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ABSTRACT. In this paper, using the concept of a generalized Feynman integral, we define

a generalized Fourier-Feynman transform and a generalized convolution product. Then for
two classes of functionals on Wiener space we obtain several results involving and relating
these generalized transforms and convolutions. In particular we show that the generalized
transform of the convolution product is a product of transforms. In addition we estabhsh a

Parseval’s identity for functionals in each of these classes.
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1. INTRODUCTION.
The concept of an L1 analytic Fourier-Feynman transform (FFT) was introduced by

Brue in [1]. In [2], Cameron and Storvick introduced an L2 analytic FFT. In [3], Johnson

and Skoug developed an Lp analytic FFT for 1 <_ p <_ 2 which extended the results in [1,2]

and gave various relationships between the L1 and L2 theories. In [4], Huffman, Park and

Skoug defined a convolution product for functionals on Wiener space and in [4,5] obtained

various results involving the FFT and the convolution product.
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Both the FFT and the convolution product are defined in terms of a Feynman
integral. In this paper we use the concept of the generalized Feynman integral, introduced

by Chung, Park and Skoug in [6] and further developed in [7], to define a generalized
FFT(GFFT) and a generalized convolution product (GCP).

In section 3 we establish several results involving and relating the GFFT and the

GCP for functionals F and G in the Banach algebra oY introduced by Cameron and

[8]. In sections 4 and 5 we obtain similar results for a class A(nP)" of tameStorvick in

functionals. In particular we estabhsh a Parseval’s identity for functionals in each of these

two classes.

In defining the FFT [1,2,3] of F and the convolution product [4] of F and G, one

starts with, for A > 0, the Wiener integrals

ol
F(y+A Ix)m(dx)

Co[O,T]
and

-1 -1

C0[0,T]
and then extends analytically in A to the right-half complex plane.

defining the GFFT and the GCP we start with the Wiener integrals
-1

FCy+A ZCx,. ))mCdx)
Co[O,T]

and
-1 ol

C0[0,T]

In this paper, in

where Z is the Gaussian process
t

Z(,t) I(s)d()
0

with h in L2[0,T and where Jh(s)dx(s) denotes the Paley-Wiener-Zygmund stochastic
0

(1.1)

integral.

2. DEFINITIONS AND PRELIMINARIES.

Let C0[0,T denote Wiener space; that is the space of all ll-valued continuous

functions x(t) on [0,T] with x(0) 0. Let ’ denote the class of all Wiener measurable

subsets of C0[0,T and let m denote Wiener measure. A subset B of C0[0,T is said to be

scale-invariant measurable [9,10] provided pB e for all p > 0, and a scale-invariant

measurable set N is said to be scale-invariant null provided m(pN) 0 for all p > 0. A
property that holds except on a scale-invariant null set is said to hold scale-invariant

almost everywhere (s-a.e.). If two functionals F and G are equal s-a.e., we write F u G.
Let h be an element of L2[0,T with Ilhll > 0, let Z(x,t) be given by (1.1), and let

a(t) ih?’(u)du. (2.1)
0
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Then Z is a Gaussian process with mean zero and covariance function

min{s,t}Z(x,s)Z(x,t)m(dx) h2(u)du a(min{s,t}).
C0[0,T 0

Next we state the definitions of the (generalized) analytic Feynman integral [6, p.388].
Let :+ {Ae:- ReA > 0} and let C+ {e:" 0 and Re > 0}. For each A > 0

-1
assume that F(A Z(x,-)) is Wiener integrable with respect to x on Co[O,T], and let

-1
J(A) F(A Z(x,.))m(dx). If there exists a function J*(A) analytic on :+ such

C0[0,W]
that J*(A) J(A) for A > 0, then we call J*(A) the (generalized) analytic Wiener integral
of F and for e : we write+

anw%
j’ F(Z(x,.))m(dx) J*(A). (2.2)

Co[O,T]
Let real q 0 be given. Then we define the (generalized) analytic Feynman integral of F
with parameter q by

anfq anA
/ F(ZCx,.))m(dx) lis I F(Z(x,-))m(dx) (2.3)

C0 [0,

if the hmit exists.

We now proceed to define the GFFT and the GCP using the (generalized) analytic

Wiener and Feynman integrals given by (2.2) and (2.3). For A :+ and y C0[0,T], let

-1

(TA(F))(y) / F(y+A Z(x,.))m(dx). (2.4)
Co[0, ]

In the standard Fourier theory the integrals involved are often interpreted in the mean; a

similar concept is useful in the FFT theory. Let 1 < p _< 2 be given and let p’ be
1 1determined by + , 1. Let {Hn} and H be scale-invariat measurable functionals

such that for each p > 0,

Hn(PY)-H(py) P’ m(dy)lira 0.
n- C0 0,W]

Then we write

1.i.m.(wPs’)Hn u H

and we call H the scale invariant limit in the mean of order p’. A similar definition also

apphes for a continuous parameter A.

DEFINITION. Let real q 0 be given. For 1 < p <_ 2 we define the Lp analytic GFFT,

TP)(F) of F, by the formula (Ae :+)

(TP)(F))(y) l.i.m.(wPs’)(WA(F))(y (2.5)
A -iq

whenever this limit exists where TA(F is given by (2.4). We define the L1 analytic

GFFT, TI)(F) of F, by the formula
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lira (TA(F))(y)(TI)(F))(Y)
A-iq

We note that for 1 < p < 2, T(P)(F) is defined only s-a.e.q
for s-a.e.y.

that if Tp)(F) exists and F =G, then Tp)(G) exists and Tp)(G)= Tp) (F).

DEFINITION. Let F and G be scale-invariant measurable functionals on C0[0,T].

A :+ we define their GCP, (F,G)A (if it exists) by

j’ F G mCdx), A e (:

CO [0, T]
+

(F,G)A(y)

We also note

For

j" F G m(dx) A =-iq.

C0[0,T]
REMARKS. i) When A =-iq, we denote (F,G)A by (F,G)q.
ii) When h 1 on [0,T], then Z(x,t) x(t) and so the GFFT and the GCP reduce to

tlte ordinary Fourier-Feynman transform and convolution product [4].
The following well-known Wiener integration formula

I exp{i / g(t)dx(t)}m(dx) exp{ g2(t)dt}, g e L2[0,T
C0[0,T 0

is used several times in sections 3 and 5.

We conclude this section with a theorem which play a key role in sections 3 and 5.

THEOREM 2.1. If TA(F), TA(G and TA(F,G)A exist for A > 0, then

(2.8)

(T,(F,G),)(y) (T(F))(y/rT)(TA(G))(y/2-)
for all y e C0[0,T].

PROOF. For > 0, using (2.4) and (2.7) we see that
-1

(TA(F*G)A)(Y) / (F*G)A(Y+A Z(Xl,’))m(dx1)
C0[0,T]
-! ol

ry+A [Z(xl,’)+Z(x2,-)] ry+A [Z(xl,-)-Z(x2,’)]
/ F .]G "] m(dxl)m(dx2)

o IO,T]

C[0,T] 0 h(t
x1+xI Xl-Xl]ut 1 d 1 are idepedei standd Wiener processes d ece

-1

(T(F,))() 1 (+ Z(l,’))() 1 (+ Z(,.))(a)
C0[0,T C010,m ff

(T,(F))(y/,r-)(T,(G))(y/rT).
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3. THE BANACH ALGEBRA .
The Banach algebra of, see [8], consists of functionals expressible in the form

T
F(x) exp{i J’ v(t)dx(t)}df(v)

L2[0,T 0

for s-a.e, x in C0[0,T where f is an element of M(L2[0,T]), the space of all t-valued

countably additive finite Borel measures on L2[0,T].

From [6, Lemma 1] we have that for each v e L2[0,T and each h L(R)[0,T],
T T s T
Jv(s)dZ(x,s) lv(s)d[Jh(u)dx(u)] /v(s)h(s)dx(s)
0 0 0 0

(3.1)

for s-a.e, x in C0[0,T].

than simply in L2[0,T].

Thus, throughout this section we require h to be in L [0,T] rather

THEOREM 3.1. Let F be given by (3.1) and let h e L(R)[0,T]. Then for all p [1,2],

the GFFT TP)(F) exists for all real q $ 0 and is given by

(Tp) (F))(y) / exp{iT W 2Iv(t)dy(t) q v2(t)h (t)dt}df(v). (3.3)
L2[0,T 0

PROOF. First of all, using the Fubini theorem, (3.2) and (2.8), we see that for all A > 0

and s-a.e, y in C0[0,T],
-1

(TA(F))(y) / F(y+A IZ(x,-))m(dx) (3.4)
C0[0,T]

and g in M(L2[0,T]).
formula

W -1

I exp{i I v(t)d[y(t)+A Z(x,t)]}df(v)m(dx)
C0[0,T L2[0,T 0

T i T
1 exp{i I v(t)dy(t) + J v(t)h(t)dx(t))m(dx)df(v)

L2[0,T C0[0,T 0 0

T T 2exp{iv(t)dy(t) 1 v (t)h2(t)dt}df(v).
L2[0,T 0 0

But the last expression above is an analytic function of A throughout C+ and is a bounded

continuous function of A on f+ since f is a finite Borel measure. Hence ’r P)(F) exists and

is given by (3.3) for all p [1,2] and all real q

THEOREM 3.2. Let F and G be elements of of with corresponding finite Borel measures f

Then their GCP (F.G)q exists for all real q $ 0 and is given by the

T
(F,G)q(y) exp{ [v(t)+w(t)]dy(t)} (3.5)

L[0,T]

exp{-q h2(t)[v(t)-w(t)]2dt)df(v)dg(w).
0
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PROOF. Proceeding as in the proof of Theorem 3.1 above, we obtain for all A > 0 and
s-a.e, y in C0[0,T],

-1 -1

C0[0,T ,]-2- -T
S S exp{ v(t)dy(t)+

C0[0,T]

T
i v(t)h(t)dx(t)}df(v)

/ exp{ iw(t)dy(t)
[O,T]

i T
w(t)h(t)dx(t)}dg(w)m(dx)

exp{
T

L2[0’T]
[v(t)+w(t)]dy(t)}

exp{- 1__ T[v(t)_w(t)]2h2(t)dt)df(v)dg(w).
4A 0

Again, (3.5) follows from (3.6) in the usual way by analytic continuation in A.

Our next theorem shows that the GFFT of the GCP is a product of GFFT’s.

THEOREM 3.3.

real q # 0,

Let F, G, f and g be as in Theorem 3.2. Then for all p e [1,2] and all

(3.7)

PROOF. By Theorem 2.1 we see that

(TA(F.G)A)(y) (TA(F))(y/q(TA(G))(y/qr2-) (3.8)

holds for all A > 0. But both of the expressions on the right-hand side of equation (3.8)
are analytic functions of A throughout {:+, and ate bounded continuous functions of A on

for all Hence T P)(F.G)q exists and is given by.(3.7) for all desiredt+
values of p and q.

In our next theorem we establish a Parseval’s identity for functionals in the Banach

algebra .
THEOREM 3.4. Let F and G be as in Theorem 3.2. Then the Parseval’s identity

anf-q
j’ (F))

’l/-’T C }m(dx)
C0[O,T}

(3.9)

anfq [Z(x,.)] Z(x,.[ F G[- )]m(dx)
C0[O,T

holds for all real q 0 and all p e [1,2].

PROOF. First of all for A > 0, we see that



GENERALIZED TRANSFORMS AND CONVOLUTIONS 25

C0[0,T]
Iz(x,-)] Iz (x,.)(TP)(F)) 9($P)(G)) ]m(dx)

T2 i Ti v (t)h2(t)dt +exp{- 2 v(t)h(t)dx(t)}df(v)
C0[0,T L2[0,T 0

T 2exp{- q w (t)h2(t)dt +
L2[0,T]

L[0,T]

Ti w(t)h(t)dx(t)}dg(w)m(dx)
4-o

i h2(t)[v2(t)+w2(t)]dt}exp{-
0

exp{- Th2(t)[v(t)/w(t)]2dt}df(v)dg(w).
0

But the last expression above is a continuous function of A on (:+
A -(-iq) iq we obtain that

anf-q (p)
I (Tq

C0 [0,T]
T 2S exp(- ;i- gh2(t)[v(t)-w(t)] dt)df(v)dg(w).

L[O,T]

and so setting

Next for A > 0, we see that

[Z(x,-)] Z(x, )lm(dxj’ F #rC
9G[-

C0[0,T]
Texp h(t)[v(t)-w(t)]dx(t)fdf(v)dg(w)m(dx)

C0[0,T L[0,T] t2-A-

L[0,T] 0

But the last expression above is a continuous function of A on {:+
we obtain that

anfq

Co[O,T]
T 2i 2dt}df(v)dg(wexPl- h (t)[v(t)-w(t)]

L[0,T] ’ 0

Now (3.10) and (3.11) together yield (3.9).

COROLLARY 3.1. For F ’,

anf_q
[Z(x")]

2 anfq
(i) [(TP’ (F)) m(dx)=

CO [0, T] 2- CO [0, T]

(3.10)

and so setting A -iq

(3.11)

and
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anf anf

co [o,’i:] co [o, T]

4. GENERALIZED TRANSFORMS OF TAME FUNCTIONALS.
< T. For 1 < p < +(R)Let n be a positive integer and let 0 O < 1 < < n

let An(P) be the space of all functionals F on C0[0,T of the form

F(x) f(x(tl),-..,X(tn) (4.1)

s-a.e, where f: IRn I; is in Lp(ln). Let A ((R)) be the space of all functionals of the form

(4.1) with f in C0(n), the space of bounded continuous functions on n that vanish at

infinity.
In this section we don’t need the added condition that h e L(R)[0,T]; we only need

require that h e L2[0,T]. We will however, for convenience, assume that h is such that

0 a(t0) < a(tl) < < a(tn)
_
a().

For if a(tj_l) a(tj) for some j, then in equation (4.4) below we would simply carry out

the integration with repe to vj before making the substitution (4.5).

For notational purposes let Aja a(tj) a(tj_l) for j 1,2,.--,n and let

-_- n 2[a )]j=l (tj)-a(tj-1
LEMMA 4.1. Let 1 < p < +(R) and F A n

(p) be given by (4.1). Then for all A {:+,

where

(TA(F))(y) K(A;Y(tl),---,Y(tn)

K(A;wl,...,Wn) K(A;)

Tj’ f(’+)ext-- (uj-uj-l)}dn t. j=l &ja

A’ 7nf(a)expI-k j=l [(uj--uj-1)--(wj-wj-1)]2}Ajad,
and where u (Ul,...,un), w (Wl,...,Wn) and u0 0 w0.

PROOF. For A > 0, we note that
-1

(TA(F))(Y) I F(y+A Z(x,. ))m(dx)
C0[0,T]

t
-1 1 -1 n

J f(Y(tl)+A ’I hdx,"’,Y(tn)+A J" hdx)m(dx)
C0[0,T 0 0

(4.4)



GENERALIZED TRANSFORMS AND CONVOLUTIONS 27

-I 1 t.
-i n t.

f(Y(tl)+A Z J hdx,---,Y(tn)+A Z J hdx)m(dx)
C0[0,T j=l tj_1 j:l j_1

[]n I _in {_1/2 2}= f(Y(tl)+A -1 Z (Aja)vj, ,Y(tn)+A Z (Aja)=vj)exp vj dv.

n j:l j=l j=l

Next for 1,2,--.,n let

uj y(tj) + A (Aka)vk-k=1
-i

Then for 1,2,.--,n, vj A(Aja)=[(uj-uj_l)-(y(tj)-y(tj_l)], and substituting into (4.4)

yields

(TA(F))(Y) A7nf()expl-[ j=l" [(uj-uj-1)-(Y (tj)-y(tj-1))]2}Ajad (4.6)

K(A;Y(tl),.--,Y(tn) ).

Since f Lp(n) and ReA > 0 for A (+, the above expression is an analytic

function of A throughout :+.
REMARK. In [3, pp.106-112], Johnson and Skoug established various results about the

FFT for F e An(P)’, ie, for the GFFT in the case h 1 on [0,T]. But their proofs can be

adapted to work here, sometimes by just replacing tj-tj_1 with a(tj) a(tj_l). Thus we

will simply state the generalid results below.

(P)LEMMA 4.2. Let 1

_
p

_
2, let p’ be determined by + 1, and let f An

Then for all A e t;+, K(A;w) given by (4.3) is an element of Lp,(IRn). Furthermore, when

p 1, K(A;)is in C0(n).
REMARK. When 1 < p _< 2 and ReA 0, the integral in (4.3) should be interpreted in

the mean just as in the theory of the L Fourier transform.
P

THEOREM 4.1. Let I <_ p <_ 2 and let F An(P) be given by (4.1). Then the GFFT of

F, T(qP)(F)- exists, is in An(P’),- and is given by

(TP)(F))(y) K(-iq;y(tl),---,Y(tn) (4.7)

for all real q 0.

We also have the following transform theorems.

THEOREM 4.2. Let 1 _< p _< 2, real q # 0, and F e A(nP) be given. Then for each

p > 0 (;:+),
lira ITTA(F))(pZ(y,-))- F(pZ(y,.))lPm(dy) O.
A-iq C0[0,T

Furthermore,

TTA(F)) F

s-a.e, as A -iq through values in f+.
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(2) Then T_q(Tq(F)) F for all real q # 0THEOREM 4.3. Let F An

5. GENERALIZED CONVOLUTION THEOREMS.
Our first lemma gives an expression for the GCP (F.G)A for A :+ where

(Pl) (P2)
F e An is given by (4.1) and G An is given by

G(x) g(x(tl),-.-,X(tn)
< Ts-a.e, where g: [Rn : is in Lp2(n and 0 tO < 1 < < n

(5.1)

(Pl) (P2)
LEMMA 5.1. Let F An and G An with 1 (_ Pl <- q- and 1 <_ P2 <- +(R)" Then

for all A :+,
(F.G)A(y) H(A;Y(tl),-.-,y(tn)

where

H(A;Wl,...,wn) _= H(A;w)

7 f g exp- A.a du.

lRn sf’2-J j--1

PROOF. We first note that for A > 0,
ol

(F,G)A(y)
C0[0,T 2-

t.
-1 -1 1 -1 -1 n jI f(2 Y(tl)+(2A ]I hdx,---,2 Y(tn)+(2A Z h(s)dx(s))

CO[ 0,T] 0 j=l tj__l

-1 -1 1 -1 -1 n t
g(2 ]Y(tl)--(2A I hdx,.-.,2 ]Y(tn)-(2A ] Z I h(s)dx(s))m(dx)

0 j=l tj..1

nf(Y(tl)/S/’ + Vl,---,Y(tn)/4"2- + Z vj)
j--1

’q_o)(y(t)/-- 1’ ""Y(t)/
j=

(5.4)

exp{- -(v+ 2+Vn)}dv.

Now let uj
j -1
Z (Aka)vk for 1,--.,n. Then vj= (Aa)j (u-u_l)jJ-

for 1,-..,n and
k=l

so substituting into equation (5.4) we obtain equation (5.2) for A > 0. But the last

expression in (5.4) is an analytic function of A throughout C+ and so equation (5.2) is valid

throughout :+.
The following theorem gives an interesting relationship involving generalized

convolutions and generalized analytic Wiener integrals.
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THEOREM 5.1. Let F and G be as in Lemma 5.1. Then for all A :+,
(TA(F*G)A)(y) (TA(F))(y/vT)(TA(G))(y//T). (5.5)

PROOF. By Theorem 2.1, equation (5.5) holds for all A > 0. But the reset now follows
because TA(F), TA(G and TA(F.G)A have anytic extensions throughout f+.

Our next lemma plays a key role in obtmng the stence of the GFFT of the
GCP.

(n) andLEMMA 5.2. For A f+ let H(A;w) be defined by (5.3) for f e Lpl
Pl P2 f+, Lr(ng Lp2(n th 1 2 and 1 2. Then for I A H(%;.) e

i I + Iwhere r is ven by F p - I. In adtion, if r + (ie, pl=P2=2), then

REMARK. Agmn when ReA 0, the integral in equation (5.3) is of course interpreted in

the mean.

PROOF. If 1 r < +, then H(A;-) Lr(n) by Proposition 26 in [11, p.317]. If f and

g are both in L2(n) we first note that H(A’-) is in L (n) since for w e n

n

s I Ig

A I   nl141211gli2
A stdard gent now shows that H(A;-) bdongs to Co(In). i

In our next theorem we show that the GFFT of the GCP is the product of
transforms.

(Pl) (P2)
THEOREM 5.2. Let F e An and G e An with 1 5 Pl < 2, 1 < P2 5 2 and

1+1 1 1+1p-- > Let r be given by F Pl 22- 1. Then

(Tr) (F,G)q)(y)= (TPl)(F))(y/-)(TP2)(G))(y/E)(5.6)
for all real q # 0.

PROOF. We first note that by Lemma 5.2, (F.G)q is an element of Anr)." Also, we note

that 1 < r $ 2 and so by Theorem 4.1, all three of the GFFT’s in equation (5.6) exist.

Equation (5.6) then follows from equation (5.5).

By choosing specific values of Pl and P2 in Theorem 5.2 we obtain the following

corollary.

COROLLARY 5.1. i) Let F, G An(l) Then for all real q # 0,
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ii) (1) and G /i(2) Then for all real q 0.Let F /i
n n

iii)

(’2) (F*G)q)(y): (’r:l) (:F))(y/ ("r2) (,))(H.
() W:hen :for .11 real q 0,Let F, G /in

(T2)(,C,)q)(,) _-(,rl)())(Hm(,rl)(G))(y/G).

We will finish this section by estabhshing a Parseval’s relation for functionals F and

G in /in(2) In our proof we will use the ordinary Parseval’s identity for L2(n); that is to

say

where f(u)= f(v)e 2m<u’V>dv
Rn

complex conjugate of g.

THEOREM 5.3.

f(u)g(u)du I f(u)g(u)du
n n

is the n-dimensional Fourier transform of f and is the

(2) Then the Parseval’s identityLet F and G be elements of/in
anf

Co[O,]
anfq
I

Co[O,T]
=rz<:=,,>}{_ Z(x’ ")] m(dx)

holds for all real q 0.

PROOF. a) For A > 0, we evaluate the Wiener integral below and obtain that

j, ,rz<:x,. :>}<:;{_
C0[0,T]

(vj-v j-1 21d,,x,l,J f(;/./"y) g(-;/"Y) exp{-
j=l A .a J

"’{(2A)’7]nf(V)g(-v)exp -A (vj-v j_l )2
j=l Aja

d;.

But since fg LI(IRn), the above expression is an analytic function of A throughout

a bounded continuous function of A on :_ and so setting A -iq we obtain that

and

anfq

Co[O,T]
Z(x,’)]m(dx)
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for all q e (0}.
b) We next note, using Lemma 4.2, that (T?)(F))(x/-)(T2)(G))(x/.]-2-) is in

Then, using Theorem 4.1, we see that for A > 0,

C0[0,T]
_ltj

I- [(vJ-VJ-I)-(2 A) ’ hdx] 2

t2 i n
]’ (-iq)n7 / f(v)g(u)exp E tj_

j=lC0[0,T [
t.. hdx] 2[(uj-uj_1)-(2 A)
tjex 2R j=l Aja

-1 iddm(dx)
3n j=l

exp
[(vj-vj_l)-2 lmj} +[(uj-uj_1 mj]

j=l Aja
dmdudv.

Now letting A(F,G,q) denote the left-hand side of equation (5.7) and setting A -(-iq) in

the above expression we obtain that
2n n l.

A(F,G,q) (-iq)n(iq)73JlSnf(;)g(l)exp{- jl #}

exp
[(vj-vj_l)-2 mj] 2+[(uj-uj_l)-2"mj]2

j=l Aja
dmdudv.

Next for 1,---,n let rj vj vj_1 and /j uj uj__l. Then

n n

Next let

j=l Aja
dmd Idr.
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and let w. qmj for 1,2,--.,n. Then
2r,]’-A .a

n

A(F,G,q) (-iq)n(iq)73(2r,,/-Aja)nq-nI / f*(;)exp{-2 !lrjWj}dn [n j

j" g*(])exp{-2ri Z /jwj}d]dvn j:l

n

(-2qi)’Tf f*(r)g*(-v)dv
n

(-2qi)}Tf f*(w)g (-w)dw
n

(-2qi)’l’TS f .}.wj,-. ,j_,w.j g lW.j, 1 w’j =P ’qlIn J-

(-2qi)}7lnf(;)g(-;)P{qij:1 (vj-v J-l)2}Ajad
for re q # 0, wch in ew of (5.8) estabshes (5.7).
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