing (releasing, enabling) 

When all operands and control information are present 
in an instruction, the instruction is enabled and may 
be released (or fired) for execution. 

Interconnection network 

The communication lines between the different modules 
and components of a computer system. 

Loosly-coupled network 

A multiple CPU computer 
operate independantly 
loosly-coupled. 

Multiple ported memory 

system 
of the 

where each CPU 
other CPU's 

can 
is 

A memory with multiple access paths for reading and/or 
writing to memory. 

Multiple ring architecture 

An architecture with several single rings for 
instruction execution. 
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Packet 

A packet is a collection 
specified format. 

of information in a 

Parallel program 

A computer program where instructions can execute at 
the same time. 

Routing unit 

A unit with one or more input lines and one or more 
output lines that accepts packets and routes them to 
their destination. 

Serial program 

A computer program where only one instruction can 
only execute at a time. 

Single ported memory 

A memory with a single access path for reading and 
writing data. 

Single ring architecture 

An architecture with one 
instruction and data. 

Tightly-coupled network 

A multiple CPU computer system 
dependant on each other 
tightly-coupled. 

circular path for 

where the CPU's are 
for operation is 
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