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ABSTRACT. In this paper we obtain a change of scale formula for Wiener integrals on

abstract Wiener spaces. This formula is shown to hold for many classes of functions of
interest in Feynman integration theory and quantum mechanics.
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1. INTRODUCTION.
It has long been known that Wiener measure and Wiener mdasurability behave badly

under the change of scale transformation [1] and under translations [2]. For many
problems, this pathology causes no special difficulties. However in the theory of the

analytic Wiener and analytic Feynman integrals one considers functionals of the form F(,x)
where A varies over the positive reals and x varies over Wiener space. Johnson and Skoug
[3] showed that scale-invariant measurability was the appropriate setting for the analytic
Wiener and Feynman integration theories. This concept was extended to Yeh-Wiener space
by Chang [4] and to abstract Wiener space by Chung [5].

Cameron and Storvick [6], for a rather large class of functionals, expressed the

analytic Wiener integral as a limit of Wiener integrals. In doing so they discovered a

rather nice change of scale formula for Wiener integrals [7]. In [8], Yoo extended these

results to Yeh-Wiener space. The purpose of this paper is to obtain a change of scale

formula for Wiener integrals on an abstract Wiener space. Results in [6,7,8] are then

corollaries of our results. Finally, we note that the Wiener integral of many classes of
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functionals of interest in Feynman integration theory and quantum mechanics [9-18] satisfy
this change of scale formula.

2. DEFINITIONS AND PRELIMINARIES.
Let H be a real separable infinite dimensional Hilbert space with inner product (-,-)

and norm I1"11. Let II1"111 be a measurable norm on H with respect to the Gaussian cylinder

set measure a on H. Let B denote the completion of H with respect to Ill’Ill. Let denote
the natural injection from H into B. The adjoint operator i* of is one-to-one and maps
B* continuously onto a dense subset of H*. By identifying H with H* and B* with i’B*,
we have a triple B* c H* H c B and h,x) (h,x) for all h in H and x in B*, where

(.,.) denotes the natural dual pair between B and B*. By a well known result of Gross

[19], aoi-1 has a unique countably additive extension v to the Borel a-algebra (B) of B.
The triple (H,B,v) is called an abstract Wiener space and the Hilbert space H is called the

generator of (H,B,v). For more detail see [19,20].
Let (ej)= 1 denote a complete orthonormal (CON)system in H with the ej’s in B*.

For each h E H and x E B, define a stochastic inner product (.,.)~ between H and B as

follows:

lira (h,ek)(X,ek) if the limit exists

(h,x)~ in7
k=l (.1)

otherwise.

It is well known that for every h H, (h,x) exists for v-a.e.x B and is a Borel

measurable function of B having a Gaussian distribution with mean zero and variance ]]h]] 2.
Furthermore, it is easy to show that (h,x) (h,x) v-a.e, on B if h B*. Note that if

both h and x are in H, then (h,x)" (h,x).
Let M(H) denote the class of t-valued countably additive measures defined on ’(H),

the Borel class of H. M(I-I) is a Banch algebra under the total variation norm and with

convolution as multiplication.

Given two {:-valued functions F and G on B, we say that F G s-a.e, if for each

a > 0, F(ax) G(ax) for v-a.e, x B. For a function F on B, let [F] denote the

equivalence class of functionals which are equal to F s-a.e..

The Fresnel class 3r(B) of functions on B is defined as the space of all functions F on

B of the form

F(x) fexp{i(h,x)’}d(h) (2.2)

for some # E M(H). More precisely, since We identify functions which coincide s-a.e, on B,
3r(B) is the space of all s-equivalence classes of functions of the form (2.2). It is

well-known [18,19] that 3r(B) is a Banach algebra and the mapping # F is a Banach

algebra isomorphism where # and F are related by (2.2).

Let F be a {:-valued measurable function on B such that theDEFINITION 1.

integral

B
exists for all real , > 0. If there exists an analytic function J;(A) on

{:/ {A e {:: Re A > 0} such that J;(A) JF(A) for all real A > 0, then we define

J;(A) to be the analytic Wiener integral of F over B with parameter A, and for )

we write
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For real q # 0, if the following limit exists, we call it the analytic Feynman integral of F
over B with parameter q and we write

Iqa(F lira Ia(F
A-,-iq

where A approaches -iq through values in

THEOREM 1 ([14,15]). Let F e (B) be given by (2.2). Then the analytic

Feynman integral of F over B exists for all real q # 0 and

Iqa(F fexp{-i [Ihll2}dh). (.5)

In addition for each A e {:%

IAa(F) fep{- [[hl[2}dph). (2.6)

A CHANGE OF SCALE FORMULA FOR WIENER INTEGRALS ON ABSTRACT
WIENER SPACES.
We begin this section with a key lemma for Wiener integrals on an abstract Wiener

space (H,B,v).

LEMMA 1.

Then

Let A E {:+, let {el,...,en} be an orthonormal set in H and let h E H.

n
fexp{[-] k_E_l[(ek,x)-]2 + i(h,x)~}d(x)
B

A’ exp{[-]
n

kl[(ek,h>]2

{eI

PROOF. Using the Gram-Schmidt process we obtain en+1 H such that

n+l
.-,en+ 1}_ forms an orthonormal set in H and h ckek where

k=l

ck

<ek,h k 1,...’,n

(llhll 2
n 2[<ek,h>] )], k n+l

k-1

Also since (el,x)~,---,(en+l,X)" are independent Gaussian random variables and since

_b2fexp{-ay2 + iby}dy () exp{ 1), a e

we obtain that

1 n

fexp([-]kl[(ek,x>’]2 + i<h,x>’}dv(x)
B

--(n+l)
2

(2) 1 n 2f exp{[-]klYk
+1

+i
n+l
E ckYk}k=l

exp{-1/2 nl
k=l

Yk2}dYl"" "dYn/l
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-(n+l)

(2r) I[ f exp{- y + ickYk}dykk=l

2fexp{- Yn+l + iCn+l Yn+l}dYn+l

-n n C C

A exp [(ek,h)]2
k-1

In the following general theorem, for F e 5(B), we express the analytic Feynman
integral of F over B as the limit of a sequence of Wiener integrals on abstract Wiener

space.

}=1 be a CON set of functions in H, let F e 5(B), and letTHEOREM 2. Let {ej

{Ai}. j=l be a sequence of complex numbers from {:* such that A -iq. Then

n 1-A n
Iaq(F im An’ f exp{[] [(ek,x)~12}F(x)d,(x). (3.2)

n--,(R) B k=l

PROOF. Since F is in 5(B) we have that

F(x) fexp{i(h,x)’}d(h)

for some # e M(H). By the Fubini theorem and Lemma 1 we obtain that

1-An n
fexp{[--2--- ] [(ek,x)’]2}F(x)d(x)
B k=l

1-An [(ek’x)~]2 + i(h’x)~}du(x)d/h)
liB k=l

An-I n h] fe{[ 2x
r, [(ek,h)]2 2}dh)

li n k=l

Next, using the bounded convergence theorem, equation (2.5) and Parseval’s relation, it

follows that
1-An n

li n fexp{[T] r, [(ek,x)-]2}F(x)du(x)
n- B k=l

fexp{-y4 Ilhll2}d(h)

lq(F)
which concludes the proof of Theorem 2.

A careful examination of the proof of Theorem 2 and using equation (2.6) instead of

(2.5) establishes our next theorem.

e (R) be a CON set of functions in H let F e 5(B) and letTHEOREM 3. Let {j}j=l
A E {:/. Let {Aj}(R)j=l be a sequence of complex numbers from {:/ such that Aj A. Then
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n 1-An n
IaA(F lira Anlr fexp{[-T- kl [(ek’x)’]2}F(x)d(x)" (3.3)

n-- B
Our main result, namely a change of scale formula for Wiener integrals on an abstract

Wiener space now follows easily from Theorem 3 above.

THEOREM 4. Let p > 0 be given and let {ej}
(R) be a CON set of functions fromj=l

H. Then for F E ’(B),

fF(px)d(x) lira p--n kl[(ek,x)-]2)F(x)d(x)" (3.4)
B n-,r B zp

PROOF. In Theorem 3 let A -2 and choose An A for n 1,2,.... Also note

that for A > 0,

IAa(F fF(A-x)&,(x)
B

by Definition 1.

The Banach algebra ’(B) is not closed with respect to pointwise or even uniform

convergence [13, p.2], and thus its closure Y--’# with respect to uniform convergence s-a.e.

is a larger space than ’(B). We end this section by showing that equation (3.4) also holds

for F E ’(B)#.

{ei}
(R) be a CON set of functions in H.THEOREM 5. Let p > 0 be given and let j=l

Then equation (3.4) holds for each F Y----/.
F (R)PROOF. Since F ’(B)/, there exists a sequence { re}m=1 from ’(B) such that

F(x) li Fm(X uniformly s-a.e, on B. Also since each Fm ’(B), Fm(x exists and is

bounded s-a.e, on B for each m. Let p > 0 be given. From the definition of uniform

convergence s-a.e., it follows that

F(px) lira Fm(PX uniformly a.e. on B (3.5)

and

fF()d(x) lia fFm(PX)d(x). (3.6)
B ’Now from Lemma 1 with A p-2 and h 0, we obtain that

nfep{[] kl [(ek’x)" ]2}dP(x)= pn. (3.7)
B zP

By (3.5), there exists M ) 0 and an invariant null subset E of B (i.e., (pE) 0 for all

p > 0) such that for all m and all x B-E

IFmCx) <_ M and IFCx) <_ M. (3.8)

Hence, using (3.7) and (3.8) we obtain

[p--n Sexp{[]
k-

[(ek,X)-]2)Fm(X)dx)
B p -1

-n ] n
O Sexp{[ Z [(ek,x)~12}F(x)d(x)l

B zp k=l
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2 1 n

fexpl[2p Z [(ek,x)’12}lFm(X)-F(x)ld(x)
B k=l

< 2M.

Finally, using Theorem 2, the iterated limits theorem and the dominated convergence

theorem, we obtain

f F(px)dv(x)

[(ek,x)~]2) Fm(X)dv(x)

[(ek,x)~]2} Fm(x)d(x)

2 1 n
lira p-n fexp{[2e [(ek,x)-]2) F(x)dv(x)
n- B k=l

and so equation (3.4) holds for each F E --(-B#.

4. COROLLARIES.
In this section we give various corollaries which show that Theorem 4 above, giving

the change of scale formula (3.4), is indeed a very general theorem since it holds for all

functions F in r(B) where (H,B,v) is any abstract Wiener space. Below we list results of

three types.
a. Classical Wiener Spaces. Fix T > 0 and let H Ho[0,T be the space of

R-valued functions 7 on [0,T] which are absolutely continuous and whose derivative D7 is in

L2[0,T]. The inner product on H is given by

(7,fl)H f(DT)(s)(Dfl)(s)ds.
o

0

H is a separable Hilbert space over . Let B Bo[0,T be the space Co[0,T of all

continuous functions x on [0,T] with x(0) 0 and equip B with the sup norm. Let o
De (R)

is a CON set ifi H then ej)j is abe classical Wiener measure. Note that if j)j=l o =1

CON set in L2[0,T and (ej,x) equals the Paley-Wiener-Zygmund stochastic integral
T

f(Dej)(s)(s) for s-a.e, x E BO-
O

Let m be a positive integer.
m

<(?l,.-.,Tm),(Jl,-.-,Jm) Y.
j=l

Let H Hmo Hmo[0,T] with inner product

Hm Bm uoTM) is the classical(Tj,flj)Ho. Then (H,B,u) o’ o’

Wiener space in m dimensions and ,BTM m is the classical Wiener space of paths in sm.
0 0

Let S S(m) be the space of functions on Cmo[0,T] Bmo of the form

m
F() f exp{i Y

L2m[0 T] j-1

for s-a.e, x (Xl,...,Xm) e Bmo for some # e M(L O,T]).
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Our first corollary contains Theorem 2 of [7] while our second corollary contains

Theorem 4 of [7].

COROLLARY Let {j}(R) be a CON set of functions on [0,T] Then for eachj=l
p > 0 and each F E S(m)

T21 m n

BfF(p)dv() lira p-mn Bfm exp{2 E E [f k(S)axj(s)]2}F()d().
n- j=l k=l 0o o

PROOF.

(4.1)

t

Let ek(t /Ck(S)ds on [0,T] and use Theorem 4 and the fact that

0

and ’(Bom) are isometrically isomorphic [14,21].

COROLLARY 2. Equation (4.1) holds for all F E S--/.
b. N-parameter Wiener Space. Let BN,0 Co([0,T]N) be the space of all JR-valued

continuous functions x on [0,T]N such that x(tl,...,tN) 0 whenever at least one of

tl,...,tN equals zero. Let VN,0 denote N-parameter Wiener measure on (BN,0(BN,0)).
The 2-parameter Wiener space (Co([0,W]2),(C([0,W]2)),v2,0) is often called Veh-Wiener

space, and the sample functions x in Ce([0,TI2) are often called Brownian surfaces or

Brownian sheets.
Let HN,0 denote the set of all functions-- [0,T]N

L2([0,T]N) such that for all (Sl,...,SN) [0,T]N,
for which there exists g in

t 1 tN

.tl,.-.,tN) f ""f g(Sl,--’,SN)dSN...dsI.
0 0

The inner product on HN,0 is defined by

T

<9’,9)HN,0-’-0f"" [’I.I..TOSN] [o’)sl’...0SN]dSl"’dSN
0

and (HN,0, BN,0, UN,0) is an abstract Wiener space. Again
T T

(7,x)- f""fg(sl,’" ,sN)aX(sl,. -,SN)
0 0

,SN))dpv)

for s-a.e, x BN,0.

Let SN(1 be the space of functions F on BN,0 of the form

F(x)= f exp{if fv(sl,. .,SN)aX(Sl,.
L2([0,T]N 0 0

for s-a.e, x in BN,0 for some # f M(L2[0,T|N.,,

COROLLARY 3. Let {j}j=l be a CON set of functions on [0,T]N.
and each F e SN(1),

Then for each
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2 n

f F(px)dVN’0(x)= n-li" p-nf exP{2p k=lE f Sk()ix()]2)F(x)dVN,0(x).

BN,O BN,O [O,T] N

t I tN
PROOF. Simply let ek(tl,..-,tN)= f ---f Ck(Sl,-..,SN)dSN...dsI and use

0 0

Theorem 4 and the fact that SN(1 and (BN,0) are isometrically isomorphic.

COROLLARY 4. (Theorem 4.2 of [8]). This is the case N 2 in Corollary 3

above.

In our next corollary we consider m copies of N-parameter Wiener space BN,0. Yoo

and Chang in [18] worked with functions in SN(m and the corresponding Banach algebra

COROLLARY 5. Let (H,B,v) m m m (R)(HN,0,BN,0,VN,0). Let {j}j=l
functions on [0,T]N. Then for each p > 0 and each F in SN(m),

f F(px)dvs,0(x)
mBN,0

2 m n
-lim ,-mnf exP{2a r s f Ck(;)fixj()]2}F()d,0().
n- j= 1 k=lmBN,O

c. Other Spaces. Ahn et al [17] established a very general theorem insuring that

many functions of interest in Feynman integration theory and quantum mechanics are in

5(B) for various abstract Wiener spaces (H,B,v).

COROLLARY 6. All of the functions discussed in Corollaries 1-11 of [17] satisfy the

e (R)
is a CON set of functions in the correspondingchange of scale formula (3.4) where { j}j=l

Hilbert space H.

COROLLARY 7. All of the functions considered in [6,9-16] satisfy the change of

e (R)
is a CON set of functions in the appropriate Hilbertscale formula (3.4) where { j} j=l

space H.

PROOF. These functions all belong to some .’(B) or S(m).

be a a CON set of
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