A DYNAMIC AND EFFICIENT PARALLEL
INDEX STRUCTURE FOR TEMPORAL

DATABASES

By
HANI HAFEZ
Bachelor of Science in Engineering
Alexandria University
Alexandria, Egypt

1979

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
July, 1996

A DYNAMIC AND EFFICIENT PARALLEL
INDEX STRUCTURE FOR TEMPORAL

DATABASES

Thesis Approved:

H &

Thesis Adviser

£ fe A
Hhovzs C Colling

Dean of the Graduate College

ACKNOWLEDGMENTS

I wish to express my sincere gratitude to my major adviser, Dr. Huizhu Lu for all
her effort, invaluable guidance, support, patience, and friendship. I also wish to express
my deep appreciation to my committee members, Dr. G. E. Hedrich, and to Dr. Jacques
LaFrance for their experienced advice, support, and encouragement.

I would also like to express my sincere appreciation to Miss Elaine Burgess,
coordinator of the international services office for her enormous support, precious
friendship, and for offering me an assistantship.

Very special appreciation goes to my parents, Mr. and Mrs. Hafez, and to my wife

Manal for their support, sacrifice, and understanding during my study for this degree.

il

TABLE OF CONTENTS

Chapter
I. INTRODUCTION

II. LITERATURE REVIEW

III. C-TREE CONCEPT AND DIRECTORY ORGANIZATION .
C-tree Concept .
C-tree Structure and Space Decomposmon Strategy
The Parallel Processing Scheme

IV. UPDATE OPERATIONS
Search .
Insertion
Deletion :
Illustrative Example on Mam Operatmns

V. PERFORMANCE ANALYSIS AND CONCLUSION
Storage Efficiency .
Query Processing Efﬁcuency :
Conclusion .

REFERENCES

APPENDIXES .
APPENDIX A - DEFINITIONS AND ACRONYMS

APPENDIX B - IMPLEMENTATION SOURCE CODE

v

Page

11
11
14
17
21
21
24
30
31
38
39
49
57
59
62
62

66

Table

LIST OF TABLES

Students Relation .

Summary of Space Cost Comparison between Parallel
C-trees, TP-index, and Time Index

Summary of Search Performance Comparison between TP-index
and Time Index from the Study of Shen, Ooi, and Lu

Summary of Search Performance Comparison between Parallel
C-trees, TP-index, and Time Index

Page

p

.46

.49

.54

Figure

10.

1 1
12,
13.
14.
15.

16.

LIST OF FIGURES

Interval-spatial Transformation of the Students Relation
Examples of Mapping Queries to Regions in the Tempoarl Space
Examples of Regions Address Expressions

Example Illustrating the Decomposition of a Complex Range
Query into Simple Range Query .

The Three Values Assigned to Each Data Point .
Time Levels and Level Granularities .
Organization of the Parallel Indexing Scheme

Example of Simple Range Query with Four Corner Points
in Each Time Level e

Illustration of Time Levels Corner Points

The Temporal Space and the Correspondmg C-tree
before any Insertions . :

Insertion of the New Points P1, P2, P3

Insertion of Point P4 .

Insertion of Points PS5, P6

Insertion of Point P7 .

Insertion of Point P8 .

Space Cost of Each C-tree Type, where Maximum Node

Capacity (M)=30, Level Granularity=365, and
Mean Duration/Mean Interarrival Time=100

vi

Page
12
13

-

.18
.19
.19

.20

22

.27

o ¥
i33
34
.
S

.36

40

17.

18.

19.

20.

21

22.

23,

24.

23,

26.

27,

28.

Space Cost of Each C-tree Type, where Maximum Node
Capacity (M)=30, Level Granularity=365, and
Mean Duration/Mean Interarrival Time=300

Space Cost of Each C-tree Type, where Maximum Node
Capacity (M)=30, Level Granularity=365, and
Mean Duration/Mean Interarrival Time=500

Number of Time Levels of Each C-tree Type, where Maximum Node
Capacity (M)=30, Level Granularity=365, and
Mean Duration/Mean Interarrival Time=100

Number of Time Levels of Each C-tree Type, where Maximum Node
Capacity (M)=30, Level Granularity=365, and
Mean Duration/Mean Interarrival Time=300

Number of Time Levels of Each C-tree Type, where Maximum Node
Capacity (M)=30, Level Granularity=365, and
Mean Duration/Mean Interarrival Time=500

Space Cost of Each C-tree Type, where Maximum Node
Capacity (M)=62, Level Granularity=365, and
Mean Duration/Mean Interarrival Time=100

Space Cost of Each C-tree Type, where Maximum Node
Capacity (M)=62, Level Granularity=365, and
Mean Duration/Mean Interarrival Time=300

Space Cost of Each C-tree Type, where Maximum Node
Capacity (M)=62, Level Granularity=365, and
Mean Duration/Mean Interarrival Time=500

Effect of Changing the Level Granularity on the Space Cost of
C-trees Type "A", where Maximum Node Capacity (M)=62,
and Mean Duration/Mean Interarrival Time=100

Effect of Changing the Level Granularity on the Space Cost of
C-trees Type "B", where Maximum Node Capacity (M)=62,
and Mean Duration/Mean Interarrival Time=100

Number of Time Levels, where Maximum Node Capacity (M)=62,
Level Granularity=365, while Varying Mean Duration/ Mean
Interarrival Time . S

The Region of the First Query under Analysis

vii

.41

.41

.42

.43

.43

44

45

.45

.

.48

.48

. 49

29,

30.

Fi.

32,

33.

34

35.

36.

37,

38.

389

The Region of the Second Query under Analysis
The Region of the Third Query under Analysis

Search Performance of C-trees Type "A" for a Simple Range
Query, where Maximum Node Capacity (M)=30, and
Level Granularity=365 S

Search Performance of C-trees Type "B" for a Simple Range
Query, where Maximum Node Capacity (M) =30, and
Level Granularity=365

Search Performance of C-trees Type "C" for a Simple Range
Query, where Maximum Node Capacrry (M)=30, and
Level Granularity=365 c e ou 4

Search Performance of C-trees Type "A" for a Simple Range
Query, where Maximum Node Capacity (M)=62, and
Level Granularity=365 S

Search Performance of C-trees Type "B" for a Simple Range
Query, where Maximum Node Capacity (M)=62, and
Level Granularity=365

Search Performance of C-trees Type "C" for a Simple Range
Query, where Maximum Node Capacity (M)=62, and
Level Granularity=365 « ow @ m s

Effect of Changing the Level Granularity on the Search
Performance of C-trees Type "A", where Maximum
Node Capacity (M)=62

Effect of Changing the Level Granularity on the Search
Performance of C-trees Type "B", where Maximum
Node Capacity (M)=62

Effect of Changing the Level Granularity on the Search

Performance of C-trees Type "C", where Maximum
Node Capacity (M)=62

vill

.49

.50

.51

.52

. 92

.92

.53

33

.55

56

. 56

CHAPTER I

INTRODUCTION

A conventional database can store only one version of information, because the new data
always replace the old one in an update operation. Despite the importance of past data, it was
discarded, because it was not economically possible to keep it. However, with the
development of newer computer systems, and specifically storage devices, emerged the
development of temporal databases. According to Ling (1988), a temporal database
maintains past data, while new data are appended to it.

Ling (1988) defined a temporal model by three main features: (1) A conceptual
theoretical representation. This is mainly concerned with the time attributes supported by the
model, and how these time attributes are represented. (2) A temporal query language. This
is the communication tool between a user and the model. (3) A physical representation. This
addresses the implementation aspect of the model. Thus, this feature mainly considers the
storage structures required for implementing the temporal model.

There can be two main approaches to the implementation of a temporal model. The first
approach is designing a complete new model. The second approach is based on extending
an existing model. Most proposed temporal models, e.g. Gadia (1993), Dayal (1992), and
including our research, belong to the second approach. The reason behind this is that it is not
practical nor economical to replace existing models that handle nontemporal data with new
data models that handle temporal and nontemporal data.

The storage structure is not only the core of the physical representation of a temporal

model, but also the most difficult part. Conventional database indexes, like the B-tree

presented in Comer (1979), cannot be directly applied without modification to temporal
databases for three major reasons: (1) Temporal databases tend to be very large. (2) The
domains of temporal queries' semantics are large. (3) Temporal data are mostly represented
as intervals, which cannot be ordered like linear dimensional data. Consequently, efficient
handling of temporal data, implies the use of indexes designed specifically to meet the
requirements of temporal databases.

Since the choice of indexing techniques is of paramount importance for temporal
databases, much research has been focused on the design of new access methods for
temporal databases, Lu (1993), Elmasri (1990), Gunadhi (1993), and Kolovson (1993).
According to literature, one area where research was very few, is parallel processing support
for temporal databases. Although multiprocessor architectures have been widely used in
practical applications, very few researchers have discussed temporal databases in a
multiprocessor environment, e.g. Bassiouni (1990), and Leung (1992). Although in general
these few researchers targeted toward improving the performance of temporal query
processing, their research was focused in one of two main areas. The first area was
concerned with improving query translators in order to be able to handle temporal and
nontemporal queries. The second area dealt with improving response times by applying data
fragmentation strategies.

The objective of this research is to develop a new index structure that is capable of
efficiently handling a valid time temporal database in a parallel processing environment. In
particular, this new mechanism aims at improving the response times for processing
temporal queries through the utilization of several identical shared memory parallel

processors. Since the size of data in temporal databases is very large, improving the space

complexity is also a vital issue in our research.

In this research, a new dynamic index structure called the C-tree is proposed to handle
temporal data in valid time databases. It is based on the relational data model with tuple
timestamping. The authors propose a new coding system which is targeted toward improving
search performance in large temporal databases. The new coding system efficiently handles
simple queries. A new parallel processing scheme is also proposed to improve response time
for simple and complex range queries. The scheme is based on the decomposition of
complex range queries into three different types of simple range queries. The resulting
simple queries are handled by parallel C-trees, such that each type of simple query is handled
by the appropriate type of C-trees. For optimized performance, each C-tree occupies a
processor. The parallelization is enhanced by vertical, and horizontal data partitioning. An
important advantage of the new parallel processing scheme is that any complex range query
can be processed in a time close to the time of processing a simple range query. Another
advantage is that only C-trees of one type required for processing a query can be loaded to
main memory, while C-trees of the other two types may be left on the secondary storage
device.

In the next chapter, several index structures for temporal databases are reviewed from
the literature. The C-tree concept, its directory organization, and the parallel processing
scheme are presented in chapter III. Algorithms for update operations are presented in
chapter IV. Evaluation of the performance of the new indexing mechanism, comparison with

other temporal indexes, and conclusion are given in chapter V.

CHAPTER II
LITERATURE REVIEW

Recently computer science research related to temporal databases have been focused on
introducing new indexing structures that are specially designed to handle temporal data.
Several indexes have been currently proposed, e.g. Lu (1993), Elmasri (1990), Gunadhi
(1993), and Kolovson (1993). These temporal indexes have four common features : (1) They
adopt the view of time as equidistant discrete points in the set {0, 1,, now}, where now
denotes the changing value of the current time. This implies the selection of some
granularity, e.g. day, year, ..etc. (2) They represent a temporal relation by a set of intervals
in the time dimension, where each interval is specified by a starting and an ending point. The
value of an object is assumed to be constant during an interval. (3) Updates occur in append
mode, keeping past versions in the database, thus deletions do not generally occur.
Insertions of new object versions occur mostly in increasing time.

Currently proposed temporal indexes can be classified by the kind of time they support.
For example, the time split B-tree (TSB-tree) presented in Lomet (1993), supports
transaction time, while the time polygon index (TP-index), in Lu (1993), supports valid
time. However, some indexes support both valid and transaction times, e.g. the append-only
tree (AP-tree) in Gunadhi (1993). In the following we discuss some examples of temporal
indexes that support at least valid time, since this is the area closely related to our thesis.
Also, since many temporal indexes were designed using spatial indexing concepts, some

related spatial indexes are also reviewed.

The time index, introduced by Elmasri (1990), is one of the basic indexing techniques

I:'E:
.
E- :'
--s

for temporal data. It was designed to deal with queries relating to starting or ending time, e.g.
"Retrieve all tuples whose starting time is between time a and time b." In addition to the
regular attributes, each record has an additional interval attribute called valid time. The time
index supports object versioning, thus records are used to store more than one version for
one object. The versions of an object are linked to the current version. Since older object
versions are never deleted, the index supports append-only databases. The main idea of the
time index is to maintain a set of linearly ordered indexing points on the time dimension. An
indexing point is created where a new interval starts or terminates. A regular B+-tree, in
Comer (1979), is used to index the totally ordered indexed points. Each entry in a leaf node
at point T has the form [T, bucket] where bucket is a pointer to a bucket containing pointers
to object versions. In temporal databases it is highly likely to have a large number of object
versions , and many of these will be repeated from the previous indexing point. To reduce
this duplication only the leading entry of a leaf node includes all object versions, while a
nonleading entry in a leaf node keeps only the incremental changes. According to Lu (1993),
these duplications may still decrease space utilization and query efficiency.

Elmasri (1991) introduced three variations of the time index. One proposed variation
called the separate variation separates the incremental and decremental pointers into separate
buckets rather than being stored in one bucket called the incremental bucket in the original
time index. This improves the search time for an interval query. Additional storage space is
needed but not substantial. Other two variations were proposed called variation 1, and
variation 2. These two variations were based on the idea that for a given particular time
interval, object versions can be classified into six groups according to the relation between

the starting, and ending points of each object version, and the particular interval. In the two

:
:
;
;
‘

variations three buckets -representing three of the classified groups- are associated with each
leaf node. In this way duplications are reduced. The difference between the two variations
is in the choice of the class of object versions to be stored in each of the three buckets. For
the time index variations, the search time measured in number of total blocks accessed, while
changing the average number of versions per object was almost the same for the three
variations, and in general better than the original time index. Under the same conditions
variation 2 required the least storage cost.

In the time polygon index (TP-index), presented by Lu (1993), temporal data are viewed
as spatial objects in a multidimensional space. Each temporal interval is mapped into a data
point in a two-dimensional temporal space. Queries are translated to regions in the space.
Data points are grouped such that each group is stored in a page, and search time 1s reduced.
Analysis of temporal queries showed that partitioning the space into rectangles is not ideal
for temporal queries. The partitioning strategy uses polygons with similar shapes to the
query regions in order to improve the hit rate. A set of five well-formed shapes were defined.
A restricted partitioning policy that maintains the polygon shapes to the well-formed ones
was used. The structure of the used index is similar to a B+ tree. An entry in a nonleaf node
has the form [child-pointer, polygon], where child-pointer points to a child node and polygon
describes the space of the child node. An entry in a leaf node has the form [bucket-pointer,
polygon] where bucket-pointer points to a data bucket where data points are stored. Polygon
refers to the polygon containing the data points. The root of a TP-index has at least two
children, unless it is a leaf node. Each node has between m and M entries, unless it is the
root. The polygons included in one node do not overlap. To avoid poor storage efficiency,

the index allows more than one entry to point to the same bucket. Although the TP-index is

not a height balanced tree, only one path is traversed to search for one data point. When the
current time increases from now1 to now2 the temporal space expands.

The append only tree (AP-tree), presented by Gunadhi (1993), uses time-interval
representation. It assumes that all relations are in first temporal normal form (1TNF), which
means that for each combination of surrogate, and time attributes, there is at most one
temporal attribute value. The structure of the tree is such that the leaves contain the starting
times. The leaf pointers point to tuples with the same starting time. Access to the tree is
either through the root or through the right-most leaf. Insertions are done rapidly by
accessing the rightmost leaf. No splitting of nodes is needed. If the node is full, a new leaf
is created to its right. In the worst case, a new node is created from the root to the leaf node,
and may be a new root is created. In case of queries based on the time attributes, search is
done using the index, i.e. starting from the root. In case of queries based on the surrogate,
forward scan may be used, i.e. accessing the tree through the rightmost leaf. Deletions from
the AP-tree require reconstruction of the tree to maintain balance, but this drawback does
not affect the index performance because deletions rarely occur in an append-only database.

The nested surrogate & time (ST-tree), explained by Gunadhi (1993), is a variation of
the AP-tree, designed to mainly answer queries where the primary qualification is on the
surrogate. The structure consists of nested trees, in which the index in the first level is a
modified B+ tree, while the index in the second level is an AP-tree. The insertions are easily
carried out, and balancing of one level can be separated from the other.

Two other variations of the AP-tree were proposed by Gunadhi (1993). The first is the
composite index, in which the key is formed by the concatenation of the surrogate and the

time attribute. The structure used a B+ tree. The other variation is called the sparse tree,

which indexed only the surrogate values. The time attributes were stored in a list that could
be accessed from leaf nodes. This list consisted of a time value, and a tuple pointer.

For indexes based on the AP-tree, a comparison between the three variations based on
the AP-tree was conducted. The results showed that current query processing is cheaper
using the nested and the sparse index, than the composite index. For arbitrary queries
involving historical data, the performance changed with the relation size. For storage cost,
the composite approach on the average was the most expensive. The sparse index showed
the best storage efficiency.

According to Leung (1992), the first published paper related to using multiprocessors
with temporal databases was by Bassiouni (1990). It introduced the TRRDS (temporal
RRDS) model, which was built on top of the RRDS (relational replicated database system
) model. Bassiouni used a separate B+ tree for each attribute in the database. The temporal
attributes, Start and End were also handled by two B+ trees. The focus of his research was
on translating temporal queries to nontemporal queries that can be handled by the RRDS.

Among the very few recent research supporting multiprocessors in temporal databases
is by Leung (1992), who proposed a parallel processing strategy for temporal query
processing. Their proposed strategy used a data model in which time points were regarded
as natural numbers {0, 1,now} and are monotonically increasing. A temporal relation was
denoted as X (S, V, TS, TE) where S is the surrogate, V is a time varying attribute. The
lifespan of a tuple is denoted by the interval [TS, TE]. To facilitate query processing of
complex temporal joins in a multiprocessor environment, they suggested a data
fragmentation strategy based on range partitioning the timestamped values along the time

dimension. The number of partitions must be at least as the number of processors. The

OXFY ATIOREA STATH TIN YV Oy

partitioning may be based on TS or TE value. Each partition is assigned to a processor. The
strategy included three phases. (1) Replication Phase: The state information based on stream
processing is constructed for every partition. The state information is a summary of the
history of a computation on the portion of data streams that have been read, e.g. copies of
tuples for join operations, or partial sum for aggregate functions. (2) Join Phase: Each
processor executes the query using its local relation fragments and the constructed state
information. (3) Merge Phase: All the results are merged and duplicates are eliminated.

Chaudhry and Elmasri (1994) proposed declustering a temporal index in a single
processor, but multiple independent disk architecture. In their research, they employed the
time index. They suggested declustering the temporal data, such that it can be accessed
simultaneously on multiple disks and thus parallelizing the I/O operation, and therefore
improve query processing efficiency.

Kolovson and Stonebraker (1991) introduced a family of indexes called the segment
indexes. Segment indexes combined the memory resident segment tree, explained in
Kolovson (1993), with multiway trees based on paging. The segment index was designed
to index interval, or point data. The main features of the design were as follows. (1) The
index records could be stored in leaf or nonleaf nodes. (2) The index node size may vary.
These features meant that by estimating the input data distribution, the index may be initially
built then dynamically adopted to the input date. This last feature was called skeleton
indexing. An example of a segment index is the SR-tree which combines the memory
resident segment tree with the R-tree introduced by Guttman (1984). An example of the
skeleton index is the skeleton SR-tree presented in Kolovson (1991). The skeleton segment

indexes showed substantial improvement in search operations. However, they are only

OYEFT ATYMRTA ST ATE TNV ooy v

suitable for uniform, or known data distributions.
Among the efficient attempts to parallelize spatial indexes, is the multiplexed R-tree (
MX-R-tree) presented in Faloutsos (1992). It was proposed to maximize parallelism for
large range queries, and minimize the number of accessed disks for point queries. The design
is based on an R-tree, with several disks attached using cross-disk pointers, in a uni-
processor environment. A strategy called the proximity index is used to select a disk for a
new node. The proximity index checks for similarity between the new node and other R-tree
nodes already on a disk. The disk with the least similarity is chosen. The main two reasons
for using multiple disks are: the average disk access time is much bigger than the processing
time of a page in memory, and the size of the data may be very large to fit on one disk. In
the MX-R-tree, the root node is kept in main memory, while other nodes are on disks.
Results showed that it improved response time for large queries. The uni-processor
architecture was chosen to avoid communication costs of multiprocessors.
The literature review indicates that:
* The full potential of a temporal database can be achieved by employing indexing
structures that are specially designed to provide efficient storage space, and query processing
for temporal data.
* Although there has been increasing interest in general in multiprocessor machines, very
few researchers discussed parallel processing support for temporal databases, despite the
fact that temporal databases are I/O intensive, and the search operations are mostly range
queries on the time dimension.
* Temporal databases can benefit from multiple disks, because of the quick growth in size

of temporal data, and to parallelize the I/O operations, and thus improve query processing.

10

OYIET ATIMRTA ST AT TTNTS

CHAPTER III
C-TREE CONCEPT AND DIRECTORY ORGANIZATION

In the following the concept of the C-tree, its structure, and the space decomposition

technique are presented.

C-TREE CONCEPT

The concept of interval-spatial transformation was successfully applied in the TP-index
presented Lu, Ooi, and Shen (1993). In this thesis, the interval-spatial transformation concept
presented by Lu, Ooi, and Shen is extended to support parallel C-trees.

According to the basic interval-spatial transformation, each tuple in the temporal data
can be mapped into a point in a two dimension isosceles triangular space. The X dimension
of the space represents the event time, while the Y dimension represents the interval of the
event. The hypotenuse of the triangle intersects with the X dimension at point (now, 0), and

with the Y dimension at point (O, now), where now is the current time. In this thesis, the
hypotenuse of the triangular space is denoted by the front line. As the current time
progresses, the front line moves along, expanding the temporal space. Consider the students
relation in table 1. This relation keeps record of students’ beginning of study, and finishing
dates at a school. Each tuple in the database is mapped into a point in the temporal space
using the interval-spatial transformation as shown in figure 1.
The main advantage of the interval-spatial transformation concept, is that it allows
temporal queries to be represented by spatial regions in the temporal space. For instance, the

answer to the query that asks for all students who began studying at the school on or before

11

;
;
% !
E

Student Student Study Period
Id. Name [From - To]
tl Kung, T. [0-3]
t2 Fred, J. [0-4]
t3 Bently, G. [1-2]
t4 Carey, L. [2-4]
t5 Smith, C. [3-7]
t6 Miller, O. [3-5]
t7 Stout, K. [4-7]

Table 1 Students Relation
A
now k Interval
6
5
44
Kk
2
|
Event Time

P

01 2 3 4 5 6 now

Figure 1 Interval-spatial Transformation of
the Students Relation.

day S1, or have studied at the school for I1 days or less, corresponds to the shaded regions

in figure 2a. Another query that asks for all the school students as of day S2, is answered by

the shaded region in figure 2b.

For parallel processing of temporal queries, this thesis extends the basic interval-spatial
transformation. The extension is based on the following important observation. A range

query is represented in the temporal space by the use of at most three types of

12

decomposition lines:

y Y 4

v ™

2 k ik
AU X N
S 32

(a) Regions Corresponding
to the First Query.

(b) Region Corresponding to
the Second Query.

Figure 2 Examples of Mapping Queries to Regions in the Temporal Space

-Type "one" lines: include lines parallel to the X-axis.
-Type "two" lines: include lines parallel to the front line.

-Type "three" lines: include lines parallel to the Y-axis.

Based on the above classification, a complex range query is defined as a query that is
represented in the temporal space by using more than one type of decomposition lines.
Meanwhile, a simple range query is defined as a query that is represented by only one type
of decomposition lines. Accordingly, three types of C-trees are defined, namely types "A",
"B", and "C." A C-tree of type "A" is a C-tree that decomposes the space by type "one" lines.
A C-tree of type "B" is a C-tree that decomposes the space by type "two" lines. A C-tree of
type "C" is a C-tree that decomposes the space by type "three" lines. Consequently, each
type of C-trees is appropriate for handling a special type of simple range queries. The

combination of types "A", "B", and "C" can efficiently handle complex range queries.

13

C-TREE STRUCTURE AND SPACE DECOMPOSITION STRATEGY

A C-tree is defined as a height balanced tree with the following properties. All leaf nodes
are at the same level. The first node in the tree is the root. Any node that is not the root
points to its parent. A node in the C-tree has a maximum capacity of M entries. Each entry
stores a string of symbols called the address expression, a pointer, and an integer or a
floating number called the range field.

An address expression is a string of symbols. The set of symbols from which an address
expression is formed is {0, 1, D, + *}. An address expression describes a region in the space.
It gives the path to the region, and the lines bounding the region. The " 0 " symbol refers to
a region below, or on the left of a decomposition line. The " 1" symbol refers to a region
above, or on the right of a decomposition line. The " * " symbol with no preceding symbols,

refers to the whole space. The " * " symbol at the end of a sequence of symbols indicates the
end of an address expression. Figure 3 illustrates examples of address expressions It shows
the address expressions of the regions resulting from a single space decomposition in a C-
tree of type "A." It can be observed from figure 3 that the address expression of a partitioned
region dictates the address expressions of the resulting two subregions. One of the two
subregions -usually the one with more data points- is given a new address expression
according to its position from the decomposition line, while the other region keeps the same
address expression of the overflowing original region. For instance, the region " * " can be
decomposed into " 1* " and " * ", or it can be decomposed into " 0* " and " * ". Similarly,
the region " 0* " can be decomposed into " 00* "and " 0* ", or into " 01* " and " 0* ."
The other symbols, which are the " + " symbol, and the " D " symbol, are considered

special purpose symbols. The " + " symbol is used to concatenate two address expressions,

14

OVEET ARIORE A ST AT TINTUETERCEree

e.g. 10* + 01*. The " D " symbol is the only symbol that can exist after the " * " symbol. It
indicates a special case of space decomposition. This special case takes place if the regular
space decomposition cannot be performed because all the points in the region are on one
straight line parallel to the direction of partitioning. Further elaboration on the use of the

special purpose symbols is included in the update algorithms in chapter IV.

(a) Empty Space

(b) The Space after the First Partition

Figure 3 Examples of Regions Address Expressions

15

YIPY ATTIARETA CTATSY ITNTVYFEFBCOYTY

The region described by the address expression of a leaf node entry is the region that
includes the data points in the bucket of that entry. The region described by the address
expression of a nonleaf node entry includes the regions stored in all the occupied entries of
the child node. The address expression stored in a nonleaf node entry, is the same address
expression of the rightmost entry of the child node. The address expression of the rightmost
entry of a node has to be either an asterisk " * ", or a prefix (not including the " * " symbol)
in all the address expressions in this node. If the address expression of a region is a prefix
in the address expression of another region, then the first region includes the second region
For instance, let region R1 have the address expression " 00* ", and let region R2 have the
address expression " 001* ." Then region R1 includes region R2, because the address
expression " 00* " is a prefix in the address expression " 001* "

The length of an address expression is the number of symbols contained in it, up to and
including the " * " symbol. The length of the longest address expression in the tree is
dynamically stored in the root node. Thus, it is updated with every insertion of a new data
point in the temporal space. The use of an address expression, rather than corner points of
a region, eliminates complicated computations during search operations.

The pointer stored in an entry of a nonleaf node points to a child node, while the pointer
of an entry in a leaf node points to a bucket that includes data points. The range field in each
entry is used to store an integer or a floating number. It is associated with the use of the
special purpose symbol " D ." In other words, if the address expression of an entry contains
the " D " symbol, then the number stored in the range field has to be examined to determine

whether the point can be present in this entry or not. More elaboration on the use of the

range field can be found in the update algorithms presented in chapter IV.

16

O ATINRTA STATE TN T BOPTY

THE PARALLEL PROCESSING SCHEME

The parallel processing scheme is based on the decomposition of complex range queries
into simple range queries. Simple range queries are then handled by parallel C-trees, that
operate on vertically and horizontally partitioned temporal data. Finally the results are
merged to provide the answer to the complex query.

Data partitioning or fragmentation is a common feature among distributed databases, in
which data reside at different sites of a network. According to Meghini and Thanos (1993),
horizontal data partitioning or fragmentation is based on selecting subsets of tuples from a
global relation. This selection may be done according to one or more criteria. In vertical data
fragmentation, the fragments are attributes of tuples. In our proposed parallel processing
scheme, data fragmentation is applied to a very large centralized temporal database. A

centralized database does not incur the overhead cost of communication between sites.

Figure 4 illustrates an example of decomposing a complex range query into simple range
queries. The complex query represented by the shaded areas in figure 4a asks for the students
who joined the school in the period between day S1 and day S2, or who studied at the school
for a period greater than I1 days and less than 12 days, or who left the school on or before
day S1. The complex query is decomposed into the simple queries represented by the shaded
regions in figures 4b, 4c, and 4d. Thus, any point in the space can be assigned three values
X, v, and j, as shown in figure 5. The x and y values of a point are equal to its X and Y
coordinates in the space, respectively. The j value is calculated from the formula: (x"2 + y*2
)~ 1/2. Based on these three values, the temporal data set is partitioned into vertical subsets,
such that each subset contains one value for each data point. Accordingly, each subset is

handled by one type of C-trees, where the C-trees of type "A" store the y values of the

17

Oy AT A STATRH ITNTYESSETY

temporal data, while C-trees of type "B" store the j values, and C-trees of type "C" store the
x values. For each data point, each of the three assigned values, is linked with the other two
values via pointers. The three types of C-trees are co-operated in parallel, to answer complex

range queries. For a simple query, one appropriate C-tree type is selected.

AY A Y

12
I1

[2
I

N X

.
S1 S2
(a) Example of a Complex Range (b) A Simple Range Query that Requires
Query. only the Y-value of Each Data Point.
LAY
‘\ L Y
IS

o X & X

S1 S2 S1

(c) A Simple Range Query that Requires
only the X-value of Each Data point.

(d) A Simple Range Query that Requires
only the J-value of Each Data Point.

Figure 4 Example Illustrating the Decomposition of
a Complex Range Query into Simple Range Queries.

18

ey A“(“"A T AT TTNTUEBCOTITY

In order to increase the number of
parallel operations as much as possible,
while keeping even loading balance,
horizontal data partitioning is also employed

as follows. Since the temporal space

expands with time in a well defined

Y

direction, a level granularity is defined as

Figure S The Three Values Assigned
the fixed progressive step of the temporal to Each Data Point..

space. Also, a time level is defined as the

AY

: . expansion
portion of the temporal space associated T 2

¥of space

with each level granularity, as illustrated

time levels
in figure 6. This means that the whole

temporal space consists of time levels that
lev?] ,

_ . granularity
can be numbered starting with zero, and > X
- Pt > >
ending with the number that corresponds to level
granularity
the current time level, as illustrated in Figure G_Tlme Levels and Level
Granularities.

figure 6. Accordingly, the records in the
temporal data set are partitioned into horizontal subsets, such that each subset contains the

records of one time level. Each subset, or each time level, is handled by three C-trees of

types “A“, IIBI!, and "C."

The organization of the parallel processing scheme is illustrated in figure 7. It consists

of mainly two parts:

1. A sorted array representing the dynamic time levels.

19

ORFT ATIOREA STATE TN e

2. Parallel C-trees, such that each time level points to the roots of three different types of C-

trees.
The above organization has the following advantages:

* The sorted array of dynamic N time levels can be searched using the concept of binary

search in O(log N) .

* The search in the C-trees can be performed in parallel, where the search time in a C-tree,

which is a height balanced tree of n nodes, is O(log n) for one access.

* Individual C-trees corresponding to different time levels can be easily isolated for

maintenance from the index without affecting the rest of the C-trees.

Sorted array of dynamic time level s

NN A

[N\

YV

To buckets storing data points

Figure 7 Organization of the Parallel
Indexing Scheme

20

AT ATIANEA STATE TINTUEESPTy

CHAPTER IV
UPDATE OPERATIONS

In the following, the main algorithms for search, insertion, deletion are presented. An

illustrative example is also given at the end of this chapter.
SEARCH

The search operations are classified into point query search, and range query search.

Algorithm: Point_search

This algorithm searches for a single point in a C-tree.

Input: A pointer to the root of a C-tree, the search point coordinates (x, v, j) in the temporal
space.

Qutput: [A pointer to a node, the entry number where the point was found] or [NULL)].

1. Invoke procedure Find time_level, which returns the time level L of the search point.

2. Invoke procedure Point add exp, which returns the address expression AE of the region

in the space that may include the search point.

3. Let pointer S point to the root of the tree.

4. Search the node pointed to by S, starting from the leftmost entry and toward the right, to
find the first entry E whose address expression is a prefix in AE. If the address expression
of entry E includes the "D" symbol, then examine the number stored in the range field of E.

If the search point lies in the stored range, then goto step 5. Else if not on the range, continue

the search toward the right to find the appropnate entry E.

21

ORFY ATSAREA STATE TINTVERSRETY

5. If pointer S points to a nonleaf node, let S point to the child of E. Goto step 4.

6. Otherwise, search the bucket of E. If the search point is found, return the entry number E,

and a pointer to the node of E. Otherwise, return NULL.
Algorithm: Region_search

This algorithm handles a simple range
query by a single type of C-trees as follows. L Y
As explained earlier, a simple range query is

represented in the temporal space using one

type of decomposition lines. This means that

a =
a simple query can have a triangular shape 1 \k
Figure 8 Example of Simple Range Query with
Four Corner Points in Each Time Level

5 2%

with three corner points or a polygon with
four corner points. Figure 8 illustrates an
example of a simple query region whose
corner points in time level "0" are (a, b, f, €) and its corner points in level "1" are (e, f, c,
d. The corner points of the whole simple query region are (a, b, c, d).

Input: A pointer to the root of a C-tree, the corner points of the whole simple query region

R.
Qutput: The data points in the simple query region R.

1. Given the corner points of the whole simple query region R, invoke procedure
Find time level for each corner point. Sort the returned time levels to find the minimum,

and maximum time levels, Lmin and Lmax, respectively. Do the following steps for each

selected time level L between and including Lmin and Lmax.

22

Y s A“(““\ SNTATE. TIN TV BOeres

(a) If the first arbitrary decomposition line would intersect R decomposing it into two
regions R1 and R2, then do (b) for each of R1 and R2, then concatenate the resulting address
expressions with a " +" symbol, e.g. " 10* +01* "

(b) Invoke procedure Region add exp to return the address expression AE[L] of the simple
query region in each time level L.

2. For each selected time level L do the following :

(a) Let S point to the root.
(b) Search node S, starting from the leftmost entry and toward the right, to find all entries
whose address expressions are prefixes in AE[L], or AE[L] is a prefix in each of them.

(c) If the searched node(s) are nonleaf node(s), then descend the tree to the children of the

selected entries. Repeat (b) for each of the child nodes.

(d) Otherwise, retrieve the points in the buckets of the searched nodes.

3. Return all the retrieved data points.

Procedure: Region_add_exp

Input: A time level L, the corner points of the simple query region R in time level L, the

length G of the longest address expression so far in time level L.

QOutput: AE[L] which is the address expression of the simple query region in time level L.

1. Let AE[L] be an empty string.

2. Select the region W, that is the whole space of time level L.

3. If the length of AE[L] is equal to (G-1), then goto step 7.

4. Otherwise, divide the region W, using the type of line associated with the C-tree type.

5. If all the corner points of region R lie below or left of the division line, then let region

23

Iy ATIORTA STATE ITNTVESSYT TV

W be the whole region below or left of the division line. Append " 0 " to AE[L], then goto
step 3.
6. Else if the corner points of region R lie above the division line, then let region W be the

whole region above or right of the division line. Append " 1 " to AE[L], then goto step 3.

7. Otherwise (i.e. the division line crosses region R), append " * " to AE[L].

8. Return AE[L].

INSERTION

Inserting a new point in the database includes inserting three values for each point. These
values are the x value, the y value, and the j value. This is performed in parallel using the

three C-tree types "A", "B", and "C." The algorithm for insertion in each C-tree type is as

follows :

Algorithm: Insert

Input: A pointer to the root of a C-tree, the new data point values (x, y, j), pointer to the

array of dynamic time levels.
Qutput: A pointer to the array of dynamic time levels.

1. Invoke procedure find time level, which returns the time level L of the new data point.

2. If no node in the dynamic array has time level=L, then create one.

3. Invoke procedure Point add exp, which returns the address expression of the region that

can include the new data point.

4. If there is no C-tree in time level L, then create one. Let S point to the root of the C-tree

in time level L.

24

OPT ATIORFA STATR ITNTVEERSFTY

5. Search the node pointed to by S starting from the leftmost entry and moving toward the

right. Select the first entry whose address expression is a prefix in the address expression of

the new point.

6. If pointer S points to a nonleaf node, then let S point to the child of the selected entry.

Goto step 5.

7. Otherwise, place the new point in the bucket of the selected entry.
8. If the bucket overflows, then invoke procedure Split bucket.

9. Return a pointer to the array of dynamic time levels.

Procedure: Find_time level

Input: The level granularity GRAN, the new data point values (x, v, j).

Qutput: The time level L of the new data point.

1. Calculate the time level L of the new point from the formula: L = (x/ GRAN)

2. Return L.

Procedure: Point_add_exp

Input: The time level L of the new data point, the level granularity GRAN, the length G

of the longest address expression so farin L.

QOutput: The address expression AD of a region in time level L that can include the new data

point.
I. Let AD be an empty string.

2. If G=1, this means that the space in time level L has only one region, which is the whole

space L. Thus, AD is " * ." Return AD.

25

ORFT ALIORFA STATE TINTUFRSITY

3. Otherwise, calculate NOW L of time level L from the formula: NOW L =L x GRAN.

4. Invoke procedure Space, which returns the corner points of the space of time level L.

5. Let region R be the space of time level L.

6. If the C-tree is of type "A", divide region R with a line parallel to the X-axis. Else if

the C-tree is of type "B", then divide the region R with a line parallel to the front line. Else
if it is of type "C", then divide the region R using a line parallel to the Y-axis.

7. If the new point lies below or left of the division line, append " 0" to AD. Else if the
point lies above or to the right of the division line, append " 1" to AD.

8. If the length of AD is less than G-1, then let region R be the one in which the new data

point lies. Goto step 6.

9. Otherwise, append " * " to AD. Return AD.

Procedure: Space

Input: A time level L, the time level granularity GRAN.

QOutput: The corner points of the whole space of time level L.

1. Define NOW _L for the current time level L by: NOW_L =L x GRAN.

2. Let the corner points of the space of L be (x1, y1), (x2, y2), (x3, y3), (x4, y4),
respectively, starting from the top left corner of the space, and moving anti-clockwise.

3. As shown in figure 9a, time level L=0 has three corner points as follows: x1=0,
y1=NOW L, x2=0, y2=0, x3=NOW _L, y3=0, x4, and y4 do not exist. Figure 9b shows a
time level L<>0 with four corner points as follows: x1=0, y1=NOW _L, x2=0, y2=NOW L-
GRAN, x3=NOW _L-GRAN, y3=0, x4=NOW_L, y4=0.

4. Return x1, y1, x2, y2, X3, y3, and x4, y4 (if exist).

26

OYIFT ATIMRAA AR TTNTY DOy

(xLyl)

(xLyl) (x2,y2)

X X
(x3,y3) (x4,y4)

(x2.y2) (x3,y3)

(a) The Three Corner Points of the

(b) The Four Corner Points of the
Space of Level " 0 ."

Space of Level " 1 ."

Figure 9 Illustration of Time Levels Corner Points.

Procedure: Split_bucket

This algorithm performs a bucket split when the number of data points exceeds the

threshold value.

Input: A pointer to the root of a C-tree, a time level L, the corner points (x1, y1), (x2,
y2), (x3, y3), and (x4, y4) of the space of time level L, a pointer P to the node where the
bucket 1s overflowing, the entry E whose bucket is overflowing.

Oufput: A pointer to the root of the C-tree.

1. Assume that the only points in the space of L are the points in the overflowing bucket.
2. Let the region R be the whole space of time level L. Let its address expression in L be
AD. Let AD be an empty string.
3. If the C-tree is of type "A", then divide region R using a line parallel to the X-axis. If the

C-tree is of type "B", then divide the space using a line parallel to the front line. Ifit is of

27

Oy ATIANEA STATE TINTVFRSPTY

type "C", then use a line parallel to the Y-axis.
4. If all the points in region R do not lie on one straight line parallel to the decomposition
line, then goto step 6. Otherwise, let AD have the address expression of the overflowing
entry with the symbol "D" appended to it. For example, if the original address expression
of the overflowing entry is " 0* ", then AD will be "0*D ."
5. Find the point in region R, that has the greatest value (y value for type "A", x value for
type "B", j value for type "C"). Also, find the point that has the smallest value. Calculate the
integer F form the formula: F=(The greatest value + The smallest value) / 2
Store F in the range field of the entry. Goto step 11.
6. If the number of points below or left of the division line is greater than the number of
points above or right of the division line, then let R be the region below or left of the
division line, and append " 0 " to AD.
7. Else if the number of points below or left of the division line is less than the number of
points above or right of the division line, then let R be the region above or right of the
division line, and append " 1 " to AD.
8. Else if the number of points is equal, then let R be anyone of the two regions on the sides
of the decomposition line, and append to AD the corresponding symbol (1 or 0).

9. If the overflow still exists, then let region R be the region that is still overflowing. Goto

step 3.
10. Else if there is no more overflow in any region, then append " * " to AD.

11. If there are entries on the right of E, then shift them one entry to the right, creating an

empty entry on the right of E.

12. Let the empty entry on the right of E have the address expression of E. Let AD replace

28

BT ATIARKA STATE TTNTVFRSPTY

the address expression of E.

13. Redistribute the points of the split bucket, such that the points of region R remain in the
split bucket, while the rest of the points are transferred to the new bucket.

14. If node P overflows, invoke procedure Split node.

15. Return a pointer to the root of the C-tree.

Procedure: Split_node

Input: A pointer to the root of a C-tree, a pointer to the overflowing node.
QOuitput: A pointer to the root of the C-tree.
I. Let the splitting node be nodel. Create a new empty node labeled node2. Let the

numbering of entries of nodel, starting from the leftmost entry and moving toward the right,

be 0, 1,..., M+1.

2. Search nodel starting from entry number M and moving toward the left, to find the first
entry that is ot a prefix in each of the address expressions of the entries on its left. If not

found then select entry number M+1. Transfer the selected entry, and all the entries on its

right (if exist) to node2.

3. If nodel is a nonleaf node, update its children nodes with their new parent entries.

4. Invoke procedure Adjust tree. Return a pointer to the root of the C-tree.

Procedure: Adjust_tree

Input: A pointer to a C-tree, a pointer to the split node labeled nodel, a pointer to the new

node labeled node2.

Qutput: A pointer to the root of the C-tree.

29

ORTT ATIANA STATE TINTYFREPTY

1. If nodel is the root, then create a new root, whose children are nodel, and node2. Let the
parent entry of nodel have the same address expression of the rightmost entry of nodel, and
let the parent entry of node2 have the same address expression of the rightmost entry of
node2. Return a pointer to the root of the C-tree.
2. Else if nodel is not the root, then let pointer S point to the parent of nodel. Let the parent
entry of nodel be E1. Let the parent entry of node2 be E2. El is already in node S, but E2
is not. E2 must have the same address expression of the rightmost entry in node2.
3. Shift all the entries on the right of E1 one entry to the right. Install E2 on the right of E1.

4. If node S has overflown, then invoke procedure Split node. Then invoke Adjust tree.

5. Otherwise, return pointer to the root of the C-tree.

DELETION

The importance of deletion in temporal databases is minor, because of the append-only

nature of temporal databases. However, deletion may still be needed for corrections.

Algorithm: Delete

Input: A pointer to the root of a C-tree , the values (x, y, j) of the data point to delete.

QOutput: A pointer to the root of the C-tree.
1. Invoke procedure Point search.

2. If Point_search returns NULL, then return NULL.

3. Else if Point search returns an entry number E, and a pointer P to the node of E, then

remove the point from the bucket of E.

4. If the remaining number of points in the bucket of E is greater than zero, then return a

30

Oy ATIANA STATE IINTVERSFTY

pointer to the root of the tree

5. Else if the remaining number of points in the bucket of E is zero, then consider the
following cases:

(a) The entry E is not the only occupied entry in the node, but it is the rightmost entry,
therefore let the entry on its left have the address expression of E. Remove E from the node.
(b) The entry E is not the only occupied entry in the node and is not the rightmost entry nor
the leftmost, therefore shift all the entries on the left of E one entry to the left, such that E
is replaced by the one on its left.

(c) The entry E is the only occupied entry in the node and it is the leftmost entry, then if the
parent entry Ep of the node of entry E is not the leftmost entry, then remove the node of E,
remove the parent entry Ep and shift the entries on the left of Ep one entry to the left. Else

if Ep is the leftmost entry, then leave empty node as it is to preserve the balance of the tree.

6. Return a pointer to the root of the C-tree.

ILLUSTRATIVE EXAMPLE ON MAIN OPERATIONS

The following is a step by step example to elaborate on the space decomposition
technique utilized within insertion and search operations.
Step 1: figure 10 shows the temporal space and the corresponding empty C-tree before any
insertions. The C-tree is arbitrarily assumed to be of type "A." For the sake of illustration,
we assumed that the maximum bucket capacity is equal to three, and the maximum node
capacity is also three. As shown in figure 10b, the C-tree has only.one occupied entry, which
is the leftmost entry in the root. The address expression stored in this entry is " * ", which

corresponds to the whole space in figure 10a. The tree buckets have no data points, since the

31

STATE TINTUEBOTTY

oy ;‘-[_1{\1\-7 A

tree 1s empty. Thus, an empty C-tree is defined as a C-tree that has one occupied entry with

the address expression " * " in the root node, and zero data points.

¥
A

Y
>

(a) Temporal Space before Insertion. (b) Empty C-tree.

Figure 10 The Temporal Space and the Corresponding C-tree before any Insertions

Step 2: figure 11 shows the location of a new point P1 in the space. To insert a new

point into the C-tree, an address expression is assigned to the new point as explained earlier
in this section in procedure Point_add exp. According to this procedure, the length of the
assigned address expression to a new point is equal to the length of the longest address
expression stored in the root at the time of inserting the new point. In this example, the C-
tree in figure 10b, has only one address expression, containing only one symbol. Thus, the
length of the longest address expression , at the time of inserting P1, is equal to one
Consequently, the address expression of point P1 1s " * ", which represents the whole space
and is the only possible address expression with length equal to one. After P1 is assigned an
address expression, it is ready to be inserted into the C-tree. In general, a search operation
for an insertion starts at the root of the C-tree, and ends by locating the appropriate leaf node

for inserting the new point. In each node, the search starts at the leftmost entry. If the address

32

AT TTATTEFoOrTYy

i Al
S |

OYRFT ATIMRTA

Y
A
%
e I
Pl
P2
P3
*P1
*P3

(a) The Space after Insertion of

(b) The C-tree after Insertion
P1, P2, and P3.

of P1, P2, and P3.

Figure 11 Insertion of the New Points P1, P2, P3.

expression of the searched entry is " * ", or is a prefix in the address expression of the new
point, then the search moves to the child node in case of nonleaf node, and to the data
bucket in case of leaf node. Otherwise, the search moves to the next entry on the right. In this
example, the address expression of P1 is compared with the leftmost entry in the root, and
thus P1 is inserted in the data bucket of this entry, as shown in figure 11b. Similarly, points
P2, and P3 are inserted in the same data bucket.
Step 3: Since the C-tree in this example has a maximum bucket capacity equal to three, then
the insertion of point P4 in the same bucket causes the bucket to overflow. To overcome this
problem, a space decomposition is performed. Since the C-tree is of type "A", then the
decomposition lines are of type "one", i.e. parallel to the X-axis. As shown in figure 12a, the
first decomposition line divides the entire space of the C-tree along the Y-axis into two
regions. The address expression of the region below the decomposition line is " 0* ", while
that of the region above the decomposition line is " 1* ." No further decomposition is

needed, since none of the resulting regions has overflow. Thus, the original entry is split into

33

TR TTNTVEDOPTLY

Paad 4F 1
St o |

YT ATIMRAA

Y
A
0* *
First decomposition T I T
""" o P1 || P2
e P3
P4
*P1
*P3

Y
b

(a) The Space after Insertion of P4. (b) The C-tree after Insertion of P4.

Figure 12 Insertion of Point P4.

two new adjacent entries. In general, the left entry always represents the region with greater
number of points. Special cases in choosing the region to be stored in the left entry, are
explained in procedure Split bucket . The right entry is always assigned the same address
expression as the original split entry. Thus, " * " is assigned to the right entry instead of " 1*
" All the points in the bucket of the original entry, and not in the bucket of the left entry, are
placed in the bucket of the right entry. Figure 12b shows the C-tree after the leftmost entry
is split.
Step 4: Similarly, to insert PS and P6, they have to be assigned address expressions. By
following procedure Point_add_exp, we find that the address expression of P5is " 11* ", and
the address expression of P6is" 10* ." By searching the tree in figure 12b, we find that the
first entry that can include PS5 or P6 is the root's second entry, whose address expression is

" * " Figure 13 shows that points P5 and P6 have been inserted without further space

decomposition.

34

P aal.]
S s |

YT ATIARATA

0* *
[| I
Pl || P2
P3 || PS
P4 || P6
(a) The Space after Insertion of (b) The C-tree after Insertion of
PS5, P6.

PS5, P6.

Figure 13 Insertion of Points PS5, P6.

Step 5: Figure 14a shows the location of the new point P7 in the space.

The address

Y

A
00* | O* >
| | |

Second
"""""" decomposition P1 P4 P2
X e P3 Ps
...... :P.?.--..------ P7 PG
*P]
*P3

(a) The Space after Insertion of P7. (b) The C-tree after Insertion of P7.

Figure 14 Insertion of Point P7.

expression of P7 is " 00* " Thus, P7 can be inserted in the bucket of the leftmost entry in
figure 13b. Since the assumed maximum bucket capacity of the tree is three, therefore the

selected bucket overflows. Thus, a second decomposition is performed as shown in figure

35

e TTNTU TR OTTY
MY ATIARTA QTATYE TTNTY ot

14a. Note that the second decomposition line divides the overflowing region, located below
the first decomposition line. Thus, the entry of the overflowing bucket is split, as shown in
figure 14b. The split entry is replaced by two adjacent entries. The left entry of these two
entries is assigned the region that contains a bigger number of points. Thus, the address
expression of the left entry is " 0* ." The right entry is always assigned the same address
expression as the original split entry. Thus, its address expression is " 0* ."

Step 6: Figure 15a shows the location of P8 in the space. The address expression of P8 is

e

\

Third decomposilion
— line

00% | 0% |10% [* |
C T T i
PL ||P4 [|P2 |iP5 |
P3 P6 :
P7 P8

(a) The Space after Insertion of P8. (b) The C-tree after Insertion of P8.

0* *
00* | 0* 10 | *
B I —
P1 || P4 P2 ||P5
P3 P6
P7 P8

(c) The C-tree after Node Split.

Figure 15 Insertion of Point P8.

36

AR ?"‘.\.“?‘..‘!-"V-"C"r""*'r_‘

Al
ey &

YWY ATITARTA

" 10* ." Thus, it can be inserted in the bucket of the rightmost entry in figure 14b. Since this
causes the bucket to overflow, another space decomposition is performed, as shown in figure
15a. Consequently, the bucket of the rightmost entry is split, as shown in figure 15b.

Since the C-tree in this example has a maximum node capacity equal to three, then a
node split is performed on the root of figure 15b. As presented in procedure Split_node, the
overflowing node is split into two nodes. To select which entries are installed in each node,
a search is performed in the overflowing node of figure 15b. The direction of the search is
from right to left. The objective of the search is to find the first entry E, whose address
expression is not a prefix in the address expressions of at least one entry on its left. In the
overflowing node of figure 15b, E is the entry whose address expression is " 1* ." Thus,
entry E, and all the entries on its left, are transferred to a new node, while all the entries on

the right of E remain in the original node, as shown in figure 15c. Since the split node is the
root, a new root is created. The address expression of a parent entry is always the same as

the address expression of the rightmost entry of the child node as shown in figure 15c.

37

- e T "!\Y*__"_.‘!":- i':."r""—!l.‘

W
- &

OYEFY ATINWA A

CHAPTER IV
PERFORMANCE ANALYSIS & CONCLUSION

In this chapter, we evaluate the performance of each C-tree type and the combination of
the three types. The evaluation focuses on the storage cost and query processing
performance. Our simulation study was implemented on Sequent Symmetry S-81
multiprocessor, using the C programming language. Our study consisted of three
experiments. The first experiment employed our local system parameters. The goal of this
experiment was to make a comparison between the three C-tree types. The second
experiment aimed at comparing the empirical results from our study on the parallel C-trees
with the study of Lu, Ooi, and Shen (1993) on the time index and the TP-index. Accordingly,
the second experiment of our study used the same system parameters of the study of Lu, Ooi,
and Shen. The third experiment focused on studying the influence of the level granularity
as a tuning factor. The selected system parameters in the third phase were the same as the
second experiment.

The system parameters of our local system, and which were used in the first experiment
of the simulation study were as follows: page size = 1k, character = 1 byte, integer = 4 bytes,
pointer = 4 bytes, float = 4 bytes. The maximum number of entries M in a C-tree node can
be calculated from the formula:

M * (address expression + pointer to child + range field number) + pointer o
parent = page size
The address expression is assumed to consist of at most 25 characters, and the range field

number is assumed to be an integer or a float. Thus, from the above formula, M = 30. The

38

¥ B i 5y
»..:14."!""_"," "'“‘g =1

-

YT ATIARTA ©

parameters used in the study of Shen, Ooi, and Lu, and in the second and third experiments
of our simulation study were as follows: page size = 4k, character = | byte, integer = 8 bytes,
pointer = 32 bytes, float = 8 bytes. Thus, from the above formula M = 62, which is also the

same value used for maximum node capacity in the simulation study of Lu, Ooi, and Shen.
STORAGE EFFICIENCY

In studying the storage cost of the parallel C-trees, our simulation study used the same
test data parameters used in the simulation study of Lu, Ooi, and Shen. Thus, we used a
constant number of 100,000 data points, while varying the mean interarrival time (mean
time between two subsequent arrivals), and the mean duration. The space cost was measured
in number of pages (tree nodes).

The study of Lu, Ooi, and Shen shows that in general the space cost of the TP-index is
very low and is independent on the mean interarrival time, or the mean duration. As for the
time index, the space cost changes with the change of the mean interarrival time, and the
mean duration. The space cost of the time index is low, only if both the mean interarrival
time, and the mean duration are small. It increases substantially, if the mean duration is large
compared to the mean interarrival time. Their explanation for this was as follows. If the
mean interarrival time was small, multiple tuples arriving at the same time was more likely,
and thus the number of indexing points was reduced leading to a smaller tree. If the interval
duration was large compared to the interarrival time, the same tuple was duplicated in many
leading buckets, and thus creating a larger storage space. The space cost of the time index
was five to eight times higher than the TP-index.

The empirical results produced from the first experiment of our simulation study on the

39

“r"!'.— TTATTY "D C"'!""""!_'

ST A
et |

YWY ATIARTA

paralle] C-trees are shown in figures 16, 17, 18. It can be observed from the charts that the
space cost of C-trees of type "C" is higher than the other two types "A" and "B ." This can
be explained as follows. Temporal databases tend to have a high degree of overlapping
between time intervals. Thus, data points tend to form close clusters along the X-axis. Recall
that a C-tree of type "C" uses decomposition lines of type "three", i.e. parallel to the Y-axis.
Thus, a C-tree of type "C" uses more decomposition lines to decompose the closely
clustered points along the X-axis, and consequently acquires more space than the other two

indexes in which 1t is less likely to have the same high degree of clustering.

-—.— C-trees type A -—“— C-trees type B I
i C-trecstype C =i Total

2000

2
(=]

Space Cost (no. of pages)
=
S

1 2 3 4 5 6 7 8 9 10
Mean Interarrival Time

Figure 16 Space Cost of Each C-tree Type, where Maximum Node Capacity
(M)=30, Level Granularity=365, and Mean Duration / Mean Interarrival
time= 100.

40

-

> vy yw -
"h314‘1'-r'?? rTATTVroCTT™

YT ATIANTA

:

g
|
k

Space Cost (no. of pages)

3
i\

1 2 3 4 5 6 7 8 9 10
Mean Interarrival Time

Figure 17 Space Cost of Each C-tree Type, where Maximum Node Capacity

(M)=30, Level Granularity=365, and Mean Duration / Mean Interarrival
time = 300.

i _—i— C-tree type A R _—*- C-tree ly; B
== C-treetypeC ==ffff=Total

Z
T

2000 -

e

-

-

-

%= 1500

g

g

& 1000+ i e
. “___..-——

2

]

=
S
x

1 2 3 4 5 6 7 8 9 10
Mean Interarrival Time

Figure 18 Space Cost of the Three C-tree types, where Maximum Node Capacity
(M)=30, Level Granularity=365, and Mean Duration / Mean
Interarrival Time = 500.

41

> T TV TV T Py ¥
ATT IR T L

YT A TG
Al

YT ALY/ "RAA

The charts also show that the individual space cost of each C-tree type slightly increases
by the increase in mean interarrival time, or in mean duration. This is explained due to the
increase in number of required time levels with the increase in mean interarrival time, or in
mean duration. Since each time level is indexed by one C-tree of each type, then the increase
in mean interarrival time, or in mean duration, implies increase in number of required C-
trees. Figures 19, 20, 21 show the change in number of time levels as the mean interarrival
time and the mean duration are varied. The charts show that the number of time levels

increases with the increase in mean interarrival time, or in mean duration.

7] C-trees type "B"

. C-trees type "A"
[:I C-trees type "C"

160 —

80

Number of Time Levels

5 6 7
Mean Interarrival Time

Figure 19 Number of Time Levels of Each C-tree Type, where Maximum Node

Capacity (M)=30, Level Granularity=365, and Mean Duration / Mean Interarrival
Time = 100.

42

- W TTVWY LSrwe— ¥
- B Pl b+ 2

OTA TR

ey &

MYy ATIAREA

B Ctreestypea" [] C-treestype "B" —|
[] C-treestype™C"

100 —

Number of Time Levels

T 1 - - :.I.'. — | :
1 2 3 4 5 6 7
Mean Interarrival Time

Figure 20 Number of Time Levels of Each C-tree Type, where Maximum Node

Capacity (M)=30, Level Granularity=365, and Mean Duration / Mean Interarrival
Time = 300.

| —_—
| . C-trees type "A" [| C-treestype "B"
[] C-treestype c" I

120

100 -

Nomber of Time Levels

1 2 3 4 S 6 7 8 2 10
Mean Interarrival Time

Figure 21 Number of Time Levels of Each C-tree Type where Maximum Node
Capacity=30, Level Granularity=365, and Mean Duration / Mean Interarrival
Time = 500.

43

- v TEY FTYTRSY
A e dg g

-

T 4 T
i A

YT ATIAREA

In the second experiment of our simulation study, a comparison was conducted between
the performance of each C-tree type based on our empirical results, the time index, and the
TP-index studied by Lu, Ooi, and Shen. The results of the second experiment of our
simulation study are displayed in figures 22, 23, and 24. Table 2 presents a summary of the
comparison between the space costs of the parallel C-trees, the time index, and the TP-index.
It can be seen from table 2 that the parallel C-trees are very efficient in space cost, under all

test conditions. Its performance is much better than the TP-index, or the time index in all

Cases.

+ C-trees type A + C—lms:yp-e B_ iy
w—gp=—= C-treestypeC ==ffff== Total

800

600 —

Figure 22 Space Cost of Each C-tree type, where Maximum Node Capacity

(M)=62, Level Granularity=365, and Mean Duration / Mean Interarrival Time=
100.

44

v P T TN TV T £ WS
e or = NI T o s -4

a

W

AT ATIARIA S

[—.._ cmtypeA + C-trees type B
‘ g C-treestypeC ==fff}— Total

800
:
-
a
= 600
e
=
S - _— "
. e o
-
B
: ZW—W
|] |
° ! ; | ; ! | |
1 2 3 4 5 6 7 8 9 10

Mean Interarrival Time

Figure 23 Space Cost of Each C-tree type, where Maximum Node Capacity

(M)=62, Level Granularity=365, and Mean Duration / Mean Interarrival
Time= 300.

—@— CircestypeA ==Pf== CtreestypeB |
’ + C-trees type —.—- Total ‘

1000

Space Cost (mo. of pages)

1 2 3 4 5 6 7 8 9 10
Mean Interarrival Time

Figure 24 Space Cost of Each C-tree type, where Maximum Node Capacity
(M)=62, Level Granularity=365, and Mean Duration / Mean Interarrival
Time=500.

45

T TR TEY PP TR Svwreey §

T d 3

YT ATIARTA KT

Test Condition Space Cost Comparison Result

mean interarrival time < 4 -Parallel C-trees have best space cost.
-TP-index is 2.9 times C-trees..

-Time Index is 17 times C-trees.

4 < mean interarrival time < 6 -Paralle] C-trees have best space cost.
-TP-index is 2.7 times C-trees.

-Time Index 1s 22.7 times C-trees.

mean interarrival time > 6 -Parallel C-trees have best space cost.

-TP-index is 2.5 times C-trees.

-Time Index is 37.5 times C-trees.

Table 2 Summary of Space Cost Comparison between Parallel C-trees, TP-index, and Time
Index.

The last experiment in our simulation study deals with tuning the space cost by
changing the value of the level granularity. In order to know the impact of varying the level
granularity on the space cost of the parallel C-trees, similar tests were conducted on the
individual C-tree types. The ratio of mean duration to mean interarrival time was assumed
constant and made arbitrarily equal to 100. Figures 25, 26, 27 show the effect of varying the
level granularity on C-trees type "A", "B", and "C", respectively. The charts show that for
different values of interarrival time, the space cost of each C-tree type deceases as the level
granularity increases. This is due to the decrease in number of time levels as the level
granularity increases.

An important advantage of the parallel C-trees is that not all of the three types of C-trees
have to be loaded to main memory for every update operation. For instance, a query may

be processed by one type of C-trees leaving the remaining types on the secondary storage

46

- P TR VTN TR TR Sy ree—g ¥

CWETA T

ﬁv—r AT."#"\"",’-‘ -

device. Accordingly, in worst case of loading the three types to main memory, the space
cost would still be very efficient, as shown from table 2.

Our study shows that the parallel C-trees are efficient in storage cost for short and long
duration temporal data. The space cost is more efficient for small interarrival times. Small
interarrival times is the common case among temporal databases. Nevertheless, for larger
interarrival times, the increase in the space cost is minor. Although a choice of a bigger
value for level granularity means more decompositions, the space cost decreases due to the
decrease in number of time levels or C-trees. An immediate conclusion is that the used
decomposition technique is efficient and is not responsible for a substantial increase in the

space cost compared with the number of time levels.

' [l tevel granularity=365 level granularity=730
[] level granularity=1095 = level granularity=1460
|| level granularity=1825

250 —

b
=
=]
|

2
|

g

S

Space Cost (no. of pages)

S
|

For

=

1 2 3 4 5 6 7
Mean Interarrival Time

Figure 25 Effect of Changing the Level Granularity on the Space Cost of C-trees

Type "A", where Maximum Node Capacity (M)=62, and Mean Duration / Mean
Interarrival Time= 100.

47

%’

T TR TN PPNPL Sy §

QTAT

YT ATINRATA

g o TP R A P ¥ ERWVELY LRy
el GGG AN s Sk P T

(ENENENNENANNENENNNNREEE
T TTITTTTTTTTTTTTTTTTTTTT 7T 7T T

|

62, and Mean Duration / Mean

& level granularity=730

= Mean Interarrival time=2

Mean Interarrival Time

+ Mean interarrival time=5
o= Mean Interarrival time=8

[| levelgranularity=1095 [level granularity=1460

Il level granularity=365
[tevel granularity=1825

g 8 @

~ - -
(s28ud jo ou) 350D 23wds

250 —
00

Figure 26 Effect of Changing the Level Granularity on the Space Cost of C-trees

Type "B", where Maximum Node Capacity (M)

Interarrival time= 100.

g & 3 § &§ °

F]2A27] 2m} [Jo Jaqmup

Mean Duration / Mean Interarrival Time

62, Level Granularity=365, while Varying Mean Duration/Mean
48

Capacity (M)
Interarrival Time.

Figure 27 Number of Time Levels for any C-tree type, where Maximum Node

QUERY PROCESSING EFFICIENCY

Lu, Ooi, and Shen (1993), conducted the analysis on the query: "Retrieve all the
temporal tuples whose starting time is between a and b." The mean length of the interval (b-
a) was assumed 1000. The mean duration was set to 600 times larger than the interarrival

time. Figure 28 shows the region corresponding to the given query under analysis. Table 3

Test Condition Search Time Comparison Result
mean arrival rate < =1 Time Index is 5.9 times TP-index
1 < mean arrival rate <3 Time Index is 6.3 times TP-index
mean arrival rate >= 3 Time Index is 2.5 times TP-index

Table 3 Summary of Search Performance Comparison between TP-index and Time Index
from the Study of Lu, Ooi, and Shen (1993).

rY LAY
\
> X X
a b ab
Figure 28 The Region of the Figure 29 The Region of the
First Query under Analysis Second Query under Analysis

summarizes some of the results presented in the study of Lu, Ooi, and Shen in comparing

the search performances of the TP-index, and the time index. It can be seen from table 3 that

49

Ty P TR TYYY ITOATRSvyweed §

. N |

et Al
- b

577 ATIMARAA

the search time of the TP-index s much Y
less than the time index under all test

conditions.

In the first experiment of our b

simulation study, we used our local

X

system parameters. Our analysis was

conducted on the queries of figure 28, 29,

Figure 30 The Region of the
and 30. Since the given query in figure Third Query under Analysis
28 is a simple query that utilizes decomposition lines of type "three", parallel C-trees of type
"C" were employed to answer the query. The simple queries shown in figures 29 and 30
were analyzed using parallel C-trees of types "B", and "A", respectively.

The empirical results produced from the first experiment, showing the effect of varying
the mean arrival rate (1 / mean interarrival time) on the query processing performance of the
three C-tree types "A", "B", and "C" are shown in figures 31, 32, and 33. Since the dominant
factor in measuring the response time in our scheme is the time required to search the C-
trees, other overhead times for decomposing a query or merging the results of the parallel
C-trees are ignored. Thus, the response time or search time is measured by number of
accessed leaf and nonleaf nodes. It can be observed from the charts that for the three types
of C-trees, the search time slightly increases, as the mean arrival rate increases This can be
explained as follows. As the mean arrival rate increases, or in other words as the mean
interarrival time decreases, the number of time levels decreases. Thus, the potential of

parallelization decreases, and more search time is needed. This result is consistent with the

fact that the more parallelization is established, the less search time is required.

50

, swwwy P TR TFY FENTL v wrred
o g £ - -

T AT

o B

I ATIMRAA

Search time (no. of nodes)
s g8 &8 8 8 2 8

—_
=

Il

=

0.3 0.5 0.7 0911 1.3 1.51.7 1921 2325 2.7 2931 3.335 37
Mean arrival rate

Figure 31 Search Performance of C-trees type "A" for a Simple Range Query,
where Maximum Node Capacity (M)=30, and Level Granularity=365.

r

03 0507 0911 1.3 L5117 1921-2325 2.7 29 3.1 33 35 3.7
Mean arrival rate

= w Y tn <
o =3 o =] g (=]

Search time (no. of nodes)

[
=

Figure 32 Search Performance of C-trees Type "B" for a Simple Range Query,
where Maximum Node Capacity=30, and Level Granularity=365.

51

Lafal

‘B4

Search time (no. of modes) -
¥ 8 &5 2 38 3 8 28 8

—
(=

(—

03 050709 1.11.3 1.51.7 1.9 2.1 23 2.5 2.7 2.9 3.1 33 3.5 3.7
Mean arrival rate

Figure 33 Search Performance of C-trees type "C" for a Simple Range Query,
where Maximum Node Capacity (M)=30, and Level Granularity=365.

Figures 34, 35, and 36 display the results of the second experiment of our simulation

w
=

[~
(=]

study, in which we used the same system parameters of the study of Lu, Oo1, and Shen. The

il

03 0507 0911 13 1517 1921 2325 2.7 2.9 3.1 33 3.5 37
Mean arrival rate

Search time (no. of nodes)

-
(—]

Figure 34 Search Performance of C-trees Type "A" for a Simple Range Query,
where Maximum Node Capacity (M)=62, and Level Granularity=365

52

A YT T 3

Ny

Search time (no. of nodes)

03 0507 0911 1.3 1.51.7 1.92.1 23 2.5 2.7 2.9 3.1 3.3 3.5 3.7
Mean arrival rate

Figure 35 Search Performance of C-trees Type "B" for a Simple Range Query,
where Maximum Node Capacity (M)=62, and Level Granularity=365.

50

) [-
= =] [=]

Search time (no. of modes)

-
[—]

Figure 36 Search performance of C-trees type "C" for a simple range query, where

|I|||l|| I

03 0507 0911 1.3 1517 1.921 2325 27 2.9 3.1 3335 3.7
Mean arrival rate

maximum node capacity (M)=62, and level granularity=365.

performance results of each C-tree type was compared individually with the results of the

53

YT ATIARA A

TP-index, and the time index as presented in the study of Lu, Ooi, and Shen. Table 4
summarizes the results of the comparison. It can be seen that in all cases each C-tree type

individually showed better search performance than the TP-index, or the time index.

Test Condition Search Time Comparison Result

mean arrival rate <=1 -C-trees type "A" gave best search time
-C-trees type "B" are 1.3 times type "A"
-C-trees type "C" are 1.7 times type "A"
-TP-index is 2.9 times C-trees type "A"

-Time Index is 17 times C-trees type "A"

1 < mean arrival rate <3 -C-trees type "B" gave best search time
-C-trees type "A" is 1.1 times type "B"
-C-trees type "C" 1s 1.81 times type "B"
-TP-index is 8 times C-trees type "B"

-Time Index is 50 times C-trees type "B"

mean arrival rate >= 3 -C-trees type "C" gave best search time
-C-trees type "A" are 1.1 times type "C"
-C-trees type "B" are 1.3 times type "C"

-TP-index is 10 times C-trees type "C"

-Time Index is 25 times C-trees type "C"

Table 4 Summary of Search Performance Comparison between Parallel C-trees, TP-index,
and Time Index.

In the third experiment, tests were conducted on each C-tree type to study the effect of

varying the level granularity on the search time. Figures 37, 38, and 39 show that for each

54

; T T TR TTY T TR Srreees ¢

e X
I"'AY

YT ATIARTA T

C-tree type, less level granularities rendered less search times. This result can be explained
as follows. From the definition of the level granularity, it is obvious that as the level
granularity decreases, the number of time levels increase. Since in our tests, adequate
number of processors was always available, the increase in number of time levels, implied
more parallelization. Thus, less search time is needed.

Although we have shown that each individual C-tree type is efficient in query
processing, the real power of the parallel C-trees is in handling complex range queries. As
explained earlier, a complex range query is decomposed into simple range queries.
Accordingly, the complex query processing efficiency is a direct reflection of the simple

query processing efficiency, which has been proven by our empirical results in this chapter

—— level granularity=1 825 —3—— level granularity=1460
—.— level granularity=1095 ====== level granularity=730 |
level granularity=365 |

Y " ; . |

2

g

Search time (mo. of nodes)

(7]
(=]

Mean arrival rate

Figure 37 Effect of Changing the Level Granularity on the Search Performance of
C-trees Type "A", where Maximum Node Capacity (M)=62.

53

e ke b aatant s lnsive bk

A

Sl e W

YT ATIARA A

—@— lcvelgranularity=182S —)— level granularity=1460
~—Jl— level prunularity=1095 ====== level granularity=730
\ —— level granularity=365

‘ - o 1

300

2

g

—
un
=

100

PLLL L DL bbb

Search time (me. of mades)

E

T S

-
'p-—--u--—""" .

03 05 07 0911 1.3 1.51.7 19 2.1 2.3 2.5 2.7 2.-9 3.1 33 35 5_.7
Mean arrival rate

Figure 38 Effect of Changing the Level Granularity on the Search Performance of
C-trees Type "B", where Maximum Node Capacity (M)=62.

—@— level grn.nulnrll)-(-l 825 —-—K_—-— level grn.nuh.rlty-l-l&l]_—
—Jl— level granularity=1095 m=====level granularity=730
e level pranularity=365

200

g 2

B

Secarch time (no. of nodes)

03 05 07 0911 13 1517 1.9 2.1 23 2.5 27 2.9 3.1 3.3 3.5 3.7
Mean arrival rate

Figure 39 Effect of Changing the Level Granularity on the Search Performance of
C-trees Type "C", where Maximum Node Capacity (M)=62.

56

YT Mvwee——

AT ATINRFA ST

SUMMARY, CONCLUSIONS, AND SUGGESTED FUTURE WORK

This thesis introduced the C-tree, which is a dynamic index for valid time temporal
databases. Indexing in the C-tree is mainly based on a new powerful coding system. A query
analysis have showed that there are three types of lines used in constructing query regions
in a temporal space. On this basis, a new parallel processing scheme was presented. The
scheme employed three types of C-trees, such that each type of C-trees handles a special
type of queries. Parallelization is enhanced by vertically and horizontally partitioned data.
Algorithms for update operations were explained.

Empirical results showed that the space cost of the new indexing mechanism slightly
increases by the increase in mean interarrival time, or in mean duration. This is mainly due
to the increase in number of time levels. It has also been shown that the space cost is much
less than the TP-index, or the time index. The level granularity has been found to be suitable
for tuning the space cost, based on an inverse proportional relationship.

Empirical results also showed that the search time in the parallel C-trees slightly
increases with the decrease in interarrival time, due to the decrease in number of time levels.
A comparison with the TP-index, and the time index showed that the parallel C-trees showed
much better performance in query processing. The search time can also be tuned by varying
the level granularity, based on a directly proportional relationship.

Since the ultimate goal of our research is producing a complete temporal model, further
research is recommended in the area of developing a suitable temporal query language.
Another important area of enhancement is the design of a query optemizer. The optemizer
topic should deal with the following. (1) Query translation, and decomposition. (2) Selecting

the appropriate type of C-trees. (3) Merging the results according to the query semantics.

37

Tt A

e basdsntsle
RTe Lghd

-——

8 |

-

Y ATIARTA

Finally, we recommend further research in the area of establishing concurrency for

multiusers. This topic should be closely studied with the optemizer to provide an integral

solution.

58

TV VT S vee—

Y P
L g

A

AYY

‘a)'a

REFERENCES

Bassiouni, M., Karimi, S., Orooji, A. (1990). Supporting temporal capabilities in a

multi-computer database system. Proceedings of the International Conference on

databases parallel architecture and their applications (pp. 20-26). Miami, FL:

IEEE.
Chaudhry, A, Elmasri, R, Kouramajian, V. (1994). Declustering techniques for

parallelizing temporal access structures. Proceedings of the Tenth International

Conference on Data Engineering (pp. 232-242). Houston, TX: IEEE.

Christian, S. (1994). A consensus glossary of temporal database concepts. Sigmod

Record, 23(1), 52-61.

Comer, D. (1979). The ubiquitous B-tree. ACM Computing Surveys, 11(2), 121-138.
Dayal, U., Wuu, G. (1992). A uniform approach to processing temporal queries.

Proceedings of the Eighteenth VLDB Conference (pp. 407-418). Vancouver,

Canada: IEEE.
Elmasri, R, Kim, Y., Wuu, G. (1991). Efficient implementation techniques for the time

index. Proceedings of the seventh International Conference on Data Engineering

(pp. 102-109). Kobe, Japan: IEEE.
Elmasri, R, Kim, Y., Wuu, G. (1990). The time index: an access structure for temporal

data. Sixteenth International Conference on Very Large Databases (pp. 1-12).

Brisbane, Australia: IEEE.

Faloutsos, C., Kamel, [. (1992). Parallel R-trees. Proceedings of ACM SIGMOD

International Conference on Management of Data (pp. 195-204). San Diego,

CA: ACM Press.

59

; T P TR VY TTT T Fywee—y ¥

e

i A

AT ArIANTA

Gadia, S. (1993). Ben-Zvi's pioneering work in relational temporal databases.
Temporal Databases: Theory, Design, and Implementation (pp. 202-207).
Redwood City, CA: Benjamin/Cummings.

Gunadhi, H., Segev, A. (1993). Efficient indexing methods for temporal relations. IEEE

Transactions on Knowledge and Data Engineering, 5(3), 496-509.

Guttman, A. (1984). R-trees: a_dynamic index structure for spatial searching.
Proceedings of ACM SIGMOD International Conference on Management of Data
(pp. 47-57). Boston, MA: ACM Press.

Kolovson, C. (1993). Indexing techniques for historical databases. Temporal

Databases: Theory, Design. and Implementation (pp. 418-432). Redwood City,

CA: Benjamin/Cummings..

Kolovson, C., Stonebraker, M. (1991). Segment indexes: dynamic indexing techniques

for multi-dimensional interval data. Proceedings of ACM SIGMOD International

Conference on Management of Data (pp. 138-147). Denver, CO: ACM Press.

Leung, T., Muntz, R. (1992). Temporal query processing and optimization in

multiprocessor database machines. Proceedings of the Conference on Very Large

Databases (pp. 383-394). Vancouver, Canada: IEEE.

Ling, D. (1988). Query execution and temporal support in a distributed database

system. Northern Ireland, UK: University of Ulster at Jordanstown.
Lomet, D., Salzberg, B. (1993). Transaction-time databases. Temporal Databases:

Theory, Design, and Implementation. (pp. 388-417) Redwood City, CA:

Benjamin/Cummings.

60

TR TN T P vrr—

AT ATIARA A

Lu, H, Ooi, B., Shen, H. (1993). The TP-index: a dynamic and efficient indexing
mechanism for temporal databases. Technical Report No. TRC6/93

Department of Information Systems and Computer Science (pp. 1-28).

Singapore: National University of Singapore.

Meghini, C., Thanos, C. (1991). The complexity of operations on a fragmented relation.

ACM Transactions on Database Systems, 16 (1), 56-87.

Weiss, M. (1993). Data structures and algorithm analysis in C. Redwood City, CA:

Benjamin/Cummings.

61

e ‘c:

-y T TR YTYY

AY

'al’al

APPENDIX A

DEFINITIONS AND ACRONYMS

AP-Tree

An index for temporal databases, based on indexing either the starting times or the
ending times in a relation, Gunadhi (1993).

B+ Tree

An index structure, that is a variation of the B tree, suitable for indexing data points
that can be totally ordered, Comer (1979).

Binary Search Tree

A binary tree, in which for every node X in the tree, the values of all the keys in the left
subtree are smaller than the key value in X, and the values of all the keys in the right
subtree are larger than the key value in X, Weiss (1993).

Binary Tree

A tree, in which no node can have more than two children, Weiss (1993).
Composite Index

A temporal index, that is a variation of the AP-tree. The key in a node is a
concatenation of the surrogate and the time attribute, Gunadhi (1993).

Data Model

A Data model on a relation has a query language, and supports the specification

of constraints on the relation, Christian (1994).

First Temporal Normal Form Relation (1TNF)

A relation in which for each combination of surrogate and time attributes, there is at most

62

k2 labsee &

el D

AY

Yy

one temporal attribute value, Gunadhi (1993).

Granularity

The size of a minimal, fixed, non-decomposable time interval, Christian (1994).
Instant

A time point on an underlying time axis, Christian (1994).

Lifespan

Is the time over which an object is defined, Christian (1994).

MBR (Minimal Bounding Rectangle)

A concept used in several spatial data structures. The n-dimensional rectangle stored in a
nonleaf node entry is the smallest n-dimensional rectangle that encloses the rectangles in
the child node of this entry, Guttman (1984).

Multiplexed R Tree (MXR-Tree)

A spatial index, based on parallelizing the R-tree, Faloutsos (1992).

Nested Surrogate & Time Tree (ST-Tree)

Temporal database index, consists of a B+-tree, and several AP-trees, Gunadhi (1993).
Proximity Index

A strategy to select a disk for inserting a new node, Faloutsos (1992).

R-Tree

A height balanced dynamic index for spatial databases, Guttman (1984).

Segment Indexes

A family of indexes for handling interval data. It is based on combining a segment

tree, with multiway balanced trees, Kolovson (1991).

63

ey ¥ TR YR TENT

Segment Tree

A binary search tree that stores one dimensional line segments, Kolovson (1993).

Segment Tree and R-Tree (SR-Tree)

A segment index, based on combining the segment tree, and the R-tree, Kolovson (1991).

Skeleton SR-Tree

An SR-tree, based on estimating the input data distribution, and initially building

the index, Kolovson (1991).

Sparse Tree

A temporal index, that is a variation of the AP-tree, based on indexing only the
surrogate value. The time attribute were stored in an accessible list, Gunadhi (1993).
Spatial Database

A database of tuples representing spatial objects, Guttman (1984).

Spatial Index

Index structure that retrieves objects according to their spatial locations, Guttman (1984)
Spatial Object

Object with non-zero size, located in a multi-dimensional space, Guttman (1984)
Spatial Search

Search for spatial objects in a multi-dimensional space, Guttman (1984).

Surrogate

The identity key in a relation, Gunadhi (1993).

Temporal Attribute

A time varying attribute in a relation, Gunadhi (1993).

64

ye——

B A b a T
C g N Cpb Ay 2

Temporal Database

A database that supports some aspect of time, Christian (1994).

Time Attribute

A timestamp associated with some object. It can be a time point or a time interval,
Christian (1994).

Time Index

An index for temporal databases, based on using indexing points. An indexing point is
the starting or ending time of an interval, Elmasri (1990).

Time Interval

The time between two instants (events), Christian (1994).

Time Polygon Index (TP-index)

An index for temporal databases. It is based on decomposing the space into polygons, Lu,
Ooi, and Shen (1993).

Time Split B Tree (TSB-Tree)

A two dimensional search structure, which indexes records, each of which has a key,
attribute and a time interval attribute (its transaction time), Lomet (1993).
Timestamp

Is a time value associated with some object, Christian (1994).

Transaction Time

The time a fact is stored in the database, Christian (1994).

Valid Time

The time a fact is true in reality, Christian (1994).

65

e L atantstataaTL

YT A

APPENDIX B

Implementation Source Code

66

e taabsntalal

)‘*****#**"******‘**#*******t**‘t*****#*tt*t***#**t‘***“**'**t*i‘*‘*t‘*“*‘*‘t*t*t*;
1% Parallelizer b
[*
/* This program invokes the update programs of the three C-tree types, "A", "B", and "C" in parallel. */
[*

*/
e oo oo s s ok oo o o sk o o o ok 3ok ok koo oo sk o ok R R o o ek ok ks ok ok ok o SR kR R R Rk ok R K

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

main()

{
mntpl,p2,p3;
pl=fork();
if(p1==0)

execl("gl","1",0);

p2=fork();
if(p2==0)

execl("g2","1",0);
elsc
{
p3=fork();
if(p3==0)

BX&C]("33 u’u l ",O);

67

e reatantale

OV ATIART S

e L e e Ly,

" C-tree type "A" *f

» */
/* This program includes the code for insertion, search, and deletion in *
/* C-trees type "A". This program is called from the "Parallelizer" *

JEREdkk ok koo kR Rk Rk Rk kR kR kk Rk kR Rk kR ok kR k

#nclude <stdio.h>

#include <malloc.h>

#nclude <stdlib.h>

#include <string.h>

#include <math.h>

#include <parallel/microtask.h>
#include <parallel/parallel. h>

#define M 62 /*Max number of entries in a node*/
#define GRAN 365 /*space advances every 8 time units*/

struct entry {
char w[30]; /*entry binary expressions*/
void *p_to_down; /*may point to tre_node or buc_node*/

intno_of ps; /*is no. of points in bucket of leaf*/
/*is zero for nonleaf*/

vl W TR TTY I MY ree— ¢
- - £ Bk .

TA T

v
-

float f,
}:

struct tre_node {
struct entry E[M+1], /*array of structures*/
int flag; /*is 0 for nonleaf,1 for leaf*/
int nonempty, /*no. of nonempty slots in the node*/
int from; /*no. of entry in parent*/
struct tre_node *up;/*pointer to parent*/
struct tre_node *join;/*pointer to right node*/
|3

struct buc_node {
float x;
float y;
float j;
struct buc_node *p_t_same; /*pomter to bucket node*/
/*where same point is*/
struct buc_node *next;

}:

struct v_root {
int level,
struct tre_node *tree,
struct v_root *link;
b

struct v_root *A;

struct v_root *hop_A;
struct v_root *dummy_A,
struct tre_node *S_A,;

68

(‘=v-«r A YIS ¥ ..'-_

struct tre_node *S_A2;

struct tre_node *hold_A[150];
struct tre_node *parent A,

struct buc_node *p_buck A
struct buc_node *temp,

struct buc_node *jmp_A[M+3];
struct buc_node *mark A,

struct buc_node *trace_ A[M+1];
struct buc_node *trace A2[M+1];
struct buc_node *del_A;

int nodesl_A,

int nodes2_A,

int nleafl_A,

int nleaf2 A;

intt_level A;

int In_GBE_A[150], /*length of greatest GBA*/
float X1,Y1,X2,Y2,X3,Y3,X4,Y4, /*space corner points*/
nt above_A[M+3],

int below_A[M+3],

int above_n_A=0,

int below_n_A=0,

int points_A=0,

char GBE_A[30]; /*The greatest binary expression*/
char buffer1[30];
char buffer[30];

void insert_A(float,float);

void create_A();

void ins_en_A(int); /*prepare entry in ficld node*/

void f_level _A(float,float), /*find me level of point*/
void por_BE_A(int,float,float); /*find BE of pomnt*/

int s_n_in_A(char * float,float), /*search node*/

int a_buck_A(int,float,float float), *add pomt to bucket*/

void in_buck _A(int,float float,float);/*insert point in buck list*/

void sp_buc_A(int,float,float,float); /*split bucket*/
void space_A(int),

void dec_A(int,int,int float),

void phy_sp_A(int,char * char *);

void sp_nod_A(),

void tran_en_A(int,int),

void shift A(int),

void adjust_A(),

void union_A(struct tre_node *),

void print_A();

int search_A(float,float);

voud delete_A(float float),

void cond_A(int);

void deshift_A(int),

void pol_A(float,float,float,float,float float, float,float);
void pol_ex_A(float,float);

it max_t_A(int,int),

it min_t_A(int,int);

void find_A(struct tre_node *,char * float float),

int pref_A(char * char *),

69

e ke Saadart aTals oy

[

Sl

OYFY ATIART A

/*

*/

void in_buck_A(int i,float a,float b, float c)
{
temp=(struct buc_node *)malloc(sizeof(struct buc_node)),
temp->next=NULL;
if(S_A->nonempty==0)
{

S_A->E[i].p_to_down=p_buck A,
p_buck_ A->next=NULL;
}
p_buck_A=S_A->E[i].p_to_down;,
trace_A[ij=S_A->E[1].p_to_down,
while(p_buck A->next'=NULL)
{
if(a<=p_buck_A->next->x)
{
temp->next=p_buck_A->next,
p_buck A->next=temp;
p_buck_A->next->x=a,
p_buck_A->next->y=b;
p_buck_A->next->j=c;
mark_A=p_buck_A; /*mark points before the point node*/
temp=NULL;
if(a>S_A->E[i].f)
S_A->E[i].f=a;
return;

}
else if(a>p_buck A->next->x)

p_buck_A=(struct buc_node *)malloc(sizeof(struct buc_node));

p_buck A=p_buck_A->next;

H
} /*end of while loop*/
temp->next=p_buck_A->next;
p_buck_A->next=temp,
p_buck_A->next->x=a,
p_buck A->next->y=b;
p_buck A->next->j=c;
mark_A=p_buck_A,
temp=NULL;
if(a>S_A->E[1].9)

S_A->E[i] f=a;
return;

i
*

void ins_en_A{int 1)
{
strnepy(S_A->E[1].w,"",30);
strepy(S_A->E[i].w,bufferl),
if(strlen(S_A->E[i].w)>In_GBE_A[t_level_A])
In_GBE_A[t_level_A]=strien(S_A->E[i] w);
H
*

void create_A()

{

nt 1;

70

4

*

T P TR YTV VYWY ey §

simep

YT ATINRAT A

GBE_A[0]="*,
In_GBE_A[t_level_A]=strlen(GBE_A);
hop_A->tree=(struct tre_node *)malloc(sizeof(struct tre_node));
hop_A->tree->flag=1;
S_A=hop_A->tree,
1=0;
while(i<=M)
{
strnepyChop_ A->tree->E[1].w,"",30);
hop_A->tree->E[i].no_of ps=0;
hop_A->tree->E[i].p_to_down=NULL;
hop_A->tree->E[i].f=0,
++1;
}
hop_A->tree->up=NULL;
hop_A->tree->join=NULL;
hop_A->tree->nonempty=0;
. .
void {_level A(float p,float q) /*This function is independent on index used*/

{

int number=-1;
mt NOW_L;
t_level A=(p+q)/GRAN;
hop_A=A;
while((hop_A->link!=NULL)&&(hop_A->link->level<=t_level _A))
{
hop_A=hop_A->link;
if(hop_A->level==t_level_A)
{
number=t_level A;
break;
}
}/*end of while*/
if(number==-1)
{
dummy_A=(struct v_root *)malloc(sizeof(struct v_root));
dummy_A->link=NULL;
dummy_ A->tree=NULL,
dummy_A->link=hop_A->link;
hop_A->link=dummy_A,
hop A=dummy_A;
dummy_A=NULL;
hop_A->level=t_level A;
}H*end of if*/
i
¥

void space_A(int NOW_L)

{
if(t_level A==0)
{
X1=0;
Y1=NOW L;
X2=0,
Y2=0,
X3=NOW L,

L

v T TR TN TV A

SIFT ATINRA S

Y3=0; /*anticlockwise order from top*/

else
{
X1=0,
Y1=NOW_L,
X2=0;
Y2=NOW_L-GRAN;
X3=NOW_L-GRAN;
¥Y3=0,
X4=NOW _L;
Y 4=0;
}
¥
1* */
void poi_BE_A(int NOW_L float a, float b)
{
char bin_exp[30],
float value;
mt 1=0;
stmepy(bin_exp,"",30);
space_ A(NOW_L),
if(t_level A==0)
value=Y2+((Y1-Y2)/2),
else
value=Y3+((Y1-Y3)/2),
while((strlen(bin_exp)<(ln_GBE_A[t_level A]-1))&&(In_GBE_A[t_level A]!=0))

5 T TR VTN TPV Py §
e - ' -

o

o

-

{
if(b<=value)
{
bin_exp[1]='0";
Y 1=value;
if(t_level A==0)
value=Y2+((Y1-Y2)/2),
else
value=Y3+((Y1-Y3)/2),

AW ALINRAA

else
i
bin_exp[i]='1";
if(t_level A==0)
{
Y2=value,
value=Y2+((Y1-Y2)/2),
}

else

Y3=value,
value=Y3+((Y1-Y3)/2);
!
}
1=+,
} I*end of while loop*/
bin_exp[i}="*",
strnepy(buffer1,",30);
strepy(buffer],bin_exp);

72

}

/*

ints_n_in_A(char BE_A([],float a,float b)

{

int differ=0;

nt [=0;

int 1=0;

int k=0,

char *D_CAP=NULL;
if(S_A->nonempty==0)

return(i); /*the first entry 1.e no. zero*/

else

;

/*

{
while(1<S_A->nonempty) /*to search nonempty entries of a node*/
{
if((8_A->E[i].w[0]=="*)&&((slrstr(S_A->E[i].w,"D")==NULL)))
return(i);
1=0;
while(S_A->E[1].w[l]!="*")
{
if(S_A->E[i].w[l]'=BE_A[l])
{
differ=1;
break;
}
=1+,
t/*end of while*/
D _CAP=NULL;
D_CAP=strstr(S_A->E[1].w,"D");
if(differ==0) /*the entry 1s qualified*/
{
if(D_CAP==NULL) /*no D character in BE*/
return(1);
else if((D_CAP!=NULL)&&(a<=S_A->E[1].f))
/*point lies inside D character range */
return(i);
else
differ=1,
y/*end of if differ..*/
1=1+1, /*to search next entry*/
differ=0;
}/*end of outer while*/
f((differ—1)&&(S_A->flag==1)&&(S_A->nonempty<M))
return(i+1);

/*else if{(differ==1)&&(S_A->flag==1)&&(S_A->nonempty==M))*/

MFreturn(M+1); */
}/*end of else*/

*f

void phys_sp_A(int 1,char *BE] char *BE2)

{

mnt 1=0;

mnt v,

mt u;

int array[M+3];
array[0}=0; /*not used*/

73

*/

DT ALIART A

if(points_A==below_n_A)
{
S_A->E[1] f=jmp_A[below_A[points A]]->x;
S_A->E[1+1].f=jmp_A[above_ A[M+]-points_A]]->x,
}

else

{
S_A->E[i] f5ymp_Af[above A[points_A]]->x;
S_A->E[r+1].f5jmp_A[below_A[M+1-points_A]]->x,
}
1=1+1;
strnepy(S_A->E[1].w,"",30),
strepy(S_A->E[1).w,BEI);
S_A->E[i].no_of ps=points_A;
strmepy(buffer1,"",30);
strepy(buffer1,BE2),
ins_en_A(1+1);
p_buck_ A=(struct buc_node *)malloc(sizeof{struct buc_node)),
S A->E[i+1].p_to_down=p_buck A;
p_buck A=S_A->E[i+]].p_to_down;
trace_A[i+1]=8S_A->E[i+1].p_to_down,
if(BE1[strlen(BE1)-2]=='1") /*points_A is no. of points in ist entry*/
{
while(l<=(M+1-points_A))

array[1]=below_A[l];
I=1+1;

else

{
while(l<=(M+1-points_A))

array[l]=above_A[l];
I=1+1;
H
t
1=-1;
v=1;
u=1,;
while(v<=l)
{
p_buck A->next=jmp_Alarray[v]];
while(1)

{
if(jmp_A[array[v]-u]'=NULL)
{
jmp_A[array[v]-u}->next=jmp_A[array[v]]->next,
p_buck_A=p_buck_ A->next;
p_buck_A->next=NULL;
jmp_A[array[v]]=NULL,
break;
¥
else
u=u+l;
}/* end of while(1)*/

74

Tt T TR TN I S ey §

AT AtYARTA

v=v+],
u=l;
} *end of while*/
S_A->E[1+!1].no_of ps=l;
++S_A->nonempty;

}

"*

void dec_A(int left,int right,int sub, float value)

{
int la=1, /*the subscript the array above starts with*/
int Ib=1; /*the subscript the array below starts with*/
above_n_A=0; /*reset*/
below_n_A=0; /*reset*/
while(left<=night)

if(jmp_A[sub]->y>value)

{
above A[la]=left,
above_n_A=above n_A+l;
la=la+l;

}

else

below_A[lb]=left;
below n_A=below n A+,

Ib=lb+1,
¥
left=left+I,
sub=sub+1l,

}
}
,!1!

Ty P TR VTN VTN WY oy

"]

v-.f Ralail i

[}

void tran_en_A(int count,int n)

{
struct tre_node *helper,

/*copy entry to node 2*/
stmepy(S_A2->E[n].w,"",30);
strepy(S_A2->E[n].w,S_A->E[count].w),

/*count 1s the entry no. n the original node*/

/*n 1s the entry no. in the 2nd node to transfer to*/
S_A2->E[n].p_to_down=S_A->E[count].p_lo_down,
trace_A2[n]=S_A2->E[n].p_to_down,
S_A2->E[n].no_of_ps=S_A->E[count].no_of _ps;
S_A2->E[n].f=S_A->E[count] f,
S_A2->flag=S_A->flag,
++S_A2->nonempty,

/*remove copied entry from node 1*/
strnepy(S_A->E[count].w,",30);
S_A->E[count].p_to_down=NULL;
S_A->E[count].no_of ps=0,
S_A->E[count].f=0;
--S_A->nonempty,
if(S_A2->flag==0)
{
helper=S_A2->E[n].p_to_down,
helper->from=n;

75

N

helper->up=S_A2;
helper=NULL;
¥

}
/*

void sp_nod_A()
{
int 1=0;
mt k=0;
int 0=0;
int differ=0;
S_A2=(struct tre_node *)malloc(sizeof(struct tre_node));/*points to node 2*/
S_A2->nonempty=0;,
S_A2->join=S_A->join;
S_A->jomn=S_A2;
i=M-1; /*start with the entry before the rightmost 1.e before no.M*/
while((S_A->E[i]. w{0]=="*)&&(S_A->E[i}w[1]==D")
1=1-1;
while(1>0) /*to change the picked entry to compare with all its left entr*/
{
k=0;/*start with the first digit in binary expression*/
while(S_A->E[1] w[k]!="*") /*change the digit*/
{
o=1-1;
while(0>=0)/*to move along the same digit on all entries left of i*/
{
if(S_A->E[1].w[k]!=S_A->E[o].w[k])
{

differ=i;
break;
}
0=0-1;/*jump Lo the left entry*/
}/*end of whnle*/
if(differ==0)
k=k+1./*take the next digit*/
else
break;
}/*end of inner while*/
if(differ'=0)

1=i-1; M*pick the entry to the left and start again*/
differ=0;
}
else
break;
}*end of outer while*/
while(1<M)
{
tran_en_A(i+1,S_A2->nonempty),
=1+,
3

}
*

)

xf

void umen_A(struct tre_node *p)

{
stnepy(bufferl,"™,30);

76

AT ATIART

strepy(buffer1,p->E[p->nonempty-1].w),
.

void adjust_A()
{
mt i=0;
struct tre_node *aux;
parent_A=S_A;
if(parent_A'!=hop_A->tree)
parent_A=S_A->up,

while((parent_A!=S_A)&&(parent_ A!=NULL)&&(S_A!=hop_A->tree))

{
1=8_A->from;
strnepy(parent_ A->E[i].w,"",30),
strepy(parent_A->E[1].w,S_A->E[(S_A->nonempty)-1].w);
parent_A->E[i].f=S_A->E[(S_A->nonempty)-1] f,
if(S_A2!=NULL)
{
S_A=parent_A,
shift A(i+1),
S_A=parent_A->E[1].p_to_down;
stmepy(parent_A->E[i+1].w,"",30);

strepy(parent A->E[i+1].w,S_A2->E[(S_A2->nonempty)-1].w)

parent_A->E[i+1].f=S_A2->E[(S_A2->nonempty)-1] f;
++(parent_A->nonempty),
parent A->E[i+1].p_to_down=S_A2;
S_A2->up=parent_A;
S _A2->from=i+1;
S _A2=NULL,

¥

S_A=parent_A;

parent A=S_A->up,

if(S_A->nonempty==M+1)
sp_nod_A();

i
f((S_A->nonempty==M+1)&&(S_A==hop_A->tree))

sp_nod_A();

1=0,

if((S_A=hop_A->tree)&&(S_A2!=NULL)) /*the split node is the root*/

{
aux=(struct tre_node *)malloc(sizeof(struct tre_node)),

hop_A->tree=aux;

aux=NULL;

parent_A=hop_A->tree,
S_A->up=parent_A;
S_A2->up=parent_A,

S_A->from=i,

S_A2->from=1+1,
hop_A->tree->E[i].p_to_down=3_A,
hop_A->tree->E[i+1].p_to_down=S_AZ;
hop_A->tree->flag=0,
hop_A->tree->nonempty=2;
union_A(S_A);
me}l(hgp_Anb-h‘ee-)E[i ! w,"".30);
strepy(hop_A->tree->E[i]. w,bufferl);

77

*/

A ladic &

e e e &

T ATIARAA

.
¥

P

stmepy(hop_A->tree->E[i+1].w,"" 30);
strepy(hop_A->tree->E[i+1]w,"*"),

hop_A->tree->E[i]f=8_A->E[S_A->nonempty-11.f;

hop_A->tree->E[i+1].f=S_A2->E[S_A2->nonempty-1].f,

b /*end of if*/

}
*

¥/

void sp_buc_A(int 1,float a float b,float c)
{
char BEI[30]; /*of new st entry*/
char BE2[30]; /*of new 2nd entry*/
char ent_exp[30]; /*of original entry*/
int dif=0;

nt =0,

mt k=0;

int count=0,

int counter=0;

int ans;

mt tt;

it total;
Jjmp_A[k]=S_A->E[i].p_to_down,
below_n_A=0;,
above_n_A=0,
k=k+1;
counter=counter+1,
total=M+1,
while(k<=M+1)

{

jmp_Al[k]=jmp_A[k-1]->next;

if(Gmp_A[k]->y!'=ymp_Afk-1}->y)&&k>1))
dif=1,

k=k+1;

}
if((dif==0)&&((k-1)>M)) /*all y-coord are equal*/
{
strnepy(BE1,"",30);
strepy(BEL,S_A->E[i].w),
if(strstr(BE1,"D")==NULL)
BEl1[strlen(BE1)]=D",
stmepy(BE2,"",30);
strepy(BE2,S_A->E[i].w),
while(counter<=(total/2))

{

below_A[counter]=counter;
++below n_A:
++counter;

}

counter=1;

while(counter<=total-below_n_A)

{
above_A[counter|=counter+below n_A,
++above n_A,
++counter,

points_A=below_n_A;

78

Y T—

nope

Y ArINRAA

}*end of if*/
else
{
stmepy(BE1,"",30);
k=1;
if(t_level A==0)
dec_AM+1 k,(((Y1-Y2)/2)+Y2)),
else
dec_A(kM+1 k,(((Y1-Y3)/2)+Y3));
while(1)
{
if(above_n_A==total)
{
BEI[t]="1"
count=1;
ifit_level A==0)
{
Y2=Y2+((Y1-Y2)/2),

dec_A(count,above n_A,above A[count],(((Y1-Y2)/2)+Y2)),

}

else

{
Y3=Y3+((Y1-Y3)12),

dec_A(count,above_n_A,above A[count],(((Y1-Y3)/2)+Y3)),

}
}
else if(below _n_A==total)
{
BEI[t]='0",
count=1;
if(t_level A==0)

{
Y1=Y2+(Y1-Y2)12);

dec_A(count,below n_A below_A[count],(((Y1-Y2)/2)+Y2)),

}

else

{
Y1=Y3+H(Y1-Y3)/2),

dec_A(count,below_n_A below_A[count],(((Y1-Y3)/2)+Y3)),

H
}

else

if(below_n_A>above_n_A)

BEI1[t]='0"
else if(above_n_A>below_n_A)
BEI1[t]="1"
else
{
if(t!=0)
BEI[t)=BEI[t-1}],
else
BEI1[t]=0"
}
break;

}/*end of else*/

79

VT AaryARTA KA

N

t=t+1;
}/*end of while*/
BEI[t+1]="*"
stmepy(ent_exp,"",30);
strepy(ent_exp,S_A->E[i].w),
if(strlen(BE1)>In_GBE_A[t_level A])
In_GBE_A[t_level Al=strlen(BE1);
stmepy(BE2,"",30);
strepy(BE2,ent_exp),
if(BEI[t]=="1")
points_A=above_n_A; /*points_A is no. of points in 1st entry*/
else
points_A=below_n_A;
}/*end of else*/
phys_sp_A(1,BE1,BE2),
if(S_A->nonempty==M+1)

{
sp_nod_A(),
adjust_A(); /*adjust tree*/
}
H
*

¥

mnt a_buck_A(int i,fleat a,float b float c)

int split=0; /*no split*/

if(S_A->E[i].no_of ps<M)

{
in_buck A(i,a,b,c); /*to insert in bucket list*/
return(0),

else

{
in_buck_A(i,a,b,c);
sp_buc_A(i,a,b,c), /*split bucket*/
return(1); *split occured*/

}

}
/*

void shft_A(int 1)
{
/*1 1s the entry no. to be shifted to the right*/
/*count 1s the no. of the rightmost non empty entry*/
int count=S_A->nonempty-1;
while(count>=1)
{
strnepy(S_A->E[count+1].w,"" 30),
strepy(S_A->E[count+1].w,S_A->E[count].w);
S_A->E[count+1].p_to_down=S_A->E[count].p_to_down,
S_A->E[count+1]}no_of ps=S_A->E[count] no_of ps,
S_A->E[count+1].f=S_A->E[count] f;
if(S_A->flag==0)

S_A=S_A->Efcount+1].p_to_down,
S_A->from=count+1,
S_A=S_A->up,

H

80

*/

ALY areAida 072

count=count-1

+/*end of while*/
strnepy(S_A->E[i].w,"",30);
S_A->E[i].p_to_down=NULL,
S_A->E[i].no_of ps=0,
S_A->E[1].f=0,

!

l’*

void insert_A(float a float b)
{
char BE_A[30]; /*BE of piont in index A*/
float ¢;
int NOW_L,
int split;
intil; /*entry numbers returned by search node function*/
1f(A==NULL)
{
A=(struct v_root *)malloc(sizeof(struct v_root)),
A->link=NULL,;
hop_A=A,
}
f level A(ab); /*Find time level where point 1s*/
if(hop_A->tree==NULL)
create_A();
c=(atb)/1 414,

NOW_L=(t_level A+1)*GRAN, /*Calculate NOW_I. of the time level*/

space_ A(NOW_L);

poi_BE A(NOW_L,a,b);

space_ A(NOW_L),
stmepy(BE_A,"",30);
strepy(BE_A buffer1):
S_A=hop_A->lree,
hold_A[t_level A]=hop_A->trec;

while(1) /*to repeat in case of nonleaf node but with descending to child*/

{
11=s_n_in_A(BE_A,ab),
Wf(i1<=M)

{
if(S_A->flag==0) /*in case of nonleaf node */
S_A=S A->E[il].p_to_down, /*descend the tree*/
else if((S_A->flag==1)&&(S_A->nonempty==0))
{
ins_en_A(1l),
split=a_buck_A(11,a,b,c);
if(split==0) /*no split occured*/
{
++(S_A->E[il].no_of_ps);
++(S_A->nonempty),
H
break;

}
else if((S_A->flag==1)&&(i11>S_A->nonempty))
{

ins_en_A(1l);

split=a_buck_A(11,a,b,c);

if(split==0)

81

*/

w APTART A

3

{
++(S_A->E[i1].no_of ps),
++(S_A->nonempty);
}
break;
}

else if((S_A->flag==1)&&(11<=S_A->nonempty)&&(S_A->nonempty<=M))

{
if((11'=M-1)&&(S_A->E[il].no_of ps=M))
shift AGi1+1);
split=a_buck_A(il,a,b.c),
if(split==0)
+(S_A->E[11].no_of_ps);
break;
H

}/*end of if i11<=M*/

} /*end of while*/
hold_A[t level A]=hop A->tree;
H
/¥

void print_A()
{
nt qty=0;
struct tre_node *pin;
struct tre_node *pin2,
struct v_root *pin3,
struct buc_node *pin4,
it 1=0,
int turn=0;
int round=0;
FILE *stream];
stream1=fopen("put]”,"w");
pin3=A,
if(pin3==NULL)
fprintf(stream1,"\n Index A does nol exist ");
else
{
pin3=A->link;
+aty;
/* printf("\n Index . A ");*/
/* printf("\n ----=----- B '}
while(pin3!=NULL)
{
/*printf("\ntime level %d" ,pin3->level);*/
pin=hold_A[pin3->level];

pin2=pin;
/* pnintf{"\n "%/
while(1) /*vertical move*/
{
/* printf("\n......new tree level.... \n");*/

while(pin!=NULL)/*honizontal move*/

{
+qty;
[*printf("\n-------new node----------- \n");*/
i=0;

82

*/

T

L

N

if(pin->flag==1)
{
/* printf("field node\n");*/
: Hqty;
while(1<pin->nonempty)/*inside node*/
{
if((round==4)& &(pin->flag==0))
{
/# printf("\n");*/
round=0;
¥
[*printf("| %s |" pin->E[i].w);*/
[*printf("%. 1f* pin->E[1].£),*/
++round;

if(pin->flag==1)

{

/% printf("\n"); */
pind=pin->E[i].p_to_down;
pin4=pin4->next,
while(pin4!=NULL)

{
if(turn==5)
{
[*printf("\n");*/
turn=0;

}
/printf("(%. 1f",pind->x);*/
printf(",%. 1f)",pind->y)./
pind=pin4->next;
++turn;
H
/*printf("\n"),*/
}
=1+l
turn=0;
+/*end of while*/
pIn=pin->join;
if(pin->flag==0)
; /* printf("\n"),*/
}/*end of while*/
pin=pin2;
if(pin->flag==1)
break;
else

{
pin=pin2->E[0].p_to_down;
pin2=pin;

H
}/*end of while*/
fprintf(stream1,"\ntime level - %d",pm3->level);
pin3=pimn3->link;
+aty,
}*end of while*/

}/*end of else*/
fprintf(stream| ,"\ntotal no. of nodes= %d\n" qly);

83

fclose(stream1);
}
" */
int search_A(float a,float b)
{
mt NOW L.
int nodes=0;
char string[30];
nte,
struct buc_node *look;
f level A(a,b);
NOW_L=(t_level A+1)*8,
space_ A(NOW _L);
poi_BE_A(NOW _L a,b);
strncpy(string,"",30),
strepy(string, buffer1),
S_A=hold_A[t_level _A],
while(S_A->flag==0)
{
e=s_n_in_A(string,a,b);
+inodes;
S_A=S_A->E[e].p_to_down;
}/*end of while*/
e=s_n_in_A(string,a,b);
++nodes, :
if(e<S_A->nonempty) !
{
look=S_A->E[e].p_to_down,
trace_A[e]=look;

s PIARA

look=look->next; /*by pass the dummy head*/

while(look!=NULL) .
{ o
if{(look->x==a)& & (look->y==b)) -

{
printf("\n The point (%.1(,%.1f) is in index A" a,b),
printf("\n at time level=%d"t_level A);
printf("\n number of nodes searched=%d" nodes);
del_A=look;
break;

H

else

{
trace_Ale]=look;
look=look->next;

¥

}/*end of while*/

}

clse
printf("\n The pont (%.1f,%.1f) 1s not in index A",a,b),
return(e);

}
/% */

void deshift_A(int n)
{

while(n<=S_A->nonempty-1)

{

84

stmepy(S_A->E[n-1].w,"",30),
strepy(S_A->E[n-1].w,S_A->E[n].w);
S_A->E[n-1].p_to_down=S_A->E[n].p_to_down,
S_A->E[n-1].no_of ps=S_A->E[n].no_of ps;,
S_A->E[n-1].f=S_A->E[n]f;
if((S_A->flag==0)&&(S_A->E[n-1].p_to_down!=NULL))
{
S_A=S_A->E[n-1]p_to _down,
S_A->from=n-1,
S_A=S_A->up;
}
n=n+l;
+/*end of while*/
strnepy(S_A->E[n-1].w,"",30),
S_A->E[n-1].p_to_down=NULL;
S_A->E[n-1].no_of ps=0;
S_A->E[n-1].£=0;
--S_A->nonempty,
}
/* */
void cond_A(int e)
{
struct tre_node *help;
if((S_A->E[e].no_of ps!=0)&&(S_A->flag==1))
return;
else if((e==S_A->nonempty-1)&&(e!=0)&&(S_A->flag==1))
/*the rightmost but not no. 0 */
{
strnepy(S_A->E[e-1].w,"",30); "
strepy(S_A->E[e-1].w,S_A->E[e]. w); '
stmepy(S_A->E[e].w,",30),
S_A->E[e] p_to_down=NULL;
--S_A->nonempty;
return;
i
else if((e<S_A->nonempty-1)&&(S_A->lag==1))

A

8174

deshift A(e+1);/*start shift left from no. e+1 */
return,

H
else if{(e==0)&&(e==S_A->nonempty-1)&&(S_A->flag==1)&&(S_A->E[e].w[0]!="*"))
{
e=8_A->from;
if(e>0)
{
help=S_A,;
S_A=S_A->up,
S_A=S_A->E[e-1].p_to_down;
S_A->join=help->join,
help=NULL;
S_A=S_A->up,
S_A->E[e].p_to_down=NULL;
deshift_A(e+l1),
}*end of if*/
else /*e==0%/
. [*leave node as it 1s L0 preserve tree balance*/

85

} /*end of else*/

}

[*

%

void delete_A(float a float b)
{
int e,
del_ A=NULL,
e=search_A(a,b);
if(del A==NULL)

printf("\n Point(%. 1{,%. 1{) was not found in index A" a,b);

else
{

trace_Al[e]->next=del A->next,

del A=NULL,

--S_A->Ele].nc_of ps;,

cond_A(e),/*e is the empty entry*/

printf("\n Point(%. 1£,%. | f) deleted from index A",a,b);
}/*end of else*/

H
¥

int max_t_A(int t,int max)
{
if(t>max)
max=t;
return(max);
1
f#

*/

*/

int min_t_A(int L,int min)

if(t<min)
min=t;
return{min);
}
f!Il

»

void pol_ex_A(float v float v2)
{
int NOW_L;
float value;
char bin_exp[30];
mnt =0,
NOW_L=(t_level A+]1)*GRAN,
space_ A(NOW_L);
strnepy(bin_exp,"",30);
if(t_level A==0)
{
value=Y2H(Y1-Y2)/2),
H

else

value=Y3+H(Y1-Y3)/2),
\}while(strlen(bin_exp)<(ln_GBE_A[I_leve1_A}—])]
{if(vl <=value) /*all the polygon below the division line*/

{
bin_exp[1]='0"

86

172l RALALLE.

A

Y 1=value;
if(t_level A==0)
value=Y2+((Y1-Y2)/2),
else
value=Y3+((Y1-Y3)/2),
i
else if(v2>=value) /*all the polygon above the division line*/
{
bin_exp[i]='1";
if(t_level A==0)

Y2=value;
value=Y2+((Y1-Y2)/2);
¥
else
{
Y3=value;
value=Y3+((Y1-Y3)/2);
}
}

else
break;
1=+,
}*end of while*/
bin_exp[i]="*",
strnepy(buffer1,"",30);
strepy(buffer | ,bin_exp),

}
P* */
it pref _A(char *sh,char *lo)
{
if(strstr(lo,sh)==lo)
return(1),
else
return(0);,
!
Jk *f
void find_A(struct tre_node *s,char *string,lloat b1 float b2)
{

strucl buc_node *p;

static int tum;

char shorter{30],

char longer[30];

static int number;,

int 1=0;

int boolean=0,

while(i<s->nonempty)

{
strnepy(shorter,"",30),
strmepy(longer,"",30);
if(s->flag==0)

number=0;
else il(s->flag==1)

++number;
if(strlen(s->E[i].w)<=strlen(string))
{

87

&

strnepy(shorter,s->E[i] w,strlen(s->E[i).w)-1);
strmcpy(longer string,strien(string)-1);

}

else

{
strnepy(longer,s->E[i].w,strlen(s->E[1]. w)-1);
strnepy(shorter string,strlen(string)- 1),

}

boolean=pref_A(shorter,longer);
if((boolean==1)&& (number==0))
{
if(nodes2_A>0)
+nodes2 A;
else
++nodesl_A;
if((((struct tre_node *)(s->E[i].p_to_down))->flag==0)& & (s->flag!=1))
{
if(nleaf2_A>0)
+Hmleaf2 A,
else
+nleaf] A;
h

find_A(s->E[i].p_to_down,string,bl,b2);
H
else if((boolean==1)& & (number>0))
{
p=s->E[i].p_to_down,
p=p->next;
while(p!'=NULL)
{
if(turn==5)
{
Aprntf("\n"),*/
turn=0;
}
if((p->y<=b1)&&(p->y>=b2))
{
Mprintf("(%. 1£*,p->x):*/
/*printf(" %. 10" ,p->y), ¥/
++Humn,
¥
p=p->next;
}
}
=i+l
} M*end of while*/

}
/¥

void pol_A(float al float bl float a2 float b2,float a3,float b3,float a4,floal b4)
{

int NOW_L,

int n=0;

int max=0,

int min=0;

it value=0;

88

*

int count=0;

mnt first;

char string[30];

int 1=0;

char *array[30],

FILE *outl;
outl=fopen("putl","w"),

fprintf(outl,"\n----------------- search for polygon
fprintf(out!,"The polygon that is between the 2 horizontal line y=%. 11,

f level A(albl),
max=max_t_ A(t_level A max);
min=min_t A(t_level A min);
f level A(a2,b2),
max=max_t_A(t_level A max),
min=min_L_A(t_level A min),
f level _A(a3,b3);
max=max_t_A(f_level A max);
min=min_t_A(t_level A min),
if(a4!=-0.0)
{
f level A(ad,bd),
max=max_t_A(t_level A max),
min=min_t_A(t_level_A min),

t_level_A=min,
while(t_level A<=max)

{
NOW_L=(t_level A+1)*GRAN;
space A(NOW_LY,
if(t_level A==0)
{
value=Y2+((Y1-Y2)/2),
}
else
{
value=Y3+((Y1-Y3)/2),
}
if((value<bl)&&(value>b2))

{
pol_ex_A(bl,value),

array[count]=calloc(30,sizeof(char));

strnepy(array[count],"",30),
strepy(array[count],buffer);
pol_ex_A(valueb2);
strcat(array[count],"+");
strcat(array[count],bufferl),
++H_level A,

++count;

else

pol_ex_A(bl,b2);

array[count]=calloc(30,s1zeof(char));

strnepy(array[count],"",30);
strcpy(array[count],buffer1),
++t_level _A;

89

v=%.1f has " b1 b2);

1 'a

4

b

++count;

}*end of while*/
t_level A=min,
count=0,

while(t_level A<=max)

{

fprintf(out],"\nIn time level %d - - - -\n",t_level A),
S_A=hold_A[t level A],
nodesl _A=0;
nodes2 A=0,
nleafl _A=0;
nleaf2 A=0,
if(S_A!=NULL)
{
if(strstr(array[count),"+")==NULL)
{
+nodes] _A,
if(S_A->flag==0)
+inleafl A;
find_A(S_A array[count],bl,b2),

else
{
first=0,
stmepy(string,"",30);
strepy(string,strstr(array[count],"+")+1);
+nodesl A;
if(S_A->flag==0)
+nleafl A,
find_A(S_A,string,bl,b2),
first=strcspn(array{count],"+");
stmepy(string,"",30),
strepy(string,array[count],first);
+nodes2_A;
if(S_A->flag==0)
+nleaf2_A;
find_A(S_A,string,bl,b2),
}

}
if(nodes! _A>nodes2_A)

fprintf(out | ,"\nthe total number of searched nodes=%d\n",nodes! A)

else

]

fprintf(out!,"\nthe total number of searched nodes=%d\n" nodes2 A),

if(nleafl A>nleaf2 A)

fprintf{out],"\nthe number of nonleaf nodes=%d\n" nleafl_A);

else

fprintf(out1,"\nthe number of nonleaf nodes=%d\n",nleaf2_A);,

++t_level _A;
++count;

}*end of while*/

}
/*

main(int arge,char **argv)

{

90

i 4

FILE *in,
intuul;
char ch;
char file_name[10];
float xx,yy,
float ul,vl,u2,v2,u3,v3,ud,v4;
/*printf("enter file name : ");*/
/*scanf("%s" file_name),*/
MAprintf("\n");*/
in=fopen("large1","r"),
if (tin)
{
printf("error open input file\n");
}
while(1)
{
fscanf(in,"%c",&ch);
if(ch=="+")
{
fscanf(in,"(%f,%f)" &xx,&yy),
insert_A(Xx,yy);
M*printf("%. 1£,%. 1\n" xx,yy),*/
H
else if(ch=="#")
{
fscanf(in,"(%f,%f)" &xx,&yy),
uul=search A(xx,yy),

} o

else if(ch=="%") -

: :
print_A();

(YT

}

else if(ch=="-")

{
fscanf(in,"(%f,%f)", &xx,&yy),
delete A(xx,yy),

1
else if(ch=="7")
{
fscanf(in,"(%f Yof, Yof % f %f, %L, %f,%f)" &ul &v] ,&u2 &v2 &u3,&v3,&ud &vd),
pol_A(ul,vl,u2,v2,u3,v3 u4,v4),
¥
if (feof(in))
break;
}
free(A),
free(S_A),
free(S_A2);
free(temp);
exit(0),
¥
/* */

91

R A ko o o oo o o o o ok s ok ko ok ol o ok ok Rk ok kR sk ok ok ko ok

/* C-tree type "B" ¥/
/* *f
/* This program includes the code of insertion, search, and delation in */
/* C-trees type "B". This program is called from the "Parallelizer" &/

[o e ook R o ok oo o sk oo ol R RO KR R R R Sk ok R sk Rk

#include <stdio.h>

#include <malloc.h>

#hnclude <stdlib.h>

#include <string h>

#include <math h>

#nclude <parallel/microtask .h>
#include <parallel/parallel.h>

#define M 62 /*Max number of entries in a node*/
#define GRAN 365 /*space advances every 8 ume units*/

struct entry {
char w[30], /*entry binary expressions*/
void *p_to_down, /*may point to tre_node or buc_node*/ .
intno_of ps; /*isno. of points in bucket of leaf*/
/*is zero for nonleaf*/
float f;

b

struct tre_node {
struct entry E[M+1]; /*array of structures*/
int flag, /*1s 0 for nonleaf,1 for leaf*/
int nonempty;, /*no. of nonempty slots in the node*/ -
int from;, /*no. of entry in parent*/
struct tre_node *up;/*pointer to parent*/
struct tre_node *join;/*pointer to nght node*/

b

struct buc_node {
float x;
float y,
float j;
struct buc_node *p_t_same; /*pointer to bucket node*/
/*where same point 1s*/
struct buc_node *next,

oo

struct v_root {
int level;
struct tre_node *tree;
struct v_root *link;
H

struct v_root *B;

struct v_root *hop_B;

struct v_root *dummy_B,
struct tre_node *S_B;

struct tre_node *S_B2,

struct tre_node *hold_B([150],

92

struct tre_node *parent_B;

struct buc_node *p_buck B;
struct buc_node *temp;

struct buc_node *jmp_B[M+3],
struct buc_node *mark B;

struct buc_node *trace B[M+1],
struct buc_node *trace_B2[M+1];
struct buc_node *del_B;

mt NOW, /*normalized most rescent current time*/
int nodesl B,

int nodes2 B,

nt nleaf] B,

int nleaf2_B;

intt_level B;

int start=0; /*normalized start time of database*/

int In_GBE_B[150];

float X1,Y1,J1,X2,Y¥2,J2,X3,Y3,13,X4,Y4,J4; /*space corner points*/
int above_B[M+3];

int below_B{M+3],

int above n_B=0;,

nt below_n_B=0;

int points_B=0;

char GBE_B[30];
char buffer2[30];
char buffer[30];

void mnsert_B(float float),

void create_B(),

void ins_en_B(int),

void f_level B(float,float), /*find time level of point*/
void poi_BE_B(int,float,float),

mts _n_in_B(char * float,float),

int a_buck_B(int,float,float float);

void in_buck_B(int,float float float),

void sp_buc_B(int,float,float,float);

void space_B(int);

void dec_B(int,int,int,float),

void phy_sp_B(int,char * char *),

void sp_nod_B();

void tran_en_B(int,int),

void shift B(int);

void adjust_B();

void union_B(struct tre_node *),

void print_B();

int search_B(float float),

void delete_B(float,float);

void cond_B(int);,

void deshift B(int);

void pol_B(float float,float,float float,float float,float),
void pol_ex_B(float float);

int max_t_B(int,int);

mnt min_t_B(int,int);

void find_B(struct tre_node * char * float float),
int pref_B(char * char *),

93

1*

b

void in_buck_B(int i,float a float b,float ¢)
{
temp=(struct buc_node *)malloc(sizeof(struct buc_node)),
temp->next=NULL;
if(S_B->nonempty==0)
{
p_buck_B=(struct buc_node *)malloc(sizeof(struct buc_node));
S_B->E[i].p_to_down=p_buck B;
p_buck B->next=NULL;
H
p_buck_B=S B->E[i].p_to_down;
trace_B[i]=S_B->E[i].p_to_down,
while(p_buck B->next'=NULL)

if(a<=p_buck_B->next->x)

{
temp->next=p_buck B->next;
p_buck_B->next=temp,
p_buck B->next->x=a;
p_buck_B->next->y=b;,
p_buck B->next->j=c,
mark_B=p buck B;
temp=NULL,
if(a>S_B->E[i].f)

S_B->E[i].f=a;

return;

H

else if(a>p_buck_B->next->x)

{
p_buck_B=p_buck_B->next,

} *end of while loop*/
temp->next=p_buck_B->next,
p_buck_B->next=temp;
p_buck_B->next->x=a;
p_buck_B->next->y=b;
p_buck_B->next->j=c,
mark_B=p_buck B;
temp=NULL,
ifta>S_B->E[i].f)

S_B->E[i].f=a;
return;

1
J¥

void ins_en_B(int 1)

{

strnepy(S_B->E[i].w,"",30),

strepy(S_B->E[i].w,buffer2);

if(strlen(S_B->E[1] w)>In_GBE_B[t_level _B])
In_GBE_Bt_level_B]=strlen(S_B->E[1].w).

5

*/

void create_B()

{

int 1,

94

%/

GBE_B[0]="*,
In_GBE_B(t_level_B]=strlen(GBE_B),
hop_B->tree=(struct tre_node *)malloc(sizeof(struct tre_node)),
hop_B->tree->flag=1,
S_B=hop_B->tree;
1=0;
while(i<=M)
{
stmepy(hop_B->tree->E[i].w,"",30);
hop_B->tree->E[1].no_of ps=0,
hop_B->tree->E[i] p_to_down=NULL;
hop_B->tree->E[i] =0,
+H;
H
hop_B->tree->up=NULL,
hop_B->tree->jon=NULL,
hop_B->tree->nonempty=0;

}
[*

s

void f_level B(float p,float q) /*This function 1s independent on index used*/
{
it number=-1;
nt NOW_L,
t_level B=(p+q)/GRAN;
hop B=B,
while(Chop_B->link!=NULL)&&(hop_B->link->level<=t_level B))
{
hop_B=hop_B->link;
ifthop_B->level==t_level B)
{
number=t_level B;
break;
}
}/*end of while*/
if(number==-1)
{
dummy_B=(struct v_root *)malloc(sizeof(struct v_root)),
dummy_ B->link=NULL;
dummy_B->tree=NULL;
dummy_B->link=hop_B->link;
hop B->link=dummy_B;
hop_B=dummy_B;
dummy_B=NULL,
hop_B->level=t_level_B;
}/*end of if*/

}
*

void space_B(int NOW_L)

{

if(t_level_B==0)

{

X1=0,
Y1=NOW _L,
X2=0,
Y2=0,

95

¥

X3=NOW _L;
Y3=0, /*anticlockwise order from top*/

else

{
X1=0;
Y1=NOW L,
X2=0;
Y2=NOW_L-GRAN;
X3=NOW_L-GRAN;
Y3=0,
X4=NOW L,
Y4=0;
J4=(X4+Y4)/1.414;

}
JI=(X1+Y1)/1.414;
J2=(X2+Y2)/1.414;,
I3=(X3+Y3)/1.414,

b
¥

void poi_BE_B(int NOW_L float a, float b)
{
char bin_exp[30];
float value;
int 1=0;
float ¢;
space B(NOW_L);
value=J2+((J1-J2)/2),
c=(at+b)/1 414,
stmcpy(bin_exp,"",30);
while(strlen(bin_exp)<(In_GBE_B|[t_level B]-1))
{
if{c<=value)
{
bin_exp[1]='0",
J1=value;
value=I2+((J1-J2)/2),
}
else
{
bin_exp[i]='1";
J2=value;
value=J2+((J1-J2)/2),
}
1=1+];
} /*end of while loop*/
bin_exp[i]=""*";
strnepy(buffer,"",30);
strepy(buffer2,bin_exp),
H
,!*

¥/

*/

ints_n_in_B(char BE_B[] float a float b)
{

int differ=0;

int 1=0;

int 1=0,

96

char *D_CAP=NULL,;
if(S_B->nonempty==0)

return(1); /*the first entry 1.€ no. zero*/
else

while(i<S_B->nonempty) /*to search nonempty entries of a node*/
{
if((S_B->E[i] w[0]="*")& & (strstr(S_B->E[i].w,"D")==NULL))
return(i);
1=0;
while(S_B->E[i]. w[l]!="*"
{
if(S_B->E[i].w[l]!'=BE_BI[l])
{
differ=1;
break;
}
1=1+1;
}/*end of while*/
D_CAP=NULL,
D_CAP=strstr(S_B->E[1].w,"D"),
if(differ==0) /*the entry is qualified*/
{
f(D_CAP==NULL) /*no D character in BE*/
return(i),
else if(D_CAP!=NULL)&&(a<=S_B->E[i].f))
/*point lies inside D character range £*/
return(i);
else
differ=1;
}*end of if differ..*/
1=1+1; /*to search next entry*/
differ=0;
}*end of outer while*/
if((differ=1)&&(S_B->flag==1)&&(S_B->nonecmpty<M))
return{i+1),
else f((differ==1)&&(S_B->flag==1)&&(S_B->nonempty=—=M))/
*return(M+1); */
}/*end of else*/
t
)“

void phys_sp_B(int 1,char *BE] char *BE2)
{
int 1=0;
mt v;
int u;
it array[M+3).
array[0]=0; /*not used*/
if(points_B==below_n_B)
{
S _B->E[i].f=jymp_B[below_B[points_B]]->x;
S_B->E[i+1].f5ymp_B[above B[M+I-points_B]]->x;
}

else

{
S_B->E[1).f=jmp_B[above_B[points_B]]->x;

97

S_B->E[i+1].f=5jmp_B[below_B[M+!-points_B]]->x,
H
I=1+1;
stmepy(S_B->E[i].w,"",30),
strepy(S_B->E[1].w,BE1);
S_B->E[i].no_of ps=points_B;
stmepy(buffer2,"",30),
strepy(buffer2, BE2),
ins_en_B(i+1),
p_buck_B=(struct buc_node *)malloc(sizeof(struct buc_node));
S_B->E[i+]].p_to_down=p_buck B;
p_buck B=S_B->E[i+1].p_to_down;
trace_B[i+1]=S_B->E[i+1].p_to_down;
if(BE1 [strlen(BE1)-2]=="1")
{

while(l<=(M+1-points_B))

{

array(l]=below_BJ[l];
I=1+1;

}

}

else

{
while(l<=(M+1-points_B))

array[l]=above BI[l];
I=1+1;
}
¥
1=1-1;
v=1;
u=l;
while(v<=])
{
p_buck B->next=jmp_B|array[v]],
while(1)
{
ifGmp_B(array[v]-u]!=NULL)
{
jmp_B[array[v]-u]->next=jmp_B[array(v]]->next,
p_buck B=p_buck_B->next,
p_buck_B->next=NULL;
jmp_Bfarray[v]]=NULL;
break;
}
else
u=uti,
1/* end of while(1)*/
v=v+1,
u=1;
} *end of while*/
S_B->E[1+1].no_of ps=l,
++S_B->nonempty,
H
1%

void dec_B(int left,int night,int sub,float value)

98

int la=1; /*the subscript the array starts with 1*/
mt Ib=1,
above_n_B=0; /*reset*/
below_n_B=0; /*reset*/
while(left<=right)
{
if(jmp_B[sub]->}>value)
{

above B[la]=left;
above_n_B=above n_B+l;
la=la+l1;

}

else

below_B[lb]=left;
below_n_B=below_n_B+I;
Ib=lb+1,
}
lefi=left+1;
sub=sub+1,
}

}
J*

void tran_en_B(int count,int n)
{
struct tre_node *helper,
/*copy enlry to node 2*/
stmepy(S_B2->E[n].w,"",30);
strepy(S_B2->E[n].w,S_B->E|count].w),
S_B2->E[n].p_to_down=S_B->E[count].p_to_down,
trace_B2[n]=S_B2->E[n].p_to_down,
S_B2->E[n].no_of ps=S B->E[count].no_of ps,
S_B2->E[n].f=S_B->E[count] f,
S_B2->flag=S_B->flag;
++S_B2->nonempty;
/*remove copied entry from node 1*/
strnepy(S_B->E[count].w,"",30);
S_B->E[count].p_to_down=NULL,
S_B->E[count].no_of_ps=0;
S B->E[count].f=0;
--S_B->nonempty;
1f(S_B2->flag==0)
{
helper=S_B2->E[n].p_to_down;
helper->from=n,
helper->up=S_B2;
helpe=NULL;:
H

b
lia

L

*

void sp_nod_B()
{

int =0,

int k=0;

int 0=0;

99

int differ=0;
S_B2=(struct tre_node *)malloc(sizeof(struct tre_node));/*points to node 2*/
S_B2->nonempty=0;
S_B2->join=S_B->join,
S_B->join=S_B2;
i=M-1; /*start with entry no. 1*/
while((S_B->E[i].w[0]=="*)&&(S_B->E[i].w[1]=="D")
1=i-1;
while(i>0)
{
k=0;
while(S_B->E[i].w[k]!="*")
{
o=i-1;
while(0>=0)
{
if(S_B->E[i].w[k]!'=S_B->E[0].w[k])
{

differ=t;
break;

}

o=0-1;

}
if(differ==0)
k=k+1,;

else
break;

}/*end of inner while*/
if(differ!=0)
{

1=i-1;

differ=0;
h
else

break;

}/*end of outer while*/

while(i<M)

{
tran_en_B(i+],S_B2->nonempty),
=1+l

}

i
/¥

void union_B(struct tre_node *p)
{
strmepy(buffer2,"",30),
strepy(buffer2,p->E[p->nonempty-1|.w),
}
f‘*

void adjust B()
{
nt i=0;
struct tre_node *carry,
parent_B=S_B;
if(parent_B!=hop B->tree)
parent_B=S_B->up;,

100

while((parent_B!=S_B)&&(parent_B!=NULL)&&(S_B'!=hop_B->tree))
{
i=S_B->from;
strnepy(parentB->E[1].w,"",30);
strepy(parent_B->E[1].w,S_B->E[(S_B->nonempty)-1].w);
parent_B->E[i].f=S_B->E[(S_B->nonempty)-1].f;
if(S_B2!=NULL)
{
S_B=parent_B;
shift B(i+1);
S_B=parent_B->E[i].p_to_down;
stmepy(parentB->E[1+1].w,"",30),
strepy(parent_B->E[i+1].w,S_B2->E[(S_B2->nonempty)-1].w);
parent_B->E[i+1].f=8 B2->E[(S_B2->nonempty)-1].f;
++(parent_B->nonempty),
parent_B->E[i+1].p_to_down=S_B2;
S_B2->up=parent B;
S_B2->from=1+1,
S_B2=NULL;
}
S_B=parent_B;
parent_B=S B->up;
if(S_B->nonempty==M+1)
sp_nod_B();

}
if((S_B->nonempty==M+1)&&(S_B==hop_B->tree))
sp_nod B();

1=0;
if({(S_B==hop_B->tree)&&(S_B2!=NULL)) /*the split node is the root™*/
{
carry=(struct tre_node *)malloc(sizeof(struct tre_node)),
hop_B->tree=carry,
carry=NULL;
parent_B=hop_B->tree;
S_B->up=parent_B;
S_B2->up=parent B,
S_B->from=i,
S_B2->from=1+1,
hop_B->tree->E[1].p_to_down=S_B,
hop_B->tree->E[1+1].p_to_down=S_B2;
hop_B->tree->flag=0;
hop_B->tree->nonempty=2;
union_B(S_B);
strepy(hop_B->tree->E[i].w,"",30);
strepy(hop_B->tree->E[i].w,buffer2),
strepy(hop_B->tree->E[i+1].w,"",30);
strepy(hop_B->tree->E[i+1].w,"*");
hop_B->tree->E[1].f=S_B->E[S_B->nonempty-1].f;
hop_B->tree->E[1+1].f=S_B2->E[S_B2->nonempty-1].f;
} /*end of 1f¥/
b

[*

void sp_buc_B(int 1,float a float b.float c)

char BE1[30]; /*of new st entry*/

101

X

char BE2[30], /*of new 2nd entry*/
char ent_exp[30]; /*of onginal entry*/
int dif=0;

int =0,

int k=0,

int count=0;

int counter=0;

nt ans;

nt tt;

int total;
jmp_B[k]=S_B->E[i].p_to_down;
strnepy(BE1,"",30);
stmepy(BE2,"",30);

BEI[0]="*",

belew_n_B=0;

above_n_B=0;

k=k+1;

counter=counter+1;

total=M+1,

while(k<=M+1)

jmp_B[k]=jmp_B[k-1]->next,
if(GGmp_Bk)->j!=jmp_B(k-1]->})&&(k>1)
dif=1;
k=k+I;
}
1f((dif==0)&&((k-1)>M)) /*all j-coord. are equal*/
{
strepy(BE1,S_B->E[i].w);
if(strstr(BE1,"D"y==NULL)
BE[strlen(BE1)]=D",
strepy(BE2,S_B->E[1].w);
while(counter<=(total/2))
{
below_B[counter]=counter,
+t+below n_B;
++counter,
}
counter=1;
while(counter<=total-below_n_B)

above_B[counter|=counter+below_n_B;
++above n_B;
++counter,

points_B=below_n_B;
}*end of if*/
else
{
k=1;
dec_B(kM+1 K, (((J1-12)/2)+]2)),
while(1)

if(above_n_B==total)

{
BEI[t='1"

102

count=1,
12=]2+((J1-12)/2),
dec_B(count,above n_B,above_B|[count],(((J1-J2)/2)+]2));

}
else if(below_n_B==total)
{
BE1[t]='0",
count=1;
J1=J2+((J1-12)/2),
dec_B(count,below_n_B,below B[count],(((J1-]2)/2)+]2)),
b
else
{
if(below_n_B>above n_B)
BEI[t]='0",
else if(fabove_n_B>below n_B)
BEI[t]="1"
else
{
if(t!=0)
BE1[t]=BE1[t-1];
else
BEI[t]=0",
!
break,
H*end of else*/
=+l
}*end of while*/
BE1[t+]]="*",
strnepy(ent_exp,"",30);
strepy(ent_exp,S_B->E[i].w),
if(strlen(BE1)>In_GBE_B(t_level_B])
In_GBE_B[t_level Bl=strlen(BE1);
if(BE1[t]=="1")
points_B=above n_B; /*points_B is no. of points in 1st entry*/
else
points_B=below_n_B;
stmepy(BE2,"",30),
strepy(BE2,ent_exp);
}/*end of else*/
phys_sp_B(1,BE1,BE2);
if(S_B->nonempty==M+1)
{
sp_nod_B(),
adjust_B()./*adjust tree*/
H

}
ft

int a_buck_B(int i float a,float b float ¢)
{
int split=0;
if(S_B->E[i].no_of ps<M)
{
in_buck B(3,a,b,c), /*to insert i bucket list*/
return(0);

}

103

*/

else
{
in_buck B(i,ab,c);
sp_buc_B(1,a,b,c);, M*split bucket*/
return(1);
}
}
* */
void shift B(int 1)
{
int count=8_B->nonempty-1;
while(count>=i)
{
stmepy(S_B->E[count+1].w,"" 30);
strepy(S_B->E[count+1].w,S_B->E[count].w);
S_B->E[count+1].p_to_down=S_B->E[count].p_to_down;
S_B->E[count+1].no_of ps=S_B->E[count].no_of ps;
S_B->E[count+1].f=S_B->E[count].f;
if(S_B->flag==0)
{

S_B=S _B->E[count+1].p_to_down;
S_B->from=count+1;
S_B=S B->up;,
}
count=count-1;
}/*end of while*/
stmepy(S_B->E[1].w,"",30);
S_B->E[i].p_to_down=NULL,

S_B->E[i].no_of ps=0;

S_B->E[1].£=0;

J
" 4
void msert_B(float a,float b)

{

char BE_B[30]; /*BE of point in index B*/
float c;

int NOW_L;

int split;

mti2, /*entry numbers returned by search node function*/
1f(B==NULL)

{

B=(struct v_root *)malloc(sizeof(struct v_root)),
B->link=NULL;
hop_B=B;
}
f level B(a,b), /*Find time level where point is*/
1fthop_B->tree==NULL)
create_B();
c=(atb)/1.414;
NOW_L=(t_level B+1)*GRAN; /*Calculate NOW_L of the time level*/
space B(NOW_L);
poi_ BE B(NOW_L,a,b);
space BINOW_L),
stmepy(BE_B,"",30);
strepy(BE_B,buffer2);
S_B=hop_B->tree;

104

hold_B[t_level Bl=hop_B->tree;
while(1) /*to repeat in case of nonleaf node but with descending to child*/
{
12=s_n_in_B(BE_B,ab);
if(i2<=M)
{
if(S_B->flag==0) /*in case of nonleaf node */
S_B=8_B->E[i2].p_to_down, /*descend the tree*/
else if((S_B->flag==1)&&(S_B->nonempty==0))
{
ins_en_B(i2);
split=a_buck B(i2,ab,c),
if(split==0)
{
++HS_B->E[i2]).no_of ps);
++(S_B->nonempty);
}
break;
}
else if((S_B->flag==1)&&(12>S_B->nonempty))
{
ins_en_B(12),
split=a_buck B(i2,a,b,c),
if(split==0)
{
++(S_B->E[i2] no_of ps);
++(S_B->nonempty);
}
break;
}
else if((S_B->flag==1)&&(12<=S_B->nonempty)&&(S_B->nonempty<=M))
{
if((12!'=M-1)&&(S_B->E[i2].no_of ps==M))
shift_B(i2+1);
split=a_buck_B(i2,a,b.c),
if(split==0)
++(S_B->E[12].no_of ps),
break;
}
}*end of if 12<=M*/
} *end of while*/
hold B[t_level_B]=hop_B->tree;
}

1*

void print_B()

{
nt qty=0;
struct tre_node *pin;
struct tre_node *pin2;
struct v_root *pin3;
struct buc_node *pind;
mnt 1=0;
mt turn=0;
int round=0;
FILE *stream2;

105

stream2=fopen("put2","w");

pin3=B;

if(pin3==NULL)

fprintf(stream?2,"\n Index B does not exist "),
else

{

pin3=B->hnk;

+aty;

/*printf("\n Index . B ");*/

M*prntf("\n ---eceee=-") ¥/
while(pin3!=NULL)

{

/*printf("\ntime level : %d" pin3->level),*/
pin=hold_B[pin3->level],

pin2=pin,
/*printf("\n "y*/
while(1) /*vertical move*/
{
Mprntf("™n.....en new lree level...........\n");*/
while(pin!=NULL)/*horizontal move*/
{
++ty

/ *Pfin;f("\n-mneees new node------\n"): */
1=0;
if(pin->flag==1)
{
/*printf("field node\n"),*/
++qty,
}
while(i<pin->nonempty)/*inside node*/
{
if((round==4)& &(pin->flag==0))
{
/*printf("\n");*/
round=0;

}

/*printf("| %s |",pin->E[1] w),*/
[*printf("%. 1{",pin->E[i].£);*/
++round,

if(pin->flag==1)

{
/* printf("\n");*/
pin4=pin->E[i].p_to_down;
pind=pm4->next;
while(pind!=NULL)
{

if(turn==5)

/*printf("\n");*/

turn=0;
}
M prntf("(%. 1", pind->x).*/
Mprintf(",%. 1f",pind->y);*/
M*printf(" %. 1£)" pind->7);*/
pind=pind->next;
++Humn;

106

}
Mprntf("\n"); ¥/
}
=i+,
turn=0;
}/*end of while*/
pin=pin->join;
if(pin->flag==0)
Jprintf(" ");*/
}/*end of while*/
pin=pin2;
if(pin->flag==1)
break;
else
{ . .
pin=pin2->E[0].p_to_down;
pin2=pin;
}
}/*end of while*/

fprintf(stream2,"\ntime level : %d",pin3->level),

pin3=pin3->link;
+qty,
}/*end of while*/
$/*end of else*/
fprintf(stream2,"\ntotal no of nodes= %d\n",qty);

H
*

int search_B(float a float b)
{
mt NOW_L;
int nodes=0;
char string{30];
int e;
struct buc_node *look;
f_level B(ab);
NOW_L=(t_level B+1)*8,
space_B(NOW _L),
poi_BE_B(NOW_L,ab),
strnepy(string,"",30);
strepy(string, buffer2),
S_B=hold B[t_level B},
while(S_B->flag=0)
{
e=s_n_in_B(string,a,b),
++nodes;
S_B=S_B->E[e].p_to_down,
}/*end of while*/
e=s_n_in_B(string,a b},
++nodes;
if(e<S_B->nonempty)
{
look=S_B->E[e].p_to_down;
trace_B[e]=look;
look=look->next, /*by pass the dummy head*/
while(look!=NULL)

{

107

*/

}

if((look->x==a)&&(look->y==b))

{
printf("\n The point (%. 1£,%.1f) is in index B",a,b);
printf("\n at time level=%d",t_level B),
printf("\n number of nodes searched=%d" nodes);
del_B=look;
break;

else
{
trace_B[e]=look;
look=look->next,
}
}/*end of while*/
}
else
prnntf("\n The point (%.1£f,%.1f) is not in index B",a,b),
return(e),

/%
void deshift_B(int n)

{

}

[*

*/

while(n<=S_B->nonempty-1)

stnepy(S_B->E[n-1].w,"",30);
strepy(S_B->E[n-1].w,S_B->E[n].w),
S_B->E[n-1].p_to_down=S_B->E[n].p_to_down;
S B->E[n-1]no_of ps=S B->E[n].no_of ps;
S_B->E[n-1].£=S_B->E[n] f,

if((S_B->flag==0)&&(S_B->E[n-1].p_to_down!=NULL))

S_B=S_B->E[n-1].p_to_down;
S_B->from=n-1,
S_B=S_B->up;
H
n=n+1;
}*end of while*/
strmepy(S_B->E[n-1].w,"",30);
S_B->E[n-1].p_to_down=NULL,
S _B->E[n-1].no_of ps=0;
S_B->E[n-1].£=0;
--S_B->nonempty;

void cond_B(int €)

{

struct tre_node *help;
if((S_B->E[e].no_of_ps!=0)&&(S_B->flag==1))
return;

else if((e==S_B->nonempty-1)&&(e!=0)&&(S_B->flag==1))

/*the rightmost but not no. 0 */
{
strnepy(S_B->E[e-1].w,"",30);
strepy(S_B->E[e-1].w,S_B->E[e].w);
stmepy(S_B->E[e].w,"",30),
S B->E[e].p_to_down=NULL,

108

*/

--S_B->nonempty,
returm;
H
else if((e<S_B->nonempty-1)&&(S_B->flag==1))
{
deshift_B(e+1),/*start shift lefi from no. e+1 */
return;
}
else if((e==0)&&(e==S_B->nonempty-1)&&(S_B->flag==1)&&(S_B->E[e].w[0]'="*))
{
e=S_B->from;
if(e>0)
{

|

help
S
S

S B;
S_B->up;
S_B->E[e-1].p_to_down,

B
B
S_B->join=help->join;
help=NULL;
S_B=S_B->up;
S_B->E[e].p_to_down=NULL,
deshift B(e+1),
+*end of if*/
else /*e==0%/
; [*leave node as it 1s to preserve tree balance*/
} /*end of else*/
}
i */
void delete_B(float a,float b)
{
int e;
del B=NULL;
e=search B(a,b);
if(del_B==NULL)
printf("\n Point(%.1{,%. 1 f) was not found in index 13",a,b);
else
{
trace_B[e]->next=del B->next,
del B=NULL;
--S_B->E[e].no_of ps;
cond_B(e);/*e is the empty entry*/
printf{"\n Point(%.1£,%. 1{) deleted from index B",a,b);
+/*end of else*/
h
/* */
int max_t_B(int t,int max)
{
if(t>max)
max=t;
return(max);
¥
/* */
mt min_t_B(int t,int min)
{
if(t<min)
min=t,
return(min);

109

}
r(*
void pol_ex_B(float c1,float ¢2)
{
int NOW _L,;
float value;
char bin_exp[30];
int 1=0;
NOW_L=(t_level B+1)*GRAN,;
space BINOW _L);
value=J2+((J1-J2)/2),
strnepy(bin_exp,"",30);
while(strlen(bin_exp)<(In_GBE_B|[t_level B]-1))
{
if{cl<=value)
{
bin_exp[i]='0";
J1=value;
value=J2+((J1-J2)/2);

)

else if{c2>=value)

{
bin_exp[1]='1";
J2=value;
value=J2+((J1-J2)/2),

}

else

{
}

1=i+l;
1 /*end of while*/
bin_exp[1]="*";
strnepy(buffer2,"",30),
strepy(buffer2,bin_exp),
,E s */
nt pref_B(char *sh,char *lo)

break;

if(strstr(lo,sh)==lo)
return(1),
else
return(0);
» .
void find_B(struct tre_node *s,char *string,float cl,foat c2)

struct buc_node *p;
static int turn,

char shorter{30];

char longer[30];

static int number;

int 1=0;

int boolean=0,
while(i<s->nonempty)

{

110

strepy(shorter,"",30);
strnepy(longer,",30);
if(s->flag==0)
number=0;
else if(s->flag==1)
++number;,
if(strlen(s->E[1]. w)<=strlen(string))
{
strncpy(shorter,s->E[1]. w,strlen(s->E(i].w)-1);
strnepy(longer string,strlen(string)-1);

}

else

{
strncpy(longer,s->Efi].w,strien(s->E[i].w)-1);
strncpy(shorter,string,strlen(strning)-1),

}

boolean=pref B(shorter,longer),

if((boolean==1)&& (number==0))

{

if(nodes2_B>0)
++nodes2_B;

else
++nodes]_B;
if((((struct tre_node *)(s->E[i].p_to_down))->flag==0)& &(s->flag!=1))

if(nleaf2_B>0)
++nleaf2 B;
else
++nleafl B,
}

find_B(s->E[i].p_to_down,string,cl,c2),

}
else if((boolean==1)&& (number>0))
{

p=s->E[i].p_to_down;

p=p->next,

while(p!=NULL)

{

if(turn==5)

/* printf("\n");*/
turn=0;

}
if((p->j<=c1)&&(p->j>=c2))
{
Pprintf("(%e. 1£,p->x).*/
printf(",%.11",p->y),/
Mprintf(",%.16)",p->1);*/
++turn;
}
p=p->next,
}
H
=i+l
} /*end of while*/

11T

H
/*

void pol_B(float al float bl,float a2 float b2 float a3 float b3 float a4, float b4)
{

int NOW_L;

int n=0,

int max=0,

int min=0;

mnt value=0;

int count=0;

int first,

char string[30];

int 1=0;

float cl,c2;

FILE *out2;

char *array[30];

out2=fopen("put2","w");

cl=(al+bl)/1.414,

c2=(a2+b2)/1.414,

fprintf(out2,"\n---=----=-nmemmemeane- search for polygon----------------- \n");

fprintf(out2,"The polygon that is between the e parallel lines }=%. 1{,)=%.1f has :",c1,c2);

f level B(albl),

max=max_{_B(t_level B max);

min=min_t_B(t_level B,min);

f level B(a2b2),

max=max_t_B(t_level B,max);

min=min_t B(t_level B min),

f level B(a3,b3),

max=max_t_B(t_level B max),

min=min_t_B(t_level B,min),

if(ad!=-0.0)

f level B(a4,bd),
max=max_t_B(t_level Bmax);
min=min_t_B(t_level B,min),

t_level B=min,
while(t_level B<=max)
{
NOW _L=(t_level B+1)*GRAN,
space_ B(NOW_L);
value=J2+((J1-]2)/2),
if((value<c1)& &(value>c2))
{
pol_ex_B(cl,value);
array[count]=calloc(30,sizeof(char));
strnepy(array[count],"",30);
strepy(array[count] buffer2);
pol_ex_B(value,c2),
strcat(array[count],"+"),
strcat(array[count],buffer2),
++_level _B;
++count;
}

else

{

112

*!

pol_ex_B(clc2),
array[count]=calloc(30,sizeof(char));
strmepy(array[count],"",30);
strepy(array[count],buffer2);
++t_level B;
++count,
H

} Mend of while*/

t_level B=min;

count=0,

while(t_level B<=max)

fprintf(out2,"\nln time level %d - - - -\n"t_level B),
S_B=hold_BJt_level B],
nodes! B=0,
nodes2 B=0,
nleafl_B=0,
nleaf2 B=0;
if(S_B!=NULL)
{
if(strstr(array[count],"+")==NULL)
{
+tnodes]_B;
if(S_B->flag==0)
+inleafl B,
find_B(S_B,array[count],c1,c2);
}
else
{
first=0;
strnepy(string,”,30);
strepy(string,strstr(array[count],"+")+1);
++nodesl B,
if(S_B->flag==0)
+nleafl B;
find_B(S_B,string,cl.c2),
first=strcspn(array|count|,"+"),
strmepy(string,"*,30);
stmcpy(string,array[count},first),
++nodes2_B,;
if(S_B->flag==0)
+tnleaf2 B;
find_B(S_B,stnng,cl,c2),
b

}
if(nodes]_B>nodes2_B)

fprintf(out2,"\nthe total number of searched nodes=%d\n",nodes! _B);

else

fprintf{out2,"\nthe total number of searched nodes=%d\n",nodes2_B)
if(nleafl _B>nleaf2 B)

fpnntf(out2,"\nthe number of nonleaf nodes=%d\n" nleafl _B);
else

fprintf{out2,"\nthe number of nonleaf nodes=%d\n" nleaf2_B);

++t_level B;
++count;

113

2

}/*end of while*/
}
/*

main(int arge,char **argv)
{
FILE *in;
nt uu2;
char ch;
float ul,vl,u2,v2,u3 v3,u4,vd;
char file_name[10];
float xx,yy;
/*printf("enter file name : ") */
/*scanf("%s" file_name);*/
printf("\n");*/
in=fopen("large2","r");
if (lin)
{
printf("error open input file\n");
}
while(1)
{
fscanf(in,"%c" &ch);
if(ch=="+")
{
fscanf(in,"(%f,%f)" &xx,&yy);
msert_B(xx,yy),
}
else if(ch=="#")
{
fscanf(in,"(%f,%f)", &xx,&yy);
uu2=search_B(xx,yy),
3
else if(ch=="8")
{
print_B(),
}
else if(ch=="-")
{
fscanf(in,"(%f %f)",&xx,&yy),
delete_B(xx.yy);
}
else if(ch=="7")

fscanf(in," (%ol %f,%f %1, %1 %of,%f %) " &ul &v1,&u2 & v2,&u3 &v3,&ud &vd),
pol B(ul,vl,u2,v2u3v3ud vd),

}
if (feof(in))
break;
}
free(B),
free(S_B),
free(S_B2);
free(temp);
return(0);
}
I{ %

*f

114

*f

f***‘**"***t#‘**t*#*********#*"*i*#*#*t*#*****‘*#*#****‘##**‘t***.‘#****}

* C-tree type "C" */
1% */
/* This program includes the code for insertion, search, and deletion in w
/* C-trees type "C". This program is called from the "Parallelizer” */

AR ok ok e e o ok ok s ol skl ok ol ke s sk ko ok ol o ok ook i ok ko kR ok sk okl okt ok ok soloR ok ok ook |

#include <stdio.h>

#include <malloc.h>

#include <stdlib.h>

#include <string h>

#include <math h>

#include <parallel/microtask.h>
#include <parallel/parallel h>

#define M 62 /*Max number of entries in a node*/
#define GRAN 365 /*space advances every 8 time units*/

struct entry { '
char w[30]; /*entry binary expressions*/
void *p_to_down, /*may point to tre_node or buc_node*/
intno_of ps, /*isno. of points in bucket of leaf*/
/*is zero for nonleaf*/
float f;

E

struct tre_node
struct entry E(M+1]; /*array of structures*/
int flag; /*is 0 for nonleaf,1 for leaf*/
int nonempty; /*no. of nonempty slots in the node*/
int from; /*no. of entry in parent*/
struct tre_node *up;/*pointer to parent*/
struct tre_node *join;/*pointer to right node*/

b

struct buc_node {
float x;
float y;
float J;
struct buc_node *p_t_same; /*pointer lo bucket node*/
/*where same point is*/
struct buc_node *next,

}h

struct v_root {
int level;
struct tre_node *tree,
struct v_root *link;

b

struct v_root *C;

struct v_root *hop_C;
struct v_root *dummy_C;
struct tre_node *S_C;
struct tre_node *S_C2;

115

struct tre_node *hold_C[150],
struct tre_node *parent_C;

struct buc_node *p_buck C;
struct buc_node *temp;

struct buc_node *jmp C[M+3],
struct buc_node *mark C;

struct buc_node *trace C[M+1];
struct buc_node *trace C2[M+1];
struct buc_node *del_C;

int NOW; /*normalized most rescent current time*/
int nodes_nol;

int nodes_no2,

int nonleafs1;

int nonleafs2;

intt_level C,

int start=0; /*normalized start time of database*/

int In_GBE_C[150]; /*length of greatest GBA*/

float X1,Y1,X2,Y2,X3,Y3,X4,Y4, /*space corner points*/
int above_C[M+3];

int below_C[M+3];

int above_n_C=0,

nt below_n_C=0,

nt points_C=0;

char GBE_C[30];
char buffer3[30];
char buffer[30];

void insert_C(float,float);

void create_C();

void ins_en_C(int),

voud f_level_C(float float), /*find time level of pomnt*/
void poi_BE_C(int,float,float),

ints n_in_C(char * float,float),

int a_buck_C(int,float,float float),

void in_buck_C(int,float,float,float);

void sp_buc_C(int,float,floal float);

void space_C{(int),

void dec_C(int,int,int float);

void phy_sp_C(int,char * char *),

void sp_nod_C();

void tran_en_C(int,nt),

void shift_ C(int),

voud adjust_C(),

void union_C(struct tre_node *),

voud print_C();

int search_C(float float);

void delete_C(float,float),

void cond_C(int);

void deshift_C(int),

void pol_C(float,float,float,float,float,float,float float);
void pol_ex_C(float,float),

int max_t_C(int,mnt),

int min_t_C(int,int),

void find_C(struct tre_node * char * float float),

116

int pref_C(char * char *);

/*

®/

void in_buck_C(int i,float a float b,float ¢)

i
temp=(struct buc_node *)malloc(sizeof(struct buc_node));
temp->next=NULL;
if(S_C->nonempty==0)

p_buck C=(struct buc_node *)malloc(sizeof(struct buc_node)),
S_C->E[1].p_to_down=p_buck C;
p_buck C->next=NULL,;
}
p_buck C=S_C->E[i].p_to_down,
trace_C[1]=S_C->E[i].p_to_down,
while(p_buck_C->next!=NULL)
{
if(b<=p_buck_C->next->y)
{
temp->next=p_buck C->next,
p_buck_C->next=temp;
p_buck C->next->x=a,
p_buck C->next->y=b;
p_buck C->next->j=c;
mark_C=p_buck_C;
temp=NULL;
if(b>S_C->E[i].f)
S_C->E[i].f=b;
retum,

}
else if(b>p_buck C->next->y)

p_buck_C=p_buck_C->next;
}

} /*end of while loop*/
temp->next=p_buck_C->next;
p_buck C->next=temp;
p_buck_C->next->x=a,
p_buck C->next->y=b;
p_buck_C->next->j=c;
mark_C=p_buck_C;
temp=NULL;
if(b>8_C->E[i].f)

S_C->E[1].f=b;
return;

}

[*

void ins_en_C(int 1)
{
stmepy(S_C->E[i].w,"",30);
strepy(S_C->E[i].w,buffer3),
if(strlen(S_C->E[i].w)>In_GBE_C[t_level C])
In_GBE_C[t level_C]=strlen(S_C->E[i] w),
}

/*

117

o

*]

void create_C()
-
mt1;
GBE_C[0]="*",
In_GBE_C[t_level C]=strlen(GBE_C);
hop_C->tree=(struct tre_node *)malloc(sizeof(struct tre_node)),
hop_C->tree->flag=1;
S_C=hop_C->tree;
i=0;
while(i<=M)
{
stmepy(hop_C->tree->E[i].w,"",30);
hop_C->tree->E[i].no_of_ps=0;
hop_C->tree->E[1] p_to_down=NULL,
hop_C->tree->E[i].f=0,
++;
}
hop_C->tree->up=NULL;
hop_C->tree->join=NULL,
hop_C->tree->nonempty=0,
}
™ »/
void f_level C(float p,float q) /*This function is independent on index used*/
{

int number=-1;

int NOW _L;

t_level C=(p+q)/GRAN,

hop_C=C,
while((hop_C->link!=NULL)&&(hop_C->link->level<=t_level_C))
{

hop_C=hop_C->link;
if(hop_C->level==t_level _C)
{

number=t_level_C;

break;
}
}/*end of while*/
if(number==-1)

{
dummy_C=(struct v_root *)malloc(sizeof(struct v_root)),
dummy_ C->link=NULL,;
dummy_C->tree=NULL;
dummy_C->link=hop_C->link;
hop_C->link=dummy_C;
hop_C=dummy_C,
dummy_C=NULL;
hop_C->level=t_level_C;

y/*end of if*/

}

I* *f
void space_C(int NOW_L)

{
if(t_level_C==0)

{
X1=0;

118

Y1=NOW_L,

X2=0;

Y2=0,

X3=NOW L;

Y3=0; /*anticlockwise order from top*/

else

X1=0;
Y1=NOW L,
X2=0;,
Y2=NOW_L-GRAN;
X3=NOW_L-GRAN;
Y3=0,
X4=NOW _L;
Y4=0,

H

}

*

void poi_BE_C(int NOW _L float a, float b)
{
char bin_exp[30],
float value;
int i=0;
int X_X; /*1s the higher point*/
stmepy(bin_exp,"",30),
space C(NOW_L);
if(t_level C==0)
X X=X3,
else
X X=X4,
value=X1+HX_X-X1)/2;
while(strlen(bin_exp)<(in_GBE_C[t_level C]-1))
{
if{a<=value)
{
bin_exp[i]='0";
X_X=value;
value=X1+X_X-X1)/2,
}
else
{
bin_exp[1}='1";
X I=value;
value=X1+((X_X-X1)/2),
}
=i+l
} I*end of while loop*/
bin_exp[i]="*",
strnepy(buffer3,"",30),
strepy(buffer3 bin_exp),

}
¥

¥/

*f

int s_n_in_C(char BE_C[],float a,float b)
{

119

int differ=0;,
nt [=0;
int i=0;
nt k=0;
char *D_CAP=NULL,
1f(S_C->nonempty==0)
return(i); /*the first entry 1. no. zero*/
else
{
while(i<S_C->nonempty) /*to search nonempty entnies of a node*/
{
if((S_C->E[1]. w[0]="*)&&((strstr(S_C->E[i].w,"D")==NULL)))
return(i);
1=0;
while(S_C->E[i].w[l]!="*")
{
if(S_C->E[i].w[l]!=BE_C[l])
{
differ=1;
break;
H
I=1+1;
}/*end of while*/
D_CAP=NULL;
D_CAP=strstr(S_C->E[i].w,"D"),
if(differ==0) /*the entry 1s qualified*/
{
if(D_CAP==NULL) /*no D character in BE*/
return(i),
else if((D_CAP!=NULL)&&(b<=S_C->E[1].))
/*point lies inside I character range M*/
return(1),
clse
differ=1,
}/*end of if differ.. */
1=1+1; /*to search next entry*/
differ=0,
}/*end of outer while*/
if{(differ==1)&&(S_C->flag==1)&&(S_C->nonempty<M))
return(1+1),
/*else if((differ==1)&&(S_C->flag==1)&&(S_C->nonempty==M))*/
[*return(M+1); */
}/*end of else*/
}
* */
void phys_sp_C(int i,char *BE],char *BE2)
{

it |=0;
mtv;
nt u;
int array[M+3];
array[0]=0; /*not used*/
if(points_C==below_n_C)
{
S_C->E[i].f=jmp_C|below_C[points_C]]->v,
S _C->E[i+1]).f=jmp_C[above_C[M+]-pomts_C]]->y:

120

'

else

S_C->E[i] f=jmp_C[above_C[points_C]]->y,
S_C->E[i+1].f5jmp_C[below_C[M+]-points_C]]->y;
H
I=1+1;
stmepy(S_C->E[i].w,"",30),
strepy(S_C->E[i].w,BE1),
S_C->E[i].no_of ps=points_C;
strnepy(buffer3,"",30);
strepy(buffer3 BE2),
ms_en_C(>i+1);
p_buck_C=(struct buc_node *)malloc(sizeof(struct buc_node)),
S_C->E[i+]].p_to_down=p_buck C;
p_buck C=S C->L[i+]].p_to_down;
trace_C[i+1]=8_C->E[i+]] p_to_down;
if(BE1[strlen(BE1)-2]=='1")

{ while(l<=(M+1-points_C))
{ arrayfl]=below_C[l],
I=1+1;
}
}
else
{

while(l<=(M+1-points_C))

array[l]=above_ C[l];
I=1+1;
¥
}
1=1-1;
v=1;
u=l,
while(v<=l)
{
p_buck_C->next=jmp_C|array[v]];
while(1)

if(jmp_C[array[v]-u]!=NULL)
{
jmp_C[array[v]-u]->next=jmp_C|array[v]]->next,
p_buck_C=p_buck_C->next,
p_buck_C->next=NULL;
jmp_Clarray[v]]=NULL;
break;
}
else
u=utl;
}/* end of while(1)*/
v=v+l;
u=1,
} /*end of while*/
S_C->E[i+]].no_of ps=l;

121

++S_C->nonempty;,

}
j*
void dec_C(int left,int nght,int sub,float value)
{

int la=1; /*the subscript the array starts with 1 */

int Ib=1,

above_n_C=0; /*reset*/

below_n_C=0; /*reset*/

while(left<=nght)

{

if(jmp_C[sub]->x>value)
{

above C[la]=left;
above_n_C=above_n_C+1;
la=la+1;

below_C[lb]=left,
below_n_C=below_n_C+l,
Ib=1b+1;
}
left=left+1,
sub=sub+l;
}
;
* */
void tran_en_C(int count,int)

{

struct tre_node *helper;
/*copy entry to node 2*/
strnepy(S_C2->E[n].w,"",30);
strepy(S_C2->E[n].w,S_C->E[count].w),
S_C2->E[n].p_to_down=S_C->E[count].p_to_down;
trace_C2[n]=S_C2->E[n].p_to_down,
S_C2->E[n].no_of_ps=S_C->E[count].no_of_ps;,
S C2->E[n].f=S_C->E|[count].f;
S_C2->flag=S_C->flag;
++S_C2->nonempty;
/*remove copied entry from node |*/
strnepy(S_C->E[count].w,"",30);
S_C->E[count].p_to_down=NULL;
§_C->E[count].no_of ps=0;
S_C->E[count].f=0;
--S_C->nonempty,
if(S_C2->flag==0)
{
helper=S_C2->E[n].p_to_down;
helper->from=n,
helper->up=S_C2,
helper=NULL,

}
/%)

void sp_nod_C()

122

*/

int iI=0;
int k=0;
int 0=0,
int differ=0;
S_C2=(struct tre_node *)malloc(sizeof(struct tre_node));
S_C2->nonempty=0;
S_C2->join=S_C->join;
S_C->join=S_C2;
1=M-1;
while((S_C->E[i] w[0]=="*)&&(S_C->E[i] w[1]=="D")
1=1-1;
while(1>0)
{
k=0;
while(S_C->E[i]. w[k]!="*")
{
o=i-1;
while(0>=0)
{
if(S_C->E[i].w[k]!=S_C->E[o]. w[k])
{
differ=i,
break;
}

0=0-1;

}
if(differ==0)
k=k+1,
else
break;
}/*end of inner while*/
if(differ!=0)
{ &
=1-1;
differ=0,
H
else
break;

}/*end of outer while*/

while(1<M)

{
tran_en_C(i+1,S_C2->nonempty),
=i+l

1

H
/*

void union_C(struct tre_node *p)

{
strnepy(buffer3,"",30);
strepy(buffer3,p->E[p->nonempty-1].w);

H
/*

void adjust_C()

{
int i=0,

123

»7

¥

struct tre_node *inter;
parent C=S C,
if(parent_C!=hop_C->tree)
parent_C=S_C->up;
while((parent_C!=S_C)&&(parent_C!=NULL)&&(S_C!=hop_C->tree))
{
1=S_C->from;
stmepy(parent_C->E[i].w,"" 30);
strepy(parent_C->E[i].w,S_C->E[(S_C->nonempty)-1].w);
parent_C->E[i].f=S_C->E[(S_C->nonempty)-1].f;
if(S_C2!1=NULL)
{
S_C=parent_C,
shift C(i+1);
S_C=parent_C->E[i].p_to_down,
stmepy(parent_C->E[i+1].w,"",30),
strepy(parent_C->E[i+1].w,S_C2->E[(S_C2->nonempty)-1] w),
parent_C->E[i+1].£=S_C2->E[(S_C2->nonempty)-1].f;
++(parent_C->nonempty);
parent_C->E[i+1].p_to_down=S C2;
S_C2->up=parent_C,
S_C2->from=i+1;
S_C2=NULL;
H
S_C=parent_C;
parent_C=S_C->up;
if(S_C->nonempty==M+1)

sp_nod_C();
}
if((S_C->nonempty==M+1)&&(S_C==hop_C->tree))
sp_nod C();
1=0;

if((S_C==hop_C->tree)&&(S_C2!=NULL)) /*the split node is the root*/
{
inter=(struct tre_node *)malloc(sizeof(struct tre_node)),
hop C->tree=inter;
inter=NULL,;
parent_C=hop_C->tree,
S C->up=parent_C,
S_C2->up=parent_C,
S_C->from=i;
S_C2->from=i+1;
hop_C->tree->E[i].p_to_down=S_C;
hop_C->tree->E[i+1].p_to_down=S_C2;
hop_C->tree->flag=0,
hop_C->tree->nonempty=2,
union_C(S_C);
strnepy(hop_C->tree->E[i].w,"",30);
strepy(hop_C->tree->E[1].w,buffer3),
stnepy(hop_C->tree->E[i+1].w,"",30);
strepy(hop_C->tree->E[i+1].w,"*"),
hop_C->tree->E[i] f=S_C->E[S_C->nonempty-1].f,
hop_C->tree->E[i1+1].f=5_C2->E[S_C2->nonempty-1].f,
} /*end of if¥/

}
/*

124

void sp_buc_C(int 1,float a,float b float ¢)
{
char BE1[30]; /*of new 1st entry*/
char BE2[30]; /*of new 2nd entry*/
char ent_exp[30]; /*of original entry*/
int dif=0;
int t=0;
int k=0,
int count;
int counter=0;
int ans,
int tt;
float X_X,
int total;
below n_C=0;
above_n_C=0;
if(t_level C==0)
X_X=X3;
else
X _X=X4,

jmp_C[k]=S_C->E[i].p_to_down;
k=k+1;
counter=counter+1;
total=M+1,
while(k<=M+1)
{

jmp_C[k]=ymp_C[k-1]->next;

if(gmp_C[k]->x!=jmp_C[k-1]->x)&&(k>1))

dif=1;
k=k+1;

}
if((dif==0)&&((k-1)>M))
{
stmepy(BE1,"",30),
strepy(BE1,S_C->E[i].w);
if(strstr(BE1,"D")==NULL)
BEI[strlen(BE1)]="D",
strepy(BE2,"",30);
strepy(BE2,S_C->E[i].w);
while(counter<=(total/2))
{
below_Cfcounter]=counter,;
+tbelow n_C;
++counter;
¥
counter=1;
while(counter<=total-below n_C)
{
above_C[counter]=counter+below n_C,
++above n_C;
++counter;

points_C=below_n_C;

}

else

{

125

strnepy(BE1,"",30);

k=1,
dec_C(k,M+1k,((X_X-X1)/2)+X1));
while(1)
{
if(above_n_C==total)
{
BEI[t]='"l";
count=];
X1=X1+{(X_X-X1)/2);
dec_C(count,above n_C,above_C[count],(((X_X-X1)/2)+X1)),
}
else if(below_n_C==total)
{
BEI1[t}='0",
count=1;
X X=X1+((X_X-X1)/2),
dec_C(count,below n_Cbelow_C[count],(((X_X-X1)/2)+X1));
H
else
{
if(below_n_C>above n_C)
BEI1[t]=04
else if(above_n_C>below n_C)
BEI[t]='1Y
else
{
if(t1=0)
BEI[t}=BE1][t-1],
else
BEI1[t]='0";
}
break;
}/*end of else*/
t=t+1;
}*end of while*/
BEI1[t+1]="*"

stmepy(ent_exp,",30);
strepy(ent_exp,S_C->E[i].w);
if(strlen(BE1)>In_GBE_CJ[t_level _C])
In_GBE_C[t_level _C]=strlen(BE1),
stmepy(BE2,"",30);
strepy(BE2,ent_exp);
f(BE1[t]=="T")
points_C=above_n_C, /*points_C 1s no of points in |st entry*/
else
points_C=below_n_C;
}
phys_sp_C(1,BE1,BE2),
if(S_C->nonempty==M+1)
{
sp_nod_C();
adjust_C();/*adjust tree*/
}

126

I‘*

b

it a_buck_C(int 1,float a,float b float ¢)
{
int split=0;
if(S_C->E[i]l.no_of ps<M)
{
in_buck C(i,a,b,c); /*to insert in bucket list*/
return{0);

else

{
in_buck C(i,a,b.c);
sp_buc_C(1,a,b,c); M*split bucket*/
return(1);

}

3
/*

void shift_C(int 1)
{
int count=S_C->nonempty-1;
while(count>=1}
{
strnepy(S_C->E[count+1].w,"",30),
strepy(S_C->E[count+1].w,S_C->E[count].w),
S_C->E[count+1].p_to_down=S_C->E[count].p_to_down;
S_C->E[count+1].no_of ps=S_C->E[count].no_of ps;
S_C->E[count+1].f=8_C->E[count].f,
if(S_C->flag==0)
{
S_C=S_C->E[count+1].p_to_down;
S_C->from=count+];
S_C=S8_C->up,
}
count=count-1;
}*end of while*/
stepy(S_C->E[i].w,"",30);
S_C->E[i].p_to_down=NULL;
S_C->E[i].no_of ps=0;
S_C->Eli].£=0;
}
*

void insert_C(float a,float b)
{
char BE_C[30]; /*BE of point 1n index C*/
float c;
it NOW_L;
it split;
mnt13; /*entry numbers returned by search node function*/
1ffC=NULL)
{
C=(struct v_root *)malloc(sizeof(struct v_root)),
C->link=NULL,
hop_C=C,

f level C(ab); /*Find time level where point is*/
if(hop_C->tree==NULL)

127

i

il

create_C(),
c=(atb)/1.414;
NOW_L=(t_level C+1)*GRAN; /*Calculate NOW L of the time level*/
space_C(NOW_L);
por BE C(NOW L,a,b),
space_ C(NOW_L);
strepy(BE_C,"",30);
strepy(BE_C,buffer3),
S_C=hop_C->tree;
hold_CI[t_level C]=hop_C->tree;
while(1) /*to repeat in case of nonleaf node but with descending to child*/
{
13=s_n_in_C(BE C,a,b),
1fi13<=M)
{
if(S_C->flag==0) /*in case of nonleaf node */
S_C=S8_C->E[i3].p_to_down; /*descend the tree*/
else if((S_C->flag==1)&&(S_C->nonempty==0))
{
ms_en_C(13);
sphit=a_buck_C(i3,a,b,c),
if(split==0)
{
++(S_C->E[i3].no_of ps),
++(S_C->nonempty),
}
break;
}
else if((S_C->flag==1)&&(13>S_C->nonempty))
{
ms_en_C(13);
split=a_buck C(13,a,b,c),
if(split==0)
{
++(S_C->E[i3].no_of ps),
++(S_C->nonempty),
}
break;

}
else if((S_C->flag==1)&&(13<=S_C->nonempty)&&(S_C->nonempty<=M))
{
f((13!=M-1)&&(S_C->E[i3].no_of ps==M))
shift_ C(i3+1);
split=a_buck C(i3,a,b,c),
if(split==0)
++(S_C->E[i3].no_of ps),
break:

}
}*end of if i13<=M*/
} /*end of while*/
hold_C[t_level C]=hop_C->tree;
b
)‘*

void print_C()
{
wmt qty=0;

128

*/

struct tre_node *pin;

struct tre_node *pin2;

struct v_root *pin3;

struct buc_node *pind;

int 1=0;

int turn=0;

int round=0;

FILE *stream3;

stream3=fopen("put3","w");

pin3=C;

if(pin3==NULL)
fprintf{stream3,"\n Index C does not exist "),

else

{

pin3=C->link;

+qty;

/*printf("\n Index : C ");*/

Mprintf("\n ---------- ")

while(pin3!=NULL) /*levels*/
{

/*printf("\ntime level : %d" pin3->level);*/
pin=hold_C[pin3->level],

pin2=pin;
/printf("\n N;*/
while(1) /*vertical move*/
{
Mpontf("\n.................new tree level..............");¥/
while(pin!=NULL)/*horizontal move*/
{
+rqty;
/*prntf("\n---------- new node------- \n"),*/
1=0;
if(pin->flag==1)
{
/*printf("field node\n");*/
+qty;
}

while(i<pin->nonempty)/*inside node*/

if((round==4)&&(pin->flag==0))
{
Mprintf("\n");*/
round=0;
}
/*printf("| %s |",pin->E[i].w);*/
/*printf("%. 11" pin->E[1].£);*/
++round;
if(pin->flag==1)
{
M*printf("\n");*/
pind=pin->E[i].p_to_down,
pind4=pin4->next;
while(pin4!=NULL)
{
if(turn==>5)
{

129

/*printf{("\n");*/
turn=0;

}
/*printf("(%. 1" pind->x),*/
/*printf(",%. 1£)",pind->y), */
pind=pind->next,
+Humn;
}
Mprintf("\n"),*/
!
1=i+!;
turn=0,
}/*end of while inside node*/
pin=pin->join,
if(pin->flag==0)
J/*printf("\n"), */
¥/*end of while horizontal move*/
pin=pin2;
if(pin->flag==1)
break;
else
{
pin=pin2->E[0].p_to_down,
pin2=pin,

}*end of while vertical move*/
fprntf(stream3,"\ntime level : %d" pin3->level),
pin3=pin3->link;
qty,

}/*end of while levels*/

}/*end of else*/

fprintf(stream3,"\ntolal no. of nodes= %d\n",qty):

H

[*

int search_C(float a,float b)
{
int NOW L,
int nodes=0;
char string[30];
inte,
struct buc_node *look;
f level C(a,b);
NOW_L=(t_level _C+1)*8,
space_C(NOW_L);
poi BE_ C(NOW_L,a,b),
strnepy(string,"",30);
strepy(string,buffer3),
S_C=hold_C[t_level _CJ;
while(S_C->flag==0)
{
e=s_n_in_C(string,a,b);
++nodes;
S_C=S_C->E[e].p_to_down;
}/*end of while*/
e=s_n_in_C(string,a,b),
++nodes;

130

/S

if(e<S_C->nonempty)
{
look=S_C->E[e].p_to_down,
trace_C[e]=look;
look=look->next; /*by pass the dummy head*/
while(look!=NULL)
{
if((look->x==a)& & (look->y==b))
{
printf("\n The point (%.1f,%.1f) is n index C",a,b),
printf("\n at time level=%d".t level C);
prntf("\n number of nodes searched=%d",nodes);
del_C=look;
break,
¥
else
{
trace_C[e]=look;
look=look->next;
H
}/*end of while*/
}
else
printf("\n The point (%. 1{,%.1f) is not in index C",a,b),
return(e),
}
/*

void deshift_C(int n)
{
while(n<=S_C->nonempty-1)
{
stnepy(S_C->E[n-1].w,"",30),
strepy(S_C->E[n-1].w,S_C->E[n].w),
S_C->E[n-1].p_to_down=S_C->E[n].p_to_down,
S C->E|n-1].no_of ps=S_C->E[n].no_of ps;
S_C->E[n-1].f=8_C->E[n].f,
if((S_C->flag=0)&&(S_C->E[n-1].p_to_down!=NULL))
{
S_C=8_C->E[n-1].p_to_down;
S_C->from=n-1,
S_C=S8_C->up,
}
n=n+l,
}/*end of while*/
strmepy(S_C->E[n-1].w,"",30),
S_C->E[n-1].p_to_down=NULL,
S_C->E[n-1].no_of_ps=0;
S_C->E[n-1].£=0,
--S_C->nonempty;
}
[*

void cond_C(int €)
{
struct tre_node *help,
If((S_C->E[e].no_of ps!=0)&&(S_C->flag==1))
return;

izl

else if((e==S_C->nonempty- 1)&&(e!=0)&&(S_C->flag==1))
/*the rightmost but not no. 0 */
{
strnepy(S_C->E[e-1].w,"",30),
stropy(S_C->E[e-1].w,S_C->E[e].w),
strnepy(S_C->E[e].w,"",30),
S_C->E[e].p_to_down=NULL;
--S_C->nonempty;
return;
}
else if((e<S_C->nonempty-1)&&(S_C->flag==1))
{
deshift C(e+1),/*start shift lefi from no. e+1 */
return;
}
else if((e==0)&&(e==S_C->nonempty-1)&&(S_C->flag==1)&&(S_C->E[e]. w[0]!="*"))
{
e=S_C->from,
if(e>0)
{
help=8 _C;
S _C=S C->up;
S_C=S_C->Efe-1].p_to_down,
S_C->join=help->join,
help=NULL,;
S_C=5_C->up,
S_C->E[e].p_to_down=NULL;
deshift_C(e+1);
}/*end of 1f*/
else /*e==0%/
; /*leave node as it 1s to preserve tree balance*/
} /*end of else*/

}
/*

void delete_C(float a float b)
{ .
inte;
del C=NULL,
e=search_C(a,b),
if(del_C==NULL)
printf("\n Point(%. 1{,%. 1f} was not found in index C",a,b),
else
{
trace_C[e]->next=del_C->next,
del C=NULL;
--S_C->E[e].no_of ps;
cond_C(e);/*e is the empty entry*/
printf("\n Point(%. 1{,%.1f) deleted from index C",a,b),
}/*end of else*/

1
/*

int max_t_C(nt t,int max)
{
1f(t>max)
max=t,
return(max);

132

}
*

int min_t_C(int t,int min)
{
if(t<min)
min=t;
return(min);
}
||f *

/

*

void pol_ex_C(float v1 float v2)

{
int NOW_L;
float value;
float X_X;
char bin_exp[30];
nt 1=0;
NOW_L=(t_level C+1)*GRAN;
space_C(NOW L),
if(t_level C==0)
X_X=X3;
else
X_X=X4,
value=X1+X_X-X1)/2;
strnepy(bin_exp,"",30);
while(strlen(bin_exp)<(In_GBE_C[t_level C]-1))
{

if(vl<=value)

{
bin_expl[i]='0",
X_X=value,
value=X1+(X_X-X1)/2;

else if(v2>=value)
{
bin_exp[i]='1";
X1=value,
value=X1+((X_X-X1)/2),
}
else
break;
1=1+1;
} *end of while loop*/
bin_exp[i]="*";
strmepy(buffer3,"",30);
strepy(buffer3,bin_exp);

}
I* ¥
int pref C(char *sh,char *lo)
if(strstr(lo,sh)==l0)
return(1);
else
return(0);
H
/* */

void find_C(struct tre_node *s,char *string,float a3 float a2)

133

struct buc_node *p;

static int turn;

char shorter[30];

char longer[30],

static int number,

int =0,

int boolean=0;

while(i<s->nonempty)

{
stmcpy(shorter,"",30);
strnepy(longer,"",30),
if(s->flag==0)
{

¥
else if(s->flag==1)

+number;
if(strlen(s->E[i].w)<=strlen(string))

number=0;

stmepy(shorter,s->E[1]. w,strlen(s->E[i].w)-1),
stnepy(longer string strlen(string)-1);

H

else

{
strncpy(longer,s->E[i].w,strlen(s->E[i].w)-1);
strepy(shorter,string strlen(string)-1);

}

boolean=pref_C(shorter,longer);
if((boolean==1)&& (number==0))

if(nodes_no2>0)
++nodes_no2;
else
++nodes_nol;
if((((struct tre_node *)(s->E[i].p_to_down))->flag==0)&&(s->flag!=1))
{
if(nonleafs2>0)
++nonleafs2;
else
++nonleafs1;
}
find_C(s->E[i].p_to_down,siring,a3,a2);
i
else if((boolean==1)& & (number>0))
{
p=s->E[1].p_to_down;
p=p->next,
while(p!=NULL)
{
if{turn==5)
{
Pprintf("\n");*/
turn=0;

}
if((p->x<=a3)&&(p->x>=al))

134

{
[*prntf("(%. I p->x);*/
/*printf(",%.)" p->y).*/
+Humn,
¥
p=p->next,

}
;
=1+,
} *end of while*/

}
[*

void pol_C(float al float b1 float a2,float b2 float a3,float b3,float a4,float b4)
{

int NOW_L;

float X_X;

int n=0;

int max=0;

int min=0;

int value=0;

int count=0;

mt first;

char string[30],

int 1=0;

char *array[30];

FILE *out3;

out3=fopen("put3","w"),

fprintf(out3,"\n---------------- search for polygon \n"),

fprintf(out3,"The polygen that is between the 2 vertical line x=%.1fx=%.1f has "
,a3,a2),

f level C(al,bl),

max=max_t_C(t_level C,max),

min=min_t_C(t_level C min);

f level C(a2,b2);

max=max_t_C(t_level C,max),

min=min_L_C(t_level_C,min),

f_level_C(a3,b3);

max=max_t_C(t_level Cmax),

min=mun_t_C(t_level_C,min),

if(ad1=-0.0)

f level_C(a4,b4),
max=max_t_C(t_level C,max);
min=min_t C(t_level C mn),

H

t level C=min;

while(t_level C<=max)

{

NOW_L=(t_level C+1)*GRAN,;
space_C(NOW_L),
if(t_level C==0)

X _X=X3;
else

X_X=X4,
value=X1+X_X-X1)/2,
if((value<a3)& &(value>al))

135

*

pol_ex_C(a3,value),
array[count]=calloc(30,sizeof(char)),
strnepy(array[count],"",30),
strepy(array[count],buffer3),
pol_ex_C(value,a2),
streat(array[count],"+");
strcat(array(count],buffer3);
++t_level C,

++count,

else

pol_ex C(a3,a2),
array[count]=calloc(30,si1zeof(char)),
strnepy(array[count],"",30);
strepy(array[count],buffer3),
++t_level C,

++count;

}/*end of while*/
t_level C=min;
count=0;
while(t_level C<=max)
{
fprintf(out3,"\nln time level %d - - - -\n"t_level_C);
S_C=hold_CJt_level CJ;
nodes_nol=0;
nodes_no2=0;
nonleafs1=0;
nonleafs2=0;
if(S_C!=NULL)
{
if(strstr(array[count],"+")==NULL)
{
++nodes_nol;
if(S_C->flag==0)
++nonleafsl;
find C(S_C,array[count],a3,a2);
}
else
{
first=0;
strnepy(string,"",30);
strepy(string,strstr(array[count],"+")+1);
++nodes_nol;
if(S_C->flag==0)
++nonleafsl;
find C(S_C,string,a3,a2);
first=strespn(array[count],"+"),
strmepy(string,”",30);
strnepy (string,array[count] first);
++nodes_no2;
if(S_C->flag==0)
++nonleafs2,
find_C(S_C,string,a3,a2),

136

}
¥
if(nodes_nol>nodes_no2)
fprintf(out3,"\nthe total number of searched nodes=%d\n",nodes_nol);
else

fprintf(out3,"\nthe total number of searched nodes=%d\n",nodes_no2),
if(nonleafs|>nonleafs2)

fpnntf{out3,\nthe number of nonleaf nodes=%d\n" nonleafs1),
else

fprintf(out3,"\nthe number of nonleaf nodes=%d\n",nonleafs2),
++ _level C;
++count;
}*end of while*/
}
!‘*
main(int arge,char **argv)
{
FILE *n;
int uu3;
char ch;
char file_name[10],
float xx,yy;
float ul,vl,u2,v2,u3 v3,ud vd4,
printf("enter file name : "),/
scanf("%s" file_name);/
/*printf("\n");*/
in=fopen("large3","r"),
if(hin)
{
printf("error open mput file\n"),
¥
while(1)
{
fscanf(in,"%c",&ch);
if(ch=="+")
{
fscanf(in,"(%f, %", &xx,&yy),
Mprintf("%. 1£,%. 1 fn" xx,yy), ¥/
inserl_C(xx.yy),
}
else if(ch=="#")
{
fscanf(in,"(%f, %f)" & xx,&vy);
uud=search_C(xx.yy),

*/

}
else if(ch=="%")
{
print_C();
}
else if(ch=="-")

fscanf(in,"(%f,%f)",&xx,&yy),
delete_C(xx,yy),

}

else if{ch=="7")

{

137

}
¥
if(nodes_nol>nodes_no2)
fprintf(out3,"\nthe total number of searched nodes=%d\n",nodes_nol),
else

fprintf(out3,"\nthe total number of searched nodes=%d\n" nodes_no2),
if(nonleafs1>nonleafs2)

fprintf(out3,"\nthe number of nonleaf nodes=%d\n",nonleafsl);
else

fprintf(out3, "\nthe number of nonleaf nodes=%d\n" ,nonleafs2);,
+H_level C;
+tcount;
}/*end of while*/
}
‘;‘t
main(int argc,char **argv)
{
FILE *in;
int uu3l;
char ch;
char file_name[10];
float xx,yy;
float ul,vl,u2,v2,u3,v3,u4,v4,
/*printf("enter file name : ");*/
/*scanf("%s" file_name);*/
/*printf("\n");*/
m=fopen("large3","r");
f('in)
{
printf("error open input file\n"),
H
while(1)
{
fscanf(in,"%c",&ch);
if(ch=="+"
1
fscanf(in," (%f,%0)", &xx,&yy),
M*printf("%. 1£,%. 1f\n" xx,yy).*/
insert_C(xx,yy);
H
else if(ch=="#")
{
fscanf(in," (%f,%f)" &xx,&yy);
uu3d=search_C(xx,yy),
}
else if(ch=="8")
{
print_C();
}
else if(ch=="-")
It
fscanf(in,"(%f,%0)", &xx,&yy),
delete_C(xx.yy),
H
else if(ch=="7")
{

*/

137

fscanf(in,"(%f,%f, %of %f %f,%f %1, %1)" &ul &v] ,&u2 &v2 &u3 &v3 &ud &v4),
pol C(ul,vl,u2,v2,u3,v3,ud vd);

}

if (feof(in))
break;

}

free(C);

free(S_C),

free(S_C2);

free(temp);

return(0);

}

/*

138

*/

VITA
Hani A. Hafez
Candidate for the Degree of

Master of Science

Thesis: A DYNAMIC AND EFFICIENT PARALLEL
INDEX STRUCTURE FOR TEMPORAL
DATABASES

Major Field: Computer Science
Biographical:

Personal Data: Born in Alexandria, Egypt, On July 7, 1957, the son of
Ahmed Hafez and Nawal Saleh.

Education: Graduated from Raml High School, Alexandria, Egypt in June
1974; received Bachelor of Science degree in Electrical Engineering from
Alexandria University, Alexandria, Egypt in June 1979.
Completed the requirements for the Master of Science degree with a major in
Computer Science at Oklahoma State University in July 1996.

Experience: System Analyst, Dayemtex Co., Cairo, Egypt, 1985 to 1992,
Graduate Assistant, Oklahoma State University, Department of Counseling
Services, July 1994 to May 1996.

