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Two dormitory halls at the University of Nebraska-Lincoln known as Cather and 

Pound halls were demolished via controlled implosion on December 22, 2017. Cather and 

Pound halls were two thirteen-story reinforced concrete structures. The demolition of 

these two structures included the implosion of controlled charges at selected columns on 

alternating floors which initiated the progressive collapse of these structures. Three 

nearby structures in the vicinity of Cather and Pound halls were instrumented with high 

sensitivity uniaxial piezoelectric accelerometers to record the response of the adjacent 

structures during the event of the implosion and the progressive collapse. While these two 

thirteen-story reinforced concrete structures were also instrumented with sacrificial 

accelerometers to record the real-time response of the structures during implosion and 

progressive collapse, the focus of this thesis is the responses observed at the adjacent 

structures during the demolition sequence.  The primary objective is to understand how a 

group of nearby structures response and interact during the implosion and progressive 

collapse of multistory buildings. To this end, ground motion parameters at three free field 

positions nearby these adjacent structures have been quantified to observe the variation of 

free field ground motions during the demolition event. Likewise, the acceleration 



 

  

response data obtained from adjacent structures and free field positions have been 

analyzed in the time and frequency domains. The analysis of response data has also been 

presented separately in terms of the blast and collapse sequence to differentiate and 

understand the response of adjacent structures during the blast and progressive collapse 

of the two 13-story reinforced concrete structures. An input-output study of the responses 

observed within three adjacent structures with respect to the ground motion recorded at 

free field positions indicated that secondary effects, such as the air wave generated by the 

blast, contributed to the structural response.  Two of the adjacent structures are 

numerically modeled with a lumped mass approach in LS-DYNA, and the responses of 

these numerical models are compared to the experimental recordings. The numerical 

study further emphasized the significance of the air wave.  
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CHAPTER 1 – INTRODUCTION 

1.1 Overview 

Cather and Pound halls were two 13-story reinforced concrete residence buildings 

at the University of Nebraska-Lincoln that were demolished via a controlled implosion on 

December 22, 2017. Three adjacent structures to Cather and Pound halls were 

instrumented before, during, and after the implosion to study the response of the adjacent 

structures to blast and collapse loads as well as to examine any potential changes 

resulting from the ground motion due to the blast and collapse loads. Likewise, free field 

positions near these three adjacent structures were also instrumented to study the ground 

motions induced during the implosion and progressive collapse of the two buildings. 

While Cather and Pound halls were instrumented with sacrificial accelerometers to study 

the distribution of blast loads and progressive collapse, this thesis focuses on the response 

obtained from the three adjacent structures and their nearby free field positions. The 

response obtained from these three adjacent structures and their nearby free field 

positions have been analyzed in the time and frequency domains. The results obtained 

from time domain and frequency domain analysis of the captured response have been 

compared in terms of the blast and collapse sequence of the demolition of Cather and 

Pound halls. The comparative study of the acquired response in terms of blast and 

collapse sequence helps to understand as well as differentiate the effects of blast and 

collapse-induced ground motions on the structural response of adjacent structures. 

Likewise, the frequency domain analysis of the obtained structural response during the 

blast and collapse has also been presented with an input-output study to understand any 
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possible effects of secondary sources apart from ground motions on the observed 

structural response. In addition to the analysis of the experimental data, two of the 

adjacent structures are numerically modeled in a lumped mass approach assuming a fixed 

base. The models are subjected to ground motions obtained from free field positions. The 

numerical analyses of the two adjacent structures focuses on the significance of the 

contribution of the airblast wave on the observed structural response. 

1.2 Motivation 

The primary purpose of this study is to understand how a group of nearby 

structures respond and interact during the implosion and progressive collapse of 

multistory structures. Moving forward, results of this study could be used to guide the 

future design of more robust and resilience structures. However, there have not been 

many experimental studies where two or more full-scale buildings have been 

instrumented to observe the response of multiple structures to ground motions. This 

experimental study is a unique endeavor where three full-scale structures have been 

instrumented to observe their response to two different types of ground motions: blast 

and collapse-induced ground motions. This experimental study provides key insights over 

how different structures respond to these two types of ground motions which vary in 

terms of both amplitude and the frequency content. Another important aspect of this 

experimental study is the airblast wave associated with the implosion of the multistory 

structures. The observed response of the adjacent structures during the blast sequence of 

the implosion helps to clarify the possible interference of the airblast wave on the 

structural response. The response of the adjacent structures to ground motions is 
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influenced by a wide array of parameters like characteristics of ground motions, system 

properties of the structure, and the properties of soil domain beneath the structure. The 

numerical analyses of the adjacent structures based on the experimentally obtained 

ground motions from this study can help to improve the understanding of the dynamic 

response of complex real-world structures, including the combined response to ground 

excitation and airblast as well as the impact of soil-structure interaction.  

1.3 Scopes and Objectives 

The thesis consists of eight chapters.  

Chapter 2 includes the literature review on soil-structure interaction (SSI), 

structure-soil-structure interaction (SSSI), response of structures to blast-induced ground 

motions and response of structures to airblast wave. The literature review forms a basis 

for the discussions presented in Chapter 4, Chapter 5, Chapter 6 and Chapter 7. 

Chapter 3 summarizes the details of the adjacent structures, experimental setup, 

the location of sensors, specifications of the data acquisition used in acquiring the 

response data presented in this thesis. 

Chapter 4 presents the system identification techniques used in the system 

identification of two of the adjacent structures which are primary subjects of discussion 

in Chapter 6 and Chapter 7. The obtained system properties of the two adjacent structures 

have been used in Chapter 6 and Chapter 7 to interpret the observed responses in the 

frequency domain. Likewise, these system properties of the two buildings have also been 

used in the calibration of the numerical models of these buildings in Chapter 7. 
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Chapter 5 presents the response data obtained from the three adjacent structures 

and their respective free field positions using time domain and frequency domain 

analysis. A primary objective of this chapter is to compare and observe the variation of 

responses within the three adjacent structures and free field positions near these adjacent 

structures. 

Chapter 6 presents an input-output study of the observed response within the 

adjacent structures with respect to observed response at respective free field positions of 

these adjacent structures. The goal of this chapter is differentiating and understanding the 

response of the adjacent structures to the blast and collapse-induced ground motions. 

Likewise, the purpose of this chapter is also to understand and interpret the high mode 

response of the structures observed during the blast sequence. 

Chapter 7 includes the numerical modeling of two adjacent structures using the 

two -degree of freedom (2DOF) lumped mass model approach. The purpose of this 

chapter is to study the numerical response of the adjacent structures when subjected to the 

experimentally obtained ground motions from the free field positions.   

 Chapter 8 summarizes the key observations and conclusions made from the 

study presented in this thesis. 
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CHAPTER 2 – LITERATURE REVIEW 

2.1 An overview  

 The study focuses on the response of the nearby structures during the controlled 

implosion and collapse of two 13-story reinforced concrete structures. While both 

implosion and collapse can induce ground motions, a part of the energy released during 

the implosion can also give rise to the airblast wave. The thesis touches upon some key 

areas of research associated with the response of nearby structures to ground motions as 

well as the response of structures to the airblast wave. These key areas of research 

include: 

➢ Soil-Structure Interaction (SSI) 

➢ Structure-Soil-Structure Interaction (SSSI) 

➢ Response of structure to blast and progressive collapse induced ground 

motions 

➢ Response of structure to the airblast wave. 

A brief discussion of each of these areas of research has been provided in the 

subsequent sections included in this chapter. 

2.2 Soil-Structure Interaction (SSI) 

The response of a structure subjected to ground motion, such as an earthquake, 

cannot be defined by the parameters related to the structure alone. The degree by which 

the structural response is influenced by ground motions depends upon a wide array of 
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factors like the flexibility of the structure, its foundation, and the soil, as well as the 

ground motion that is introduced to the structure through the soil domain. This makes 

soil-structure interaction (SSI) a complicated phenomenon with a higher number of 

degrees of freedom than for a structure alone. SSI is usually explained under two aspects: 

kinematic interaction and inertial interaction. Kinematic interaction refers to the 

modification of the input ground motion due to the presence of a stiff foundation in the 

soil; and, inertial interaction refers to the modification of structural response due to the 

presence of a flexible soil domain on which the structure is founded.  Traditionally, 

structures are often designed with an assumption that they are founded rigidly on a stiff 

soil. However, the response of a structure founded on a stiff soil to a ground motion can 

be noticeably different than the response on a relatively flexible soil domain. The 

structures with foundation on flexible soil have longer natural periods of vibration when 

compared to structures with foundation on relatively stiff soil. This is due to the inertial 

interaction between the soil and structure where a substantial amount of vibrational 

energy of the SSI system is dissipated due to the hysteretic material damping of the soil 

domain and the radiation of incident ground motion waves from the structure-soil 

interface. The effect of soil-structure interaction can be more pronounced in very rigid 

structures like the structures containing nuclear structures. Although the rigid structure 

may lie on relatively firm soil, the relative stiffness between the structure and its 

foundation can play a significant role in the modification of structural response (Jennings 

and Bielak 1973). As nuclear powerplants are heavy and stiff, they create a more suitable 

scenario for the occurrence of SSI. Most of the previous research work in SSI in past 
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decades have been stimulated by a greater safety concern towards the vulnerability of 

nuclear power plants towards SSI.   

However, recent research developments have begun focusing on the effects of SSI 

on typical building structures as well. Dutta et al. (2004) did a numerical study to 

examine the effects of SSI on buildings with isolated and grid foundations when 

subjected to seismic excitations. The study showed an increase in base shear due to SSI in 

low-rise buildings and decrease in base-shear in mid to high-rise buildings due to SSI. 

Likewise, the study indicated that pulse-like near fault ground motions with short period 

pulses (period less than 1s) resulted in an increase in seismic demand due to soil-structure 

interaction. The flexibility of the soil domain can change the effective natural period of 

any buildings where the change in natural period largely affects the seismic response of 

the building.  The effect of the lengthening of the natural period due to SSI in low-rise 

structures can make these structures vulnerable to seismic excitation if SSI is not taken 

into account in the seismic design (Bhattacharya et al. 2004).  Contrary to the traditional 

design assumption, the ductility demand of a structure does not always decrease with 

decrease in the natural period of the structure due to SSI (Mylonakis and Gazetas 2000). 

This indicates that the study of effects of SSI on the response of buildings is pivotal to 

ensure safety of the buildings during seismic events. The numerical studies and 

experimental studies done regarding SSI are detailed in Section 2.2.1 and Section 2.2.2. 

2.2.1 Numerical Methods in SSI: An Overview 

In the study of dynamic building-soil interaction by Jennings and Bielak (1973), 

the authors presented a method to calculate the earthquake response of multistory 
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structures where the soil domain is modeled using a linear elastic half-space and the n-

story structure foundation system is modeled using n+2 single degree of freedom, 

viscously damped, linear oscillators founded on a rigid ground. The study showed that 

the effect of soil-structure interaction may not always decrease the maximum response of 

a structure. The soil-structure interaction could result in an increase in the response of 

structure when there is an increase in the effective damping of the soil-structure system. 

Gazetas (1991) derived a set of algebraic formulas to calculate the dynamic impedance 

functions for different shapes of rigid foundations in a homogenous half-space, for 

significant translational and rotational modes of vibration and using a realistic range of 

Poisson’s ratio. The dynamic impedance functions represent the damping and stiffness 

characteristics of the foundation-soil interaction system (Kramer and Stewart 2004). 

With the development of powerful computing tools, finite element methods and 

boundary elements methods were introduced in SSI, and this allowed the calculation of 

impedance functions for complex foundation shapes and different types of soil-structure 

configurations. The impedance function is one of the substructures used within the 

Substructuring method. The substructuring method is a sophisticated method to model 

SSI phenomenon where the soil-foundation-structure system is divided into different 

substructures and the response from each substructure is superimposed to obtain the final 

response of the soil-foundation-structure system. Although the Substructuring Method is 

computationally efficient, it can be only used in the linear analysis of SSI phenomenon. 

The direct Method is another prominent approach towards SSI analyses that allows a 

more realistic simulation of non-linear aspects of SSI. Finite Element programs like LS-

DYNA (LSTC 2019) can be used to model SSI using the Direct Method, where the entire 
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soil-structure system is modeled at once in contrast to the superposition method 

employed in Substructuring method. Details on  the Substructuring Method and Direct 

Method as well as discussion of recent research efforts in these domains are discussed in 

Section 2.2.1.1 and Section 2.2.1.2 respectively. 

2.2.1.1 Substructuring Method: SSI 

The response of a structure to ground motions is influenced by the interaction 

between the structure, foundation and the soil domain beneath the foundation (Kramer 

and Stewart 2004). In the substructuring method, the SSI system is broken down in 

different substructures where the response of each substructure is calculated 

independently and then superimposed to find the total response of an SSI system. Kramer 

and Stewart (2004) listed three steps for SSI analysis using the substructuring method as 

follows: 

• Evaluation of foundation input motion (FIM): This step includes the evaluation of 

the input motion at the base of the foundation if the structure and foundation were 

massless. Once FIM is determined, a transfer function is calculated that represents 

the variation of FIM from free field motion.  

• Determination of the impedance function: Impendence function represents the 

stiffness and damping characteristics of the foundation-soil interaction system. 

The impedance function is determined based on the properties of soil stratum and 

the stiffness and geometry of the foundation. 
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• Dynamic analysis: This includes the dynamic analysis of the structure excited 

with FIM at its base where the base of the structure is represented by the 

impedance function. 

These three steps have been interpreted in Figure 2.1: 

 

Figure 2.1: Substructuring method in SSI. (Kramer and Stewart 2004) 

 

2.2.1.2 Direct Method: SSI 

In the direct method of SSI analyses, the entire SSI system is analyzed in a single 

step. While the detail steps for the direct method of SSI analyses can be found in Bolisetti 

and Whittaker (2015), only key numerical parameters and challenges with regard to the 

direct method of SSI analyses has been  discussed here. In this method, the structure is 

modeled over an infinite soil domain where ground motion is applied as force input at the 

bottom of the soil when modeled with a viscoelastic bedrock assumption and as an 



11 

 

acceleration input when modeled with a rigid bedrock assumption  (Bolisetti and 

Whittaker 2015). Although the modeling of infinite soil domain is a challenge, this can be 

done defining a large enough finite soil domain such that the waves radiated from the 

structure do not reflect from the boundaries of the soil domain. In addition to that, the 

boundaries of the finite soil domain should account for the stress equilibrium conditions 

of the remaining soil domain that has not been included to make the soil domain finite 

from infinite. Figure 2.2 shows the finite element model of an SSI system using the direct 

method. 

 

Figure 2.2: Direct method in SSI (Bolisetti and Whittaker 2015) 

 

2.2.2 Experimental Studies in SSI: An overview 

Trifunac et al. (2000)  presented analytical procedures to evaluate SSI effects in a 

structure with an embedded foundation and used system identification results to validate 

these analytical procedures through empirical findings. A total of 77 strong motion 

recordings for 57 sites in California and Taiwan were used in the system identification 



12 

 

analyses in this study where fixed- and flexible-base modal vibration parameters of the 

SSI system were calculated. The study showed that inertial SSI interaction was evident in 

some structures where the ratio of flexible-base modal period of the structure to its fixed-

base modal period was approximately 4. de Barros and Luco (1995) used forced vibration 

tests performed on on a cylindrical reinforced concrete shell structure with a circular slab 

foundation to calculate the foundation impedance functions and compare the observed 

structural response with the theoretical response calculated based on identified soil 

properties and structure models. The theoretical response derived from the 

experimentally-based impedance functions matched reliably with the structural response. 

The study concluded that the impedance functions vary depending upon the soil 

properties and the contact conditions along the base of the foundation.    

Pitilakis et al. (2004) attempted to validate the numerical response of an SSI 

system using a centrifuge experiment involving a scaled single-degree-of-freedom 

structural model. The experiment was carried out under a high gravitational environment 

of 50g to simulate the response of a full-scale structure and soil domain. This study 

presented comparative results that had good agreement between the experimental and 

numerical response particularly in the time domain. However, some differences were 

observed in the frequency domain which was attributed to the difference between the 

predominant frequencies of the model and input motion and to nonlinear response of the 

soil domain.  

Pitilakis et al. (2008) used the numerical code MISS3D (Clouteau and Aubry 

1992, 2003) to numerically simulate the SSI phenomenon that was studied with shake 

table test in the BLADE laboratory at the University of Bristol. The shake table test 
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included a model of foundation-structure system embedded in dry bed sand subjected to 

strong ground motion. The numerical simulation that was carried out using the 

substructuring approach with a linear viscoelastic domain reliably estimated the recorded 

experimental response in the soil deposit although nonlinear soil behavior is expected 

during strong ground shaking. Likewise, the numerical response and experimental study 

both showed a decrease in the acceleration forces at the top of the structure. The decrease 

in the acceleration forces at the top of the structure has been attributed to the primary 

effects of SSI: decrease in the stiffness of foundation-structure system and the increase in 

the damping. 

2.3 Structure-Soil-Structure Interaction (SSSI) 

SSSI is an extension of SSI where two or more adjacent structures founded within 

the same soil domain interact with each other when the soil domain is subjected to 

dynamic motion. When a structure is subjected to ground motion, some part of the 

vibrational energy of the structure is radiated into the soil domain through a soil-

foundation interface which may lead to the dynamic interaction between adjacent 

structures that are built within same soil domain. In cases where several structures are 

clustered together, the dynamic response of one structure may not be independent of the 

adjacent structures since there is a greater possibility of interference of the structural 

responses through the soil. Although there has been notable progress in the study of SSI 

in recent decades, advances in the research of SSSI is quite limited. While SSI is 

extensively considered in the design of nuclear power plants, SSSI is not considered. 

Although it cannot be confirmed whether SSSI is conservative or non-conservative in 
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terms of seismic demands on structure, SSSI has gained much more attention within the 

research community in recent decades. 

2.3.1 Numerical Methods in SSSI: An Overview 

Luco and Contesse (1973) presented a numerical study on SSI problem using two 

parallel infinite shear walls founded on rigid foundations of semi-circular cross section 

and subjected to vertically incident plane SH wave with harmonic time-dependence. The 

paper presented parametric studies to conclude that the interaction effects are prominent 

when a small shear wall is at close proximity with a larger shear wall. Wong and Trifunac 

(1975) followed the work of Luco and Contesse (1973) to study the significance of angle 

of incidence of incident SH waves along with the effect of the relative size and natural 

frequencies of neighboring structures, and the effect of relative distance between 

foundation on the interaction between two or more shear walls. The study showed that 

scattering, diffraction and interference of waves from and around several foundations 

with incident SH waves can alter the free field motion and the presence of other buildings 

can produce significant change on the single soil-structure interaction problem. With the 

rise in powerful computing resources, FEM has been used extensively in the numerical 

modeling of SSI as well as SSSI systems. Matthees and Magiera (1982) performed a 

sensitivity study using finite element method with computer code FLUSH where they 

studied the interaction between the adjacent structures of the nuclear power plant due to 

horizontal seismic excitation. The results obtained from the study showed that specific 

frequency behavior of the structure can have a significant influence on SSSI especially in 

case of small depth of soil. Lin et al. (1987) performed an analytical parametric study on 
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the interaction between adjacent foundations based on the effects of distance, the 

direction of alignment, embedment depth and structural inertia on SSSI. The inertial 

interaction induced due to the supported structure on each foundation increased with a 

decrease in distance between the adjacent foundations as well as the increase in the 

embedment depth of the foundations. A decrease in characteristic frequency of the 

foundation-structure system was more pronounced when two square foundations were 

aligned side by side than when aligned diagonally. 

Apart from the Finite Element Method (FEM), Boundary Element Method (BEM) 

has also been practiced actively to model SSSI problems. One notable advantage of BEM 

over FEM is that it only requires the discretization of the surface of the domain while 

FEM requires the discretization of the surface as well as the interior of the domain. BEM 

automatically considers the radiation condition at infinity Beskos (1993). This advantage 

is particularly useful while modeling a three-dimensional infinite domain in SSI and SSSI 

problems which might result in inaccuracy with FEM. Karabalis and Mohammadi (1998) 

built upon previous works and studied the dynamic response of single and multiple 

foundations on a layered viscoelastic soil domain using 3-D frequency domain BEM.  

The study concluded that foundation-soil-foundation interaction is more prominent when 

the soil domain consists of thin soil layers near the surface. 

FEM has also been coupled with BEM to use the advantages of both numerical 

approaches in SSSI studies. Wang and Schmid (1992) used coupled FEM-BEM to study 

the dynamic interaction between three-dimensional structures through the underlying soil. 

In the study, the structure and foundation were discretized using FEM, and the soil 

domain was discretized using BEM. The paper demonstrated the effect of distance 
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between structures, the influence of the natural frequency of the soil domain as well as 

the natural frequency of structures and the location of excitation load on SSSI. Lehmann 

and Antes (2001) studied the suitability of coupled BEM-FEM approach to model SSSI 

problems where the soil was approximated by using three-dimensional Symmetric 

Galerkin Boundary Element Method (SGBEM), and multi-story buildings were modeled 

using FEM. Likewise, Padron et al. (2009) presented a study on the dynamic interaction 

between pile supported structures under incident S wave and Rayleigh waves using three-

dimensional viscoelastic BEM-FEM formulation. The paper concluded that SSSI effects 

can be sensitive for a group of structures with similar dynamic properties, especially at 

the fundamental frequency of the overall system. Similarly, the highest amplifications 

were noted around the central constructions when the incident waves produced motion 

along the direction of alignment of the structures. 

2.3.2 Experimental Studies in SSSI: An Overview 

There have been a minimal number of experimental campaigns to study SSSI 

when compared to numerical studies done in SSSI or SSI. Kobori et al. (1977) carried out 

vibrational field tests for two identical foundations under the harmonic excitation by a 

vibration generator where responses were recorded using velocity type seismometers. 

The theoretical dynamic vibrational characteristics were obtained using ground 

compliance matrix of the foundation on a visco-elastic half-space and then compared 

with the experimental evidence. The study pointed out that cross-interaction effects are 

significant over the wide frequency range when the distance between the foundations 

decreases.  
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Mizuno (1980) experimented for SSSI to study the effects of radiation waves 

from a structural system and energy absorption by natural mode excitation of a structural 

system. A model reinforced mat foundation and a model reinforced mat foundation with a 

superstructure were constructed nearby an existing full-scale three-story steel frame 

building to study SSSI based on forced vibration tests, microtremor measurements and 

earthquake observations. The microtremor measurements of the experimental study were 

compared with foundation displacements and relative displacements of the 

superstructures obtained from the analytical study. Both experimental results and 

analytical results confirmed the SSSI between structures in earthquakes. The paper 

concluded that radiation of waves from other structures can have notable effects on the 

response of structures. Likewise, the study also highlighted that the energy absorption 

capacity of the structure from the ground, when excited in its own mode, can have 

significant SSSI effects.      

Celebi (1993a, 1993b) studied SSSI between two adjacent seven-story buildings 

in Norwalk, California due to Whittier-Narrows, Calif. Earthquake of 1987. This study is 

a rare experiment in the field of SSSI research that was performed with full-scale 

buildings during a real earthquake. Acceleration responses during the earthquake were 

obtained from the roof and basement of the two adjacent structures and three free field 

positions using strong motion accelerographs. Spectral analysis of these acceleration 

responses was done where cross-spectra and coherence functions were computed to 

compare the acceleration responses obtained from the two adjacent structures and free 

field positions. The experimental study concluded that structure-soil-structure interaction 

was evident between the two adjacent structures as a result of the two adjacent structures 
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resonating into the Rayleigh frequencies of the ground.  The author indicated the 

occurrence of structure-soil-structure interaction at specific frequencies in the cross 

spectra and high coherence of responses of various free-field locations and locations 

within two adjacent structures.  

Bolisetti and Whittaker (2015) presented a detail report on a comparative study 

between the numerical modeling of SSSI and experimental results obtained from the 

experimental program of the NEES City Block project. The City block project included 

six centrifuge tests targeted to examine SSI and SSSI among which results from Test 3 

and Test 4 have been used by Bollisetti and Whittaker (2015) to compare with the results 

obtained from numerical platforms: SASSI and LS DYNA used to model SSSI and SSI in 

the study. Test 1 used a one-story building model with spread footings and a three-story 

building model with a basement to examine the SSI effects. Likewise, in Test 2 the same 

two models were kept adjacent to each other and parallel to the shaking motion to study 

SSSI effects between them. Test 3 used a heavy and stiff structure placed adjacent to light 

and flexible structure to study SSI and SSSI effects. Likewise, Test 4 includes five 

different structures on dry, dense sand representing a complete city block. Ganuza (2006) 

and Chen et al. (2010) include the details of the design and development of the prototype 

buildings and the model structures used in the City Block project. The design procedures 

for the models used in this centrifuge experiment can be found in Bolisetti (2010). No 

distinct dynamic interaction between the structures could be observed in the numerical 

studies and experimental responses obtained from Test 3 and Test 4 (Bolisetti and 

Whittaker 2015). Bolisetti and Whittaker (2015) also pointed out that restraining of 

footing from adjacent basements might result in local SSI effects that could produce 
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significant changes in global structural response. Further, the paper also concluded that 

the accurate prediction of structural response to intense ground motions is sensitive to the 

numerical modeling of foundation nonlinearity mechanisms like footing sliding and 

gapping. 

2.4 Response of structures to blast-induced ground motions 

The blast can induce ground motions resulting in the vibration of nearby 

structures. The ground motion characteristics for seismic waves generated by earthquakes 

can vary from the ground motion characteristics for blast-induced seismic waves. 

Primarily, the blast-induced seismic waves have a shallower hypocenter when compared 

with earthquake-generated seismic waves. Hao et al. (2001) computed coherency and 

cross-correlations between the blast-induced ground motions along same directions 

recorded on locations on ground surface separated by a distance of 25 m. The blast-

induced ground motions along the same directions indicated a weak correlation contrary 

to seismic ground motions which show high correlation (Abrahamson 1985)  along the 

same directions. The acceleration time histories recorded at these two locations that were 

25 m apart also indicated quick attenuation of the amplitude of the blast-induced ground 

motions. The higher spatial variation and quick attenuation of blast-induced ground 

motions have been attributed to its high-frequency content where the ground motions are 

greatly influenced by the heterogenous propagation media.  

Regardless of the source of the ground motions, the response of a structure is 

influenced broadly by the characteristics of the ground motion.  Blast-induced ground 

motions can possess high risks to nearby structures if the ground motion has low-
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frequency content to result in resonance with the structure. However, experimental 

studies regarding blast-induced ground motions have shown that blast-induced ground 

motions tend to have very high frequencies. Nateghi (2011) has presented a study on 

ground motions induced by near underground and surface concrete structures during the 

construction of a dam. The study found that all the blasts that were observed had 

frequency content higher than 20 Hz such that the damage risk on surrounding structures 

due to resonance was minimum. The response of the structure to blast-induced ground 

motions could be amplified or attenuated  with respect to the amplitude of input ground 

motions depending upon the frequency content of the ground motions and the size of the 

footprint of the structure. While the responses observed at the top of structures were 

attenuated when subjected to high-frequency excitation pulses, the responses at the top 

were amplified in the case of smaller residential structures when subjected low-frequency 

excitation pulses with a frequency closer to the natural frequency of the structure 

(Dowding et al. 2018). 

 Siskind et al. (1980) have also shown that the structural response tends to show 

amplification with respect to blast-induced ground motions that have a low-frequency 

content of 4 Hz to 10 Hz which is also a typical range of natural frequencies for 

residential structures. Although the frequency of blast-induced ground motions typically 

exceeds the natural frequencies of most non-residential building structures, i.e. 4 Hz to 10 

Hz, the study showed that low-frequency ground motions due to the blast were more 

evident with the increase in distance from the blast site. The amplification of structural 

responses with typical amplification factors ranging between 1.5 to 4 was observed for 

blast-induced ground motions with principal frequencies between 4 Hz to 10 Hz. 
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However, the structural response amplification factors were less than unity for blast 

vibrations with principal frequencies above 40 Hz. 

2.5 Response of structures to airblast 

Apart from the blast-induced ground motions, airblast wave is also a secondary 

effect of the blast. It can be challenging to measure the effect of the airblast wave on a 

structure where the response is usually dominated by the response to ground motions 

during the blast. The shock from airblast travels through the atmosphere as a compression 

wave and can be related to P-wave traveling through the earth (Elseman 2000).  

The effect of the airblast wave on a structure is greatly influenced by the weather 

conditions for propagation. Since the propagation of the airblast wave greatly varies 

depending upon the blast confinement and airblast character and levels, the study of the 

effect of airblast wave is comparatively challenging than the study of blast-induced 

ground motions (Siskind et al. 1980). Siskind et al. (1980) performed an experimental 

study where the responses of residential structures to the airblast wave generated from 

mining operation were studied to design blast to have a minimal effect on surrounding 

structures. The study included the observation of 56 different structures where low-

frequency pressure transducers of 0.1 Hz to 380 Hz was used to obtain airblast time 

histories. The time histories included the airblast measured in terms of time-varying 

overpressure where overpressure was also related to the relative sound level in decibels 

(dB). The study has presented safe airblast levels in decibels (dB) for structure by 

comparing with the equivalent vibration level of the structure to ground motions. Table 

2.1 shows airblast sound levels compared with the response of the structure to ground 
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vibration with equivalent damage risks for different types of blast and structures with 

different story heights. Three different approaches are presented in Table 2.1 where the 

first approach compares the mean values of the airblast and ground vibration plates. For 

example, if we consider a mine blasting and a 2-story structure, the airblast level 

equivalent to peak particle velocity of 0.5 in/s is 139 dB (0.1Hz), 137 dB (2Hz), 135 dB 

(6 Hz) and 112 dB (for airblast not exceeding 2 s duration).  The second approach gives 

these airblast levels with a minimal probability of the most the superficial type of damage 

on a structure provided that the ground vibration response of the structure is accompanied 

by the riskiest situations which include low-frequency vibrations of structures located on 

soft soil.The third and final approach included in this study approach provides these 

airblast levels based on the maximum airblast values and mean ground responses. 

Likewise, the peak particle velocities (equivalent vibration) of 0.5 in/s, 0.75 in/s and 1.0 

in/s presented in Table 2.1 correspond to a frequency of 10 Hz assuming a simple 

harmonic motion. 

Faramarzi et al. (2014) presented an experimental study of the response of nearby 

structures to the blast-induced ground motions in conjunction with the effect of airblast 

on those structures. The experimental study measured peak particle velocity (PPV) using 

peak vector sum of the three orthogonal velocity components from 22 blast sites along 

with the frequencies, duration of vibrations and air over pressure levels for each of the 

events. The blast-induced ground motions had 49 % of blast frequencies between 1 to 4 

Hz, 45 % of them were between 4 to 14 Hz, 60 % of them were between 14 and 40 Hz 

with no frequency over 40 Hz. Figure 2.3 shows the observed peak particle velocity with 

respect to the frequency at 22 sites overlaid with safe blast levels provided by United 
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States Bureau of Mines (USBM) (Siskind et al. 1980) in terms of PPV and frequency of 

ground motions. Figure 2.3 indicates that PPV exceeded safe airblast levels at some sites. 

With the majority of frequency of blast-induced ground motions well within the 

frequency range of  1-14 Hz and PPV exceeding the safe limits prescribed by USBM, 

some X-cracks and plaster failure were observed in a building near the blast sites that 

exceeded the PPV levels prescribed by USBM. The airblast data obtained from the study 

indicated a maximum noise level of 122 dB which is under the safe limit of 164 dB for 

glass breakage as per USBM. The airblast-induced noise showed indicated frequencies 

less than 15 Hz that could cause rattling of windows in nearby structures. 

Table 2.1: Airblast sound levels for control of structure response based on ground vibration 

response and damage levels (Siskind et al. 1980) 
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Figure 2.3: Peak particle velocity (PPV) with respect to frequency at 22 blast sites  

(Faramarzi et al. 2014) 

 

2.6 Justification 

The experimental study presented in this thesis includes the response of three 

nearby structures to ground motions induced due to the controlled implosion and 

progressive collapse of two 13-story reinforced concrete residential buildings: Cather and 

Pound Halls at the University of Nebraska-Lincoln. The study also initiates a discussion 

on the possible secondary effects of the airblast wave on the structural response of nearby 

structures during the implosion of blast charges in the two 13-story structures. 

Acceleration responses were recorded from the nearby free-field positions and within the 

nearby structures during this demolition event. Likewise, ambient responses were also 

obtained from the free-field positions and within the three adjacent structure both before 

and after the demolition event. While there has been a good amount of research related to 



25 

 

the progressive collapse of structures, there have not been many experimental studies that 

have documented the response of nearby structures to the progressive collapse of 

multistory structures. Similarly, most of the studies regarding the response of nearby 

structures to blast-induced ground motions have been based on the surface or 

underground explosions occurring in the mining industry. A unique combination of the 

effect of the progressive collapse and above-ground implosion of multistory buildings in 

the surrounding structures makes the experimental study included in this thesis a very 

rare pursuit of research.  

The dataset obtained from the adjacent structures during the implosion and 

progressive collapse of Cather and Pound halls can provide a good insight over SSI as 

well as SSSI research. The structural responses observed within each of the adjacent 

structures and the responses observed at free field positions during the demolition can 

help to gain a better understanding of the effect of the soil domain on the structural 

response. Likewise, the experimental study includes a cluster of 3 adjacent structures. 

The study of responses observed in such a cluster of structures to the ground motions 

induced from blast and collapse would be a key step forward in understanding the 

response of structures in an urban environment against the individual response of the 

structure to ground motions.    

To sum up, the study is unique since it encompasses real-time large-scale 

experimentation of the multi-building response to blast and progressive collapse. Further, 

the study is a noble approach towards the understanding of the response of nearby 

structures to blast, collapse and airblast simultaneously. 
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CHAPTER 3 – EXPERIMENTAL DESIGN 

3.1 An Overview 

Two 13-story reinforced concrete residence halls at the University of Nebraska-

Lincoln: Cather (40.819015N, -96.696895E) and Pound (40.818161, -96.696920E) halls 

were demolished with controlled implosion on December 22, 2017. Sacrificial 

accelerometers were installed within the two 13-story structures to study the distribution 

of blast loads and the progressive collapse of these two structures. Likewise, three 

structures adjacent to Cather and Pound halls were also selected to study the response of 

the adjacent structures during the implosion and progressive collapse of the two 13-story 

structures. The three adjacent structures and free field positions near each of these 

adjacent structures were instrumented before, during and after the implosion and collapse 

of the Cather and Pound halls. The study presented in this thesis focuses on the study of 

the response observed at the three adjacent structures during the implosion of Cather and 

Pound halls. In addition to the study of the structural response of these adjacent structures 

during the implosion, the ambient vibration data collected from these adjacent structures 

prior to the implosion have been used in the system identification of the adjacent 

structures. This chapter includes the details of the three adjacent structures and the 

instrumentation setup used to obtain the response data discussed in this thesis.  

3.2 Buildings and Instrumentation 

Three adjacent buildings selected for the study were Neihardt Residential Center 

(40.818587N, -96.697306E), Willa Cather Dining Center (40.818407N, -96.696013E), 
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and Abel Hall (40.821945N, -96.696117E). Each of the three adjacent structures 

alongside with Cather and Pound halls is shown in Figure 3.1. Neihardt Residential 

Center will be referred as Building A, Willa Cather Dining Center will be referred as 

Building B and Abel Hall will be referred as Building C throughout this thesis. A total of 

21 high sensitivity seismic uniaxial piezoelectric accelerometers were used to record the 

response of the above mentioned three adjacent structures before, during and after the 

implosion of Cather and Pound. The general layout of Building A, Building B, Building 

C and Cather and Pound halls is shown in Figure 3.1 and the layout of these buildings 

obtained from Google Earth is presented in Figure 3.3.  

    

(a) (b) (c) (d) 
Figure 3.1: Instrumented Buildings: (a) Cather Hall (right) and Pound Hall (left), (b) 

Neihardt Residential Center, (c) Willa Cather Dining Center, (d) Abel Hall. 

 

Figure 3.2: General layout of instrumented buildings 
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Figure 3.3: General layout of instrumented buildings (Google Earth view) 

 

Building A is a three-story reinforced concrete frame building with unreinforced 

brick masonry exterior walls which was constructed in the fall of 1932- see Figure 3.1b. 

It is located approximately at an offset distance of 73 ft towards the west of Cather and 

Pound.  The height of the building is 44.5 ft including the basement. Typical plan for the 

Building A along with the sensor setup is shown in Figure 3.4a. Two perpendicular 

accelerometers were installed at each of the four corners at the roof of Building A to 

measure the N-S and E-W acceleration as well as to observe if there is any torsional 

response. Figure 3.4a also shows FF. Pos. 1 where three perpendicular accelerometers 

were installed on the ground adjacent to east facade of Building A to record N-S, E-W 

and vertical motions of the ground.   

Building B is a three-story steel framed building with a basement and founded on 

pile foundation. The building was constructed in 2017 and has a total height of 61ft from 
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the basement. The building is located on the east side of the Cather and Pound at an offset 

distance of 130 ft approximately. Two perpendicular accelerometers were installed on the 

third floor of Building B facing N-S and E-W direction and other two perpendicular 

accelerometers were installed on ground floor. A typical plan of the building along with 

details of sensor setup is shown in Figure 3.4b. 

Building C is a thirteen-story reinforced concrete frame building with a total 

height of 136 ft from the basement. The building was constructed in 1963 and it is 

located towards the north of Cather and Pound at an offset distance of 900 ft from the 

northernmost point of the site. Four accelerometers were installed on the roof of Building 

C. The building has two elevator shafts where a pair of N-S and E-W accelerometers 

were installed on roof level of each elevator shaft. A typical plan for the building along 

with the layout of the sensors used is shown in Figure 3.4c also shows FF. Pos. 3 where a 

pair of  two N-S and E-W accelerometers were installed on the ground floor of Building 

C.  
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Figure 3.4: Sensor layout for instrumented adjacent buildings 

 

3.3 Data Acquisition 

Vibration data was collected from the adjacent structures and respective free field 

positions using high sensitivity seismic uniaxial piezoelectric accelerometers before, 

during and after the implosion of Cather and Pound halls. The measurement range of the 

piezoelectric accelerometers is ± 5 g with a frequency range of 0.06 – 450 Hz. The 

vibration data was recorded at a sampling rate of 2048 Hz which was later downsampled 

to 256 Hz to reduce the computational complexity during processing of the vibration 

data. This gives a Nyquist sampling rate of 128 Hz. The frequency range of interest for 

this experimental study is approximately 0.1 Hz to 50 Hz considering the response at free 

field positions and within the adjacent structures. Given that 128 Hz is more than twice 

the required 50 Hz, this sampling rate is sufficient for this study. The ambient vibration 

data obtained from Building A and Building B before the implosion of Cather and Pound 

halls has been used in the system identification of the two adjacent structures. The system 



31 

 

identification of Building A and Building B is detailed in Chapter 4. Similarly, the 

acceleration response data obtained from the three adjacent structures and their respective 

free field positions during the event of blast and collapse has been discussed in time 

domain and frequency domain in Chapter 5 and Chapter 6. The acceleration response 

data used in Chapter 5 and Chapter 6 were filtered using a bandpass Butterworth filter of 

order 3 between 0.1 Hz and 50 Hz. The MATLAB script used for the Butterworth filter is 

shown in Figure 3.5. 

 
Figure 3.5: Filtering using Butterworth filter 

 

Although each of the nearby structures had more than two sensors installed, only 

two horizontal sensors from the most prominent location at the roof level of each 

structure is selected to show a comparison of acceleration responses between these 

structures. Among the sensors selected, the sensors for Building A are located on the 

southeast corner of the roof, the sensors for Building C are located on the southwest 

corner at the roof level, and the sensors for Building B are located on the northwest 

corner at the third-floor level (see Figure 3.4). 
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CHAPTER 4 – SYSTEM IDENTIFICATION OF 

ADJACENT STRUCTURES 

4.1 System Identification: An Overview 

System identification of a structure refers to the estimation of modal parameters 

of a structure based on mathematical models of recorded responses of the structure under 

excitations (Chaudhary et al. 2000). The structural parameters in system identification of 

a structure usually include the modal parameters like frequency, damping ratio, and mode 

shapes which are key in defining the dynamic properties of a structure. In recent years, 

system identification has gained strong attention within structural engineering disciplines 

like structural health monitoring and calibration of the finite element model (FEM). One 

of the prime motivations of system identification of structure is to quantify the dynamic 

characteristics of the structure that could help to assess the current state of the structure 

and evaluate the safety of structure against the excitation due to wind and earthquake 

motions. System identification methods broadly include two methods: input-output and 

output-only for the estimation of modal parameters. Input-output methods are 

accompanied by forced vibration tests in a structure where input excitation forces are 

measured simultaneously with the recorded responses within the structure. Forced 

vibration tests in system identification of structures include the development of frequency 

response function (FRF) from the output acceleration responses relating to the measured 

input-excitation forces in the structure. While forced vibration tests (with large eccentric 

mass shakers) can be performed for input-output measurements, the input measurements 

may not always accurately represent the excitation forces; especially in complex 
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structures (Ren et al. 2004). This has given rise to output-only system identification 

techniques where modal parameters are based only on the measured output response of a 

structure. Output-only modal analysis is often referred as operational modal analysis 

(Peeters and De Roeck 2001). Operational modal analysis technique relies on the 

measured output responses of structures in its operating condition through ambient 

vibration testing. Ambient vibration tests refer to the measurement of the response of a 

structure to an ambient source of excitations like wind and live loads.  

4.2 Examples of Case Studies using Ambient Vibration Tests 

 Ambient vibration testing is a widely used output-only dynamic testing method to 

reliably estimate the modal parameters of several structures. The ambient vibration tests 

are relatively inexpensive compared to forced vibration tests and allow the testing of full-

scale structures without interrupting its service condition. The simplicity of the 

instrument setup, which usually includes only lightweight instruments make the ambient 

vibration testing a convenient testing method for system  identification of structures. The 

ambient vibration tests have been conveniently used in the system identification of large 

structures like Golden Gate Bridge in San Francisco, California (Abdel‐Ghaffar and 

Scanlan 1985) to determine the modal parameters (effective damping, mode shapes, and 

frequencies). Likewise, Ren et al. (2004) evaluated Roebling suspension bridge over the 

Ohio River using ambient field testing under natural excitation to estimate the dynamic 

properties of the bridge. The dynamic properties of the bridge were used to update and 

modify the finite-element model (FEM) of the bridge. Ren et al. (2004) have also shown 

a comparative study between the experimental modal analysis using the ambient 
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vibration testing and analytical modal analysis on a steel arch bridge located in 

Tennessee. Further, ambient vibration testing is also widely used to obtain the dynamic 

properties of buildings. Jaishi et al. (2003) used an ambient vibration method under wind-

induced excitation to obtain the real dynamic properties of three multi-tiered masonry 

temples located in Nepal. The estimated dynamic properties were used to validate the 

finite element models of those temples. Some other examples of the ambient vibration 

testing used in system identification of structures are Fatih Sultan Mehmet (Second 

Bosporus) suspension bridge (Brownjohn et al. 1992), Kap Shui Mun cable-stayed bridge 

(Chang et al. 2001), multi-story office towers (Brownjohn 2002).  

4.3 Instrumentation and Data Processing 

Ambient vibration data were obtained from two adjacent structures: Building A 

and Building B prior to the event of implosion and collapse of Cather and Pound Halls. 

The instrumentation setup that was used to record the response of adjacent structures to 

blast and collapse was also used to obtain the ambient vibration of the adjacent structures 

before the blast and collapse of Cather and Pound halls. The details regarding the sensor 

setup that was used in this experimental study are discussed in Section 3.2.   

The obtained ambient vibration data for Building A and Building B were pre-

processed prior to the system identification of these buildings. First, a Hampel filter was 

applied to the acceleration response data to remove the outliers due to voltage spikes. The 

response data was filtered with a bandpass filter using the FIR filter in MATLAB. The 

response data for Building A was filtered within a frequency band between 3.5 Hz and 10 

Hz. The MATLAB script used to apply the FIR filter to the ambient vibration data of 
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Building A is shown in Figure 4.1. Likewise, the response data for Building B was 

filtered between a frequency of 0.5 Hz and 6 Hz using the same approach as used for 

filtering of ambient vibration data for Building A. The limits of the bandpass filter for 

Building A and Building B were selected to highlight the first two modes of each 

structure based on the preliminary analysis of the ambient vibration data in the frequency 

domain. The total duration of ambient vibration data used in the system identification of 

Building A and Building B was 9.8 hours and 4.9 hours respectively. The durations of 

ambient vibration data for each of these buildings were selected based on the resolution 

of the peaks of interest and the signal to noise ratio in the frequency domain of the 

ambient vibration data. A longer duration of ambient vibration data was used for Building 

A since the preliminary analysis of ambient vibration data in frequency domain indicated 

a very low signal to noise ratio.   

The number of sensors at the roof level available for system identification of 

Building B was limited to two. The frequency domain of the ambient vibration response 

for Building B along the E-W and N-S direction indicated clear peaks in each direction. 

Hence, peak-picking method was used which was adequate to obtain the first two natural 

frequencies of Building B represented by the first peak in frequency domain along the E-

W and N-S direction. However, a Curve Fitted Frequency Domain Decomposition 

(CFDD) was employed in the system identification of Building A since the ambient 

vibration data had a very low signal to noise ratio and the frequency domain of the 

ambient vibration data did not yielded any clear peaks. The system identification methods 

used to estimate the natural frequencies of Building A and Building B are further 

described in Section 4.4 and Section 4.5. 
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Figure 4.1: Application of bandpass filter to ambient vibration data using FIR filter 

 

4.4 System Identification: Building A 

The natural frequencies of Building A were estimated using the frequency domain 

technique within Operational Modal Analysis known as Curve Fitted Frequency Domain 

Decomposition (OMA-CFDD). As discussed in the earlier section, OMA is an output-

only system identification technique which allows the estimation of modal parameters of 

the structure while the structure is in its operation. OMA is a system identification 

technique that relies on the measurement of the output response of a structure assuming 

that the input ambient excitation is stochastic and often technically referred as white 

noise (Peeters and De Roeck 2001). Peeters and De Roeck (2001) have presented a 

review of frequency domain techniques and time domain techniques that can be used to 

estimate modal parameters through OMA.  

The ambient vibration response data obtained for Building A indicated a very 

minimum level of ambient excitation such that the signal-to-noise ratio was very low. 

The response data contained significant noise contamination. OMA-FDD allows the 

estimation of modal frequencies with higher accuracy even if the output response is 
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highly contaminated with noise (Brincker et al. 2000). Brincker et al. (2000) includes the 

detail on OMA-FDD technique where the spectral density function matrix is divided into 

auto spectral density functions using Singular Value Decomposition (SVD) such that 

each auto spectral density function is a single-degree of freedom system representing an 

individual mode. The individual modes are then manually picked in the frequency 

domain to obtain the modal frequencies and the mode shapes. In OMA-CFDD technique, 

the auto spectral density function is curve fitted with an SDOF curve, and the mode shape 

is estimated using the Modal Assurance Criterion (MAC) discussed under OMA-EFDD 

(Operational Modal Analysis-Enhanced Frequency Domain Decomposition) (Jacobsen et 

al. 2007). The first two modal frequencies obtained for Building A using OMA-CFDD is 

summarized in Table 4.1. 

Table 4.1: System identification of Building A (OMA-CFDD) 

Modes 
Frequency 

[Hz] 

Complexity 

[%] 
Motion 

Mode 1 4.074 0.398 Translation predominantly E-W 

Mode 2 4.892 2.513 Translation predominantly N-S 

 

The complexity percentage indicated in Table 4.1 represents whether the mode 

shape is a real or imaginary. 0 % complexity refers to a Real Mode, and 100 % refers to 

an Imaginary Mode. Figure 4.2 shows the singular values of spectral densities of the 

ambient vibration response of Building A along with the modal frequencies obtained 

from OMA-CFDD. The three curves in Figure 4.2 indicate spectra of singular values of 

output acceleration measurements from three sensors out of four sensors used for OMA-

CFDD in modal analysis software Artemis Modal (ARTeMIS 2019). Only 3 singular 

values have been shown in Figure 4.2 since three sensors can fully explain the modal 
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identification for the shown frequency range. The curve fitted auto spectral density 

function for the two modes obtained using a modal analysis software ARTeMIS Modal is 

shown in Figure A.1 and Figure A.2 in Appendix A. 

 
Figure 4.2: System identification of Building A: OMA-CFDD (*SVD-Single Value 

Decomposition) 

Building A has an I shaped configuration, and a preliminary operational modal 

analysis of the I-shaped configuration indicated that each flange of I-shape of Building A 

behaved independently of each other. The modal frequencies shown in Table 4.1 are 

based on the ambient vibration data obtained from four sensors located on the east side of 

Building A. A review of the floor plans provided for Building A also showed evidence 

that the flanges and web of I-shaped configuration of Building A were not structurally 

interconnected. Hence the modal frequencies presented in Table 4.1 represent only the 

natural frequencies of the east flange of Building A. 
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4.5 System Identification: Building B 

The system identification of Building B was done using the ambient vibration 

data obtained from two sensors located on its third floor. Peak-picking method in 

frequency domain was used to estimate the modal frequencies of Building B. Peak-

picking is a frequency-domain technique within OMA and one of the simplest modal 

analysis techniques for ambient vibration tests (Peeters and De Roeck 2001).  With the 

number of available sensors for system identification being limited to just two, the 

estimation of the modal frequencies along two directions (N-S and E-W) relied on the 

peaks observed in the averaged power spectral density plots. The power spectral density 

(Bendat and Piersol 1993) plots were generated for each window length of 60 s of 

acceleration response and then averaged to obtain an averaged power spectral density. 

The peak-picking in the obtained power spectral density is shown in Figure 4.3. The 

estimated modal frequencies for Building B are summarized in Table 4.2. 

 
Figure 4.3: System identification of Building B using peak-picking 
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Table 4.2: System identification of Building B using peak-picking 

Mode Frequency 

[Hz] Direction 

Mode 1 2.678 E-W 

Mode 2 2.755 N-S 

 

4.6 Application to this research 

The natural frequencies obtained for Building A and Building B through system 

identification techniques have been used to calibrate the finite element model of these 

two buildings presented in Chapter 7. The obtained natural frequencies would also be 

used to draw key insights over the response of Building A and Building B to the blast and 

collapse sequences. Further, this would help to differentiate the nature of observed 

structural responses to blast-induced ground motions and collapse-induced ground 

motions. An understanding of the natural frequencies of a structure would also be key to 

distinguish any observed higher modal response during the event of the blast and 

collapse. The significance of the estimated modal frequencies of Building A and Building 

B is described within the discussions presented in Chapter 6 and Chapter 7. 
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CHAPTER 5 – EXPERIMENTAL OBSERVATIONS: 

ADJACENT STRUCTURES 

5.1 An Overview 

Response data obtained from the free field positions and from within the adjacent 

structures during the event of implosion and collapse of Cather and Pound Halls are 

presented in the time domain and frequency domain in this chapter. Key ground motion 

parameters of the response data obtained from free field positions were calculated to 

study the variation of ground motions at three free field positions that are discussed in 

Chapter 3. Likewise, a comparison between the response at free field position due to the 

blast and collapse sequence is presented to understand as well as differentiate the effects 

of blast and collapse-induced ground motions. The detailed instrumentation setup used to 

collect the response data is presented in Chapter 3. The response data obtained before and 

after the event of the implosion is primarily used in the interpretation of responses in 

Chapter 6 and for the calibration of numerical models of the adjacent structures which is 

detailed in Chapter 7.  

5.2 Response Data 

This section aims to characterize the response data collected during the implosion 

and collapse in terms of the key ground motion parameters as well as present the 

acceleration response recorded at three adjacent structures and their respective free field 

positions. The ground motion parameters used here include Peak Ground Acceleration 
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(PGA) and 5-95% Significant Duration based on Arias Intensity (Duration5-95) (Bommer 

and Pereira 1999). Each of the acceleration time history at three free field positions show 

a distinct acceleration response to the blast followed by a distinct acceleration response to 

the collapse with a well-defined time gap of approximately 1.3 s in between the two 

distinct responses. The correspondence of these two distinct response sequences was 

verified using the synchronized video and audio data of the implosion obtained during 

this experiment.  

Table 5.1  gives the PGA and Duration5-95 for the total acceleration response at 

three free field positions as well as uses the same ground motion parameters to define the 

acceleration response sequences for blast and collapse. The PGA at three free field 

positions shows a significant variation depending upon the direction and location of the 

sensor as well as depending upon whether the response corresponds to the blast or 

collapse sequence of the response data. At FF. Pos. 1, PGA ranges from 0.047 g in the E-

W direction to 0.077 g in the vertical direction. FF. Pos. 1 also recorded the highest 

acceleration response among all the free field positions which is reasonable to the fact 

that FF. Pos. 1 is at closest proximity to the demolition site.  Likewise, at FF. Pos. 2, N-S 

sensor shows a PGA of 0.018 g and the E-W sensor shows a PGA of 0.008 g. Provided 

that FF. Pos. 2 is further from the demolition site when compared to FF. Pos. 1, the 

observed response at these two free field positions indicate an exponential decay of the 

motion’s amplitude with respect to the distance. Likewise, FF. Pos. 3 being furthest from 

the demolition site shows noticeably minimal acceleration response among all the free 

field positions. Both E-W sensor and N-S sensor at FF. Pos. 2 show PGAs of the order of 

0.002 g. Further looking at Table 5.1, FF. Pos. 1 being closest to the demolition site has 
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the least significant duration and FF. Pos. 3 being furthest from the demolition site has 

the greatest significant duration. FF. Pos. 3 lies on the ground floor of a 13-story structure 

and the highest significant duration at FF. Pos. 3 can be attributed to the longer period of 

excitation of the 13-story structure. The response within this adjacent structure is further 

detailed in the following sections. 

Table 5.1: Peak ground acceleration (PGA) and significant duration based on Arias 

Intensity (Duration5-95) at three free-field positions 

  Ground Motion Parameters 

Position Direction 

PGA [g] Duration5-95 [s] 

Blast Collapse Total Blast Collapse Total 

FF. Pos. 1 

North 0.045 0.061 0.061 3.163 4.906 11.505 

East 0.026 0.047 0.047 3.537 5.090 11.560 

Vertical 0.024 0.077 0.077 3.354 5.483 6.155 

FF Pos. 2 

North 0.014 0.018 0.018 3.920 4.688 10.095 

East 0.008 0.013 0.013 4.235 5.179 10.300 

FF. Pos. 3 

North 0.001 0.002 0.002 5.935 7.320 7.730 

East 0.001 0.002 0.002 5.265 6.185 6.540 

 

 

Figure 5.1 shows the acceleration time histories for three transverse sensors at FF. 

Pos. 1. Similarly, Figure 5.1 shows a comparison of acceleration time histories for E-W 

sensor and N-S sensor at all three free field positions. A finite time separation between the 

blast and collapse response is distinct in all the time histories shown in  
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Figure 5.1 and Figure 5.2. This time separation after the blast response and before 

the onset of the collapse response can be related to the redistribution of the loads within 

the reinforced concrete structure due to the failure of individual columns within the 

structure. When comparing the blast response and collapse response for each of the time 

histories at three free field positions, it is distinctive that the collapse response dominates 

the overall acceleration response in terms of the PGA as well as the significant duration. 

 
Figure 5.1: Acceleration time history – FF. Pos. 1 

 

The acceleration responses that were recorded within the three adjacent structures 

are shown in Figure 5.3. Both Building A and Building B show much higher acceleration 

response compared to the minimal acceleration response recorded at Building B. The 

higher responses for Building A and Building B is reasonable since both of these 

buildings are located very near to the demolition site. While E-W sensors for Building A 

and Building B show a comparable peak acceleration of 0.073 g and 0.079 g respectively, 

the E-W sensor for Building C shows a much lower peak of 0.004 g. However, Building 

A and Building B show a significant difference in acceleration response in N-S direction 
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with peak acceleration of 0.080 g in N-S sensor of Building A and a peak acceleration of 

0.022 g in N-S sensor of Building B. Such variation of peak responses between Building 

A and Building B could be attributed to the difference between two structures in terms of 

geometric configuration as well as the materials used in the construction of these two 

buildings. Building C being the furthest from the demolition site shows an acceleration 

response of noticeably longer duration which further justifies the statement that the 

higher significant duration of FF. Pos. 3 can be attributed to the structural response of 

Building C.  

 

Figure 5.2: Acceleration time histories at three free-field positions (Note: Y-axis of FF. Pos. 

3 is plotted to a different scale) 
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Figure 5.3: Acceleration time histories for sensors at roof level in Building A, Building B 

and Building C (Note: Y-axis of Building C is plotted to a different scale) 

 

5.3 Analysis of Response Data 

The response data presented in Section 5.2 is analyzed in the frequency domain 

using elastic response spectrum in this section. Spectral acceleration values are computed 

in the elastic response spectrum for a range of natural periods of interest.  Spectral 

acceleration refers to the peak absolute acceleration of a damped single-degree of 

freedom system with a certain natural period, when subjected to ground motions. Spectral 

acceleration is equal to peak ground acceleration for a natural period of zero.  An elastic 

response spectrum has been prepared for the acceleration responses obtained from the 

free-field and from within the building, where a damping value of 5 percent of the critical 

damping is assumed.  
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Figure 5.4 shows spectral accelerations (Sa) for three transverse sensors at FF. 

Pos. 1 where the vertical sensor has the highest value of peak Sa (0.24 g). Likewise, E-W 

sensor shows a peak Sa of 0.19 g and N-S sensor shows a peak Sa of 0.18 g. The higher 

spectral acceleration for the vertical sensor indicates a higher magnitude of vertical 

motion due to the collapse of the buildings following the blast. The elastic response 

spectrum for vertical sensor at FF. Pos. 1 also shows a plateau of Sa peaks within the 

period of 0.02 s – 0.03 s. Whereas, the Sa peaks for E-W and N-S sensors are 

concentrated in the lower period region less than 0.2 s. A key observation in these 

response spectrums is a pulse-like behavior where a pulse-like response is observed 

around the period of 0.5 s for the vertical sensor and a similar pulse-like response is 

observed around the period of 0.4 s for the N-S sensor. The video footage obtained 

during the demolition and collapse of Cather and Pound shows that both the buildings 

exhibit a progressive collapse between the floors having uniform heights with the overall 

collapse leaning in N-S direction. The overall progressive collapse of two building being 

primarily oriented in N-S direction further corroborates the pulse-like behavior observed 

in N-S and vertical sensor in Figure 5.4. 

Figure 5.5 shows the comparison of elastic response spectrums at three free field 

positions. FF. Pos. 1 shows a higher spectral acceleration response among all three free 

field positions since FF. Pos. 1 is closest to the demolition site. As expected, FF. Pos. 3 

being the furthest free field position from the demolition site shows the least spectral 

acceleration of all. Likewise, FF. Pos. 1 and FF. Pos. 2 have peaks dominating over 

higher frequency range when compared to the spectral acceleration peaks that spread out 

within a comparatively lower frequency range for FF. Pos. 3. The high-frequency 
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response of the FF. Pos. 1 and FF. Pos. 2 could be attributed to the fact that these sites are 

nearer to the demolition site. Likewise, since FF. Pos. 3 is tied to a tall structure, the 

overall structural response must have dominated the peak responses at FF. Pos. 3 

resulting in the peaks at lower frequency range. 

Figure 5.6 shows the spectral acceleration responses along N-S and E-W direction 

at the roof level of Building A, Building B and Building C. As expected, the peak 

spectral acceleration responses at the roof of all three buildings are higher than the peak 

spectral responses at their respective free field positions. The peaks of spectral 

acceleration responses at each building represent the natural period at which the building 

was being  excited as a result of the blast and collapse. Among the three buildings, 

Building C shows a distinct response along E-W direction with a dominant period of 

around 0.3 s which could be due to the response of this 13-story building being 

dominated by the excitation of one of its higher modes. The variability of spectral 

acceleration response between three buildings can be attributed towards the distance of 

the building from the demolition site, geometric configuration and system properties of 

each building and the location of sensors within the building. 
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Figure 5.4: Spectral acceleration at FF. Pos. 1 (ξ= 5 % critical) 

 

 
Figure 5.5: Spectral acceleration of the three free-field positions ((ξ= 5 % critical) (Note: Sa 

for FF. Pos. 3 is scaled by factor of 10) 
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Figure 5.6: Spectral acceleration of the roof level sensors of the adjacent buildings ((ξ= 5 % 

critical) (Note: Sa for Building C is scaled by a factor of 10) 

 

5.5 Response Data: Blast vs. Collapse Sequence 

The clear distinction between the response towards the blast and the collapse 

sequence of Cather and Pound Halls is a prominent feature of this experimental study. 

This section aims to break down the total acceleration response at FF. Pos. 1 due to blast 

and collapse and analyze the response observed in terms of the elastic response spectrum. 

A typical acceleration time history shown in  

Figure 5.1 shows an initial response to the blast loads that was applied to the 

individual columns of Cather and Pound which is then followed by a time gap of 

approximately 1.3 which can be attributed towards the time taken for the redistribution of 

the loads within Cather and Pound before the initiation of the collapse sequence. The 

response towards the collapse sequence is distinct in all the acceleration time histories of 

Figure 5.1 to Figure 5.3. 
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Table 5.1 shows a comparison of key ground motion parameters between the blast 

and collapse sequence at three free field positions. It is evident that the collapse sequence 

dominates the total response in terms of PGA as well as the significant duration at all 

three free field positions. At FF. Pos. 1, the vertical sensor shows the highest PGA of 

0.077 g when considering the collapse sequence only which can be attributed to the 

dominant vertical motion due to the progressive collapse of Cather and Pound Halls. 

However, when considering the blast sequence at FF. Pos. 1, the highest PGA of 0.045 g 

is observed at N-S sensor which indicates a higher intensity of blast load distributed 

along N-S direction. Likewise, the significant duration at all three free field positions is 

higher for collapse sequence when compared to the blast sequence. This can be supported 

with the observation of a typical time history in  

Figure 5.1 where the total duration of response to collapse sequence is higher than 

the total duration of response to blast sequence. Further, FF. Pos. 3 shows a higher 

significant duration than all other free field positions for both blast and the collapse 

sequence which relates back to our previous discussion of FF. Pos. 3 being tied to a 13-

story structure such that the response at FF. Pos. 3 is saturated by the response of its 

structure. The higher significant duration at FF. Pos. 3 is also evident in the spectral 

acceleration shown in Figure 5.5. 

The comparison between the blast and collapse sequence is further demonstrated 

in Figure 5.7 which shows spectral accelerations for both blast and collapse sequence at 

FF. Pos. 1. The spectral acceleration for the blast sequence at FF. Pos. 1 shows very high-

frequency Sa peaks located within the period of less than 0.1 s. However, the spectral 

acceleration for the collapse sequence shows a plateau of peaks which extend up to a 
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period of 0.4 s typically observed in vertical sensor at FF. Pos. 1. Likewise, the spectral 

acceleration response spectrum for the collapse sequence also shows the pulse-like 

behavior within the period of 0.3s and 0.6s. This further supports the previous discussion 

that the pulse-like behavior is a contribution of the collapse sequence. 

 

 
Figure 5.7: Spectral acceleration at FF. Pos. 1 (ξ= 5 % critical) 

 

5.6 Conclusions 

Key observations made from the response data obtained from the three adjacent 

structures and the conclusions made from the analysis of the response data are 

summarized as follows: 

1. The collapse sequence of the demolition dominates the responses recorded within 

three adjacent structures and their respective free field positions. 
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2. A pulse-like behavior around the period of 0.4 s and 0.5 s can be observed 

vertically as well as horizontally (N-S) in the elastic response spectrum at FF. 

Pos. 1. This can be attributed towards the progressive collapse of the Cather and 

Pound halls being predominantly oriented along N-S direction. 

3. A very minimal response is observed at FF. Pos. 3 when compared to FF. Pos. 1 

and FF. Pos. 2. This indicates an exponential decay of the blast and collapse-

induced ground motion’s amplitude with respect to the distance. 

4. Although Building C is furthest from the demolition site, the building shows a 

relatively longer period of response when compared to Building A and Building 

B.  

5. Blast-induced ground-motions show a very high-frequency content, but a very 

low amplitude compared to relatively lower frequency content and higher 

amplitude of collapse-induced ground motions. 
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CHAPTER 6 – INPUT-OUTPUT STUDY: BLAST VS. 

COLLAPSE SEQUENCE 

6.1 An Overview 

This chapter presents a detailed comparison between the ground motions due to 

blast and collapse sequences and the response of the buildings to these ground motions 

through an input-output study. The key differences between the blast and collapse-

induced ground motions were discussed in terms of time histories, elastic response 

spectra, and scalar ground motion parameters in Chapter 5. While the blast and collapse-

induced ground motions have different durations, the elastic response spectra of the 

ground motion at FF. Pos. 1 (closest to the implosion site and Building A) shown in 

Figure 6.1 indicate that these two sequences also vary in terms of their frequency content. 

Since the total response of the adjacent structures during the implosion and progressive 

collapse is dominated by the collapse sequence in terms of amplitude, a separate study of 

the structural response to both the blast and collapse sequences is presented to better 

understand and differentiate the response of the adjacent structures towards these two 

different ground motions. In addition, an input-output study of the response of the 

adjacent structures to the blast and collapse sequences can elucidate if sources other than 

the ground motion contributed to the building’s response (e.g., air wave from the blast).  

The input-output study presented in this chapter looks specifically at the spectral 

acceleration amplification observed at the roof level of both Building A and Building B. 

Building C is not included in this study due to the relatively low amplitude of response, 
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in comparison to the other two buildings which were in much closer proximity to the 

implosion. In concert with the system identification results for both buildings, the 

difference between the elastic response spectra at the roof of the building and at the 

ground will be indicative of the influence of the air wave on the structure’s response. 

6.2 Ground Motions: Blast vs. Collapse Sequence 

The key differences in the characteristics of the ground motions at the site nearest 

to the implosion (FF. Pos. 1) due to both the blast and collapse sequences is presented in 

Section 5.5. As part of that presentation, elastic response spectra were generated to 

understand the primary frequency content of both the blast and collapse sequences. It can 

be seen that the blast sequence predominantly included frequency content above 10 Hz 

(0.1 s); however, the ground motion due to the collapse sequence included a much 

broader frequency range with an approximately lower limit of 2 Hz (0.5 s).  

Figure 6.1 shows the elastic response spectra for both the blast and collapse 

sequences in the N-S and E-W directions for the ground motion at FF. Pos. 2 (ground 

level of Building B). These spectra evidence similar frequency content to that observed at 

FF. Pos. 1 (just outside Building A and nearest to the implosion site), including higher 

frequency content for the blast sequence (lower limit of 10 Hz (0.1 s) and broader 

frequency content for the collapse sequence (lower limit of 2 Hz (0.5 s)). The collapse 

sequence also shows evidence of pulse-like behavior around 0.45 s in the N-S direction 

for both free field positions. This makes sense considering the pattern of the progressive 

collapse, which consisted of sequential impacts due to regularly-spaced floors with the 

collapse progressing in the N-S direction.   
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Figure 6.1: Elastic response spectrum at FF. Pos. 1 and FF. Pos. 2: Blast vs. Collapse         

(ξ= 5 % critical)  

 

6.3 Input-Output Study: Building A 

Building A is a very key site to study the effect of the airblast wave due to its 

proximity to the implosion. Moreover, FF. Pos. 1 was installed in the free field and not 

attached within Building A, which leads to more realistic information regarding the blast 

and collapse-induced ground motions. This section includes a comparison of the ground 
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motion with the response of Building A, followed by a study of the spectral acceleration 

amplification observed at the roof of Building A. The overall goal of the study is to gain 

an understanding of the causality of the ground motion to the structures’ responses. If the 

frequency content evidenced at the roof level of the buildings does not agree with the 

input ground motion in light of the system identification results, alternative excitation 

sources such as the air wave could be significant.    

6.3.1 Building Response vs. Ground Motion 

This section forms a base of discussion for spectral amplification observed at the 

roof of Building A that is discussed in section 5.3.2.Figure 6.3  shows a comparison of 

the elastic response spectrum for the motion recorded at the roof level of Building A and 

for the ground motion recorded just outside this structure (FF. Pos. 1) for the blast 

sequence only in both horizontal directions. The elastic response spectrums for the 

ground sensor along N-S and E-W direction as shown in Figure 6.3 show that the ground 

response was dominated by short-period.  

While the E-W sensor on the roof of Building A shows an amplified response in 

the high-frequency region (below 0.1 s), the N-S sensor shows a lower spectral 

acceleration (attenuation) in the same high-frequency region compared to that of the 

ground in the same direction. At very high frequencies of excitation relative to the 

building’s natural frequency, the building is not anticipated to evidence substantial 

response based on fundamental structural dynamics. In addition, the high frequency blast-

induced ground motions originate from a point-source and travel towards the building. 



58 

 

Therefore, the entire structure may not be subjected to the same ground motion, which 

would be a function of the excitation wavelength.  

The shear wave velocity in the upper 30 m of the soil is 300 m/s (USGS 2019),  

Using, 

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 (𝑉) = 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑦 (𝑓) 𝑥 𝑊𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ (𝜆) 

For a half cycle excitation of a 50 Hz signal, 

𝑓 = 50 𝐻𝑧 

𝑉 = 300 𝑚/𝑠 

Implies, 

𝜆 =
𝑉

𝑓
𝑥

1

2
=  

300 𝑚/𝑠

50 𝐻𝑧
𝑥

1

2
= 3 𝑚 

This implies, 

Wavelength of 10 Hz signal = 15 m 

Wavelength of 5 Hz signal = 30 m 

An interpretation of the half cycle wavelength  required to uniformly excite the 

structure at its base is presented in Figure 6.2. This indicates that the half-cycle 

wavelength of the structure should be at least equal to or greater than the width of the 

structure in order to uniformly excite the structure at its base on both ends (A and B). 

While the blast will generate compressional, shear, and surface waves, this analysis 

considers only the shear waves as they are the primary contributor to ground motion and 
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building shaking.  Given that the width of the building is 30 m, the frequency of the 

excitation should be as low as 5 Hz in order to uniformly excite the building. Likewise, 

using the same above-mentioned relationship of velocity, frequency and wavelength, it 

can be obtained that the frequencies above 20 Hz (0.05 s) would not uniformly excite the 

structure and a relatively low structural response is expected. This is clearly identified in 

the short period range of the N-S spectra. Similar findings were found by Dowding et al. 

(2018), in which the effect of mining blasts was evaluated against nearby structures. On 

the other hand, the E-W sensor on the roof at Building A shows an amplified response in 

the high frequency or short-period region. This likely indicates that the building is 

responding not only to the ground motion but also to the air wave from the blast.  

 

 
Figure 6.2: Half cycle wavelength and width of structure 

 

While the building responded quite differently in the N-S and E-W directions in 

the high-frequency range, the building evidenced an amplified response in the periods 
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greater than 0.1 s in both directions. However, the response spectra do not show 

significant amplification in the vicinity of the natural periods (0.20 s and 0.24 s). This is 

likely simply related to the lack of significant excitation in that frequency range. This is 

studied further through amplification spectra in the next section. 

 
Figure 6.3: Elastic response spectrum at Building A and FF. Pos. 1 for blast sequence (ξ= 5 

% critical) 

 

Figure 6.4 shows the comparison between the elastic response spectrum for the 

collapse induced ground motions at FF. Pos. 1 and the structural response observed on 

the roof of Building A during the collapse sequence. The system identification for 

Building A indicates a fundamental period of 0.25 s along E-W direction and a natural 

period of 0.20 s along N-S direction. The elastic response spectrum on the roof along 

both directions is dominated with peaks near the natural period of the structure in that 

direction. The E-W sensor shows two prominent spectral peaks at the period of 0.24 s and 

0.15 s. While the spectral peak at 0.24 s for E-W sensor is indicative of the structure 

responding at its natural period of the vibration along E-W direction, the spectral peak at 
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0.15 s is indicative of the structure responding in a higher mode along E-W direction. 

Likewise, the peak spectral acceleration for N-S sensor is located at the natural period of 

0.20 s which is a clear indication of the structure responding in its natural period of 

vibration along N-S direction.  The lower frequency content of the collapse-induced 

ground motion is also evident on Figure 6.4 where a notable spectral acceleration 

response can be observed up to a period of 0.4 s. 

 
Figure 6.4: Elastic response spectrum at Building A and FF. Pos. 1 for collapse sequence (ξ= 

5 % critical) 

 

6.3.2 Amplification of Ground Motion: Blast vs. Collapse 

The spectral acceleration amplification observed in the roof of Building A with 

respect to the blast and collapse induced ground motions at FF. Pos. 1 is shown in Figure 

6.5. The amplification is computed simply as the ratio of the spectral acceleration at the 

roof to that at the ground. It is noted that both the ground motion and the structural 

response due to the blast sequence included very low values of spectral acceleration in 

the period range above 0.5 s, and these amplification values should not be considered 
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significant. The spectral amplification for the blast sequence along the E-W direction 

shows a peak with amplitude 4 at a period of 0.115 s which refers to a frequency of 8.683 

Hz. However, no clear peak can be noted in the spectral amplification along N-S 

direction of the structure for the blast sequence. Building A is oriented such that the east 

façade is directly exposed to the implosion, while the north and south sides are not 

exposed to the implosion. The higher exposure of Building A on the east side and the 

unique higher order response of the building along E-W direction for the blast sequence 

shows a strong indication towards the possible dominant effect of the airblast wave on the 

response of the structure along the E-W direction. 

 
Figure 6.5: Spectral amplification at the roof of Building A (ξ= 5 % critical) 

 

A structure usually shows a high amplification towards ground motion when the 

structure responds closer to its natural period of vibration. In Figure 6.5, the spectral 

amplification for the E-W sensor at Building A for the collapse sequence shows a major 

peak of the order of 5.3 at the period of 0.25 s which is also the natural period of the 

building along E-W direction. Likewise, the spectral acceleration amplification along N-S 
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direction shows a dominant spectral amplification of the order of 5.5 at 0.20 s which is 

the natural period of Building A along N-S direction. Similar to the case for the blast 

sequence, the spectral acceleration for the collapse sequence in both directions had very 

low values in the period region greater than approximately 0.5 s. Therefore, the 

fluctuation and peaks in this region are not considered significant.  

6.4 Input-Output Study: Building B 

Building B is the second closest adjacent structure in terms of the proximity to the 

demolition site. Although the free field position for Building B was not attached to the 

real ground, an input-output study of this building can provide key insights over the 

effect of the airblast wave in the overall structural response of Building B during the blast 

sequence. A comparative study of the response at the FF. Pos. 2 and the response at the 

roof of Building B is presented in terms of the elastic response spectrum for both blast 

and collapse sequence of the response. Likewise, key observations are discussed based on 

the spectral amplification observed within Building B with respect to FF. Pos. 2 during 

sequences of blast and collapse. 

6.4.1 Response at Structure vs. Response at Ground: Blast vs. Collapse 

Figure 6.6 compares the spectral acceleration at the roof of Building B with the 

spectral acceleration at FF. Pos. 2 due to the blast sequence. The response to the blast 

sequence shows a similar trend as observed in the FF. Pos. 1 and at the roof of Building 

A. Particularly, the E-W sensor at the roof of Building B shows an amplified response 

when compared to the response at the FF. Pos. 2 along the E-W direction during the blast 



64 

 

sequence. The elastic response spectrum for the E-W sensor on the roof of Building B 

during the blast sequence shows a dominant response at the period of 0.125 s and another 

prominent spectral response at a very low period of 0.03 s. These two periods refer to the 

frequency of 8 Hz and 33.33 Hz respectively. The amplified response of the structure at a 

very high frequency is unique for a structure responding to blast-induced ground motions 

with high frequency. This unique response of the building along E-W direction was also 

observed in the response of Building A to the blast sequence. The fact that Building B 

also has very high exposure of its west façade towards the demolition site shows a strong 

indication of the structure predominantly responding along E-W direction to the airblast 

wave in constructive interference with the response to the blast-induced ground motion 

along the E-W direction. 

On the contrary, Figure 6.6 shows an attenuated response at the roof of Building 

B along the N-S direction for the blast sequence. While the elastic response spectrum 

along N-S direction at FF. Pos. 2 shows a spectral peak of 0.069 g at a very high 

frequency of 50 Hz, the roof sensor along N-S direction shows a de-amplified spectral 

peak of 0.029 g at frequency of 7.8 Hz.  The de-amplified response along N-S direction 

can be related to the discussion made in the previous section for Building A comparing 

the wavelength of the motion to the footprint dimensions of the building. In this case, the 

width of Building B is approximately 36 m in the N-S direction. Similarly, assuming a 

shear wave velocity of 300 m/s, frequency content greater than 16.7 Hz (0.06 s) would 

not uniformly excite the base of the structure. Therefore, it implies that the building will 

not respond significantly in the short-period range. This behavior strongly correlates with 

the attenuated structural response of Building B along N-S direction to the blast 
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sequence. Moreover, this further corroborates that the unique amplified response of 

Building A and Building B to blast sequence at high-frequency region is likely due to 

secondary effects other than the blast-induced ground motion, such as the blast-induced 

air wave.  

 
Figure 6.6: Elastic response spectrum at Building B and FF. Pos. 2 for blast sequence (ξ= 5 

% critical) 

 

Figure 6.7 shows a comparison of the elastic response spectrum at the roof of 

Building B and at FF. Pos. 2 along N-S and E-W directions for the collapse sequence. It 

is evident from the figure that the response to collapse sequence at the FF. Pos. 2 and at 

the roof of Building B contains a much broader frequency content with frequency as low 

as 2 Hz (0.5 s) when compared with the respective responses to the blast sequence. The 

E-W sensor at the roof of Building B shows an amplified response with respect to FF. 

Pos. 2 with major peaks at periods of 0.17 s and 0.11 s, which indicates a higher order 

structural response for a structure with a fundamental natural period of 0.384 s along E-

W direction. The N-S sensor at the roof of Building B shows much lower spectral peaks 
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than E-W sensor for the collapse sequence. In the short-period range, there is effectively 

no amplification of the ground motion, as expected given that the natural period is 

approximately 0.4 s. However, it is evident that the natural frequency of the structure in 

this direction is excited due to the amplification present in the vicinity of 0.4 s.  

 
Figure 6.7: Elastic response spectrum at Building B and FF. Pos. 2 for collapse sequence (ξ= 

5 % critical) 

 

6.4.2 Amplification of Ground Motion: Blast vs. Collapse 

Figure 6.8 demonstrates the spectral acceleration amplification observed in the 

third floor of Building B with respect to FF. Pos. 2 for both blast and collapse sequence. 

A very high spectral amplification of the order of 29 is observed in the roof of Building B 

along E-W direction for blast sequence. The collapse induced ground motion along E-W 

direction in FF. Pos. 2 has higher PGA and greater duration than blast-induced ground 

motion along the same direction. However, the spectral amplification observed along E-

W direction in the roof for collapse sequence is only of the order of 10 which is much 

Period [s] 

S
p

ec
tr

al
 A

cc
el

er
at

io
n
 [

g
] 



67 

 

lower when compared with the spectral amplification along E-W direction for the blast 

sequence. A very high spectral amplification along the E-W direction at a period of 0.125 

s (0.8 Hz) indicates that the blast-induced ground motion was dominated by a frequency 

content much higher than 8 Hz. This also indicates that the blast-induced ground motion 

had a very low value on the lower period region of the spectrum. Likewise, a lower value 

of amplification observed along E-W direction for collapse sequence indicates a much 

broader band of frequency content in the acceleration response at FF. Pos. 2. Figure 6.7 

shows that the dominant spectral response at FF. Pos. 2 for collapse sequence is 

extending beyond 5 Hz towards a lower frequency region of the elastic response 

spectrum.  

Regardless of the order of amplification observed in blast and collapse sequence, 

a prominent higher order structural response at a period less than 0.2 s is visible for both 

sequences of ground motion. The spectral amplification along N-S direction for the 

collapse sequence shows a de-amplification for a low period region of the spectrum but 

shows distinct amplification around the period of 0.39 s. This distinct amplification is 

close to the natural period of 0.37 along N-S direction for Building B. However, the 

amplification along the E-W direction shows a higher order amplification with scattered 

peaks around both higher and lower region of the response spectrum. 

The E-W sensor at the third floor of Building B shows more prominent peaks of 

higher order amplification for blast sequence when compared with the higher order 

amplification for collapse sequence along the same direction, see Figure 6.8. Although 

the collapse-induced acceleration response at FF. Pos. 2 was more dominant than the 

blast-induced acceleration response, the prominence of higher order amplification for 
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blast sequence along the E-W direction does indicate towards secondary effects in the 

response of Building B during the blast sequence. Likewise, as discussed for Building A, 

Building B also has its west façade directly exposed to the demolition site. This could be 

the reason that the airblast wave generated during the blast wave could have made a 

significant impact on the response of Building B along the E-W direction during the blast 

sequence. A constructive interference of the response of Building B to the airblast wave 

and the response of the building to the blast-induced ground motions along E-W could 

have resulted in the higher order response amplification of Building B along E-W 

direction during the blast sequence. 

 
Figure 6.8: Spectral amplification at the roof of Building B (ξ= 5 % critical) 

 

6.5 Conclusion 

Key observations and conclusions made from the input-output study at Building 

A and Building B are summarized as follows: 
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1. While the blast-induced ground motions show a very high-frequency content with 

a lower bound of approximately 10 Hz, the collapse-induced ground motions 

show much broader frequency content with frequency as low as 2 Hz. 

2. Both Building A and Building B show an attenuated response to blast sequence 

along N-S direction in the low period (high frequency) range lower than 

approximately 0.1 s. This is due, in part, to the short wavelengths of the blast-

induced ground motions, which were not long enough to uniformly excite the 

structures.  

3. Building A and Building B show an amplified response to the blast sequence 

along the E-W direction, which is unexpected given the relatively high-frequency 

content of the blast sequence compared to the natural frequency of the buildings. 

This is indicative of the contribution of the blast-induced air wave to the 

building’s responses.   
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CHAPTER 7 – NUMERICAL MODELING 

7.1 An Overview 

The experimental results discussed in Chapter 5 and Chapter 6 encompass the 

effects due to a wide range of parameters that could influence the response of the 

adjacent structures during the implosion. Two of these key parameters discussed in this 

thesis are the soil domain and the airblast wave. The soil domain beneath the structure 

can have a major influence on the ground motions and the structural response to ground 

motions. Chapter 2 presents studies about how the interaction between the soil and 

structure can affect the response of structures to ground motions. Likewise, Chapter 6 

discusses about the possibility of the effect of airblast wave in the response of the 

adjacent structures during the blast sequence. 

Building A and Building B are numerically modeled with fixed base assumptions 

in this chapter using LS-DYNA (LSTC 2019). The fixed base assumption refers to a 

lumped mass  model restrained at its base for all degree of freedoms where the effect of 

the flexibility of the soil domain on the foundation level is neglected. This refers to a 

perfectly rigid foundation assumption and enables the separation  of the effects of the soil 

domain as well as the effect of the airblast wave in the observed responses of Building A 

and Building B during the blast and progressive collapse of Cather and Pound Halls. The 

acceleration responses obtained from the FF. Pos. 1 and FF. Pos. 2 are used as input 

ground motions in the numerical model of Building A and Building B, respectively. This 

helps to provide key insights regarding the effect of the soil domain over the fixed base 

responses of Building A and Building B. Furthermore, the observed responses from the 
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numerical model also help to distinguish possible higher mode effect of the airblast wave 

discussed in Chapter 6.  

7.2 Overview of LS-DYNA Modeling Approach 

LS-DYNA is a robust finite element and multi-physics program capable of 

modeling complex structural and soil systems (LSTC 2019). LS-DYNA uses an explicit 

time integration method as its primary solver to perform the finite element analyses. The 

finite element program has a wide variety of elements like four node tetrahedron and 

eight node elements, two node beam elements, truss elements, rigid bodies, etc. that can 

be used based on the analysis requirements. The program also has a large collection of 

contact types and material models to choose from depending upon the types and 

applications of the numerical model. The numerical models for Building A and Building 

B are constructed and analyzed in LS-DYNA. The developed models are summarized 

below in terms of  geometry, element, materials, contact and loading as follows: 

a) Geometry 

Building A and Building B have been modeled using the lumped-mass model 

approach where both of these structures have been approximated by a single line 

element equivalent to the height of the structures, and a lumped mass on the roof 

level.  

b) Element 

The line element used in the numerical models of Building A and Building B 

is a two-node Belytschko beam element with a section defined under the keyword 



72 

 

SECTION_BEAM in LS-DYNA. The lumped mass at the top of each line element is 

defined using the keyword ELEMENT_MASS in LS-DYNA. 

c) Materials 

The line element used in Building A has been defined with an elastic concrete 

property under the keyword MAT_ELASTIC. The elastic concrete properties used 

are summarized as follows: 

• Mass density = 0.0868 lb-s2/in 

• Young’s modulus of elasticity = 3.6 E06 psi 

• Poisson’s ratio = 0.2 

Likewise, the line element used in Building B has been defined using an 

elastic steel property under the keyword MAT_ELASTIC. The elastic steel 

properties used are summarized as follows: 

• Mass density = 7.33e-4 lb-s2/in 

• Young’s modulus of elasticity = 3.0e07 psi 

• Poisson’s ratio = 0.3 

d) Contact 

The base node of the Building A and Building B is defined as a fixed support 

with the keyword BOUNDARY_SPC_NODE. The node at the roof level is restrained 

to allow only translations along the x and y directions.  

e) Loading 
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The two orthogonal ground motion time histories along north and east direction 

obtained from FF. Pos. 1 and FF. Pos. 2 were applied at the base node of numerical 

model for Building A and Building B along y and x direction respectively. The 

ground motions were prescribed to the base node using the keyword 

BOUNDARY_PRESCRIBED_NODE in LS-DYNA. 

f) Damping 

A constant value of damping for a frequency range of 0.1 Hz to 50 Hz was 

applied on the numerical models for Building A and B using the keyword 

DAMPING_FREQUENCY_RANGE. This keyword provides approximately constant 

damping that is independent of frequency over a range of frequencies prescribed by 

the user. Building A is an older masonry structure and a damping value of 10 % of 

critical was assumed. Likewise, a constant damping value of 8 % of the critical 

damping was assumed for the numerical model of Building B. The assumption of 

these damping values are based on the visual inspection of the preliminary 

comparison between the numerical response and the experimental response. 

7.3 Calibration of Numerical Models 

A detailed discussion on the system identification of Building A and Building B is 

presented in Chapter 4. The numerical models for Building A and Building B were 

calibrated to match closely with natural periods of these two structures obtained from the 

system identification. The keyword IMPLICIT_EIGENVALUE was used in LS-DYNA 

to obtain the eigenvalues and natural frequencies of numerical models for Building A and 

Building B. An iterative procedure was used for both numerical models to match their 
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natural periods with results obtained from the system identification in Chapter 4. For 

Building A, the size of the section of line elements and the values of lumped masses were 

modified to obtain the desired natural period of the numerical model. The natural periods 

obtained from the calibrated model for Building A is presented in Table 7.1 along with 

natural periods obtained from the system identification (System ID.). Similar to the 

numerical model of Building A, the size of the section of the line elements and the value 

of lumped mass were modified to obtain the desired natural period of the numerical 

model. Then natural periods of the calibrated model of Building A are presented in Table 

7.2 along with the natural periods obtained from System ID. 

Table 7.1: Numerical Model vs. System Identification (Building A) 

Modes Direction 
Period [s] 

(Numerical Model) 

Period [s] 

(System ID.) 

Mode 1 E-W 0.246 0.245 

Mode 2 N-S 0.205 0.204 

 

Table 7.2: Numerical Model vs. System Identification (Building B) 

Mode Direction 
Period [s] 

(Numerical Model) 

Period [s] 

(System ID.) 

Mode 1 E-W 2.69 2.68 

Mode 2 N-S 2.76 2.76 

 

It should be noted that while using the keyword 

DAMPING_FREQUENCY_RANGE in LS-DYNA, there is a reduction in the frequency 

of the numerical model. The reduction in the frequency of the numerical model was 

adjusted by increasing the stiffness of the numerical model. The stiffness of the numerical 
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model was increased in such a way that the numerical model shows a dominant response 

at its natural frequency along N-S and E-W directions when subjected to a white noise 

excitation. 

7.4 Results: Building A 

The ground motions obtained from FF. Pos. 1 were prescribed to the fixed base of 

the numerical model of Building A to obtain the acceleration response at the roof level. 

The numerically obtained acceleration responses along the E-W and N-S directions are 

presented in the time and frequency domains. A comparison is presented in both time and 

frequency domains between the numerical response and the experimentally obtained 

response at the roof level of Building A. 

7.4.1 Numerical Response vs. Experimental Response in Time Domain 

The numerical model of Building A is a two-degree of freedom (2DOF) model 

calibrated for the first two natural frequencies. The experimentally obtained response 

from the roof level of Building A was filtered between the frequency range of 3.05 to 

6.11 Hz for comparison with the simplified 2DOF numerical model. The selected upper 

and lower bound of the frequency range of the filter is 25 % below and 25 % above the 

first two natural frequencies of the building. A finite impulse response (FIR) filter of the 

order of 2100 was used to obtain the filtered experimental response of Building A. The 

MATLAB script of the filter is shown in Figure 7.1.  

The comparison of peak accelerations at the roof between the numerical response 

and the experimental response are presented in Figure 7.2. It is fairly evident in Figure 
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7.2 that the 2DOF model shows more comparable response to the low-frequency collapse 

sequence of the ground motions than the high-frequency blast sequence of the ground 

motions along both E-W and N-S directions. 

 
Figure 7.1: MATLAB script used in filtering using FIR filter 

 
Figure 7.2: Comparison of acceleration time history: LS-DYNA vs. Exp-Filt (*Exp-Filt: 

Experimental response filtered between 3.05 to 6.11 Hz) 
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Table 7.3 and  Table 7.4 show the comparison of peak acceleration values 

between the numerical response and the filtered acceleration response along E-W and N-

S directions. While the percentage difference of peak accelerations for the numerical and 

filtered experimental response is 16.5 % for the collapse sequence along E-W direction, 

the percentage difference of the compared peak accelerations for blast sequence is 45.3 

%. A similar trend is observed in the N-S direction as well. This is an expected behavior 

of the 2DOF numerical model, where the numerical model shows a better prediction of 

the experimental response dominated by frequency near the first two natural periods of 

the numerical model. In addition to the inability to replicate the higher mode response, 

the blast-induced air wave could have further excited the building during the blast 

sequence, which is not incorporated into the numerical model.  

Table 7.3: Peak acceleration values: LS-DYNA vs. Exp-Filt along E-W(*Exp-Filt: 

Experimental response filtered between 3.05 to 6.11 Hz) 

E-W 

Response Data 

Blast Collapse 

Peak Acc. 

[g] 
% Diff 

Peak 

Acc. [g] 
% Diff 

Numerical 0.011 
45.280 

0.043 
16.546 

Exp-Filt 0.006 0.050 

 

Table 7.4: Peak acceleration values: LS-DYNA vs. Exp-Filt along N-S(*Exp-Filt: 

Experimental response filtered between 3.05 to 6.11 Hz) 

N-S 

Response Data 

Blast Collapse 

Peak Acc. 

[g] % Diff 

Peak Acc. 

[g] %Diff 

Numerical 0.014 
56.418 

0.041 
11.314 

Exp-Filt 0.006 0.036 
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7.4.2 Numerical Response vs. Experimental Response in Frequency 

Domain 

The roof acceleration responses obtained from the numerical analysis of Building 

A is analyzed in the frequency domain with elastic response spectrums in terms of both 

blast and collapse sequences. The elastic response spectrums of the numerical responses 

along E-W and N-S directions have been compared with the corresponding elastic 

response spectrums at the roof of Building A obtained from the experimental response.  

7.4.2.1 Blast Sequence 

Figure 7.3 shows the comparison of elastic response spectrums of the numerical 

and filtered experimental response along E-W and N-S direction during the blast 

sequence. Figure 7.3 is also overlaid with the elastic response spectrum of the original 

experimental response at the roof. As expected, the numerical model being a 2DOF 

model does not show any distinct response at higher modes other than the first two modes 

along E-W and N-S. The numerical response for the blast sequence is similarly 

dominated by peak responses at natural periods along E-W and N-S directions. Table 7.5 

shows a summary of spectral accelerations for numerical response and experimental 

response at the natural period along E-W direction. Likewise,  

Table 7.6 shows spectral acceleration for numerical response and experimental 

response at natural period along N-S direction. The comparison of the elastic response 

spectrum of the blast sequence shows a higher spectral acceleration for the numerical 



79 

 

response than the experimental response. The experimental response indicates a 

drastically reduced response in comparison to the numerical model. Table 7.5 and  

Table 7.6 both indicate a very high percentage difference of the spectral 

accelerations between the numerical response and experimental response compared at the 

first two natural periods of Building A along E-W and N-S direction. The high 

percentage difference of the spectral accelerations can be largely attributed to the small 

values of spectral acceleration evidenced in both the experimental and the numerical 

responses. In addition, the numerical model greatly simplifies the excitation to the 

structure, where the numerical model is subjected to ground motion only while the 

experimental structure was subjected to ground motion and airblast wave. 

 
Figure 7.3: Elastic Response Spectrum at Building A for Blast sequence (ξ= 5 % critical), 

(*Exp-Filt: Experimental response filtered between 3.05 to 6.11 Hz) 
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Table 7.5: Spectral acceleration at T1 = 0.245 s from elastic response spectrum along E-W 

direction (Blast Sequence) 

E-W 

Response  Sa [g] 
% Difference 

with LS-DYNA 

LS-Dyna 0.055 0.000 

Experimental 0.023 58.852 

Exp-Filt 0.018 67.705 
 

Table 7.6: Spectral acceleration at T2 = 0.204 s from elastic response spectrum along N-S 

direction (Blast Sequence) 

N-S 

Response  Sa [g] 
% Difference 

with LS-DYNA 

LS-Dyna 0.057 0.000 

Experimental 0.024 57.258 

Exp-Filt 0.019 67.536 

 

7.4.2.2 Collapse Sequence 

Like the blast sequence, the elastic response spectrums of the numerical response 

for the collapse sequence has been compared with the corresponding elastic response 

spectrums obtained from the experimental response. While Figure 7.4 shows this 

comparison in frequency domain along E-W and N-S direction, Table 7.7 and Table 7.8 

presents the summary of this comparison with respect to the spectral peaks at natural 

periods along the E-W and N-S direction. The spectral acceleration at the roof from the 

numerical response matches very well with the filtered experimental response. Table 7.7 

also shows a smaller difference in the spectral acceleration between the numerical 

response and the experimental response at the natural period along E-W direction. 
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Although, the shape of the elastic response spectrum for numerical response along N-S 

matches with the corresponding elastic response spectrum of the filtered experimental 

response, the spectral acceleration at the natural period along N-S differ by 56.2 percent. 

The higher percentage difference along the N-S direction indicate that the numerical 

response along the N-S direction was attributed to a greater value of damping than the 

damping associated with the experimental response. 

 
Figure 7.4: Elastic response spectrum at Building A for collapse sequence (ξ= 5 % critical), 

(*Exp-Filt: Experimental response filtered between 3.05 to 6.11 Hz) 

 

Table 7.7: Spectral acceleration at T1 = 0.245 s from elastic response spectrum along E-W 

direction (Collapse Sequence) 

E-W 

Response Sa [g] 
% Difference 

with LS-DYNA 

LS-Dyna 0.222 0.000 

Experimental 0.243 9.271 

Exp. Filt 0.239 7.651 
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Table 7.8: Spectral acceleration at T2 = 0.204 s from elastic response spectrum along N-S 

direction (Collapse Sequence) 

N-S 

Response Sa [g] 
% Difference 

with LS-DYNA 

LS-Dyna 0.152 0.000 

Experimental 0.248 62.788 

Exp. Filt 0.238 56.213 

 

7.5 Results: Building B 

The roof acceleration response obtained from the numerical analysis of the 2DOF 

model of Building B has also been presented in both time domain and frequency domain 

like Section 7.4.  The numerical response at the roof has been compared with the 

observed experimental response at the roof, and the comparison has been shown in both 

time and frequency domain. 

7.5.1 Numerical Response vs. Experimental Response in Time Domain 

The roof acceleration response for Building B along E-W and N-S direction 

obtained from the numerical analysis and the experimental observation have been 

compared in Figure 7.5. Table 7.9 and Table 7.10 shows the summary of peak 

acceleration values from Figure 7.5 in terms of the blast and collapse sequence along E-

W and N-S.  

The numerical and experimental acceleration responses to the blast sequence 

along the E-W direction  reasonably agree with each other with only 4.9 % difference 

between the peak values. However, the experimental acceleration response along the N-S 
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direction is much smaller compared to the corresponding numerical response. This 

indicates that a higher value of damping could have been associated with the 

experimental response when compared with the numerical response. Further, the minimal 

value of experimental response along the N-S direction could also be due to the original 

structure not responding in a global translation mode such that the location of the sensor 

located on the third floor of Building B experienced a minimal response. In contrast to 

the original structure, the 2DOF tend to show a global translation mode along the N-S 

direction and hence a higher value of the acceleration response. 

 
Figure 7.5: Comparison of acceleration time history for Building B: LS-DYNA vs. Exp-Filt 

(*Exp-Filt: Experimental response filtered between 2.02 to 3.45 Hz) 
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Table 7.9: Peak acceleration values: LS-DYNA vs. Exp-Filt along E-W (*Exp-Filt: 

Experimental response filtered between 2.02 to 3.45 Hz) 

E-W 

Response Data 

Blast Collapse 

Peak Acc. 

[g] % Diff 

Peak 

Acc. [g] % Diff 

LS-Dyna 0.003 
4.858 

0.012 
30.836 

Experimental Data 0.003 0.009 

 

Table 7.10: Peak acceleration values: LS-DYNA vs. Exp-Filt along N-S (*Exp-Filt: 

Experimental response filtered between 2.02 to 3.45 Hz) 

N-S 

Response Data 

Blast Collapse 

Peak Acc. 

[g] % Diff 

Peak Acc. 

[g] %Diff 

LS-Dyna 0.004 
84.071 

0.010 
18.255 

Experimental 0.001 0.009 

 

7.5.2 Numerical Response vs. Experimental Response in Frequency 

Domain 

A comparison of the numerical response with the observed experimental response 

at the roof level has been presented in terms of the blast and collapse sequence. The 

experimental response is presented in its original form, as previously discussed in 

Chapter 5, as well as bandpass filtered between 2.02 to 3.45 Hz to facilitate comparison 

with the 2DOF numerical model.   



85 

 

7.5.2.1 Blast Sequence 

Figure 7.6 shows the comparison of the elastic response spectrum between the 

filtered experimental response and the numerical response during the blast sequence. As 

observed in the time domain of the blast sequence along the N-S direction, the elastic 

response spectrum for the numerical response also shows a much higher spectral 

acceleration than the filtered experimental response. However, the percentage difference 

of the spectral acceleration for the numerical and the filtered experimental response at the 

natural period along E-W is comparatively lower than the percentage difference of 

spectral accelerations at the natural period along N-S direction. Table 7.1 and Table 7.12 

shows the summary of spectral acceleration values from Figure 7.6 at natural periods 

along E-W and N-S direction. 

 
Figure 7.6: Elastic Response Spectrum at Building B for Blast sequence (ξ= 5 % critical), 

(*Exp-Filt: Experimental response filtered between 2.02 to 3.45 Hz) 
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Table 7.11: Spectral acceleration at T1 = 0.373 s from elastic response spectrum along E-W 

direction (Blast Sequence) 

E-W 

Response  Sa [g] 
% Difference 

with LS-DYNA 

LS-Dyna 0.018 0.000 

Experimental 0.030 73.140 

Exp-Filt 0.024 33.788 

 

Table 7.12: Spectral acceleration at T2 = 0.363 s from elastic response spectrum along E-W 

direction (Blast Sequence) 

N-S 

Response 
Peak Sa 

[g] 

% Difference 

with LS-DYNA 

LS-Dyna 0.028 0.000 

Exp-Filt 0.005 83.101 

Exp. Filt 0.004 87.201 

 

7.5.2.2 Collapse Sequence 

Figure 7.7 shows the comparison of the numerical response and the experimental 

response of Building B in the frequency domain during the collapse sequence. The elastic 

response spectrum for the numerical response along the EW direction shows a better 

match when compared to the elastic response spectrum along the NS direction. Table 

7.13 and Table 7.14 shows the summary of spectral acceleration values from Figure 7.7 

at the natural periods along E-W and N-S direction. The percentage difference of the 

spectral acceleration value between the numerical response and the filtered experimental 
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response is comparatively less along the NS direction when compared to the EW 

direction. 

 
Figure 7.7: Elastic Response Spectrum at Building B for Collapse sequence (ξ= 5 % 

critical), (*Exp-Filt: Experimental response filtered between 2.02 to 3.45 Hz) 

 

Table 7.13: Spectral acceleration at T1 = 0.373 s from elastic response spectrum along E-W 

direction (Collapse Sequence) 

E-W 

Response  Sa [g] 
% Difference 

with LS-DYNA 

LS-Dyna 0.082 0.000 

Experimental 0.058 29.475 

Exp-Filt 0.052 36.559 
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Table 7.14: Spectral acceleration at T1 = 0.373 s from elastic response spectrum along E-W 

direction (Collapse Sequence) 

N-S 

Response  Sa [g] 
% Difference 

with LS-DYNA 

LS-Dyna 0.112 0.000 

Experimental 0.040 63.973 

Exp-Filt 0.040 64.473 

 

7.6 Conclusion 

Key observations and conclusions made from the numerical analysis of Building 

A and Building B are summarized as follows: 

1. The overall trend of the numerical response obtained for Building A and Building 

B indicate that the 2DOF models for both buildings tend to represent the 

experimental response better when subjected to collapse-induced ground motions. 

The numerical models for both buildings tend to show comparable response, 

especially along E-W direction, when subjected to the collapse-induced ground 

motion which has comparatively lower frequency compared to the blast-induced 

ground motion. The percentage difference of spectral acceleration between the 

numerical response and experimental response at natural period along E-W 

direction is below 30 % for Building A and Building B, when considering the 

collapse sequence. However, the percentage difference of spectral acceleration 

between the numerical response and experimental response at natural period along 
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E-W is above 60 % for Building A and Building B, when considering the blast 

sequence. 

2. A lumped mass numerical modeling approach is more efficient in representing the 

lower modes of vibration of a structure that is dominated by the global vibration 

modes of the structure. The higher mode response of a structure is usually 

dominated by the local modes associated with the elemental vibration of a 

structure that cannot be represented by a 2DOF model. This is one key reason that 

a higher difference is observed between the experimental response and the 

numerical response when the numerical model is subjected to high-frequency 

blast-induced ground motions. 

3. Although the numerical model seems to perform better for low-frequency 

excitations, a significant amplitude difference is evident in the spectral 

acceleration response between the numerical and the experimental response along 

the N-S direction. The amplitude difference could be attributed to the uncertainty 

associated with the assumption of damping in the numerical model. 

4. The overall difference observed between the numerical response and the 

experimental response could be attributed to a wide array of factors. Some of 

these key factors are: 

➢ Degree of detail of the numerical modeling. 

➢ Type of damping assumed in the numerical model. 

➢ Absence of the soil domain in the numerical model that could be resulting 

in a frequency shift between the numerical response and the experimental 

response. 
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➢ Possible differences between the actual ground motion exciting the 

structure and the ground motions obtained from the free field positions. 
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CHAPTER 8 – CONCLUSIONS 

8.1 Conclusions 

The study of the response of the adjacent structures during the controlled 

implosion of Cather and Pound halls has provided critical insights over the understanding 

of the response of structures to the blast and progressive collapse of the multi-story 

structures. Primary conclusions drawn from the observed effects on the adjacent 

structures during the implosion and collapse of the full-scale 13-story reinforced 

structures are as follows: 

➢ Collapse sequence of the demolition of the two 13-story structures dominated the 

observed response at all free field positions and the response observed within all 

the adjacent structures. Pulse-like behavior was evident in the observed response 

at the FF. Pos. 1 along vertical as well as N-S direction. This pulse-like behavior 

can be attributed to the progressive collapse of floors of two 13-story structures 

with uniform story heights. The fact that the progressive collapse was leaning 

predominantly on along the N-S direction, pulse-like behavior is observed in N-S 

direction in addition to the vertical direction at FF. Pos. 1. 

➢ An exponential decay of the ground motions induced during the implosion was 

observed where FF. Pos. 3 at Building C recorded least response compared to all 

other free field positions. 

➢ The ground motions induced due to the blast sequence showed relatively higher 

frequency content than the collapse induced ground motions. The high-frequency 

of the ground motions was distinctly observed in the frequency domain of the 
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response observed at FF. Pos. 1 and FF. Pos. 2. In general, the blast induced 

ground motions showed dominant frequencies with a lower bound of 10 Hz, and 

the collapse induced ground motions showed dominant frequencies as low as 2 

Hz. 

➢ The structural response at Building A and Building B show an attenuated 

response during the blast sequence along N-S direction when compared to the 

ground motions at their corresponding free field positions. The lower response to 

the blast sequence can be attributed to the short wavelengths of the high-

frequency blast induced ground motions which are unable to uniformly excite the 

structure at its base in that direction. 

➢ Contrary to the response along N-S direction, both Building A and Building B 

show an unexpected amplified response to the high-frequency blast-induced 

ground motions along the E-W direction. The amplified response in E-W 

direction indicates the interference of the airblast wave in the observed response 

of Building A and Building B during the blast sequence. 

➢ The numerical modeling of the adjacent structures using a 2DOF lumped mass 

model indicates that the 2DOF model tend to predict experimental response better 

when subjected to low-frequency excitations.  

8.2 Future Work 

Recommendations for future work in this area include: 
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➢ The experimental dataset of the study can be used in the detail finite element 

analysis of the adjacent structures to understand the phenomenon of soil-structure 

interaction and structure-soil-structure-interaction. 

➢ Detailed numerical modeling of the adjacent structures could investigate the 

higher mode response of the adjacent structures during the blast sequence. 

➢ The experimental dataset in conjunction with finite element analysis can be used 

in a parametric study to understand the effect of individual parameters like system 

properties of the structure, properties of the soil domain, intensity of the 

implosion on the response of individual structures and a cluster of structures. 

➢ The experimental dataset can be extended to understand response of structures to 

earthquake motions in an urban environment. 
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APPENDIX A 

 

 

 Figure A.1. Curve fitted auto spectral density function for Mode 1 (4.074 Hz) - Building A 
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Figure A.2. Curve fitted auto spectral density function for Mode 1 (4.892 Hz) - Building A 
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